

January 9, 2020

North Carolina Department of Transportation Geotechnical Unit Mail Service Center 1592 Raleigh, North Carolina 27699-1592

Attention: Mr. Craig Haden email: cehaden@ncdot.gov

Reference: Preliminary Site Assessment Report

NCDOT Project I-5878, WBS Element 53078.1.1

Parcel 84-Building and Earth

610 Spring Branch Road

Dunn, Harnett County, North Carolina

S&ME Project 4305-19-161

Dear Mr. Haden:

S&ME, Inc. (S&ME) is submitting this Preliminary Site Assessment (PSA) Report to the North Carolina Department of Transportation (NCDOT). This report presents the background/project information, field activities, findings, conclusions, and recommendations. These services were performed in general accordance with S&ME Proposal No. 43-1900576 REV-01 dated August 9, 2019, and Contract Number 7000018853 dated April 12, 2018 between NCDOT and S&ME, Inc., authorized by NCDOT in its September 5,2019 Notice to Proceed Letter.

♦ Background/Project Information

Based on NCDOT's July 24, 2019, Request for Technical and Cost Proposal, the PSA was conducted within the NCDOT right-of-way (ROW) and/or easement as indicated on the preliminary plan sheets provided by NCDOT at the following property:

NCDOT Parcel No.	Property Owner	Site Address
84	KAM Leasing, LLC	(Building and Earth)
		610 Spring Branch (aka Pope Road), Dunn, NC

The property is developed with a commercial building that is currently occupied by Building and Earth which is a geotechnical, environmental and material testing firm. The building is reported to have previously been occupied by a textile sewing facility. The property is not listed with registered petroleum underground storage tanks (USTs) (active or closed). The property is not listed with North Carolina Department of Environmental Quality (NCDEQ) Incidents associated with petroleum releases from USTs or aboveground storage tanks.

The PSA included a geophysical survey, subsequent limited soil sampling (six soil borings up to 10 feet below ground surface (ft.-bgs)) and limited groundwater sampling (one groundwater sample), within accessible areas of the proposed ROW/easement in preparation for construction activities. **Figure 1** shows the vicinity and site location, and **Figure 2** shows the site and boring locations. Soil and groundwater sampling results are shown on **Figure 3**.

Field Services

Prior to field activities, a site specific Health and Safety Plan was prepared as required by the Occupational Health and Safety Act (OSHA). Underground utilities were located and marked by the North Carolina One-Call Service. A private utility locator (East Coast Underground, LLC) was also used to locate and mark underground utilities.

Geophysical Survey

On July 25, 2019, S&ME completed Time Domain Electromagnetic (TDEM) and Ground Penetrating Radar (GPR) surveys within accessible areas of the proposed ROW/easement at Parcel 84. Brief descriptions of these complementary geophysical techniques are presented in the following paragraphs.

Time Domain Electromagnetics (TDEM)

TDEM measures the electrical conductivity of subsurface materials and discriminates between moderately conductive earth materials and very conductive metallic targets within the shallow subsurface. The conductivity is determined by transmitting a time-varying magnetic pulse into the subsurface and measuring the amplitude and phase shift of the secondary magnetic field. The secondary magnetic field is created when the conductive materials become an inductor as the primary magnetic field is passed through them. TDEM data are acquired continuously at a walking pace typically along a series of parallel or perpendicular lines. The system generates audible and visual indications when metallic targets are encountered. These measurements can also be supported with a global positioning system (GPS) which is output directly into the TDEM data file.

We used a Geonics Limited EM-61 MK2 TDEM system in general accordance with ASTM D6820 "Standard Guide for Use of the Time Domain Electromagnetic Method for Subsurface Investigation." Data was collected along lines spaced at approximately five feet using a Juniper® Systems GeodeTM sub-meter GPS as positioning support. The presence of vehicles and thick vegetation within the survey area, prevented TDEM data collection in several locations. The approximate TDEM data collection paths are presented in **Figure 4.** Golden Software's Surfer® program was used to grid and plot the data (**Figures 5 and 6**). The TDEM data has been presented as Plots A and B in order to provide both opaque and semi-transparent views, respectively.

Ground Penetrating Radar (GPR)

GPR transmits electromagnetic waves into the subsurface from an antenna at a specific frequency and measures the time for wave reflections to be received by interfaces between materials with differing material properties (e.g. soil/metal, etc.). The intensity of the reflected GPR wave is a function of the contrast in the material properties (i.e. dielectric permittivity) at the interface, the conductivity of the material that the wave is traveling through, and the frequency of the signal.

We used a Geophysical Survey Systems, Inc. (GSSI) SIR® 4000 GPR system equipped with a 350 MHz antenna in general accordance with ASTM D6432 "Standard Guide for Using the Surface Ground Penetrating Radar Method for Subsurface Investigation" to further characterize anomalies/features identified during the TDEM survey.

A total of six GPR profiles (Lines 1 through 6) were collected for documentation (**Figure 7**). The data was post-processed using the GSSI Radan® 7 GPR software program for additional analysis.

Geophysical Findings

Responses indicative of a potential UST were not identified in the geophysical data sets collected at the site. One anomalous feature unrelated to known surficial targets was identified in the geophysical data sets (Anomaly A; **Figures 6 and 7**). Anomaly A is characterized by high amplitude GPR responses located less than about one foot below ground surface (bgs) and may be related to a relatively small isolated buried metallic object. The anomaly was marked in the field using white spray paint. Example GPR profiles are presented in **Figure 8**

Soil Sampling

On October 29, 2019, Troxler Geologic, Inc. (Troxler's) drill crew utilized a track mounted Geoprobe® rig to advance six soil borings (B-1 through B-6) and to collect soil samples within accessible areas of the proposed ROW/easement at Parcel 84. The approximate location of the soil borings are shown in **Figure 2**. A photographic log is included in **Appendix I.** Troxler's drill crew advanced the Geoprobe® borings up to a depth of approximately 10 ft.-bgs. During the advancement of the soil borings, groundwater was encountered at depths ranging from approximately four to 9.7 ft.-bgs. Soil samples were continuously collected in four-foot long disposable acetate-plastic sleeves that line the hollow stainless-steel sample probes. Soil recovered from the sleeves was classified on-site by S&ME personnel and screened with a Photoionization Detector (PID) at approximately two foot depth intervals to measure relative headspace concentrations of volatile organic compounds (VOCs).

VOC headspace readings were obtained from an aliquot of each soil sample that was placed in a re-sealable bag. Another portion of the sample was placed in a separate re-sealable bag and stored in an insulated container with ice for possible laboratory analyses. After waiting approximately 15 minutes to allow the sample to reach ambient temperature and headspace equilibrium, the PID probe was inserted into the bag to obtain a headspace reading. A summary of the PID readings and logs of the soil borings are included in **Appendix II.**

Petroleum odors and elevated PID readings were not noted in the collected soil samples. Therefore, a soil sample was selected from each boring at varying depth intervals. The soil samples were placed into laboratory supplied containers and transported to RED Lab, LLC (Red Lab) in an insulated cooler with ice for analysis. A total of six soil

samples (one soil sample per boring) were analyzed by RED Lab for TPH-GRO and TPH-DRO using ultra-violet fluorescence (UVF) spectroscopy with product (fuel) identification.

Soil Analytical Results

Based upon analytical results of soil samples analyzed by RED Lab using UVP spectroscopy, TPH-GRO and TPH-DRO were not reported at concentrations exceeding their respective North Carolina TPH Action Levels. TPH-DRO was reported in borings B-2 and B-3 at the four to six foot depth interval, at concentrations ranging from 0.96 milligram per kilograms (mg/kg) to 1.2 mg/kg, which is slightly above the laboratory method reporting limits but well below its North Carolina TPH Action Level of 100 mg/kg. TPH-GRO and TPH-DRO were not reported at concentrations exceeding the laboratory method reporting limits at the remaining soil samples. A summary of the soil analytical results is presented in **Table 1** and shown on **Figure 3**. A copy of the laboratory analytical report provided by RED Lab is presented in **Appendix III**.

Groundwater Sampling

During the advancement of the soil borings, groundwater was encountered at depths ranging from approximately four to 9.7 ft.-bgs. Therefore, the Geoprobe® was used to advance one of the soil borings into the groundwater table for the collection of a groundwater sample. Due to the lack of petroleum odors or elevated PID readings, boring B-4 was selected at random for collection of a groundwater sample. A temporary monitor well (TW-1) was installed at boring B-4 to a depth of approximately five ft.-bgs using a five foot section of one-inch diameter, Schedule 40 PVC, 0.01-inch slotted screen that intersected the groundwater table. Groundwater within the temporary monitor well at boring B-4 was measured at four ft.-bgs. Groundwater was purged from the temporary well until relatively clear using disposable tubing attached to a peristaltic pump. The flow rate was reduced and laboratory supplied containers were filled directly from the tubing, labeled as TW-1 and placed in an insulated cooler with ice for transport to Con-Test Laboratories (Con-Test) for analysis of VOCs by EPA Method 8260 and polycyclic aromatic compounds (PAHs) by EPA Method 8270.

Upon completion of the soil and groundwater sampling, the well materials were removed and the soil borings backfilled with bentonite pellets and soil cuttings. Investigative derived wastes (IDW), such as soil cuttings generated during the soil boring advancement and decontamination water, were spread on the ground in accordance with the procedures specified by NCDEQ. Used gloves and tubing were bagged and disposed offsite.

Groundwater Analytical Results

Based upon analytical results of the groundwater sample analyzed by Con-Test, one target constituent was reported at a concentration slightly above the laboratory method reporting limits and below its 15A NCAC 2L Groundwater Quality Standards (2L Standards). Tetrachloroethylene (PCE), which is a chlorinated solvent, was reported in the groundwater sample at a concentration of 0.43 microgram per liter (μ g/L) which is below its 2L Standard of 0.7 μ g/L. No other target constituent was reported in the groundwater sample at a concentration exceeding the laboratory method reporting limits. A summary of the groundwater analytical results is presented in **Table 2** and shown on **Figure 3**. A copy of the laboratory analytical report provided by Con-Test is presented in **Appendix III**.

Conclusion and Recommendations

The geophysical survey identified one anomaly (Anomaly A) which may be related to a relatively small isolated buried metallic object. Responses indicative of a potential UST were not identified in the geophysical data sets collected at the site.

S&ME advanced six soil borings (B-1 through B-6) to a depth of up to approximately 10 ft.-bgs at the site. Petroleum odors and elevated PID readings were not noted in soil samples collected at the borings. Selected soil samples from the soil borings were analyzed for TPH-GRO and TPH-DRO using UVF spectroscopy.

TPH-GRO and TPH-DRO were not reported at concentrations exceeding their respective North Carolina TPH Action Levels. TPH-DRO was reported in borings B-2 and B-3 at the four to six foot depth interval at concentrations slightly above the laboratory method reporting limits but well below its North Carolina TPH Action Level. TPH-GRO and TPH-DRO were not reported at concentrations exceeding the laboratory method reporting limits at the remaining soil samples.

During the soil boring advancement, groundwater was encountered at depths ranging from four to 9.7 ft.-bgs. One temporary well (TW-1) was installed at soil boring B-4. Groundwater at TW-1 was measured at four ft.-bgs and analyzed by Con-Test for VOCs by EPA Method 8260 and PAHs by EPA Method 8270. Tetrachloroethylene (PCE), which is a chlorinated solvent, was reported in the groundwater sample at a concentration of 0.43 μ g/L which is below its 2L Standard of 0.7 μ g/L. No other target constituent was reported in the groundwater sample at a concentration exceeding the laboratory method reporting limits.

Based on the findings of the geophysical survey and analytical results of soil and groundwater samples, it is likely that during construction, NCDOT may encounter soil marginally impacted with petroleum (below TPH Action Levels) and groundwater marginally impacted with Tetrachloroethylene a chlorinated solvent (below 2L Standards).

It should also be assumed that saturated petroleum and solvent impacted soil will be encountered if construction excavations extend deeper than four ft.-bgs on the site. If construction dewatering is required, impacted groundwater must be properly disposed or treated at a licensed facility. If petroleum stained or odorous soils are encountered during construction, these soils should be properly handled and disposed at a licensed facility.

S&ME recommends maintaining an awareness level for the presence of marginally impacted petroleum and solvents in the soil and groundwater at the site for the safety of workers and the public.

Limitations

The results of this preliminary investigation are limited to the boring locations presented herein. The results of this Preliminary Site Assessment are not all inclusive and may not represent existing conditions across the entire property. These results only reflect the current conditions at the locations sampled on the date this Preliminary Site Assessment was performed. This report has been prepared in accordance with generally accepted environmental engineering and geophysical practice for specific application to this project. The conclusions and recommendations contained in this report are based upon applicable standards of our practice in this geographic area at the time this report was prepared. No other warranty, expressed or implied, is made.

January 9, 2020

The geophysical methods used for this survey have inherent limitations. Site metallic features (e.g., surficial debris, reinforced concrete, utilities, etc.) and overhead transmission lines can produce a false electromagnetic response and may mask subsurface features. The depth of exploration of the GPR signal is highly site specific and is greatly limited by signal attenuation (absorption) of the subsurface materials. Signal attenuation is dependent upon the electrical conductivity of the subsurface materials. Signal attenuation is greatest in materials with relatively high electrical conductivities such as clay soils, and lowest in relatively low conductivity materials such as unsaturated sand. For this project location, the GPR data sets appear to have a maximum depth of penetration of about six ft.-bgs.

Regardless of the thoroughness of a geophysical study, there is always a possibility that actual conditions may not match the interpretations. The results should be considered accurate only to the degree implied by the methods used and the method's limitations and data coverage. Accordingly, the possibility exists that not all features at a project site will be located due to either subsurface soil conditions or the occurrence of features outside the lateral limits and below the depth of penetration of the methods used. As with most surface geophysical methods, resolution of the subsurface will also decrease with depth. As such, the size and/or contrast of features compared to the imaged subsurface media must be significant enough to produce the anticipated response. The location and/or determination (or the lack thereof) of potential buried features is based on our review of the provided information and of the geophysical survey. Under no circumstances does S&ME assume any responsibility for damages resulting from the presence of subsurface features that may exist but were not identified by our survey.

This Preliminary Site Assessment was performed solely for NCDOT regarding the above-referenced site and assessment area. This report is provided for the sole use of NCDOT. Use of this report by any other parties will be at such party's sole risk. S&ME disclaims liability for any such use or reliance by third parties. The observations presented in this report are indicative of conditions during the time of the assessment and of the specific areas referenced.

Closing

S&ME appreciates the opportunity to provide these services to you. If you have any questions or comments regarding this report, please contact us at your convenience.

Sincerely,

S&ME, Inc.

DocuSigned by:

Danie Honercutt

4C890EAEC25F488...

Jamie T Honeycutt Environmental Professional

jhoneycutt@smeinc.com

Michael W. Pfeifer Senior Project Manager mpfeifer@smeinc.com

Thomas P. Raymond, P.E., P.M.P. Senior Consultant traymond@smeinc.com

Attachments:

Table 1: Summary of Soil Sampling Results

Table 2: Summary of Groundwater Sampling Results

Figure 1: Vicinity Map

Figure 2: Site Map

Figure 3: Soil and Groundwater Constituent Map

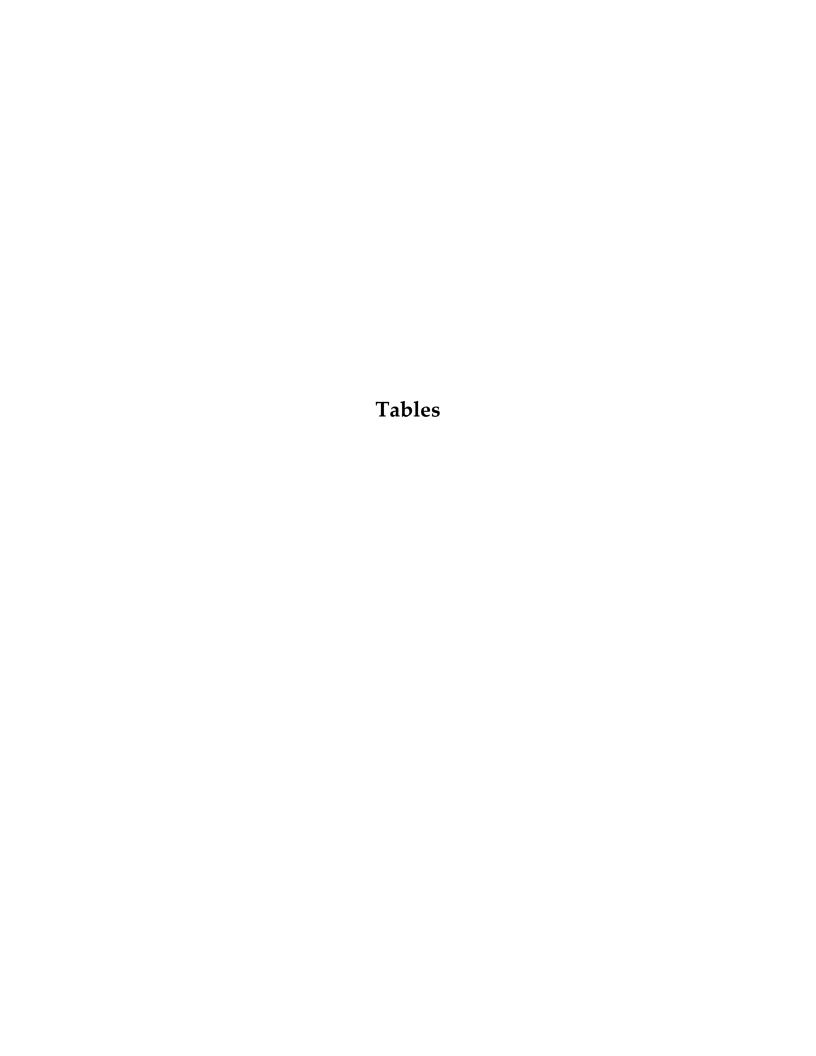

Figure 4: TDEM Path Location Plan

Figure 5: TDEM Data Plot A Figure 6: TDEM Data Plot B

Figure 7: Geophysical Anomaly Location Plan **Figure 8:** Example GPR Data – Lines 5 and 6

Appendix I: Photographs **Appendix II:** Boring Logs

Appendix III: Laboratory Analytical Reports and Chain of Custody

TABLE 1

SUMMARY OF SOIL SAMPLING RESULTS

S&ME Project No. 4305-19-161

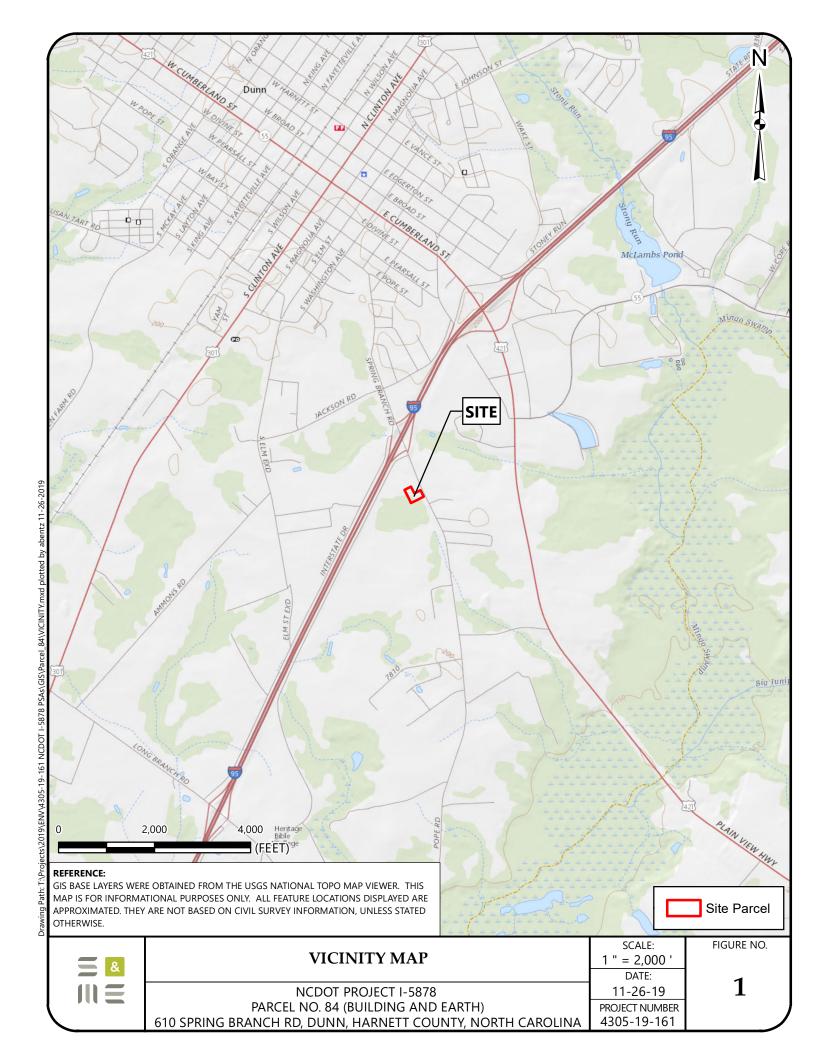
Ar	nalytical Metho	d→	Range Organics (GR Organics (DRO) by Uli	carbons (TPH) Gasoline (O) and Diesel Range traviolet Fluorescence ectrometry
Sample ID	Date	Contaminant of Concern→ Sample Depth (ftbgs)	TPH-GRO	TPH-DRO
B-1	10/29/2019	6 to 8	<0.53	<0.53
B-2	10/29/2019	4 to 6	<0.5	0.96
B-3	10/29/2019	4 to 6	<0.48	1.2
B-4	10/29/2019	4 to 6	<0.5	<0.5
B-5	10/29/2019	6 to 8	<0.26	<0.26
B-6	10/29/2019	6 to 8	<0.51	<0.51
No	orth Carolina T	PH Action Levels	50	100

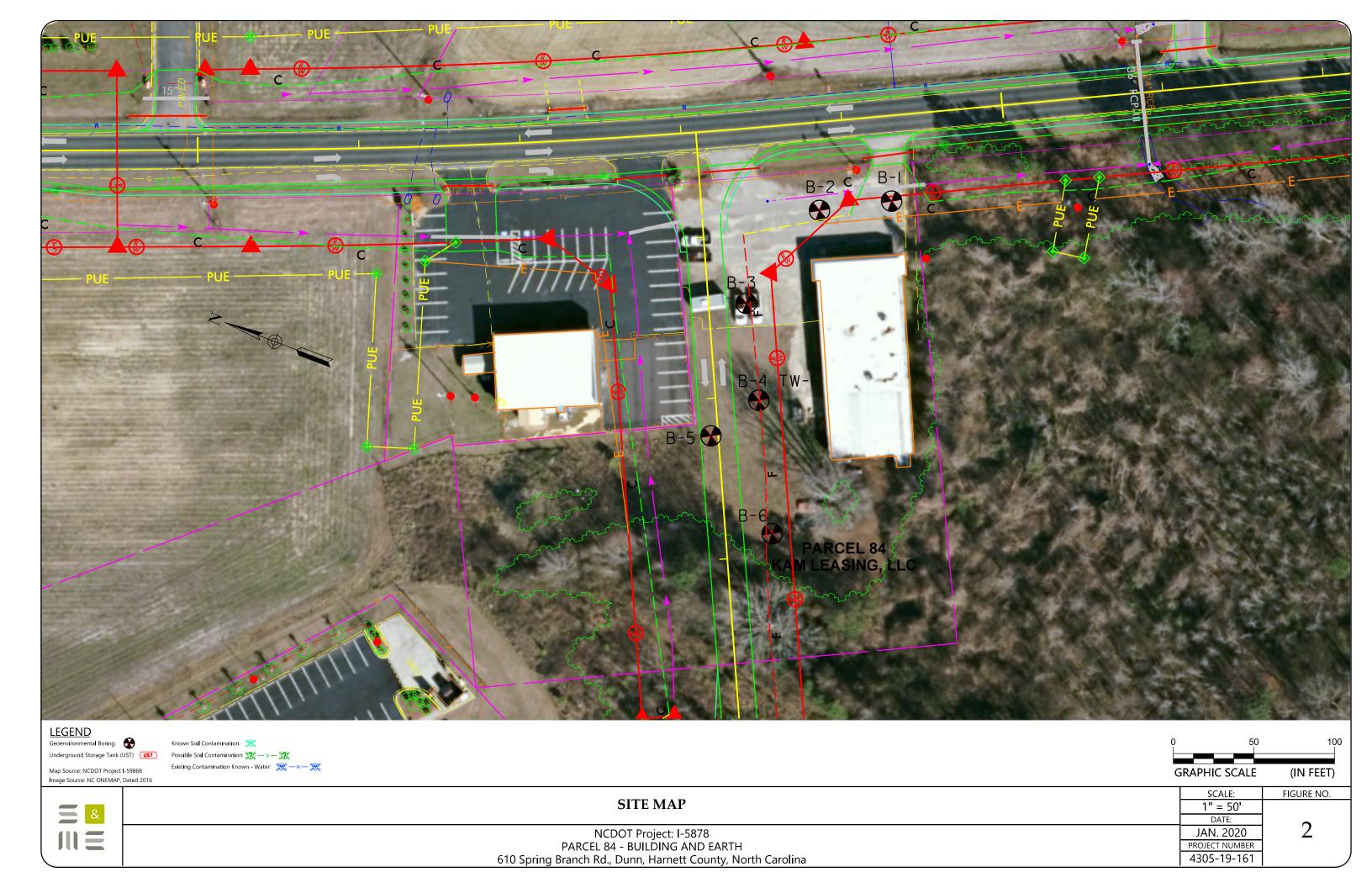
Notes:

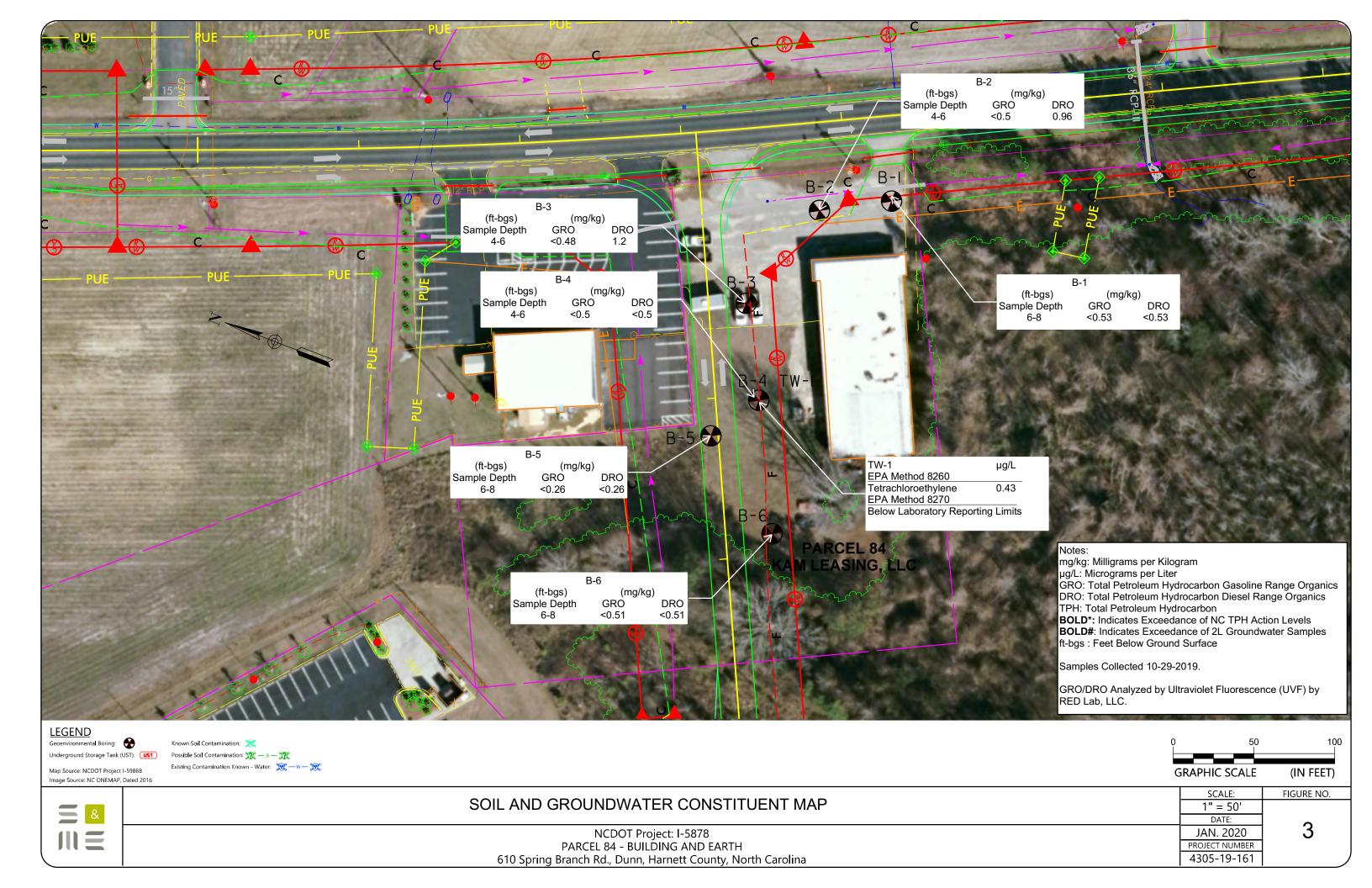
- 1. UVF analysis performed by RED Lab, LLC
- 2. Concentrations are reported in milligrams per kilogram (mg/Kg).
- 3. ft.-bgs:- feet below ground surface.
- 4. Concentrations exceeding the laboratory's reporting limits are shown in **BOLD** fields.
- 5. Concentrations exceeding the North Carolina TPH Action Levels are shown in Shaded and **BOLD** fields.

TABLE 2 SUMMARY OF GROUNDWATER SAMPLING RESULTS

NCDOT Project I-5878


Parcel 84 - (Building and Earth) 610 Spring Branch Road Dunn, Harnett County, North Carolina S&ME Project No. 4305-19-161


Analytical	Method→	Volatile Organic Compounds by EPA Method 8260	Polycyclic Aromatic Compounds (PAHs) by EPA Method 8270
Sample ID	Contaminant of Concern→	etrachloroethylene	onstituent Specific
	Date	Ľ	ပ
B-4/TW-1	10/29/2019	0.43 J	Below Laboratory Reporting Limits
2L S	tandard (μg/L)	0.7	Not Applicable
	GCL (µg/L)	700	Not Applicable


Notes:

- 1. Analytes that are not shown for the method were not detected.
- 2. Concentrations are reported in micrograms per liter ($\mu g/L$).
- 3. 2L Standard: North Carolina Groundwater Quality Standards: 15A NCAC 2L.0202
- 4. Concentrations exceeding the laboratory's reporting limits are shown in ${\bf BOLD}$ fields.
- 5. Concentrations exceeding the 2L Standards are shown in Shaded and **BOLD** fields.
- 6. GCL: Gross Contamination Level.
- 7. J: Estimated concentration detected below the reporting limit.

GOOGLE EARTH PRO AERIAL PHOTOGRAPH (DATED MARCH 4, 2018)

LEGEND

Approximate TDEM Path

Approximate Requested Survey Area

Location of Vehicles

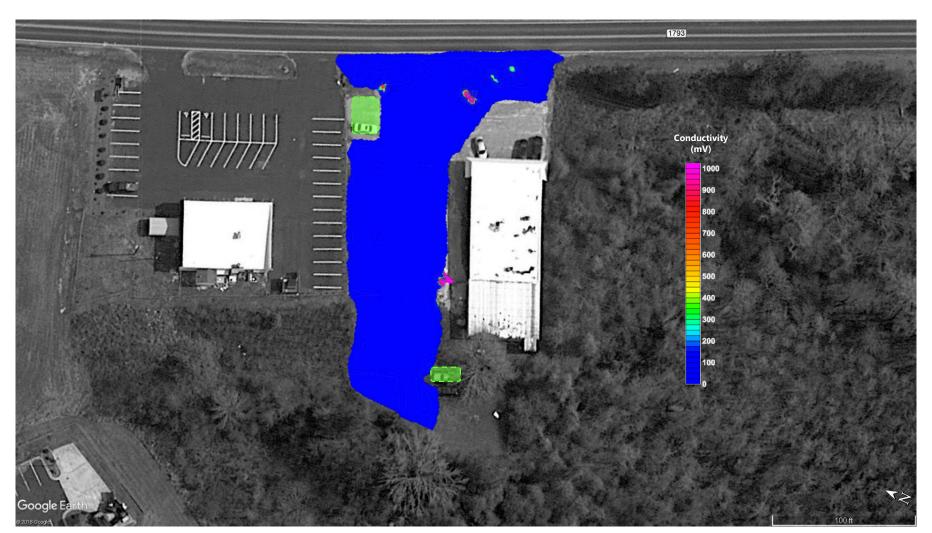
TDEM PATH LOCATION PLAN

NCDOT PROJECT: I-5878
PARCEL #84 – (BUILDING AND EARTH)
610 SPRING BRANCH ROAD, DUNN, HARNETT COUNTY, NORTH CAROLINA

SCALE: AS SHOWN

DATE: 1/7/2020

PROJECT NUMBER 4305-19-161


FIGURE NO.

4

REFERENCE:GOOGLE EARTH PRO AERIAL PHOTOGRAPH (DATED MARCH 4, 2018)

LEGEND

Location of Vehicles

SCALE: AS SHOWN

NCDOT PROJECT: 1-5878
PARCEL #84 – (BUILDING AND EARTH)
610 SPRING BRANCH ROAD, DUNN, HARNETT COUNTY, NORTH CAROLINA

TDEM DATA PLOT A

DATE: 1/7/2020

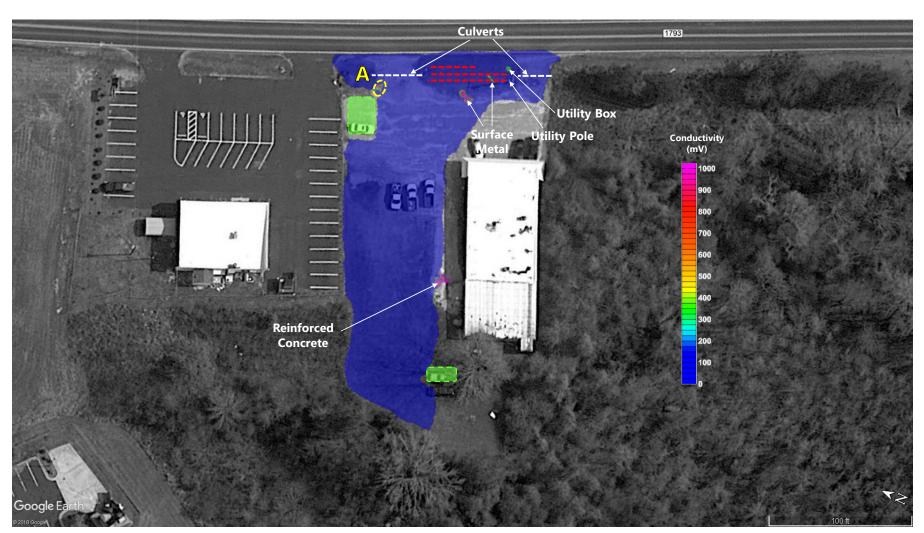

PROJECT NUMBER 4305-19-161

FIGURE NO.

REFERENCE:

GOOGLE EARTH PRO AERIAL PHOTOGRAPH (DATED MARCH 4, 2018)

LEGEND

 \bigcirc

Approximate Location of Geophysical Anomaly

Approximate Location of Possible Utility

Location of Vehicles

TDEM DATA PLOT B

NCDOT PROJECT: I-5878
PARCEL #84 – (BUILDING AND EARTH)
610 SPRING BRANCH ROAD, DUNN, HARNETT COUNTY, NORTH CAROLINA

SCALE: AS SHOWN

DATE: 1/7/2020

PROJECT NUMBER 4305-19-161

FIGURE NO.

REFERENCE:

GOOGLE EARTH PRO AERIAL PHOTOGRAPH (DATED MARCH 4, 2018)

GEOPHYSICAL ANOMALY LOCATION PLAN

PARCEL #84 – (BUILDING AND EARTH) 610 SPRING BRANCH ROAD, DUNN, HARNETT COUNTY, NORTH CAROLINA

SCALE: AS SHOWN

DATE: 1/7/2020

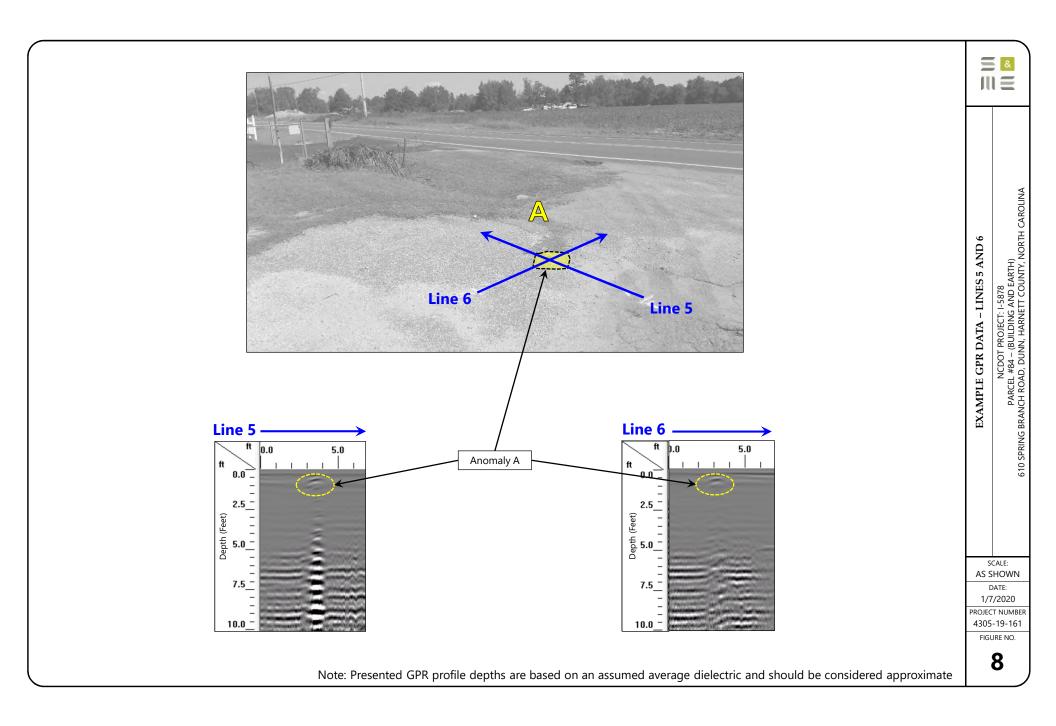
PROJECT NUMBER 4305-19-161

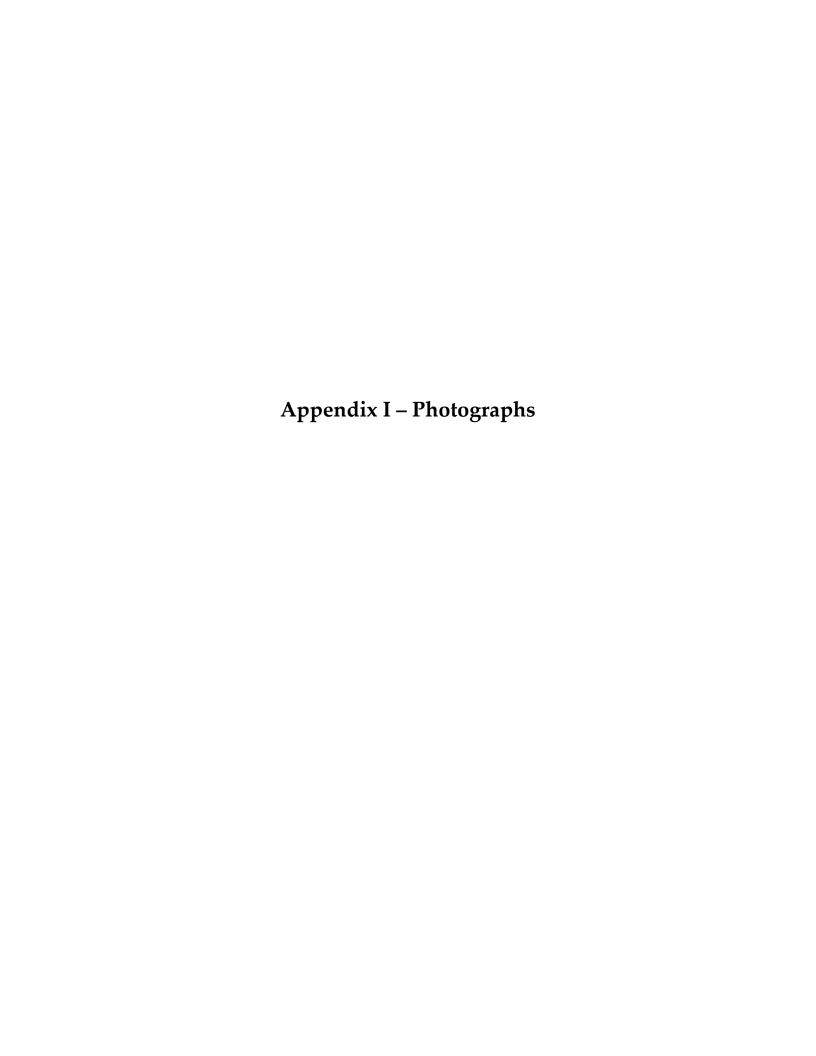
FIGURE NO.

7

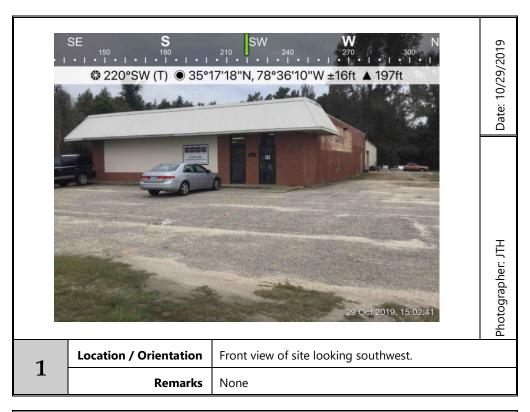
LEGEND

Approximate Location of Geophysical Anomaly


Approximate Location of Possible Utility

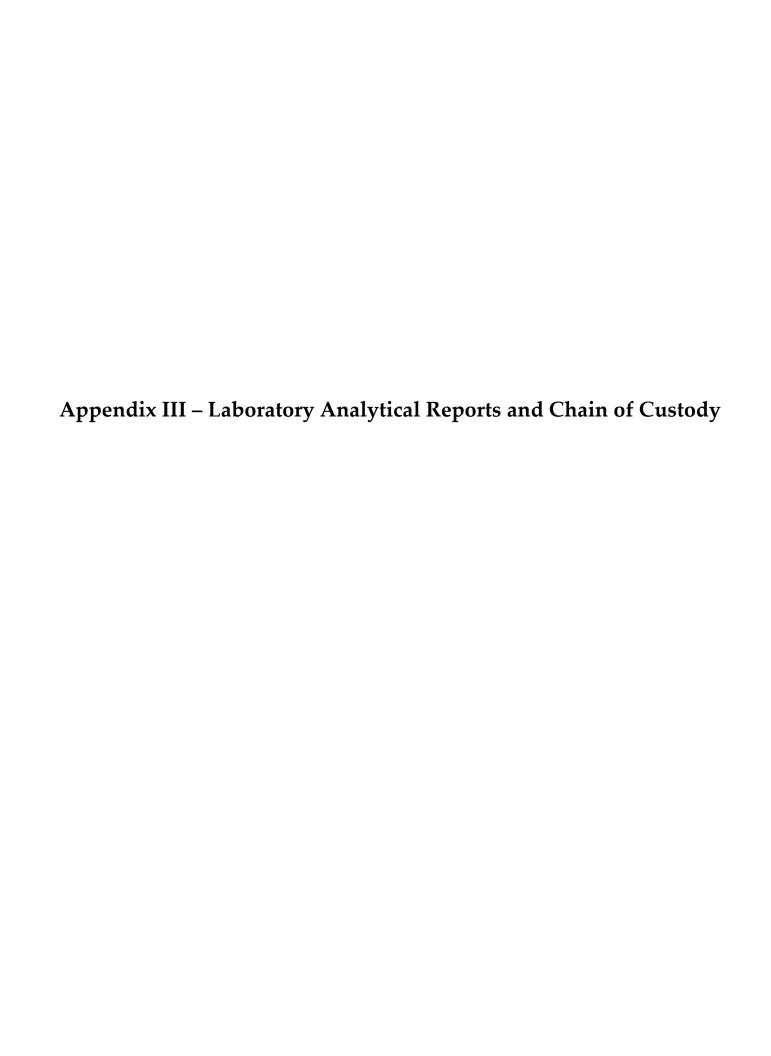


Location of Vehicles



Approximate Location of GPR Profile

PROJECT:	NCDOT I-5878 Parcel 84-610 Spring Branch Rd (Building and E				BORII	NG LOG	: B-1			
0.475.0004.50	S&ME Project No. 4305-19-161									
DATE DRILLED:	Tuesday, October 29, 2019	BORING DEPTH (FT):								
DRILL RIG:	Geoprobe 54DT	WATER LEVEL:								
DRILLER:	Troxler Geologic, Inc.	CAVE-IN DEPTH:	Not Appl	icable						
HAMMER TYPE:	Not Applicable	LOGGED BY:	J. Honeyo	utt						
SAMPLING METHOD	Macro-Core Sampler	NORTHING:								
DRILLING METHOD:	Macro-Core Sampler (3-in. OD)	EASTING:								
DEPTH (feet) .: GRAPHIC .: LOG	MATERIAL DESCRIPTION Asphalt, Gravel,		WATER LEVEL	SAMPLE	PID READING (PPM)	LABORATORY ANALYSES	Sample Time / 1st 6in	2nd 6in	3rd 6in	N VALUE
	Sandy Clay, Tan, Orange, Red, Sandy Clay, Tan, Orange, Red, Sandy Clay, Tan, Orange, Red, Sandy Clay, Tan, Orange, Red,			I	0.0	No No				
5	· · ·			I	0.0	No				
1//	Clayey Sand, Tan, Orange, Red, Boring Terminated at 8 Ft-BGS		•	H	0.0	Yes	1500			
10 —										
15 —										
20 —										
25 —										


PROJECT:		NCDOT I-5878 Parcel 84-610 Spring Branch Rd (Building and Ea			BORIN	NG LOG	B-2				
DATE DRILLE	FD.	S&ME Project No. 4305-19-161 Tuesday, October 29, 2019	DODING DEDTIL (FT)	0							
	ED.		BORING DEPTH (FT):								
DRILL RIG:		Geoprobe 54DT	WATER LEVEL:	7.2							
DRILLER:		Troxler Geologic, Inc.	CAVE-IN DEPTH:								
HAMMER TY		Not Applicable	LOGGED BY:	J. Honey	cutt						
SAMPLING N	METHOD:	Macro-Core Sampler	NORTHING:								
DRILLING ME	ETHOD:	Macro-Core Sampler (3-in. OD)	EASTING:								
DEPTH (feet)	GRAPHIC	MATERIAL DESCRIPTION		WATER LEVEL	SAMPLE	PID READING (PPM)	LABORATORY ANALYSES	Sample Time / 1st 6in	2nd 6in	3rd 6in	N VALUE
	San	dy Clay, Tan, Orange, Red,			I	0.0	No				
5 —						0.4	No	1510			
	Cla	yey Sand, Tan, Orange, Red,		•	I	0.8 1.4	Yes No	1510			
	Bor	ing Terminated at 8 Ft-BGS				1.4	NO				
10 —											
15 —											
20 —											
25 —											
30											

PROJECT:	NCDOT I-5878 Parcel 84-610 Spring Branch Rd (Building and Eart		ı	BORIN	IG LOG:	B-3				
	S&ME Project No. 4305-19-161									
DATE DRILLED:	Tuesday, October 29, 2019	BORING DEPTH (FT):	8							
DRILL RIG:	Geoprobe 54DT	WATER LEVEL:								
DRILLER:	Troxler Geologic, Inc.	CAVE-IN DEPTH:								
HAMMER TYPE:	Not Applicable	LOGGED BY:	J. Honeycu	ıtt						
SAMPLING METHO		NORTHING:								
DRILLING METHOD		EASTING:								
		27.07.170.								
DEPTH (feet) GRAPHIC			WATER LEVEL	SAMPLE	PID READING (PPM)	LABORATORY ANALYSES	Sample Time / 1st 6in	2nd 6in	3rd 6in	N VALUE
	Asphalt, Gravel, Sandy Clay, Tan, Orange, Red,		- - -	I	0.0	No				
5 —				H	0.3	No				
	Clayey Sand, Tan, Orange, Red,		-	Ĭ	0.6	Yes	1520			
	Boring Terminated at 8 Ft-BGS			т.	0.6	No				
10 —										
15 —										
20 —										
25 —										
30										

PROJECT	:	NCDOT I-5878 Parcel 84-610 Spring Branch Rd (Building and	Earth), Dunn, NC			BORIN	NG LOG:	B-4/	TW-1		
		S&ME Project No. 4305-19-16									
DATE DRILL	LED:	Tuesday, October 29, 2019	BORING DEPTH (FT):	13							
DRILL RIG:		Geoprobe 54DT	WATER LEVEL:	4							
DRILLER:		Troxler Geologic, Inc.	CAVE-IN DEPTH:								
HAMMER T	ГҮРЕ:	Not Applicable		J. Honeyo	cutt						
SAMPLING		Macro-Core Sampler	NORTHING:	,							
DRILLING N		Macro-Core Sampler (3-in. OD)	EASTING:								
	T		2.01110.					L			
DEPTH (feet)	GRAPHIC	MATERIAL DESCRIPTION		WATER LEVEL	SAMPLE	PID READING (PPM)	LABORATORY ANALYSES	Sample Time / 1st 6in	2nd 6in	3rd 6in	N VALUE
		opson, iandy Clay, Tan, Orange, Red,			ł	0.0	No				
5 —				•	ŧ	0.2	No				
					İ	0.2	Yes	1530			
		Elayey Sand, Orange, Red, Gray,			11	0.7	No				
10 —		and, Red,									
	E	Boring Terminated at 13 Ft-BGS									
15 —											
20 —											
25 —											
30 —											

PROJECT	Γ:	NCDOT I-5878 Parcel 84-610 Spring Branch Rd (Building and E	arth), Dunn, NC			BORII	NG LOG	: B-5				
DATE DRIL	I ED:	S&ME Project No. 4305-19-161 Tuesday, October 29, 2019	DODING DEDTIL (ET).	10								
			BORING DEPTH (FT):									
DRILL RIG:		Geoprobe 54DT	WATER LEVEL:	9.7								
DRILLER:		Troxler Geologic, Inc.	CAVE-IN DEPTH:									
HAMMER 1	TYPE:	Not Applicable	LOGGED BY:	J. Honey	cutt							
SAMPLING	METHOD:	Macro-Core Sampler	NORTHING:									
DRILLING N	METHOD:	Macro-Core Sampler (3-in. OD)	EASTING:									
DEPTH (feet)	GRAPHIC LOG	MATERIAL DESCRIPTION Topsoil,		WATER LEVEL	SAMPLE	PID READING (PPM)	LABORATORY ANALYSES	Sample Time / 1st 6in	2nd 6in	3rd 6in	N VALUE	
		Sandy Clay, Tan, Orange, Red,				0.1	No					
5 —						0.0	No					
_					ľ	0.8	No					
_		Clayey Sand, Orange, Red, Gray,				1.5	Yes	1545				
10 —		Boring Terminated at 10 Ft-BGS		▼								
15 —												
30 —	-											

DRILL RIG: Geogle DRILLER: Troxi HAMMER TYPE: Not . SAMPLING METHOD: Macri DRILLING METHOD: Macri Topsoil, Sandy Cla	Parcel 84-610 Spring Branch Rd (Building and Earth S&ME Project No. 4305-19-161 sday, October 29, 2019 oprobe 54DT xler Geologic, Inc. t Applicable cro-Core Sampler cro-Core Sampler (3-in. OD) MATERIAL DESCRIPTION ay, Tan, Orange, Red,	BORING DEPTH (FT): WATER LEVEL: CAVE-IN DEPTH:	J. Honeycutt	SAMPLE	O.O (PPM)	O LABORATORY ANALYSES	Sample Time / 1st 6in	2nd 6in	3rd 6in	N VALUE
DRILL RIG: Geogle DRILLER: Troxi HAMMER TYPE: Not. SAMPLING METHOD: Macri DRILLING METHOD: Macri Topsoil, Sandy Cla	esday, October 29, 2019 Oprobe 54DT xxler Geologic, Inc. t Applicable cro-Core Sampler cro-Core Sampler (3-in. OD) MATERIAL DESCRIPTION	WATER LEVEL: CAVE-IN DEPTH: LOGGED BY: NORTHING:	J. Honeycutt	SAMPLE			Sample Time / 1st 6in	2nd 6in	3rd 6in	N VALUE
DRILL RIG: Geogle DRILLER: Troxi HAMMER TYPE: Not. SAMPLING METHOD: Macri DRILLING METHOD: Macri Topsoil, Sandy Cla	pprobe 54DT xler Geologic, Inc. t Applicable cro-Core Sampler cro-Core Sampler (3-in. OD) MATERIAL DESCRIPTION	WATER LEVEL: CAVE-IN DEPTH: LOGGED BY: NORTHING:	J. Honeycutt	SAMPLE			Sample Time / 1st 6in	2nd 6in	3rd 6in	N VALUE
DRILLER: Troxi HAMMER TYPE: Not. SAMPLING METHOD: Macri DRILLING METHOD: Macri Topsoil, Sandy Cla	xler Geologic, Inc. t Applicable cro-Core Sampler cro-Core Sampler (3-in. OD) MATERIAL DESCRIPTION	CAVE-IN DEPTH: LOGGED BY: NORTHING:	J. Honeycutt	SAMPLE			Sample Time / 1st 6in	2nd 6in	3rd 6in	N VALUE
HAMMER TYPE: Not. SAMPLING METHOD: Macri DRILLING METHOD: Macri Topsoil, Sandy Cla Clayey Sai	t Applicable cro-Core Sampler cro-Core Sampler (3-in. OD) MATERIAL DESCRIPTION	LOGGED BY: NORTHING:		SAMPLE			Sample Time / 1st 6in	2nd 6in	3rd 6in	N VALUE
SAMPLING METHOD: Maci	cro-Core Sampler cro-Core Sampler (3-in. OD) MATERIAL DESCRIPTION	NORTHING:		SAMPLE			Sample Time / 1st 6in	2nd 6in	3rd 6in	N VALUE
DRILLING METHOD: Macci	cro-Core Sampler (3-in. OD) MATERIAL DESCRIPTION		WATER LEVEL				Sample Time / 1st 6in	2nd 6in	3rd 6in	N VALUE
Topsoil, Sandy Cla Clayey Sai	MATERIAL DESCRIPTION	LASTING	WATER LEVEL				Sample Time / 1st 6in	2nd 6in	3rd 6in	N VALUE
Topsoil, Sandy Cla			WATER LEVEL				Sample Time / 1st 6in	2nd 6in	3rd 6in	N VALUE
5 — Clayey Sai	ay, Tan, Orange, Red,				0.0	No				
Clayey Sai				_	1.0	No				
L ₁₀ V///				H	0.0	No				
				ŀ	0.3	Yes	1600			
10 Boring Tel	and, Orange, Red, Gray,		_							
	erminated at 10 Ft-BGS		· •							
20 —										

Hydrocarbon Analysis Results

Client: S&ME

Address: 3201 SPRING FOREST RD

RALEIGH NC

Contact: JAMIE HONEYCUTT

Samples taken Samples extracted Tuesday, October 29, 2019

Samples analysed

Tuesday, October 29, 2019 Friday, November 1, 2019

MAX MOYER

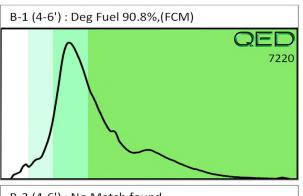
Operator

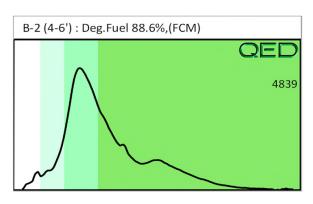
Project: NCDOT I-5878 PARCEL 84

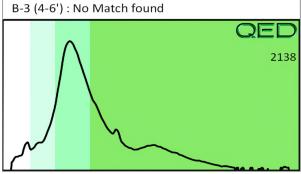
													U00902																						
Matrix	Sample ID	Dilution used	BTEX (C6 - C9)	GRO (C5 - C10)	DRO (C10 - C35)	TPH (C5 - C35)	Total Aromatics (C10-C35)	16 EPA PAHs	ВаР	% Ratios		% Ratios		% Ratios		% Ratios		% Ratios		% Ratios		% Ratios		% Ratios		% Ratios		% Ratios		% Ratios		% Ratios		s	HC Fingerprint Match
										C5 - C10	C10 - C18	C18																							
S	B-1 (6-8')	21.1	<0.53	<0.53	<0.53	<0.53	<0.11	<0.17	<0.021	0	0	0	PHC not detected,(P)																						
S	B-2 (4-6')	20.0	<0.5	<0.5	0.96	0.96	0.5	<0.16	<0.02	0	77.9	22.1	Deg Fuel 81%,(FCM)																						
S	B-3 (4-6')	19.3	<0.48	<0.48	1.2	1.2	0.69	<0.15	<0.019	0	78.9	21.1	Deg Fuel 76.7%,(FCM)																						
S	B-4 (4-6')	20.0	<0.5	<0.5	<0.5	<0.5	<0.1	<0.16	< 0.02	0	0	0	PHC not detected,(BO)																						
S	B-5 (6-8')	10.4	<0.26	<0.26	<0.26	<0.26	< 0.05	<0.08	<0.01	0	0	0	,(FCM)																						
S	B-6 (6-8')	10.5	<0.51	<0.51	<0.51	<0.51	<0.1	<0.16	< 0.02	0	0	0	PHC not detected																						
				01/					Fi. 15			Olí																							

Initial Calibrator QC check OK Final FCM QC Check OK

101%


Concentration values in mg/kg for soil samples and mg/L for water samples. Soil values uncorrected for moisture or stone content. Fingerprints provide a tentative hydrocarbon identification.


Abbreviations :- FCM = Results calculated using Fundamental Calibration Mode : % = confidence of hydrocarbon identification : (PFM) = Poor Fingerprint Match : (T) = Turbid : (P) = Particulate detected


B = Blank Drift : (SBS)/(LBS) = Site Specific or Library Background Subtraction applied to result : (BO) = Background Organics detected : (OCR) = Outside cal range : (M) = Modifed Result. % Ratios estimated aromatic carbon number proportions : HC = Hydrocarbon : PHC = Petroleum HC : FP = Fingerprint only.

Data generated by HC-1 Analyser

Project: NCDOT I-5878 PARCEL 87

NCDOT - I-58-18

Parcel 84

			DADID FNVIDON		CHAIN OF CUST	REO
Syme Forest	3201 Spin Break 20	Tamin T Haram II	ACOUT - I-5898 Power 84	(hange able sine in a com	माग्रिंग विश्व	Tomas Temes
Client Name:	Address:	Contact:	Project Ref.:	Email:	Phone #:	Collected by:

Surve DC	
	K

D ENVIRONMENTAL DIAGNOSTICS
IN OF CUSTODY AND ANALYTICAL
REQUEST FORM

RED Lab, LLC 5598 Marvin K Moss Lane MARBIONC Bldg, Suite 2003 Wilmington, NC 28409

B143

Each sample will be analyzed for BTEX, GRO, DRO, TPH, PAH total aromatics and BaP

Sample Collection	TAT Re	TAT Requested	7(:+:4)		2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2		T-4-1 14/4	T- 14/4	777
Date/Time	24 Hour	48 Hour	IIIIIII		on aldilles		lotal Wt.	lare Wt.	sample wt.
10,29-19 1500		-	コナア	B-1 681			57.4	45,1	12:3
1510				3			57.7	L. 7.7	13.0
1530						w.	57.7	44.2	13.5
(530							5.7.5	44.5	13.0
1545				3-5 6-8			583	44.8	13.5
0091			>	3-6 las			57.7	45.0	17.7
	18								
									2
Comments:							RE	RED Lab USE ONLY	ONLY
Reling	Relinquished by		Date/Time		Accepted by	Date/Time		2	
Sen Mary			10/31/p 1500		MM 11/1/19	1150		2	
Rélinqu	Rélinquished by		Ďate/Time		Accepted by	Date/Time			
							-		

39 Spruce Street * East Longmeadow, MA 01028 * FAX 413/525-6405 * TEL. 413/525-2332

November 26, 2019

Jamie Honeycutt S&ME, Inc - Raleigh, NC 3201 Spring Forest Rd. Raleigh, NC 27616

Project Location: Dunn, NC

Client Job Number:

Project Number: 4305-19-161

Laboratory Work Order Number: 19K0024

Keny K. Mille

Enclosed are results of analyses for samples received by the laboratory on October 31, 2019. If you have any questions concerning this report, please feel free to contact me.

Sincerely,

Kerry K. McGee Project Manager

Table of Contents

Sample Summary	3
Hits Only Report	4
Case Narrative	5
Sample Results	8
19K0024-01	8
Sample Preparation Information	11
QC Data	12
Volatile Organic Compounds by GC/MS	12
B245276	12
Semivolatile Organic Compounds by GC/MS	17
B245268	17
Flag/Qualifier Summary	19
Certifications	20
Chain of Custody/Sample Receipt	23

39 Spruce Street * East Longmeadow, MA 01028 * FAX 413/525-6405 * TEL. 413/525-2332

S&ME, Inc - Raleigh, NC 3201 Spring Forest Rd. Raleigh, NC 27616 ATTN: Jamie Honeycutt

REPORT DATE: 11/26/2019

PURCHASE ORDER NUMBER:

PROJECT NUMBER: 4305-19-161

ANALYTICAL SUMMARY

WORK ORDER NUMBER: 19K0024

The results of analyses performed on the following samples submitted to the CON-TEST Analytical Laboratory are found in this report.

PROJECT LOCATION: Dunn, NC

FIELD SAMPLE # LAB ID: MATRIX SAMPLE DESCRIPTION TEST SUB LAB

TW-1 19K0024-01 Ground Water SW-846 8260D

SW-846 8270E

39 Spruce Street * East Longmeadow, MA 01028 * FAX 413/525-6405 * TEL. 413/525-2332

EXECUTIVE SUMMARY

Client ID: TW-1 Lab ID: 19K0024-01

Analyte	Results/Qual	DL	\mathbf{RL}	Units	Method
Tetrachloroethylene	0.43 J	0.18	1.0	μg/L	SW-846 8260D

Con-Test does not accept liability for the consequences of any actions taken solely on the basis of the information provided in the Executive Summary section of this report. Users must review this report in its entirety to determine data usability and assessment.

CASE NARRATIVE SUMMARY

All reported results are within defined laboratory quality control objectives unless listed below or otherwise qualified in this report.

REVISED REPORT 11-25-19: Due to a labeling error the results for method 8270 have been revised with the correct results.

REVISED REPORT 11-19-19: Due to a labeling error the results for method 8260 have been revised with the correct results.

For method 8270, only PAHs were requested and reported.

SW-846 8260D

Qualifications:

L-02

Laboratory fortified blank/laboratory control sample recovery and duplicate recoveries outside of control limits. Data validation is not affected since all results are "not detected" for associated samples in this batch and bias is on the high side. Analyte & Samples(s) Qualified:

trans-1,4-Dichloro-2-butene

B245276-BS1, B245276-BSD1

Vinyl Chloride

B245276-BS1, B245276-BSD1

L-04

Laboratory fortified blank/laboratory control sample recovery and duplicate recovery are outside of control limits. Reported value for this compound is likely to be biased on the low side. Analyte & Samples(s) Qualified:

tert-Amyl Methyl Ether (TAME)

19K0024-01[TW-1], B245276-BLK1, B245276-BS1, B245276-BSD1

tert-Butyl Ethyl Ether (TBEE)

19K0024-01[TW-1], B245276-BLK1, B245276-BS1, B245276-BSD1

L-07A

Either laboratory fortified blank/laboratory control sample or duplicate recovery is outside of control limits, but the other is within limits. RPD outside of control limits. Reduced precision anticipated for any reported result for this compound. **Analyte & Samples(s) Qualified:**

Acetone

B245276-BS1

R-05

Laboratory fortified blank duplicate RPD is outside of control limits. Reduced precision is anticipated for any reported value for this

compound.
Analyte & Samples(s) Qualified:

Acetone

19K0024-01[TW-1], B245276-BLK1, B245276-BS1, B245276-BSD1

V-05

Continuing calibration verification (CCV) did not meet method specifications and was biased on the low side for this compound.

Analyte & Samples(s) Qualified:

tert-Amyl Methyl Ether (TAME)

19K0024-01[TW-1], B245276-BLK1, B245276-BS1, B245276-BSD1, S042406-CCV1

tert-Butyl Ethyl Ether (TBEE)

19K0024-01[TW-1], B245276-BLK1, B245276-BS1, B245276-BSD1, S042406-CCV1

V-06

Continuing calibration verification (CCV) did not meet method specifications and was biased on the high side for this compound.

Analyte & Samples(s) Qualified:

Acetone

B245276-BS1, B245276-BSD1, S042406-CCV1

V-20

Continuing calibration verification (CCV) did not meet method specifications and was biased on the high side. Data validation is not affected since sample result was "not detected" for this compound.

Analyte & Samples(s) Qualified:

2-Hexanone (MBK)

B245276-BS1, B245276-BSD1, S042406-CCV1

4-Methyl-2-pentanone (MIBK)

B245276-BS1, B245276-BSD1, S042406-CCV1

trans-1,4-Dichloro-2-butene

B245276-BS1, B245276-BSD1, S042406-CCV1

B245276-BS1, B245276-BSD1, S042406-CCV1

The results of analyses reported only relate to samples submitted to the Con-Test Analytical Laboratory for testing.

I certify that the analyses listed above, unless specifically listed as subcontracted, if any, were performed under my direction according to the approved methodologies listed in this document, and that based upon my inquiry of those individuals immediately responsible for obtaining the information, the material contained in this report is, to the best of my knowledge and belief, accurate and complete.

Lisa A. Worthington
Technical Representative

Project Location: Dunn, NC Sample Description: Work Order: 19K0024

Date Received: 10/31/2019
Field Sample #: TW-1

Sampled: 10/29/2019 16:30

Sample ID: 19K0024-01
Sample Matrix: Ground Water

Volatile	Organic	Compounds	bv	GC/MS
----------	---------	-----------	----	-------

change Key Very Very Series Region Agency				Volatile	Organic Co	mpounds by G	C/MS				
December No	Analyte	Results	RL	DL	Units	Dilution	Flag/Qual	Method			Analyst
December	· · · · · · · · · · · · · · · · · · ·										
Part	Acrylonitrile					1					
Reace	tert-Amyl Methyl Ether (TAME)						V-05, L-04				
Bounchications	Benzene	ND	1.0			1	,		11/6/19		
Bemodefinementanger 10	Bromobenzene	ND	1.0	0.15		1		SW-846 8260D	11/6/19	11/7/19 19:56	EEH
Beneficial Penerian Part	Bromochloromethane	ND	1.0	0.32		1		SW-846 8260D	11/6/19	11/7/19 19:56	EEH
Brownenthane No	Bromodichloromethane	ND	0.50	0.16	μg/L	1		SW-846 8260D	11/6/19	11/7/19 19:56	EEH
Patterner (MEK)	Bromoform	ND	1.0	0.46	μg/L	1		SW-846 8260D	11/6/19	11/7/19 19:56	EEH
February Petrus	Bromomethane	ND	2.0	0.78	μg/L	1		SW-846 8260D	11/6/19	11/7/19 19:56	EEH
Partylbenzene No 10 0.21 μg/L 1 SW-446 82600 116/19 117/19 19.56 EBH	2-Butanone (MEK)	ND	20	1.9	μg/L	1		SW-846 8260D	11/6/19	11/7/19 19:56	EEH
See Burylbenzene No	tert-Butyl Alcohol (TBA)	ND	20	4.2	μg/L	1		SW-846 8260D	11/6/19	11/7/19 19:56	EEH
Ent-Burylbenzene	n-Butylbenzene	ND	1.0	0.21	μg/L	1		SW-846 8260D	11/6/19	11/7/19 19:56	EEH
Extra Day Ether TBEE ND 0.50 0.16 pg.	sec-Butylbenzene	ND	1.0	0.16	μg/L	1		SW-846 8260D	11/6/19	11/7/19 19:56	EEH
Curbon Dissilfide ND 5.0 4.4 μg/L 1 SW-846 8260D 11/6179 11/719 19:56 EB H Curbon Tetachloride ND 1.0 0.11 μg/L 1 SW-846 8260D 11/619 11/719 19:56 EBH Chlorochenzene ND 0.50 0.21 μg/L 1 SW-846 8260D 11/619 11/719 19:56 EBH Chlorochenae ND 2.0 0.35 μg/L 1 SW-846 8260D 11/619 11/719 19:56 EBH Chlorochenae ND 2.0 0.45 μg/L 1 SW-846 8260D 11/619 11/719 19:56 EBH Chlorocheme ND 2.0 0.45 μg/L 1 SW-846 8260D 11/619 11/719 19:56 EBH Chlorocheme ND 1.0 0.45 μg/L 1 SW-846 8260D 11/619 11/719 19:56 EBH 1.2-Dibromo-thane (DBCP) ND 1.0 0.1 0.2 1 μg/L 1 SW-846 8260D	tert-Butylbenzene	ND	1.0	0.17	μg/L	1		SW-846 8260D	11/6/19	11/7/19 19:56	EEH
Curbon Tetrachloride ND 1.0 0.11 pgL 1 SW-846 82600 11/619 11/719 19:56 EBH Chlorobenzene ND 1.0 0.15 pgL 1 SW-846 82600 11/619 11/719 19:56 EBH Chlorodibromomethane ND 2.0 0.21 pgL 1 SW-846 82600 11/619 11/719 19:56 EBH Chloroform ND 2.0 0.17 pgL 1 SW-846 82600 11/619 11/719 19:56 EBH Chloroform ND 2.0 0.17 pgL 1 SW-846 82600 11/619 11/719 19:56 EBH Chloroformane ND 1.0 0.12 pgL 1 SW-846 82600 11/619 11/719 19:56 EBH 2-Chlorodoluene ND 1.0 0.12 pgL 1 SW-846 82600 11/619 11/719 19:56 EBH 1-2-Dichoromoethane (EDB) ND 5.0 0.3 pgL 1 SW-846 82600 11/619 11/719 1	tert-Butyl Ethyl Ether (TBEE)	ND	0.50	0.16	μg/L	1	V-05, L-04	SW-846 8260D	11/6/19	11/7/19 19:56	EEH
Chlorobenzene	Carbon Disulfide	ND	5.0	4.4	μg/L	1		SW-846 8260D	11/6/19	11/7/19 19:56	EEH
Chlorodibromomethane ND 0.50 0.21 pg/L 1 SW-846 8260D 11/619 11/719 19.56 EII Chlorocthane ND 2.0 0.35 pg/L 1 SW-846 8260D 11/619 11/719 19.56 EII Chlorocthane ND 2.0 0.47 pg/L 1 SW-846 8260D 11/619 11/719 19.56 EII Chloromethane ND 2.0 0.48 pg/L 1 SW-846 8260D 11/619 11/719 19.56 EII Chloromethane ND 1.0 0.12 pg/L 1 SW-846 8260D 11/619 11/719 19.56 EII Chloromethane ND 1.0 0.14 pg/L 1 SW-846 8260D 11/619 11/719 19.56 EII 12-Dibromo-3-chloropropane (DBCP) ND 5.0 0.53 pg/L 1 SW-846 8260D 11/619 11/719 19.56 EII 12-Dibromo-4-chloropropane (DBCP) ND 5.0 0.53 pg/L 1 SW-846 8260D 11/619 11/719 19.56 EII 12-Dibromo-4-chloropropane (DBCP) ND 5.0 0.53 pg/L 1 SW-846 8260D 11/619 11/719 19.56 EII 12-Dibromo-4-chloropropane (DBCP) ND 0.50 0.19 pg/L 1 SW-846 8260D 11/619 11/719 19.56 EII 12-Dibromo-4-chloropropane (DBCP) ND 0.50 0.19 pg/L 1 SW-846 8260D 11/619 11/719 19.56 EII 12-Dibromo-4-chloropropane (DBCP) ND 0.10 0.16 pg/L 1 SW-846 8260D 11/619 11/719 19.56 EII 12-Dibromo-4-chloropropane (DBCP) ND 0.13 pg/L 1 SW-846 8260D 11/619 11/719 19.56 EII 12-Dibromo-4-chloropropane (DBCP) ND 0.13 pg/L 1 SW-846 8260D 11/619 11/719 19.56 EII 12-Dibromo-4-chloropropane (DBCP) ND 0.10 0.14 pg/L 1 SW-846 8260D 11/619 11/719 19.56 EII 12-Dibromo-4-chloropropane (DBCP) ND 0.10 0.14 pg/L 1 SW-846 8260D 11/619 11/719 19.56 EII 12-Dibromo-4-chloropropane (DBCP) ND 0.10 0.13 pg/L 1 SW-846 8260D 11/619 11/719 19.56 EII 12-Dibromo-4-chloropropane (DBCP) ND 0.10 0.13 pg/L 1 SW-846 8260D 11/619 11/719 19.56 EII 12-Dibromo-4-chloropropane (DBCP) ND 0.10 0.13 pg/L 1 SW-846 8260D 11/619 11/719 19.56 EII 12-Dibrolopropane (DBCP) ND 0.10 0.13 pg/L 1 SW-846 8260D	Carbon Tetrachloride	ND	1.0	0.11	μg/L	1		SW-846 8260D	11/6/19	11/7/19 19:56	EEH
Chlorocthane ND 20 0.35 mg/L 1 SW-846 8260D 11/619 11/719 19:56 EEH	Chlorobenzene	ND	1.0	0.15	μg/L	1		SW-846 8260D	11/6/19	11/7/19 19:56	EEH
Chloroform ND 2.0 0.17	Chlorodibromomethane	ND	0.50	0.21	μg/L	1		SW-846 8260D	11/6/19	11/7/19 19:56	EEH
Chloromethane ND 2.0 0.45	Chloroethane	ND	2.0	0.35	μg/L	1		SW-846 8260D	11/6/19	11/7/19 19:56	EEH
2-Chlorotoluene ND 1.0 0.12	Chloroform	ND	2.0	0.17	μg/L	1		SW-846 8260D	11/6/19	11/7/19 19:56	EEH
4-Chlorotoluene ND 1.0 0.14 µg/L 1 SW-846 8260D 11/6/19 11/7/19 19:56 EEH 1,2-Dibromo-s-chloropropane (DBCP) ND 5.0 0.53 µg/L 1 SW-846 8260D 11/6/19 11/7/19 19:56 EEH 1,2-Dibromoethane (EDB) ND 0.50 0.19 µg/L 1 SW-846 8260D 11/6/19 11/7/19 19:56 EEH 1,2-Dibromoethane (EDB) ND 1.0 0.37 µg/L 1 SW-846 8260D 11/6/19 11/7/19 19:56 EEH 1,2-Dichlorobenzene ND 1.0 0.16 µg/L 1 SW-846 8260D 11/6/19 11/7/19 19:56 EEH 1,3-Dichlorobenzene ND 1.0 0.12 µg/L 1 SW-846 8260D 11/6/19 11/7/19 19:56 EEH 1,4-Dichlorobenzene ND 1.0 0.13 µg/L 1 SW-846 8260D 11/6/19 11/7/19 19:56 EEH 1,4-Dichlorobenzene ND 2.0 0.31 µg/L 1 SW-846 8260D 11/6/19 11/7/19 19:56 EEH 1,1-Dichlorobenzene ND 2.0 0.36 µg/L 1 SW-846 8260D 11/6/19 11/7/19 19:56 EEH 1,1-Dichlorobenzene ND 1.0 0.16 µg/L 1 SW-846 8260D 11/6/19 11/7/19 19:56 EEH 1,1-Dichlorobenzene ND 1.0 0.16 µg/L 1 SW-846 8260D 11/6/19 11/7/19 19:56 EEH 1,1-Dichlorobenzene ND 1.0 0.32 µg/L 1 SW-846 8260D 11/6/19 11/7/19 19:56 EEH 1,1-Dichlorobenzene ND 1.0 0.32 µg/L 1 SW-846 8260D 11/6/19 11/7/19 19:56 EEH 1,1-Dichlorobenzene ND 1.0 0.31 µg/L 1 SW-846 8260D 11/6/19 11/7/19 19:56 EEH 1,1-Dichlorobenzene ND 1.0 0.32 µg/L 1 SW-846 8260D 11/6/19 11/7/19 19:56 EEH 1,1-Dichlorobenzene ND 1.0 0.33 µg/L 1 SW-846 8260D 11/6/19 11/7/19 19:56 EEH 1,1-Dichlorobenzene ND 1.0 0.31 µg/L 1 SW-846 8260D 11/6/19 11/7/19 19:56 EEH 1,1-Dichlorobenzene ND 1.0 0.30 µg/L 1 SW-846 8260D 11/6/19 11/7/19 19:56 EEH 1,1-Dichloropropane ND 0.50 0.11 µg/L 1 SW-846 8260D 11/6/19 11/7/19 19:56 EEH 1,1-Dichloropropane ND 0.50 0.11 µg/L 1 SW-846 8260D 11/6/19 11/7/19 19:56 EEH 1,1-Dichloropropane ND 0.50 0.11 µg/L 1 SW-846 8260D 11/6/19 11/7/19 19:56 EEH 1,1-Dichloropropane ND 0.50 0.11 µg/L 1 SW-846 8260D 11/6/19 11/7/19 19:56 EEH 1,1-Dichloropropane ND 0.50 0.11 µg/L 1 SW-846 8260D 11/6/19 11/7/19 19:56 EEH 1,1-Dichloropropane ND 0.50 0.13 µg/L 1 SW-846 8260D 11/6/19 11/7/19 19:56 EEH 1,1-Dichloropropane ND 0.50 0.13 µg/L 1 SW-846 8260D 11/6/19 11/7/19 19:56 EEH 1,1-Dichloropropane ND 0.50 0.13 µg/L 1 SW-846 8260D 11/6/19 11/7/19	Chloromethane	ND	2.0	0.45	μg/L	1		SW-846 8260D	11/6/19	11/7/19 19:56	EEH
1.2-Dibromo-3-chloropropane (DBCP)	2-Chlorotoluene	ND	1.0	0.12	μg/L	1		SW-846 8260D	11/6/19	11/7/19 19:56	EEH
1,2-Dibromoethane (EDB) ND 0,50 0,19 µg/L 1 SW-846 8260D 11/6/19 11/7/19 19:56 EEH 1,2-Dichlorobenzene ND 1,0 0,16 µg/L 1 SW-846 8260D 11/6/19 11/7/19 19:56 EEH 1,3-Dichlorobenzene ND 1,0 0,12 µg/L 1 SW-846 8260D 11/6/19 11/7/19 19:56 EEH 1,4-Dichlorobenzene ND 1,0 0,13 µg/L 1 SW-846 8260D 11/6/19 11/7/19 19:56 EEH 1,4-Dichlorobenzene ND 1,0 0,13 µg/L 1 SW-846 8260D 11/6/19 11/7/19 19:56 EEH 1,4-Dichloroc-2-butene ND 2,0 0,31 µg/L 1 SW-846 8260D 11/6/19 11/7/19 19:56 EEH 1,1-Dichlorocthane (Freon 12) ND 2,0 0,26 µg/L 1 SW-846 8260D 11/6/19 11/7/19 19:56 EEH 1,1-Dichlorocthane ND 1,0 0,16 µg/L 1 SW-846 8260D 11/6/19 11/7/19 19:56 EEH 1,1-Dichlorocthane ND 1,0 0,41 µg/L 1 SW-846 8260D 11/6/19 11/7/19 19:56 EEH 1,1-Dichlorocthylene ND 1,0 0,32 µg/L 1 SW-846 8260D 11/6/19 11/7/19 19:56 EEH 1,2-Dichlorocthylene ND 1,0 0,31 µg/L 1 SW-846 8260D 11/6/19 11/7/19 19:56 EEH 1,2-Dichlorocthylene ND 1,0 0,31 µg/L 1 SW-846 8260D 11/6/19 11/7/19 19:56 EEH 1,3-Dichloropropane ND 0,50 0,11 µg/L 1 SW-846 8260D 11/6/19 11/7/19 19:56 EEH 1,1-Dichloropropane ND 0,50 0,11 µg/L 1 SW-846 8260D 11/6/19 11/7/19 19:56 EEH 1,1-Dichloropropane ND 0,50 0,11 µg/L 1 SW-846 8260D 11/6/19 11/7/19 19:56 EEH 1,1-Dichloropropane ND 0,50 0,13 µg/L 1 SW-846 8260D 11/6/19 11/7/19 19:56 EEH 1,1-Dichloropropane ND 0,50 0,13 µg/L 1 SW-846 8260D 11/6/19 11/7/19 19:56 EEH 1,1-Dichloropropane ND 0,50 0,13 µg/L 1 SW-846 8260D 11/6/19 11/7/19 19:56 EEH 1,1-Dichloropropane ND 0,50 0,13 µg/L 1 SW-846 8260D 11/6/19 11/7/19 19:56 EEH 1,1-Dichloropropane ND 0,50 0,13 µg/L 1 SW-846 8260D 11/6/19 11/7/19 19:56 EEH 1,1-Dichloropropa	4-Chlorotoluene	ND	1.0	0.14	μg/L	1		SW-846 8260D	11/6/19	11/7/19 19:56	EEH
Dibromomethane ND 1.0 0.37 μg/L 1 SW-846 8260D 11/6/19 11/7/19 19:56 EEH 1,2-Dichlorobenzene ND 1.0 0.16 μg/L 1 SW-846 8260D 11/6/19 11/7/19 19:56 EEH 1,3-Dichlorobenzene ND 1.0 0.12 μg/L 1 SW-846 8260D 11/6/19 11/7/19 19:56 EEH 1,4-Dichlorobenzene ND 1.0 0.13 μg/L 1 SW-846 8260D 11/6/19 11/7/19 19:56 EEH 1,4-Dichloro-2-butene ND 2.0 0.31 μg/L 1 SW-846 8260D 11/6/19 11/7/19 19:56 EEH Dichlorodifluoromethane (Freon 12) ND 2.0 0.26 μg/L 1 SW-846 8260D 11/6/19 11/7/19 19:56 EEH 1,1-Dichloroethane ND 1.0 0.16 μg/L 1 SW-846 8260D 11/6/19 11/7/19 19:56 EEH 1,1-Dichloroethylene ND 1.0 0.31 μg/L 1	1,2-Dibromo-3-chloropropane (DBCP)	ND	5.0	0.53	μg/L	1		SW-846 8260D	11/6/19	11/7/19 19:56	EEH
1,2-Dichlorobenzene ND 1.0 0.16 µg/L 1 SW-846 8260D 11/6/19 11/7/19 19:56 EEH 1,3-Dichlorobenzene ND 1.0 0.12 µg/L 1 SW-846 8260D 11/6/19 11/7/19 19:56 EEH 1,4-Dichlorobenzene ND 1.0 0.13 µg/L 1 SW-846 8260D 11/6/19 11/7/19 19:56 EEH 1,4-Dichloro-2-butene ND 2.0 0.31 µg/L 1 SW-846 8260D 11/6/19 11/7/19 19:56 EEH 1,1-Dichlorodifluoromethane (Freon 12) ND 2.0 0.26 µg/L 1 SW-846 8260D 11/6/19 11/7/19 19:56 EEH 1,1-Dichloroethane ND 1.0 0.16 µg/L 1 SW-846 8260D 11/6/19 11/7/19 19:56 EEH 1,1-Dichloroethylene ND 1.0 0.32 µg/L 1 SW-846 8260D 11/6/19 11/7/19 19:56 EEH 1,1-Dichloroethylene ND 1.0 0.32 µg/L 1 SW-846 8260D 11/6/19 11/7/19 19:56 EEH 1,2-Dichloroethylene ND 1.0 0.13 µg/L 1 SW-846 8260D 11/6/19 11/7/19 19:56 EEH 1,2-Dichloroethylene ND 1.0 0.31 µg/L 1 SW-846 8260D 11/6/19 11/7/19 19:56 EEH 1,2-Dichloropropane ND 1.0 0.20 µg/L 1 SW-846 8260D 11/6/19 11/7/19 19:56 EEH 1,3-Dichloropropane ND 1.0 0.20 µg/L 1 SW-846 8260D 11/6/19 11/7/19 19:56 EEH 1,1-Dichloropropane ND 1.0 0.20 µg/L 1 SW-846 8260D 11/6/19 11/7/19 19:56 EEH 1,1-Dichloropropane ND 1.0 0.20 µg/L 1 SW-846 8260D 11/6/19 11/7/19 19:56 EEH 1,1-Dichloropropane ND 0.50 0.16 µg/L 1 SW-846 8260D 11/6/19 11/7/19 19:56 EEH 1,1-Dichloropropane ND 0.50 0.13 µg/L 1 SW-846 8260D 11/6/19 11/7/19 19:56 EEH 1,1-Dichloropropane ND 0.50 0.13 µg/L 1 SW-846 8260D 11/6/19 11/7/19 19:56 EEH 1,1-Dichloropropane ND 0.50 0.13 µg/L 1 SW-846 8260D 11/6/19 11/7/19 19:56 EEH 1,1-Dichloropropane ND 0.50 0.13 µg/L 1 SW-846 8260D 11/6/19 11/7/19 19:56 EEH 1,1-Dichloropropane ND 0.50 0.13 µg/L 1 SW-846 8260D 11/6/19 11/7/19 19:56 EEH 1,1-Dichloropr	1,2-Dibromoethane (EDB)	ND	0.50	0.19	μg/L	1		SW-846 8260D	11/6/19	11/7/19 19:56	EEH
1,4-Dichlorobenzene ND 1,0 0,12 µg/L 1 SW-846 8260D 11/6/19 11/7/19 19:56 EEH 1,4-Dichlorobenzene ND 1,0 0,13 µg/L 1 SW-846 8260D 11/6/19 11/7/19 19:56 EEH 1,4-Dichloro-2-butene ND 2,0 0,31 µg/L 1 SW-846 8260D 11/6/19 11/7/19 19:56 EEH Dichlorodifluoromethane (Fron 12) ND 2,0 0,26 µg/L 1 SW-846 8260D 11/6/19 11/7/19 19:56 EEH 1,1-Dichloroethane ND 1,0 0,16 µg/L 1 SW-846 8260D 11/6/19 11/7/19 19:56 EEH 1,2-Dichloroethylene ND 1,0 0,32 µg/L 1 SW-846 8260D 11/6/19 11/7/19 19:56 EEH 1,1-Dichloroethylene ND 1,0 0,32 µg/L 1 SW-846 8260D 11/6/19 11/7/19 19:56 EEH 1,2-Dichloroethylene ND 1,0 0,13 µg/L 1 SW-846 8260D 11/6/19 11/7/19 19:56 EEH 1,2-Dichloroethylene ND 1,0 0,31 µg/L 1 SW-846 8260D 11/6/19 11/7/19 19:56 EEH 1,2-Dichloropropane ND 0,50 0,11 µg/L 1 SW-846 8260D 11/6/19 11/7/19 19:56 EEH 1,3-Dichloropropane ND 0,50 0,16 µg/L 1 SW-846 8260D 11/6/19 11/7/19 19:56 EEH 1,1-Dichloropropene ND 0,50 0,13 µg/L 1 SW-846 8260D 11/6/19 11/7/19 19:56 EEH 1,1-Dichloropropene ND 0,50 0,13 µg/L 1 SW-846 8260D 11/6/19 11/7/19 19:56 EEH 1,1-Dichloropropene ND 0,50 0,13 µg/L 1 SW-846 8260D 11/6/19 11/7/19 19:56 EEH 1,1-Dichloropropene ND 0,50 0,13 µg/L 1 SW-846 8260D 11/6/19 11/7/19 19:56 EEH 1,1-Dichloropropene ND 0,50 0,13 µg/L 1 SW-846 8260D 11/6/19 11/7/19 19:56 EEH 1,1-Dichloropropene ND 0,50 0,13 µg/L 1 SW-846 8260D 11/6/19 11/7/19 19:56 EEH 1,1-Dichloropropene ND 0,50 0,13 µg/L 1 SW-846 8260D 11/6/19 11/7/19 19:56 EEH 1,1-Dichloropropene ND 0,50 0,13 µg/L 1 SW-846 8260D 11/6/19 11/7/19 19:56 EEH 1,1-Dichloropropene ND 0,50 0,23 µg/L 1 SW-846 8260D 11/6/19 11/7/19 19:56 EEH 1,1-Dichloropr	Dibromomethane	ND	1.0	0.37	μg/L	1		SW-846 8260D	11/6/19	11/7/19 19:56	EEH
1,4-Dichlorobenzene ND 1.0 0.13 µg/L 1 SW-846 8260D 11/6/19 11/7/19 19:56 EEH trans-1,4-Dichloro-2-butene ND 2.0 0.31 µg/L 1 SW-846 8260D 11/6/19 11/7/19 19:56 EEH Dichlorodifluoromethane (Freon 12) ND 2.0 0.26 µg/L 1 SW-846 8260D 11/6/19 11/7/19 19:56 EEH 1,1-Dichloroethane ND 1.0 0.16 µg/L 1 SW-846 8260D 11/6/19 11/7/19 19:56 EEH 1,2-Dichloroethane ND 1.0 0.41 µg/L 1 SW-846 8260D 11/6/19 11/7/19 19:56 EEH 1,1-Dichloroethylene ND 1.0 0.32 µg/L 1 SW-846 8260D 11/6/19 11/7/19 19:56 EEH cis-1,2-Dichloroethylene ND 1.0 0.31 µg/L 1 SW-846 8260D 11/6/19 11/7/19 19:56 EEH trans-1,2-Dichloroptopane ND 1.0 0.20 µg/L 1 SW-846 8260D 11/6/19 11/7/19 19:56 EEH 1,2-Di	1,2-Dichlorobenzene	ND	1.0	0.16	μg/L	1		SW-846 8260D	11/6/19	11/7/19 19:56	EEH
trans-1,4-Dichloro-2-butene ND 2.0 0.31 µg/L 1 SW-846 8260D 11/6/19 11/7/19 19:56 EEH Dichlorodifluoromethane (Fron 12) ND 2.0 0.26 µg/L 1 SW-846 8260D 11/6/19 11/7/19 19:56 EEH 1,1-Dichloroethane ND 1.0 0.16 µg/L 1 SW-846 8260D 11/6/19 11/7/19 19:56 EEH 1,2-Dichloroethane ND 1.0 0.41 µg/L 1 SW-846 8260D 11/6/19 11/7/19 19:56 EEH 1,1-Dichloroethylene ND 1.0 0.32 µg/L 1 SW-846 8260D 11/6/19 11/7/19 19:56 EEH trans-1,2-Dichloroethylene ND 1.0 0.31 µg/L 1 SW-846 8260D 11/6/19 11/7/19 19:56 EEH 1,2-Dichloroethylene ND 1.0 0.31 µg/L 1 SW-846 8260D 11/6/19 11/7/19 19:56 EEH 1,2-Dichloropropane ND 1.0 0.20 µg/L 1 SW-846 8260D 11/6/19 11/7/19 19:56 EEH 1,3-Dichloropropane ND 0.50 0.11 µg/L 1 SW-846 8260D 11/6/19 11/7/19 19:56 EEH 1,3-Dichloropropane ND 0.50 0.11 µg/L 1 SW-846 8260D 11/6/19 11/7/19 19:56 EEH 1,1-Dichloropropane ND 0.50 0.11 µg/L 1 SW-846 8260D 11/6/19 11/7/19 19:56 EEH 1,1-Dichloropropane ND 0.50 0.13 µg/L 1 SW-846 8260D 11/6/19 11/7/19 19:56 EEH 1,1-Dichloropropene ND 0.50 0.13 µg/L 1 SW-846 8260D 11/6/19 11/7/19 19:56 EEH 1,1-Dichloropropene ND 0.50 0.13 µg/L 1 SW-846 8260D 11/6/19 11/7/19 19:56 EEH 1,1-Dichloropropene ND 0.50 0.23 µg/L 1 SW-846 8260D 11/6/19 11/7/19 19:56 EEH 1,1-Dichloropropene ND 0.50 0.23 µg/L 1 SW-846 8260D 11/6/19 11/7/19 19:56 EEH 1,1-Dichloropropene ND 0.50 0.23 µg/L 1 SW-846 8260D 11/6/19 11/7/19 19:56 EEH 1,1-Dichloropropene	1,3-Dichlorobenzene	ND	1.0	0.12	μg/L	1		SW-846 8260D	11/6/19	11/7/19 19:56	EEH
Dichlorodifluoromethane (Freon 12) ND 2.0 0.26 µg/L 1 SW-846 8260D 11/6/19 11/7/19 19:56 EEH 1,1-Dichloroethane ND 1.0 0.16 µg/L 1 SW-846 8260D 11/6/19 11/7/19 19:56 EEH 1,2-Dichloroethane ND 1.0 0.41 µg/L 1 SW-846 8260D 11/6/19 11/7/19 19:56 EEH 1,1-Dichloroethylene ND 1.0 0.32 µg/L 1 SW-846 8260D 11/6/19 11/7/19 19:56 EEH cis-1,2-Dichloroethylene ND 1.0 0.33 µg/L 1 SW-846 8260D 11/6/19 11/7/19 19:56 EEH trans-1,2-Dichloroethylene ND 1.0 0.31 µg/L 1 SW-846 8260D 11/6/19 11/7/19 19:56 EEH 1,2-Dichloropropane ND 0.50 0.11 µg/L 1 SW-846 8260D 11/6/19 11/7/19 19:56 EEH 1,2-Dichloropropane ND 0.50 0.16 µg/L 1 <td>1,4-Dichlorobenzene</td> <td>ND</td> <td>1.0</td> <td>0.13</td> <td>μg/L</td> <td>1</td> <td></td> <td>SW-846 8260D</td> <td>11/6/19</td> <td>11/7/19 19:56</td> <td>EEH</td>	1,4-Dichlorobenzene	ND	1.0	0.13	μg/L	1		SW-846 8260D	11/6/19	11/7/19 19:56	EEH
Dichlorodifluoromethane (Freon 12) ND 2.0 0.26 μg/L 1 SW-846 8260D 11/6/19 11/7/19 19:56 EEH 1,1-Dichloroethane ND 1.0 0.16 μg/L 1 SW-846 8260D 11/6/19 11/7/19 19:56 EEH 1,2-Dichloroethane ND 1.0 0.41 μg/L 1 SW-846 8260D 11/6/19 11/7/19 19:56 EEH 1,1-Dichloroethylene ND 1.0 0.32 μg/L 1 SW-846 8260D 11/6/19 11/7/19 19:56 EEH tcs-1,2-Dichloroethylene ND 1.0 0.13 μg/L 1 SW-846 8260D 11/6/19 11/7/19 19:56 EEH 1,2-Dichloroethylene ND 1.0 0.31 μg/L 1 SW-846 8260D 11/6/19 11/7/19 19:56 EEH 1,2-Dichloropropane ND 1.0 0.20 μg/L 1 SW-846 8260D 11/6/19 11/7/19 19:56 EEH 1,1-Dichloropropane ND 1.0 0.20 μg/L 1	trans-1,4-Dichloro-2-butene	ND	2.0	0.31	μg/L	1		SW-846 8260D	11/6/19	11/7/19 19:56	EEH
1,2-Dichloroethane ND 1.0 0.41 μg/L 1 SW-846 8260D 11/6/19 11/7/19 19:56 EEH 1,1-Dichloroethylene ND 1.0 0.32 μg/L 1 SW-846 8260D 11/6/19 11/7/19 19:56 EEH cis-1,2-Dichloroethylene ND 1.0 0.13 μg/L 1 SW-846 8260D 11/6/19 11/7/19 19:56 EEH trans-1,2-Dichloroethylene ND 1.0 0.31 μg/L 1 SW-846 8260D 11/6/19 11/7/19 19:56 EEH trans-1,2-Dichloropropane ND 1.0 0.20 μg/L 1 SW-846 8260D 11/6/19 11/7/19 19:56 EEH 1,2-Dichloropropane ND 0.50 0.11 μg/L 1 SW-846 8260D 11/6/19 11/7/19 19:56 EEH 2,2-Dichloropropane ND 1.0 0.20 μg/L 1 SW-846 8260D 11/6/19 11/7/19 19:56 EEH 1,1-Dichloropropane ND 1.0 0.20 μg/L 1 SW-846 8260D 11/6/19 11/7/19 19:56 EEH 1,1-Dichloropropane ND 2.0 0.16 μg/L 1 SW-846 8260D 11/6/19 11/7/19 19:56 EEH 1,1-Dichloropropene ND 0.50 0.13 μg/L 1 SW-846 8260D 11/6/19 11/7/19 19:56 EEH cis-1,3-Dichloropropene ND 0.50 0.23 μg/L 1 SW-846 8260D 11/6/19 11/7/19 19:56 EEH trans-1,3-Dichloropropene ND 0.50 0.23 μg/L 1 SW-846 8260D 11/6/19 11/7/19 19:56 EEH trans-1,3-Dichloropropene	Dichlorodifluoromethane (Freon 12)	ND	2.0	0.26		1		SW-846 8260D	11/6/19	11/7/19 19:56	EEH
1,1-Dichloroethylene ND 1.0 0.32 µg/L 1 SW-846 8260D 11/6/19 11/7/19 19:56 EEH cis-1,2-Dichloroethylene ND 1.0 0.13 µg/L 1 SW-846 8260D 11/6/19 11/7/19 19:56 EEH trans-1,2-Dichloroethylene ND 1.0 0.31 µg/L 1 SW-846 8260D 11/6/19 11/7/19 19:56 EEH 1,2-Dichloropropane ND 1.0 0.20 µg/L 1 SW-846 8260D 11/6/19 11/7/19 19:56 EEH 1,3-Dichloropropane ND 0.50 0.11 µg/L 1 SW-846 8260D 11/6/19 11/7/19 19:56 EEH 2,2-Dichloropropane ND 1.0 0.20 µg/L 1 SW-846 8260D 11/6/19 11/7/19 19:56 EEH 1,1-Dichloropropane ND 2.0 0.16 µg/L 1 SW-846 8260D 11/6/19 11/7/19 19:56 EEH 1,1-Dichloropropene ND 0.50 0.13 µg/L 1 SW-846 8260D 11/6/19 11/7/19 19:56 EEH cis-1,3-Dichloropropene ND 0.50 0.23 µg/L 1 SW-846 8260D 11/6/19 11/7/19 19:56 EEH trans-1,3-Dichloropropene ND 0.50 0.23 µg/L 1 SW-846 8260D 11/6/19 11/7/19 19:56 EEH trans-1,3-Dichloropropene	1,1-Dichloroethane	ND	1.0	0.16	μg/L	1		SW-846 8260D	11/6/19	11/7/19 19:56	EEH
cis-1,2-Dichloroethylene ND 1.0 0.13 µg/L 1 SW-846 8260D 11/6/19 11/7/19 19:56 EEH trans-1,2-Dichloropthylene ND 1.0 0.31 µg/L 1 SW-846 8260D 11/6/19 11/7/19 19:56 EEH 1,2-Dichloroptopane ND 1.0 0.20 µg/L 1 SW-846 8260D 11/6/19 11/7/19 19:56 EEH 1,3-Dichloroptopane ND 0.50 0.11 µg/L 1 SW-846 8260D 11/6/19 11/7/19 19:56 EEH 2,2-Dichloroptopane ND 1.0 0.20 µg/L 1 SW-846 8260D 11/6/19 11/7/19 19:56 EEH 1,1-Dichloroptopane ND 2.0 0.16 µg/L 1 SW-846 8260D 11/6/19 11/7/19 19:56 EEH 1,1-Dichloroptopene ND 0.50 0.13 µg/L 1 SW-846 8260D 11/6/19 11/7/19 19:56 EEH cis-1,3-Dichloroptopene ND 0.50 0.23 µg/L 1 SW-846 8260D 11/6/19 11/7/19 19:56 EEH trans-1,3-Dichloroptopene ND 0.50 0.23 µg/L 1 SW-846 8260D 11/6/19 11/7/19 19:56 EEH	1,2-Dichloroethane	ND	1.0	0.41	μg/L	1		SW-846 8260D	11/6/19	11/7/19 19:56	EEH
trans-1,2-Dichloroethylene ND 1.0 0.31 µg/L 1 SW-846 8260D 11/6/19 11/7/19 19:56 EEH 1,2-Dichloropropane ND 1.0 0.20 µg/L 1 SW-846 8260D 11/6/19 11/7/19 19:56 EEH 1,3-Dichloropropane ND 0.50 0.11 µg/L 1 SW-846 8260D 11/6/19 11/7/19 19:56 EEH 2,2-Dichloropropane ND 1.0 0.20 µg/L 1 SW-846 8260D 11/6/19 11/7/19 19:56 EEH 1,1-Dichloropropane ND 2.0 0.16 µg/L 1 SW-846 8260D 11/6/19 11/7/19 19:56 EEH cis-1,3-Dichloropropene ND 0.50 0.13 µg/L 1 SW-846 8260D 11/6/19 11/7/19 19:56 EEH trans-1,3-Dichloropropene ND 0.50 0.23 µg/L 1 SW-846 8260D 11/6/19 11/7/19 19:56 EEH trans-1,3-Dichloropropene	1,1-Dichloroethylene	ND	1.0	0.32	μg/L	1		SW-846 8260D	11/6/19	11/7/19 19:56	EEH
1,2-Dichloropropane ND 1.0 0.20 μg/L 1 SW-846 8260D 11/6/19 11/7/19 19:56 EEH 1,3-Dichloropropane ND 0.50 0.11 μg/L 1 SW-846 8260D 11/6/19 11/7/19 19:56 EEH 2,2-Dichloropropane ND 1.0 0.20 μg/L 1 SW-846 8260D 11/6/19 11/7/19 19:56 EEH 1,1-Dichloropropene ND 2.0 0.16 μg/L 1 SW-846 8260D 11/6/19 11/7/19 19:56 EEH cis-1,3-Dichloropropene ND 0.50 0.13 μg/L 1 SW-846 8260D 11/6/19 11/7/19 19:56 EEH trans-1,3-Dichloropropene ND 0.50 0.23 μg/L 1 SW-846 8260D 11/6/19 11/7/19 19:56 EEH	cis-1,2-Dichloroethylene	ND	1.0	0.13	μg/L	1		SW-846 8260D	11/6/19	11/7/19 19:56	EEH
1,3-Dichloropropane ND 0.50 0.11 μg/L 1 SW-846 8260D 11/6/19 11/7/19 19:56 EEH 2,2-Dichloropropane ND 1.0 0.20 μg/L 1 SW-846 8260D 11/6/19 11/7/19 19:56 EEH 1,1-Dichloropropene ND 2.0 0.16 μg/L 1 SW-846 8260D 11/6/19 11/7/19 19:56 EEH cis-1,3-Dichloropropene ND 0.50 0.13 μg/L 1 SW-846 8260D 11/6/19 11/7/19 19:56 EEH trans-1,3-Dichloropropene ND 0.50 0.23 μg/L 1 SW-846 8260D 11/6/19 11/7/19 19:56 EEH	trans-1,2-Dichloroethylene	ND	1.0	0.31	μg/L	1		SW-846 8260D	11/6/19	11/7/19 19:56	EEH
2,2-Dichloropropane ND 1.0 0.20 μg/L 1 SW-846 8260D 11/6/19 11/7/19 19:56 EEH 1,1-Dichloropropene ND 2.0 0.16 μg/L 1 SW-846 8260D 11/6/19 11/7/19 19:56 EEH cis-1,3-Dichloropropene ND 0.50 0.13 μg/L 1 SW-846 8260D 11/6/19 11/7/19 19:56 EEH trans-1,3-Dichloropropene ND 0.50 0.23 μg/L 1 SW-846 8260D 11/6/19 11/7/19 19:56 EEH	1,2-Dichloropropane	ND	1.0	0.20	μg/L	1		SW-846 8260D	11/6/19	11/7/19 19:56	EEH
1,1-Dichloropropene ND 2.0 0.16 μg/L 1 SW-846 8260D 11/6/19 11/7/19 19:56 EEH cis-1,3-Dichloropropene ND 0.50 0.13 μg/L 1 SW-846 8260D 11/6/19 11/7/19 19:56 EEH trans-1,3-Dichloropropene ND 0.50 0.23 μg/L 1 SW-846 8260D 11/6/19 11/7/19 19:56 EEH	1,3-Dichloropropane	ND	0.50	0.11	$\mu g/L$	1		SW-846 8260D	11/6/19	11/7/19 19:56	EEH
cis-1,3-Dichloropropene ND 0.50 0.13 $\mu g/L$ 1 SW-846 8260D 11/6/19 11/7/19 19:56 EEH trans-1,3-Dichloropropene ND 0.50 0.23 $\mu g/L$ 1 SW-846 8260D 11/6/19 11/7/19 19:56 EEH	2,2-Dichloropropane	ND	1.0	0.20	$\mu g/L$	1		SW-846 8260D	11/6/19	11/7/19 19:56	EEH
trans-1,3-Dichloropropene ND 0.50 0.23 µg/L 1 SW-846 8260D 11/6/19 11/7/19 19:56 EEH	1,1-Dichloropropene	ND	2.0	0.16	$\mu g/L$	1		SW-846 8260D	11/6/19	11/7/19 19:56	EEH
	cis-1,3-Dichloropropene	ND	0.50	0.13		1		SW-846 8260D	11/6/19	11/7/19 19:56	EEH
Diethyl Ether ND 2.0 0.34 μg/L 1 SW-846 8260D 11/6/19 11/7/19 19:56 ΕΕΗ	trans-1,3-Dichloropropene	ND	0.50	0.23	$\mu g/L$	1		SW-846 8260D	11/6/19	11/7/19 19:56	EEH
	Diethyl Ether	ND	2.0	0.34	$\mu g/L$	1		SW-846 8260D	11/6/19	11/7/19 19:56	EEH

Page 8 of 25

Sample Description: Work Order: 19K0024

Project Location: Dunn, NC Date Received: 10/31/2019 Field Sample #: TW-1

Sampled: 10/29/2019 16:30

Sample ID: 19K0024-01 Sample Matrix: Ground Water

Volatile C)rganic	Compounds	bv	GC/MS
------------	---------	-----------	----	-------

Analyte	Results	RL	DL	Units	Dilution	Flag/Qual	Method	Date Prepared	Date/Time Analyzed	Analyst
Diisopropyl Ether (DIPE)	ND	0.50	0.17	μg/L	1		SW-846 8260D	11/6/19	11/7/19 19:56	EEH
1,4-Dioxane	ND	50	22	$\mu g/L$	1		SW-846 8260D	11/6/19	11/7/19 19:56	EEH
Ethylbenzene	ND	1.0	0.13	μg/L	1		SW-846 8260D	11/6/19	11/7/19 19:56	EEH
Hexachlorobutadiene	ND	0.60	0.47	μg/L	1		SW-846 8260D	11/6/19	11/7/19 19:56	EEH
2-Hexanone (MBK)	ND	10	1.5	$\mu g/L$	1		SW-846 8260D	11/6/19	11/7/19 19:56	EEH
Isopropylbenzene (Cumene)	ND	1.0	0.17	μg/L	1		SW-846 8260D	11/6/19	11/7/19 19:56	EEH
p-Isopropyltoluene (p-Cymene)	ND	1.0	0.20	$\mu g/L$	1		SW-846 8260D	11/6/19	11/7/19 19:56	EEH
Methyl tert-Butyl Ether (MTBE)	ND	1.0	0.25	$\mu g/L$	1		SW-846 8260D	11/6/19	11/7/19 19:56	EEH
Methylene Chloride	ND	5.0	0.34	$\mu g/L$	1		SW-846 8260D	11/6/19	11/7/19 19:56	EEH
4-Methyl-2-pentanone (MIBK)	ND	10	1.7	$\mu g/L$	1		SW-846 8260D	11/6/19	11/7/19 19:56	EEH
Naphthalene	ND	2.0	0.31	$\mu g/L$	1		SW-846 8260D	11/6/19	11/7/19 19:56	EEH
n-Propylbenzene	ND	1.0	0.13	μg/L	1		SW-846 8260D	11/6/19	11/7/19 19:56	EEH
Styrene	ND	1.0	0.11	μg/L	1		SW-846 8260D	11/6/19	11/7/19 19:56	EEH
1,1,1,2-Tetrachloroethane	ND	1.0	0.27	$\mu g/L$	1		SW-846 8260D	11/6/19	11/7/19 19:56	EEH
1,1,2,2-Tetrachloroethane	ND	0.50	0.22	μg/L	1		SW-846 8260D	11/6/19	11/7/19 19:56	EEH
Tetrachloroethylene	0.43	1.0	0.18	$\mu g/L$	1	J	SW-846 8260D	11/6/19	11/7/19 19:56	EEH
Tetrahydrofuran	ND	10	0.51	$\mu g/L$	1		SW-846 8260D	11/6/19	11/7/19 19:56	EEH
Toluene	ND	1.0	0.14	$\mu g/L$	1		SW-846 8260D	11/6/19	11/7/19 19:56	EEH
1,2,3-Trichlorobenzene	ND	5.0	0.57	$\mu g/L$	1		SW-846 8260D	11/6/19	11/7/19 19:56	EEH
1,2,4-Trichlorobenzene	ND	1.0	0.40	$\mu g/L$	1		SW-846 8260D	11/6/19	11/7/19 19:56	EEH
1,3,5-Trichlorobenzene	ND	1.0	0.30	$\mu g/L$	1		SW-846 8260D	11/6/19	11/7/19 19:56	EEH
1,1,1-Trichloroethane	ND	1.0	0.20	$\mu g/L$	1		SW-846 8260D	11/6/19	11/7/19 19:56	EEH
1,1,2-Trichloroethane	ND	1.0	0.16	$\mu g/L$	1		SW-846 8260D	11/6/19	11/7/19 19:56	EEH
Trichloroethylene	ND	1.0	0.24	$\mu g/L$	1		SW-846 8260D	11/6/19	11/7/19 19:56	EEH
Trichlorofluoromethane (Freon 11)	ND	2.0	0.33	$\mu g/L$	1		SW-846 8260D	11/6/19	11/7/19 19:56	EEH
1,2,3-Trichloropropane	ND	2.0	0.25	$\mu g/L$	1		SW-846 8260D	11/6/19	11/7/19 19:56	EEH
1,1,2-Trichloro-1,2,2-trifluoroethane (Freon 113)	ND	1.0	0.32	$\mu g/L$	1		SW-846 8260D	11/6/19	11/7/19 19:56	EEH
1,2,4-Trimethylbenzene	ND	1.0	0.18	$\mu g/L$	1		SW-846 8260D	11/6/19	11/7/19 19:56	EEH
1,3,5-Trimethylbenzene	ND	1.0	0.14	$\mu g/L$	1		SW-846 8260D	11/6/19	11/7/19 19:56	EEH
Vinyl Chloride	ND	2.0	0.45	$\mu g/L$	1		SW-846 8260D	11/6/19	11/7/19 19:56	EEH
m+p Xylene	ND	2.0	0.30	$\mu g/L$	1		SW-846 8260D	11/6/19	11/7/19 19:56	EEH
o-Xylene	ND	1.0	0.17	$\mu g/L$	1		SW-846 8260D	11/6/19	11/7/19 19:56	EEH
Surrogates		% Reco	very	Recovery Limits		Flag/Qual				
1,2-Dichloroethane-d4		104		70-130					11/7/19 19:56	
Toluene-d8		100		70-130					11/7/19 19:56	

Project Location: Dunn, NC Sample Description: Work Order: 19K0024

Date Received: 10/31/2019
Field Sample #: TW-1

Sampled: 10/29/2019 16:30

Sample ID: 19K0024-01
Sample Matrix: Ground Water

Semivolatile Organic	Compounds by	GC/MS
----------------------	--------------	-------

Analyte	Results	RL	DL	Units	Dilution	Flag/Qual	Method	Date Prepared	Date/Time Analyzed	Analyst
Acenaphthene (SIM)	ND	0.30	0.033	μg/L	1		SW-846 8270E	11/5/19	11/6/19 18:47	CLA
Acenaphthylene (SIM)	ND	0.20	0.035	$\mu g/L$	1		SW-846 8270E	11/5/19	11/6/19 18:47	CLA
Anthracene (SIM)	ND	0.20	0.032	$\mu g/L$	1		SW-846 8270E	11/5/19	11/6/19 18:47	CLA
Benzo(a)anthracene (SIM)	ND	0.050	0.016	$\mu g/L$	1		SW-846 8270E	11/5/19	11/6/19 18:47	CLA
Benzo(a)pyrene (SIM)	ND	0.10	0.012	$\mu g/L$	1		SW-846 8270E	11/5/19	11/6/19 18:47	CLA
Benzo(b)fluoranthene (SIM)	ND	0.050	0.015	$\mu g/L$	1		SW-846 8270E	11/5/19	11/6/19 18:47	CLA
Benzo(g,h,i)perylene (SIM)	ND	0.50	0.018	$\mu g/L$	1		SW-846 8270E	11/5/19	11/6/19 18:47	CLA
Benzo(k)fluoranthene (SIM)	ND	0.20	0.012	$\mu g/L$	1		SW-846 8270E	11/5/19	11/6/19 18:47	CLA
Chrysene (SIM)	ND	0.20	0.015	$\mu g/L$	1		SW-846 8270E	11/5/19	11/6/19 18:47	CLA
Dibenz(a,h)anthracene (SIM)	ND	0.10	0.017	$\mu g/L$	1		SW-846 8270E	11/5/19	11/6/19 18:47	CLA
Fluoranthene (SIM)	ND	0.50	0.025	$\mu g/L$	1		SW-846 8270E	11/5/19	11/6/19 18:47	CLA
Fluorene (SIM)	ND	1.0	0.034	$\mu g/L$	1		SW-846 8270E	11/5/19	11/6/19 18:47	CLA
Indeno(1,2,3-cd)pyrene (SIM)	ND	0.10	0.018	$\mu g/L$	1		SW-846 8270E	11/5/19	11/6/19 18:47	CLA
2-Methylnaphthalene (SIM)	ND	1.0	0.062	$\mu g/L$	1		SW-846 8270E	11/5/19	11/6/19 18:47	CLA
Naphthalene (SIM)	ND	1.0	0.26	$\mu g/L$	1		SW-846 8270E	11/5/19	11/6/19 18:47	CLA
Phenanthrene (SIM)	ND	0.050	0.030	$\mu g/L$	1		SW-846 8270E	11/5/19	11/6/19 18:47	CLA
Pyrene (SIM)	ND	1.0	0.023	$\mu g/L$	1		SW-846 8270E	11/5/19	11/6/19 18:47	CLA
Surrogates		% Reco	very	Recovery Limits		Flag/Qual				
Nitrobenzene-d5		73.1		30-130					11/6/19 18:47	
2-Fluorobiphenyl		47.6		30-130					11/6/19 18:47	
p-Terphenyl-d14		62.8		30-130					11/6/19 18:47	

Sample Extraction Data

Prep Method: SW-846 5030B-SW-846 8260D

Lab Number [Field ID]	Batch	Initial [mL]	Final [mL]	Date
19K0024-01 [TW-1]	B245276	5	5.00	11/06/19

Prep Method: SW-846 3510C-SW-846 8270E

Lab Number [Field ID]	Batch	Initial [mL]	Final [mL]	Date
19K0024-01 [TW-1]	B245268	1000	1.00	11/05/19

RPD

%REC

39 Spruce Street * East Longmeadow, MA 01028 * FAX 413/525-6405 * TEL. 413/525-2332

QUALITY CONTROL

Spike

Source

Volatile Organic Compounds by GC/MS - Quality Control

Reporting

Analyte	Result	Limit	Units	Level	Result	%REC	%REC Limits	RPD	Limit	Notes
Batch B245276 - SW-846 5030B										
Blank (B245276-BLK1)				Prepared: 11	/06/19 Analy	yzed: 11/07/1	9			
Acetone	ND	50	$\mu g \! / \! L$							R-05
Acrylonitrile	ND	5.0	μg/L							
tert-Amyl Methyl Ether (TAME)	ND	0.50	μg/L							L-04, V-05
Benzene	ND	1.0	$\mu g/L$							
Bromobenzene	ND	1.0	μg/L							
Bromochloromethane	ND	1.0	μg/L							
Bromodichloromethane	ND	0.50	μg/L							
Bromoform	ND	1.0	μg/L							
Bromomethane	ND	2.0	μg/L							
2-Butanone (MEK)	ND	20	μg/L							
tert-Butyl Alcohol (TBA)	ND	20	μg/L							
n-Butylbenzene	ND	1.0	μg/L							
sec-Butylbenzene	ND	1.0	μg/L							
tert-Butylbenzene	ND	1.0	μg/L							
tert-Butyl Ethyl Ether (TBEE)	ND	0.50	μg/L							L-04, V-05
Carbon Disulfide	ND	5.0	μg/L							E 01, 1 03
Carbon Tetrachloride	ND ND	1.0	μg/L							
Chlorobenzene		1.0	μg/L							
Chlorodibromomethane	ND	0.50								
Chloroethane	ND		μg/L							
Chloroform	ND	2.0	μg/L							
	ND	2.0	μg/L							
Chloromethane	ND	2.0	μg/L							
2-Chlorotoluene	ND	1.0	μg/L							
4-Chlorotoluene	ND	1.0	μg/L							
1,2-Dibromo-3-chloropropane (DBCP)	ND	5.0	μg/L							
1,2-Dibromoethane (EDB)	ND	0.50	μg/L							
Dibromomethane	ND	1.0	μg/L							
1,2-Dichlorobenzene	ND	1.0	μg/L							
1,3-Dichlorobenzene	ND	1.0	μg/L							
1,4-Dichlorobenzene	ND	1.0	μg/L							
trans-1,4-Dichloro-2-butene	ND	2.0	μg/L							
Dichlorodifluoromethane (Freon 12)	ND	2.0	μg/L							
1,1-Dichloroethane	ND	1.0	μg/L							
1,2-Dichloroethane	ND	1.0	μg/L							
1,1-Dichloroethylene	ND	1.0	μg/L							
cis-1,2-Dichloroethylene	ND	1.0	μg/L							
trans-1,2-Dichloroethylene	ND	1.0	μg/L							
1,2-Dichloropropane	ND	1.0	μg/L							
1,3-Dichloropropane	ND	0.50	$\mu g/L$							
2,2-Dichloropropane	ND	1.0	μg/L							
1,1-Dichloropropene	ND	2.0	$\mu g/L$							
cis-1,3-Dichloropropene	ND	0.50	$\mu g/L$							
trans-1,3-Dichloropropene	ND	0.50	$\mu g/L$							
Diethyl Ether	ND	2.0	$\mu g/L$							
Diisopropyl Ether (DIPE)	ND	0.50	$\mu g/L$							
1,4-Dioxane	ND	50	μg/L							
Ethylbenzene	ND	1.0	μg/L							
Hexachlorobutadiene	ND	0.60	μg/L							
2-Hexanone (MBK)	ND ND	10	μg/L							
Isopropylbenzene (Cumene)	ND ND	1.0	μg/L							
p-Isopropyltoluene (p-Cymene)	ND ND	1.0	μg/L μg/L							
Methyl tert-Butyl Ether (MTBE)	ND ND	1.0	μg/L μg/L							

QUALITY CONTROL

Spike

Source

%REC

RPD

Volatile Organic Compounds by GC/MS - Quality Control

Reporting

Analyte	Result	Reporting Limit	Units	Spike Level	Source Result	%REC	%REC Limits	RPD	RPD Limit	Notes
Batch B245276 - SW-846 5030B										
Blank (B245276-BLK1)				Prepared: 11	/06/19 Analy	yzed: 11/07/1	9			
Methylene Chloride	ND	5.0	$\mu g\!/\!L$							
-Methyl-2-pentanone (MIBK)	ND	10	$\mu g/L$							
Japhthalene	ND	2.0	$\mu g/L$							
-Propylbenzene	ND	1.0	$\mu \text{g/L}$							
tyrene	ND	1.0	$\mu g \! / \! L$							
,1,1,2-Tetrachloroethane	ND	1.0	$\mu g \! / \! L$							
1,2,2-Tetrachloroethane	ND	0.50	$\mu g/L$							
etrachloroethylene	ND	1.0	$\mu g \! / \! L$							
etrahydrofuran	ND	10	$\mu g\!/\!L$							
oluene	ND	1.0	$\mu g \! / \! L$							
,2,3-Trichlorobenzene	ND	5.0	$\mu g/L$							
2,4-Trichlorobenzene	ND	1.0	$\mu g/L$							
3,5-Trichlorobenzene	ND	1.0	$\mu g/L$							
1,1-Trichloroethane	ND	1.0	μg/L							
1,2-Trichloroethane	ND	1.0	μg/L							
richloroethylene	ND	1.0	μg/L							
richlorofluoromethane (Freon 11)	ND	2.0	μg/L							
,2,3-Trichloropropane	ND	2.0	μg/L							
,1,2-Trichloro-1,2,2-trifluoroethane (Freon 13)	ND	1.0	μg/L							
2,4-Trimethylbenzene	ND	1.0	$\mu g\!/\!L$							
3,5-Trimethylbenzene	ND	1.0	$\mu g/L$							
inyl Chloride	ND	2.0	$\mu g/L$							
n+p Xylene	ND	2.0	$\mu g/L$							
-Xylene	ND	1.0	$\mu \text{g/L}$							
urrogate: 1,2-Dichloroethane-d4	26.3		μg/L	25.0		105	70-130			
surrogate: Toluene-d8	25.0		μg/L	25.0		100	70-130			
urrogate: 4-Bromofluorobenzene	23.4		μg/L	25.0		93.6	70-130			
.CS (B245276-BS1)				Prepared: 11	/06/19 Analy	yzed: 11/07/1	9			
cetone	181	50	μg/L	100		181 *	70-160			V-06, R-05, L-07A
crylonitrile	11.1	5.0	$\mu g \! / \! L$	10.0		111	70-130			
ert-Amyl Methyl Ether (TAME)	5.69	0.50	$\mu g/L$	10.0		56.9 *	70-130			V-05, L-04
enzene	8.91	1.0	$\mu g/L$	10.0		89.1	70-130			
romobenzene	10.3	1.0	$\mu g/L$	10.0		103	70-130			
romochloromethane	10.1	1.0	$\mu g/L$	10.0		101	70-130			
romodichloromethane	10.4	0.50	μg/L	10.0		104	70-130			
romoform	9.95	1.0	$\mu g/L$	10.0		99.5	70-130			
romomethane	5.49	2.0	μg/L	10.0		54.9	40-160			
-Butanone (MEK)	118	20	μg/L	100		118	40-160			
ert-Butyl Alcohol (TBA)	80.3	20	μg/L	100		80.3	40-160			
-Butylbenzene	11.4	1.0	μg/L	10.0		114	70-130			
ec-Butylbenzene	11.4	1.0	μg/L	10.0		114	70-130			
ert-Butylbenzene	10.9	1.0	μg/L	10.0		109	70-130			
ert-Butyl Ethyl Ether (TBEE)	6.44	0.50	μg/L	10.0		64.4 *	70-130			V-05, L-04
arbon Disulfide	10.6	5.0	μg/L	10.0		106	70-130			,
arbon Tetrachloride	10.0	1.0	μg/L μg/L	10.0		102	70-130			
Phlorobenzene	10.2	1.0	μg/L	10.0		102	70-130			
Chlorodibromomethane	9.54	0.50	μg/L μg/L	10.0		95.4	70-130			
hloroethane		2.0	μg/L μg/L	10.0		97.5	70-130			
hloroform	9.75	2.0	μg/L μg/L				70-130			
Chloromethane	8.97	2.0	μg/L μg/L	10.0 10.0		89.7 82.0	70-130 40-160			
anoromemune	8.20	2.0	μg/L	10.0		04.0	40-100			
-Chlorotoluene	10.0	1.0	μg/L	10.0		100	70-130			

QUALITY CONTROL

Spike

Source

%REC

RPD

Volatile Organic Compounds by GC/MS - Quality Control

Reporting

Analyte	Result	Reporting Limit	Units	Spike Level	Source Result	%REC	%REC Limits	RPD	RPD Limit	Notes	
Batch B245276 - SW-846 5030B											_
LCS (B245276-BS1)				Prepared: 11	/06/19 Anal	yzed: 11/07/1	9				
4-Chlorotoluene	10.6	1.0	μg/L	10.0		106	70-130				
1,2-Dibromo-3-chloropropane (DBCP)	10.3	5.0	$\mu g/L$	10.0		103	70-130				
1,2-Dibromoethane (EDB)	9.70	0.50	$\mu g\!/\!L$	10.0		97.0	70-130				
Dibromomethane	9.89	1.0	μg/L	10.0		98.9	70-130				
1,2-Dichlorobenzene	10.6	1.0	μg/L	10.0		106	70-130				
1,3-Dichlorobenzene	11.1	1.0	μg/L	10.0		111	70-130				
1,4-Dichlorobenzene	10.7	1.0	μg/L	10.0		107	70-130				
trans-1,4-Dichloro-2-butene	13.3	2.0	μg/L	10.0		133 *	70-130			L-02, V-20	
Dichlorodifluoromethane (Freon 12)	7.67	2.0	μg/L	10.0		76.7	40-160				†
1,1-Dichloroethane	9.88	1.0	μg/L	10.0		98.8	70-130				
1,2-Dichloroethane	10.9	1.0	μg/L	10.0		109	70-130				
1,1-Dichloroethylene	10.9	1.0	μg/L	10.0		109	70-130				
cis-1,2-Dichloroethylene	9.83	1.0	μg/L	10.0		98.3	70-130				
trans-1,2-Dichloroethylene	10.2	1.0	$\mu g/L$	10.0		102	70-130				
1,2-Dichloropropane	9.80	1.0	$\mu g/L$	10.0		98.0	70-130				
1,3-Dichloropropane	9.84	0.50	μg/L	10.0		98.4	70-130				
2,2-Dichloropropane	10.1	1.0	μg/L	10.0		101	40-130				†
1,1-Dichloropropene	9.78	2.0	μg/L	10.0		97.8	70-130				
cis-1,3-Dichloropropene	10.1	0.50	μg/L	10.0		101	70-130				
trans-1,3-Dichloropropene	9.66	0.50	μg/L	10.0		96.6	70-130				
Diethyl Ether	10.0	2.0	μg/L	10.0		100	70-130				
Diisopropyl Ether (DIPE)	10.7	0.50	μg/L	10.0		107	70-130				
1,4-Dioxane	102	50	μg/L	100		102	40-130				†
Ethylbenzene	10.6	1.0	μg/L	10.0		106	70-130				
Hexachlorobutadiene	11.6	0.60	μg/L	10.0		116	70-130				
2-Hexanone (MBK)	125	10	μg/L	100		125	70-160			V-20	†
Isopropylbenzene (Cumene)	10.6	1.0	μg/L	10.0		106	70-130				
p-Isopropyltoluene (p-Cymene)	10.6	1.0	μg/L	10.0		106	70-130				
Methyl tert-Butyl Ether (MTBE)	8.54	1.0	μg/L	10.0		85.4	70-130				
Methylene Chloride	10.3	5.0	μg/L	10.0		103	70-130				
4-Methyl-2-pentanone (MIBK)	125	10	μg/L	100		125	70-160			V-20	†
Naphthalene	9.21	2.0	μg/L	10.0		92.1	40-130				†
n-Propylbenzene	10.6	1.0	μg/L	10.0		106	70-130				
Styrene	9.03	1.0	μg/L	10.0		90.3	70-130				
1,1,1,2-Tetrachloroethane	10.7	1.0	μg/L	10.0		107	70-130				
1,1,2,2-Tetrachloroethane	10.6	0.50	μg/L	10.0		106	70-130				
Tetrachloroethylene	10.5	1.0	μg/L	10.0		105	70-130				
Tetrahydrofuran	9.62	10	μg/L	10.0		96.2	70-130			J	
Toluene	9.89	1.0	μg/L	10.0		98.9	70-130				
1,2,3-Trichlorobenzene	8.77	5.0	μg/L	10.0		87.7	70-130				
1,2,4-Trichlorobenzene	10.2	1.0	μg/L	10.0		102	70-130				
1,3,5-Trichlorobenzene	10.3	1.0	μg/L	10.0		103	70-130				
1,1,1-Trichloroethane	10.0	1.0	μg/L	10.0		100	70-130				
1,1,2-Trichloroethane	9.62	1.0	μg/L	10.0		96.2	70-130				
Trichloroethylene	10.3	1.0	μg/L	10.0		103	70-130				
Trichlorofluoromethane (Freon 11)	9.52	2.0	μg/L	10.0		95.2	70-130				
1,2,3-Trichloropropane	10.7	2.0	μg/L	10.0		107	70-130				
1,1,2-Trichloro-1,2,2-trifluoroethane (Freon 113)	10.0	1.0	μg/L	10.0		100	70-130				
1,2,4-Trimethylbenzene	9.71	1.0	$\mu g \! / \! L$	10.0		97.1	70-130				
1,3,5-Trimethylbenzene	10.2	1.0	μg/L	10.0		102	70-130				
Vinyl Chloride	22.9	2.0	μg/L	10.0		229 *	40-160			L-02, V-20	†

QUALITY CONTROL

Volatile Organic Compounds by GC/MS - Quality Control

Analyte	Result	Reporting Limit	Units	Spike Level	Source Result %REC	%REC Limits	RPD	RPD Limit	Notes	
Batch B245276 - SW-846 5030B										
LCS (B245276-BS1)				Prepared: 11	/06/19 Analyzed: 11/07	/19				_
m+p Xylene	21.2	2.0	μg/L	20.0	106	70-130				_
o-Xylene	10.8	1.0	μg/L	10.0	108	70-130				
Surrogate: 1,2-Dichloroethane-d4	26.0			25.0	104	70-130				
Surrogate: Toluene-d8	25.2		μg/L μg/L	25.0	101	70-130				
Surrogate: 4-Bromofluorobenzene	24.6		μg/L μg/L	25.0	98.5	70-130				
_	21.0		μg/L							
LCS Dup (B245276-BSD1)		50	/T		/06/19 Analyzed: 11/07		22.1	* 25	D 05 1/06	—,
Acetone	129	50	μg/L	100	129	70-160	33.1	23	R-05, V-06	†
Acrylonitrile	10.9	5.0	μg/L	10.0	109	70-130	2.09	25	1 04 1/05	
tert-Amyl Methyl Ether (TAME)	5.76	0.50	μg/L	10.0		* 70-130	1.22	25	L-04, V-05	
Benzene	8.96	1.0	μg/L	10.0	89.6	70-130	0.560	25		
Bromoehlaramathana	9.94	1.0	μg/L	10.0	99.4	70-130	3.75	25		
Bromochloromethane	10.3	1.0	μg/L	10.0	103	70-130	1.57	25		
Bromodichloromethane	9.92	0.50	μg/L	10.0	99.2	70-130	4.44	25		
Bromoform	9.75	1.0	μg/L	10.0	97.5	70-130	2.03	25		
Bromomethane	6.80	2.0	μg/L	10.0	68.0	40-160	21.3	25		Ť.
2-Butanone (MEK)	107	20	μg/L	100	107	40-160	9.53	25		†
tert-Butyl Alcohol (TBA)	78.4	20	μg/L	100	78.4	40-160	2.38	25		Ť
n-Butylbenzene	11.6	1.0	μg/L	10.0	116	70-130	1.04	25		
sec-Butylbenzene	11.4	1.0	μg/L	10.0	114	70-130	0.175	25		
tert-Butylbenzene	10.9	1.0	μg/L	10.0	109	70-130	0.366	25		
tert-Butyl Ethyl Ether (TBEE)	6.40	0.50	μg/L	10.0		* 70-130	0.623	25	L-04, V-05	
Carbon Disulfide	10.3	5.0	μg/L	10.0	103	70-130	2.88	25		
Carbon Tetrachloride	10.2	1.0	μg/L	10.0	102	70-130	0.196	25		
Chlorobenzene	9.80	1.0	μg/L	10.0	98.0	70-130	3.51	25		
Chlorodibromomethane	9.48	0.50	μg/L	10.0	94.8	70-130	0.631	25		
Chloroethane	9.49	2.0	μg/L	10.0	94.9	70-130	2.70	25		
Chloroform	8.90	2.0	μg/L	10.0	89.0	70-130	0.783	25		
Chloromethane	8.58	2.0	μg/L	10.0	85.8	40-160	4.53	25		†
2-Chlorotoluene	9.72	1.0	μg/L	10.0	97.2	70-130	2.84	25		
4-Chlorotoluene	10.3	1.0	μg/L	10.0	103	70-130	2.68	25		
1,2-Dibromo-3-chloropropane (DBCP)	11.1	5.0	μg/L	10.0	111	70-130	6.82	25		
1,2-Dibromoethane (EDB)	9.78	0.50	μg/L	10.0	97.8	70-130	0.821	25		
Dibromomethane	9.69	1.0	μg/L	10.0	96.9	70-130	2.04	25		
1,2-Dichlorobenzene	10.6	1.0	$\mu \text{g/L}$	10.0	106	70-130	0.284	25		
1,3-Dichlorobenzene	10.9	1.0	μg/L	10.0	109	70-130	1.73	25		
1,4-Dichlorobenzene	10.6	1.0	μg/L	10.0	106	70-130	0.848	25		
trans-1,4-Dichloro-2-butene	13.2	2.0	$\mu \text{g/L}$	10.0	132	* 70-130	0.754	25	L-02, V-20	
Dichlorodifluoromethane (Freon 12)	7.56	2.0	μg/L	10.0	75.6	40-160	1.44	25		†
1,1-Dichloroethane	10.0	1.0	$\mu \text{g/L}$	10.0	100	70-130	1.71	25		
1,2-Dichloroethane	10.8	1.0	$\mu \text{g/L}$	10.0	108	70-130	0.920	25		
1,1-Dichloroethylene	10.9	1.0	$\mu \text{g/L}$	10.0	109	70-130	0.275	25		
cis-1,2-Dichloroethylene	10.0	1.0	$\mu \text{g/L}$	10.0	100	70-130	1.81	25		
trans-1,2-Dichloroethylene	10.1	1.0	$\mu \text{g/L}$	10.0	101	70-130	0.689	25		
1,2-Dichloropropane	9.61	1.0	$\mu g/L$	10.0	96.1	70-130	1.96	25		
1,3-Dichloropropane	9.71	0.50	$\mu g/L$	10.0	97.1	70-130	1.33	25		
2,2-Dichloropropane	9.99	1.0	$\mu g/L$	10.0	99.9	40-130	1.19	25		Ť
1,1-Dichloropropene	9.54	2.0	$\mu g \! / \! L$	10.0	95.4	70-130	2.48	25		
cis-1,3-Dichloropropene	9.81	0.50	$\mu g \! / \! L$	10.0	98.1	70-130	3.21	25		
trans-1,3-Dichloropropene	9.94	0.50	μg/L	10.0	99.4	70-130	2.86	25		
Diethyl Ether	10.1	2.0	$\mu g/L$	10.0	101	70-130	0.795	25		
Diisopropyl Ether (DIPE)	11.0	0.50	μg/L	10.0	110	70-130	2.49	25		

QUALITY CONTROL

Volatile Organic Compounds by GC/MS - Quality Control

Analyte	Result	Reporting Limit	Units	Spike Level	Source Result	%REC	%REC Limits	RPD	RPD Limit	Notes	
Batch B245276 - SW-846 5030B											
LCS Dup (B245276-BSD1)				Prepared: 11	/06/19 Anal	yzed: 11/07/1	.9				
1,4-Dioxane	112	50	μg/L	100		112	40-130	9.05	50		 † ‡
Ethylbenzene	10.2	1.0	$\mu g \! / \! L$	10.0		102	70-130	4.14	25		
Hexachlorobutadiene	11.7	0.60	μg/L	10.0		117	70-130	1.20	25		
2-Hexanone (MBK)	124	10	μg/L	100		124	70-160	1.16	25	V-20	†
Isopropylbenzene (Cumene)	10.4	1.0	μg/L	10.0		104	70-130	1.90	25		
p-Isopropyltoluene (p-Cymene)	10.7	1.0	μg/L	10.0		107	70-130	1.22	25		
Methyl tert-Butyl Ether (MTBE)	8.44	1.0	μg/L	10.0		84.4	70-130	1.18	25		
Methylene Chloride	10.3	5.0	μg/L	10.0		103	70-130	0.388	25		
4-Methyl-2-pentanone (MIBK)	127	10	μg/L	100		127	70-160	1.65	25	V-20	†
Naphthalene	9.61	2.0	μg/L	10.0		96.1	40-130	4.25	25		†
n-Propylbenzene	10.4	1.0	μg/L	10.0		104	70-130	2.09	25		
Styrene	8.78	1.0	μg/L	10.0		87.8	70-130	2.81	25		
1,1,1,2-Tetrachloroethane	10.4	1.0	μg/L	10.0		104	70-130	2.66	25		
1,1,2,2-Tetrachloroethane	10.9	0.50	$\mu g/L$	10.0		109	70-130	2.71	25		
Tetrachloroethylene	10.2	1.0	μg/L	10.0		102	70-130	2.90	25		
Tetrahydrofuran	11.0	10	μg/L	10.0		110	70-130	13.8	25		
Toluene	9.64	1.0	μg/L	10.0		96.4	70-130	2.56	25		
1,2,3-Trichlorobenzene	9.14	5.0	μg/L	10.0		91.4	70-130	4.13	25		
1,2,4-Trichlorobenzene	10.4	1.0	μg/L	10.0		104	70-130	1.74	25		
1,3,5-Trichlorobenzene	10.2	1.0	μg/L	10.0		102	70-130	0.978	25		
1,1,1-Trichloroethane	10.2	1.0	μg/L	10.0		102	70-130	1.49	25		
1,1,2-Trichloroethane	9.72	1.0	μg/L	10.0		97.2	70-130	1.03	25		
Trichloroethylene	9.58	1.0	μg/L	10.0		95.8	70-130	7.24	25		
Trichlorofluoromethane (Freon 11)	9.61	2.0	μg/L	10.0		96.1	70-130	0.941	25		
1,2,3-Trichloropropane	10.7	2.0	μg/L	10.0		107	70-130	0.187	25		
1,1,2-Trichloro-1,2,2-trifluoroethane (Freon 113)	9.99	1.0	μg/L	10.0		99.9	70-130	0.599	25		
1,2,4-Trimethylbenzene	9.62	1.0	μg/L	10.0		96.2	70-130	0.931	25		
1,3,5-Trimethylbenzene	10.0	1.0	μg/L	10.0		100	70-130	1.97	25		
Vinyl Chloride	23.6	2.0	$\mu \text{g/L}$	10.0		236 *	40-160	3.05	25	L-02, V-20	†
m+p Xylene	20.4	2.0	$\mu \text{g/L}$	20.0		102	70-130	3.84	25		
o-Xylene	10.5	1.0	$\mu g/L$	10.0		105	70-130	3.29	25		
Surrogate: 1,2-Dichloroethane-d4	26.5		μg/L	25.0		106	70-130				
Surrogate: Toluene-d8	24.9		μg/L	25.0		99.8	70-130				
Surrogate: 4-Bromofluorobenzene	23.9		μg/L	25.0		95.6	70-130				

QUALITY CONTROL

Semivolatile Organic Compounds by GC/MS - Quality Control

Analyte	Result	Reporting Limit	Units	Spike Level	Source Result	%REC	%REC Limits	RPD	RPD Limit	Notes
Batch B245268 - SW-846 3510C										
Blank (B245268-BLK1)				Prepared &	Analyzed: 11/	/06/19				
Acenaphthene (SIM)	ND	0.30	μg/L							
Acenaphthylene (SIM)	ND	0.20	$\mu g/L$							
Anthracene (SIM)	ND	0.20	$\mu g/L$							
Benzo(a)anthracene (SIM)	ND	0.050	$\mu g/L$							
Benzo(a)pyrene (SIM)	ND	0.10	$\mu g/L$							
Benzo(b)fluoranthene (SIM)	ND	0.050	$\mu g/L$							
Benzo(g,h,i)perylene (SIM)	ND	0.50	$\mu g/L$							
Benzo(k)fluoranthene (SIM)	ND	0.20	$\mu g/L$							
Chrysene (SIM)	ND	0.20	$\mu g/L$							
Dibenz(a,h)anthracene (SIM)	ND	0.10	$\mu g/L$							
Fluoranthene (SIM)	ND	0.50	$\mu \text{g/L}$							
Fluorene (SIM)	ND	1.0	$\mu g/L$							
ndeno(1,2,3-cd)pyrene (SIM)	ND	0.10	$\mu g/L$							
-Methylnaphthalene (SIM)	ND	1.0	$\mu g/L$							
Japhthalene (SIM)	ND	1.0	$\mu g/L$							
Phenanthrene (SIM)	ND	0.050	$\mu g/L$							
tyrene (SIM)	ND	1.0	$\mu g/L$							
Surrogate: Nitrobenzene-d5	73.7		μg/L	100		73.7	30-130			
surrogate: 2-Fluorobiphenyl	51.1		μg/L	100		51.1	30-130			
urrogate: p-Terphenyl-d14	65.3		μg/L	100		65.3	30-130			
LCS (B245268-BS1)				Prepared &	Analyzed: 11/	/06/19				
Acenaphthene (SIM)	35.2	6.0	μg/L	50.0		70.4	40-140			
Acenaphthylene (SIM)	35.7	4.0	$\mu g/L$	50.0		71.4	40-140			
Anthracene (SIM)	38.2	4.0	$\mu g/L$	50.0		76.3	40-140			
Benzo(a)anthracene (SIM)	37.0	1.0	$\mu g/L$	50.0		74.1	40-140			
Benzo(a)pyrene (SIM)	37.4	2.0	$\mu g/L$	50.0		74.8	40-140			
Benzo(b)fluoranthene (SIM)	39.6	1.0	$\mu g/L$	50.0		79.2	40-140			
Benzo(g,h,i)perylene (SIM)	40.1	10	$\mu g/L$	50.0		80.2	40-140			
Benzo(k)fluoranthene (SIM)	39.8	4.0	$\mu g/L$	50.0		79.6	40-140			
Chrysene (SIM)	35.8	4.0	μg/L	50.0		71.7	40-140			
Dibenz(a,h)anthracene (SIM)	42.6	2.0	$\mu g/L$	50.0		85.2	40-140			
Fluoranthene (SIM)	37.3	10	μg/L	50.0		74.7	40-140			
Fluorene (SIM)	36.3	20	$\mu g/L$	50.0		72.6	40-140			
ndeno(1,2,3-cd)pyrene (SIM)	42.8	2.0	μg/L	50.0		85.6	40-140			
-Methylnaphthalene (SIM)	34.3	20	μg/L	50.0		68.7	40-140			
Naphthalene (SIM)	32.7	20	μg/L	50.0		65.4	40-140			
Phenanthrene (SIM)	35.9	1.0	μg/L	50.0		71.8	40-140			
Pyrene (SIM)	36.4	20	μg/L	50.0		72.7	40-140			
Surrogate: Nitrobenzene-d5	74.9		μg/L	100		74.9	30-130			
Surrogate: 2-Fluorobiphenyl	56.8		$\mu g/L$	100		56.8	30-130			
Surrogate: p-Terphenyl-d14	59.6		μg/L	100		59.6	30-130			

QUALITY CONTROL

Semivolatile Organic Compounds by GC/MS - Quality Control

Analyte	Result	Reporting Limit	Units	Spike Level	Source Result	%REC	%REC Limits	RPD	RPD Limit	Notes
Batch B245268 - SW-846 3510C										
LCS Dup (B245268-BSD1)				Prepared &	Analyzed: 11	/06/19				
Acenaphthene (SIM)	36.1	6.0	μg/L	50.0		72.2	40-140	2.47	20	
Acenaphthylene (SIM)	36.5	4.0	$\mu g/L$	50.0		73.0	40-140	2.22	20	
Anthracene (SIM)	39.5	4.0	$\mu g/L$	50.0		79.0	40-140	3.40	20	
Benzo(a)anthracene (SIM)	38.1	1.0	$\mu g/L$	50.0		76.2	40-140	2.82	20	
Benzo(a)pyrene (SIM)	38.7	2.0	$\mu g/L$	50.0		77.4	40-140	3.47	20	
Benzo(b)fluoranthene (SIM)	41.0	1.0	$\mu g/L$	50.0		82.0	40-140	3.43	20	
Benzo(g,h,i)perylene (SIM)	41.6	10	$\mu g/L$	50.0		83.3	40-140	3.82	20	
Benzo(k)fluoranthene (SIM)	41.8	4.0	$\mu g/L$	50.0		83.6	40-140	4.80	20	
Chrysene (SIM)	37.1	4.0	$\mu g/L$	50.0		74.1	40-140	3.35	20	
Dibenz(a,h)anthracene (SIM)	44.3	2.0	$\mu g/L$	50.0		88.5	40-140	3.78	20	
Fluoranthene (SIM)	38.4	10	$\mu g/L$	50.0		76.8	40-140	2.80	20	
Fluorene (SIM)	37.1	20	$\mu g/L$	50.0		74.2	40-140	2.23	20	
Indeno(1,2,3-cd)pyrene (SIM)	44.5	2.0	$\mu g/L$	50.0		88.9	40-140	3.76	20	
2-Methylnaphthalene (SIM)	35.8	20	$\mu g/L$	50.0		71.7	40-140	4.27	20	
Naphthalene (SIM)	33.0	20	$\mu g/L$	50.0		66.0	40-140	1.04	20	
Phenanthrene (SIM)	37.1	1.0	$\mu g/L$	50.0		74.2	40-140	3.18	20	
Pyrene (SIM)	37.4	20	$\mu g/L$	50.0		74.7	40-140	2.71	20	
Surrogate: Nitrobenzene-d5	77.8		μg/L	100		77.8	30-130			
Surrogate: 2-Fluorobiphenyl	59.4		$\mu g/L$	100		59.4	30-130			
Surrogate: p-Terphenyl-d14	60.7		μg/L	100		60.7	30-130			

FLAG/QUALIFIER SUMMARY

*	OC result is outside of established limits.
†	Wide recovery limits established for difficult compound.
	wide recovery finitis established for difficult compound.
‡	Wide RPD limits established for difficult compound.
#	Data exceeded client recommended or regulatory level
	Percent recoveries and relative percent differences (RPDs) are determined by the software using values in the calculation which have not been rounded.
	No results have been blank subtracted unless specified in the case narrative section.
J	Detected but below the Reporting Limit (lowest calibration standard); therefore, result is an estimated concentration (CLP J-Flag).
L-02	Laboratory fortified blank/laboratory control sample recovery and duplicate recoveries outside of control limits. Data validation is not affected since all results are "not detected" for associated samples in this batch and bias is on the high side.
L-04	Laboratory fortified blank/laboratory control sample recovery and duplicate recovery are outside of control limits. Reported value for this compound is likely to be biased on the low side.
L-07A	Either laboratory fortified blank/laboratory control sample or duplicate recovery is outside of control limits, but the other is within limits. RPD outside of control limits. Reduced precision anticipated for any reported result for this compound.
R-05	Laboratory fortified blank duplicate RPD is outside of control limits. Reduced precision is anticipated for any reported value for this compound.
V-05	Continuing calibration verification (CCV) did not meet method specifications and was biased on the low side for this compound.
V-06	Continuing calibration verification (CCV) did not meet method specifications and was biased on the high side for this compound.
V-20	Continuing calibration verification (CCV) did not meet method specifications and was biased on the high side. Data validation is not affected since sample result was "not detected" for this compound.

CERTIFICATIONS

Certified Analyses included in this Report

Analyte	Certifications	
SW-846 8260D in Water		
Acetone	NC	
Acrylonitrile	NC	
tert-Amyl Methyl Ether (TAME)	NC	
Benzene	NC	
Bromobenzene	NC	
Bromochloromethane	NC	
Bromodichloromethane	NC	
Bromoform	NC	
Bromomethane	NC	
2-Butanone (MEK)	NC	
tert-Butyl Alcohol (TBA)	NC	
n-Butylbenzene	NC	
sec-Butylbenzene	NC	
tert-Butylbenzene	NC	
tert-Butyl Ethyl Ether (TBEE)	NC	
Carbon Disulfide	NC	
Carbon Tetrachloride	NC	
Chlorobenzene	NC	
Chlorodibromomethane	NC	
Chloroethane	NC	
Chloroform	NC	
Chloromethane	NC	
2-Chlorotoluene	NC	
4-Chlorotoluene	NC	
1,2-Dibromo-3-chloropropane (DBCP)	NC	
1,2-Dibromoethane (EDB)	NC	
Dibromomethane	NC	
1,2-Dichlorobenzene	NC	
1,3-Dichlorobenzene	NC	
1,4-Dichlorobenzene	NC	
trans-1,4-Dichloro-2-butene	NC	
Dichlorodifluoromethane (Freon 12)	NC	
1,1-Dichloroethane	NC	
1,2-Dichloroethane	NC	
1,1-Dichloroethylene	NC	
cis-1,2-Dichloroethylene	NC	
trans-1,2-Dichloroethylene	NC	
1,2-Dichloropropane	NC	
1,3-Dichloropropane	NC	
2,2-Dichloropropane	NC	
1,1-Dichloropropene	NC	
cis-1,3-Dichloropropene	NC	
trans-1,3-Dichloropropene	NC	
Diethyl Ether	NC	
Diisopropyl Ether (DIPE)	NC	
1,4-Dioxane	NC	
Ethylbenzene	NC	
		_

CERTIFICATIONS

Certified Analyses included in this Report

Analyte	Certifications
SW-846 8260D in Water	
Hexachlorobutadiene	NC
2-Hexanone (MBK)	NC
Isopropylbenzene (Cumene)	NC
p-Isopropyltoluene (p-Cymene)	NC
Methyl tert-Butyl Ether (MTBE)	NC
Methylene Chloride	NC
4-Methyl-2-pentanone (MIBK)	NC
Naphthalene	NC
n-Propylbenzene	NC
Styrene	NC
1,1,1,2-Tetrachloroethane	NC
1,1,2,2-Tetrachloroethane	NC
Tetrachloroethylene	NC
Tetrahydrofuran	NC
Toluene	NC
1,2,3-Trichlorobenzene	NC
1,2,4-Trichlorobenzene	NC
1,3,5-Trichlorobenzene	NC
1,1,1-Trichloroethane	NC
1,1,2-Trichloroethane	NC
Trichloroethylene	NC
Trichlorofluoromethane (Freon 11)	NC
1,2,3-Trichloropropane	NC
1,1,2-Trichloro-1,2,2-trifluoroethane (Freon 113)	NC
1,2,4-Trimethylbenzene	NC
1,3,5-Trimethylbenzene	NC
Vinyl Chloride	NC
m+p Xylene	NC
o-Xylene	NC

 $The \ CON-TEST \ Environmental \ Laboratory \ operates \ under \ the \ following \ certifications \ and \ accreditations:$

Code	Description	Number	Expires
AIHA	AIHA-LAP, LLC - ISO17025:2017	100033	03/1/2020
MA	Massachusetts DEP	M-MA100	06/30/2020
CT	Connecticut Department of Publile Health	PH-0567	09/30/2021
NY	New York State Department of Health	10899 NELAP	04/1/2020
NH-S	New Hampshire Environmental Lab	2516 NELAP	02/5/2020
RI	Rhode Island Department of Health	LAO00112	12/30/2019
NC	North Carolina Div. of Water Quality	652	12/31/2019
NJ	New Jersey DEP	MA007 NELAP	06/30/2020
FL	Florida Department of Health	E871027 NELAP	06/30/2020
VT	Vermont Department of Health Lead Laboratory	LL015036	07/30/2020
ME	State of Maine	2011028	06/9/2021
VA	Commonwealth of Virginia	460217	12/14/2019
NH-P	New Hampshire Environmental Lab	2557 NELAP	09/6/2020
VT-DW	Vermont Department of Health Drinking Water	VT-255716	06/12/2020
NC-DW	North Carolina Department of Health	25703	07/31/2020
PA	Commonwealth of Pennsylvania DEP	68-05812	06/30/2020

AMALYTICAL LABORATORY FAM	Fax: 413.525.6406	•		AND STATE OF THE PROPERTY OF T			East Lor	East Longmeadow, MA 01028		
11000	Email: info@contestlabs.com		7-Day	10-Day	(S)				3 3 3	
			Due Date:	f and a					# of Containers	
3201 Spains Forest RO	Paleix NC		Mish. App	entitle entitle	10				3 Containor Codo	
אושל-רלף סיף	0		1-Day	3-Day			ANAI YSIS DECITECTED	Clifferen	container code	
30000	18 Parcel 84		2-Day	4-Day						311101618
ريا			2)BLC	Delivery]					
	[2]		Format: PDF 🔽	EXCEL	Z				L Lab to rilter	
Project Manager: Jamie T Homeyart	#72		Other:							
on-Test Quote Name/Number:			CLP Like Data Pkg Required:	equired:		OL				
	TA TA		Email To: The mass.	The same of the sa	\$ 0.5 C	<u>دی</u>				
Tame T. Homerent			- in-	2000		8 १			Lab to Fifter	
Con-Test Cilent 1	Client Sample ID / Description	Beginning	Ending Composite	Grab	tix Conc	nt E			1	
		T I	(mile)	e Code		d \			GW = Ground Water	ē
	16/2-L	10/29/व	1630	<u>ક</u> \	7	/			WW = Waste Water	E .
									A = Air	9
									S = Soil SL = Sludge	
									SOL = Solid	
									0 = Other (please	
									2 Preservation Codes:	des:
						-			l = lced H = HCl	
	, ,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,								M = Wethanol	
									N = Nitric Acid	
									B = Sodium Bisulfate	Ç
									X = Sodium Hydroxide	cide
				_					Thiosulfate	
				Pie	ase use the fo	Howing code	ss to indicate pos	Please use the following codes to indicate possible sample concentration	O = Other (piease	
					H. High	within the (within the Conc Code column above:	within the Conc Code column above:		
					,				Container Codes:	
elindusmed ov: (signature)	e:		Norm Carolina Detection	LimiteR	squatueuns		Program	Program Information	G = Glass	
	100 11/11/11		2L				DSCA	UST/Trust Fund		
The same of the sa	Uate/Time:		GWPC				SWS Landfill	REC	SI = Sterije V = Vial	
elinquished (by: (signature)	o/Tir	" - -	SWSL				IHSB Orphaned Landfill	Landfill	S = Summa Canister	क
			MSCC		HOTTH CAROLINA		State Lead		T = Tedlar Bag O = Other (nlease	
eceived by (signature)	Date/Time:) arthe					orner:		define)	
							NELAC and AP	WELAC and AMA-LAP, LLC Accredited		Tak
nquished by: (signature)	Date/Time:	Project Entity	S				Other	er	PCB ONLY	ole d
eived by: (signature)	Date/Time:		Federal	Municipality Brownfield				Chromatogram AIHA-LAP, LLC	Soxhlet Non Soxhlet	of Co
			Cit.	School]	n'

IMPORTANT!

The wildfires are causing hazardous conditions in California. Learn More

Delivered Friday 11/01/2019 at 9:02 am

DELIVERED

Signed for by: R.PETRIAS

GET STATUS UPDATES
OBTAIN PROOF OF DELIVERY

FROM

Autryville, NC US

TO

East Longmeadow, MA US

Shipment Facts

TRACKING NUMBER

411359783302

SERVICE

FedEx Priority Overnight

WEIGHT

53.4 lbs / 24.22 kgs

DELIVERED TOShipping/Receiving

TOTAL PIECES

1

TOTAL SHIPMENT WEIGHT

53.4 lbs / 24.22 kgs

RETURN REASON

TERMS

Third Party

PACKAGING

Your Packaging

SPECIAL HANDLING SECTION

Deliver Weekday

STANDARD TRANSIT

(2)

11/01/2019 by 10:30 am

SHIP DATI

(?)

Thu 10/31/2019

ACTUAL DELIVERY

Fri 11/01/2019 9:02 am

Travel History

Local Scan Time

 \checkmark

Friday, 11/01/2019

9:02 am

East Longmeadow, MA

Delivered

7:45 am

WINDSOR LOCKS, CT

On FedEx vehicle for delivery

6:27 am

EAST GRANBY, CT

At destination sort facility

Page 24 of 25

I Have Not Confirmed Sample Container
Numbers With Lab Staff Before Relinquishing
Over Samples_____

Doc# 277 Rev 5 2017

	•	ceipt offectist.	· (Rejection (∍riteria Listing -	Using Accepta	nce Policy) A	iny False	
	State	me <u>n</u> t will be brοι	ight to the at	tention of the C	lient - State Tru	e or False '	. •	
Client	Str	1E			1.			
Recei	ved By	M		Date (11111	Time	902	
	the samples	In Cooler		No Cooler	On Ice	7	No Ice	
rece	ived?	Direct from Sam	pling	-	Ambient		- Melted Ice	
Mere cam	ples within		By Gun#	7-	Actual Ten	nn - U.		
	ure? 2-6°C	T	By Blank #		Actual Ten	····		
	s Custody S	seal Intact?	- NA	Were Sa	mples Tampered			
	s COC Reli				in Agree With Sa		<u>/yh</u>	
		leaking/loose caps	on any sami		K.	·		
	nk/ Legible?		στι απ η σαπη	M-10-1	 received within h	oldina time?	1	
	include all	Client		Analysis 7		ler Name		
pertinent In	formation?	Project		ID's		Dates/Times	, 	
•		d out and legible?			Conceion	Dates/Times	·	
Are there La				Wh	o was notified?			
Are there R					o was notified?			
Are there SI	hort Holds?				o was notified?			
Is there eno	uah Volume	?		****	o was nothed;			
	•	ere applicable?	Ė	MS/M	SD2 F		_	
Proper Med					tting samples red	- ruirod?	-	
Were trip bla			e	On C		quireu :		
•		proper pH?		Acid	oc:	Base		
		- ,	M	/\oio		Dase		
Vials Unp-	#	Containers:	,#	4112 51	#			#
HCL-	 	1 Liter Amb.	2	1 Liter Plastic		***************************************	Amb.	
Meoh-		500 mL Amb. 250 mL Amb.		500 mL Plasti	· · · · · · · · · · · · · · · · · · ·		nb/Clear	
Bisulfate-		Flashpoint		250 mL Plasti			b/Clear	
DI-		Other Glass		Col./Bacteria Other Plastic		***************************************	ib/Clear	
Thiosulfate-				Caller Massic		I ⊢∩/		
	***						core	
		SOC Kit		Plastic Bag		Frozen:	core	
				Plastic Bag Ziplock			core	
Sulfuric-		SOC Kit Perchlorate	7	Plastic Bag			core	
Sulfuric- Vials		SOC Kit Perchlorate Containers:		Plastic Bag Ziplock Unused Media	#	Frozen:		#
Sulfuric- Vials Unp-		SOC Kit Perchlorate Containers: 1 Liter Amb.		Plastic Bag Ziplock Unused Media 1 Liter Plastic		Frozen:	Amb.	4
Sulfuric- Vials Jnp- HCL-		SOC Kit Perchlorate Containers: 1 Liter Amb. 500 mL Amb.		Plastic Bag Ziplock Unused Media 1 Liter Plastic 500 mL Plastic	4	Frozen: 16 oz 8oz Am	Amb. b/Clear	#
Sulfuric- Vials Jnp- HCL- Meoh-		SOC Kit Perchlorate Containers: 1 Liter Amb. 500 mL Amb. 250 mL Amb.		Plastic Bag Ziplock Unused Media 1 Liter Plastic 500 mL Plastic 250 mL Plastic	4	Frozen: 16 oz 8oz Am 4oz Am	Amb. b/Clear b/Clear	#
Vials Unp- HCL- Meoh- Bisulfate-		SOC Kit Perchlorate Containers: 1 Liter Amb. 500 mL Amb. 250 mL Amb. Col./Bacteria		Plastic Bag Ziplock Unused Media 1 Liter Plastic 500 mL Plastic 250 mL Plastic Flashpoint	4	Frozen: 16 oz 8oz Am 4oz Am 2oz Am	Amb. b/Clear b/Clear b/Clear	
Vials Unp- HCL- Meoh- Bisulfate- DI-		SOC Kit Perchlorate Containers: 1 Liter Amb. 500 mL Amb. 250 mL Amb. Col./Bacteria Other Plastic	#	Plastic Bag Ziplock Unused Media 1 Liter Plastic 500 mL Plastic 250 mL Plastic Flashpoint Other Glass	4	Frozen: 16 oz 8oz Am 4oz Am 2oz Am	Amb. b/Clear b/Clear b/Clear	#
Vials Unp- HCL- Meoh- Bisulfate- DI- Thiosulfate-		SOC Kit Perchlorate Containers: 1 Liter Amb. 500 mL Amb. 250 mL Amb. Col./Bacteria Other Plastic SOC Kit		Plastic Bag Ziplock Unused Media 1 Liter Plastic 500 mL Plastic 250 mL Plastic Flashpoint Other Glass Plastic Bag	4	Frozen: 16 oz 8oz Am 4oz Am 2oz Am	Amb. b/Clear b/Clear b/Clear	#
Vials Unp- HCL- Meoh- Bisulfate- DI- Thiosulfate- Gulfuric-		SOC Kit Perchlorate Containers: 1 Liter Amb. 500 mL Amb. 250 mL Amb. Col./Bacteria Other Plastic		Plastic Bag Ziplock Unused Media 1 Liter Plastic 500 mL Plastic 250 mL Plastic Flashpoint Other Glass	4	Frozen: 16 oz 8oz Am 4oz Am 2oz Am	Amb. b/Clear b/Clear b/Clear	
Vials Unp- HCL- Meoh- Bisulfate- DI- Thiosulfate- Gulfuric-		SOC Kit Perchlorate Containers: 1 Liter Amb. 500 mL Amb. 250 mL Amb. Col./Bacteria Other Plastic SOC Kit		Plastic Bag Ziplock Unused Media 1 Liter Plastic 500 mL Plastic 250 mL Plastic Flashpoint Other Glass Plastic Bag	4	Frozen: 16 oz 8oz Am 4oz Am 2oz Am	Amb. b/Clear b/Clear b/Clear	
Vials Unp- HCL- Meoh- Bisulfate- DI- Thiosulfate-		SOC Kit Perchlorate Containers: 1 Liter Amb. 500 mL Amb. 250 mL Amb. Col./Bacteria Other Plastic SOC Kit		Plastic Bag Ziplock Unused Media 1 Liter Plastic 500 mL Plastic 250 mL Plastic Flashpoint Other Glass Plastic Bag	4	Frozen: 16 oz 8oz Am 4oz Am 2oz Am	Amb. b/Clear b/Clear b/Clear	
Vials Unp- HCL- Meoh- Bisulfate- DI- Thiosulfate- Gulfuric-		SOC Kit Perchlorate Containers: 1 Liter Amb. 500 mL Amb. 250 mL Amb. Col./Bacteria Other Plastic SOC Kit		Plastic Bag Ziplock Unused Media 1 Liter Plastic 500 mL Plastic 250 mL Plastic Flashpoint Other Glass Plastic Bag	4	Frozen: 16 oz 8oz Am 4oz Am 2oz Am	Amb. b/Clear b/Clear b/Clear	#
Vials Unp- HCL- Meoh- Bisulfate- DI- Thiosulfate- Gulfuric-		SOC Kit Perchlorate Containers: 1 Liter Amb. 500 mL Amb. 250 mL Amb. Col./Bacteria Other Plastic SOC Kit		Plastic Bag Ziplock Unused Media 1 Liter Plastic 500 mL Plastic 250 mL Plastic Flashpoint Other Glass Plastic Bag	4	Frozen: 16 oz 8oz Am 4oz Am 2oz Am	Amb. b/Clear b/Clear b/Clear	
Vials Unp- HCL- Meoh- Bisulfate- DI- Thiosulfate- Gulfuric-		SOC Kit Perchlorate Containers: 1 Liter Amb. 500 mL Amb. 250 mL Amb. Col./Bacteria Other Plastic SOC Kit		Plastic Bag Ziplock Unused Media 1 Liter Plastic 500 mL Plastic 250 mL Plastic Flashpoint Other Glass Plastic Bag	4	Frozen: 16 oz 8oz Am 4oz Am 2oz Am	Amb. b/Clear b/Clear b/Clear	
Vials Unp- HCL- Meoh- Bisulfate- DI- Thiosulfate- Gulfuric-		SOC Kit Perchlorate Containers: 1 Liter Amb. 500 mL Amb. 250 mL Amb. Col./Bacteria Other Plastic SOC Kit		Plastic Bag Ziplock Unused Media 1 Liter Plastic 500 mL Plastic 250 mL Plastic Flashpoint Other Glass Plastic Bag	4	Frozen: 16 oz 8oz Am 4oz Am 2oz Am	Amb. b/Clear b/Clear b/Clear	
Vials Unp- HCL- Meoh- Bisulfate- DI- Thiosulfate- Gulfuric-		SOC Kit Perchlorate Containers: 1 Liter Amb. 500 mL Amb. 250 mL Amb. Col./Bacteria Other Plastic SOC Kit		Plastic Bag Ziplock Unused Media 1 Liter Plastic 500 mL Plastic 250 mL Plastic Flashpoint Other Glass Plastic Bag	4	Frozen: 16 oz 8oz Am 4oz Am 2oz Am	Amb. b/Clear b/Clear b/Clear	#
Vials Unp- HCL- Meoh- Bisulfate- DI- Thiosulfate- Gulfuric-		SOC Kit Perchlorate Containers: 1 Liter Amb. 500 mL Amb. 250 mL Amb. Col./Bacteria Other Plastic SOC Kit		Plastic Bag Ziplock Unused Media 1 Liter Plastic 500 mL Plastic 250 mL Plastic Flashpoint Other Glass Plastic Bag	4	Frozen: 16 oz 8oz Am 4oz Am 2oz Am	Amb. b/Clear b/Clear b/Clear	

January 9, 2020

North Carolina Department of Transportation Geotechnical Unit Mail Service Center 1592 Raleigh, North Carolina 27699-1592

Attention: Mr. Craig Haden email: cehaden@ncdot.gov

Reference: Preliminary Site Assessment Report

NCDOT Project I-5878, WBS Element 53078.1.1

Parcel 87 – SAK's Thrift Avenue

101 South Sampson Avenue

Dunn, Harnett County, North Carolina

S&ME Project 4305-19-161

Dear Mr. Haden:

S&ME, Inc. (S&ME) is submitting this Preliminary Site Assessment (PSA) Report to the North Carolina Department of Transportation (NCDOT). This report presents the background/project information, field activities, findings, conclusions, and recommendations. These services were performed in general accordance with S&ME Proposal No. 43-1900576 REV-01 dated August 9, 2019, and Contract Number 7000018853 dated April 12, 2018 between NCDOT and S&ME, Inc., authorized by NCDOT in its September 5,2019 Notice to Proceed Letter.

♦ Background/Project Information

Based on NCDOT's July 24, 2019, Request for Technical and Cost Proposal, the PSA was conducted within the NCDOT right-of-way (ROW) and/or easement as indicated on the preliminary plan sheets provided by NCDOT at the following property:

NCDOT Parcel No.	Property Owner	Site Address
87	Mack Devaughn Pope	(SAK's Thrift Avenue)
		101 South Sampson Avenue, Dunn, NC

Preliminary Site Assessment Report NCDOT Project I-5878, WBS Element 53078.1.1
Parcel 87-SAK's Thrift Avenue Dunn, Harnett County, North Carolina S&ME Project No. 4305-19-161

The property is developed with a commercial building currently occupied by SAK's Thrift Avenue, a thrift shop. The property is not listed with registered petroleum underground storage tanks (USTs) (active or closed). The property is not listed with North Carolina Department of Environmental Quality (NCDEQ) Incidents associated with petroleum releases from USTs or aboveground storage tanks. A groundwater monitoring well identified as MW-30 is located on the property within the ROW. The monitor well is associated with a previous UST release (NCDEQ Incident #29119-Hasty Mart#38), that occurred at the former Hasty Mart #38 site located southwest of the site, across Sampson Avenue. The former Hasty Mart #38 site was the location of a former gasoline/convenience store and petroleum bulk oil facility, which utilized several USTs. The tanks were removed in 2012. Historically, several petroleum constituents have been reported in groundwater samples collected from MW-30 at concentrations exceeding their respective15A NCAC 2L Groundwater Quality Standards (2L Standards). In 2018, benzene was reported in MW-30 at a concentration of 3,320 micrograms per liter (µg/) which exceeds its 2L Standard of 1 µg/L (*Monitoring Report* prepared by TerraQuest dated April 24, 2018). Copies of pertinent information obtained from the above referenced report are included in **Appendix I.**

The PSA included a geophysical survey and subsequent limited soil sampling (three soil borings up to 10 feet below ground surface (ft.-bgs)) and limited groundwater sampling (one groundwater sample), within accessible areas of the proposed ROW/easement in preparation for construction activities. **Figure 1** shows the vicinity and site location, and **Figure 2** shows the site and boring locations. Soil and groundwater sampling results are shown on **Figure 3**.

Field Services

Prior to field activities, a site specific Health and Safety Plan was prepared as required by the Occupational Health and Safety Act (OSHA). Underground utilities were located and marked by the North Carolina One-Call Service. A private utility locator (East Coast Underground, LLC) was also used to locate and mark underground utilities.

Geophysical Survey

On July 25, 2019, S&ME completed Time Domain Electromagnetic (TDEM) and Ground Penetrating Radar (GPR) surveys within accessible areas of the proposed ROW/easement at Parcel 87. Brief descriptions of these complementary geophysical techniques are presented in the following paragraphs.

Time Domain Electromagnetics (TDEM)

TDEM measures the electrical conductivity of subsurface materials and discriminates between moderately conductive earth materials and very conductive metallic targets within the shallow subsurface. The conductivity is determined by transmitting a time-varying magnetic pulse into the subsurface and measuring the amplitude and phase shift of the secondary magnetic field. The secondary magnetic field is created when the conductive materials become an inductor as the primary magnetic field is passed through them. TDEM data are acquired continuously at a walking pace typically along a series of parallel or perpendicular lines. The system generates audible and visual indications when metallic targets are encountered. These measurements can also be supported with a global positioning system (GPS) which is output directly into the TDEM data file.

We used a Geonics Limited EM-61 MK2 TDEM system in general accordance with ASTM D6820 "Standard Guide for Use of the Time Domain Electromagnetic Method for Subsurface Investigation." Data was collected along lines

Preliminary Site Assessment Report NCDOT Project I-5878, WBS Element 53078.1.1
Parcel 87-SAK's Thrift Avenue
Dunn, Harnett County, North Carolina
S&ME Project No. 4305-19-161

spaced at approximately five feet using a Juniper® Systems GeodeTM sub-meter GPS as positioning support. The approximate TDEM data collection paths are presented in **Figure 4.** Golden Software's Surfer® program was used to grid and plot the data (**Figures 5 and 6**). The TDEM data has been presented as Plots A and B in order to provide both opaque and semi-transparent views, respectively.

Ground Penetrating Radar (GPR)

GPR transmits electromagnetic waves into the subsurface from an antenna at a specific frequency and measures the time for wave reflections to be received by interfaces between materials with differing material properties (e.g. soil/metal, etc.). The intensity of the reflected GPR wave is a function of the contrast in the material properties (i.e. dielectric permittivity) at the interface, the conductivity of the material that the wave is traveling through, and the frequency of the signal.

We used a Geophysical Survey Systems, Inc. (GSSI) SIR® 4000 GPR system equipped with a 350 MHz antenna in general accordance with ASTM D6432 "Standard Guide for Using the Surface Ground Penetrating Radar Method for Subsurface Investigation" to further characterize anomalies/features identified during the TDEM survey.

A total of 10 GPR profiles (Lines 1 through 10) were collected for documentation (**Figure 7**). The data was post-processed using the GSSI Radan® 7 GPR software program for additional analysis.

Geophysical Findings

Responses indicative of a potential UST were not identified in the geophysical data sets collected at the site. Two anomalous features unrelated to known surficial targets were identified in the geophysical data sets (Anomaly A and B; **Figures 6 and 7).** Anomaly A is characterized by high amplitude GPR responses about three feet by five feet in size and located about two ft.-bgs. Although Anomaly A doesn't exhibit responses typically indicative of a large UST, this feature may be related to a buried metal drum or some other buried metallic object. Anomaly B is characterized by high amplitude GPR responses located about one foot bgs and may be related to a relatively small isolated buried metallic object. The anomalies were marked in the field using white spray paint. Example GPR profiles are presented in **Figures 8 and 9.**

Soil Sampling

On October 30, 2019, Troxler Geologic, Inc. (Troxler's) drill crew utilized a track mounted Geoprobe® rig to advance three soil borings (B-1 through B-3) and to collect soil samples within accessible areas of the proposed ROW/easement at Parcel 87. Soil boring B-2 was located near Anomaly A which was identified during the geophysical survey. The approximate location of the soil borings are shown in **Figure 2**. A photographic log is included in **Appendix II**. Troxler's drill crew advanced the Geoprobe® borings up to a depth of approximately 10 ft.-bgs. Soil samples were continuously collected in four-foot long disposable acetate-plastic sleeves that line the hollow stainless-steel sample probes. Soil recovered from the sleeves was classified on-site by S&ME personnel and screened with a Photoionization Detector (PID) at approximately two foot depth intervals to measure relative headspace concentrations of volatile organic compounds (VOCs).

VOC headspace readings were obtained from an aliquot of each soil sample that was placed in a re-sealable bag. Another portion of the sample was placed in a separate re-sealable bag and stored in an insulated container with

Preliminary Site Assessment Report NCDOT Project I-5878, WBS Element 53078.1.1
Parcel 87-SAK's Thrift Avenue
Dunn, Harnett County, North Carolina
S&ME Project No. 4305-19-161

ice for possible laboratory analyses. After waiting approximately 15 minutes to allow the sample to reach ambient temperature and headspace equilibrium, the PID probe was inserted into the bag to obtain a headspace reading. A summary of the PID readings and logs of the soil borings are included in **Appendix III.**

Petroleum odors and elevated PID readings were not noted in the collected soil samples. Groundwater was measured in the existing onsite monitor well (MW-30) at a depth of 7.2 ft.-bgs. Therefore, a soil sample was selected from each boring at the four to six foot depth interval. The soil samples were placed into laboratory supplied containers and transported to RED Lab, LLC (Red Lab) in an insulated cooler with ice for analysis. A total of five soil samples (one soil sample per boring) were analyzed by RED Lab for TPH-GRO and TPH-DRO using ultra-violet fluorescence (UVF) spectroscopy with product (fuel) identification.

Soil Analytical Results

Based upon analytical results of soil samples analyzed by RED Lab using UVP spectroscopy, TPH-GRO and TPH-DRO were not reported at concentrations exceeding their respective North Carolina TPH Action Levels. TPH-GRO and TPH-DRO were reported in each boring at the four to six foot depth interval. TPH-GRO was reported at concentrations ranging from 2.9 milligrams per kilograms (mg/kg) to 4.3 mg/kg which is well below its North Carolina TPH Action Level of 50. TPH-DRO was reported at concentrations ranging from 1.5 mg/kg to 6.4 mg/kg which is well below its North Carolina TPH Action Level of 100 mg/kg. A summary of the soil analytical results is presented in **Table 1** and shown on **Figure 3.** A copy of the laboratory analytical report provided by RED Lab is presented in **Appendix IV.**

Groundwater Sampling

Groundwater was measured in the existing onsite monitor well located within the ROW at a depth of 7.2 ft.-bgs. Therefore, a groundwater sample was collected from MW-30. Groundwater was purged from MW-30 until relatively clear using disposable tubing attached to a peristaltic pump. The flow rate was reduced and laboratory supplied containers were filled directly from the tubing, labeled as MW-30 and placed in an insulated cooler with ice for transport to Con-Test Laboratories (Con-Test) for analysis of VOCs by EPA Method 8260 and polycyclic aromatic compounds (PAHs) by EPA Method 8270.

Upon completion of the soil and groundwater sampling, the soil borings were backfilled with bentonite pellets and soil cuttings. Investigative derived wastes (IDW), such as soil cuttings generated during the soil boring advancement and decontamination water, were spread on the ground in accordance with the procedures specified by NCDEQ. Used gloves and tubing were bagged and disposed off-site.

Groundwater Analytical Results

Based upon analytical results of the groundwater sample analyzed by Con-Test, several petroleum related target constituents were reported at concentrations exceeding their 2L Standards. Benzene was the highest constituent reported above its 2L Standard at a concentration of 1,200 μ g/L, which exceeds its 2L Standard of 1 μ g/L. A summary of the groundwater analytical results is presented in **Table 2** and shown on **Figure 3**. A copy of the laboratory analytical report provided by Con-Test is presented in **Appendix IV**.

Preliminary Site Assessment Report
NCDOT Project I-5878, WBS Element 53078.1.1
Parcel 87-SAK's Thrift Avenue
Dunn, Harnett County, North Carolina
S&ME Project No. 4305-19-161

Conclusion and Recommendations

Existing groundwater monitoring well identified as MW-30 is located on the property within the ROW. The well is associated with a UST release from (NCDEQ Incident #29119-Hasty Mart#38) located southwest of the site, across Sampson Avenue. Historically, several petroleum constituents have been reported in groundwater samples collected from MW-30 at concentrations exceeding their respective 2L Standards.

The geophysical survey identified two anomalous features (Anomaly A and B). Anomaly A doesn't exhibit responses typically indicative of a large UST, this feature may be related to a buried metal drum or some other buried metallic object. Anomaly B may be related to a relatively small isolated buried metallic object.

S&ME advanced three soil borings (B-1 through B-3) to a depth of up to approximately 10 ft.-bgs at the site. Soil boring B-2 was located near Anomaly A. Petroleum odors and elevated PID readings were not noted in soil samples collected at the borings. Selected soil samples from the soil borings were analyzed for TPH-GRO and TPH-DRO using UVF spectroscopy.

TPH-GRO and TPH-DRO were not reported at concentrations exceeding their respective North Carolina TPH Action Levels. TPH-GRO and TPH-DRO were reported in each boring at concentrations below their North Carolina TPH Action Levels.

Groundwater at monitor well MW-30 measured 7.2 ft.-bgs. A groundwater sample was collected from MW-30 and analyzed by Con-Test for VOCs by EPA Method 8260 and PAHs by EPA Method 8270. Several petroleum related target constituents were reported at concentrations exceeding their 2L Standards.

Based on the findings of the geophysical survey and analytical results of soil and groundwater samples, it is likely that during construction, NCDOT may encounter marginally impacted soil (below TPH Action Levels) and groundwater impacted with petroleum at the site.

It should also be assumed that saturated petroleum impacted soil will be encountered if construction excavations extend deeper than approximately seven ft.-bgs on the site. If construction dewatering is required, petroleum impacted groundwater must be properly disposed or treated at a licensed facility. If petroleum stained or odorous soils are encountered during construction, these soils should be properly handled and disposed at a licensed facility.

S&ME recommends maintaining an awareness level for the presence of marginally impacted petroleum in the soil (below TPH Action Levels) and groundwater at the site for the safety of workers and the public.

January 9, 2020

Preliminary Site Assessment Report NCDOT Project I-5878, WBS Element 53078.1.1
Parcel 87-SAK's Thrift Avenue Dunn, Harnett County, North Carolina S&ME Project No. 4305-19-161

Limitations

The results of this preliminary investigation are limited to the boring locations presented herein. The results of this Preliminary Site Assessment are not all inclusive and may not represent existing conditions across the entire property. These results only reflect the current conditions at the locations sampled on the date this Preliminary Site Assessment was performed. This report has been prepared in accordance with generally accepted environmental engineering and geophysical practice for specific application to this project. The conclusions and recommendations contained in this report are based upon applicable standards of our practice in this geographic area at the time this report was prepared. No other warranty, expressed or implied, is made.

The geophysical methods used for this survey have inherent limitations. Site metallic features (e.g., reinforced concrete, utilities, etc.) and overhead transmission lines can produce a false electromagnetic response and may mask subsurface features. The depth of exploration of the GPR signal is highly site specific and is greatly limited by signal attenuation (absorption) of the subsurface materials. Signal attenuation is dependent upon the electrical conductivity of the subsurface materials. Signal attenuation is greatest in materials with relatively high electrical conductivities such as clay soils, and lowest in relatively low conductivity materials such as unsaturated sand. For this project location, the GPR data sets appear to have a maximum depth of penetration of about seven ft.-bgs.

Regardless of the thoroughness of a geophysical study, there is always a possibility that actual conditions may not match the interpretations. The results should be considered accurate only to the degree implied by the methods used and the method's limitations and data coverage. Accordingly, the possibility exists that not all features at a project site will be located due to either subsurface soil conditions or the occurrence of features outside the lateral limits and below the depth of penetration of the methods used. As with most surface geophysical methods, resolution of the subsurface will also decrease with depth. As such, the size and/or contrast of features compared to the imaged subsurface media must be significant enough to produce the anticipated response. The location and/or determination (or the lack thereof) of potential buried features is based on our review of the provided information and of the geophysical survey. Under no circumstances does S&ME assume any responsibility for damages resulting from the presence of subsurface features that may exist but were not identified by our survey.

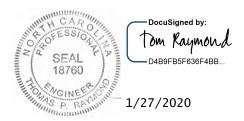
This Preliminary Site Assessment was performed solely for NCDOT regarding the above-referenced site and assessment area. This report is provided for the sole use of NCDOT. Use of this report by any other parties will be at such party's sole risk. S&ME disclaims liability for any such use or reliance by third parties. The observations presented in this report are indicative of conditions during the time of the assessment and of the specific areas referenced.

Preliminary Site Assessment Report NCDOT Project I-5878, WBS Element 53078.1.1
Parcel 87-SAK's Thrift Avenue
Dunn, Harnett County, North Carolina
S&ME Project No. 4305-19-161

Closing

S&ME appreciates the opportunity to provide these services to you. If you have any questions or comments regarding this report, please contact us at your convenience.

Sincerely,


S&ME, Inc.

—Docusigned by:

Damie Honeyeutt

40890EAEC25F488...

Jamie T Honeycutt Environmental Professional <u>jhoneycutt@smeinc.com</u>

Thomas P. Raymond, P.E., P.M.P. Senior Consultant traymond@smeinc.com

Attachments:

Table 1: Summary of Soil Sampling Results

Table 2: Summary of Groundwater Sampling Results

Figure 1: Vicinity Map

Figure 2: Site Map

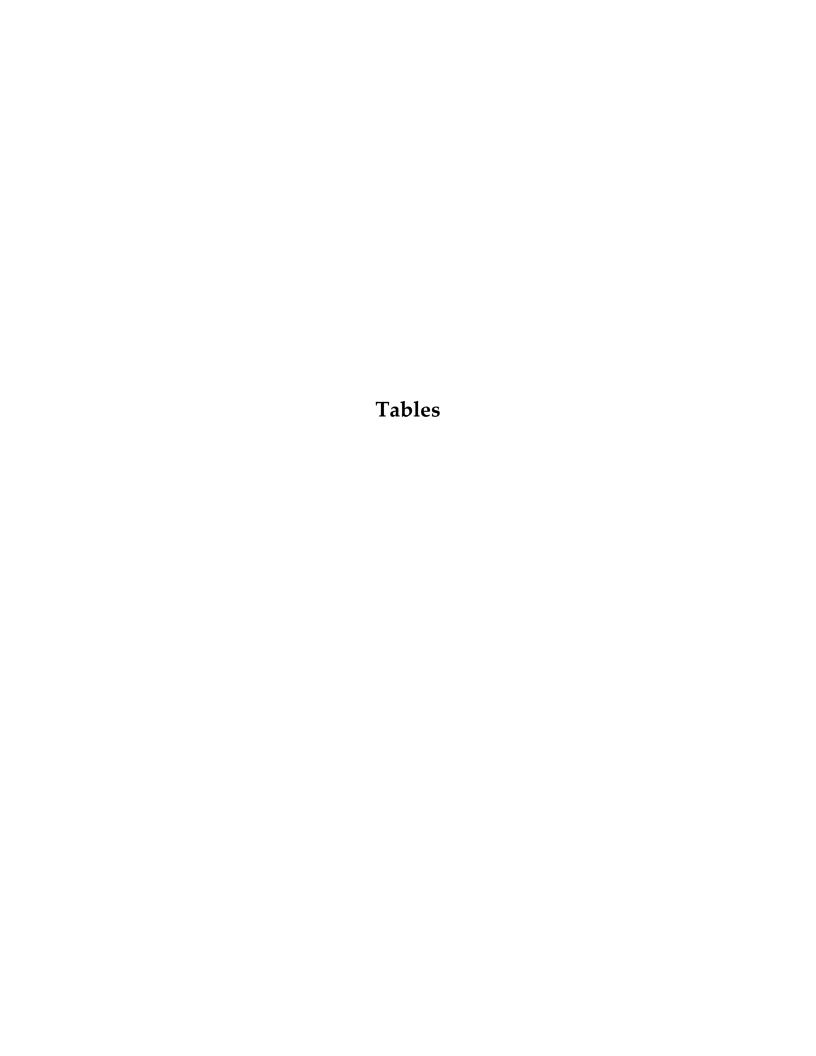
Figure 3: Soil and Groundwater Constituent Map

Figure 4: TDEM Path Location Plan

Figure 5: TDEM Data Plot A Figure 6: TDEM Data Plot B

Figure 7: Geophysical Anomaly Location Plan **Figure 8:** Example GPR Data – Lines 2 and 3

Appendix I: NCDEQ File Review


Appendix II Photographs **Appendix III:** Boring Logs

Docusigned by:

Midual Pfaifer

861E52DDEFAF4C7...

Michael W. Pfeifer Senior Project Manager mpfeifer@smeinc.com

8

TABLE 1 SUMMARY OF SOIL SAMPLING RESULTS NCDOT Project I-5878

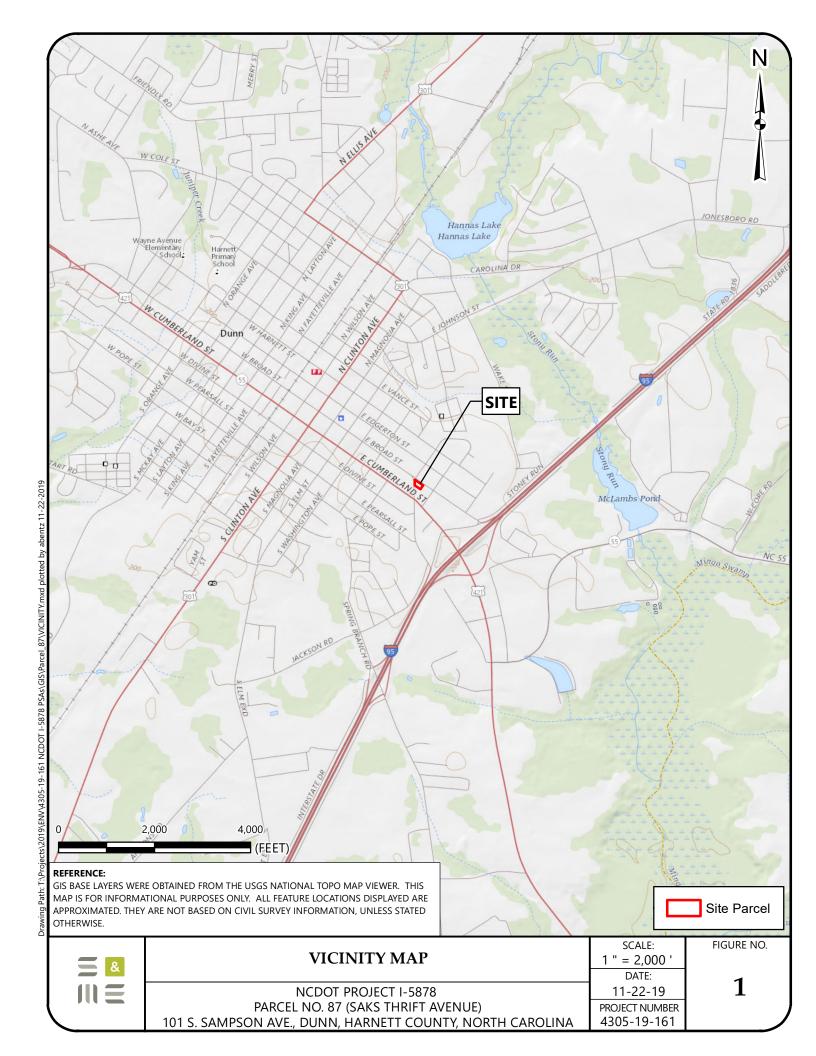
Parcel 87 - (SAK's Thrift Avenue) 101 South Sampson Avenue Dunn, Harnett County, North Carolina S&ME Project No. 4305-19-161

Aı	nalytical Metho	d→	Total Petroleum Hydrocarbons (TPH) Gasoli Range Organics (GRO) and Diesel Range Organics (DRO) by Ultraviolet Fluorescend (UVF) Spectrometry				
Sample ID	Date	Contaminant of Concern→ Sample Depth (ftbgs)	TPH-GRO	TPH-DRO			
B-1	10/30/2019	4 to 6	3.2	6.4			
B-2	10/30/2019	4 to 6	2.9	4.5			
B-3	10/30/2019	4 to 6	4.3	1.5			
No	orth Carolina T	PH Action Levels	50	100			

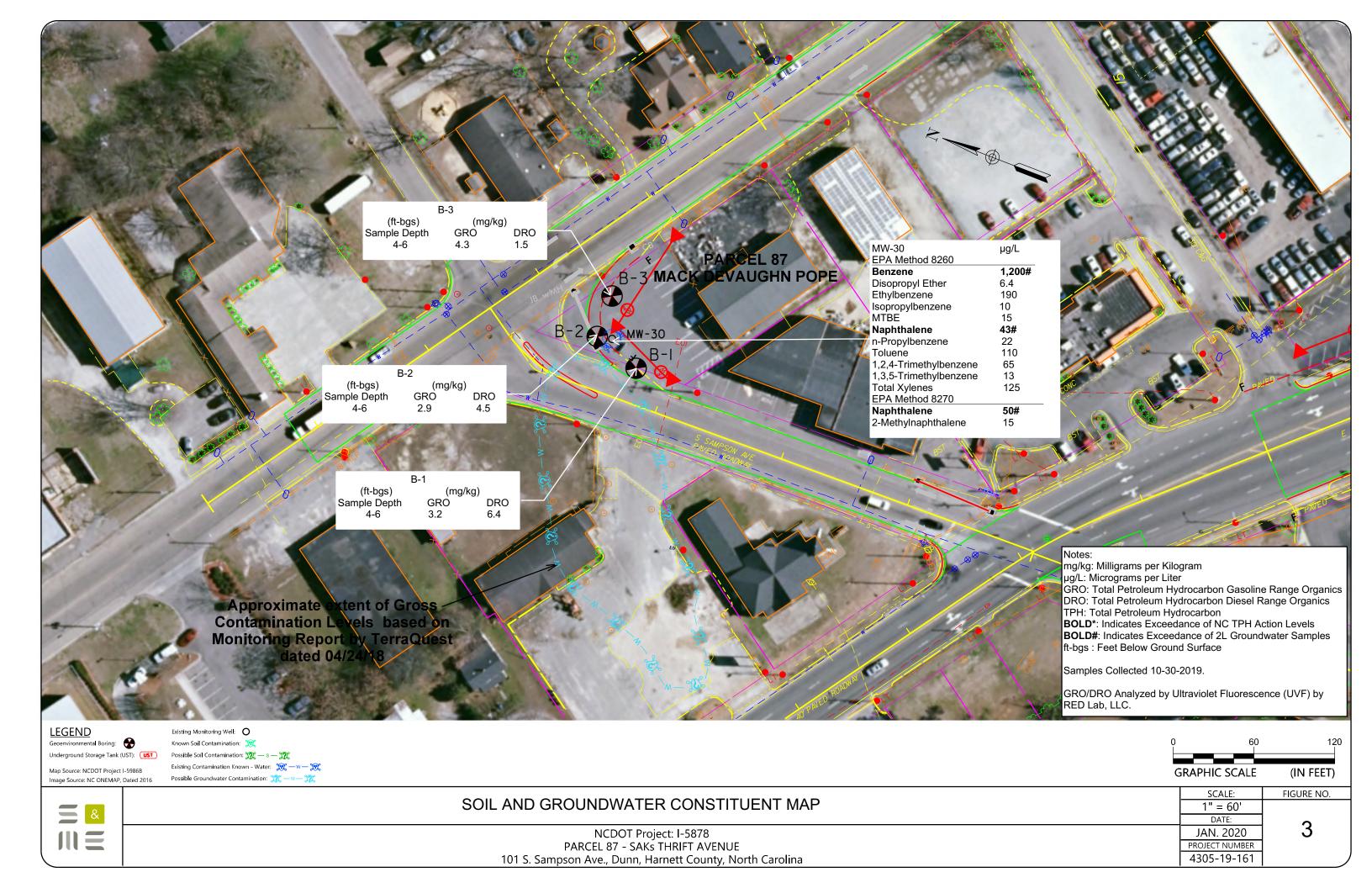
Notes:

- 1. UVF analysis performed by RED Lab, LLC
- 2. Concentrations are reported in milligrams per kilogram (mg/Kg).
- 3. ft.-bgs:- feet below ground surface.
- 4. Concentrations exceeding the laboratory's reporting limits are shown in **BOLD** fields.
- 5. Concentrations exceeding the North Carolina TPH Action Levels are shown in Shaded and **BOLD** fields.

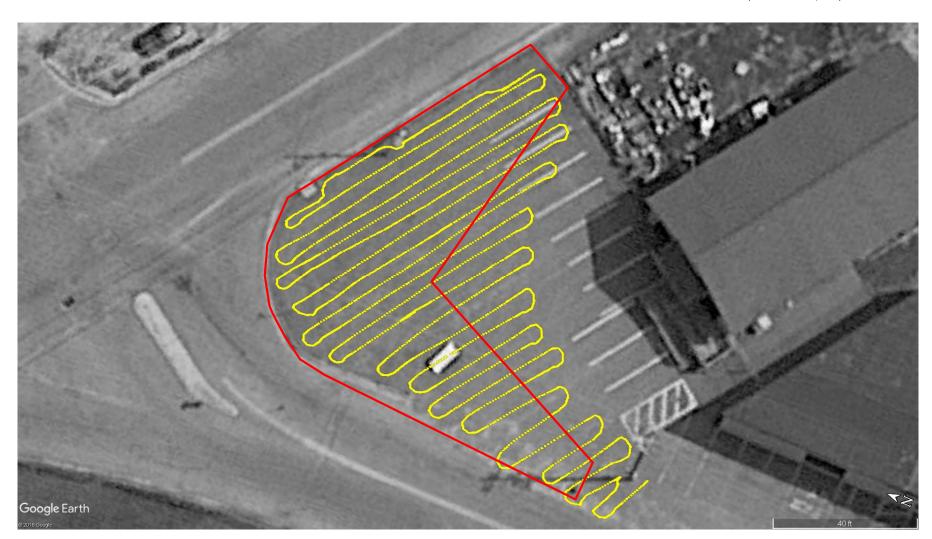
TABLE 2 SUMMARY OF GROUNDWATER SAMPLING RESULTS NCDOT Project I-5878


Parcel 87 - (SAK's Thrift Avenue) 101 South Sampson Avenue Dunn, Harnett County, North Carolina S&ME Project No. 4305-19-161

Analytical l	Method→			Volati	ile Orga	nic Com	pound	s by EP	A Method	8260			Compound	Aromatic s (PAHs) by hod 8270
Sample ID	Contaminant of Concern→	Benzene	Diisopropyl Ether	Ethylbenzene	Isopropylbenzene	МТВЕ	Naphthalene	n-Propylbenzene	Toluene	1,2,4- Trimethylbenzene	1,3,5- Trimethylbenzene	Total Xylenes	Naphthalene	2-Methylnaphthalene
MW-30	10/30/2019	1,200	6.4 J	190	10 J	15 J	43	22	110	65	13 J	125	50	15
2L S	Standard (µg/L)	1	70	600	70	20	6	70	600	400	400	500	6	30
	GCL (µg/L)	5,000	70,000	84,500	25,000	20,000	6,000	30,000	260,000	28,500	25,000	85,500	6,000	12,500


Notes:

- 1. Analytes that are not shown for the method were not detected.
- 2. Concentrations are reported in micrograms per liter (µg/L).
- 3. 2L Standard: North Carolina Groundwater Quality Standards: 15A NCAC 2L.0202
- 4. Concentrations exceeding the laboratory's reporting limits are shown in **BOLD** fields.
- 5. Concentrations exceeding the 2L Standards are shown in Shaded and BOLD fields.
- 6. GCL: Gross Contamination Level.
- 7. J: Estimated concentration detected below the reporting limit.



GOOGLE EARTH PRO AERIAL PHOTOGRAPH (DATED MARCH 4, 2018)

TDEM PATH LOCATION PLAN

NCDOT PROJECT: 1-5878 PARCEL #87 – (SAKS THRIFT AVENUE) 101 S. SAMPSON AVENUE, DUNN, HARNETT COUNTY, NORTH CAROLINA

SCALE: AS SHOWN

DATE: 1/7/2020

PROJECT NUMBER 4305-19-161

FIGURE NO.

4

LEGEND

Approximate TDEM Path

Approximate Requested Survey Area

REFERENCE:GOOGLE EARTH PRO AERIAL PHOTOGRAPH (DATED MARCH 4, 2018)

TDEM DATA PLOT A

NCDOT PROJECT: I-5878
PARCEL #87 – (SAKS THRIFT AVENUE)
101 S. SAMPSON AVENUE, DUNN, HARNETT COUNTY, NORTH CAROLINA

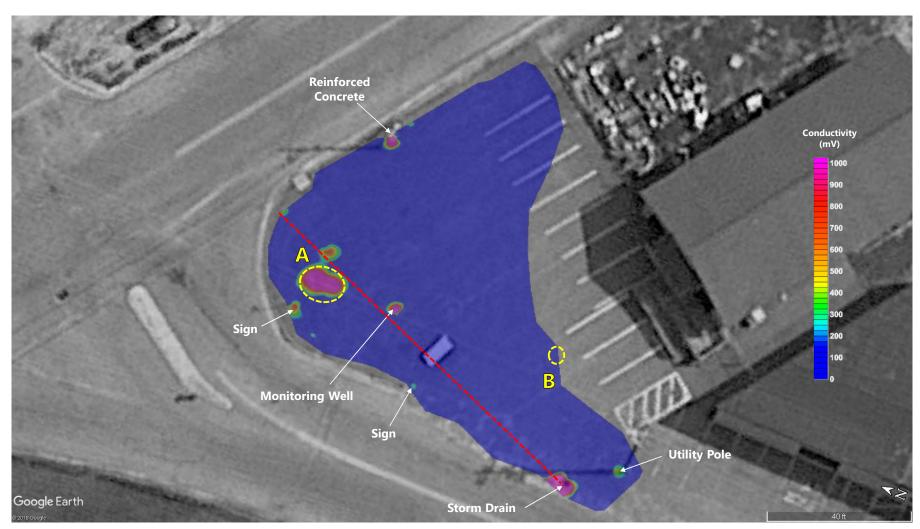
SCALE: AS SHOWN DATE:

1/7/2020 PROJECT NUMBER

4305-19-161

FIGURE NO.

5


REFERENCE:

GOOGLE EARTH PRO AERIAL PHOTOGRAPH (DATED MARCH 4, 2018)

NCDOT PROJECT: 1-5878 PARCEL #87 – (SAKS THRIFT AVENUE) 101 S. SAMPSON AVENUE, DUNN, HARNETT COUNTY, NORTH CAROLINA

TDEM DATA PLOT B

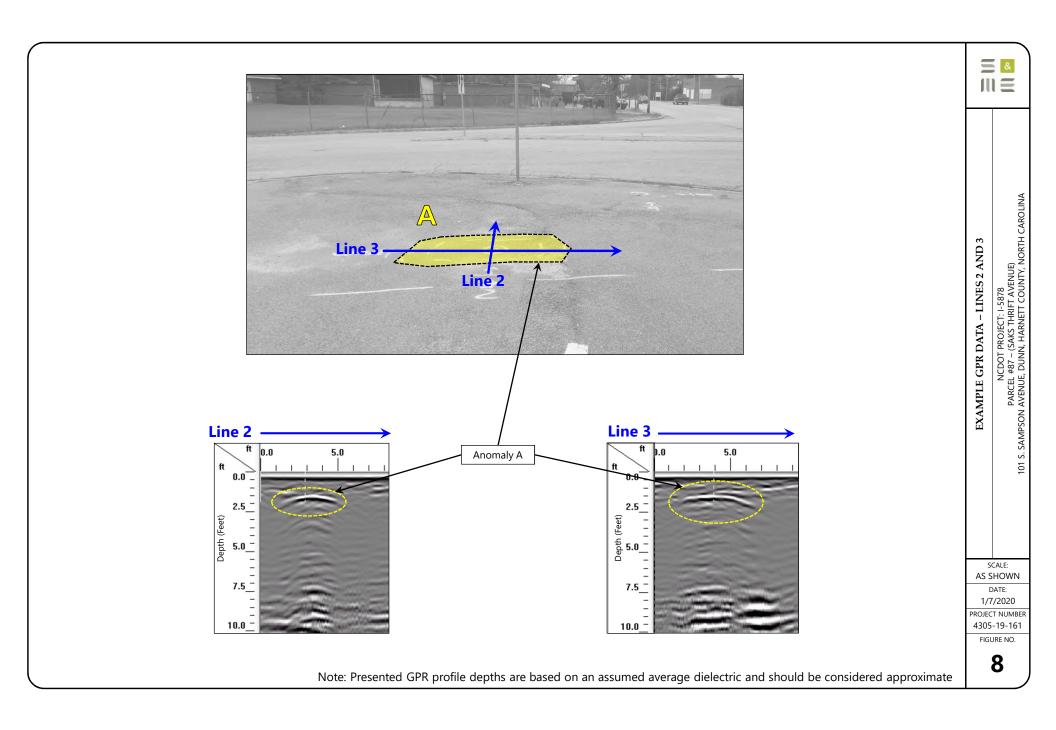
LEGEND

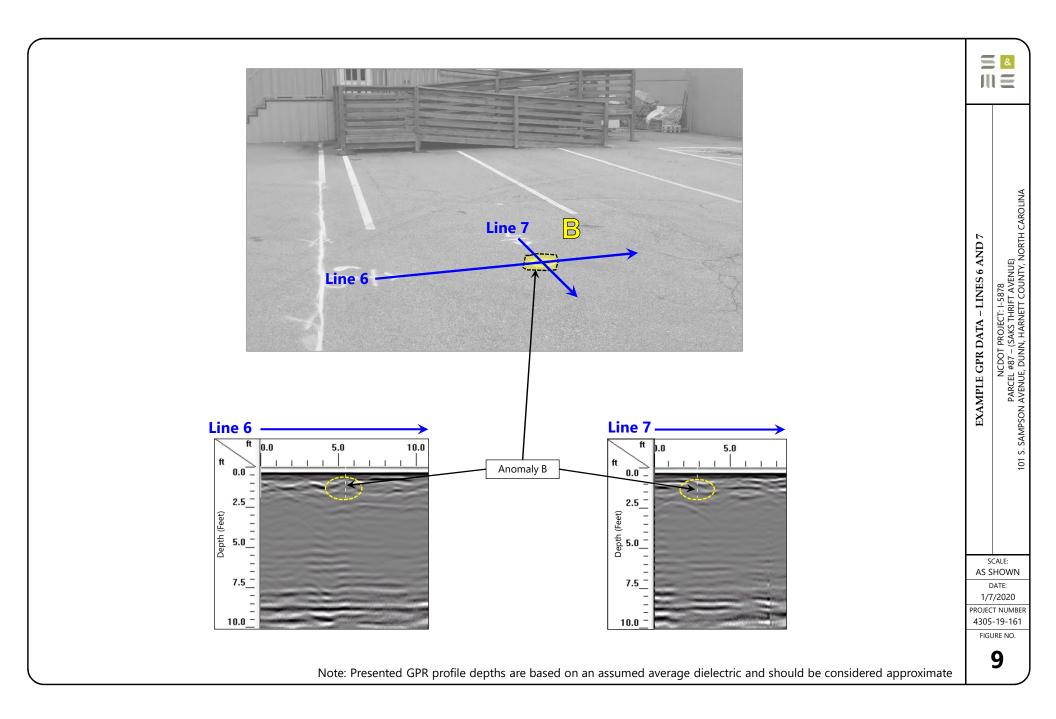
 \bigcirc

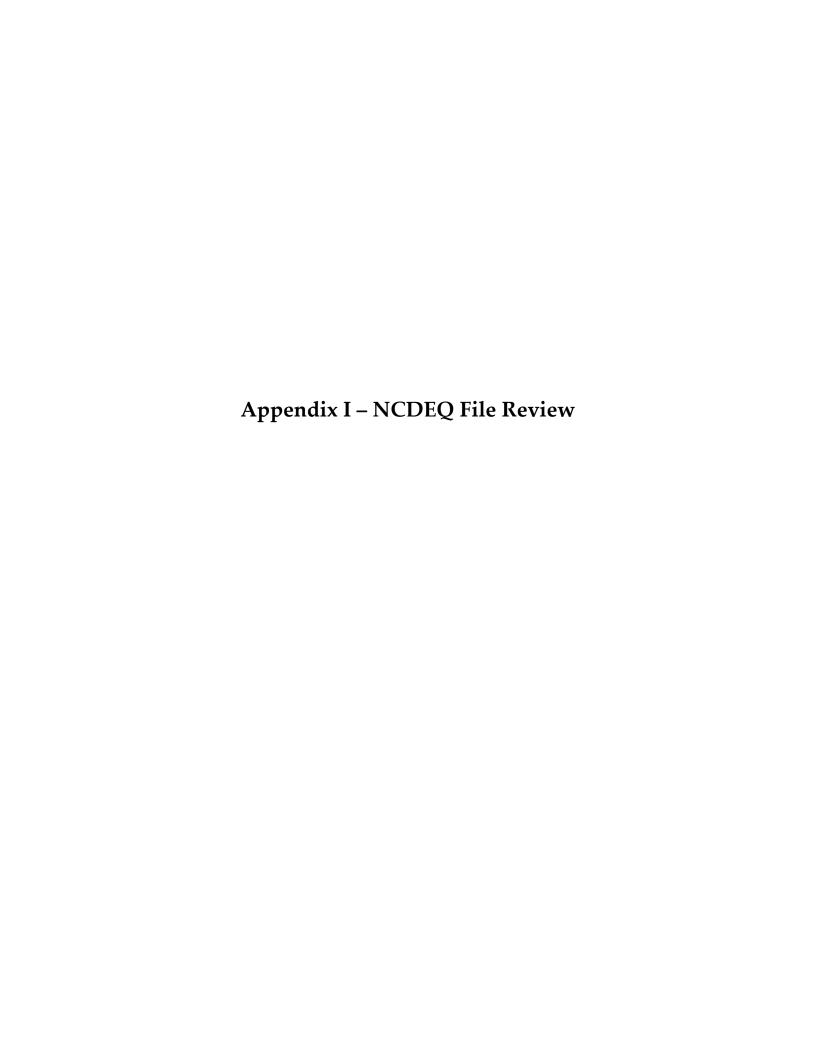
Approximate Location of Geophysical Anomaly

--- Approximate Location of Possible Utility

SCALE: AS SHOWN DATE:


1/7/2020


PROJECT NUMBER 4305-19-161


FIGURE NO.

4305-19-161

MONITORING REPORT

(April 24, 2018 event)

HASTY MART No. 38 815 E. CUMBERLAND STREET DUNN, HARNETT COUNTY, NORTH CAROLINA, 28334

Latitude: 35.30274° N Longitude: 78.60203° W

Facility ID No. 0-009708

NCDWM-UST Incident No. 29119

NCDWM-UST Risk Ranking: INTERMEDIATE (170D)

Release Information:

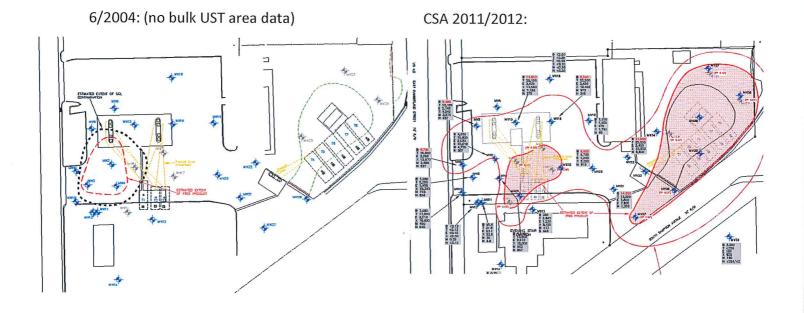
Date Release Discovered: 3/18/04 Estimated Release Quantity: Unknown

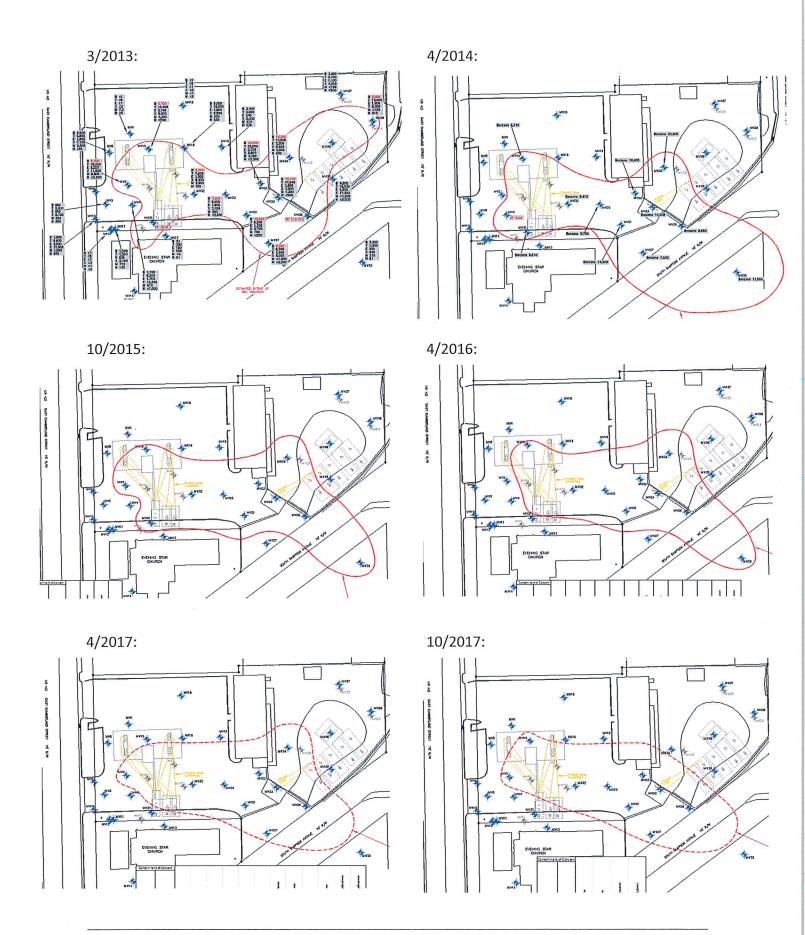
Release Cause/Source: Leaking dispenser(s) and/or product line coupling(s)
UST Capacities: (1) 10,000-gallon gasoline (2) 8,000-gallon gasoline (1) 20,000-gallon kerosene
(1) 20,000-gallon diesel (3) 20,000-gallon gasoline

UST Owner/Responsible Party/Property Owner:

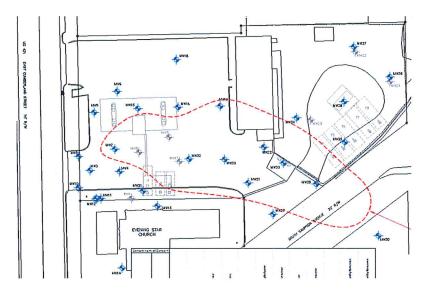
Wayne Oil Company, Inc. 1301 Wayne Memorial Drive Goldsboro, NC 27534

Terraquest Project No. 01404


May 22, 2018


The groundwater analytical data is summarized in Table 6 and on Figure 7. Historical groundwater analytical data is included in Appendix C that also contains concentration versus time graphs to show trending. The full analytical report is provided in Appendix D.

6.0 SOURCE ZONE DEPLETION STATUS


This release incident exists without corrective action goals at the current time. The presence of free product and GCL violations cause the Intermediate Risk ranking of the site. Following emergency response to the release incident where free product and gasoline vapors were present in the sanitary sewer, free product was recovered through several MMPE and AFVR events. Ultimately, the UST system was removed and a large volume of contaminated soil was removed including parts of the smear zone. The presence of storm sewer piping prevented the excavation of all contaminated soil. Following monitoring results that showed persistent free product and groundwater contamination, an air sparge pilot test was performed in April 2017 with favorable results.

The presence of free product and the groundwater contaminant plume have changed as shown:

4/2018:

7.0 CONCLUSIONS AND RECOMMENDATIONS

Terraquest personnel have recently conducted a groundwater sampling event at the Hasty Mart #38 facility. Free product and GCL violations remain at the. Terraquest has had favorable results with an air sparge pilot test and recommends installing several sparge wells and operating a sparge system for at least six months to a year to reduce core contaminant concentrations. Terraquest recommends aggressive treatment of this plume to ensure human health and the environment are protected. Groundwater monitoring should continue.

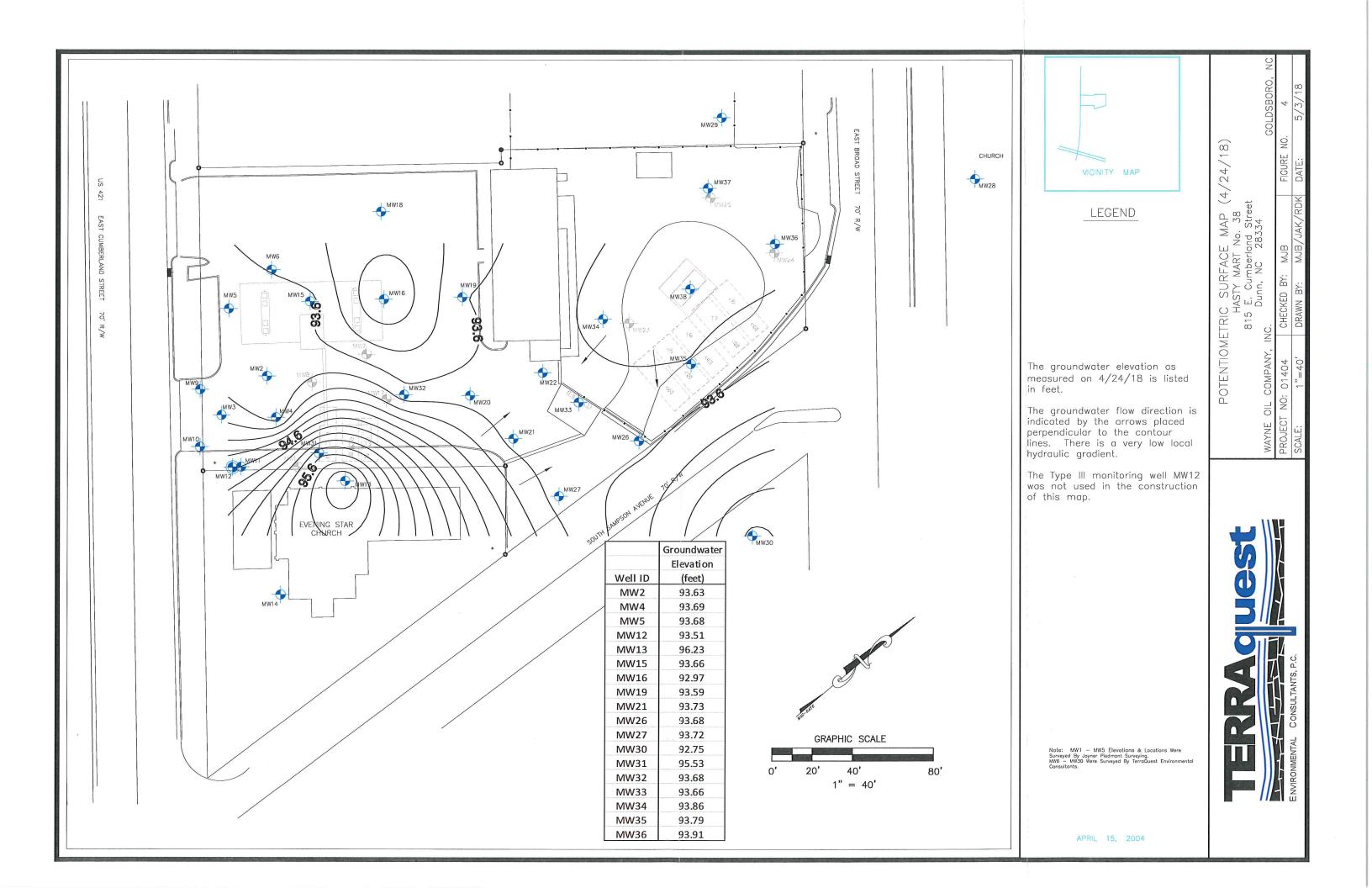
8.0 LIMITATIONS

This report is limited to the investigation of petroleum-type compounds, and does not imply that other unforeseen adverse impacts to the environment are not present at the facility. In addition, subsurface heterogeneities not identified during the current study may influence the migration of groundwater or contaminants in unpredicted ways. The limited amount of sampling and testing conducted during this study cannot practically reveal all subsurface heterogeneities. Furthermore, the subsurface conditions, particularly groundwater flow, elevations, and water quality may very through time. The opinions and conclusions arrived at in this report are in

Table 5					MONITORING WELL CO	NSTRUCTION INFORM	ATION				
Date: 4/24/18					Incident Name: Hasty M	art No. 38 Incident No	. 29119				Facility ID No: 0-009708
			Well	Casing			Top of Casing	Depth to Water	Free Product	Groundwater	
		Date Water	De	oth	Screened Interval	Bottom of Well	Elevation	from Top of Casing	Thickness	Elevation	
Well ID	Date Installed	Level Measured	(feet	BGS)	(x to y feet BGS)	(feet BGS)	(feet)	(feet)	(feet)	(feet)	Comments
MW2	3/20/04	4/24/18		3	3 - 13	13	99.31	5.68	0	93.63	2"-diameter Type II monitoring well
MW3	3/25/04	-		2	2 - 12	12	99.36	-	-	-	2"-diameter Type II monitoring well
MW4	3/25/04	4/24/18		2	2 - 12	12	99,55	5.86	0	93.69	2"-diameter Type II monitoring well
MW5	3/25/04	4/24/18		2	2 - 12	12	99.28	5.60	0	93.68	2"-diameter Type II monitoring well
MW6	5/10/04	-			3 - 12	12	99.37	-	-	-	2"-diameter Type II monitoring well
MW9	5/10/04	-		3	3 - 12	12	99.12	•	-	-	2"-diameter Type II monitoring well
MW10	5/10/04			}	3 - 12	12	99.42	-	-	-	2"-diameter Type II monitoring well
MW11	5/10/04	-		3	3 - 12	12	100.11	-	-	-	2"-diameter Type II monitoring well
MW12	6/1 - 6/3/04	4/24/18	OC: 20	IC: 30	30 - 35	35	100.08	6.57	0	93.51	2"-diameter Type III monitoring well
MW13	5/6/10	4/24/18		2	2 - 12	12	99.55	3.32	0	96.23	2"-diameter Type II monitoring well
MW14	5/6/10	_		2	2 - 12	12	98.85	-	-		2"-diameter Type II monitoring well
MW15	7/11/11	4/24/18		3	3 - 12	12	99.40	5.74	0	93.66	2"-diameter Type II monitoring well
MW16	7/11/11	4/24/18		3	3 - 12	12	99.91	6.94	0	92.97	2"-diameter Type II monitoring well
MW18	10/12/11	-		3	3-15	15	99.91			,	2"-diameter Type II monitoring well
MW19	10/12/11	4/24/18		3	3-15	15	100.57	6.98	0	93.59	2"-diameter Type II monitoring well
MW20	10/12/11	-		3	3-15	15	100.29			4	2"-diameter Type II monitoring well
MW21	1/17/12	4/24/18	:	3	3-15	15	99.97	6.24	0	93.73	2"-diameter Type II monitoring well
MW22	1/17/12	-		3	3-15	15	100.04	-	1	_	2"-diameter Type II monitoring well
MW26	4/18/12	4/24/18		3	3-15	15	98.73	5.05	0	93.68	2"-diameter Type II monitoring well
MW27	4/18/12	4/24/18		<u> </u>	3-15	15	98.77	5.05	0	93.72	2"-diameter Type II monitoring well
MW28	10/4/12	-			3-15	15	99.40	*		-	2"-diameter Type II monitoring well
MW29	10/4/12	-		B	3-15	15	99.48	-	-	-	2"-diameter Type II monitoring well
MW30	10/4/12	4/24/18			3-15	15	99.38	6.63	0	92.75	2"-diameter Type II monitoring well
MW31	3/20/13	4/24/18			3-15	15	100.03	4.50	0	95.53	2"-diameter Type II monitoring well
MW32	3/20/13	4/24/18			3-15	15	99.95	6.27	0	93.68	2"-diameter Type II monitoring well
MW33	3/20/13	4/24/18			3-15	15	99.72	6.15	0.13	93.66	2"-diameter Type II monitoring well
MW34	3/20/13	4/24/18			3-15	15	99.93	6.07	0	93.86	2"-diameter Type II monitoring well
MW35	3/20/13	4/24/18			3-15	15	99.69	5.90	0	93.79	2"-diameter Type II monitoring well
MW36	3/20/13	4/24/18			3-15	15	99.53	5.62	0	93.91	2"-diameter Type II monitoring well
MW37	3/20/13	-			3-15	15	99.87	-	_	-	2"-diameter Type II monitoring well
MW38	8/6/13	-			3-16	15	99.68	-	-	-	2"-diameter Type II monitoring well
					AB	ANDONED MONITORII	NG WELLS				The state of the s
MW1	3/20/04	-			8 - 18	18	100.00	**	-	-	2"-diameter Type II monitoring well
MW7	5/10/04	-			3 - 12	12	99.74	-	-	-	2"-diameter Type II monitoring well
MW8	5/10/04	-			3 - 12	12	99.67	-	-	-	2"-diameter Type II monitoring well
MW17	7/11/11	_			3 - 12	12	99.82	-	-	-	2"-diameter Type II monitoring well
MW23	4/18/12	-			3-15	15	99.92	-	-	-	2"-diameter Type II monitoring well
MW24	4/18/12	•			3-15	15	99.52			-	2"-diameter Type II monitoring well
MW25	4/18/12	•			3-15	15	99.82	-		-	2"-diameter Type II monitoring well

Notes:

^{1.} All units in feet.


^{2.} BGS = Below Ground Surface

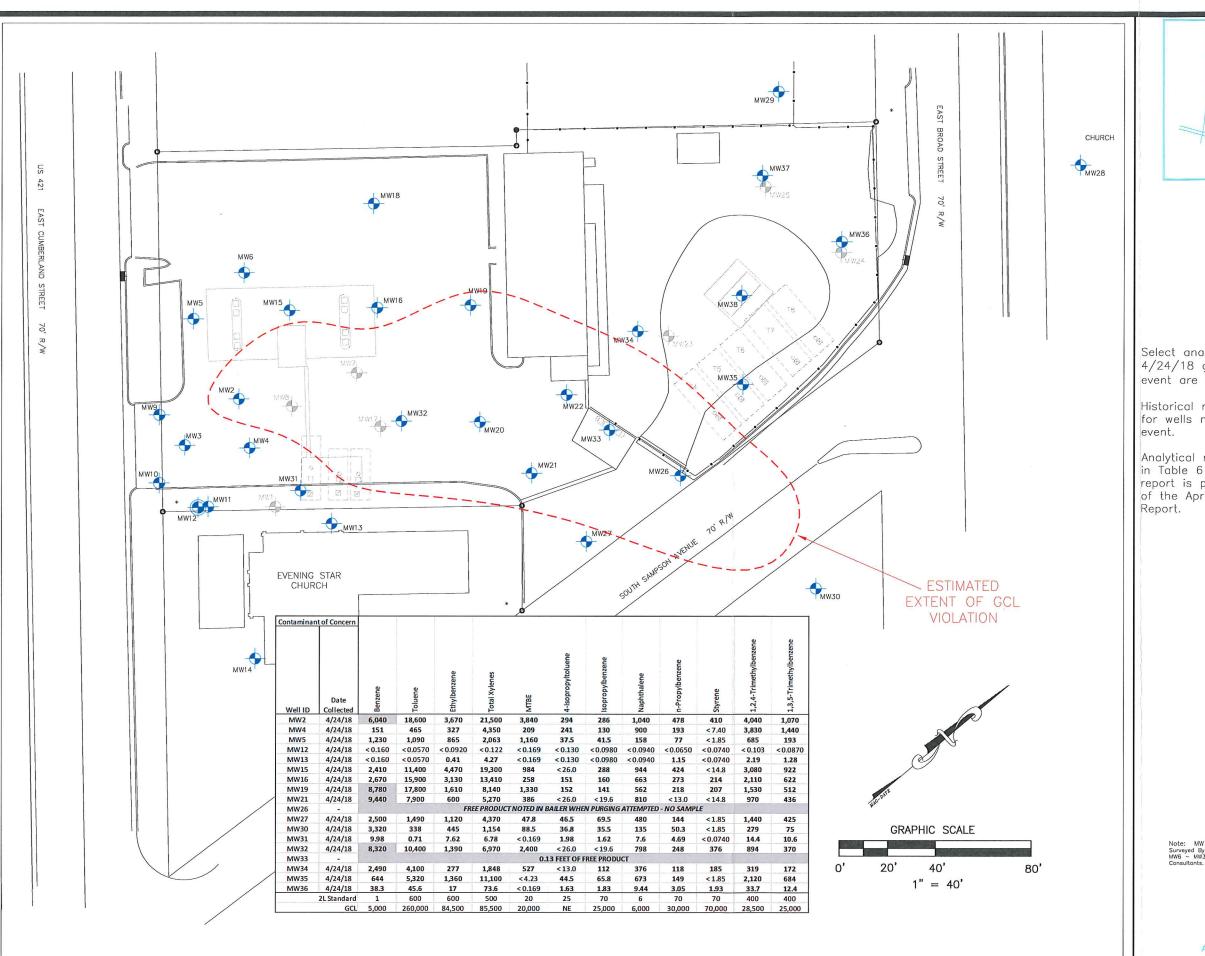

^{3.} Groundwater elevations corrected for the presence of free product using (top of casing - depth to water) + (product thickness x 0.729).

Table 6 Date: 5/21/1	.8						ARY OF GRO Name: Hasty									Facility ID N	No: 0-009708
	al Method	62008	62008	62008	62008	62008	62008	62008	62008	62008	62008	62008	62008	62008	62008	62008	6200B
Contamina	nt of Concern																
Well ID	Date Collected	Benzene	Toluene	Ethylbenzene	Total Xylenes	MTBE	IPE	4-isopropyitoluene	Isopropylbenzene	Naphthalene	n-Propylbenzene	Styrene	1,2,4-Trimethylbenzene	1,3,5-Trimethylbenzene	Acetone	Chloroform	1,2-Dichloroethane
MW2	4/24/18	6,040	18,600	3,670	21,500	3,840	308	294	286	1,040	478	410	4,040	1,070	268	< 32.0	< 18.0
MW4	4/24/18	151	465	327	4,350	209	< 9.20	241	130	900	193	< 7.40	3,830	1,440	< 35.0	< 16.0	< 9.00
MW5	4/24/18	1,230	1,090	865	2,063	1,160	55.8	37.5	41.5	158	77	< 1.85	685	193	< 8.75	< 4.00	< 2.25
MW12	4/24/18	< 0.160	< 0.0570	< 0.0920	< 0.122	< 0.169	< 0.0920	< 0.130	< 0.0980	< 0.0940	< 0.0650	< 0.0740	< 0.103	< 0.0870	< 0.350	< 0.160	< 0.0900
MW13	4/24/18	< 0.160	< 0.0570	0.41	4.27	< 0.169	< 0.0920	< 0.130	< 0.0980	< 0.0940	1.15	< 0.0740	2.19	1.28	< 0.350	< 0.160	< 0.0900
MW15	4/24/18	2,410	11,400	4,470	19,300	984	< 18.4	< 26.0	288	944	424	< 14.8	3,080	922	< 70.0	< 32.0	< 18.0
MW16	4/24/18	2,670	15,900	3,130	13,410	258	< 9.20	151	160	663	273	214	2,110	622	< 35.0	34	< 9.00
MW19	4/24/18	8,780	17,800	1,610	8,140	1,330	< 9.20	152	141	562	218	207	1,530	512	< 35.0	< 16.0	< 9.00
MW21	4/24/18	9,440	7,900	600	5,270	386	< 18.4	< 26.0	< 19.6	810	< 13.0	< 14.8	970	436	< 70.0	< 32.0	< 18.0
MW26	-					COLUMN CONTRACTOR DE LA CONTRACTOR DE CONTRA	AND THE RESIDENCE OF THE PARTY	Action to the income of the same and are the same of the same			CONTRACTOR	O - NO SAMP	Section of the sectio				
MW27	4/24/18	2,500	1,490	1,120	4,370	47.8	10.3	46.5	69.5	480	144	< 1.85	1,440	425	< 8.80	< 4.00	16.8
MW30	4/24/18	3,320	338	445	1,154	88.5	27.5	36.8	35.5	135	50.3	< 1.85	279	75	< 8.75	< 4.00	< 2.25
MW31	4/24/18	9.98	0.71	7.62	6.78	< 0.169	< 0.0920	1.98	1.62	7.6	4.69	< 0.0740	14.4	10.6	< 0.352	< 0.160	< 0.0900
MW32	4/24/18	8,320	10,400	1,390	6,970	2,400	< 18.4	< 26.0	< 19.6	798	248	376	894	370	< 70.0	< 32.0	< 18.0
MW33	-							AND DESCRIPTION OF STREET	13 FEET OF I	99-11-11-11-11-11-11-11-11-11-11-11-11-1					and the second		
MW34	4/24/18	2,490	4,100	277	1,848	527	< 9.20	< 13.0	112	376	118	185	319	172	< 35.0	< 16.0	< 9.00
MW35	4/24/18	644	5,320	1,360	11,100	< 4.23	< 2.30	44.5	65.8	673	149	< 1.85	2,120	684	< 8.75	< 4.00	< 2.25
MW36	4/24/18	38.3	45.6	17	73.6	< 0.169	< 0.0920	1.63	1.83	9.44	3.05	1.93	33.7	12.4	< 0.352	< 0.160	< 0.0900
	2L Standard	1	600	600	500	20	70	25	70	6	70	70	400	400	6,000	70	0.4
	GCL	5,000	260,000	84,500	85,500	20,000	70,000	NE	25,000	6,000	30,000	70,000	28,500	25,000	6,000,000	70,000	400

Notes:

^{1.} All results in ug/l = parts per billion (ppb)
2. Bold denotes a detection
3. Shading denotes a GCL violation
4. < - denotes less than sample detection limit.

LEGEND

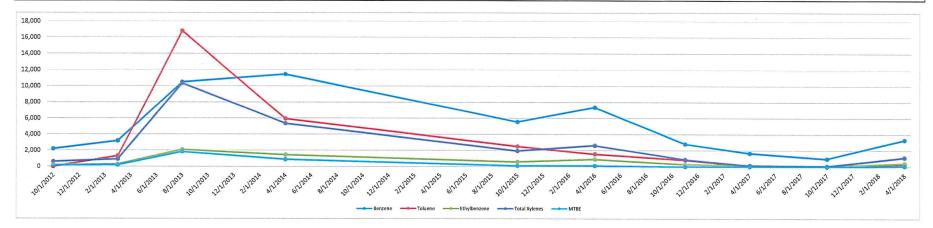
Select analytical results for the 4/24/18 groundwater sampling event are provided in ug/L.

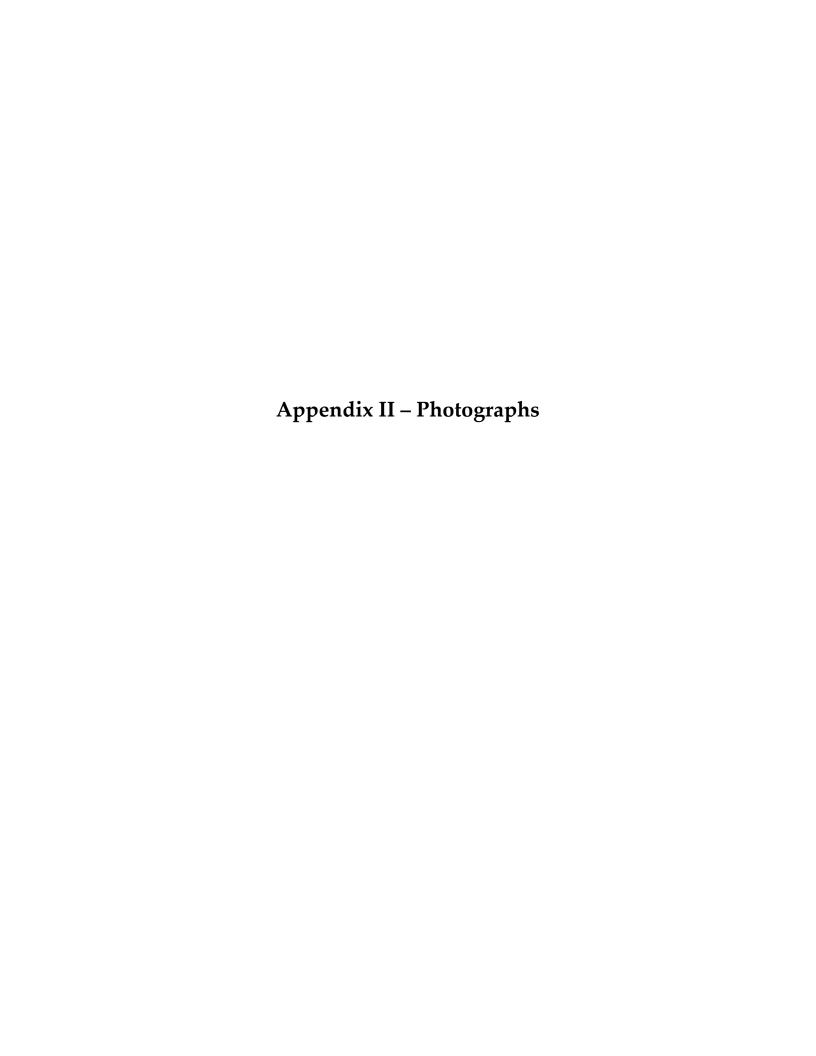
Historical results were considered for wells not sampled during this event.

Analytical results are summarized in Table 6 and the full analytical report is provided in Appendix D of the April 2018 Monitoring Report.

GROUNDWATER ANALYTICAL RESULTS (4/24/18)
HASTY MART No. 38
815 E. Cumberland Street
Dunn, NC 28334

TERRAC UEST SONMENTAL CONSULTANTS, P.C.

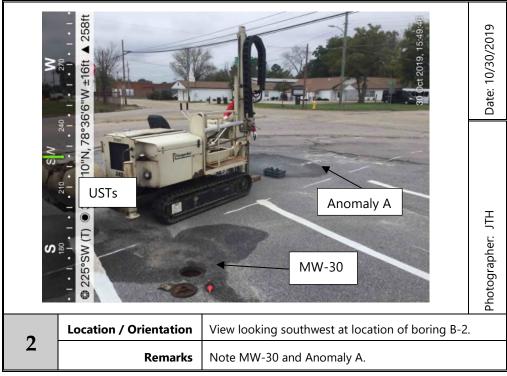

Note: MW1 - MW5 Elevations & Locations Were Surveyed By Joyner Piedmont Surveying. MW6 - MW30 Were Surveyed By TerroQuest Environmental Consultants.


APRIL 15, 2004

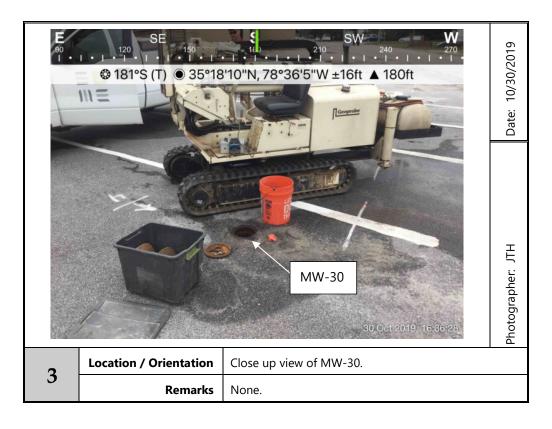
								Cor			nalytical Data H No. 38, Dunn, N		W30				ij.			-		
											Oil Company											
Date	U.S. EPA Method	Benzene	Toluene	Ethylbenzene	Total Xylenes	MTBE	IPE	sec-Butylbenzene	4-Isopropyltoluene	Isopropylbenzene	Naphthalene	n-Propylbenzene	Styrene	1,2,4-Trimethylbenzene	1,3,5-Trimethylbenzene	Acetone	CS-C8 Aliphatics	C9-C18 Aliphatics	C19-C36 Aromatics	C9-C22 Aromatics	read	EDB
10/4/12	6200B	2,200	<250	190	620	180	73	141	-	<50	42	-		130	<50	<	7,700	1,800	<100	550	6.7	<0.010
3/25/13	6200B	3,200	1,300	300	930	210	59	-	-	11	81	-	-	190	45	<	-		-	-	-	-
8/13/13	6200B 6200B	10,500	16,800	2,120	10,390	1,860	652	-	-	50.7	494	-	-	2,170	258	<	-	-	-	-	-	-
4/8/14 10/19/15	6200B	11,500 5.560	5,940 2,500	1,470 610	5,380 1,960	923 129	297 50	6.9 <1.20	5.9 <1.78	56.2 24.6	467 197	155 64.2	19.3	1,220	302 98.6	<	-	-	-	-	-	-
4/21/16	6200B	7,360	1,570	931	2,617	130	47	<1.84	<1.78	36.4	268	98.2	<1.48 <1.48	417 673	159	<				0.5	-	
11/2/16	6200B	2,820	842	313	897	32	<9.2	<9.2	<8.9	<9.8	271	31	<7.4	196	49	<	-	-			-	-
4/18/17	6200B	1,680	96	201	158	33	17	<	<4.45	<4.90	146	23	<3.70	59	8.5	122	-	-	-	-	-	-
10/30/17	6200B	994	20	100	81	<4.22	<2.30	<	<	37.5	101	10.2	<1.85	42.5	34	<	-	-	9	-	-	15
4/24/18	6200B	3,320	338	445	1,154	88.5	27.5	<	36.8	35.5	135	50.3	< 1.85	279	75	< 8.75	-	12	-	-	-	
	2L Standard GCL	1 5,000	600 260,000	600 84,500	500 85,500	20 20,000	70 70,000	70 8,500	25 NE	70 25,000	6 6.000	70 30,000	70 70,000	400 28,500	400 25,000	6,000 6,000,000	400 NE	700 NE	10,000 NE	200 NE	15 15.000	0.02 50

Notes:

- 1: All results in parts per billion (ppb) except as noted.
- 2: Bold denotes a detected concentration; Shading denotes a GCL violation.
- 3: Analytical reports contain a complete list of analytes and results.
- 4: <= less than the specified sample detection limit.
- 5. Naphthalene was tested by methods 6200B and 625BNA.
- 6. "NE" Not established



Preliminary Site Assessment Report
NCDOT Project I-5878, WBS Element 53078.1.1
Parcel 87-SAK's Thrift Avenue
Dunn, Harnett County, North Carolina
S&ME Project No. 4305-19-161



January 9, 2020 i

Preliminary Site Assessment Report NCDOT Project I-5878, WBS Element 53078.1.1 Parcel 87-SAK's Thrift Avenue Dunn, Harnett County, North Carolina S&ME Project No. 4305-19-161

January 9, 2020 ii

DATE DRILLED: Wednesday, October 30, 2019 BORING DEPTH (FT): 8 DRILL RIG: Geoprobe 54DT WATER LEVEL: DRILLER: Troxler Geologic, Inc. Not Applicable HAMMER TYPE: Not Applicable LOGGED BY: J. Honeycutt SAMPLING METHOD: Macro-Core Sampler DRILLING METHOD: Macro-Core Sampler (3-in. OD) BORING DEPTH (FT): 8 WATER LEVEL: CAVE-IN DEPTH: Not Applicable LOGGED BY: J. Honeycutt NORTHING: DRILLING METHOD: Macro-Core Sampler (3-in. OD) EASTING:	PROJECT	:	NCDOT I-5878 Parcel 87-101 South Sampson Avenue (SAK's Thrift				BORIN	NG LOG:	B-1			
MATELIDAE MATE			S&ME Project No. 4305-19-161									
Toute Genocyte (No. CAMPATINE (No.		LED:			8							
MAMMER NPE Not Applicable Not Time N												
Authorities Material Description Materi	DRILLER:		Troxler Geologic, Inc.	CAVE-IN DEPTH:	Not Appli	icable						
Description	HAMMER T	YPE:	Not Applicable	LOGGED BY:	J. Honeyo	utt						
19 19 19 19 19 19 19 19	SAMPLING	METHOD:	Macro-Core Sampler	NORTHING:								
Asphalt Cravel. Sandy Clay, Gray, Tan, Orange. 5.6 No 6.2 No 6.2 No 6.2 No 6.5 Yes 1530 10 — 15 — 20 — 25 — 26 — 27 — 28 — 29 — 20 —	DRILLING N	METHOD:	Macro-Core Sampler (3-in. OD)	EASTING:								
Sandy Clay, Cray, Tan, Orange. 5.6 No 6.2 No 6.2 No 5.5 Yes 1530 8 Soring Terminated at 8 Pt-8GS 15 — — — — — — — — — — — — — — — — — — —	DEPTH (feet)	GRAPHIC			WATER LEVEL	SAMPLE	PID READING (PPM)	LABORATORY ANALYSES	Sample Time / 1st 6in	2nd 6in	3rd 6in	N VALUE
5 —			Asphalt, Gravel,			24						
5.5 Yes 1530 Soring Terminated at 8 Ft-BGS			Sandy Clay, Gray, Tan, Orange,			l						
10 — 15 — 20 — 25 — 25 — 25 — 26 — 26 — 27 — 27 — 28 — 29 — 29 — 29 — 29 — 29 — 29 — 29	5 —					H	5.5	Yes	1530			
20 — 25 — 25 — 26 — 26 — 26 — 27 — 27 — 28 — 28 — 29 — 29 — 29 — 29 — 29 — 29			Boring Terminated at 8 Ft-BGS									
20 — 25 — 25 — 26 — 26 — 26 — 27 — 27 — 28 — 28 — 29 — 29 — 29 — 29 — 29 — 29	10											
20 — 25 — 25 — 25 — 26 — 26 — 27 — 27 — 28 — 29 — 29 — 29 — 29 — 29 — 29 — 29	10 —											
20 — 25 — 25 — 25 — 26 — 26 — 27 — 27 — 28 — 29 — 29 — 29 — 29 — 29 — 29 — 29												
20 — 25 — 25 — 25 — 26 — 26 — 27 — 27 — 28 — 29 — 29 — 29 — 29 — 29 — 29 — 29												
20 — 25 — 25 — 25 — 26 — 26 — 27 — 27 — 28 — 29 — 29 — 29 — 29 — 29 — 29 — 29												
20 — 25 — 25 — 25 — 26 — 26 — 27 — 27 — 28 — 29 — 29 — 29 — 29 — 29 — 29 — 29												
20 — 25 — 25 — 25 — 26 — 26 — 27 — 27 — 28 — 29 — 29 — 29 — 29 — 29 — 29 — 29												
20 — 25 — 25 — 25 — 26 — 26 — 27 — 27 — 28 — 29 — 29 — 29 — 29 — 29 — 29 — 29	-											
20 — 25 — 25 — 25 — 26 — 26 — 27 — 27 — 28 — 29 — 29 — 29 — 29 — 29 — 29 — 29	15											
	15 —											
	20 —											
	'											
	-											
]										
	25 —											
30												
30	-	-										
30												
30	_											
	30 —]

PROJECT:		NCDOT I-5878									
		Parcel 87-101 South Sampson Avenue (SAK's S&ME Project No. 4305-1				BORIN	NG LOG	B-2			
DATE DRILLE	ED:	Wednesday, October 30, 2019	BORING DEPTH (FT):	8							
DRILL RIG:		Geoprobe 54DT	WATER LEVEL:								
DRILLER:		Troxler Geologic, Inc.	CAVE-IN DEPTH:	Not App	licable						
HAMMER TY	/PE:	Not Applicable	LOGGED BY:								
SAMPLING M		Macro-Core Sampler	NORTHING:	,							
DRILLING ME		Macro-Core Sampler (3-in. OD)	EASTING:								
1		macro core sumpler (5 mil 65)	27371146.			l					
DEPTH (feet)	GRAPHIC LOG	MATERIAL DESCRIPTION		WATER LEVEL	SAMPLE	PID READING (PPM)	LABORATORY ANALYSES	Sample Time / 1st 6in	2nd 6in	3rd 6in	N VALUE
	As Sa	sphalt, Gravel, andy Clay, Gray, Tan, Orange,				6.7	No				
5 —					ŧ	9.6	No				
	/// _C I	ayey Sand, Gray,			· ·	9.0	Yes	1545			
	Вс	oring Terminated at 8 Ft-BGS									
10 —											
15 —											
20 —											
25 —											
30 —					1						

PROJECT:	NCDOT I-5878 Parcel 87-101 South Sampson Avenue (SAK's Thrift Av	renue), Dunn, NC			BORIN	NG LOG:	B-3			
	S&ME Project No. 4305-19-161	T	_							
DATE DRILLED:	Wednesday, October 30, 2019	BORING DEPTH (FT):	8							
DRILL RIG:	Geoprobe 54DT	WATER LEVEL:								
DRILLER:	Troxler Geologic, Inc.	CAVE-IN DEPTH:								
HAMMER TYPE:	Not Applicable		J. Honeycı	utt						
SAMPLING METHOD:	Macro-Core Sampler	NORTHING:								
DRILLING METHOD:	Macro-Core Sampler (3-in. OD)	EASTING:								
DEPTH (feet) GRAPHIC LOG	MATERIAL DESCRIPTION		WATER LEVEL	SAMPLE	PID READING (PPM)	LABORATORY ANALYSES	Sample Time / 1st 6in	2nd 6in	3rd 6in	N VALUE
Asp	ohalt, Gravel, ndy Clay, Gray, Tan, Orange,		-							
Jan	idy Clay, Gray, Tan, Orange,			I	4.5 6.7	No No				
5 —				ł	8.6	Yes	1600			
Boi	ing Terminated at 8 Ft-BGS									
10 —										
15 —										
20 —										
25 —										
30										

Appendix IV – Laboratory Analytical Reports and Chain of Custody

Hydrocarbon Analysis Results

Client: S&ME

Address: 3201 SPRING FOREST RD

RALEIGH NC

Samples taken Samples extracted Wednesday, October 30, 2019 Wednesday, October 30, 2019

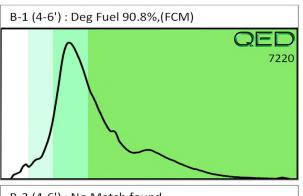
Friday, November 1, 2019

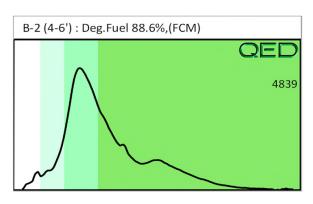
Samples analysed

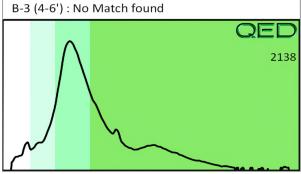
Contact: JAMIE HONEYCUTT Operator MAX MOYER

Project: NCDOT I-5878 PARCEL 87

													U00902
Matrix	Sample ID	Dilution used	BTEX (C6 - C9)	GRO (C5 - C10)	DRO (C10 - C35)	TPH (C5 - C35)	Total Aromatics (C10-C35)	16 EPA PAHs	ВаР	(% Ratios	S	HC Fingerprint Match
										C5 - C10	C10 - C18	C18	
S	B-1 (4-6')	20.8	<0.52	3.2	6.4	9.6	3.9	<0.17	<0.021	67.4	26.1	6.5	Deg Fuel 90.8%,(FCM)
S	B-2 (4-6')	20.3	<0.51	2.9	4.5	7.4	2.5	<0.16	< 0.02	74.9	19.4	5.7	Deg.Fuel 88.6%,(FCM)
S	B-3 (4-6')	20.2	<0.5	4.3	1.5	5.8	0.96	<0.16	< 0.02	92.4	6	1.6	No Match found
	Initial C	alibrator	OC check	OK					Final FO	M OC	Check	ΟK	99.5 %


Concentration values in mg/kg for soil samples and mg/L for water samples. Soil values uncorrected for moisture or stone content. Fingerprints provide a tentative hydrocarbon identification.


Abbreviations :- FCM = Results calculated using Fundamental Calibration Mode : % = confidence of hydrocarbon identification : (PFM) = Poor Fingerprint Match : (T) = Turbid : (P) = Particulate detected


B = Blank Drift : (SBS)/(LBS) = Site Specific or Library Background Subtraction applied to result : (BO) = Background Organics detected : (OCR) = Outside cal range : (M) = Modifed Result. % Ratios estimated aromatic carbon number proportions : HC = Hydrocarbon : PHC = Petroleum HC : FP = Fingerprint only.

Data generated by HC-1 Analyser

Project: NCDOT I-5878 PARCEL 87

Address: Sak Spa Address: 7226 Spa Contact: Tannie Project Ref.: Nosocr Email: Shone#: Albart Collected by: Tanie TAT Re	Lycher Folds THOUSE FESONS PO FESONS PO FESONS PO FESONS THOUSE T	9		10007	1.58.18 TONES	· ·	KED Lab, LLC 5598 Marvin	KED Lab, LLC 5598 Marvin K Moss Lane	ane
s: t: :Ref.: #: ed by:	T. Theneston T.	7					5598 Marv	/in K Moss L	ane.
t: :Ref:: #: ed by:	T House Ports 19614				Dissert, Dissert	T	MARBIONC Bldg. Suite 2003	C Bldg. Suite	e 2003
#: ed by:	They	拉					Wilmingto	Wilmington, NC 28409	9
#: ed by:	17-764 CT Herness	18 Jas	2				Each UVF sar	Each UVF sample will be analyzed for	nalyzed for
by:	in-There	COM					total BTEX, G	total BTEX, GRO, DRO, TPH, PAH total aromatics and BaP. Standard GC	, PAH total
	CT KONED		RAPII	D ENVIR	RAPID ENVIRONMENTAL DIAGNOSTICS	OSTICS	Analyses are	Analyses are for BTEX and Chlorinated	Chlorinated
-				VACTO	O EX	Mach Folload	Solvents: VC, trans DCE, TC	Solvents: VC, 1,1 DCE, 1,2 cis DCE, 1,2 trans DCE, TCE, and PCE. Specify target	ois DCE, 1,2 pecify target
_		CHAIN	20 70	SIOUY	USIODT AND ANALTIICAL REQUESI FURIN	REQUESI FURIN	analytes in th	analytes in the space provided below	ded below.
	TAT Requested	Analysis Type	Туре	Initials	Sample ID	le ID	Total Wt.	Tare Wt.	Sample Wt.
Date/Time 24 Hour	ur 48 Hour	UVF	39				56.8		
10-30-19/1530	7)		SIA SIA	8-1 4-6'		Banne	44.3	17.5
1545					B.3 4-6		57.5	44.7	(2.8
1600	→	>			B.3 4-6		57.6	ゲルカ	12.9
COMMENTS/REQUESTS:				•	TARGET GC/UVF ANALYTES:	ES:			
Relinguished by	>			Accepted by	pd by	Date/Time	REI	RED Lab USE ONLY	JNLY
is amost more than the	131/19 15	2		MM II	11/19	1150		C	
Relinquished by				Accepted by	pd by	Date/Time	9	0	
							Ker. NO		

November 20, 2019

Jamie Honeycutt S&ME, Inc - Raleigh, NC 3201 Spring Forest Rd. Raleigh, NC 27616

Project Location: Dunn, NC

Client Job Number:

Project Number: 4305-19-161

Laboratory Work Order Number: 19K0023

Keny K. Mille

Enclosed are results of analyses for samples received by the laboratory on October 31, 2019. If you have any questions concerning this report, please feel free to contact me.

Sincerely,

Kerry K. McGee Project Manager

Table of Contents

Sample Summary	3
Hits Only Report	4
Case Narrative	5
Sample Results	6
19K0023-01	6
Sample Preparation Information	9
QC Data	10
Volatile Organic Compounds by GC/MS	10
B245122	10
Semivolatile Organic Compounds by GC/MS	15
B245268	15
Flag/Qualifier Summary	17
Certifications	18
Chain of Custody/Sample Receipt	21

S&ME, Inc - Raleigh, NC 3201 Spring Forest Rd. Raleigh, NC 27616 ATTN: Jamie Honeycutt

REPORT DATE: 11/20/2019

PURCHASE ORDER NUMBER:

PROJECT NUMBER: 4305-19-161

ANALYTICAL SUMMARY

WORK ORDER NUMBER: 19K0023

The results of analyses performed on the following samples submitted to the CON-TEST Analytical Laboratory are found in this report.

PROJECT LOCATION: Dunn, NC

FIELD SAMPLE # LAB ID: MATRIX SAMPLE DESCRIPTION TEST SUB LAB

MW-30 19K0023-01 Ground Water SW-846 8260D

SW-846 8270E

EXECUTIVE SUMMARY

Client ID: MW-30 Lab ID: 19K0023-01

Analyte	Results/Qual	l	DL	RL	Units	Method
1,2,4-Trimethylbenzene	65		3.6	20	$\mu g/L$	SW-846 8260D
1,3,5-Trimethylbenzene	13	J	2.8	20	$\mu g/L$	SW-846 8260D
Benzene	1200		3.6	20	$\mu g/L$	SW-846 8260D
Diisopropyl Ether (DIPE)	6.4	J	3.4	10	$\mu g/L$	SW-846 8260D
Ethylbenzene	190		2.6	20	$\mu g/L$	SW-846 8260D
Isopropylbenzene (Cumene)	10	J	3.4	20	$\mu g/L$	SW-846 8260D
m+p Xylene	84		6.0	40	$\mu g/L$	SW-846 8260D
Methyl tert-Butyl Ether (MTBE)	15	J	5.0	20	$\mu g/L$	SW-846 8260D
Naphthalene	43		6.2	40	$\mu g/L$	SW-846 8260D
n-Propylbenzene	22		2.6	20	$\mu g/L$	SW-846 8260D
o-Xylene	41		3.4	20	$\mu g/L$	SW-846 8260D
Toluene	110		2.8	20	$\mu g/L$	SW-846 8260D
2-Methylnaphthalene (SIM)	15		0.62	10	$\mu g/L$	SW-846 8270E
Naphthalene (SIM)	50		2.6	10	$\mu g/L$	SW-846 8270E

Con-Test does not accept liability for the consequences of any actions taken solely on the basis of the information provided in the Executive Summary section of this report. Users must review this report in its entirety to determine data usability and assessment.

CASE NARRATIVE SUMMARY

All reported results are within defined laboratory quality control objectives unless listed below or otherwise qualified in this report.

REVISED REPORT 11-20-19: Due to a labeling error the results for method 8270 have been revised with the correct results.

REVISED REPORT 11-19-19: Due to a labeling error the results for method 8260 have been revised with the correct results.

For method 8270, only PAHs were requested and reported.

For method 8260D elevated reporting limit for sample 19K0023-01 due to high concentrations of target compounds.

SW-846 8260D

Oualifications:

RL-11

Elevated reporting limit due to high concentration of target compounds.

Analyte & Samples(s) Qualified:

19K0023-01[MW-30]

V-20

Continuing calibration verification (CCV) did not meet method specifications and was biased on the high side. Data validation is not affected since sample result was "not detected" for this compound. Analyte & Samples(s) Qualified:

Bromomethane

B245122-BS1, B245122-BSD1, S042311-CCV1

Chloromethane

B245122-BS1, B245122-BSD1, S042311-CCV1

The results of analyses reported only relate to samples submitted to the Con-Test Analytical Laboratory for testing.

I certify that the analyses listed above, unless specifically listed as subcontracted, if any, were performed under my direction according to the approved methodologies listed in this document, and that based upon my inquiry of those individuals immediately responsible for obtaining the information, the material contained in this report is, to the best of my knowledge and belief, accurate and complete.

Tod E. Kopyscinski Laboratory Director

Project Location: Dunn, NC Sample Description: Work Order: 19K0023

Date Received: 10/31/2019
Field Sample #: MW-30

Sampled: 10/30/2019 16:30

Sample ID: 19K0023-01

Sample Matrix: Ground Water

Sample Flags: RL-11			Volatile	e Organic Co	mpounds by G	C/MS				
Analyte	Results	RL	DL	Units	Dilution	Flag/Qual	Method	Date Prepared	Date/Time Analyzed	Analyst
Acetone	ND	1000	76	μg/L	20	I mg/ Quan	SW-846 8260D	11/5/19	11/6/19 12:05	EEH
Acrylonitrile	ND	100	10	μg/L	20		SW-846 8260D	11/5/19	11/6/19 12:05	EEH
tert-Amyl Methyl Ether (TAME)	ND	10	2.8	μg/L	20		SW-846 8260D	11/5/19	11/6/19 12:05	EEH
Benzene	1200	20	3.6	μg/L	20		SW-846 8260D	11/5/19	11/6/19 12:05	EEH
Bromobenzene	ND	20	3.0	μg/L	20		SW-846 8260D	11/5/19	11/6/19 12:05	EEH
Bromochloromethane	ND	20	6.4	μg/L	20		SW-846 8260D	11/5/19	11/6/19 12:05	EEH
Bromodichloromethane	ND	10	3.2	μg/L	20		SW-846 8260D	11/5/19	11/6/19 12:05	EEH
Bromoform	ND	20	9.2	μg/L	20		SW-846 8260D	11/5/19	11/6/19 12:05	EEH
Bromomethane	ND	40	16	μg/L	20		SW-846 8260D	11/5/19	11/6/19 12:05	EEH
2-Butanone (MEK)	ND	400	39	μg/L	20		SW-846 8260D	11/5/19	11/6/19 12:05	EEH
tert-Butyl Alcohol (TBA)	ND	400	83	$\mu g/L$	20		SW-846 8260D	11/5/19	11/6/19 12:05	EEH
n-Butylbenzene	ND	20	4.2	$\mu g/L$	20		SW-846 8260D	11/5/19	11/6/19 12:05	EEH
sec-Butylbenzene	ND	20	3.2	$\mu g/L$	20		SW-846 8260D	11/5/19	11/6/19 12:05	EEH
tert-Butylbenzene	ND	20	3.4	$\mu g/L$	20		SW-846 8260D	11/5/19	11/6/19 12:05	EEH
tert-Butyl Ethyl Ether (TBEE)	ND	10	3.2	$\mu g/L$	20		SW-846 8260D	11/5/19	11/6/19 12:05	EEH
Carbon Disulfide	ND	100	89	$\mu g/L$	20		SW-846 8260D	11/5/19	11/6/19 12:05	EEH
Carbon Tetrachloride	ND	20	2.2	$\mu g/L$	20		SW-846 8260D	11/5/19	11/6/19 12:05	EEH
Chlorobenzene	ND	20	3.0	$\mu g/L$	20		SW-846 8260D	11/5/19	11/6/19 12:05	EEH
Chlorodibromomethane	ND	10	4.2	$\mu g/L$	20		SW-846 8260D	11/5/19	11/6/19 12:05	EEH
Chloroethane	ND	40	7.0	$\mu g/L$	20		SW-846 8260D	11/5/19	11/6/19 12:05	EEH
Chloroform	ND	40	3.4	$\mu g/L$	20		SW-846 8260D	11/5/19	11/6/19 12:05	EEH
Chloromethane	ND	40	9.0	$\mu g/L$	20		SW-846 8260D	11/5/19	11/6/19 12:05	EEH
2-Chlorotoluene	ND	20	2.4	$\mu g/L$	20		SW-846 8260D	11/5/19	11/6/19 12:05	EEH
4-Chlorotoluene	ND	20	2.8	$\mu g/L$	20		SW-846 8260D	11/5/19	11/6/19 12:05	EEH
1,2-Dibromo-3-chloropropane (DBCP)	ND	100	11	$\mu g/L$	20		SW-846 8260D	11/5/19	11/6/19 12:05	EEH
1,2-Dibromoethane (EDB)	ND	10	3.8	$\mu g/L$	20		SW-846 8260D	11/5/19	11/6/19 12:05	EEH
Dibromomethane	ND	20	7.4	$\mu g/L$	20		SW-846 8260D	11/5/19	11/6/19 12:05	EEH
1,2-Dichlorobenzene	ND	20	3.2	$\mu g/L$	20		SW-846 8260D	11/5/19	11/6/19 12:05	EEH
1,3-Dichlorobenzene	ND	20	2.4	$\mu g/L$	20		SW-846 8260D	11/5/19	11/6/19 12:05	EEH
1,4-Dichlorobenzene	ND	20	2.6	$\mu g/L$	20		SW-846 8260D	11/5/19	11/6/19 12:05	EEH
trans-1,4-Dichloro-2-butene	ND	40	6.2	$\mu g/L$	20		SW-846 8260D	11/5/19	11/6/19 12:05	EEH
Dichlorodifluoromethane (Freon 12)	ND	40	5.2	$\mu g/L$	20		SW-846 8260D	11/5/19	11/6/19 12:05	EEH
1,1-Dichloroethane	ND	20	3.2	μg/L	20		SW-846 8260D	11/5/19	11/6/19 12:05	EEH
1,2-Dichloroethane	ND	20	8.2	μg/L	20		SW-846 8260D	11/5/19	11/6/19 12:05	EEH
1,1-Dichloroethylene	ND	20	6.4	μg/L	20		SW-846 8260D	11/5/19	11/6/19 12:05	EEH
cis-1,2-Dichloroethylene	ND	20	2.6	μg/L	20		SW-846 8260D	11/5/19	11/6/19 12:05	EEH
trans-1,2-Dichloroethylene	ND	20	6.2	μg/L	20		SW-846 8260D	11/5/19	11/6/19 12:05	EEH
1,2-Dichloropropane	ND	20	4.0	μg/L	20		SW-846 8260D	11/5/19	11/6/19 12:05	EEH
1,3-Dichloropropane	ND	10	2.2	μg/L	20		SW-846 8260D	11/5/19	11/6/19 12:05	EEH
2,2-Dichloropropane	ND	20	4.0	μg/L	20		SW-846 8260D	11/5/19	11/6/19 12:05	EEH
1,1-Dichloropropene	ND	40	3.2	μg/L	20		SW-846 8260D	11/5/19	11/6/19 12:05	EEH
cis-1,3-Dichloropropene	ND	10	2.6	μg/L	20		SW-846 8260D	11/5/19	11/6/19 12:05	EEH
trans-1,3-Dichloropropene	ND	10	4.6	μg/L	20		SW-846 8260D	11/5/19	11/6/19 12:05	EEH
Diethyl Ether	ND	40	6.8	μg/L	20		SW-846 8260D	11/5/19	11/6/19 12:05	EEH

Page 6 of 23

Project Location: Dunn, NC Sample Description: Work Order: 19K0023

Date Received: 10/31/2019
Field Sample #: MW-30

Sampled: 10/30/2019 16:30

Sample ID: 19K0023-01
Sample Matrix: Ground Water

Sample Flags: RL-11

Volatile Organic Compounds by GC/MS

	D 1	D.	P.	TT **	D21 //	El /C 1	3.6.0	Date	Date/Time	
Analyte	Results	RL	DL	Units	Dilution	Flag/Qual	Method	Prepared	Analyzed	Analys
Diisopropyl Ether (DIPE)	6.4	10	3.4	μg/L	20	J	SW-846 8260D	11/5/19	11/6/19 12:05	EEH
1,4-Dioxane	ND	1000	450	μg/L	20		SW-846 8260D	11/5/19	11/6/19 12:05	EEH
Ethylbenzene	190	20	2.6	μg/L	20		SW-846 8260D	11/5/19	11/6/19 12:05	EEH
Hexachlorobutadiene	ND	12	9.4	μg/L	20		SW-846 8260D	11/5/19	11/6/19 12:05	EEH
2-Hexanone (MBK)	ND	200	30	μg/L	20		SW-846 8260D	11/5/19	11/6/19 12:05	EEH
Isopropylbenzene (Cumene)	10	20	3.4	μg/L	20	J	SW-846 8260D	11/5/19	11/6/19 12:05	EEH
p-Isopropyltoluene (p-Cymene)	ND	20	4.0	μg/L	20		SW-846 8260D	11/5/19	11/6/19 12:05	EEH
Methyl tert-Butyl Ether (MTBE)	15	20	5.0	μg/L	20	J	SW-846 8260D	11/5/19	11/6/19 12:05	EEH
Methylene Chloride	ND	100	6.8	μg/L	20		SW-846 8260D	11/5/19	11/6/19 12:05	EEH
4-Methyl-2-pentanone (MIBK)	ND	200	33	μg/L	20		SW-846 8260D	11/5/19	11/6/19 12:05	EEH
Naphthalene	43	40	6.2	μg/L	20		SW-846 8260D	11/5/19	11/6/19 12:05	EEH
n-Propylbenzene	22	20	2.6	μg/L	20		SW-846 8260D	11/5/19	11/6/19 12:05	EEH
Styrene	ND	20	2.2	μg/L	20		SW-846 8260D	11/5/19	11/6/19 12:05	EEH
1,1,1,2-Tetrachloroethane	ND	20	5.4	μg/L	20		SW-846 8260D	11/5/19	11/6/19 12:05	EEH
1,1,2,2-Tetrachloroethane	ND	10	4.4	μg/L	20		SW-846 8260D	11/5/19	11/6/19 12:05	EEH
Tetrachloroethylene	ND	20	3.6	μg/L	20		SW-846 8260D	11/5/19	11/6/19 12:05	EEH
Tetrahydrofuran	ND	200	10	μg/L	20		SW-846 8260D	11/5/19	11/6/19 12:05	EEH
Toluene	110	20	2.8	μg/L	20		SW-846 8260D	11/5/19	11/6/19 12:05	EEH
1,2,3-Trichlorobenzene	ND	100	11	μg/L	20		SW-846 8260D	11/5/19	11/6/19 12:05	EEH
1,2,4-Trichlorobenzene	ND	20	8.0	μg/L	20		SW-846 8260D	11/5/19	11/6/19 12:05	EEH
1,3,5-Trichlorobenzene	ND	20	6.0	μg/L	20		SW-846 8260D	11/5/19	11/6/19 12:05	EEH
1,1,1-Trichloroethane	ND	20	4.0	μg/L	20		SW-846 8260D	11/5/19	11/6/19 12:05	EEH
1,1,2-Trichloroethane	ND	20	3.2	$\mu g/L$	20		SW-846 8260D	11/5/19	11/6/19 12:05	EEH
Trichloroethylene	ND	20	4.8	$\mu g/L$	20		SW-846 8260D	11/5/19	11/6/19 12:05	EEH
Trichlorofluoromethane (Freon 11)	ND	40	6.6	$\mu g/L$	20		SW-846 8260D	11/5/19	11/6/19 12:05	EEH
1,2,3-Trichloropropane	ND	40	5.0	$\mu g/L$	20		SW-846 8260D	11/5/19	11/6/19 12:05	EEH
1,1,2-Trichloro-1,2,2-trifluoroethane (Freon 113)	ND	20	6.4	μg/L	20		SW-846 8260D	11/5/19	11/6/19 12:05	EEH
1,2,4-Trimethylbenzene	65	20	3.6	μg/L	20		SW-846 8260D	11/5/19	11/6/19 12:05	EEH
1,3,5-Trimethylbenzene	13	20	2.8	μg/L	20	J	SW-846 8260D	11/5/19	11/6/19 12:05	EEH
Vinyl Chloride	ND	40	9.0	μg/L	20		SW-846 8260D	11/5/19	11/6/19 12:05	EEH
m+p Xylene	84	40	6.0	μg/L	20		SW-846 8260D	11/5/19	11/6/19 12:05	EEH
o-Xylene	41	20	3.4	$\mu g/L$	20		SW-846 8260D	11/5/19	11/6/19 12:05	EEH
Surrogates		% Reco	very	Recovery Limits		Flag/Qual				
1,2-Dichloroethane-d4		94.5		70-130					11/6/19 12:05	
Toluene-d8		102		70-130					11/6/19 12:05	

Project Location: Dunn, NC Sample Description: Work Order: 19K0023

Date Received: 10/31/2019
Field Sample #: MW-30

Sampled: 10/30/2019 16:30

Sample ID: 19K0023-01
Sample Matrix: Ground Water

Semivolatile Organic	Compounds by	GC/MS
----------------------	--------------	-------

			Semivo	olatile Organic Co	mpounas by	GC/MS				
								Date	Date/Time	
Analyte	Results	RL	DL	Units	Dilution	Flag/Qual	Method	Prepared	Analyzed	Analyst
Acenaphthene (SIM)	ND	0.30	0.033	$\mu g/L$	1		SW-846 8270E	11/5/19	11/6/19 19:15	CLA
Acenaphthylene (SIM)	ND	0.20	0.035	$\mu g/L$	1		SW-846 8270E	11/5/19	11/6/19 19:15	CLA
Anthracene (SIM)	ND	0.20	0.032	$\mu g/L$	1		SW-846 8270E	11/5/19	11/6/19 19:15	CLA
Benzo(a)anthracene (SIM)	ND	0.050	0.016	$\mu g/L$	1		SW-846 8270E	11/5/19	11/6/19 19:15	CLA
Benzo(a)pyrene (SIM)	ND	0.10	0.012	$\mu g/L$	1		SW-846 8270E	11/5/19	11/6/19 19:15	CLA
Benzo(b)fluoranthene (SIM)	ND	0.050	0.015	$\mu g/L$	1		SW-846 8270E	11/5/19	11/6/19 19:15	CLA
Benzo(g,h,i)perylene (SIM)	ND	0.50	0.018	$\mu g/L$	1		SW-846 8270E	11/5/19	11/6/19 19:15	CLA
Benzo(k)fluoranthene (SIM)	ND	0.20	0.012	$\mu g/L$	1		SW-846 8270E	11/5/19	11/6/19 19:15	CLA
Chrysene (SIM)	ND	0.20	0.015	$\mu g/L$	1		SW-846 8270E	11/5/19	11/6/19 19:15	CLA
Dibenz(a,h)anthracene (SIM)	ND	0.10	0.017	μg/L	1		SW-846 8270E	11/5/19	11/6/19 19:15	CLA
Fluoranthene (SIM)	ND	0.50	0.025	$\mu g/L$	1		SW-846 8270E	11/5/19	11/6/19 19:15	CLA
Fluorene (SIM)	ND	1.0	0.034	$\mu g/L$	1		SW-846 8270E	11/5/19	11/6/19 19:15	CLA
Indeno(1,2,3-cd)pyrene (SIM)	ND	0.10	0.018	$\mu g/L$	1		SW-846 8270E	11/5/19	11/6/19 19:15	CLA
2-Methylnaphthalene (SIM)	15	10	0.62	$\mu g/L$	10		SW-846 8270E	11/5/19	11/7/19 8:30	CLA
Naphthalene (SIM)	50	10	2.6	μg/L	10		SW-846 8270E	11/5/19	11/7/19 8:30	CLA
Phenanthrene (SIM)	ND	0.050	0.030	μg/L	1		SW-846 8270E	11/5/19	11/6/19 19:15	CLA
Pyrene (SIM)	ND	1.0	0.023	$\mu g/L$	1		SW-846 8270E	11/5/19	11/6/19 19:15	CLA
Surrogates		% Reco	very	Recovery Limits		Flag/Qual				
Nitrobenzene-d5		68.3		30-130					11/6/19 19:15	
Nitrobenzene-d5		77.3		30-130					11/7/19 8:30	
2-Fluorobiphenyl		48.3		30-130					11/6/19 19:15	
2-Fluorobiphenyl		59.7		30-130					11/7/19 8:30	
p-Terphenyl-d14		50.3		30-130					11/6/19 19:15	
p-Terphenyl-d14		56.5		30-130					11/7/19 8:30	

Sample Extraction Data

Prep Method: SW-846 5030B-SW-846 8260D

Lab Number [Field ID]	Batch	Initial [mL]	Final [mL]	Date
19K0023-01 [MW-30]	B245122	0.25	5.00	11/05/19

Prep Method: SW-846 3510C-SW-846 8270E

Lab Number [Field ID]	Batch	Initial [mL]	Final [mL]	Date
19K0023-01 [MW-30]	B245268	1000	1.00	11/05/19
19K0023-01RE1 [MW-30]	B245268	1000	1.00	11/05/19

QUALITY CONTROL

Volatile Organic Compounds by GC/MS - Quality Control

		Reporting		Spike	Source		%REC		RPD	
Analyte	Result	Limit	Units	Level	Result	%REC	Limits	RPD	Limit	Notes

Batch B245122 - SW-846 5030B				
Blank (B245122-BLK1)				Prepared: 11/05/19 Analyzed: 11/06/19
Acetone	ND	50	μg/L	
crylonitrile	ND	5.0	$\mu \text{g/L}$	
t-Amyl Methyl Ether (TAME)	ND	0.50	μg/L	
nzene	ND	1.0	μg/L	
mobenzene	ND	1.0	μg/L	
nochloromethane	ND	1.0	μg/L	
modichloromethane	ND	0.50	μg/L	
moform	ND	1.0	μg/L	
omomethane	ND	2.0	μg/L	
utanone (MEK)	ND	20	μg/L	
Butyl Alcohol (TBA)	ND	20	μg/L	
utylbenzene	ND	1.0	μg/L	
Butylbenzene	ND	1.0	μg/L	
Butylbenzene	ND	1.0	μg/L	
Butyl Ethyl Ether (TBEE)	ND	0.50	μg/L	
oon Disulfide	ND	5.0	μg/L	
oon Tetrachloride	ND ND	1.0	μg/L	
probenzene	ND	1.0	μg/L	
prodibromomethane	ND ND	0.50	μg/L	
proethane	ND ND	2.0	μg/L	
proform	ND ND	2.0	μg/L	
romethane	ND ND	2.0	μg/L	
lorotoluene	ND ND	1.0	μg/L	
lorotoluene	ND ND	1.0	μg/L	
bibromo-3-chloropropane (DBCP)	ND ND	5.0	μg/L	
Dibromoethane (EDB)		0.50	μg/L μg/L	
omomethane	ND ND	1.0	μg/L μg/L	
Dichlorobenzene		1.0	μg/L μg/L	
Dichlorobenzene	ND ND	1.0	μg/L μg/L	
Dichlorobenzene		1.0	μg/L μg/L	
s-1,4-Dichloro-2-butene	ND	2.0	μg/L μg/L	
lorodifluoromethane (Freon 12)	ND	2.0	μg/L μg/L	
Dichloroethane	ND	1.0	μg/L μg/L	
Dichloroethane	ND	1.0		
	ND		μg/L μg/I	
Dichloroethylene 1,2-Dichloroethylene	ND	1.0 1.0	μg/L μg/I	
	ND	1.0	μg/L μg/I	
s-1,2-Dichloroethylene	ND	1.0	μg/L	
Dichloropropane Dichloropropane	ND		μg/L	
Dichloropropane	ND	0.50	μg/L	
Dichloropropane	ND	1.0	μg/L	
Dichloropropene	ND	2.0	μg/L	
1,3-Dichloropropene	ND	0.50	μg/L	
s-1,3-Dichloropropene	ND	0.50	μg/L	
thyl Ether	ND	2.0	μg/L	
opropyl Ether (DIPE)	ND	0.50	μg/L	
-Dioxane	ND	50	μg/L	
ylbenzene	ND	1.0	μg/L	
achlorobutadiene	ND	0.60	μg/L	
exanone (MBK)	ND	10	μg/L	
propylbenzene (Cumene)	ND	1.0	μg/L	
opropyltoluene (p-Cymene)	ND	1.0	μg/L	
nyl tert-Butyl Ether (MTBE)	ND	1.0	μg/L	

QUALITY CONTROL

Spike

Source

%REC

RPD

Volatile Organic Compounds by GC/MS - Quality Control

Reporting

Analyte	Result	Reporting Limit	Units	Spike Level	Source Result	%REC	%REC Limits	RPD	RPD Limit	Notes
Satch B245122 - SW-846 5030B										
lank (B245122-BLK1)				Prepared: 11	/05/19 Analy	/zed: 11/06/1	9			
lethylene Chloride	ND	5.0	μg/L							
Methyl-2-pentanone (MIBK)	ND	10	μg/L							
aphthalene	ND	2.0	μg/L							
Propylbenzene	ND	1.0	$\mu g/L$							
yrene	ND	1.0	μg/L							
1,1,2-Tetrachloroethane	ND	1.0	μg/L							
1,2,2-Tetrachloroethane	ND	0.50	μg/L							
trachloroethylene	ND	1.0	μg/L							
trahydrofuran	ND	10	μg/L							
luene	ND	1.0	μg/L							
2,3-Trichlorobenzene		5.0	μg/L							
2,4-Trichlorobenzene	ND	1.0	μg/L μg/L							
3,5-Trichlorobenzene	ND									
•	ND	1.0	μg/L							
1,1-Trichloroethane	ND	1.0	μg/L							
1,2-Trichloroethane	ND	1.0	μg/L							
ichloroethylene	ND	1.0	μg/L							
ichlorofluoromethane (Freon 11)	ND	2.0	μg/L							
2,3-Trichloropropane	ND	2.0	μg/L							
1,2-Trichloro-1,2,2-trifluoroethane (Freon	ND	1.0	μg/L							
2,4-Trimethylbenzene	ND	1.0	μg/L							
3,5-Trimethylbenzene	ND	1.0	μg/L							
nyl Chloride	ND	2.0	μg/L							
+p Xylene	ND	2.0	$\mu g/L$							
Xylene	ND	1.0	$\mu g \! / \! L$							
rrogate: 1,2-Dichloroethane-d4	23.6		μg/L	25.0		94.4	70-130			
rrogate: Toluene-d8	24.4		$\mu g/L$	25.0		97.4	70-130			
rrogate: 4-Bromofluorobenzene	24.4		$\mu g/L$	25.0		97.4	70-130			
CS (B245122-BS1)				Prepared: 11	/05/19 Analy	zed: 11/06/1	9			
	88.7	50	μg/L	100		88.7	70-160			
eetone										
		5.0	μg/L	10.0		83.0	70-130			
erylonitrile	8.30		$\mu g/L$	10.0 10.0		83.0 94.8	70-130 70-130			
erylonitrile t-Amyl Methyl Ether (TAME)	8.30 9.48	5.0	μg/L μg/L			94.8	70-130			
erylonitrile rt-Amyl Methyl Ether (TAME) enzene	8.30 9.48 10.7	5.0 0.50	μg/L μg/L μg/L	10.0						
erylonitrile rt-Amyl Methyl Ether (TAME) enzene omobenzene	8.30 9.48 10.7 10.4	5.0 0.50 1.0 1.0	μg/L μg/L μg/L μg/L	10.0 10.0 10.0		94.8 107 104	70-130 70-130 70-130			
erylonitrile et-Amyl Methyl Ether (TAME) enzene omobenzene omochloromethane	8.30 9.48 10.7 10.4	5.0 0.50 1.0 1.0	μg/L μg/L μg/L μg/L μg/L	10.0 10.0 10.0 10.0		94.8 107 104 104	70-130 70-130 70-130 70-130			
erylonitrile et-Amyl Methyl Ether (TAME) enzene omobenzene omochloromethane omodichloromethane	8.30 9.48 10.7 10.4 10.4	5.0 0.50 1.0 1.0 1.0 0.50	μg/L μg/L μg/L μg/L μg/L μg/L	10.0 10.0 10.0 10.0 10.0		94.8 107 104 104 105	70-130 70-130 70-130 70-130 70-130			
erylonitrile t-Amyl Methyl Ether (TAME) enzene omobenzene omochloromethane omodichloromethane omoform	8.30 9.48 10.7 10.4 10.4 10.5 9.77	5.0 0.50 1.0 1.0 1.0 0.50	μg/L μg/L μg/L μg/L μg/L μg/L μg/L	10.0 10.0 10.0 10.0 10.0		94.8 107 104 104 105 97.7	70-130 70-130 70-130 70-130 70-130 70-130			V-20
erylonitrile t-Amyl Methyl Ether (TAME) enzene omobenzene omochloromethane omodichloromethane omoform omomethane	8.30 9.48 10.7 10.4 10.5 9.77 9.88	5.0 0.50 1.0 1.0 1.0 0.50 1.0	μg/L μg/L μg/L μg/L μg/L μg/L μg/L μg/L	10.0 10.0 10.0 10.0 10.0 10.0		94.8 107 104 104 105 97.7 98.8	70-130 70-130 70-130 70-130 70-130 70-130 40-160			V-20
erylonitrile tt-Amyl Methyl Ether (TAME) enzene omobenzene omochloromethane omodichloromethane omoform omomethane Butanone (MEK)	8.30 9.48 10.7 10.4 10.5 9.77 9.88 87.5	5.0 0.50 1.0 1.0 0.50 1.0 2.0	μg/L μg/L μg/L μg/L μg/L μg/L μg/L μg/L	10.0 10.0 10.0 10.0 10.0 10.0 10.0		94.8 107 104 104 105 97.7 98.8 87.5	70-130 70-130 70-130 70-130 70-130 70-130 40-160 40-160			V-20
erylonitrile rt-Amyl Methyl Ether (TAME) enzene omobenzene omochloromethane omodichloromethane omoform omomethane Butanone (MEK) rt-Butyl Alcohol (TBA)	8.30 9.48 10.7 10.4 10.5 9.77 9.88 87.5 80.3	5.0 0.50 1.0 1.0 0.50 1.0 2.0 20	µg/L µg/L µg/L µg/L µg/L µg/L µg/L µg/L	10.0 10.0 10.0 10.0 10.0 10.0 10.0 10.0		94.8 107 104 104 105 97.7 98.8 87.5 80.3	70-130 70-130 70-130 70-130 70-130 70-130 40-160 40-160			V-20
erylonitrile tt-Amyl Methyl Ether (TAME) enzene omobenzene omochloromethane omodichloromethane omoform omomethane Butanone (MEK) tt-Butyl Alcohol (TBA) Butylbenzene	8.30 9.48 10.7 10.4 10.5 9.77 9.88 87.5 80.3 9.81	5.0 0.50 1.0 1.0 1.0 0.50 1.0 2.0 20 20 1.0	µg/L µg/L µg/L µg/L µg/L µg/L µg/L µg/L	10.0 10.0 10.0 10.0 10.0 10.0 10.0 10.0		94.8 107 104 104 105 97.7 98.8 87.5 80.3 98.1	70-130 70-130 70-130 70-130 70-130 70-130 40-160 40-160 40-160 70-130			V-20
rylonitrile t-Amyl Methyl Ether (TAME) nzene omobenzene omochloromethane omodichloromethane omoform omomethane Butanone (MEK) t-Butyl Alcohol (TBA) Butylbenzene c-Butylbenzene	8.30 9.48 10.7 10.4 10.5 9.77 9.88 87.5 80.3 9.81 11.1	5.0 0.50 1.0 1.0 0.50 1.0 2.0 20 20 1.0	µg/L µg/L µg/L µg/L µg/L µg/L µg/L µg/L	10.0 10.0 10.0 10.0 10.0 10.0 10.0 100 10		94.8 107 104 104 105 97.7 98.8 87.5 80.3 98.1	70-130 70-130 70-130 70-130 70-130 70-130 40-160 40-160 40-160 70-130 70-130			V-20
rylonitrile t-Amyl Methyl Ether (TAME) nzene omobenzene omochloromethane omodichloromethane omoform omomethane Butanone (MEK) t-Butyl Alcohol (TBA) Butylbenzene t-Butylbenzene t-Butylbenzene	8.30 9.48 10.7 10.4 10.5 9.77 9.88 87.5 80.3 9.81 11.1 10.9	5.0 0.50 1.0 1.0 1.0 0.50 1.0 2.0 20 1.0 1.0	µg/L µg/L µg/L µg/L µg/L µg/L µg/L µg/L	10.0 10.0 10.0 10.0 10.0 10.0 10.0 10.0		94.8 107 104 104 105 97.7 98.8 87.5 80.3 98.1 111	70-130 70-130 70-130 70-130 70-130 70-130 40-160 40-160 40-160 70-130 70-130			V-20
erylonitrile t-Amyl Methyl Ether (TAME) enzene omobenzene omochloromethane omodichloromethane omoform omomethane Butanone (MEK) t-Butyl Alcohol (TBA) Butylbenzene e-Butylbenzene t-Butylbenzene t-Butylbenzene t-Butyl Ether (TBEE)	8.30 9.48 10.7 10.4 10.5 9.77 9.88 87.5 80.3 9.81 11.1 10.9 9.24	5.0 0.50 1.0 1.0 1.0 0.50 1.0 2.0 20 1.0 1.0 1.0	µg/L µg/L µg/L µg/L µg/L µg/L µg/L µg/L	10.0 10.0 10.0 10.0 10.0 10.0 10.0 10.0		94.8 107 104 104 105 97.7 98.8 87.5 80.3 98.1 111 109 92.4	70-130 70-130 70-130 70-130 70-130 70-130 40-160 40-160 40-130 70-130 70-130 70-130			V-20
erylonitrile t-Amyl Methyl Ether (TAME) enzene omobenzene omochloromethane omodichloromethane omoform omomethane Butanone (MEK) t-Butyl Alcohol (TBA) Butylbenzene e-Butylbenzene t-Butylbenzene t-Butyl Ethyl Ether (TBEE) rbon Disulfide	8.30 9.48 10.7 10.4 10.4 10.5 9.77 9.88 87.5 80.3 9.81 11.1 10.9 9.24 11.8	5.0 0.50 1.0 1.0 1.0 0.50 1.0 2.0 20 1.0 1.0 1.0 5.0 5.0	µg/L µg/L µg/L µg/L µg/L µg/L µg/L µg/L	10.0 10.0 10.0 10.0 10.0 10.0 10.0 10.0		94.8 107 104 104 105 97.7 98.8 87.5 80.3 98.1 111 109 92.4 118	70-130 70-130 70-130 70-130 70-130 70-130 40-160 40-160 40-160 70-130 70-130 70-130 70-130			V-20
erylonitrile tt-Amyl Methyl Ether (TAME) enzene omobenzene omochloromethane omodichloromethane omoform omomethane Butanone (MEK) tt-Butyl Alcohol (TBA) Butylbenzene tt-Butylbenzene tt-Butyl Ethyl Ether (TBEE) rbon Disulfide rbon Tetrachloride	8.30 9.48 10.7 10.4 10.5 9.77 9.88 87.5 80.3 9.81 11.1 10.9 9.24	5.0 0.50 1.0 1.0 1.0 0.50 1.0 2.0 20 20 1.0 1.0 0.50 5.0 1.0	μg/L μg/L μg/L μg/L μg/L μg/L μg/L μg/L	10.0 10.0 10.0 10.0 10.0 10.0 10.0 10.0		94.8 107 104 104 105 97.7 98.8 87.5 80.3 98.1 111 109 92.4	70-130 70-130 70-130 70-130 70-130 70-130 40-160 40-160 40-160 70-130 70-130 70-130 70-130 70-130			V-20
erylonitrile tt-Amyl Methyl Ether (TAME) enzene omochloromethane omodichloromethane omoform omomethane Butanone (MEK) tt-Butyl Alcohol (TBA) Butylbenzene tt-Butylbenzene tt-Butyl Ethyl Ether (TBEE) rbon Disulfide rbon Tetrachloride allorobenzene	8.30 9.48 10.7 10.4 10.4 10.5 9.77 9.88 87.5 80.3 9.81 11.1 10.9 9.24 11.8	5.0 0.50 1.0 1.0 1.0 0.50 1.0 2.0 20 20 1.0 1.0 0.50 5.0 1.0	µg/L µg/L µg/L µg/L µg/L µg/L µg/L µg/L	10.0 10.0 10.0 10.0 10.0 10.0 10.0 10.0		94.8 107 104 104 105 97.7 98.8 87.5 80.3 98.1 111 109 92.4 118	70-130 70-130 70-130 70-130 70-130 70-130 40-160 40-160 40-160 70-130 70-130 70-130 70-130			V-20
erylonitrile tt-Amyl Methyl Ether (TAME) enzene omochloromethane omodichloromethane omoform omomethane Butanone (MEK) tt-Butyl Alcohol (TBA) Butylbenzene tt-Butylbenzene tt-Butyl Ethyl Ether (TBEE) rbon Disulfide rbon Tetrachloride allorobenzene	8.30 9.48 10.7 10.4 10.5 9.77 9.88 87.5 80.3 9.81 11.1 10.9 9.24 11.8 10.3	5.0 0.50 1.0 1.0 1.0 0.50 1.0 2.0 20 20 1.0 1.0 0.50 5.0 1.0	μg/L μg/L μg/L μg/L μg/L μg/L μg/L μg/L	10.0 10.0 10.0 10.0 10.0 10.0 10.0 10.0		94.8 107 104 104 105 97.7 98.8 87.5 80.3 98.1 111 109 92.4 118 103	70-130 70-130 70-130 70-130 70-130 70-130 40-160 40-160 40-160 70-130 70-130 70-130 70-130 70-130			V-20
erylonitrile tt-Amyl Methyl Ether (TAME) enzene comobenzene comochloromethane comodichloromethane comodichloromethane comomethane Butanone (MEK) tt-Butyl Alcohol (TBA) Butylbenzene ct-Butylbenzene tt-Butyl Ethyl Ether (TBEE) arbon Disulfide arbon Tetrachloride allorobenzene thlorodibromomethane	8.30 9.48 10.7 10.4 10.5 9.77 9.88 87.5 80.3 9.81 11.1 10.9 9.24 11.8 10.3 11.4	5.0 0.50 1.0 1.0 1.0 0.50 1.0 2.0 20 20 1.0 1.0 0.50 5.0 1.0	μg/L μg/L μg/L μg/L μg/L μg/L μg/L μg/L	10.0 10.0 10.0 10.0 10.0 10.0 10.0 10.0		94.8 107 104 104 105 97.7 98.8 87.5 80.3 98.1 111 109 92.4 118 103 114	70-130 70-130 70-130 70-130 70-130 70-130 40-160 40-160 70-130 70-130 70-130 70-130 70-130 70-130			V-20
cetone crylonitrile rt-Amyl Methyl Ether (TAME) enzene romobenzene romochloromethane romodichloromethane romomethane Butanone (MEK) rt-Butyl Alcohol (TBA) Butylbenzene rc-Butylbenzene rt-Butyl Ethyl Ether (TBEE) arbon Disulfide arbon Tetrachloride hlorodibromomethane hloroethane	8.30 9.48 10.7 10.4 10.4 10.5 9.77 9.88 87.5 80.3 9.81 11.1 10.9 9.24 11.8 10.3 11.4 10.0	5.0 0.50 1.0 1.0 1.0 0.50 1.0 2.0 20 20 1.0 1.0 0.50 5.0 1.0 0.50	Hg/L Hg/L Hg/L Hg/L Hg/L Hg/L Hg/L Hg/L	10.0 10.0 10.0 10.0 10.0 10.0 10.0 10.0		94.8 107 104 104 105 97.7 98.8 87.5 80.3 98.1 111 109 92.4 118 103 114 100	70-130 70-130 70-130 70-130 70-130 70-130 40-160 40-160 40-160 70-130 70-130 70-130 70-130 70-130 70-130 70-130			V-20
crylonitrile rt-Amyl Methyl Ether (TAME) enzene romobenzene romochloromethane romodichloromethane romomethane Butanone (MEK) rt-Butyl Alcohol (TBA) Butylbenzene ec-Butylbenzene rt-Butyl Ethyl Ether (TBEE) arbon Disulfide arbon Tetrachloride hlorobenzene hlorodibromomethane	8.30 9.48 10.7 10.4 10.4 10.5 9.77 9.88 87.5 80.3 9.81 11.1 10.9 9.24 11.8 10.3 11.4 10.0 11.6	5.0 0.50 1.0 1.0 1.0 0.50 1.0 2.0 20 1.0 1.0 1.0 0.50 5.0 1.0 0.50	Hg/L Hg/L Hg/L Hg/L Hg/L Hg/L Hg/L Hg/L	10.0 10.0 10.0 10.0 10.0 10.0 10.0 10.0		94.8 107 104 104 105 97.7 98.8 87.5 80.3 98.1 111 109 92.4 118 103 114 100 116	70-130 70-130 70-130 70-130 70-130 40-160 40-160 40-160 70-130 70-130 70-130 70-130 70-130 70-130 70-130 70-130			V-20 V-20

QUALITY CONTROL

Spike

Source

%REC

RPD

Volatile Organic Compounds by GC/MS - Quality Control

Reporting

Analyte	Result	Reporting Limit	Units	Spike Level	Source Result %REC	%REC Limits	RPD	RPD Limit	Notes
Batch B245122 - SW-846 5030B									
LCS (B245122-BS1)				Prepared: 11	/05/19 Analyzed: 11/06/	19			
4-Chlorotoluene	10.5	1.0	μg/L	10.0	105	70-130			
1,2-Dibromo-3-chloropropane (DBCP)	9.08	5.0	μg/L	10.0	90.8	70-130			
1,2-Dibromoethane (EDB)	10.8	0.50	μg/L	10.0	108	70-130			
Dibromomethane	10.4	1.0	μg/L	10.0	104	70-130			
1,2-Dichlorobenzene	11.0	1.0	μg/L	10.0	110	70-130			
1,3-Dichlorobenzene	11.5	1.0	$\mu g/L$	10.0	115	70-130			
1,4-Dichlorobenzene	11.2	1.0	μg/L	10.0	112	70-130			
trans-1,4-Dichloro-2-butene	7.67	2.0	$\mu g/L$	10.0	76.7	70-130			
Dichlorodifluoromethane (Freon 12)	8.34	2.0	$\mu g/L$	10.0	83.4	40-160			
1,1-Dichloroethane	10.7	1.0	$\mu g/L$	10.0	107	70-130			
1,2-Dichloroethane	9.98	1.0	$\mu g/L$	10.0	99.8	70-130			
1,1-Dichloroethylene	11.0	1.0	$\mu g/L$	10.0	110	70-130			
cis-1,2-Dichloroethylene	10.6	1.0	$\mu g/L$	10.0	106	70-130			
trans-1,2-Dichloroethylene	10.5	1.0	$\mu g/L$	10.0	105	70-130			
1,2-Dichloropropane	10.8	1.0	$\mu g/L$	10.0	108	70-130			
1,3-Dichloropropane	10.3	0.50	$\mu g/L$	10.0	103	70-130			
2,2-Dichloropropane	8.49	1.0	$\mu g/L$	10.0	84.9	40-130			
1,1-Dichloropropene	10.5	2.0	$\mu g/L$	10.0	105	70-130			
cis-1,3-Dichloropropene	10.0	0.50	μg/L	10.0	100	70-130			
trans-1,3-Dichloropropene	9.41	0.50	μg/L	10.0	94.1	70-130			
Diethyl Ether	10.8	2.0	μg/L	10.0	108	70-130			
Diisopropyl Ether (DIPE)	10.1	0.50	μg/L	10.0	101	70-130			
1,4-Dioxane	86.6	50	μg/L	100	86.6	40-130			
Ethylbenzene	11.0	1.0	μg/L	10.0	110	70-130			
Hexachlorobutadiene	9.83	0.60	μg/L	10.0	98.3	70-130			
2-Hexanone (MBK)	84.3	10	μg/L	100	84.3	70-160			
Isopropylbenzene (Cumene)	11.1	1.0	μg/L	10.0	111	70-130			
p-Isopropyltoluene (p-Cymene)	10.7	1.0	μg/L	10.0	107	70-130			
Methyl tert-Butyl Ether (MTBE)	10.3	1.0	μg/L	10.0	103	70-130			
Methylene Chloride	11.0	5.0	μg/L	10.0	110	70-130			
4-Methyl-2-pentanone (MIBK)	86.6	10	μg/L	100	86.6	70-160			
Naphthalene	7.64	2.0	μg/L	10.0	76.4	40-130			
n-Propylbenzene	10.6	1.0	μg/L	10.0	106	70-130			
Styrene	10.9	1.0	μg/L	10.0	109	70-130			
1,1,1,2-Tetrachloroethane	11.3	1.0	μg/L	10.0	113	70-130			
1,1,2,2-Tetrachloroethane	10.8	0.50	μg/L	10.0	108	70-130			
Tetrachloroethylene	11.5	1.0	μg/L μg/L	10.0	115	70-130			
Tetrahydrofuran	9.60	10	μg/L	10.0	96.0	70-130			J
Toluene	10.9	1.0	μg/L	10.0	109	70-130			3
1,2,3-Trichlorobenzene	8.06	5.0	μg/L μg/L	10.0	80.6	70-130			
1,2,4-Trichlorobenzene	8.70	1.0	μg/L μg/L	10.0	87.0	70-130			
1,3,5-Trichlorobenzene	9.18	1.0	μg/L μg/L	10.0	91.8	70-130			
1,1,1-Trichloroethane		1.0	μg/L μg/L	10.0	104	70-130			
1,1,2-Trichloroethane	10.4	1.0	μg/L μg/L	10.0	110	70-130			
Trichloroethylene	11.0 11.1	1.0	μg/L μg/L	10.0	111	70-130			
Trichlorofluoromethane (Freon 11)		2.0	μg/L μg/L	10.0	96.1	70-130			
1,2,3-Trichloropropane	9.61	2.0	μg/L μg/L	10.0	103	70-130			
1,1,2-Trichloro-1,2,2-trifluoroethane (Freon 113)	10.3 11.5	1.0	μg/L μg/L	10.0	103	70-130 70-130			
1,2,4-Trimethylbenzene	10.8	1.0	μg/L	10.0	108	70-130			
1,3,5-Trimethylbenzene	10.4	1.0	μg/L	10.0	104	70-130			
Vinyl Chloride	9.58	2.0	μg/L	10.0	95.8	40-160			

QUALITY CONTROL

Volatile Organic Compounds by GC/MS - Quality Control

Analyte	Result	Reporting Limit	Units	Spike Level	Source Result	%REC	%REC Limits	RPD	RPD Limit	Notes	
Batch B245122 - SW-846 5030B											
LCS (B245122-BS1)				Prepared: 11	/05/19 Anal	yzed: 11/06/1	9				
m+p Xylene	21.3	2.0	μg/L	20.0		106	70-130				
o-Xylene	11.1	1.0	$\mu g/L$	10.0		111	70-130				
Surrogate: 1,2-Dichloroethane-d4	23.4		μg/L	25.0		93.6	70-130				
Surrogate: Toluene-d8	25.0		μg/L	25.0		99.9	70-130				
Surrogate: 4-Bromofluorobenzene	24.6		μg/L	25.0		98.4	70-130				
LCS Dup (B245122-BSD1)			10		/05/19 Analy						
Acetone	01.2	50	μg/L	100	703/17 / Mai			2.72	25		
Acrylonitrile	91.2	5.0	μg/L μg/L	10.0		91.2 90.1	70-160 70-130	2.72 8.20	25		
tert-Amyl Methyl Ether (TAME)	9.01	0.50	μg/L μg/L								
Benzene	9.41	1.0		10.0 10.0		94.1 104	70-130 70-130	0.741 3.23	25 25		
Bromobenzene	10.4	1.0	μg/L μg/L								
Bromochloromethane	10.0			10.0		100	70-130	4.00	25		
Bromochloromethane Bromodichloromethane	10.4	1.0	μg/L	10.0		104	70-130	0.865	25		
	10.2	0.50	μg/L	10.0		102	70-130	3.68	25		
Bromoform	10.2	1.0	μg/L	10.0		102	70-130	3.91	25	***	
Bromomethane	9.76	2.0	μg/L	10.0		97.6	40-160	1.22	25	V-20	
2-Butanone (MEK)	89.8	20	μg/L	100		89.8	40-160	2.63	25		
tert-Butyl Alcohol (TBA)	83.6	20	μg/L	100		83.6	40-160	4.00	25		
n-Butylbenzene	9.65	1.0	μg/L	10.0		96.5	70-130	1.64	25		
sec-Butylbenzene	11.0	1.0	μg/L	10.0		110	70-130	1.18	25		
tert-Butylbenzene	10.8	1.0	μg/L	10.0		108	70-130	1.11	25		
tert-Butyl Ethyl Ether (TBEE)	9.17	0.50	μg/L	10.0		91.7	70-130	0.760	25		
Carbon Disulfide	10.8			10.0		108	70-130	8.59	25		
Carbon Tetrachloride	10.2		μg/L	10.0		102	70-130	1.46	25		
Chlorobenzene	11.5	1.0	μg/L	10.0		115	70-130	0.610	25		
Chlorodibromomethane	9.73	0.50	μg/L	10.0		97.3	70-130	2.84	25		
Chloroethane	10.8	2.0	μg/L	10.0		108	70-130	7.24	25		
Chloroform	10.1	2.0	μg/L	10.0		101	70-130	2.53	25		
Chloromethane	8.77	2.0	μg/L	10.0		87.7	40-160	2.81	25	V-20	
2-Chlorotoluene	10.7	1.0	$\mu g/L$	10.0		107	70-130	0.845	25		
4-Chlorotoluene	10.4	1.0	$\mu g/L$	10.0		104	70-130	1.34	25		
on Tetrachloride 10.2 1.0 µg/L 10.0 115 70-130 1.46 25 robenzene 11.5 1.0 µg/L 10.0 115 70-130 0.610 25 rodenzene 11.5 1.0 µg/L 10.0 115 70-130 0.610 25 rodenzene 10.8 2.0 µg/L 10.0 97.3 70-130 2.84 25 rodenzene 10.8 2.0 µg/L 10.0 101 70-130 2.84 25 rodenzene 10.1 2.0 µg/L 10.0 101 70-130 2.53 25 rodenzene 10.1 1.0 µg/L 10.0 101 70-130 2.53 25 rodenzene 10.1 1.0 µg/L 10.0 107 70-130 0.845 25 V-20 rodenzene 10.1 1.0 µg/L 10.0 107 70-130 0.845 25 V-20 rodenzene 10.2 10.0 µg/L 10.0 104 70-130 1.34 25 rodenzene 10.2 10.0 µg/L 10.0 104 70-130 1.58 25 V-20 rodenzene 10.2 10.0 µg/L 10.0 107 70-130 1.58 25 V-20 rodenzene 10.2 10.0 µg/L 10.0 107 70-130 1.58 25 V-20 rodenzene 10.2 10.0 µg/L 10.0 100 70-130 1.58 25 V-20 rodenzene 10.2 10.0 µg/L 10.0 100 70-130 1.58 25 V-20 rodenzene 10.1 10.0 µg/L 10.0 110 70-130 1.58 25 V-20 rodenzene 10.1 10.0 µg/L 10.0 110 70-130 1.58 25 V-20 rodenzene 10.1 10.0 µg/L 10.0 110 70-130 1.58 25 V-20 rodenzene 10.1 10.0 µg/L 10.0 110 70-130 1.58 25 V-20 rodenzene 10.1 10.0 µg/L 10.0 110 70-130 1.58 25 V-20 rodenzene 10.1 10.0 µg/L 10.0 110 70-130 1.58 25 V-20 rodenzene 10.2 10.0 µg/L 10.0 110 70-130 1.58 25 V-20 rodenzene 10.3 10.0 µg/L 10.0 110 70-130 1.58 25 V-20 rodenzene 10.4 10.0 µg/L 10.0 110 70-130 1.58 25 V-20 rodenzene 10.5 µg/L 10.0 110 70-130 1.58 25 V-20 rodenzene 10.0 µg/L 10.0 110 70-130 1.58 25 V-20 rodenzene 10.0 µg/L 10.0 110 70-130 1.57 25 V-20 rodenzene 10.0 µg/L 10.0 110 70-130 1.58 25 V-20 rodenzene 10.0 µg/L 10.0 100 70-130 1.59 1.2 5 V-20 rodenzene 10.0 µg/L 10.0 100 70-130 1.59 1.2 5 V-20 rodenzene 10.0 µg/L 10.0 100 70-130 1.50 1.2 5 V-20 rodenzene 10.0 µg/L 10.0 100 70-130 1.50 1.2 5 V-20 rodenzene 10.0 µg/L 10.0 100 100 70-130 1.50 1.2 5 V-20 rodenzene 10.0 µg/L 10.0 100 70-130 1.50 1.2 5 V-20 rodenzene 10.0 µg/L 10.0 100 70-130 1.50 1.2 5 V-20 rodenzene 10.0 µg/L 10.0 100 70-130 1.50 1.2 5 V-20 rodenzene 10.0 µg/L 10.0 100 70-130 1.50 1.2 5 V-20 rodenzene 10.0 µg/L 10.0 100 70-130 1.50 1.2 5 V-20 rodenzene 10.0 µg/L 10.0 100											
1,2-Dibromoethane (EDB)	Tetrachloride 10.2 1.0 µg/L 10.0 102 70.130 1.46 25 Penzene 11.5 1.0 µg/L 10.0 115 70.130 0.610 25 Penzene 11.5 1.0 µg/L 10.0 115 70.130 0.610 25 Penzene 11.5 1.0 µg/L 10.0 115 70.130 0.610 25 Penzene 11.5 Penzene 11.5 1.0 µg/L 10.0 17.3 70.130 0.284 25 Penzene 11.5 Penzene 11.										
then Tetrachloride 10.2 1.0 μg/L 10.0 115 70-130 1.46 25 learned the conduction of											
10.2 1.0											
1,3-Dichlorobenzene	11.4	1.0	μg/L	10.0		114	70-130	0.872	25		
1,4-Dichlorobenzene	10.9	1.0	μg/L	10.0		109	70-130	3.07	25		
trans-1,4-Dichloro-2-butene	8.71	2.0	$\mu g/L$	10.0		87.1	70-130	12.7	25		
Dichlorodifluoromethane (Freon 12)		2.0		10.0							
1,1-Dichloroethane											
1,2-Dichloroethane											
1,1-Dichloroethylene											
cis-1,2-Dichloroethylene											
trans-1,2-Dichloroethylene											
1,2-Dichloropropane											
1,3-Dichloropropane											
2,2-Dichloropropane											
1,1-Dichloropropene											
cis-1,3-Dichloropropene											
trans-1,3-Dichloropropene											
Diethyl Ether											
Diisopropyl Ether (DIPE)											

QUALITY CONTROL

Volatile Organic Compounds by GC/MS - Quality Control

Analyte	Result	Reporting Limit	Units	Spike Level	Source Result	%REC	%REC Limits	RPD	RPD Limit	Notes	
Batch B245122 - SW-846 5030B											
LCS Dup (B245122-BSD1)				Prepared: 11	/05/19 Analy	yzed: 11/06/1	19				
1,4-Dioxane	92.6	50	μg/L	100		92.6	40-130	6.72	50		 † ‡
Ethylbenzene	10.7	1.0	μg/L	10.0		107	70-130	2.12	25		
Hexachlorobutadiene	10.1	0.60	μg/L	10.0		101	70-130	2.41	25		
2-Hexanone (MBK)	84.4	10	μg/L	100		84.4	70-160	0.0712	25		†
Isopropylbenzene (Cumene)	10.6	1.0	μg/L	10.0		106	70-130	3.96	25		
p-Isopropyltoluene (p-Cymene)	10.5	1.0	μg/L	10.0		105	70-130	2.36	25		
Methyl tert-Butyl Ether (MTBE)	10.2	1.0	μg/L	10.0		102	70-130	0.585	25		
Methylene Chloride	10.6	5.0	μg/L	10.0		106	70-130	3.60	25		
4-Methyl-2-pentanone (MIBK)	90.1	10	μg/L	100		90.1	70-160	4.02	25		†
Naphthalene	8.02	2.0	μg/L	10.0		80.2	40-130	4.85	25		†
n-Propylbenzene	10.3	1.0	μg/L	10.0		103	70-130	2.11	25		
Styrene	10.4	1.0	μg/L	10.0		104	70-130	4.90	25		
1,1,1,2-Tetrachloroethane	11.3	1.0	$\mu g/L$	10.0		113	70-130	0.265	25		
1,1,2,2-Tetrachloroethane	11.1	0.50	μg/L	10.0		111	70-130	3.01	25		
Tetrachloroethylene	11.5	1.0	μg/L	10.0		115	70-130	0.348	25		
Tetrahydrofuran	10.0	10	μg/L	10.0		100	70-130	4.28	25		
Toluene	10.5	1.0	μg/L	10.0		105	70-130	3.82	25		
1,2,3-Trichlorobenzene	7.86	5.0	μg/L	10.0		78.6	70-130	2.51	25		
1,2,4-Trichlorobenzene	8.34	1.0	$\mu g/L$	10.0		83.4	70-130	4.23	25		
1,3,5-Trichlorobenzene	8.42	1.0	$\mu g/L$	10.0		84.2	70-130	8.64	25		
1,1,1-Trichloroethane	9.84	1.0	$\mu g/L$	10.0		98.4	70-130	5.24	25		
1,1,2-Trichloroethane	11.0	1.0	μg/L	10.0		110	70-130	0.364	25		
Trichloroethylene	11.1	1.0	$\mu g/L$	10.0		111	70-130	0.180	25		
Trichlorofluoromethane (Freon 11)	9.30	2.0	$\mu g/L$	10.0		93.0	70-130	3.28	25		
1,2,3-Trichloropropane	10.0	2.0	$\mu g/L$	10.0		100	70-130	2.85	25		
1,1,2-Trichloro-1,2,2-trifluoroethane (Freon 113)	11.1	1.0	μg/L	10.0		111	70-130	4.07	25		
1,2,4-Trimethylbenzene	10.7	1.0	$\mu \text{g/L}$	10.0		107	70-130	0.650	25		
1,3,5-Trimethylbenzene	9.97	1.0	$\mu g\!/\!L$	10.0		99.7	70-130	3.93	25		
Vinyl Chloride	9.25	2.0	$\mu g/L$	10.0		92.5	40-160	3.51	25		†
m+p Xylene	21.3	2.0	$\mu g/L$	20.0		106	70-130	0.0470	25		
o-Xylene	11.1	1.0	$\mu g/L$	10.0		111	70-130	0.541	25		
Surrogate: 1,2-Dichloroethane-d4	22.9		μg/L	25.0		91.5	70-130				
Surrogate: Toluene-d8	25.2		μg/L	25.0		101	70-130				
Surrogate: 4-Bromofluorobenzene	24.6		μg/L	25.0		98.5	70-130				

QUALITY CONTROL

Semivolatile Organic Compounds by GC/MS - Quality Control

Analyte	Result	Reporting Limit	Units	Spike Level	Source Result	%REC	%REC Limits	RPD	RPD Limit	Notes
Batch B245268 - SW-846 3510C										
Blank (B245268-BLK1)				Prepared & A	Analyzed: 11	/06/19				
Acenaphthene (SIM)	ND	0.30	μg/L							
Acenaphthylene (SIM)	ND	0.20	$\mu g/L$							
Anthracene (SIM)	ND	0.20	$\mu g/L$							
Benzo(a)anthracene (SIM)	ND	0.050	$\mu g/L$							
Benzo(a)pyrene (SIM)	ND	0.10	$\mu g/L$							
Benzo(b)fluoranthene (SIM)	ND	0.050	$\mu g/L$							
Benzo(g,h,i)perylene (SIM)	ND	0.50	$\mu g/L$							
Benzo(k)fluoranthene (SIM)	ND	0.20	$\mu g/L$							
Chrysene (SIM)	ND	0.20	$\mu g/L$							
Dibenz(a,h)anthracene (SIM)	ND	0.10	$\mu \text{g/L}$							
Fluoranthene (SIM)	ND	0.50	$\mu g \! / \! L$							
Fluorene (SIM)	ND	1.0	$\mu g/L$							
ndeno(1,2,3-cd)pyrene (SIM)	ND	0.10	$\mu g/L$							
-Methylnaphthalene (SIM)	ND	1.0	$\mu g/L$							
Taphthalene (SIM)	ND	1.0	$\mu g/L$							
Phenanthrene (SIM)	ND	0.050	$\mu g/L$							
yrene (SIM)	ND	1.0	$\mu \text{g/L}$							
Surrogate: Nitrobenzene-d5	73.7		μg/L	100		73.7	30-130			
urrogate: 2-Fluorobiphenyl	51.1		μg/L	100		51.1	30-130			
urrogate: p-Terphenyl-d14	65.3		$\mu g/L$	100		65.3	30-130			
LCS (B245268-BS1)				Prepared & A	Analyzed: 11	/06/19				
Acenaphthene (SIM)	35.2	6.0	μg/L	50.0		70.4	40-140			
Acenaphthylene (SIM)	35.7	4.0	$\mu g/L$	50.0		71.4	40-140			
Anthracene (SIM)	38.2	4.0	$\mu g/L$	50.0		76.3	40-140			
Benzo(a)anthracene (SIM)	37.0	1.0	$\mu g/L$	50.0		74.1	40-140			
Benzo(a)pyrene (SIM)	37.4	2.0	$\mu g/L$	50.0		74.8	40-140			
Benzo(b)fluoranthene (SIM)	39.6	1.0	μg/L	50.0		79.2	40-140			
Benzo(g,h,i)perylene (SIM)	40.1	10	μg/L	50.0		80.2	40-140			
Benzo(k)fluoranthene (SIM)	39.8	4.0	μg/L	50.0		79.6	40-140			
Chrysene (SIM)	35.8	4.0	μg/L	50.0		71.7	40-140			
Dibenz(a,h)anthracene (SIM)	42.6	2.0	$\mu g/L$	50.0		85.2	40-140			
Fluoranthene (SIM)	37.3	10	$\mu g/L$	50.0		74.7	40-140			
Fluorene (SIM)	36.3	20	μg/L	50.0		72.6	40-140			
ndeno(1,2,3-cd)pyrene (SIM)	42.8	2.0	$\mu g/L$	50.0		85.6	40-140			
-Methylnaphthalene (SIM)	34.3	20	$\mu g/L$	50.0		68.7	40-140			
Naphthalene (SIM)	32.7	20	$\mu g/L$	50.0		65.4	40-140			
Phenanthrene (SIM)	35.9	1.0	μg/L	50.0		71.8	40-140			
Pyrene (SIM)	36.4	20	$\mu g/L$	50.0		72.7	40-140			
urrogate: Nitrobenzene-d5	74.9		μg/L	100		74.9	30-130			
Surrogate: 2-Fluorobiphenyl	56.8		μg/L	100		56.8	30-130			
Surrogate: p-Terphenyl-d14	59.6		μg/L	100		59.6	30-130			

QUALITY CONTROL

Semivolatile Organic Compounds by GC/MS - Quality Control

Analyte	Result	Reporting Limit	Units	Spike Level	Source Result	%REC	%REC Limits	RPD	RPD Limit	Notes
Batch B245268 - SW-846 3510C										
LCS Dup (B245268-BSD1)				Prepared &	Analyzed: 11	/06/19				
Acenaphthene (SIM)	36.1	6.0	μg/L	50.0		72.2	40-140	2.47	20	
Acenaphthylene (SIM)	36.5	4.0	$\mu g/L$	50.0		73.0	40-140	2.22	20	
Anthracene (SIM)	39.5	4.0	$\mu g/L$	50.0		79.0	40-140	3.40	20	
Benzo(a)anthracene (SIM)	38.1	1.0	$\mu g/L$	50.0		76.2	40-140	2.82	20	
Benzo(a)pyrene (SIM)	38.7	2.0	$\mu g/L$	50.0		77.4	40-140	3.47	20	
Benzo(b)fluoranthene (SIM)	41.0	1.0	$\mu g/L$	50.0		82.0	40-140	3.43	20	
Benzo(g,h,i)perylene (SIM)	41.6	10	$\mu g/L$	50.0		83.3	40-140	3.82	20	
Benzo(k)fluoranthene (SIM)	41.8	4.0	$\mu g/L$	50.0		83.6	40-140	4.80	20	
Chrysene (SIM)	37.1	4.0	$\mu g/L$	50.0		74.1	40-140	3.35	20	
Dibenz(a,h)anthracene (SIM)	44.3	2.0	$\mu g/L$	50.0		88.5	40-140	3.78	20	
Fluoranthene (SIM)	38.4	10	$\mu g/L$	50.0		76.8	40-140	2.80	20	
Fluorene (SIM)	37.1	20	$\mu g/L$	50.0		74.2	40-140	2.23	20	
Indeno(1,2,3-cd)pyrene (SIM)	44.5	2.0	$\mu g/L$	50.0		88.9	40-140	3.76	20	
2-Methylnaphthalene (SIM)	35.8	20	$\mu g/L$	50.0		71.7	40-140	4.27	20	
Naphthalene (SIM)	33.0	20	$\mu g/L$	50.0		66.0	40-140	1.04	20	
Phenanthrene (SIM)	37.1	1.0	$\mu g/L$	50.0		74.2	40-140	3.18	20	
Pyrene (SIM)	37.4	20	$\mu g/L$	50.0		74.7	40-140	2.71	20	
Surrogate: Nitrobenzene-d5	77.8		μg/L	100		77.8	30-130			
Surrogate: 2-Fluorobiphenyl	59.4		$\mu g/L$	100		59.4	30-130			
Surrogate: p-Terphenyl-d14	60.7		μg/L	100		60.7	30-130			

V-20

39 Spruce Street * East Longmeadow, MA 01028 * FAX 413/525-6405 * TEL. 413/525-2332

FLAG/QUALIFIER SUMMARY

*	QC result is outside of established limits.
†	Wide recovery limits established for difficult compound.
‡	Wide RPD limits established for difficult compound.
#	Data exceeded client recommended or regulatory level
	Percent recoveries and relative percent differences (RPDs) are determined by the software using values in the calculation which have not been rounded.
	No results have been blank subtracted unless specified in the case narrative section.
J	Detected but below the Reporting Limit (lowest calibration standard); therefore, result is an estimated concentration (CLP J-Flag).
RL-11	Elevated reporting limit due to high concentration of target compounds.

Continuing calibration verification (CCV) did not meet method specifications and was biased on the high side. Data validation is not affected since sample result was "not detected" for this compound.

CERTIFICATIONS

Certified Analyses included in this Report

Analyte	Certifications	
SW-846 8260D in Water		
Acetone	NC	
Acrylonitrile	NC	
tert-Amyl Methyl Ether (TAME)	NC	
Benzene	NC	
Bromobenzene	NC	
Bromochloromethane	NC	
Bromodichloromethane	NC	
Bromoform	NC	
Bromomethane	NC	
2-Butanone (MEK)	NC	
tert-Butyl Alcohol (TBA)	NC	
n-Butylbenzene	NC	
sec-Butylbenzene	NC	
tert-Butylbenzene	NC	
tert-Butyl Ethyl Ether (TBEE)	NC	
Carbon Disulfide	NC	
Carbon Tetrachloride	NC	
Chlorobenzene	NC	
Chlorodibromomethane	NC	
Chloroethane	NC	
Chloroform	NC	
Chloromethane	NC	
2-Chlorotoluene	NC	
4-Chlorotoluene	NC	
1,2-Dibromo-3-chloropropane (DBCP)	NC	
1,2-Dibromoethane (EDB)	NC	
Dibromomethane	NC	
1,2-Dichlorobenzene	NC	
1,3-Dichlorobenzene	NC	
1,4-Dichlorobenzene	NC	
trans-1,4-Dichloro-2-butene	NC	
Dichlorodifluoromethane (Freon 12)	NC	
1,1-Dichloroethane	NC	
1,2-Dichloroethane	NC	
1,1-Dichloroethylene	NC	
cis-1,2-Dichloroethylene	NC	
trans-1,2-Dichloroethylene	NC	
1,2-Dichloropropane	NC	
1,3-Dichloropropane	NC	
2,2-Dichloropropane	NC	
1,1-Dichloropropene	NC	
cis-1,3-Dichloropropene	NC	
trans-1,3-Dichloropropene	NC	
Diethyl Ether	NC	
Diisopropyl Ether (DIPE)	NC	
1,4-Dioxane	NC	
Ethylbenzene	NC	

CERTIFICATIONS

Certified Analyses included in this Report

Analyte	Certifications
SW-846 8260D in Water	
Hexachlorobutadiene	NC
2-Hexanone (MBK)	NC
Isopropylbenzene (Cumene)	NC
p-Isopropyltoluene (p-Cymene)	NC
Methyl tert-Butyl Ether (MTBE)	NC
Methylene Chloride	NC
4-Methyl-2-pentanone (MIBK)	NC
Naphthalene	NC
n-Propylbenzene	NC
Styrene	NC
1,1,1,2-Tetrachloroethane	NC
1,1,2,2-Tetrachloroethane	NC
Tetrachloroethylene	NC
Tetrahydrofuran	NC
Toluene	NC
1,2,3-Trichlorobenzene	NC
1,2,4-Trichlorobenzene	NC
1,3,5-Trichlorobenzene	NC
1,1,1-Trichloroethane	NC
1,1,2-Trichloroethane	NC
Trichloroethylene	NC
Trichlorofluoromethane (Freon 11)	NC
1,2,3-Trichloropropane	NC
1,1,2-Trichloro-1,2,2-trifluoroethane (Freon 113)	NC
1,2,4-Trimethylbenzene	NC
1,3,5-Trimethylbenzene	NC
Vinyl Chloride	NC
m+p Xylene	NC
o-Xylene	NC

 $The \ CON-TEST \ Environmental \ Laboratory \ operates \ under \ the \ following \ certifications \ and \ accreditations:$

Code	Description	Number	Expires
AIHA	AIHA-LAP, LLC - ISO17025:2017	100033	03/1/2020
MA	Massachusetts DEP	M-MA100	06/30/2020
CT	Connecticut Department of Publilc Health	PH-0567	09/30/2021
NY	New York State Department of Health	10899 NELAP	04/1/2020
NH-S	New Hampshire Environmental Lab	2516 NELAP	02/5/2020
RI	Rhode Island Department of Health	LAO00112	12/30/2019
NC	North Carolina Div. of Water Quality	652	12/31/2019
NJ	New Jersey DEP	MA007 NELAP	06/30/2020
FL	Florida Department of Health	E871027 NELAP	06/30/2020
VT	Vermont Department of Health Lead Laboratory	LL015036	07/30/2020
ME	State of Maine	2011028	06/9/2021
VA	Commonwealth of Virginia	460217	12/14/2019
NH-P	New Hampshire Environmental Lab	2557 NELAP	09/6/2020
VT-DW	Vermont Department of Health Drinking Water	VT-255716	06/12/2020
NC-DW	North Carolina Department of Health	25703	07/31/2020
PA	Commonwealth of Pennsylvania DEP	68-05812	06/30/2020

		,				Naging No.	રહેવન-	na kana		, e e j e i				3, 133,	23,11	. V V .							N,	14,74	15.15		V			a ja species	11,12514	gana-i.	i i je sij		Tá	able	e of	Conf	ents
Page d	+	# of Containers	² Preservation Code	³ Container Code	Obsorbed therate Samples	Field Filtered	Lab to Filter		Orthophasphate Samples	Field Filtered	Lab to Filter		1 Matrix Codes: GW = Ground Water	WW = Waste Water	A = Air	SL = Sludge	SOL = Solid O = Other (please	define)		2 Preservation Codes:	HC.	M = Methanol	S = Suffine Acid		T = Sodium riyaroxide	Thiosulfate	define)		Container Codes:	(0 4		V = Vial S = Stampa Canister	T = Tedlar Bag	O = Utner (prease define)		PCR CMI V	Soxhlet	Non Soxhlet	
oc # 3/3 nev (oss4201/ 39 Spruce Street	East Longmeadow, MA 01028				ANALYSIS REQUESTED		07	82		9	5}.	H	4	2													Please use the following codes to indicate possible sample concentration	within the Conc Code column above:	mediani, c. cow, c. clear, c. urkitowii	gram Informa		SWS Landfill HSB Orohaned Landfill	State Lead	Other:	The state of the case of the c	Other	Chromatogram	AIHA-LAP,LLC	The second secon
CHAIN ()F CUSTODY RECORD (North Carolina)		7-Day 10-Day	Due Date:	Rush-Appro		2-Day 4-Day		Format: PDF (*) EXCEL	Other:	CLP Like Data Pkg Required:	Enail To: June Hout OSMCING.	Ending Massiss Court	Better/Time Composite Grab matern	419 1630 / BU H V													Please use the follow	L High: &		North Carolina Detection Limit Requirements	JGMD CAME	SWSL	IHSB	MSCC ASSTRUCTION A		Project Entity	Government Municipality	Tederal Brownfield City School	The state of the s
Phone: 413-525-2332	Fax: 413-525-6405	Email: info@contestlabs.com		Forest Kd "Kabarch MC	- 1	1-58-18 taked 41	3 4 4	اماً-	Schule Hingering		1 Hnoreste	7	Crient Sample ID / Description Date/Lime	MW-30 10/30/19			The Address of the Control of the Co	77.101747.704.44	The state of the s			The state of the s		And the second s		The state of the s				Date/Time:	hate/Time				Date/ Ime:	Date/Time: Projec		Date/Time:	THE PROPOSAGE AND A STATE OF THE PROPOSAGE AN
Con-test	ANALYTICAL LABORATORY		Name	S.151 Spring	35	Project Location: N. 255	9	1	Con. Test Orote Name/Number	Initial Designation	Sampled By: Comit I I man	Con	Work Order#													Comments:				Relinquished by: (signature)	bv: (signature)	5/0	Relinquished (v): (signature)	Beening have Viennessen	eived by: (Signature)	inquished by: (signature)	e 2	beived by: (signature)	23 1

http://www.contestlabs.com Doc # 379 Rev 1_03242017

15/ F0057

IMPORTANTI

The wildfires are causing hazardous conditions in California. Learn More

Delivered Friday 11/01/2019 at 9:02 am

DELIVERED

Signed for by: R.PETRIAS

GET STATUS UPDATES OBTAIN PROOF OF DELIVERY

FROM

Autryville, NC US

TO

East Longmeadow, MA US

Shipment Facts

TRACKING NUMBER

411359783302

SERVICE

FedEx Priority Overnight

WEIGHT

53.4 lbs / 24.22 kgs

DELIVERED TO

Shipping/Receiving

TOTAL PIECES

TOTAL SHIPMENT WEIGHT

53.4 lbs / 24.22 kgs

RETURN REASON

TERMS

TERMS
Third Party

PACKAGING

SPECIAL HANDLING SECTION

Your Packaging SHIP DATE

Deliver Weekday

STANDARD TRANSIT (?)

11/01/2019 by 10:30 am

Thu 10/31/2019

ACTUAL DELIVERY Fri 11/01/2019 9:02 am

Travel History

Local Scan Time

Friday, 11/01/2019

9:02 am

East Longmeadow, MA

Delivered

7:45 am

WINDSOR LOCKS, CT

On FedEx vehicle for delivery

6:27 am

EAST GRANBY, CT

At destination sort facility

Page 22 of 23

I Have Not Confirmed Sample Container
Numbers With Lab Staff Before Relinquishing
Over Samples_____

Doc# 277 Rev 5 2017

Statement will be brought to the attention of the Client - State True or False Client Statement will be brought to the attention of the Client - State True or False	
Client > TME	
Received By Arg Date (1/1/19 Time	102
How were the samples In Cooler No Cooler On Ice 7 No Ice	e
received? Direct from Sampling Ambient Melted	Ice
Were samples within By Gun # 2 Actual Temp - 4	
Temperature? 2-6°C	
Was Custody Seal Intact? \(\A \) Were Samples Tampered with? \(\A \)	*************************************
Was COC Relinquished? To Does Chain Agree With Samples?	
Are there broken/leaking/loose caps on any samples?	
Is COC in ink/ Legible? Were samples received within holding time?	
Did COC include all Client T Analysis T Sampler Name T	-
pertinent Information? Project T ID's Collection Dates/Times T	***
Are Sample labels filled out and legible?	***************************************
Are there Lab to Filters? Who was notified?	
Are there Rushes? Who was notified?	
Are there Short Holds?	······································
Is there enough Volume?	
Is there Headspace where applicable? MS/MSD? F	
Proper Media/Containers Used? Is splitting samples required?	
Were trip blanks received? F On COC? F	
Do all samples have the proper pH? Acid Base	
	# 1
Vials # Containers: # #	# 1
Vials # Containers: # # Unp- 1 Liter Amb. 2 1 Liter Plastic 16 oz Amb.	#
Vials # Containers: # # Unp- 1 Liter Amb. 2 1 Liter Plastic 16 oz Amb.	#
Vials # Containers: # # Unp- 1 Liter Amb. 2 1 Liter Plastic 16 oz Amb. HCL- 3 500 mL Amb. 500 mL Plastic 8oz Amb/Clear	#
Vials # Containers: # # Unp- 1 Liter Amb. ✓ 1 Liter Plastic 16 oz Amb. HCL- ✓ 500 mL Plastic 8oz Amb/Clear Meoh- 250 mL Amb. 250 mL Plastic 4oz Amb/Clear	#
Vials# Containers:#Unp-1 Liter Amb.1 Liter Plastic16 oz Amb.HCL-500 mL Amb.500 mL Plastic8oz Amb/ClearMeoh-250 mL Amb.250 mL Plastic4oz Amb/ClearBisulfate-FlashpointCol./Bacteria2oz Amb/ClearDI-Other GlassOther PlasticEncoreThiosulfate-SOC KitPlastic BagFrozen:	#
Vials# Containers:#Unp-1 Liter Amb.1 Liter Plastic16 oz Amb.HCL-500 mL Amb.500 mL Plastic8oz Amb/ClearMeoh-250 mL Amb.250 mL Plastic4oz Amb/ClearBisulfate-FlashpointCol./Bacteria2oz Amb/ClearDI-Other GlassOther PlasticEncore	#
Vials#Containers:#Unp-1 Liter Amb.1 Liter Plastic16 oz Amb.HCL-500 mL Amb.500 mL Plastic8oz Amb/ClearMeoh-250 mL Amb.250 mL Plastic4oz Amb/ClearBisulfate-FlashpointCol./Bacteria2oz Amb/ClearDI-Other GlassOther PlasticEncoreThiosulfate-SOC KitPlastic BagFrozen:Sulfuric-PerchlorateZiplock	#
Vials # Containers: # #	# #
Vials # Containers: # #	#
Vials # Containers: # # Unp-	#
Vials # Containers: # #	#
Vials#Containers:#Unp-1 Liter Amb.∠1 Liter Plastic16 oz Amb.HCL-J 500 mL Amb.500 mL Plastic8oz Amb/ClearMeoh-250 mL Amb.250 mL Plastic4oz Amb/ClearBisulfate-FlashpointCol./Bacteria2oz Amb/ClearDI-Other GlassOther PlasticEncoreThiosulfate-SOC KitPlastic BagFrozen:Sulfuric-PerchlorateZiplockUnused MediaVials#Containers:#Unp-1 Liter Amb.1 Liter Plastic16 oz Amb.HCL-500 mL Amb.500 mL Plastic8oz Amb/ClearMeoh-250 mL Amb.250 mL Plastic4oz Amb/ClearBisulfate-Col./BacteriaFlashpoint2oz Amb/Clear	#
Vials#Containers:#Unp- HCL- Meoh- Bisulfate- DI- Thiosulfate- Sulfuric-500 mL Amb. 100 mL Amb. 100 mL Plastic 100 m	#
Vials # Containers: # Unp- 1 Liter Amb. 1 Liter Plastic 16 oz Amb. HCL- 500 mL Amb. 500 mL Plastic 8oz Amb/Clear Meoh- 250 mL Amb. 250 mL Plastic 4oz Amb/Clear Bisulfate- Flashpoint Col./Bacteria 2oz Amb/Clear DI- Other Glass Other Plastic Encore Thiosulfate- SOC Kit Plastic Bag Frozen: Sulfuric- Perchlorate Ziplock # Unused Media Vials # Containers: # Unp- 1 Liter Amb. 1 Liter Plastic 16 oz Amb. HCL- 500 mL Amb. 500 mL Plastic 8oz Amb/Clear Meoh- 250 mL Amb. 250 mL Plastic 4oz Amb/Clear Bisulfate- Col./Bacteria Flashpoint 2oz Amb/Clear Thiosulfate- SOC Kit Plastic Bag Frozen:	#
Vials # Containers: # Unp- 1 Liter Amb. 1 Liter Plastic 16 oz Amb. HCL- 3 500 mL Amb. 500 mL Plastic 8oz Amb/Clear Meoh- 250 mL Amb. 250 mL Plastic 4oz Amb/Clear Bisulfate- Flashpoint Col./Bacteria 2oz Amb/Clear DI- Other Glass Other Plastic Encore Thiosulfate- SOC Kit Plastic Bag Frozen: Sulfuric- Perchlorate Ziplock Unused Media Vials # Containers: # Unp- 1 Liter Amb. 1 Liter Plastic 16 oz Amb. HCL- 500 mL Amb. 500 mL Plastic 8oz Amb/Clear Meoh- 250 mL Amb. 250 mL Plastic 4oz Amb/Clear Meoh- 250 mL Amb. 250 mL Plastic 4oz Amb/Clear DI- Other Plastic Other Glass Encore Thiosulfate- SOC Kit Plastic Bag Frozen: Sulfuric- Perchlorate Ziplock	#
Vials # Containers: # Unp- 1 Liter Amb. 1 Liter Plastic 16 oz Amb. HCL- 3 500 mL Amb. 500 mL Plastic 8oz Amb/Clear Meoh- 250 mL Amb. 250 mL Plastic 4oz Amb/Clear Bisulfate- Flashpoint Col./Bacteria 2oz Amb/Clear DI- Other Glass Other Plastic Encore Thiosulfate- SOC Kit Plastic Bag Frozen: Sulfuric- Perchlorate Ziplock Unused Media Vials # Containers: # Unp- 1 Liter Amb. 1 Liter Plastic 16 oz Amb. HCL- 500 mL Amb. 500 mL Plastic 8oz Amb/Clear Meoh- 250 mL Amb. 250 mL Plastic 4oz Amb/Clear Meoh- 250 mL Amb. 250 mL Plastic 4oz Amb/Clear DI- Other Plastic Other Glass Encore Thiosulfate- SOC Kit Plastic Bag Frozen: Sulfuric- Perchlorate Ziplock	#
Vials # Containers: # Unp- 1 Liter Amb. 1 Liter Plastic 16 oz Amb. HCL- 3 500 mL Amb. 500 mL Plastic 8oz Amb/Clear Meoh- 250 mL Amb. 250 mL Plastic 4oz Amb/Clear Bisulfate- Flashpoint Col./Bacteria 2oz Amb/Clear DI- Other Glass Other Plastic Encore Thiosulfate- SOC Kit Plastic Bag Frozen: Sulfuric- Perchlorate Ziplock Unused Media Vials # Containers: # Unp- 1 Liter Amb. 1 Liter Plastic 16 oz Amb. HCL- 500 mL Amb. 500 mL Plastic 8oz Amb/Clear Meoh- 250 mL Amb. 250 mL Plastic 4oz Amb/Clear Meoh- 250 mL Amb. 250 mL Plastic 4oz Amb/Clear DI- Other Plastic Other Glass Encore Thiosulfate- SOC Kit Plastic Bag Frozen: Sulfuric- Perchlorate Ziplock	#
Vials # Containers: # Unp- 1 Liter Amb. 1 Liter Plastic 16 oz Amb. HCL- 3 500 mL Amb. 500 mL Plastic 8oz Amb/Clear Meoh- 250 mL Amb. 250 mL Plastic 4oz Amb/Clear Bisulfate- Flashpoint Col./Bacteria 2oz Amb/Clear DI- Other Glass Other Plastic Encore Thiosulfate- SOC Kit Plastic Bag Frozen: Sulfuric- Perchlorate Ziplock Unused Media Vials # Containers: # Unp- 1 Liter Amb. 1 Liter Plastic 16 oz Amb. HCL- 500 mL Amb. 500 mL Plastic 8oz Amb/Clear Meoh- 250 mL Amb. 250 mL Plastic 4oz Amb/Clear Meoh- 250 mL Amb. 250 mL Plastic 4oz Amb/Clear DI- Other Plastic Other Glass Encore Thiosulfate- SOC Kit Plastic Bag Frozen: Sulfuric- Perchlorate Ziplock	#
Vials # Containers: # Unp- 1 Liter Amb. 1 Liter Plastic 16 oz Amb. HCL- 3 500 mL Amb. 500 mL Plastic 8oz Amb/Clear Meoh- 250 mL Amb. 250 mL Plastic 4oz Amb/Clear Bisulfate- Flashpoint Col./Bacteria 2oz Amb/Clear DI- Other Glass Other Plastic Encore Thiosulfate- SOC Kit Plastic Bag Frozen: Sulfuric- Perchlorate Ziplock Unused Media Vials # Containers: # Unp- 1 Liter Amb. 1 Liter Plastic 16 oz Amb. HCL- 500 mL Amb. 500 mL Plastic 8oz Amb/Clear Meoh- 250 mL Amb. 250 mL Plastic 4oz Amb/Clear Meoh- 250 mL Amb. 250 mL Plastic 4oz Amb/Clear DI- Other Plastic Other Glass Encore Thiosulfate- SOC Kit Plastic Bag Frozen: Sulfuric- Perchlorate Ziplock	#
Vials # Containers: # Unp- 1 Liter Amb. 1 Liter Plastic 16 oz Amb. HCL- 3 500 mL Amb. 500 mL Plastic 8oz Amb/Clear Meoh- 250 mL Amb. 250 mL Plastic 4oz Amb/Clear Bisulfate- Flashpoint Col./Bacteria 2oz Amb/Clear DI- Other Glass Other Plastic Encore Thiosulfate- SOC Kit Plastic Bag Frozen: Sulfuric- Perchlorate Ziplock Unused Media Vials # Containers: # Unp- 1 Liter Amb. 1 Liter Plastic 16 oz Amb. HCL- 500 mL Amb. 500 mL Plastic 8oz Amb/Clear Meoh- 250 mL Amb. 250 mL Plastic 4oz Amb/Clear Meoh- 250 mL Amb. 250 mL Plastic 4oz Amb/Clear DI- Other Plastic Other Glass Encore Thiosulfate- SOC Kit Plastic Bag Frozen: Sulfuric- Perchlorate Ziplock	#
Vials#Containers:#Unp-1 Liter Amb.1 Liter Plastic16 oz Amb.HCL-500 mL Amb.500 mL Plastic8oz Amb/ClearMeoh-250 mL Amb.250 mL Plastic4oz Amb/ClearBisulfate-FlashpointCol./Bacteria2oz Amb/ClearDI-Other GlassOther PlasticEncoreThiosulfate-SOC KitPlastic BagFrozen:Sulfuric-PerchlorateZiplockUnused MediaVials#Containers:#Unp-1 Liter Amb.1 Liter Plastic16 oz Amb.HCL-500 mL Amb.500 mL Plastic8oz Amb/ClearMeoh-250 mL Amb.250 mL Plastic4oz Amb/ClearBisulfate-Col./BacteriaFlashpoint2oz Amb/ClearDI-Other PlasticOther GlassEncoreThiosulfate-SOC KitPlastic BagFrozen:	#
Vials # Containers: # Unp- 1 Liter Amb. 1 Liter Plastic 16 oz Amb. HCL- 3 500 mL Amb. 500 mL Plastic 8oz Amb/Clear Meoh- 250 mL Amb. 250 mL Plastic 4oz Amb/Clear Bisulfate- Flashpoint Col./Bacteria 2oz Amb/Clear DI- Other Glass Other Plastic Encore Thiosulfate- SOC Kit Plastic Bag Frozen: Sulfuric- Perchlorate Ziplock Unused Media Vials # Containers: # Unp- 1 Liter Amb. 1 Liter Plastic 16 oz Amb. HCL- 500 mL Amb. 500 mL Plastic 8oz Amb/Clear Meoh- 250 mL Amb. 250 mL Plastic 4oz Amb/Clear Meoh- 250 mL Amb. 250 mL Plastic 4oz Amb/Clear DI- Other Plastic Other Glass Encore Thiosulfate- SOC Kit Plastic Bag Frozen: Sulfuric- Perchlorate Ziplock	#