

January 9, 2020

North Carolina Department of Transportation Geotechnical Unit Mail Service Center 1592 Raleigh, North Carolina 27699-1592

Attention: Mr. Craig Haden email: cehaden@ncdot.gov

Reference: Preliminary Site Assessment Report

NCDOT Project I-5878, WBS Element 53078.1.1

Parcel 49-Former Welcome Mart

601 Spring Branch Road

Dunn, Harnett County, North Carolina

S&ME Project 4305-19-161

Dear Mr. Haden:

S&ME, Inc. (S&ME) is submitting this Preliminary Site Assessment (PSA) Report to the North Carolina Department of Transportation (NCDOT). This report presents the background/project information, field activities, findings, conclusions, and recommendations. These services were performed in general accordance with S&ME Proposal No. 43-1900576 REV-01 dated August 9, 2019, and Contract Number 7000018853 dated April 12, 2018 between NCDOT and S&ME, Inc., authorized by NCDOT in its September 5,2019 Notice to Proceed Letter.

♦ Background/Project Information

Based on NCDOT's July 24, 2019, Request for Technical and Cost Proposal, the PSA was conducted within the NCDOT right-of-way (ROW) and/or easement as indicated on the preliminary plan sheets provided by NCDOT at the following property:

NCDOT Parcel No.	Property Owner	Site Address
49	Jessie Anna Walker	(Former Welcome Mart)
		601 Spring Branch Road (aka Pope Road), Dunn, NC

The property was previously developed with a gasoline convenience store identified as Welcome Mart and a hotel. At the time of our field activities, the property was a cleared lot with several piles of concrete and asphalt. The former gasoline convenience store and hotel buildings had been razed. The petroleum underground storage tanks (USTs) that the former Welcome Mart operated were previously removed. Information regarding the former UST system listed for this site is provided in the following table:

UST Facility ID No. 0-00-000021703

Number of Tanks	Contents	Capacity (gallons)	Date Installed	Date Removed
1	Gasoline	8,000	1986	8/6/2012
2	Gasoline	8,000	1986	8/6/2012
3	Gasoline	8,000	1986	8/6/2012

The property is listed with one North Carolina Department of Environmental Quality (NCDEQ) Incident (Incident #29782) associated with petroleum releases from USTs discovered during their removal in August 2012.

According to the *Phase I Limited Site Assessment* dated January 25, 2013 prepared by Geological Resources, Inc., groundwater was measured in a temporary monitor well installed within the former UST excavation area in August 2012 at a depth of 8.94 feet below ground surface (ft.-bgs). Benzene, lead and C5-C8 Aliphatics were reported in groundwater samples collected from the temporary well in 2012 at concentrations exceeding their respective 15A NCAC 2L Groundwater Quality Standards (2L Standards). Various target constituents were reported in soil samples collected within the former dispenser excavation at depths of five and six ft.-bgs and along the east sidewall of the UST basin at a depth of eight ft.-bgs at concentrations exceeding their respective Soil-to-Groundwater Maximum Soil Contaminant Concentrations (MSCCs) but below their respective Residential MSCCs.

The PSA included a geophysical survey and subsequent limited soil sampling (ten soil borings up to 10 ft.-bgs), within accessible areas of the proposed ROW/easement in preparation for construction activities. **Figure 1** shows the vicinity and site location, and **Figure 2** shows the site and boring locations. Soil sampling results are shown on **Figure 3**.

Field Services

Prior to field activities, a site specific Health and Safety Plan was prepared as required by the Occupational Health and Safety Act (OSHA). Underground utilities were located and marked by the North Carolina One-Call Service. A private utility locator (East Coast Underground, LLC) was also used to locate and mark underground utilities.

♦ Geophysical Survey

On July 25, 2019, S&ME completed Time Domain Electromagnetic (TDEM) and Ground Penetrating Radar (GPR) surveys within accessible areas of the proposed ROW/easement at Parcel 49. Brief descriptions of these complementary geophysical techniques are presented in the following paragraphs.

Time Domain Electromagnetics (TDEM)

TDEM measures the electrical conductivity of subsurface materials and discriminates between moderately conductive earth materials and very conductive metallic targets within the shallow subsurface. The conductivity is determined by transmitting a time-varying magnetic pulse into the subsurface and measuring the amplitude and phase shift of the secondary magnetic field. The secondary magnetic field is created when the conductive materials become an inductor as the primary magnetic field is passed through them. TDEM data are acquired continuously at a walking pace typically along a series of parallel or perpendicular lines. The system generates audible and visual indications when metallic targets are encountered. These measurements can also be supported with a global positioning system (GPS) which is output directly into the TDEM data file.

We used a Geonics Limited EM-61 MK2 TDEM system in general accordance with ASTM D6820 "Standard Guide for Use of the Time Domain Electromagnetic Method for Subsurface Investigation." Data was collected along lines spaced at approximately five feet using a Juniper® Systems GeodeTM sub-meter GPS as positioning support. The presence of debris piles, thick vegetation, and equipment within the survey area, however, prevented TDEM data collection in a significant portion of the site. The approximate TDEM data collection paths are presented in **Figure 4.** Golden Software's Surfer® program was used to grid and plot the data (**Figures 5 and 6**). The TDEM data has been presented as Plots A and B in order to provide both opaque and semi-transparent views, respectively.

Ground Penetrating Radar (GPR)

GPR transmits electromagnetic waves into the subsurface from an antenna at a specific frequency and measures the time for wave reflections to be received by interfaces between materials with differing material properties (e.g. soil/metal, etc.). The intensity of the reflected GPR wave is a function of the contrast in the material properties (i.e. dielectric permittivity) at the interface, the conductivity of the material that the wave is traveling through, and the frequency of the signal.

We used a Geophysical Survey Systems, Inc. (GSSI) SIR® 4000 GPR system equipped with a 350 MHz antenna in general accordance with ASTM D6432 "Standard Guide for Using the Surface Ground Penetrating Radar Method for Subsurface Investigation" to further characterize anomalies/features identified during the TDEM survey.

A total of seven GPR profiles (Lines 1 through 7) were collected for documentation (**Figure 7**). The data was post-processed using the GSSI Radan® 7 GPR software program for additional analysis.

Geophysical Findings

Responses indicative of a potential UST were not identified in the geophysical data sets collected at the site. Two anomalous features unrelated to known surficial targets were identified in the geophysical data sets (Anomalies A and B; **Figures 6 and 7**). Anomalies A and B are characterized by high amplitude GPR responses located about three feet and 0.5 bgs respectively, and may be related to relatively small, isolated metallic objects (**Figures 8 and 9**). The anomalies were marked in the field using white spray paint. Example GPR profiles are presented in **Figures 8 and 9**.

Soil Sampling

On October 21, 2019, Troxler Geologic, Inc. (Troxler's) drill crew utilized a track mounted Geoprobe® rig to advance ten soil borings (B-1 through B-10) and to collect soil samples within accessible areas of the proposed ROW/easement at Parcel 49. The approximate location of the soil borings are shown in **Figure 2**. A photographic log is included in **Appendix I**. Troxler's drill crew advanced the Geoprobe® borings up to a depth of approximately 10 ft.-bgs. During the advancement of the soil borings, groundwater was not encountered. Soil samples were continuously collected in four-foot long disposable acetate-plastic sleeves that line the hollow stainless-steel sample probes. Soil recovered from the sleeves was classified on-site by S&ME personnel and screened with a Photoionization Detector (PID) at approximately two foot depth intervals to measure relative headspace concentrations of volatile organic compounds (VOCs).

VOC headspace readings were obtained from an aliquot of each soil sample that was placed in a re-sealable bag. Another portion of the sample was placed in a separate re-sealable bag and stored in an insulated container with ice for possible laboratory analyses. After waiting approximately 15 minutes to allow the sample to reach ambient temperature and headspace equilibrium, the PID probe was inserted into the bag to obtain a headspace reading. A summary of the PID readings and logs of the soil borings are included in **Appendix II.**

Slight petroleum odors and slightly elevated PID readings were noted at boring B-5, which was located within the former pump island area, starting at a depth of approximately four ft.-bgs and boring B-7, which was located within the former UST basin area, starting at a depth of approximately eight ft.-bgs and extending to boring termination at 10 ft-bgs. Petroleum odors and elevated PID readings were not noted at the other borings on the site. Therefore, soil samples were selected from boring B-5 at the four to six foot depth interval and at boring B-7 at the eight to ten foot depth interval. Various soil samples at varying depth intervals were selected from the remaining borings. The soil samples were placed into laboratory supplied containers and transported to RED Lab, LLC (Red Lab) in an insulated cooler with ice for analysis. A total of 10 soil samples (one soil sample per boring) were analyzed by RED Lab for Total Petroleum Hydrocarbons (TPH)-Gasoline Range Organics (GRO) and Diesel Range Organics (DRO) using ultra-violet fluorescence (UVF) spectroscopy with product (fuel) identification.

Upon completion of the soil sampling, the soil borings were backfilled with bentonite pellets and soil cuttings. Investigative derived wastes (IDW), such as additional soil cuttings generated during the soil boring advancement and decontamination water, were spread on the ground in accordance with the procedures specified by NCDEQ. Used gloves, re-sealable bags and acetate sleeves were bagged and disposed off-site.

Soil Analytical Results

Based upon analytical results of soil samples analyzed by RED Lab using UVP spectroscopy, TPH-GRO and TPH-DRO were not reported at concentrations exceeding the North Carolina TPH Action Levels. TPH-DRO was reported at boring B-4 at the four to six foot depth interval, at a concentration of 0.53 milligrams per kilograms (mg/kg) which is below its North Carolina TPH Action Level of 100 mg/kg. TPH-GRO and TPH-DRO were not reported at concentrations exceeding the laboratory method reporting limits at the remaining soil samples. A summary of the soil analytical results is presented in **Table 1** and shown on **Figure 3**. A copy of the laboratory analytical report provided by RED Lab is presented in **Appendix III**.

January 9, 2020

Conclusion and Recommendations

The geophysical survey identified two anomalies (Anomalies A and B) which may be related to relatively small, isolated metallic objects. Responses indicative of a potential UST were not identified in the geophysical data sets collected at the site.

S&ME advanced ten soil borings (B-1 through B-10) to a depth of up to approximately 10 ft.-bgs at the site. Slight petroleum odors and slightly elevated PID readings were noted at boring B-5, which was located within the former pump island area, starting at a depth of approximately four ft.-bgs and boring B-7, which was located within the former UST basin area, starting at a depth of approximately eight ft.-bgs and extending to boring termination at 10 ft-bgs. Petroleum odors and elevated PID readings were not noted at the other borings on the site. Selected soil samples from the soil borings were analyzed for TPH-GRO and TPH-DRO using UVF spectroscopy. TPH-DRO was reported at boring B-4 at the four to six foot depth interval, at a concentration slightly above the laboratory reporting limits but well below its North Carolina TPH Action Level. TPH-GRO and TPH-DRO were not reported at concentrations exceeding the laboratory method reporting limits at the remaining soil samples. During the soil boring advancement, groundwater was not encountered. Therefore, groundwater sampling was not performed.

However, in 2012 groundwater was reported within the former UST excavation area at a depth of 8.94 ft.-bgs with petroleum impacts reported above 2L Standards. In 2012, petroleum impacted soil was reported in soil samples collected within the former pump island excavation at a depth of five and six ft.-bgs and along the eastern sidewall of the UST excavation at a depth of eight ft.-bgs at concentrations exceeding the Soil-to-Groundwater MSCCs. Soil samples collected within these areas at these approximate depths did not indicate petroleum impacts above North Carolina TPH Action Levels.

Based on the findings of the geophysical survey, analytical results of soil samples and analytical results of previous soil and groundwater samples, it is likely that during construction, NCDOT may encounter soil and groundwater impacted with petroleum at the site. Petroleum impacted soil at concentrations exceeding the Soil-to-Groundwater MSCCs may be encountered within the vicinity of the former pump island excavation at depths of five to six ft.-bgs and at the UST excavation at a depth of eight ft.-bgs. If construction excavations extend deeper than 10 ft.-bgs, petroleum impacted groundwater may also be encountered within these areas.

If petroleum stained or odorous soils are encountered during construction, these soils should be properly handled and disposed at a licensed facility. If construction dewatering is required, petroleum impacted groundwater must be properly disposed or treated at a licensed facility.

S&ME recommends maintaining an awareness level for the presence of petroleum in the soil and groundwater at the site for the safety of workers and the public.

January 9, 2020

Limitations

The results of this preliminary investigation are limited to the boring locations presented herein. The results of this Preliminary Site Assessment are not all inclusive and may not represent existing conditions across the entire property. These results only reflect the current conditions at the locations sampled on the date this Preliminary Site Assessment was performed. This report has been prepared in accordance with generally accepted environmental engineering and geophysical practice for specific application to this project. The conclusions and recommendations contained in this report are based upon applicable standards of our practice in this geographic area at the time this report was prepared. No other warranty, expressed or implied, is made.

The geophysical methods used for this survey have inherent limitations. Site metallic features (e.g., surficial debris, reinforced concrete, utilities, etc.) and overhead transmission lines can produce a false electromagnetic response and may mask subsurface features. The depth of exploration of the GPR signal is highly site specific and is greatly limited by signal attenuation (absorption) of the subsurface materials. Signal attenuation is dependent upon the electrical conductivity of the subsurface materials. Signal attenuation is greatest in materials with relatively high electrical conductivities such as clay soils, and lowest in relatively low conductivity materials such as unsaturated sand. For this project location, the GPR data sets appear to have a maximum depth of penetration of about seven ft.-bgs.

Regardless of the thoroughness of a geophysical study, there is always a possibility that actual conditions may not match the interpretations. The results should be considered accurate only to the degree implied by the methods used and the method's limitations and data coverage. Accordingly, the possibility exists that not all features at a project site will be located due to either subsurface soil conditions or the occurrence of features outside the lateral limits and below the depth of penetration of the methods used. As with most surface geophysical methods, resolution of the subsurface will also decrease with depth. As such, the size and/or contrast of features compared to the imaged subsurface media must be significant enough to produce the anticipated response. The location and/or determination (or the lack thereof) of potential buried features is based on our review of the provided information and of the geophysical survey. Under no circumstances does S&ME assume any responsibility for damages resulting from the presence of subsurface features that may exist but were not identified by our survey.

This Preliminary Site Assessment was performed solely for NCDOT regarding the above-referenced site and assessment area. This report is provided for the sole use of NCDOT. Use of this report by any other parties will be at such party's sole risk. S&ME disclaims liability for any such use or reliance by third parties. The observations presented in this report are indicative of conditions during the time of the assessment and of the specific areas referenced.

Closing

S&ME appreciates the opportunity to provide these services to you. If you have any questions or comments regarding this report, please contact us at your convenience.

Sincerely,

Docusigned by:

Dramie Honeycutt

4C890EAEC25F488...

Jamie T Honeycutt Environmental Professional <u>jhoneycutt@smeinc.com</u>

Thomas P. Raymond, P.E., P.M.P. Senior Consultant traymond@smeinc.com

Attachments:

Table 1: Summary of Soil Sampling Results

Figure 1: Vicinity Map Figure 2: Site Map

Figure 3: Soil Constituent Map **Figure 4:** TDEM Path Location Plan

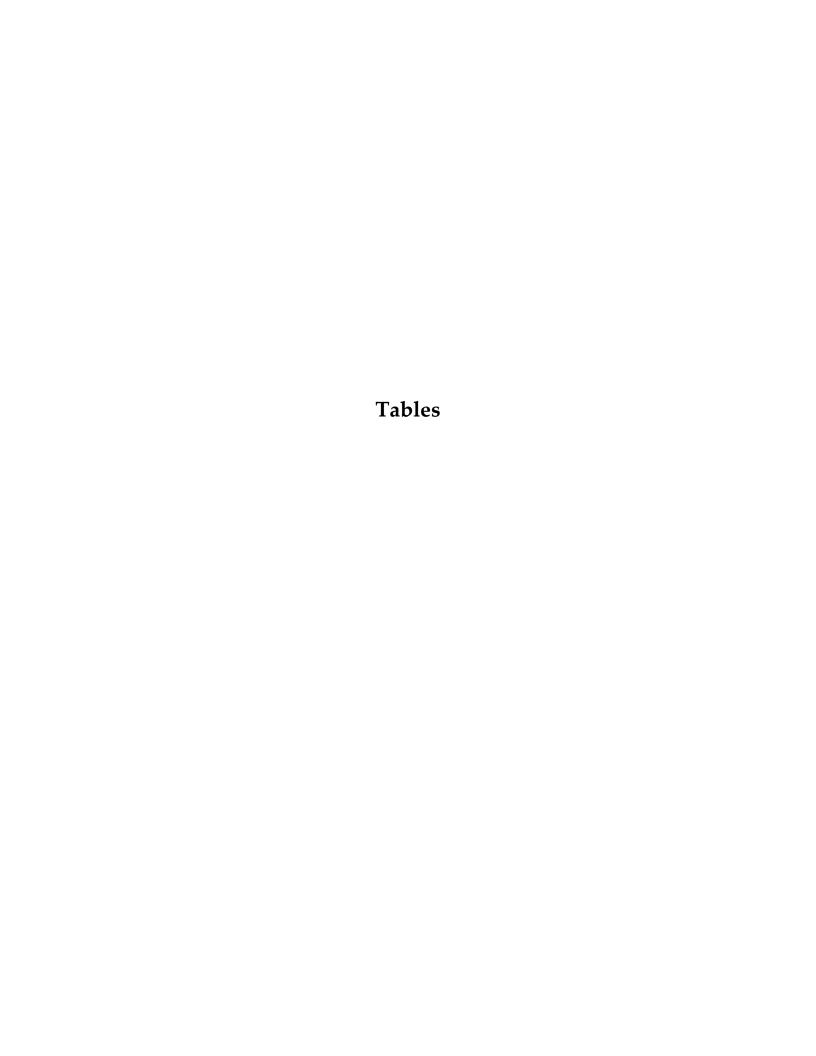
Figure 5: TDEM Data Plot A **Figure 6:** TDEM Data Plot B

Figure 7: Geophysical Anomaly Location Plan

Figure 8: Example GPR Data – Line 3

Figure 9: Example GPR Data – Lines 6 and 7

Appendix I: Photographs **Appendix II:** Boring Logs


Appendix III: Laboratory Analytical Reports and Chain of Custody

Docusigned by:

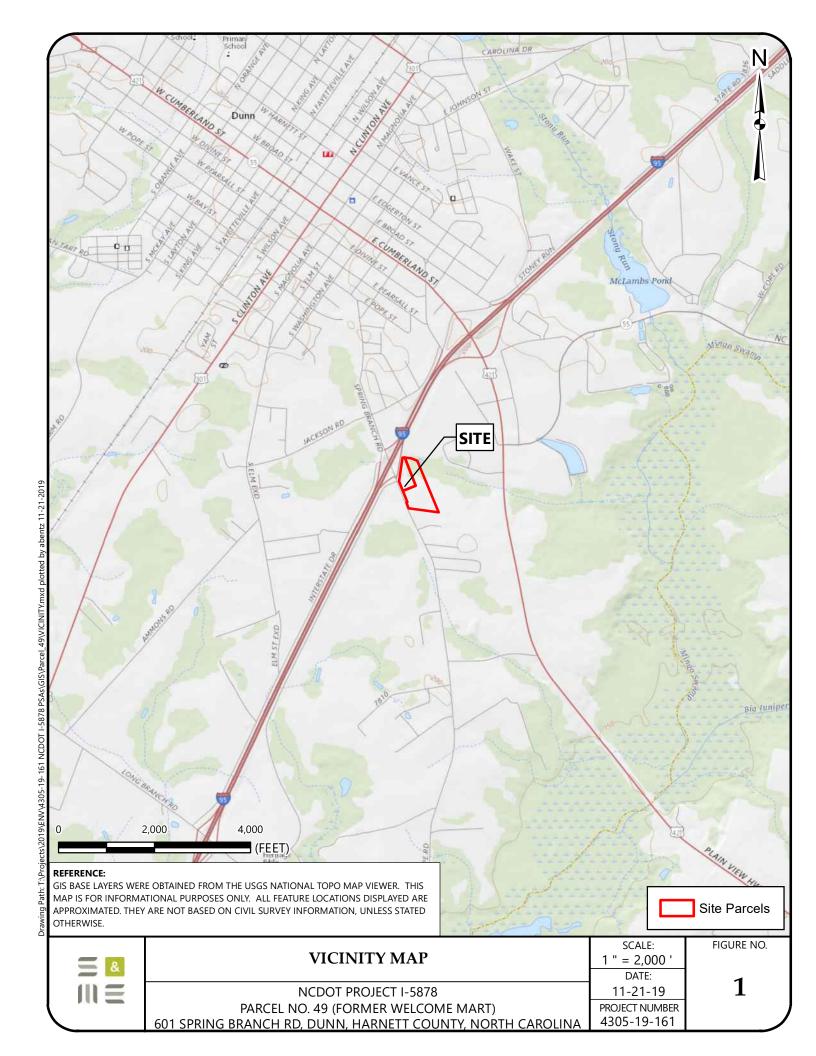
Michael Pfrifer

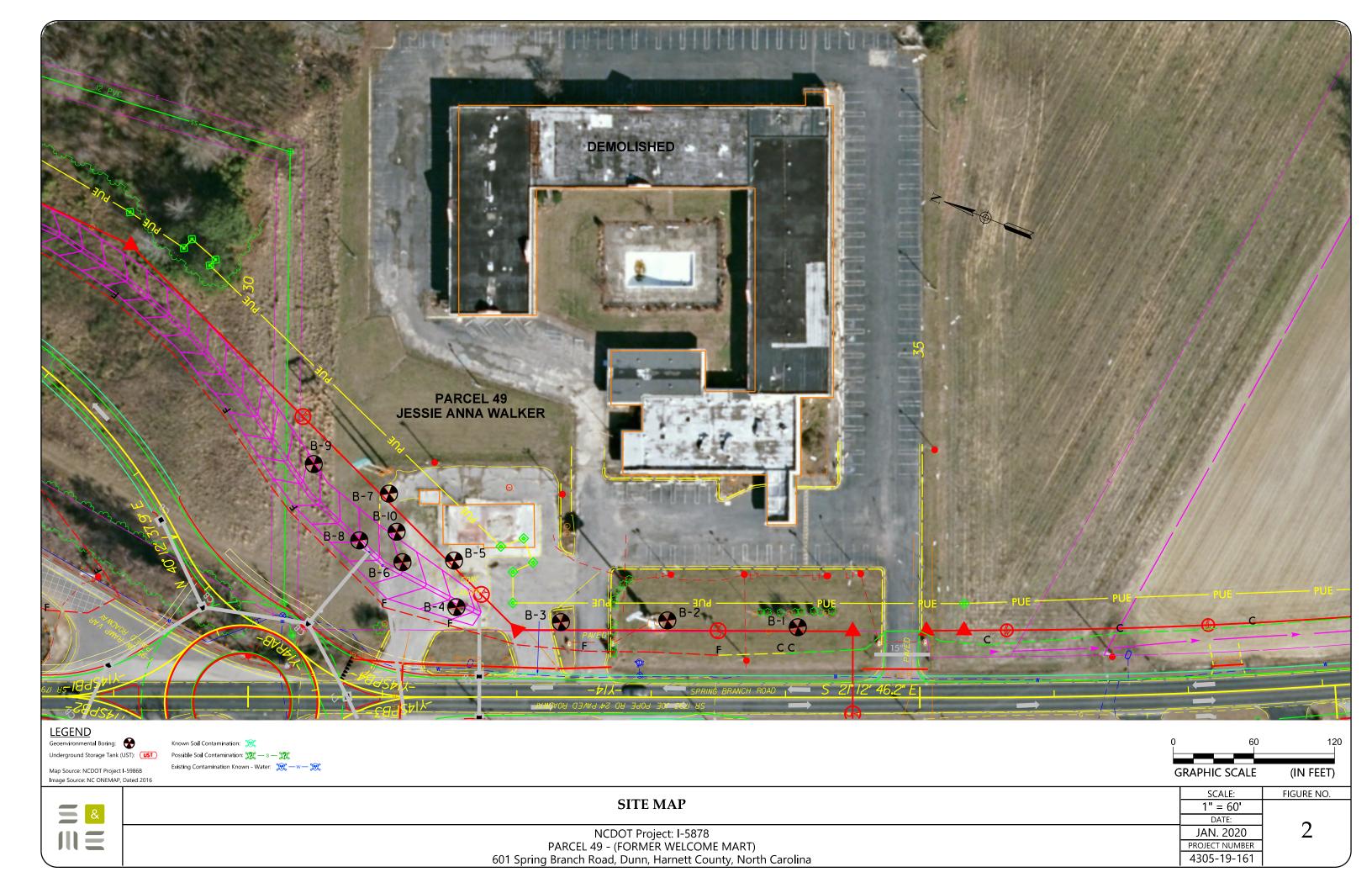
861E52DDEFAF4C7...

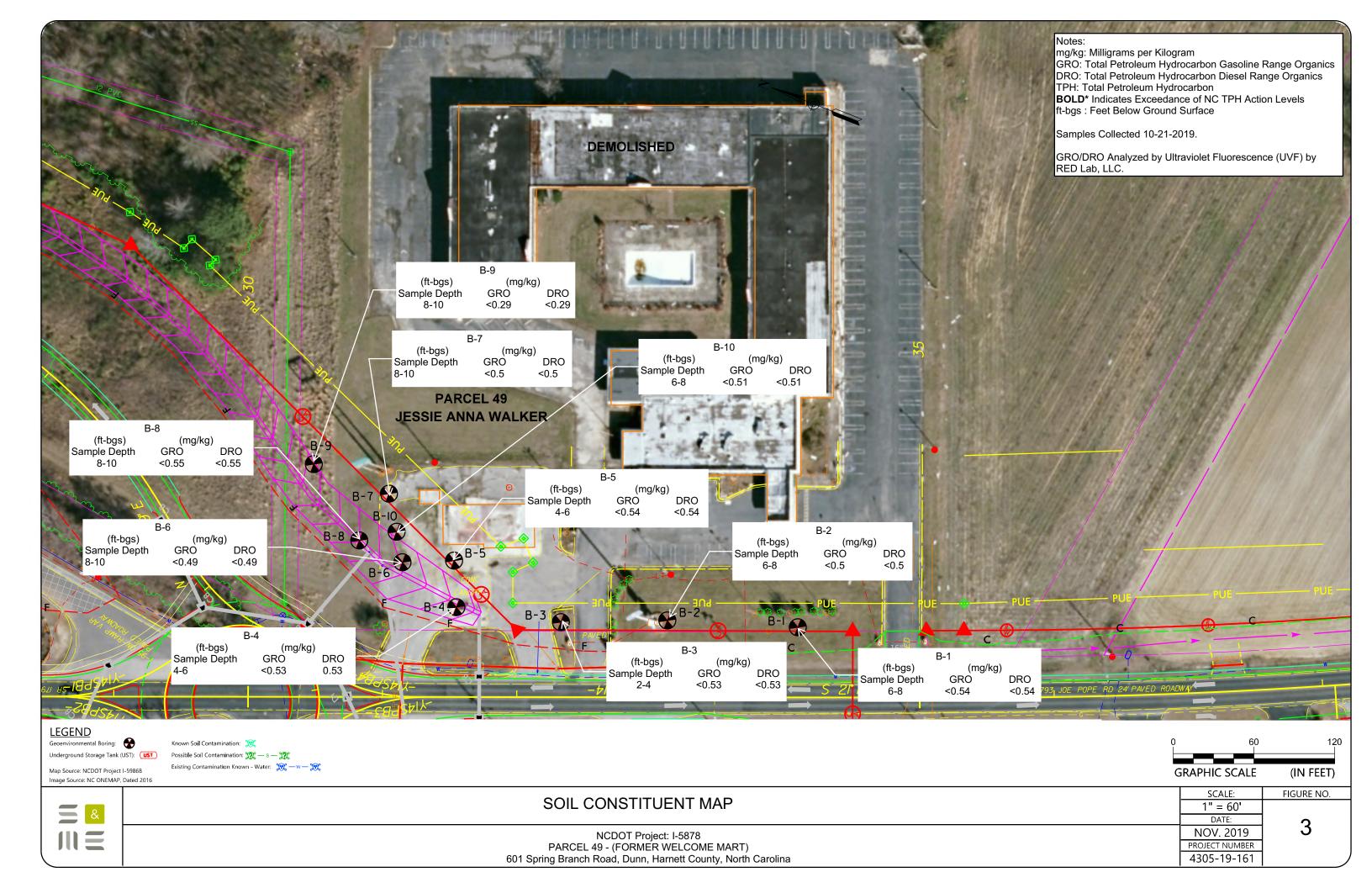
Michael W. Pfeifer Senior Project Manager mpfeifer@smeinc.com

TABLE 1 SUMMARY OF SOIL SAMPLING RESULTS NCDOT Project I-5878

Parcel 49 - (Former Welcome Mart) 601 Spring Branch Road Dunn, Harnett County, North Carolina


S&ME Project No. 4305-19-161


Ar	nalytical Metho	d→	Range Organics (GR Organics (DRO) by Ul	carbons (TPH) Gasoline (O) and Diesel Range traviolet Fluorescence ectrometry				
Sample ID	Date	Contaminant of Concern→ Sample Depth (ftbgs)	TPH-GRO TPH-DRO					
B-1	10/21/2019	6 to 8	<0.54	<0.54				
B-2	10/21/2019	6 to 8	<0.5	<0.5				
B-3	10/21/2019	2 to 4	<0.53	<0.53				
B-4	10/21/2019	4 to 6	<0.53	0.53				
B-5	10/21/2019	4 to 6	<0.54	<0.54				
B-6	10/21/2019	8 to 10	<0.49	<0.49				
B-7	10/21/2019	8 to 10	<0.5	<0.5				
B-8	10/21/2019	8 to 10	<0.55	<0.55				
B-9	10/21/2019	8 to 10	<0.29	<0.29				
B-10	10/21/2019	6 to 8	<0.51	<0.51				
No	orth Carolina T	PH Action Levels	50	100				


Notes:

- 1. UVF analysis performed by RED Lab, LLC
- 2. Concentrations are reported in milligrams per kilogram (mg/Kg).
- 3. ft.-bgs:- feet below ground surface.
- 4. Concentrations exceeding the laboratory's reporting limits are shown in **BOLD** fields.
- Concentrations exceeding the North Carolina TPH Action Levels are shown in Shaded and BOLD fields.

REFERENCE:

GOOGLE EARTH PRO AERIAL PHOTOGRAPH (DATED MARCH 4, 2018)

SCALE: AS SHOWN

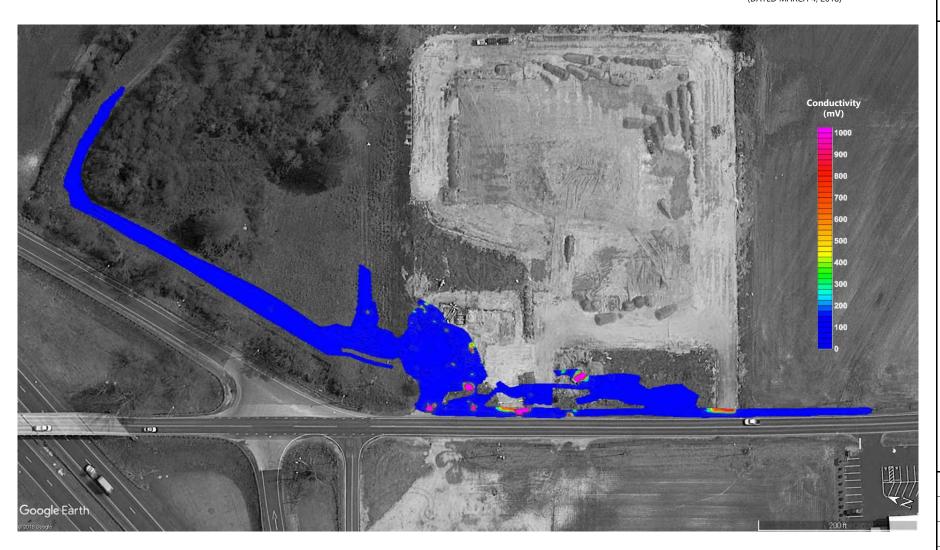
NCDOT PROJECT: 1-5878 PARCEL #49 - (FORMER WELCOME MART) 601 SPRING BRANCH ROAD, DUNN, HARNETT COUNTY, NORTH CAROLINA

TDEM PATH LOCATION PLAN

DATE: 11/19/2019 PROJECT NUMBER

4305-19-161 FIGURE NO.

LEGEND


Approximate TDEM Path

Approximate Requested Survey Area

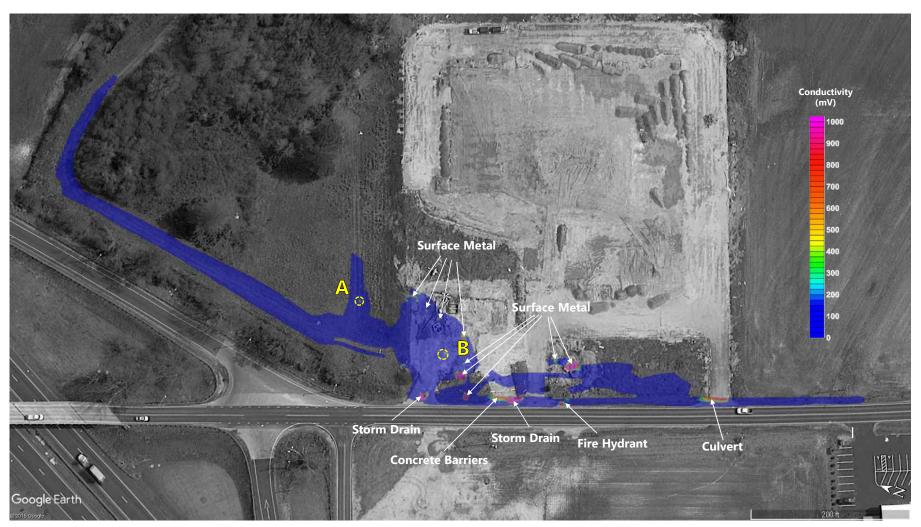
TDEM DATA PLOT A

NCDOT PROJECT: 1-5878 PARCEL #49 - (FORMER WELCOME MART) 601 SPRING BRANCH ROAD, DUNN, HARNETT COUNTY, NORTH CAROLINA

SCALE: AS SHOWN DATE:

11/19/2019 PROJECT NUMBER

4305-19-161


FIGURE NO.

5

REFERENCE:

GOOGLE EARTH PRO AERIAL PHOTOGRAPH (DATED MARCH 4, 2018)

LEGEND

Approximate Location of Geophysical Anomaly

Approximate Location of Possible Utility

SCALE: AS SHOWN DATE:

NCDOT PROJECT: 1-5878 PARCEL #49 - (FORMER WELCOME MART) 601 SPRING BRANCH ROAD, DUNN, HARNETT COUNTY, NORTH CAROLINA

TDEM DATA PLOT B

11/19/2019 PROJECT NUMBER 4305-19-161

FIGURE NO.

REFERENCE:

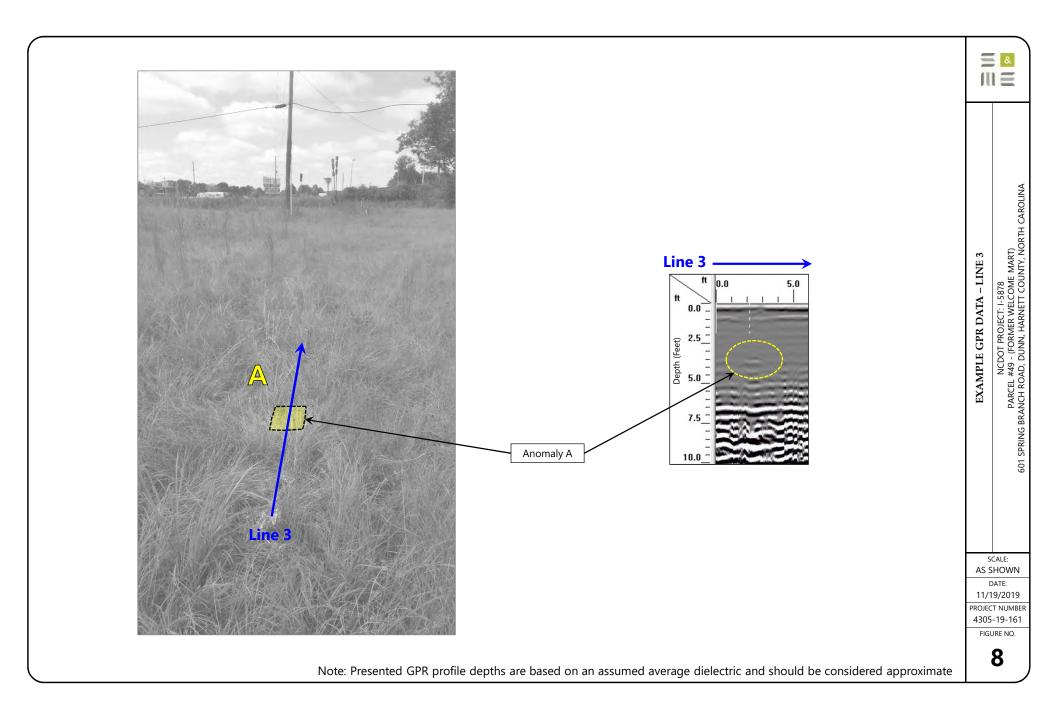
GOOGLE EARTH PRO AERIAL PHOTOGRAPH (DATED MARCH 4, 2018)

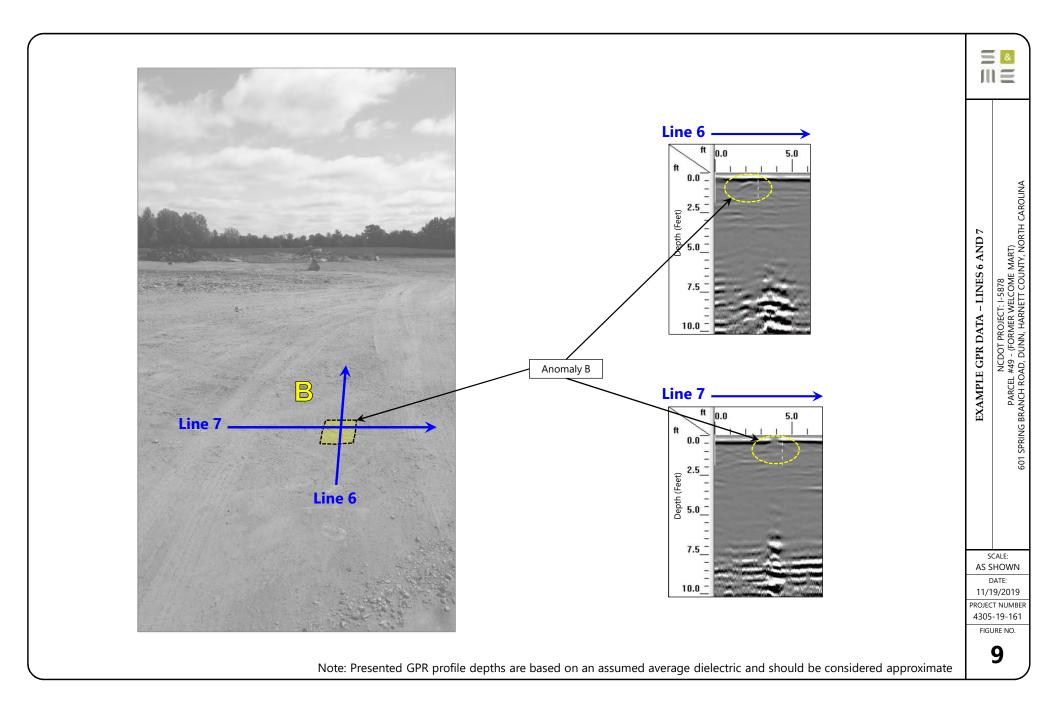
Approximate Location of Geophysical Anomaly

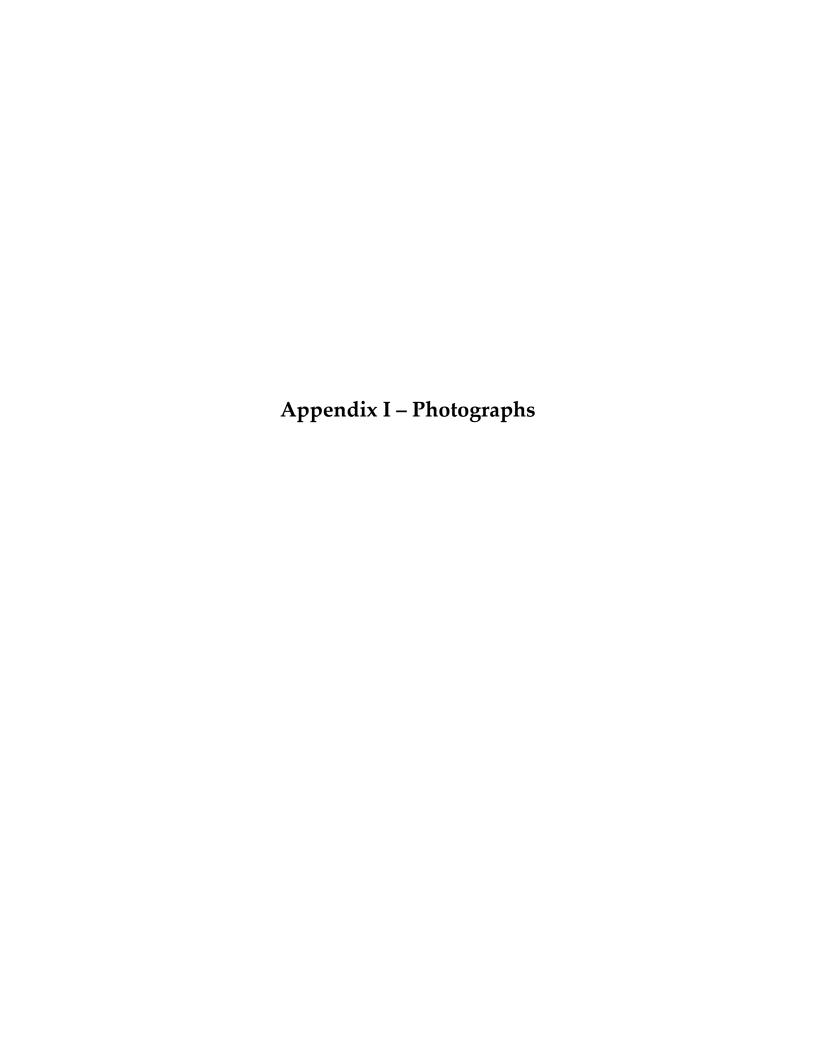
Approximate Location of GPR Profile

---- Approximate Location of Possible Utility

GEOPHYSICAL ANOMALY LOCATION PLAN


PARCEL #49 - (FORMER WELCOME MART) 601 SPRING BRANCH ROAD, DUNN, HARNETT COUNTY, NORTH CAROLINA


SCALE: AS SHOWN


DATE: 11/19/2019

PROJECT NUMBER 4305-19-161

FIGURE NO.

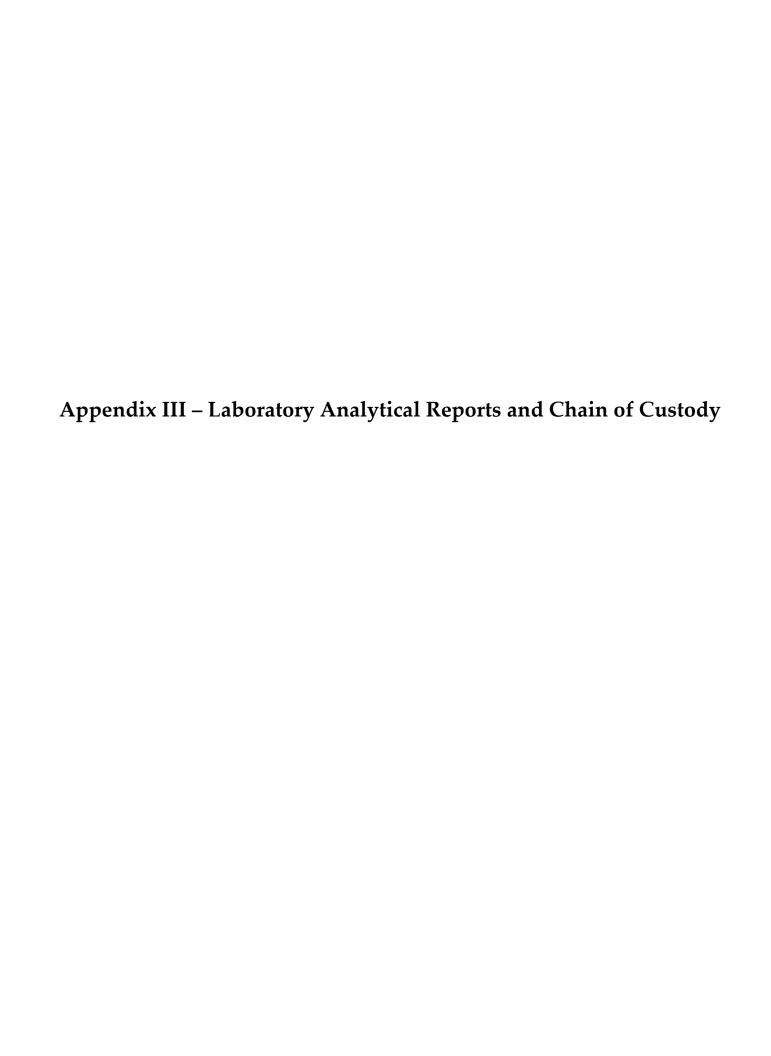
PROJECT:	NCDOT I-5878 Parcel 49-601 Spring Branch Rd (Former Welcome Ma	art), Dunn, NC			BORIN	NG LOG:	B-1			
	S&ME Project No. 4305-19-161									
DATE DRILLED:	Monday, October 21, 2019	BORING DEPTH (FT):	10							
DRILL RIG:	Geoprobe 54DT	WATER LEVEL:								
DRILLER:	Troxler Geologic, Inc.	CAVE-IN DEPTH:	Not Appli	icable						
HAMMER TYPE:	Not Applicable	LOGGED BY:								
SAMPLING METHOD:	Macro-Core Sampler	NORTHING:								
DRILLING METHOD:	Macro-Core Sampler (3-in. OD)	EASTING:								
DRILLING WETTOD.	iwacro-core sampler (s-in. ob)	EASTING.				1	T .			
DEPTH (feet) (Get) GRAPHIC LOG	MATERIAL DESCRIPTION		WATER LEVEL	SAMPLE	PID READING (PPM)	LABORATORY ANALYSES	Sample Time / 1st 6in	2nd 6in	3rd 6in	N VALUE
Clay	ey Sand, Orange, Tan,			ł	3.2	No				
5 — Sanc	y Clay, Red, Orange, Gray,			ł	5.1	No				
				ŧ	4.9	No				
				ł	4.7	Yes	945			
10 Borii	ng Terminated at 10 Ft-BGS			Ш	4.5	No				
15 — 15 — 20 — 25 — — — — — — — — — — — — — — — — —										
30										

PROJECT:	NCDOT I-5878 Parcel 49-601 Spring Branch Rd (Former Welcome	Mart), Dunn, NC			BORIN	NG LOG:	B-2			
	S&ME Project No. 4305-19-161				201					
DATE DRILLED:	Monday, October 21, 2019	BORING DEPTH (FT):	10							
DRILL RIG:	Geoprobe 54DT	WATER LEVEL:								
DRILLER:	Troxler Geologic, Inc.	CAVE-IN DEPTH:	Not Appl	icable						
HAMMER TYPE:	Not Applicable	LOGGED BY:	J. Honeyo	cutt						
SAMPLING METHOD:	Macro-Core Sampler	NORTHING:								
DRILLING METHOD:	Macro-Core Sampler (3-in. OD)	EASTING:								
DEPTH (feet) GRAPHIC LOG	MATERIAL DESCRIPTION		WATER LEVEL	SAMPLE	PID READING (PPM)	LABORATORY ANALYSES	Sample Time / 1st 6in	2nd 6in	3rd 6in	N VALUE
	yey Sand, Orange, Tan, y Sand, Gray,				3.9 4.7	No No				
-	yey Sand, Red, Orange, Gray,			I	4.7	No				
				I	5.3 5.2	Yes	1000			
10 Bor	ing Terminated at 10 Ft-BGS									
20 —										
25 —— —— ——										

PROJECT	Γ:		Parcel 49-601 Spring Bra	NCDOT I-5878 anch Rd (Former Welcome I	Mart), Dunn, NC			BORIN	NG LOG:	В-3			
DATE DRILI	I ED:		S&ME I Monday, October 21, 2019	Project No. 4305-19-161	BORING DEPTH (FT):	10							
			_			10							
DRILL RIG:			Geoprobe 54DT		WATER LEVEL:								
DRILLER:			Troxler Geologic, Inc.		CAVE-IN DEPTH:								
HAMMER 1	TYPE:		Not Applicable		LOGGED BY:	J. Honey	cutt						
SAMPLING	METHOD	:	Macro-Core Sampler		NORTHING:								
DRILLING N	METHOD:		Macro-Core Sampler (3-in. OD)		EASTING:								
DEPTH (feet)	GRAPHIC LOG			TERIAL DESCRIPTION		WATER LEVEL	SAMPLE	PID READING (PPM)	LABORATORY ANALYSES	Sample Time / 1st 6in	2nd 6in	3rd 6in	N VALUE
	Ш		Sand, Brown, Tan, ey Sand, Orange, Tan,				ŧ						
<u>-</u>							H	2.3	No				
							H	4.4	Yes	1030			
5 —		Clay	ey Sand, Red, Orange, Gray,				H	2.0	No				
							H	1.7	No				
10 —							Н	1.6	No				
	- - - -	Bon	ng Terminated at 10 Ft-BGS										
15 —— ——	-												
20 —	_												
25 —													
	_												
_	-												
30 —													

PROJECT	Γ:	NCDOT I-5878 Parcel 49-601 Spring Branch Rd (Former Welcome Ma S&ME Project No. 4305-19-161	art), Dunn, NC			BORII	NG LOG	B-4			
DATE DRIL	I ED:	Monday, October 21, 2019	BORING DEPTH (FT):	10							
				10							
DRILL RIG:		Geoprobe 54DT	WATER LEVEL:								
DRILLER:		Troxler Geologic, Inc.	CAVE-IN DEPTH:								
HAMMER	TYPE:	Not Applicable	LOGGED BY:	J. Honeyo	utt						
SAMPLING	METHOD:	Macro-Core Sampler	NORTHING:								
DRILLING I	METHOD:	Macro-Core Sampler (3-in. OD)	EASTING:								
DEPTH (feet)	GRAPHIC LOG	MATERIAL DESCRIPTION Silty Sand, Brown, Tan,		WATER LEVEL	SAMPLE	PID READING (PPM)	LABORATORY ANALYSES	Sample Time / 1st 6in	2nd 6in	3rd 6in	N VALUE
5 —		Clayey Sand, Orange, Tan,				2.2 2.4 2.6	No No				
		Clayey Sand, Red, Orange, Gray,			I	2.4	Yes No	1115			
10 —		Boring Terminated at 10 Ft-BGS									

PROJECT	Γ:	NCDOT I-5878 Parcel 49-601 Spring Branch Rd (Former Welcome	Mart), Dunn, NC			BORIN	NG LOG	: B-5			
		S&ME Project No. 4305-19-161	1								
DATE DRIL		Monday, October 21, 2019	BORING DEPTH (FT):	10							
DRILL RIG:		Geoprobe 54DT	WATER LEVEL:								
DRILLER:		Troxler Geologic, Inc.	CAVE-IN DEPTH:	Not Appl	icable						
HAMMER ¹	TYPE:	Not Applicable	LOGGED BY:	J. Honeyo	utt						
SAMPLING	METHOD:	Macro-Core Sampler	NORTHING:								
DRILLING I	METHOD:	Macro-Core Sampler (3-in. OD)	EASTING:								
		,						1.			
DEPTH (feet)	GRAPHIC LOG	MATERIAL DESCRIPTION		WATER LEVEL	SAMPLE	PID READING (PPM)	LABORATORY ANALYSES	Sample Time / 1st 6in	2nd 6in	3rd 6in	N VALUE
	-	ilty Sand, Gray,			I	2.7	No				
		layey Sand, Gray, Tan, Slight Petroleum Odors			I	17.6	No				
5 —		layey Sand, Red, Orange, Gray, Slight Petroleum Odors			I	71.7	Yes	1130			
					I	10.7	No				
10 —	/// _B	oring Terminated at 10 Ft-BGS			H	27.2	No				
15 — 15 — 20 — 25 — 30 — 30 —											


PROJECT:	NCDOT I-5878 Parcel 49-601 Spring Branch Rd (Former Welcome Ma	art), Dunn, NC			BORIN	NG LOG	В-6			
DATE DRILLED:	S&ME Project No. 4305-19-161 Monday, October 21, 2019	BORING DEPTH (FT):	10							
			10							
DRILL RIG:	Geoprobe 54DT	WATER LEVEL:								
DRILLER:	Troxler Geologic, Inc.	CAVE-IN DEPTH:								
HAMMER TYPE:	Not Applicable	LOGGED BY:	J. Honeyo	utt						
SAMPLING METHOD:	Macro-Core Sampler	NORTHING:								
DRILLING METHOD:	Macro-Core Sampler (3-in. OD)	EASTING:								
							_			
(feet) GRAPHIC LOG	MATERIAL DESCRIPTION		WATER LEVEL	SAMPLE	PID READING (PPM)	LABORATORY ANALYSES	Sample Time / 1st 6in	2nd 6in	3rd 6in	N VALUE
Clay	yey Sand, Brown, Gray,			ł	4.6	No				
				ł	4.4	No				
5 — Clay	yey Sand, Tan, Orange,				4.7	No				
				ł	4.2	No				
10 ///	yey Sand, Red, Orange, Gray, ing Terminated at 10 Ft-BGS			Н	4.9	Yes	1200			
15 —										

PROJEC [*]	T:	NCDOT I-5878 Parcel 49-601 Spring Branch Rd (Former Welcor				BORIN	NG LOG	В-7			
DATE DRIL	LED:	S&ME Project No. 4305-19-16 Monday, October 21, 2019		10							
			BORING DEPTH (FT):								
DRILL RIG:		Geoprobe 54DT	WATER LEVEL:								
DRILLER:		Troxler Geologic, Inc.	CAVE-IN DEPTH:								
HAMMER	TYPE:	Not Applicable	LOGGED BY:	J. Honey	cutt						
SAMPLING	G METHOD:	Macro-Core Sampler	NORTHING:								
DRILLING	METHOD:	Macro-Core Sampler (3-in. OD)	EASTING:								
								I,			
DEPTH (feet)	GRAPHIC LOG	MATERIAL DESCRIPTION		WATER LEVEL	SAMPLE	PID READING (PPM)	LABORATORY ANALYSES	Sample Time / 1st 6in	2nd 6in	3rd 6in	N VALUE
		layey Sand, Orange,			ł	4.6	No				
					ł	8.0	No				
_		layey Sand, Tan, Orange, Gray,			İ	7.6	No				
_		layey Sand, Tan, Orange, Gray, Slight Petroleum Odors			Ĭ	9.0	No				
10 —	/// B	oring Terminated at 10 Ft-BGS			11	8.8	Yes	1340			
_											
15 —											
_											
20 —											
25 —											
_											
30 —											

PROJECT:	NCDOT I-5878 Parcel 49-601 Spring Branch Rd (Former Welcome	e Mart), Dunn, NC			BORIN	NG LOG:	B-8			
	S&ME Project No. 4305-19-161									
DATE DRILLED:	Monday, October 21, 2019	BORING DEPTH (FT):	10							
DRILL RIG:	Geoprobe 54DT	WATER LEVEL:								
DRILLER:	Troxler Geologic, Inc.	CAVE-IN DEPTH:	Not Appl	icable						
HAMMER TYPE:	Not Applicable	LOGGED BY:	J. Honeyo	utt						
SAMPLING METHO	D: Macro-Core Sampler	NORTHING:								
DRILLING METHOD		EASTING:								
							1.			
(feet) (feet) GRAPHIC			WATER LEVEL	SAMPLE	PID READING (PPM)	LABORATORY ANALYSES	Sample Time / 1st 6in	2nd 6in	3rd 6in	N VALUE
	Clayey Sand, Tan, Orange, Gray,			ł	7.1	No				
5	Clayey Sand, Orange, Red,			İ	7.7	No				
	Clayey Sand, Orange, Red,			I	5.4	No				
				I	7.5	No				
10	Boring Terminated at 10 Ft-BGS			11	8.6	Yes	1400			
15 —										
20 —										
25 —										
30	•		•				•			

PROJECT:	NCDOT I-5878 Parcel 49-601 Spring Branch Rd (Former Welcome N	Mart), Dunn, NC			BORIN	NG LOG:	B-9			
DATE DRILLED:	S&ME Project No. 4305-19-161 Monday, October 21, 2019	DODING BERTIL (T	10							
		BORING DEPTH (FT):	10							
DRILL RIG:	Geoprobe 54DT	WATER LEVEL:								
DRILLER:	Troxler Geologic, Inc.	CAVE-IN DEPTH:								
HAMMER TYPE:	Not Applicable	LOGGED BY:	J. Honeyo	utt						
SAMPLING METH	OD: Macro-Core Sampler	NORTHING:								
DRILLING METHO	D: Macro-Core Sampler (3-in. OD)	EASTING:								
							1_			
DEPTH (feet)			WATER LEVEL	SAMPLE	PID READING (PPM)	LABORATORY ANALYSES	Sample Time / 1st 6in	2nd 6in	3rd 6in	N VALUE
	Clayey Sand, Tan, Orange, Gray,			I	4.7	No				
5				ł	5.6	No				
	Clayey Sand, Orange, Red,			ŧ	6.0	No				
				ł	7.9	No				
10	Boring Terminated at 10 Ft-BGS				6.9	Yes	1415			
_										
15 —										
20 —										
25 ——										
30			l	ı	l	<u> </u>	l			<u> </u>

PROJECT:	NCDOT I-5878 Parcel 49-601 Spring Branch Rd (Former Welcome Ma		BORING LOG: B-10								
DATE DRILLED:	S&ME Project No. 4305-19-161 Monday, October 21, 2019	DODING DEDTIL (ET)	10								
		BORING DEPTH (FT):	10								
DRILL RIG:	Geoprobe 54DT	WATER LEVEL:									
DRILLER:	Troxler Geologic, Inc.	CAVE-IN DEPTH:									
HAMMER TYPE:	Not Applicable	LOGGED BY:	J. Honeyo	utt							
SAMPLING METHOD:	Macro-Core Sampler	NORTHING:									
DRILLING METHOD:	Macro-Core Sampler (3-in. OD)	EASTING:									
DEPTH (feet) GRAPHIC LOG	MATERIAL DESCRIPTION		WATER LEVEL	SAMPLE	PID READING (PPM)	LABORATORY ANALYSES	Sample Time / 1st 6in	2nd 6in	3rd 6in	N VALUE	
5 — Clay	rey Sand, Black, Gray, rey Sand, Orange, Red, Gray, ng Terminated at 10 Ft-BGS		5		3.3 7.4 7.0 10.1 6.0	No No No Yes	1445				

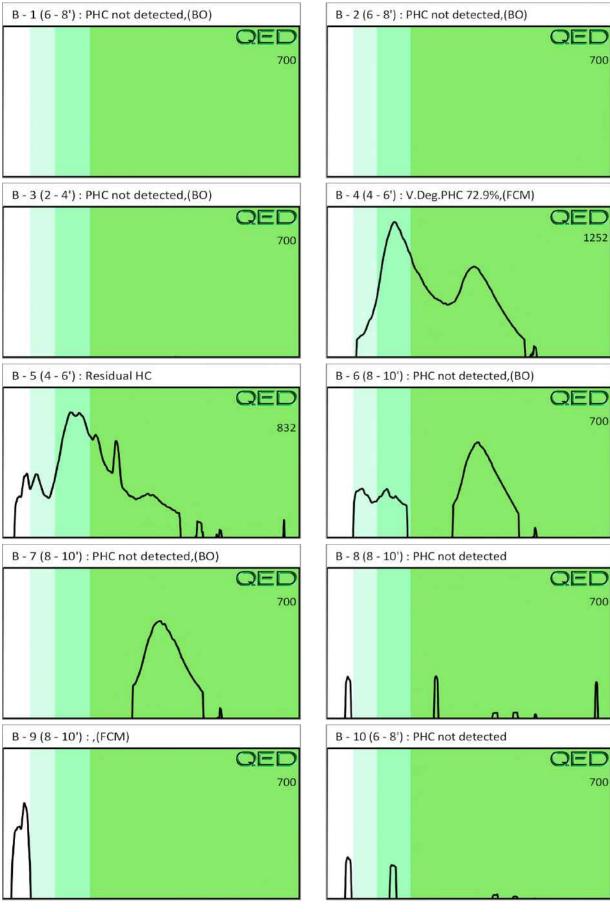
Hydrocarbon Analysis Results

Client: S&ME Address: 3201 SPRING FOREST RD

RALEIGH NC

Samples taken Samples extracted Samples analysed

Monday, October 21, 2019 Monday, October 21, 2019 Wednesday, October 23, 2019


Contact: JAMIE HONEYCUTT Operator JENN RYAN

Project: NCDOT I-5878 PARCEL 49

												F03640	
Matrix	Sample ID	Dilution used	BTEX (C6 - C9)	GRO (C5 - C10)	DRO (C10 - C35)	TPH (C5 - C35)	Total Aromatics (C10-C35)	16 EPA PAHs	BaP	Ratios		tios HC Fingerprint Matc	
										% light	% mid	% heavy	
S	B - 1 (6 - 8')	21.5	<0.54	<0.54	<0.54	<0.54	<0.11	<0.17	<0.021	0	0	0	PHC not detected,(BO)
S	B - 2 (6 - 8')	20.0	<0.5	<0.5	<0.5	< 0.5	<0.1	< 0.16	<0.02	0	0	0	PHC not detected,(BO)
S	B - 3 (2 - 4')	21.1	<0.53	<0.53	< 0.53	< 0.53	<0.11	<0.17	<0.021	0	0	0	PHC not detected,(BO)
S	B - 4 (4 - 6')	21.3	<0.53	<0.53	0.53	0.53	0.48	<0.17	<0.021	0	72.4	27.6	V.Deg.PHC 72.9%,(FCM)
S	B - 5 (4 - 6')	21.5	<0.54	<0.54	<0.54	0.28	0.28	<0.17	<0.021	0	93.6	6.4	Residual HC
S	B - 6 (8 - 10')	19.4	<0.49	<0.49	<0.49	<0.49	<0.1	<0.16	<0.019	0	0	100	PHC not detected,(BO)
S	B - 7 (8 - 10')	20.2	<0.5	<0.5	<0.5	<0.5	<0.1	<0.16	<0.02	0	0	100	PHC not detected,(BO)
S	B - 8 (8 - 10')	21.8	<0.55	<0.55	<0.55	<0.55	<0.11	<0.17	<0.022	0	0	0	PHC not detected
S	B - 9 (8 - 10')	11.5	<0.29	<0.29	<0.29	<0.29	<0.06	<0.09	<0.011	0	0	0	,(FCM)
S	B - 10 (6 - 8')	20.3	<0.51	<0.51	<0.51	<0.51	<0.1	<0.16	<0.02	0	0	0	PHC not detected
	Initial C	alibrator (QC check	OK					Final F	CM QC	Check	OK	102.4 %

Results generated by a QED HC-1 analyser. Concentration values in mg/kg for soil samples and mg/L for water samples. Soil values are not corrected for moisture or stone content Fingerprints provide a tentative hydrocarbon identification. The abbreviations are:- FCM = Results calculated using Fundamental Calibration Mode: % = confidence for sample fingerprint match to library (SBS) or (LBS) = Site Specific or Library Background Subtraction applied to result : (PFM) = Poor Fingerprint Match : (T) = Turbid : (P) = Particulate present

Project: NCDOT I-5878 PARCEL 49

3201 Spring Forestike DUNN, NC DODO IVIDI VIII IN TETODO LO LO Address: MARBIONC Bldg, Suite 2003 Wilmington, NC 28409 Contact: Project Ref .: HCOGT I.5878 Parcel 49 Each UVF sample will be analyzed for total BTEX, GRO, DRO, TPH, PAH total Moraritto smeine.com Email: aromatics and BaP, Standard GC RAPID ENVIRONMENTAL DIAGNOSTICS Phone #: 90 977-7614 Analyses are for BTEX and Chlorinated James T Honor St Solvents: VC, 1,1 DCE, 1,2 cis DCE, 1,2 Collected by: trans DCE, TCE, and PCE. Specify target CHAIN OF CUSTODY AND ANALYTICAL REQUEST FORM analytes in the space provided below. **Sample Collection Analysis Type TAT Requested** Initials Sample ID Total Wt. Tare Wt. Sample Wt. Date/Time 24 Hour 48 Hour UVF GC 12.1 569 10 al-19/0945 JTH 68' 44.8 13.0 68 57.8 44.8 1000. 450 1030 2-4 12.2 45.2 4-6 1115 57.2 45-1 12.1 4-10-1130 574 134 44.0 1200 B 6 8-10 3.7 57.5 12.9 44-6 8-10-1340 BR 56.5 44.6 8-10-1400 573 12.2 45-1 B9 1415 8-10-57.7 12.8 1445 44.9 6-8-**COMMENTS/REQUESTS: TARGET GC/UVF ANALYTES:** Date/Time **RED Lab USE ONLY** Relinguished by Accepted by MN 1220 10 249 1 1900 Refinguished by Accepted by Date/Time

27

Ref. No

January 9, 2020

North Carolina Department of Transportation Geotechnical Unit Mail Service Center 1592 Raleigh, North Carolina 27699-1592

Attention: Mr. Craig Haden email: cehaden@ncdot.gov

Reference: Preliminary Site Assessment Report

NCDOT Project I-5878, WBS Element 53078.1.1

Parcel 49B-Allen Walker Former Texaco

Vacant Lot SE Corner of Pope Road and Bud Hawkins Road

Dunn, Harnett County, North Carolina

S&ME Project 4305-19-161

Dear Mr. Haden:

S&ME, Inc. (S&ME) is submitting this Preliminary Site Assessment (PSA) Report to the North Carolina Department of Transportation (NCDOT). This report presents the background/project information, field activities, findings, conclusions, and recommendations. These services were performed in general accordance with S&ME Proposal No. 43-1900576 REV-01 dated August 9, 2019, and Contract Number 7000018853 dated April 12, 2018 between NCDOT and S&ME, Inc., authorized by NCDOT in its September 5,2019 Notice to Proceed Letter.

♦ Background/Project Information

Based on NCDOT's July 24, 2019, Request for Technical and Cost Proposal, the PSA was conducted within the NCDOT right-of-way (ROW) and/or easement as indicated on the preliminary plan sheets provided by NCDOT at the following property:

NCDOT Parcel No.	Property Owner	Site Address
49B	Jessie Anna Walker	(Allen Walker Former Texaco)
		Vacant Lot SE Corner of Pope Rd (aka Spring Branch
		Road) and Bud Hawkins Rd, Dunn, NC

The property was previously developed with a gasoline/service station identified as Allen Walker Former Texaco. At the time of our field activities, the majority of the property was an agricultural field. The area of the property previously occupied by the gasoline/service station was a gravel vacant lot. The former gasoline/service station building had been razed. The petroleum underground storage tanks (USTs) that the Allen Walker Former Texaco operated were previously removed. Information regarding the former UST system listed for this site is provided in the following table:

UST Facility ID No. Not Provided

Number of Tanks	Contents	Capacity (gallons)	Date Installed	Date Removed				
1	Heating Oil	1,000	Not Provided	1/8/2001				
Additional USTs were located on the site. Information regarding their numbers, sizes, installation/removal dates								
and previous contents were not provided.								

The property is listed with one North Carolina Department of Environmental Quality (NCDEQ) Incident (Incident #22976) associated with petroleum releases from USTs previously located on the property. According to the *Subsurface Investigation Report* dated April 27, 2000 prepared by Marshall Miller and Associates and the *1,000-Gallon Heating Oil Tank Closure* dated February 26, 2001 prepared by EMS, groundwater was measured in a temporary monitor well installed within the former UST basin area in August 2000 at a depth of 8.00 feet below ground surface (ft.-bgs). Naphthalene was reported in groundwater samples collected from the temporary well in 2000 at a concentration exceeding its 15A NCAC 2L Groundwater Quality Standards (2L Standard). In August 2000, soil samples collected from the former UST basin at a depth of four feet below ground surface (ft.-bgs) reported Total Petroleum Hydrocarbons-Diesel Range Organics and Gasoline Range Organics (TPH-DRO and TPH-GRO) at concentrations exceeding their North Carolina TPH Action Levels. In 2001, TPH-DRO was also reported in soil samples collected at a depth of 6.75 ft.-bgs during the removal of a 1,000-gallon heating oil tank located on the property but outside the ROW/easement. Copies of pertinent information obtained from the above referenced reports are included in **Appendix I.**

The PSA included a geophysical survey and subsequent limited soil sampling (13 soil borings up to 10 ft.-bgs), within accessible areas of the proposed ROW/easement in preparation for construction activities. **Figure 1** shows the vicinity and site location, and **Figure 2** shows the site and boring locations. Soil sampling results are shown on **Figure 3**.

Field Services

Prior to field activities, a site specific Health and Safety Plan was prepared as required by the Occupational Health and Safety Act (OSHA). Underground utilities were located and marked by the North Carolina One-Call Service. A private utility locator (East Coast Underground, LLC) was also used to locate and mark underground utilities.

Geophysical Survey

On July 25, 2019, S&ME completed Time Domain Electromagnetic (TDEM) and Ground Penetrating Radar (GPR) surveys within accessible areas of the proposed ROW/easement at Parcel 49B. Brief descriptions of these complementary geophysical techniques are presented in the following paragraphs.

Time Domain Electromagnetics (TDEM)

TDEM measures the electrical conductivity of subsurface materials and discriminates between moderately conductive earth materials and very conductive metallic targets within the shallow subsurface. The conductivity is determined by transmitting a time-varying magnetic pulse into the subsurface and measuring the amplitude and phase shift of the secondary magnetic field. The secondary magnetic field is created when the conductive materials become an inductor as the primary magnetic field is passed through them. TDEM data are acquired continuously at a walking pace typically along a series of parallel or perpendicular lines. The system generates audible and visual indications when metallic targets are encountered. These measurements can also be supported with a global positioning system (GPS) which is output directly into the TDEM data file.

We used a Geonics Limited EM-61 MK2 TDEM system in general accordance with ASTM D6820 "Standard Guide for Use of the Time Domain Electromagnetic Method for Subsurface Investigation." Data was collected along lines spaced at approximately five feet using a Juniper® Systems GeodeTM sub-meter GPS as positioning support. The presence of thick vegetation/crops and heavy construction equipment within the survey area, however, prevented TDEM data collection in a significant portion of the site. The approximate TDEM data collection paths are presented in **Figure 4.** Golden Software's Surfer® program was used to grid and plot the data (**Figures 5 and 6**). The TDEM data has been presented as Plots A and B in order to provide both opaque and semi-transparent views, respectively.

Ground Penetrating Radar (GPR)

GPR transmits electromagnetic waves into the subsurface from an antenna at a specific frequency and measures the time for wave reflections to be received by interfaces between materials with differing material properties (e.g. soil/metal, etc.). The intensity of the reflected GPR wave is a function of the contrast in the material properties (i.e. dielectric permittivity) at the interface, the conductivity of the material that the wave is traveling through, and the frequency of the signal.

We used a Geophysical Survey Systems, Inc. (GSSI) SIR® 4000 GPR system equipped with a 350 MHz antenna in general accordance with ASTM D6432 "Standard Guide for Using the Surface Ground Penetrating Radar Method for Subsurface Investigation" to further characterize anomalies/features identified during the TDEM survey.

A total of 26 GPR profiles (Lines 1 through 26) were collected for documentation (**Figure 7**). The data was post-processed using the GSSI Radan® 7 GPR software program for additional analysis.

Geophysical Findings

Responses indicative of a potential UST were not identified in the geophysical data sets collected at the site. Five anomalous features unrelated to known surficial targets were identified in the geophysical data sets (Anomalies A through E; **Figures 6 and 7**). Anomalies A, B, C, and D are characterized by relatively small high amplitude GPR responses located within the upper two ft.-bgs while Anomaly E is characterized by two, vertically aligned, relatively small high amplitude GPR responses located at about 0.5 ft.-bgs and 4.5 ft.-bgs, respectively. Each of the identified anomalies may be related to isolated buried metallic objects. The anomalies were marked in the field using white spray paint. Example GPR profiles are presented in **Figures 8 through 12.**

Soil Sampling

On October 18, 2019, Troxler Geologic, Inc. (Troxler's) drill crew utilized a track mounted Geoprobe® rig to advance 13 soil borings (B-1 through B-13) and to collect soil samples within accessible areas of the proposed ROW/easement at Parcel 49B. The approximate location of the soil borings are shown in **Figure 2**. A photographic log is included in **Appendix II**. Troxler's drill crew advanced the Geoprobe® borings up to a depth of approximately 10 ft.-bgs. During the advancement of the soil borings, groundwater was not encountered. Soil samples were continuously collected in four-foot long disposable acetate-plastic sleeves that line the hollow stainless-steel sample probes. Soil recovered from the sleeves was classified on-site by S&ME personnel and screened with a Photoionization Detector (PID) at approximately two foot depth intervals to measure relative headspace concentrations of volatile organic compounds (VOCs).

VOC headspace readings were obtained from an aliquot of each soil sample that was placed in a re-sealable bag. Another portion of the sample was placed in a separate re-sealable bag and stored in an insulated container with ice for possible laboratory analyses. After waiting approximately 15 minutes to allow the sample to reach ambient temperature and headspace equilibrium, the PID probe was inserted into the bag to obtain a headspace reading. A summary of the PID readings and logs of the soil borings are included in **Appendix III.**

Petroleum odors and elevated PID readings were noted at boring B-8, which was located within the former UST basin area, starting at a depth of approximately six ft.-bgs and extending to boring termination at 10 ft-bgs. An elevated PID reading but no petroleum odor was noted at boring B-13 located near the former UST basin at a depth of eight to ten ft.-bgs. Petroleum odors and elevated PID readings were not noted at the other borings on the site. Therefore, soil samples were selected from boring B-8 and B-13 at the eight to ten foot depth interval. Various soil samples at varying depth intervals were selected from the remaining borings. The soil samples were placed into laboratory supplied containers and transported to RED Lab, LLC (Red Lab) in an insulated cooler with ice for analysis. A total of 13 soil samples (one soil sample per boring) were analyzed by RED Lab for TPH-GRO and TPH-DRO using ultra-violet fluorescence (UVF) spectroscopy with product (fuel) identification.

Upon completion of the soil sampling, the soil borings were backfilled with bentonite pellets and soil cuttings. Investigative derived wastes (IDW), such as additional soil cuttings generated during the soil boring advancement and decontamination water, were spread on the ground in accordance with the procedures specified by NCDEQ. Used gloves, re-sealable bags and acetate sleeves were bagged and disposed off-site.

Soil Analytical Results

Based upon analytical results of soil samples analyzed by RED Lab using UVP spectroscopy, TPH-GRO and TPH-DRO were reported at concentrations exceeding their respective North Carolina TPH Action Levels. TPH-GRO and TPH-DRO were reported in boring B-8 at the eight to ten foot depth interval, at concentrations of 293.3 milligrams per kilograms (mg/kg) and 713.9 mg/kg, respectively, which exceed their North Carolina TPH Action Levels of 50 mg/kg and 100 mg/kg, respectively. TPH-GRO and TPH-DRO were also reported in borings B-13 at the eight to ten foot depth interval, at concentrations slightly above the laboratory reporting limits but well below their respective North Carolina TPH Action Levels. TPH-DRO was reported in borings B-4 at the two to four foot depth interval and boring B-7 at the eight to ten foot depth interval, at concentrations slightly above the laboratory reporting limits but well below its North Carolina TPH Action Level. TPH-GRO and TPH-DRO were not reported at concentrations exceeding the laboratory method reporting limits at the remaining soil samples. A summary of the

soil analytical results is presented in **Table 1** and shown on **Figure 3**. A copy of the laboratory analytical report provided by RED Lab is presented in **Appendix IV**.

Conclusion and Recommendations

The geophysical survey identified five anomalies (Anomalies A through E) which may be related to isolated buried metallic objects. Responses indicative of a potential UST were not identified in the geophysical data sets collected at the site.

S&ME advanced 13 soil borings (B-1 through B-13) to a depth of up to approximately 10 ft.-bgs at the site. Petroleum odors and elevated PID readings were noted at boring B-8, which was located within the former UST basin area, starting at a depth of approximately six ft.-bgs and extending to boring termination at 10 ft-bgs. Elevated PID readings but no petroleum odors were also noted at boring B-13, which was located outside the former UST basin area, at the eight to ten ft.-bgs interval. Selected soil samples from the soil borings were analyzed for TPH-GRO and TPH-DRO using UVF spectroscopy.

TPH-GRO and TPH-DRO were reported at boring B-8 at the eight to ten foot depth interval at concentrations exceeding their North Carolina TPH Action Levels. TPH-GRO and TPH-DRO were also reported in borings B-13 at the eight to ten foot depth interval, at concentrations slightly above the laboratory reporting limits but well below their respective North Carolina TPH Action Levels. TPH-DRO was reported in borings B-4 at the two to four foot depth interval and boring B-7 at the eight to ten foot depth interval, at concentrations slightly above the laboratory reporting limits but well below its North Carolina TPH Action Level. TPH-GRO and TPH-DRO were not reported at concentrations exceeding the laboratory method reporting limits at the remaining soil samples. During the soil boring advancement, groundwater was not encountered. Therefore, groundwater sampling was not performed.

However, in 2000 groundwater was reported within the former UST excavation area at a depth of 8.00 ft.-bgs with naphthalene reported in the groundwater above its 2L Standard. In 2000, TPH-GRO and TPH-DRO were reported in soil samples collected within the UST basin at a depth of four ft.-bgs at concentrations exceeding their North Carolina TPH Action Levels. In 2001, TPH-DRO was also reported at concentrations exceeding its North Carolina TPH Action Level in soil samples collected at a depth of 6.75 ft.-bgs during the removal of a 1,000-gallon heating oil UST. However, the heating oil tank was located outside the ROW/easement.

Based on the findings of the geophysical survey, analytical results of soil samples and analytical results of previous soil and groundwater samples, it is likely that during construction, NCDOT may encounter soil and groundwater impacted with petroleum at the site. Petroleum impacted soil at concentrations exceeding the North Carolina TPH Action Levels may be encountered within the vicinity of boring B-8 located within the former UST basin. Assuming that a section of petroleum impacted soil approximately four feet thick, 40 feet in diameter at a depth of six to ten ft.-bgs; up to 190 cubic yards of soil near boring B-8 may be impacted. According to previous sampling, petroleum impacted soil may be encountered within the UST basin area at a shallower depth (four ft.-bgs), but our field observations and laboratory data did not identify petroleum impacted soil within this area at a shallower depth.

If construction excavations extend deeper than 10 ft.-bgs, petroleum impacted groundwater may also be encountered within boring B-8.

If petroleum stained or odorous soils are encountered during construction, these soils should be properly handled and disposed at a licensed facility. If construction dewatering is required, petroleum impacted groundwater must be properly disposed or treated at a licensed facility.

S&ME recommends maintaining an awareness level for the presence of petroleum in the soil and groundwater at the site for the safety of workers and the public.

Limitations

The results of this preliminary investigation are limited to the boring locations presented herein. The results of this Preliminary Site Assessment are not all inclusive and may not represent existing conditions across the entire property. These results only reflect the current conditions at the locations sampled on the date this Preliminary Site Assessment was performed. This report has been prepared in accordance with generally accepted environmental engineering and geophysical practice for specific application to this project. The conclusions and recommendations contained in this report are based upon applicable standards of our practice in this geographic area at the time this report was prepared. No other warranty, expressed or implied, is made.

The geophysical methods used for this survey have inherent limitations. Site metallic features (e.g., surficial debris, reinforced concrete, utilities, etc.) and overhead transmission lines can produce a false electromagnetic response and may mask subsurface features. The depth of exploration of the GPR signal is highly site specific and is greatly limited by signal attenuation (absorption) of the subsurface materials. Signal attenuation is dependent upon the electrical conductivity of the subsurface materials. Signal attenuation is greatest in materials with relatively high electrical conductivities such as clay soils, and lowest in relatively low conductivity materials such as unsaturated sand. For this project location, the GPR data sets appear to have a maximum depth of penetration of about five ft.-bgs.

Regardless of the thoroughness of a geophysical study, there is always a possibility that actual conditions may not match the interpretations. The results should be considered accurate only to the degree implied by the methods used and the method's limitations and data coverage. Accordingly, the possibility exists that not all features at a project site will be located due to either subsurface soil conditions or the occurrence of features outside the lateral limits and below the depth of penetration of the methods used. As with most surface geophysical methods, resolution of the subsurface will also decrease with depth. As such, the size and/or contrast of features compared to the imaged subsurface media must be significant enough to produce the anticipated response. The location and/or determination (or the lack thereof) of potential buried features is based on our review of the provided information and of the geophysical survey. Under no circumstances does S&ME assume any responsibility for damages resulting from the presence of subsurface features that may exist but were not identified by our survey.

This Preliminary Site Assessment was performed solely for NCDOT regarding the above-referenced site and assessment area. This report is provided for the sole use of NCDOT. Use of this report by any other parties will be at such party's sole risk. S&ME disclaims liability for any such use or reliance by third parties. The observations presented in this report are indicative of conditions during the time of the assessment and of the specific areas referenced.

Closing

S&ME appreciates the opportunity to provide these services to you. If you have any questions or comments regarding this report, please contact us at your convenience.

Sincerely,

S&ME, Inc.
DocuSigned by:

Danie Honeyouth

Jamie FAEC25F488cutt

Environmental Professional

jhoneycutt@smeinc.com

Michael W. Pfeifer Senior Project Manager mpfeifer@smeinc.com

Thomas P. Raymond, P.E., P.M.P. Senior Consultant traymond@smeinc.com

Attachments:

Table 1: Summary of Soil Sampling Results

Figure 1: Vicinity Map

Figure 2: Site Map

Figure 3: Soil Constituent Map

Figure 4: TDEM Path Location Plan

Figure 5: TDEM Data Plot A Figure 6: TDEM Data Plot B

Figure 7: Geophysical Anomaly Location Plan

Figure 8: Example GPR Data – Lines 8 and 9

Figure 9: Example GPR Data – Lines 18 and 19 **Figure 10:** Example GPR Data – Lines 6 and 7

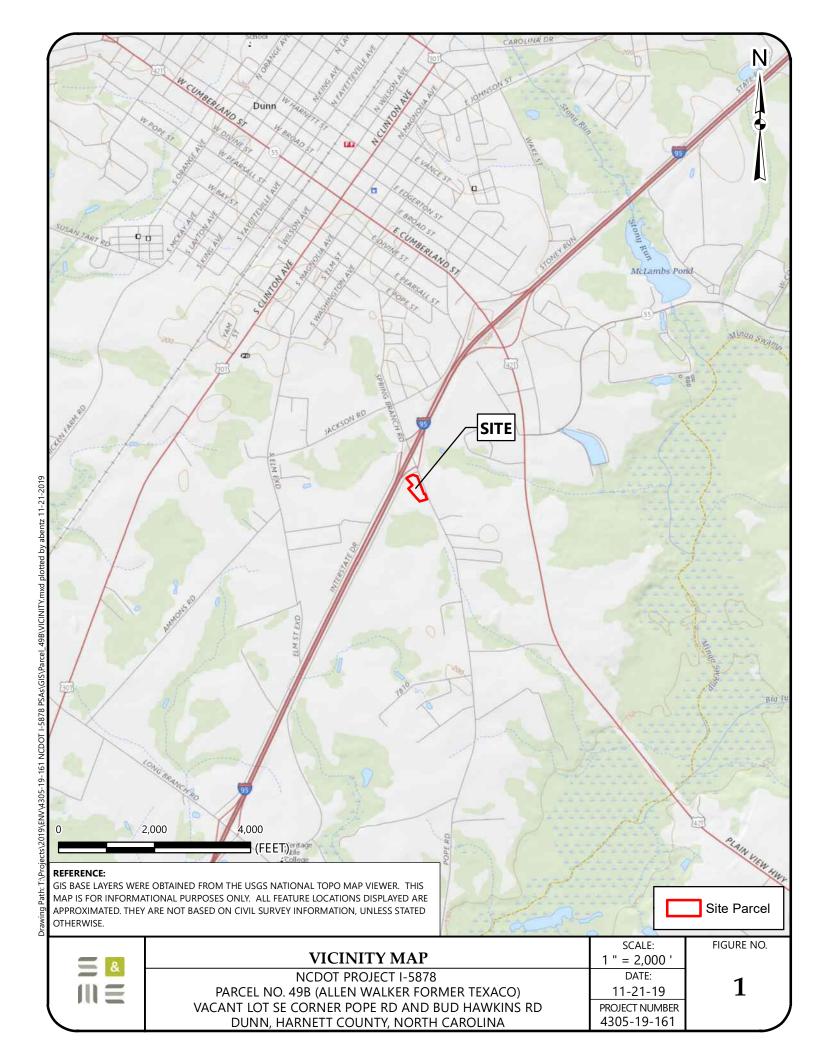
Figure 11: Example GPR Data – Lines 3 and 4

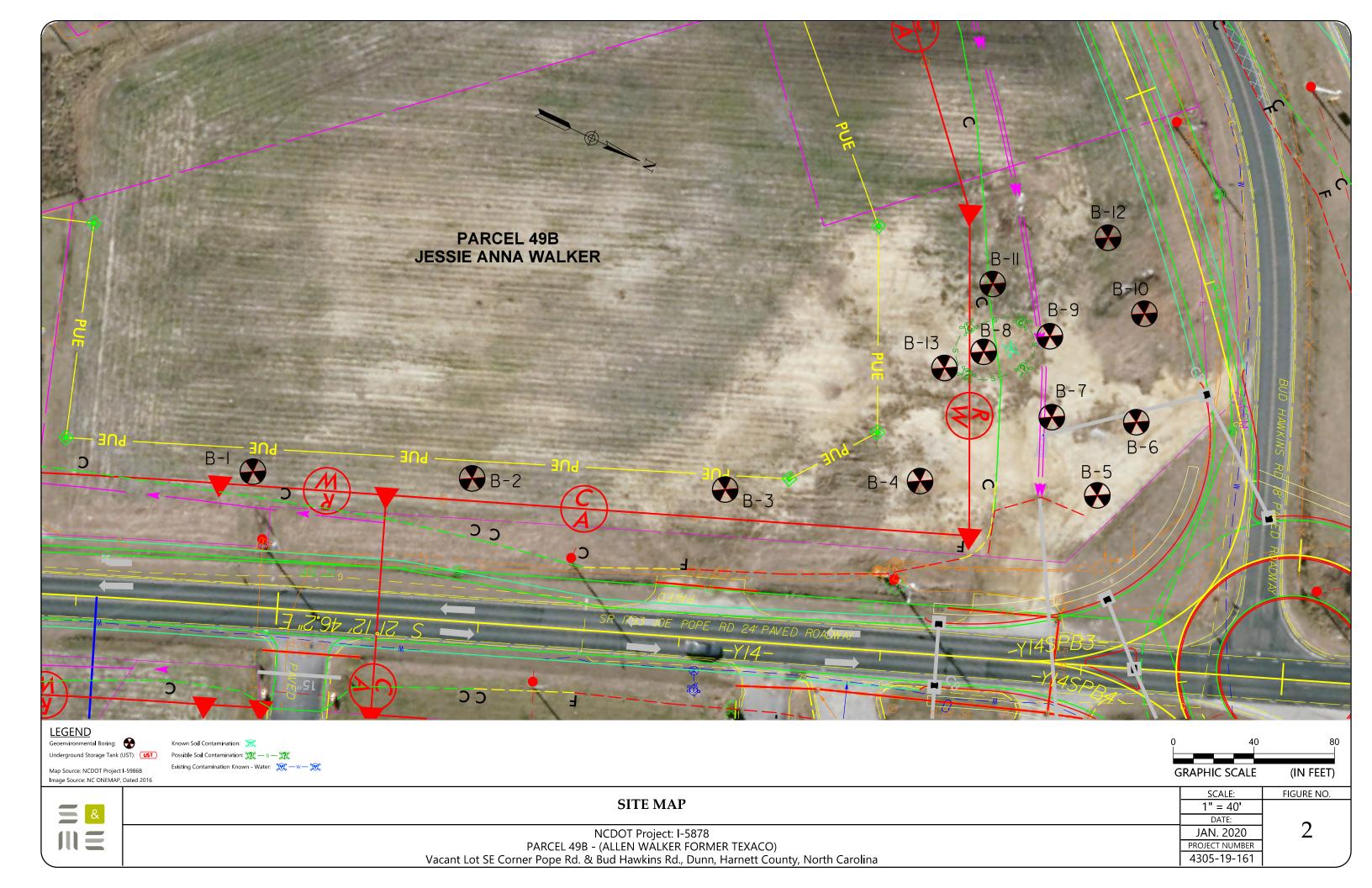
Figure 12: Example GPR Data – Lines 1 and 2

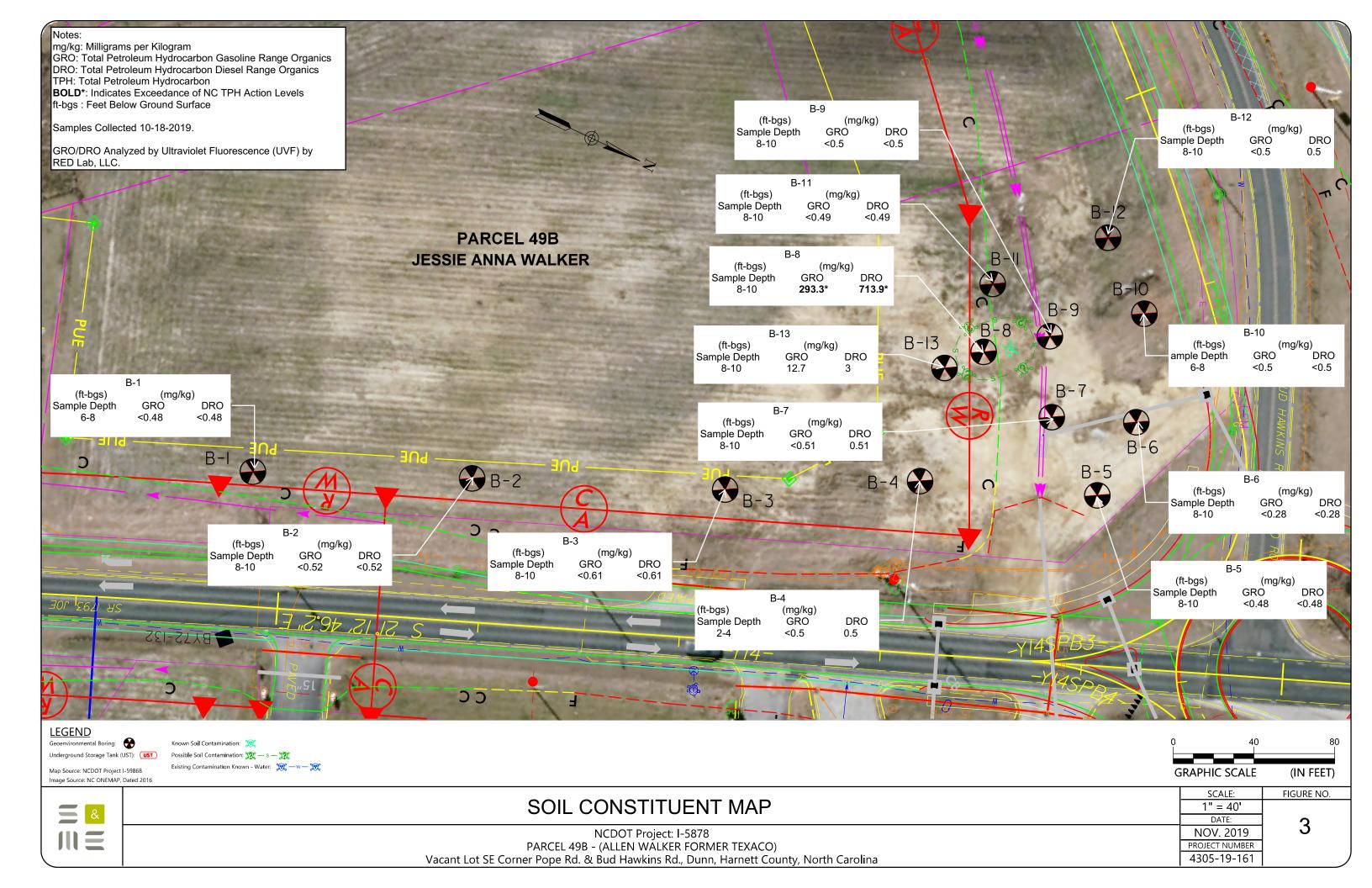
Appendix II: NCDEQ File Review
Appendix III: Photographs
Appendix IIII: Boring Logs

Appendix IV: Laboratory Analytical Reports and Chain of Custody

TABLE 1 SUMMARY OF SOIL SAMPLING RESULTS NCDOT Project I-5878


Parcel 49B - (Allen Walker Former Texaco)
Vacant Lot SE Corner Pope Rd. and Bud Hawkins Rd.
Dunn, Harnett County, North Carolina
S&ME Project No. 4305-19-161


Analytical Method→			Total Petroleum Hydrocarbons (TPH) Gasolin Range Organics (GRO) and Diesel Range Organics (DRO) by Ultraviolet Fluorescence (UVF) Spectrometry					
Sample ID	Date	Contaminant of Concern→ Sample Depth (ftbgs)	TPH-GRO	TPH-DRO				
B-1	10/18/2019	6 to 8	<0.48	<0.48				
B-2	10/18/2019	8 to 10	<0.52	<0.52				
B-3	10/18/2019	8 to 10	<0.61	<0.61				
B-4	10/18/2019	2 to 4	<0.5	0.5				
B-5	10/18/2019	8 to 10	<0.48	<0.48				
B-6	10/18/2019	8 to 10	<0.28	<0.28				
B-7	10/18/2019	8 to 10	<0.51	0.51				
B-8	10/18/2019	8 to 10	293.3	713.9				
B-9	10/18/2019	8 to 10	<0.5	<0.5				
B-10	10/18/2019	6 to 8	<0.5	<0.5				
B-11	10/18/2019	8 to 10	<0.49	<0.49				
B-12	10/18/2019	8 to 10	<0.5	<0.5				
B-13	10/18/2019	8 to 10	12.7	3				
Notae	orth Carolina T	PH Action Levels	50	100				


Notes:

- 1. UVF analysis performed by RED Lab, LLC
- 2. Concentrations are reported in milligrams per kilogram (mg/Kg).
- 3. ft.-bgs:- feet below ground surface.
- 4. Concentrations exceeding the laboratory's reporting limits are shown in **BOLD** fields.
- Concentrations exceeding the North Carolina TPH Action Levels are shown in Shaded and BOLD fields.

LEGEND

Approximate TDEM Path

REFERENCE:

GOOGLE EARTH PRO AERIAL PHOTOGRAPH (DATED MARCH 04, 2018)

M≡

TDEM PATH LOCATION PLAN

SCALE: AS SHOWN

PARCEL #49B - (ALLEN WALKER FORMER TEXACO) VACANT LOT SE CORNER POPE ROAD & BUD HAWKINS ROAD, DUNN, HARNETT COUNTY, NORTH CAROLINA

DATE: 1/7/2020

PROJECT NUMBER 4305-19-161

FIGURE NO.

Approximate Requested Survey Area

GOOGLE EARTH PRO AERIAL PHOTOGRAPH (DATED MARCH 04, 2018)

TDEM DATA PLOT A

NCDOT PROJECT: 1-5878
PARCEL #49B - (ALLEN WALKER FORMER TEXACO)
VACANT LOT SE CORNER POPE ROAD & BUD HAWKINS ROAD, DUNN, HARNETT COUNTY, NORTH CAROLINA

SCALE: AS SHOWN

DATE: 1/7/2020

PROJECT NUMBER 4305-19-161

FIGURE NO.

5

REFERENCE:

GOOGLE EARTH PRO AERIAL PHOTOGRAPH (DATED MARCH 04, 2018)

NCDOT PROJECT: 1-5878 PARCEL #49B - (ALLEN WALKER FORMER TEXACO) VACANT LOT SE CORNER POPE ROAD & BUD HAWKINS ROAD, DUNN, HARNETT COUNTY, NORTH CAROLINA

Conductivity (mV) 1000 800 700 Manhole Surface Debris Manhole D Manhole Culvert **Drop Inlet** Manhole Google Earth

SCALE: AS SHOWN

TDEM DATA PLOT B

DATE: 1/7/2020

PROJECT NUMBER 4305-19-161

FIGURE NO.

6

LEGEND

Approximate Location of Geophysical Anomaly

Approximate Location of Possible Utility

LEGEND

Approximate Location of Geophysical Anomaly

REFERENCE:

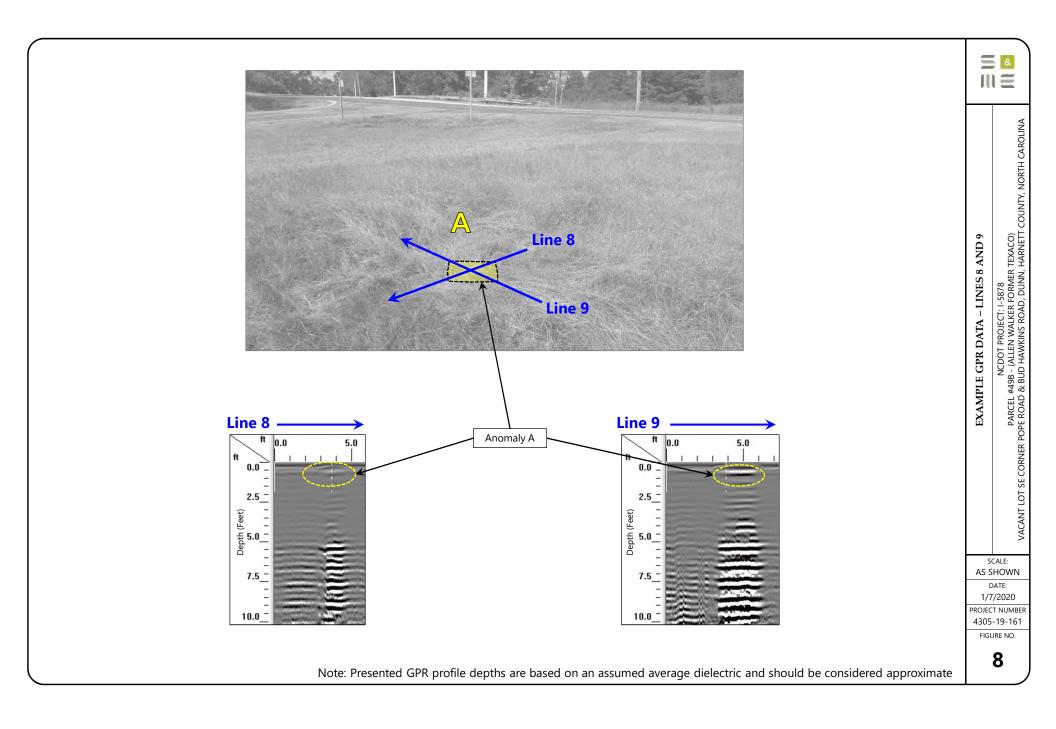
Approximate Location of Possible Utility

GOOGLE EARTH PRO AERIAL PHOTOGRAPH (DATED MARCH 04, 2018)

GEOPHYSICAL ANOMALY LOCATION PLAN

PARCEL #49B - (ALLEN WALKER FORMER TEXACO) VACANT LOT SE CORNER POPE ROAD & BUD HAWKINS ROAD, DUNN, HARNETT COUNTY, NORTH CAROLINA

SCALE: AS SHOWN


DATE: 1/7/2020

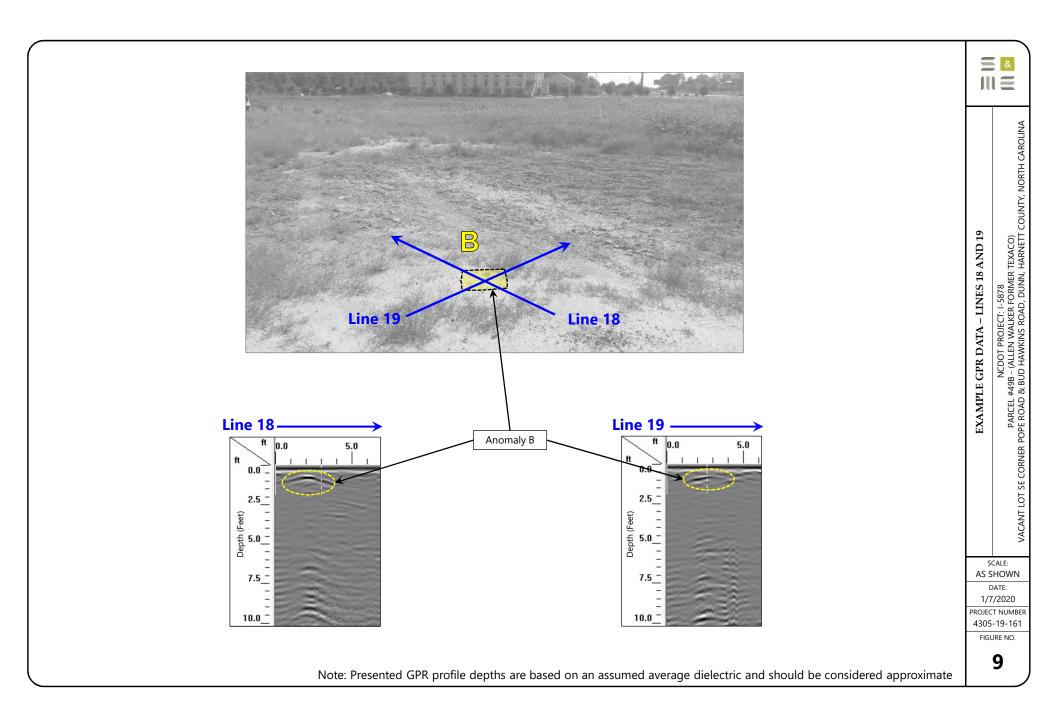
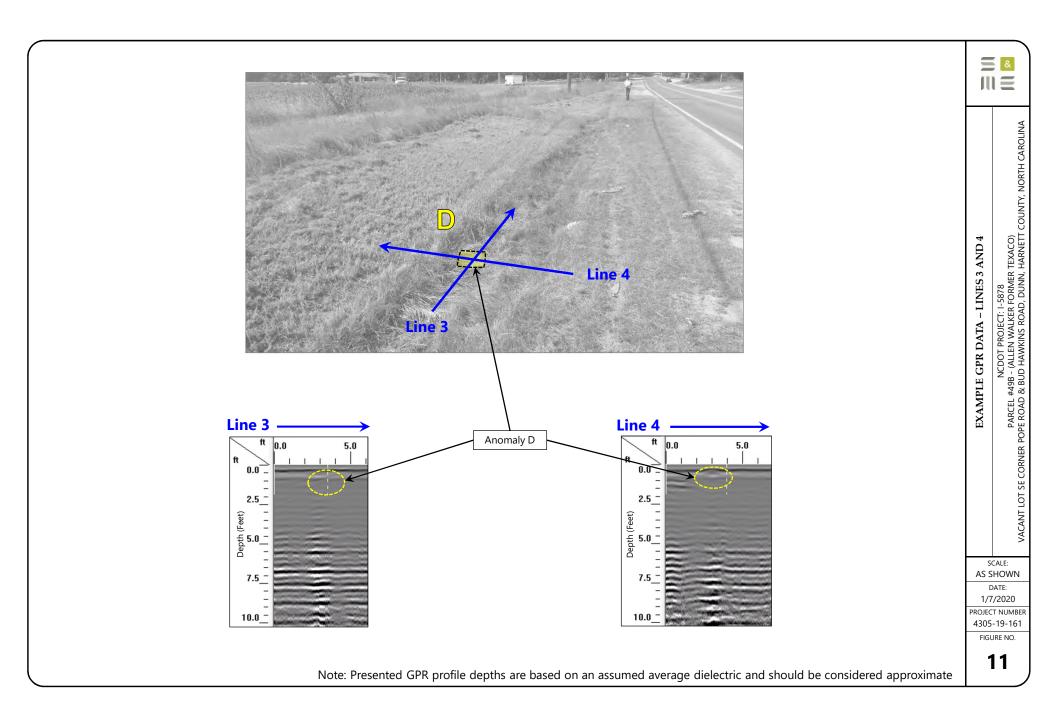
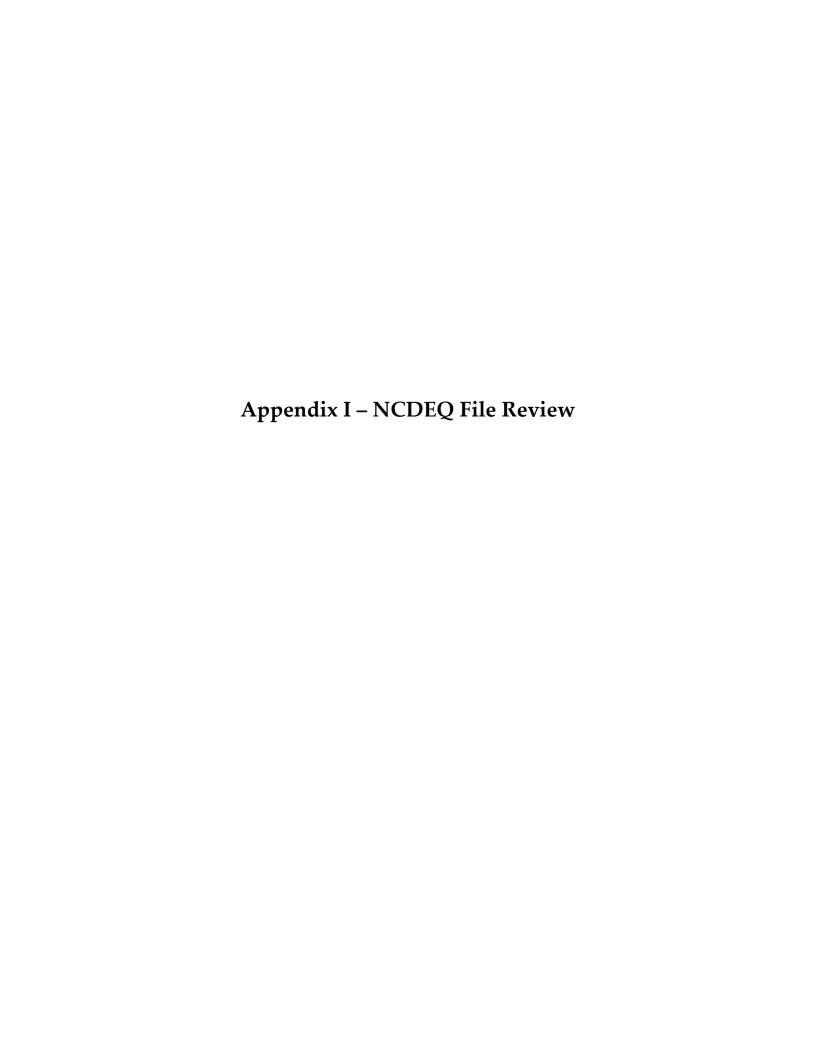

PROJECT NUMBER 4305-19-161

FIGURE NO.




Approximate Location of GPR Profile

MECEWED

OCT 2 4 2000

FAYETTEVILLE REG. OFFICE

SUBSURFACE INVESTIGATION REPORT
Allen Walker
Former Texaco
Pope Road and Bud Hawkins Road
Dunn, Harnett County, North Carolina

April 27, 2000

Prepared For:

ALLEN WALKER
PO Box 102
Leesburg, Virginia 20178-0102
(703) 771-4259

Prepared By:

MARSHALL MILLER & ASSOCIATES, INC.

5900 Triangle Drive Raleigh, North Carolina 27613 (919) 786-1414 MM&A Project No. E70100

Prepared By:

Robert Marble

Staff Scientist

Reviewed By:

Lawrence M. George, P.G.

Technical Director/Senior Scientist

TABLE 1

SOIL ANALYTICAL DATA FORMER TEXACO

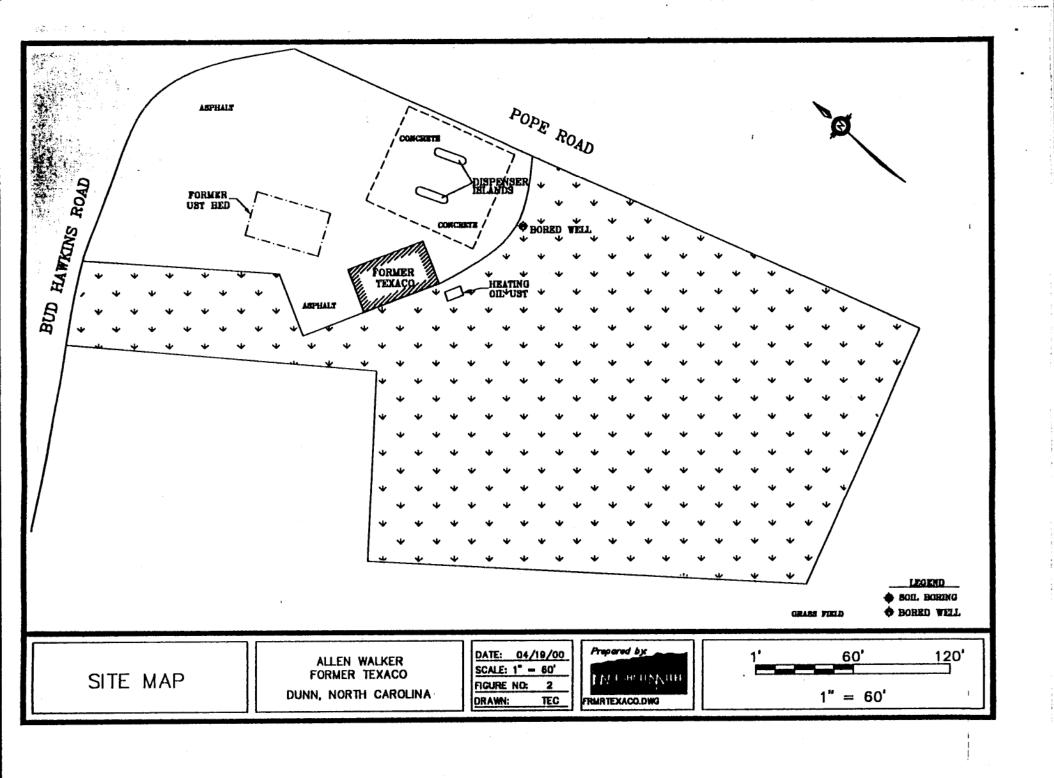
Constituent	B2 0-4'	Reportable Concentration (parts per million)					
TPH 3550	283	16	10 ppm				
TPH 5030	190	0	10 ppm				

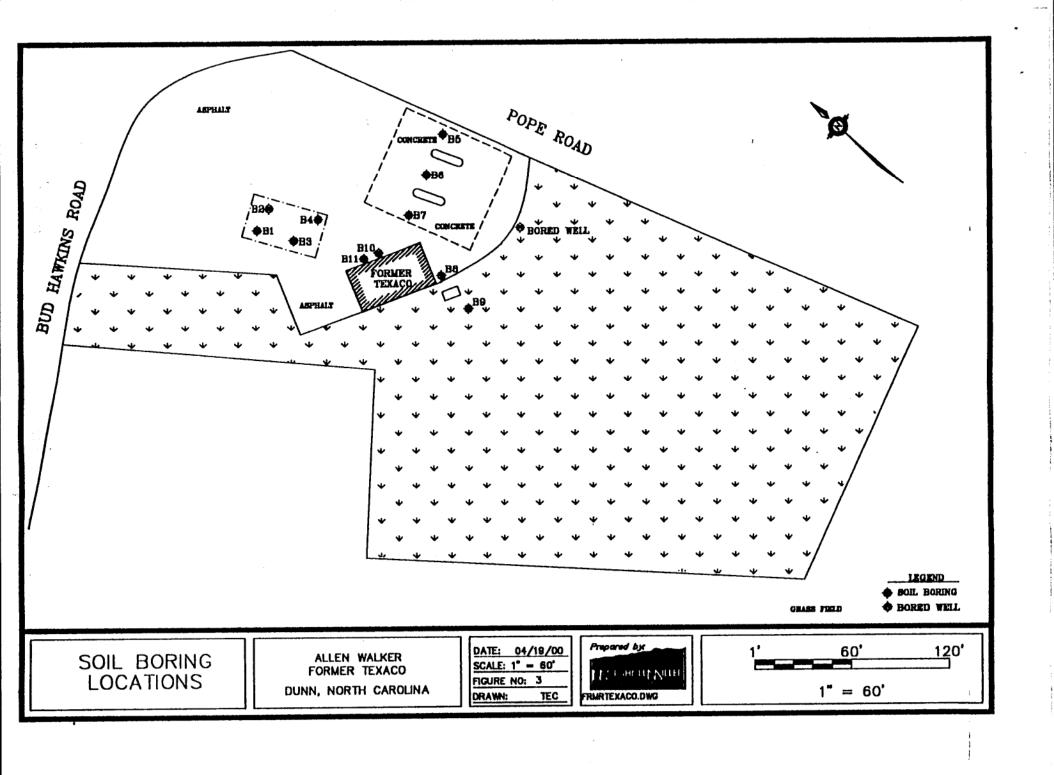
Results reported in milligrams per kilogram (µg/kg). BOLD: Exceeds reportable concentration.

TABLE 2

GROUNDWATER ANALYTICAL DATA FORMER TEXACO

Constituent	B2	B5	2L Standard	GCL
Volatile Organic Compound	is (VOCs)			
Ethylbenzene	19	BQL ^(0.5)	29	29.000
Isopropylbenzene	7	BQL ^(0.5)	70	25,000
Naphthalene	110	BQL ^(0.5)	21	15,500
n-Propylbenzene	22	. BQL ^(0.5)	70	30,000
1,2,4-Trimethylbenzene	26	0.6	350	28,500
1.3.5-Trimethylbenzene	8	BQL ^(0.5)	350	25.000
Xylenes	11	BQL ^(1.5)	530	87,500
Polynuclear Aromatic Hydr	ocarbons (PAHs)			
1-Methylnaphthalene	30	BQL ⁽¹⁰⁾	NA	NA
2-Methylnaphthalene	48	BQL ⁽¹⁰⁾	NA	12,500
Naphthalene	44	BQL ⁽¹⁰⁾	21	15,500


Results reported in micrograms per liter (µg/L).


BOLD: Exceeds 2L standards.

NA: Not Applicable

Note: Only detected parameters are shown in this table.

February 26, 2001

North Carolina Department of Environment and Natural Resources Division of Waste Management - UST Section Fayetteville Regional Office Systel Building, Suite 714 Fayetteville, NC 28301

Re: 1-1000 Gallon Heating Oil Underground Storage Tank Removal

Former Allen Walker Texaco

Interstate 95 and Pope Road, Dun?"/Harnett County, North Carolina

Dear Sir/Madam:

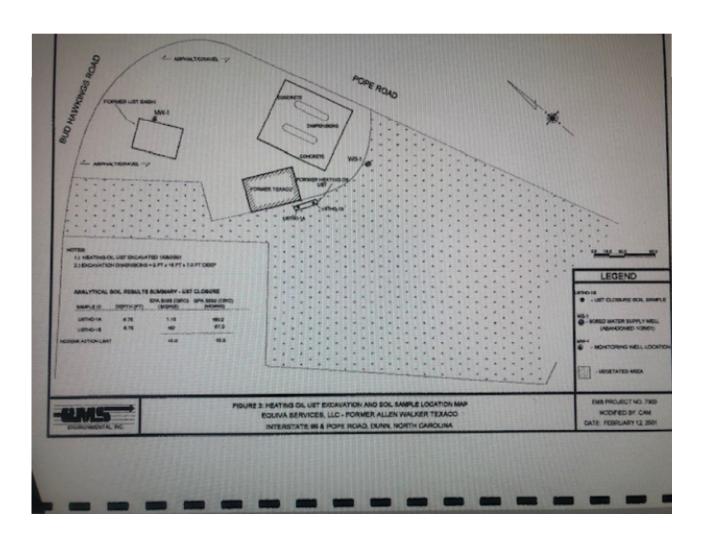
On behalf of Equiva Services, LLC, EMS Environmental, Inc., (EMS) has prepared the attack. Underground Storage Tank Closure Report. This report documents the removal of a 1000 gali. UST used for non-commercial purposes.

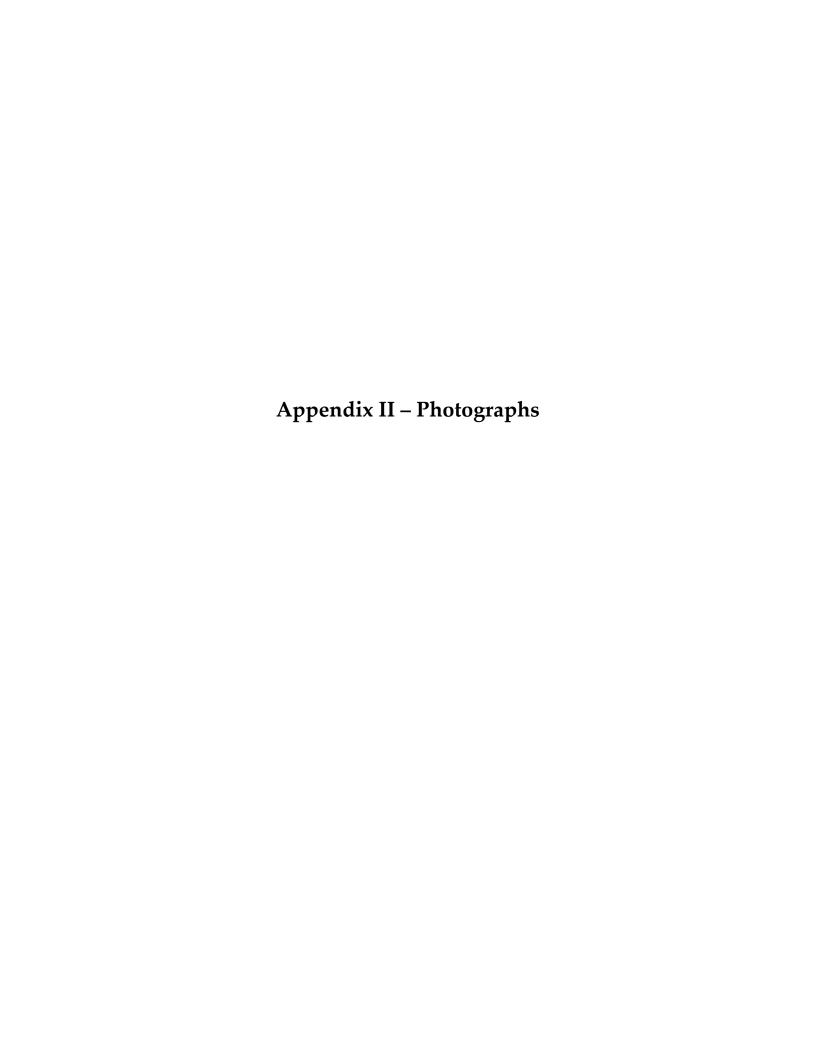
The UST was removed on January 8, 2001.

Please review this report and contact the undersigned if you have any questions or comments.

Sincerely,

FMS Environmental, Inc.


James J. Dodson, L.G.


Project Manager

Co: Ms. Anna Tillman, Equiva Services, 1691 Arrowhead Trail NE, Atlanta, GA 30345

Ms. Cindy Split, ESS

6:\7200-7300jobs\7303\wp\7303ustres.doc

PROJECT:	NCDOT I-5878									
	Parcel 49B- SE Corner Pope Rd/Bud Hawkins Rd (Allen Walk S&ME Project No. 4305-19-161	er Texaco), Dunn, NC			BORIN	NG LOG:	B-1			
DATE DRILLED:	Friday, October 18, 2019	BORING DEPTH (FT):	10							
DRILL RIG:	Geoprobe 54DT	WATER LEVEL:								
DRILLER:	Troxler Geologic, Inc.	CAVE-IN DEPTH:	Not App	icable						
HAMMER TYPE:	Not Applicable	LOGGED BY:								
SAMPLING METHO		NORTHING:								
DRILLING METHOD	Macro-Core Sampler (3-in. OD)	EASTING:								
DIVIDENTO INCITIOD	Macro core sumper (5 m. ob)	LASTING.					1			1
DEPTH (feet) GRAPHIC	MATERIAL DESCRIPTION		WATER LEVEL	SAMPLE	PID READING (PPM)	LABORATORY ANALYSES	Sample Time / 1st 6in	2nd 6in	3rd 6in	N VALUE
	Topsoil, Sandy Clay, Orange, Red, Gray,			ł	7.9	No				
5 —					5.6	No				
				ł	7.8	No				
				ł	14.0	Yes	1145			
10	Boring Terminated at 10 Ft-BGS			Н	11.3	No				
15 —										
25 —										

PROJECT:	NCDOT I-5878 Parcel 49B-SE Corner Pope Rd/Bud Hawkins Rd (Allen Walki	or Toyaco) Dunn NC			RODIN	NG LOG:	P_2			
	S&ME Project No. 4305-19-161	er rexaco), Durin, NC			DOKII	NG LOG.	D-2			
DATE DRILLED:	Friday, October 18, 2019	BORING DEPTH (FT):	10							
DRILL RIG:	Geoprobe 54DT	WATER LEVEL:								
DRILLER:	Troxler Geologic, Inc.	CAVE-IN DEPTH:	Not Appl	icable						
HAMMER TYPE:	Not Applicable									
SAMPLING METHOD:	Macro-Core Sampler	NORTHING:	J. Honeye							
DRILLING METHOD:	Macro-Core Sampler (3-in. OD)	EASTING:								
DIVIDENTO INICITIOD.	Macro core sumpler (5 m. 65)	LASTING.						l		
(feet) (feet) GRAPHIC LOG	MATERIAL DESCRIPTION		WATER LEVEL	SAMPLE	PID READING (PPM)	LABORATORY ANALYSES	Sample Time / 1st 6in	2nd 6in	3rd 6in	N VALUE
Sar	dy Clay, Orange, Red, Gray,			ł	26.7	No				
5 —				I	30.5	No				
				I	27.3	No				
				ł	25.3	No				
10 Boi	ing Terminated at 10 Ft-BGS				30.4	Yes	1200			
15 —										
20 —										
25 —										
30										

PROJECT:	NCDOT I-5878 Parcel 49B-SE Corner Pope Rd/Bud Hawkins Rd (Allen Walki	er Texaco), Dunn, NC			BORIN	NG LOG:	B-3			
	S&ME Project No. 4305-19-161									
DATE DRILLED:	Friday, October 18, 2019	BORING DEPTH (FT):	10							
DRILL RIG:	Geoprobe 54DT	WATER LEVEL:								
DRILLER:	Troxler Geologic, Inc.	CAVE-IN DEPTH:	Not Appl	icable						
HAMMER TYPE:	Not Applicable	LOGGED BY:	J. Honeyo	utt						
SAMPLING METHOD:	Macro-Core Sampler	NORTHING:								
DRILLING METHOD:	Macro-Core Sampler (3-in. OD)	EASTING:								
	, and the second									
DEPTH (feet) (feet) GRAPHIC LOG	MATERIAL DESCRIPTION		WATER LEVEL	SAMPLE	PID READING (PPM)	LABORATORY ANALYSES	Sample Time / 1st 6in	2nd 6in	3rd 6in	N VALUE
Sanc	y Clay, Orange, Red, Gray,			ł	6.8	No				
5 —				ŧ	9.5	No				
				I	7.4	No				
				I	10.1	No				
10 Boriu	ng Terminated at 10 Ft-BGS			111	10.2	Yes	1215			
15 —										
20 —										
25 —										
30										

PROJECT:	NCDOT 1-5878									
	Parcel 49B- SE Corner Pope Rd/Bud Hawkins Rd (Allen Walk S&ME Project No. 4305-19-161	er Texaco), Dunn, NC								
DATE DRILLED:	Friday, October 18, 2019	BORING DEPTH (FT):	10							
DRILL RIG:	Geoprobe 54DT	WATER LEVEL:								
DRILLER:	Troxler Geologic, Inc.	CAVE-IN DEPTH:	Not Appl	icable						
HAMMER TYPE:	Not Applicable	LOGGED BY:								
SAMPLING METHOD:	Macro-Core Sampler	NORTHING:	J. Honeyo	Jutt						
DRILLING METHOD:	Macro-Core Sampler (3-in. OD)	EASTING:				Ι	ı			
DEPTH (feet) GRAPHIC LOG	MATERIAL DESCRIPTION		WATER LEVEL	SAMPLE	PID READING (PPM)	LABORATORY ANALYSES	Sample Time / 1st 6in	2nd 6in	3rd 6in	N VALUE
Sand	dy Clay, Tan, Orange, dy Clay, Brown, Tan,			H						
				ŧ	9.0	No				
				ł	20.2	Yes	1230			
5 Sand	dy Clay, Red, Orange, Gray,			Ī	13.5	No				
				H	17.4	No				
				ł						
10 Bori	ng Terminated at 10 Ft-BGS				20.9	No				
15 —										
20 —										
25 —										
30										

PROJECT:	NCDOT I-5878 Parcel 49B- SE Corner Pope Rd/Bud Hawkins Rd (Allen Walk	or Toyaco) Dunn NC			PODIA.	IG LOG:	D.E				
	S&ME Project No. 4305-19-161	er rexaco), Durin, NC			DOKIN	NG LOG.	D-3				
DATE DRILLED:	Friday, October 18, 2019	BORING DEPTH (FT):	10								
DRILL RIG:	Geoprobe 54DT	WATER LEVEL:									
DRILLER:	Troxler Geologic, Inc.	CAVE-IN DEPTH:	Not Appli	icable							
HAMMER TYPE:	Not Applicable	LOGGED BY:									
SAMPLING METHOD:	Macro-Core Sampler	NORTHING:									
DRILLING METHOD:	Macro-Core Sampler (3-in. OD)	EASTING:									
						_	_				
DEPTH (feet) (feet) GRAPHIC LOG	MATERIAL DESCRIPTION		WATER LEVEL	SAMPLE	PID READING (PPM)	LABORATORY ANALYSES	Sample Time / 1st 6in	2nd 6in	3rd 6in	N VALUE	
Clay	rey Sand, Orange, rey Sand, Tan, Orange,		-								
	ey Sanu, Tan, Orange,			I	13.9	No					
5 —				ł	16.5	No					
				Ŧ	14.8	No					
				ł	15.3	No					
10 Bori	ng Terminated at 10 Ft-BGS				23.2	Yes	1415				
15 —											
20											
25 —											
30											

PROJECT:	NCDOT I-5878 Parcel 49B-SE Corner Pope Rd/Bud Hawkins Rd (Allen Walke	er Texaco), Dunn, NC			BORIN	IG LOG:	: B-6			
	S&ME Project No. 4305-19-161									
DATE DRILLED:	Friday, October 18, 2019	BORING DEPTH (FT):	10							
DRILL RIG:	Geoprobe 54DT	WATER LEVEL:								
DRILLER:	Troxler Geologic, Inc.	CAVE-IN DEPTH:	Not Appl	icable						
HAMMER TYPE:	Not Applicable	LOGGED BY:	J. Honeyo	utt						
SAMPLING METHOD:	Macro-Core Sampler	NORTHING:								
DRILLING METHOD:	Macro-Core Sampler (3-in. OD)	EASTING:								
	-		,			`~	_			
DEPTH (feet) (feet) GRAPHIC LOG	MATERIAL DESCRIPTION		WATER LEVEL	SAMPLE	PID READING (PPM)	LABORATORY ANALYSES	Sample Time / 1st 6in	2nd 6in	3rd 6in	N VALUE
Clay	rey Sand, Orange, rey Sand, Tan, Orange, Red,			н						
				ł	6.6	No				
				ŧ	6.0	No				
5 —				ł	4.0	No				
				ŧ	2.8	No				
10 Pari				ŧ	3.2	Yes	1430			
15 —	ng Terminated at 10 Ft-BGS									

PROJECT:	NCDOT I-5878 Parcel 49B- SE Corner Pope Rd/Bud Hawkins Rd (Allen Walk	er Texaco). Dunn. NC			BORIN	NG LOG:	B-7			
	S&ME Project No. 4305-19-161	er rexueoj, burni, rve			DOM	10 200.				
DATE DRILLED:	Friday, October 18, 2019	BORING DEPTH (FT):	10							
DRILL RIG:	Geoprobe 54DT	WATER LEVEL:								
DRILLER:	Troxler Geologic, Inc.	CAVE-IN DEPTH:	Not Appl	icable						
HAMMER TYPE:	Not Applicable	LOGGED BY:								
SAMPLING METHOD:	Macro-Core Sampler	NORTHING:								
DRILLING METHOD:	Macro-Core Sampler (3-in. OD)	EASTING:								
DRILLING METHOD.	Macro-core Sampler (5-III. OD)	EASTING.		1	I	l	1	l		ı
(feet) (feet) GRAPHIC LOG	MATERIAL DESCRIPTION		WATER LEVEL	SAMPLE	PID READING (PPM)	LABORATORY ANALYSES	Sample Time / 1st 6in	2nd 6in	3rd 6in	N VALUE
Clay	rey Sand, Orange, rey Sand, Tan, Orange, Red,			111						
				l	2.0	No				
5				I	2.7	No				
				I	1.7	No				
				İ	1.8	No				
10 Bori	ng Terminated at 10 Ft-BGS			Н	1.1	Yes	1445			
15 —										
20 —										
25 —										
30										

PROJECT:	NCDOT I-5878 Parcel 49B-SE Corner Pope Rd/Bud Hawkins Rd (Allen Walke	er Tevaco) Dunn NC	NC BORING LOG: B-8											
	S&ME Project No. 4305-19-161	er rexaco), Dariii, iNC			DOM	10 200	. Б-0							
DATE DRILLED:	Friday, October 18, 2019	BORING DEPTH (FT):	10											
DRILL RIG:	Geoprobe 54DT	WATER LEVEL:												
DRILLER:	Troxler Geologic, Inc.	CAVE-IN DEPTH:	Not Appl	icable										
HAMMER TYPE:	Not Applicable	LOGGED BY:												
SAMPLING METHOD:	Macro-Core Sampler	NORTHING:												
DRILLING METHOD:	Macro-Core Sampler (3-in. OD)	EASTING:												
HAMMER TYPE: SAMPLING METHOD: DRILLING METHOD: H (9a) O B H (10a) Fill, Clay Clay	Not Applicable Macro-Core Sampler	LOGGED BY: NORTHING:		SAMPLE	16.0 12.3 14.2 296.0 924.0	NO NO Yes	Sample Time / 1st 6in	2nd 6in	3rd 6in	N VALUE				
25 —														

PROJECT:	NCDOT I-5878 Parcel 49B-SE Corner Pope Rd/Bud Hawkins Rd (Allen Walke	er Tevaco) Dunn MC	NC BORING LOG: B-9											
	S&ME Project No. 4305-19-161	er rexaco), Durin, NC			DOKII	NG LOG	D-3							
DATE DRILLED:	Friday, October 18, 2019	BORING DEPTH (FT):	10											
DRILL RIG:	Geoprobe 54DT	WATER LEVEL:												
DRILLER:	Troxler Geologic, Inc.	CAVE-IN DEPTH:	Not Appl	licable										
HAMMER TYPE:	Not Applicable	LOGGED BY:												
SAMPLING METHOD:	Macro-Core Sampler	NORTHING:												
DRILLING METHOD:		EASTING:												
DEPTH (feet) (GRAPHIC LOG	Macro-Core Sampler (3-in. OD) MATERIAL DESCRIPTION yey Sand, Orange, Tan, yey Sand, Tan, Orange, Red,	EASTING:	WATER LEVEL	SAMPLE	10.1 10.5	OZ OZ LABORATORY O O ANALYSES	Sample Time / 1st 6in	2nd 6in	3rd 6in	N VALUE				
10 Bor	ing Terminated at 10 Ft-BGS			I	7.1	Yes	1515							
20 —														
30														

PROJECT:		NCDOT I-5878 Parcel 49B-SE Corner Pope Rd/Bud Hawkins Rd (Allen Walk	cer Texaco), Dunn, NC			BORIN	NG LOG:	B-10			
DATE 05		S&ME Project No. 4305-19-161		10							
DATE DRILLED	J:	Friday, October 18, 2019	BORING DEPTH (FT):	10							
DRILL RIG:		Geoprobe 54DT	WATER LEVEL:								
DRILLER:		Troxler Geologic, Inc.	CAVE-IN DEPTH:								
HAMMER TYPE		Not Applicable	LOGGED BY:		cutt						
Sampling Me		Macro-Core Sampler	NORTHING:								
DRILLING MET	THOD:	Macro-Core Sampler (3-in. OD)	EASTING:								
DEPTH (feet)	GRAPHIC	MATERIAL DESCRIPTION		WATER LEVEL	SAMPLE	PID READING (PPM)	LABORATORY ANALYSES	Sample Time / 1st 6in	2nd 6in	3rd 6in	N VALUE
	Clay	rey Sand, Orange, Tan,			l	0.0	No				
5 —					ŧ	6.5	No				
	Clay	rey Sand, Tan, Orange, Red,			İ	6.7	No	1520			
					Ĭ	8.6	Yes	1530			
10 —	Bori	ng Terminated at 10 Ft-BGS				4.3	No				
15 —											
20 —											
25 —											
30				<u> </u>	1						<u> </u>

PROJECT:	NCDOT I-5878 Parcel 49B-SE Corner Pope Rd/Bud Hawkins Rd (Allen Walke	er Texaco), Dunn, NC			BORIN	NG LOG:	B-11			
DATE DRILLED:	S&ME Project No. 4305-19-161 Friday, October 18, 2019	DODING DEDTIL (ET	10							
		BORING DEPTH (FT):	10							
DRILL RIG:	Geoprobe 54DT	WATER LEVEL:								
DRILLER:	Troxler Geologic, Inc.	CAVE-IN DEPTH:								
HAMMER TYPE:	Not Applicable	LOGGED BY:	J. Honeyo	cutt						
SAMPLING METHOD:	Macro-Core Sampler	NORTHING:								
DRILLING METHOD:	Macro-Core Sampler (3-in. OD)	EASTING:								
DEPTH (feet) GRAPHIC LOG	MATERIAL DESCRIPTION		WATER LEVEL	SAMPLE	PID READING (PPM)	LABORATORY ANALYSES	Sample Time / 1st 6in	2nd 6in	3rd 6in	N VALUE
Lay	vey Sand, Brown,				4.1	No				
	vey Sand, Tan, Orange, Red,			I	5.0	No				
5 —				I	6.0	No				
				I	7.3	No				
10 Bori	ing Terminated at 10 Ft-BGS			H	7.2	Yes	1600			
15 —										
20 —										
25 —										
30										

PROJECT:	NCDOT I-5878 Parcel 49B-SE Corner Pope Rd/Bud Hawkins Rd (Allen Walke	er Texaco), Dunn, NC			BORIN	NG LOG:	B-12			
DATE DRILLED:	S&ME Project No. 4305-19-161 Friday, October 18, 2019	DODING DEDTIL (ET	10							
		BORING DEPTH (FT):	10							
DRILL RIG:	Geoprobe 54DT	WATER LEVEL:								
DRILLER:	Troxler Geologic, Inc.	CAVE-IN DEPTH:								
HAMMER TYPE:	Not Applicable	Not Applicable LOGGED BY: J. Honeycutt								
SAMPLING METHOD:	Macro-Core Sampler	NORTHING:								
DRILLING METHOD:	Macro-Core Sampler (3-in. OD)	EASTING:								
	<u> </u>									
DEPTH (feet) GRAPHIC LOG	MATERIAL DESCRIPTION		WATER LEVEL	SAMPLE	PID READING (PPM)	LABORATORY ANALYSES	Sample Time / 1st 6in	2nd 6in	3rd 6in	N VALUE
La ₂	yey Sand, Brown,				4.3	No				
I 7///	yey Sand, Tan, Orange, Red,			I	5.3	No				
5 —				ł	5.0	No				
				I	4.9	No				
10 Bor	ing Terminated at 10 Ft-BGS			Н	4.4	Yes	1545			
15 —										
20 —										
25 —										
30										

PROJECT:	NCDOT I-5878	au Taurana). Dunan NG			DODIA	16.106	D 13			
	Parcel 49B-SE Corner Pope Rd/Bud Hawkins Rd (Allen Walke S&ME Project No. 4305-19-161	er Texaco), Dunn, NC			BOKIN	IG LOG	B-13			
DATE DRILLED:	Friday, October 18, 2019	BORING DEPTH (FT):	10							
DRILL RIG:	Geoprobe 54DT	WATER LEVEL:								
DRILLER:	Troxler Geologic, Inc.	CAVE-IN DEPTH:	Not Appl	icable						
HAMMER TYPE:	Not Applicable	LOGGED BY:								
SAMPLING METHOD:	Macro-Core Sampler	NORTHING:								
DRILLING METHOD:	Macro-Core Sampler (3-in. OD)	EASTING:								
DEPTH (feet) (feet) CRAPHIC LOG	MATERIAL DESCRIPTION yey Sand, Tan, Orange,		WATER LEVEL	SAMPLE	PID READING (PPM)	LABORATORY ANALYSES	Sample Time / 1st 6in	2nd 6in	3rd 6in	N VALUE
					4.7 4.9	No No				
5 — Cla	yey Sand, Gray,			ł	5.7	No				
				ł	12.8	No				
10 Bor	ing Terminated at 10 Ft-BGS				103.0	Yes	1630			
20 —										
25 —										

Appendix IV – Laboratory Analytical Reports and Chain of Custody

Hydrocarbon Analysis Results

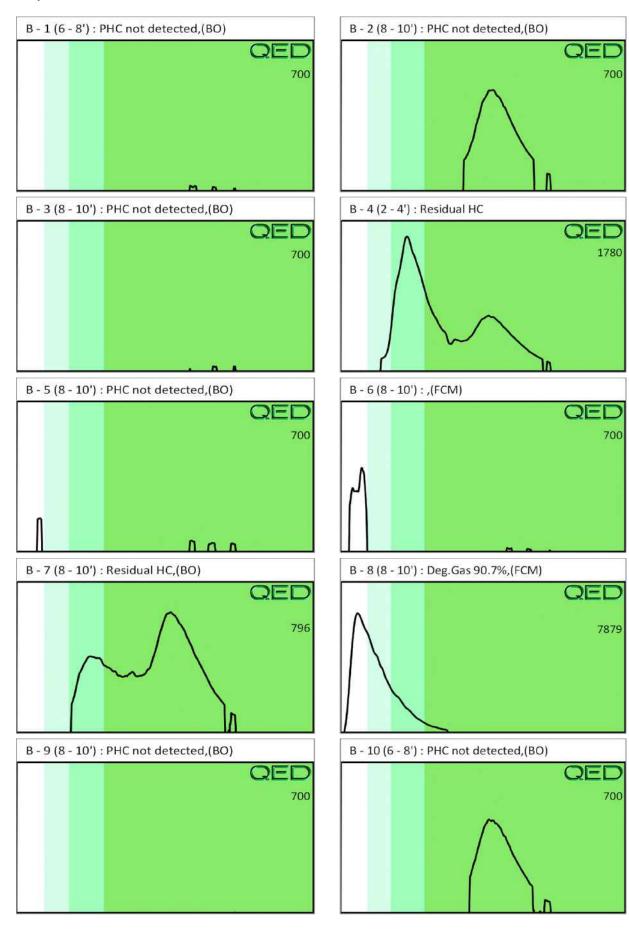
Client: S&ME Address: 3201 SPRING FOREST RD

RALEIGH NC

Samples taken Samples extracted Samples analysed Monday, October 21, 2019 Monday, October 21, 2019 Wednesday, October 23, 2019

Contact: JAMIE HONEYCUTT Derator JENN RYAN

Project: NCDOT I-5878 PARCEL 49B


													F03640
Matrix	Sample ID	Dilution used	BTEX (C6 - C9)	GRO (C5 - C10)	DRO (C10 - C35)	TPH (C5 - C35)	Total Aromatics (C10-C35)	16 EPA PAHs	ВаР		Ratios		HC Fingerprint Match
										% light % mid % heavy			
S	B - 1 (6 - 8')	19.1	<0.48	<0.48	<0.48	<0.48	<0.1	<0.15	<0.019	0	0	0	PHC not detected,(BO)
S	B - 2 (8 - 10')	20.6	<0.52	< 0.52	<0.52	<0.52	<0.1	< 0.17	<0.021	0	0	100	PHC not detected,(BO)
s	B - 3 (8 - 10')	24.5	<0.61	< 0.61	< 0.61	<0.61	<0.12	<0.2	<0.025	0	0	0	PHC not detected,(BO)
S	B - 4 (2 - 4')	19.8	<0.5	<0.5	0.5	0.5	0.25	<0.16	<0.02	0	81.1	18.9	Residual HC
S	B - 5 (8 - 10')	19.3	<0.48	<0.48	<0.48	<0.48	<0.1	<0.15	<0.019	0	0	0	PHC not detected,(BO)
S	B - 6 (8 - 10')	11.2	<0.28	<0.28	<0.28	<0.28	<0.06	<0.09	<0.011	0	0	0	,(FCM)
S	B - 7 (8 - 10')	20.3	<0.51	<0.51	0.51	0.51	0.26	<0.16	<0.02	0	40.9	59.1	Residual HC,(BO)
S	B - 8 (8 - 10')	61.2	135.3	293.3	713.9	1007.2	12.6	<0.49	<0.061	99.8	0.2	0	Deg.Gas 90.7%,(FCM)
S	B - 9 (8 - 10')	20.0	<0.5	<0.5	<0.5	<0.5	<0.1	<0.16	<0.02	0	0	0	PHC not detected,(BO)
S	B - 10 (6 - 8')	20.0	<0.5	<0.5	<0.5	<0.5	<0.1	<0.16	<0.02	0	0	100	PHC not detected,(BO)
	Initial Ca	alibrator (QC check	OK					Final FO	CM QC Check OK			95.1 %

Results generated by a QED HC-1 analyser. Concentration values in mg/kg for soil samples and mg/L for water samples. Soil values are not corrected for moisture or stone content

Fingerprints provide a tentative hydrocarbon identification. The abbreviations are:- FCM = Results calculated using Fundamental Calibration Mode: % = confidence for sample fingerprint match to library

(SBS) or (LBS) = Site Specific or Library Background Subtraction applied to result: (PFM) = Poor Fingerprint Match: (T) = Turbid: (P) = Particulate present

Project: NCDOT I-5878 PARCEL 49B

Hydrocarbon Analysis Results

Client: S&ME Address: 3201 SPRING FOREST RD

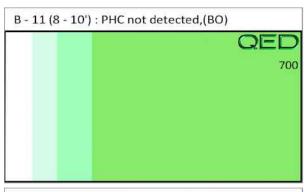
. 3201 SPRING FOREST RE

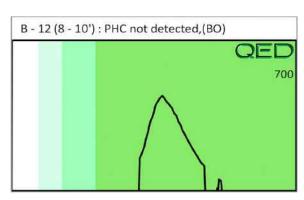
RALEIGH NC

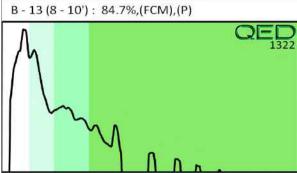
Samples taken Samples extracted Samples analysed Monday, October 21, 2019 Monday, October 21, 2019 Wednesday, October 23, 2019

Contact: JAMIE HONEYCUTT Operator JENN RYAN

Project: NCDOT I-5878 PARCEL 49B


													F03640		
Matrix	Sample ID	Dilution used	BTEX (C6 - C9)	GRO (C5 - C10)	DRO (C10 - C35)	TPH (C5 - C35)	Total Aromatics (C10-C35)	16 EPA PAHs	ВаР	Ratios			HC Fingerprint Match		
										% light	% mid	% heavy			
S	B - 11 (8 - 10')	19.7	< 0.49	<0.49	<0.49	< 0.49	<0.1	<0.16	<0.02	0	0	0	PHC not detected,(BO)		
S	B - 12 (8 - 10')	20.0	<0.5	< 0.5	<0.5	<0.5	<0.1	< 0.16	< 0.02	0	0	100	PHC not detected,(BO)		
S	B - 13 (8 - 10')	20.2	<0.5	12.7	3	15.7	<0.1	<0.16	< 0.02	99.5	0.4	0.1	84.7%,(FCM),(P)		
	Initial Ca	OK					Final F	CM QC	Check	OK	98 %				


Results generated by a QED HC-1 analyser. Concentration values in mg/kg for soil samples and mg/L for water samples. Soil values are not corrected for moisture or stone content


Fingerprints provide a tentative hydrocarbon identification. The abbreviations are:- FCM = Results calculated using Fundamental Calibration Mode: % = confidence for sample fingerprint match to library

(SBS) or (LBS) = Site Specific or Library Background Subtraction applied to result: (PFM) = Poor Fingerprint Match: (T) = Turbid: (P) = Particulate present

Project: NCDOT I-5878 PARCEL 49B

3140 Client Name. 5.ME 3201 Spring Forest RD Address: Roberal NC Contact: Jamie T Honougast Project Ref.. NCDIT- I 5878 Parcie 49B Email: more stressed com Phone #: 910 377-7614 Tamiet Horagent Collected by:

REDLAB

MCDOT-I5878 Paul 4913

RAPID ENVIRONMENTAL DIAGNOSTICS

CHAIN OF CUSTODY AND ANALYTICAL REQUEST FORM

RED Lab, LLC 5598 Marvin K Moss Lane MARBIONC Bldg, Suite 2003 Wilmington, NC 28409

Each sample will be analyzed for BTEX, GRO, DRO, TPH, PAH total aromatics and BaP

Sample Collection	TAT Re	quested	I-iti-l-	Commission 12		Takal VAC	Taux 11/2	Campula 14th
Date/Time	24 Hour	48 Hour	Initials	Sample ID	Total Wt.	Tare Wt.	Sample Wt.	
10-18-19/ 1145		1	JtH	3-1 6-8		581	44.5	13.6
1 1200				3-1 6-8" 82 8-6"		56.7	44.1	12.6
Î 1215				33 8-0-		56.7	46.1	10.6
(1230				34 2-4		57.0	43.9	13 1
1 1415				25 8-0°		57.7	44.2	13.5
11430			English	Blo 8:10'		56.8	44.3	17.5
1445				B7 8-10		57Z	44.4	12.8
1500			177	38 8 W		580	44.12	13.4
11515				39 8.00		57.4	44.4	13.0
1 1530				B-10 68'		57.4	449	130
1545				B-12 8-10'		57.4	44.4	130
1600				3-11 8-10		57.9	447	132
1 1630		V	Ψ	B13 8-101		57.6	44.7	12.9
(E)								
Comments:	5/0RO-	UVF				RE	D Lab USE	ONLY
Relinquished by		Date/Tim	e Accepted by	Date/Time	1	10		
Jam The pet		10-21-19/ 190	1e MM 1220	10/22/14	1	1		
Relinquished by			Date/Tim		1	(10)	/	

January 9, 2020

North Carolina Department of Transportation Geotechnical Unit Mail Service Center 1592 Raleigh, North Carolina 27699-1592

Attention: Mr. Craig Haden email: cehaden@ncdot.gov

Reference: Preliminary Site Assessment Report

NCDOT Project I-5878, WBS Element 53078.1.1

Parcel 50-Former Double T Restaurant

508 Spring Branch Road

Dunn, Harnett County, North Carolina

S&ME Project 4305-19-161

Dear Mr. Haden:

S&ME, Inc. (S&ME) is submitting this Preliminary Site Assessment (PSA) Report to the North Carolina Department of Transportation (NCDOT). This report presents the background/project information, field activities, findings, conclusions, and recommendations. These services were performed in general accordance with S&ME Proposal No. 43-1900576 REV-01 dated August 9, 2019, and Contract Number 7000018853 dated April 12, 2018 between NCDOT and S&ME, Inc., authorized by NCDOT in its September 5,2019 Notice to Proceed Letter.

♦ Background/Project Information

Based on NCDOT's July 24, 2019, Request for Technical and Cost Proposal, the PSA was conducted within the NCDOT right-of-way (ROW) and/or easement as indicated on the preliminary plan sheets provided by NCDOT at the following property:

NCDOT Parcel No.	Property Owner	Site Address
50	Munshiree, LLC	(Former Double T Restaurant)
		508 Spring Branch (aka Pope Road), Dunn, NC

The property is developed with a vacant commercial building that was previously occupied by Double T Restaurant. A concrete area, which appears to have been a former pump island, is located in front of the building. The property is not listed with registered petroleum underground storage tanks (USTs) (active or closed). The property is not listed with North Carolina Department of Environmental Quality (NCDEQ) Incidents associated with petroleum releases from USTs or aboveground storage tanks. A groundwater monitoring well identified as MW-6 is located on the property. The monitor well is associated with a previous UST release that occurred at the Former T-Mart (NCDEQ Incident #18955), currently Word A Fire Ministries, located across Spring Branch Road from the site. Historically, groundwater samples collected from MW-6 have been below the laboratory method detection limits.

The PSA included a geophysical survey, subsequent limited soil sampling (14 soil borings up to 10 feet below ground surface (ft.-bgs) and limited groundwater sampling (one groundwater sample), within accessible areas of the proposed ROW/easement in preparation for construction activities. **Figure 1** shows the vicinity and site location, and **Figure 2** shows the site and boring locations. Soil sampling results are shown on **Figure 3**.

Field Services

Prior to field activities, a site specific Health and Safety Plan was prepared as required by the Occupational Health and Safety Act (OSHA). Underground utilities were located and marked by the North Carolina One-Call Service. A private utility locator (East Coast Underground, LLC) was also used to locate and mark underground utilities.

Geophysical Survey

On July 25, 2019, S&ME completed Time Domain Electromagnetic (TDEM) and Ground Penetrating Radar (GPR) surveys within accessible areas of the proposed ROW/easement at Parcel 50. Brief descriptions of these complementary geophysical techniques are presented in the following paragraphs.

Time Domain Electromagnetics (TDEM)

TDEM measures the electrical conductivity of subsurface materials and discriminates between moderately conductive earth materials and very conductive metallic targets within the shallow subsurface. The conductivity is determined by transmitting a time-varying magnetic pulse into the subsurface and measuring the amplitude and phase shift of the secondary magnetic field. The secondary magnetic field is created when the conductive materials become an inductor as the primary magnetic field is passed through them. TDEM data are acquired continuously at a walking pace typically along a series of parallel or perpendicular lines. The system generates audible and visual indications when metallic targets are encountered. These measurements can also be supported with a global positioning system (GPS) which is output directly into the TDEM data file.

We used a Geonics Limited EM-61 MK2 TDEM system in general accordance with ASTM D6820 "Standard Guide for Use of the Time Domain Electromagnetic Method for Subsurface Investigation." Data was collected along lines spaced at approximately five feet using a Juniper® Systems GeodeTM sub-meter GPS as positioning support. The approximate TDEM data collection paths are presented in **Figure 4.** Golden Software's Surfer® program was used to grid and plot the data (**Figures 5 and 6**). The TDEM data has been presented as Plots A and B in order to provide both opaque and semi-transparent views, respectively.

Ground Penetrating Radar (GPR)

GPR transmits electromagnetic waves into the subsurface from an antenna at a specific frequency and measures the time for wave reflections to be received by interfaces between materials with differing material properties (e.g. soil/metal, etc.). The intensity of the reflected GPR wave is a function of the contrast in the material properties (i.e. dielectric permittivity) at the interface, the conductivity of the material that the wave is traveling through, and the frequency of the signal.

We used a Geophysical Survey Systems, Inc. (GSSI) SIR® 4000 GPR system equipped with a 350 MHz antenna in general accordance with ASTM D6432 "Standard Guide for Using the Surface Ground Penetrating Radar Method for Subsurface Investigation" to further characterize anomalies/features identified during the TDEM survey.

A total of nine GPR profiles (Lines 1 through 9) were collected for documentation (**Figure 7**). The data was post-processed using the GSSI Radan® 7 GPR software program for additional analysis.

Geophysical Findings

Responses indicative of a potential UST were not identified in the geophysical data sets collected at the site. Two anomalous features unrelated to known surficial targets were identified in the geophysical data sets (Anomalies A and B; **Figures 6 and 7**). Anomaly A is characterized by two, vertically aligned, high amplitude GPR responses located about one foot and four ft.-bgs, respectively and Anomaly B is characterized by high amplitude GPR responses located within the upper two feet. Each of the anomalies may be related to relatively small isolated buried metallic object. The anomalies were marked in the field using white spray paint. Example GPR profiles are presented in **Figures 8 and 9**.

♦ Soil Sampling

On October 21 and 23, 2019, Troxler Geologic, Inc. (Troxler's) drill crew utilized a track mounted Geoprobe® rig to advance 14 soil borings (B-1 through B-14) and to collect soil samples within accessible areas of the proposed ROW/easement at Parcel 50. The approximate location of the soil borings are shown in **Figure 2**. A photographic log is included in **Appendix I.** Troxler's drill crew advanced the Geoprobe® borings up to a depth of approximately 10 ft.-bgs. During the advancement of the soil borings, groundwater was encountered at depths ranging from approximately six to nine ft.-bgs. Soil samples were continuously collected in four-foot long disposable acetate-plastic sleeves that line the hollow stainless-steel sample probes. Soil recovered from the sleeves was classified on-site by S&ME personnel and screened with a Photoionization Detector (PID) at approximately two foot depth intervals to measure relative headspace concentrations of volatile organic compounds (VOCs).

VOC headspace readings were obtained from an aliquot of each soil sample that was placed in a re-sealable bag. Another portion of the sample was placed in a separate re-sealable bag and stored in an insulated container with ice for possible laboratory analyses. After waiting approximately 15 minutes to allow the sample to reach ambient temperature and headspace equilibrium, the PID probe was inserted into the bag to obtain a headspace reading. A summary of the PID readings and logs of the soil borings are included in **Appendix II.**

Petroleum odors and elevated PID readings were noted at boring B-9, which was located within the former pump island area, starting at a depth of approximately six ft.-bgs and extending to boring termination at eight ft-bgs where groundwater was encountered. Therefore, a soil sample was selected from boring B-9 at the six to eight foot depth interval. Various soil samples at varying depth intervals were selected from the remaining borings. The soil samples were placed into laboratory supplied containers and transported to RED Lab, LLC (Red Lab) in an insulated cooler with ice for analysis. A total of 14 soil samples (one soil sample per boring) were analyzed by RED Lab for TPH-GRO and TPH-DRO using ultra-violet fluorescence (UVF) spectroscopy with product (fuel) identification.

Soil Analytical Results

Based upon analytical results of soil samples analyzed by RED Lab using UVP spectroscopy, TPH-GRO and TPH-DRO were reported at concentrations exceeding their respective North Carolina TPH Action Levels. TPH-GRO and TPH-DRO were reported in boring B-9 at the six to eight foot depth interval, at concentrations of 150.5 milligrams per kilograms (mg/kg) and 713.9 mg/kg, respectively, which exceed their North Carolina TPH Action Levels of 50 mg/kg and 362.7 mg/kg, respectively. TPH-DRO was also reported in borings B-10 at the six to eight foot depth interval and boring B-13 at the six to eight foot depth interval, at concentrations slightly above the laboratory reporting limits but well below its respective North Carolina TPH Action Level. TPH-GRO and TPH-DRO were not reported at concentrations exceeding the laboratory method reporting limits at the remaining soil samples. A summary of the soil analytical results is presented in **Table 1** and shown on **Figure 3**. A copy of the laboratory analytical report provided by RED Lab is presented in **Appendix III**.

Groundwater Sampling

During the advancement of the soil borings, groundwater was encountered at depths ranging from approximately six to nine ft.-bgs. Therefore, the Geoprobe® was used to advance one of the soil borings into the groundwater table for the collection of a groundwater sample. Based on petroleum odors and elevated PID readings, boring B-9 located near the former pump island, was selected for collection of a groundwater sample. Groundwater within boring B-9 was measured at 8.0 ft.-bgs, which corresponds with the groundwater depth measured in the existing monitor well MW-6 located within the ROW, near the former pump island. A groundwater sample was collected at boring B-9 by advancing the Geoprobe® groundwater sampling screen into the borehole and extending the screen from a depth of approximately eight to 12 ft.-bgs. Groundwater was purged from the screen until relatively clear using disposable tubing attached to a peristaltic pump. The flow rate was reduced and laboratory supplied containers were filled directly from the tubing, labeled as TW-1 and placed in an insulated cooler with ice for transport to Con-Test Laboratories (Con-Test) for analysis of VOCs by EPA Method 8260 and polycyclic aromatic compounds (PAHs) by EPA Method 8270.

Upon completion of the soil and groundwater sampling, the well materials were removed and the soil borings backfilled with bentonite pellets and soil cuttings. Investigative derived wastes (IDW), such as soil cuttings generated during the soil boring advancement and decontamination water, were spread on the ground in accordance with the procedures specified by NCDEQ. Used gloves and tubing were bagged and disposed offsite.

Groundwater Analytical Results

Based upon analytical results of the groundwater sample analyzed by Con-Test, several petroleum related target constituents were reported at concentrations exceeding their 15A NCAC 2L Groundwater Quality Standard (2L Standard). Naphthalene was the highest constituent reported above its 2L Standard at a concentration of 110 micrograms per liter (μ g/L), which exceeds its 2L Standard of 6 μ g/L. A summary of the groundwater analytical results is presented in **Table 2** and shown on **Figure 3**. A copy of the laboratory analytical report provided by Con-Test is presented in **Appendix III**.

Conclusion and Recommendations

An existing groundwater monitoring well identified as MW-6 is located on the property within the ROW. MW-6 is associated with the Former T-Mart (NCDEQ Incident # 18955), currently Word A Fire Ministries, located across Spring Branch Road from the site. Historically, groundwater samples collected from MW-6 have been below the laboratory method detection limits.

The geophysical survey identified two anomalies (Anomalies A and B) which may be related to isolated buried metallic objects. Responses indicative of a potential UST were not identified in the geophysical data sets collected at the site.

S&ME advanced 14 soil borings (B-1 through B-14) to a depth of up to approximately 10 ft.-bgs at the site. Petroleum odors and elevated PID readings were noted at boring B-9, which was located within the former pump island area, starting at a depth of approximately six ft.-bgs and extending to boring termination at eight ft-bgs. Selected soil samples from the soil borings were analyzed for TPH-GRO and TPH-DRO using UVF spectroscopy.

TPH-GRO and TPH-DRO were reported at boring B-9 at the six to eight foot depth interval at concentrations exceeding their North Carolina TPH Action Levels. TPH-DRO was also reported in borings B-10 and B-13 at the six to eight foot depth interval, at concentrations slightly above the laboratory reporting limits but well below their respective North Carolina TPH Action Levels. TPH-GRO and TPH-DRO were not reported at concentrations exceeding the laboratory method reporting limits at the remaining soil samples.

During the soil boring advancement, groundwater was encountered at depths ranging from six to nine ft.-bgs. A groundwater sample (TW-1) was collected at boring B-9 using the Geoprobe® groundwater sampling screen and analyzed by Con-Test for VOCs by EPA Method 8260 and PAHs by EPA Method 8270. Several petroleum related target constituents were reported at concentrations exceeding their 2L Standards.

Based on the findings of the geophysical survey and analytical results of soil and groundwater samples, it is likely that during construction, NCDOT may encounter soil and groundwater impacted with petroleum at the site. Petroleum impacted soil at concentrations exceeding the North Carolina TPH Action Levels may be encountered within the vicinity of boring B-9 located within the former pump island. Assuming that a section of petroleum impacted soil approximately two feet thick, 24 feet in diameter at a depth of six to eight ft.-bgs (groundwater was encountered at a depth of eight ft.-bgs near boring B-9); up to 34 cubic yards of soil at boring B-9 may be impacted. It should also be assumed that saturated petroleum impacted soil will be encountered if construction excavations extend deeper than eight ft.-bgs within the vicinity of the former pump island.

January 9, 2020

If petroleum stained or odorous soils are encountered during construction, these soils should be properly handled and disposed at a licensed facility. If construction dewatering is required, petroleum impacted groundwater must be properly disposed or treated at a licensed facility.

S&ME recommends maintaining an awareness level for the presence of petroleum in the soil and groundwater at the site for the safety of workers and the public.

Limitations

The results of this preliminary investigation are limited to the boring locations presented herein. The results of this Preliminary Site Assessment are not all inclusive and may not represent existing conditions across the entire property. These results only reflect the current conditions at the locations sampled on the date this Preliminary Site Assessment was performed. This report has been prepared in accordance with generally accepted environmental engineering and geophysical practice for specific application to this project. The conclusions and recommendations contained in this report are based upon applicable standards of our practice in this geographic area at the time this report was prepared. No other warranty, expressed or implied, is made.

The geophysical methods used for this survey have inherent limitations. Site metallic features (e.g., surficial debris, reinforced concrete, utilities, etc.) and overhead transmission lines can produce a false electromagnetic response and may mask subsurface features. The depth of exploration of the GPR signal is highly site specific and is greatly limited by signal attenuation (absorption) of the subsurface materials. Signal attenuation is dependent upon the electrical conductivity of the subsurface materials. Signal attenuation is greatest in materials with relatively high electrical conductivities such as clay soils, and lowest in relatively low conductivity materials such as unsaturated sand. For this project location, the GPR data sets appear to have a maximum depth of penetration of about seven ft.-bgs.

Regardless of the thoroughness of a geophysical study, there is always a possibility that actual conditions may not match the interpretations. The results should be considered accurate only to the degree implied by the methods used and the method's limitations and data coverage. Accordingly, the possibility exists that not all features at a project site will be located due to either subsurface soil conditions or the occurrence of features outside the lateral limits and below the depth of penetration of the methods used. As with most surface geophysical methods, resolution of the subsurface will also decrease with depth. As such, the size and/or contrast of features compared to the imaged subsurface media must be significant enough to produce the anticipated response. The location and/or determination (or the lack thereof) of potential buried features is based on our review of the provided information and of the geophysical survey. Under no circumstances does S&ME assume any responsibility for damages resulting from the presence of subsurface features that may exist but were not identified by our survey.

This Preliminary Site Assessment was performed solely for NCDOT regarding the above-referenced site and assessment area. This report is provided for the sole use of NCDOT. Use of this report by any other parties will be at such party's sole risk. S&ME disclaims liability for any such use or reliance by third parties. The observations presented in this report are indicative of conditions during the time of the assessment and of the specific areas referenced.

Closing

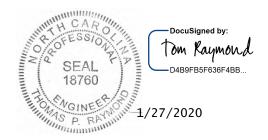
S&ME appreciates the opportunity to provide these services to you. If you have any questions or comments regarding this report, please contact us at your convenience.

Sincerely,

S&ME, Inc.

DocuSigned by:

Danie Honeycutt


-4C890EAEC25F488...

Jamie T Honeycutt Environmental Professional

jhoneycutt@smeinc.com

Docusigned by:
Midual Pfaifur
861E52DDEFAF4C7...

Michael W. Pfeifer Senior Project Manager mpfeifer@smeinc.com

Thomas P. Raymond, P.E., P.M.P. Senior Consultant traymond@smeinc.com

Attachments:

Table 1: Summary of Soil Sampling Results

Table 2: Summary of Groundwater Sampling Results

Figure 1: Vicinity Map

Figure 2: Site Map

Figure 3: Soil and Groundwater Constituent Map

Figure 4: TDEM Path Location Plan

Figure 5: TDEM Data Plot A **Figure 6:** TDEM Data Plot B

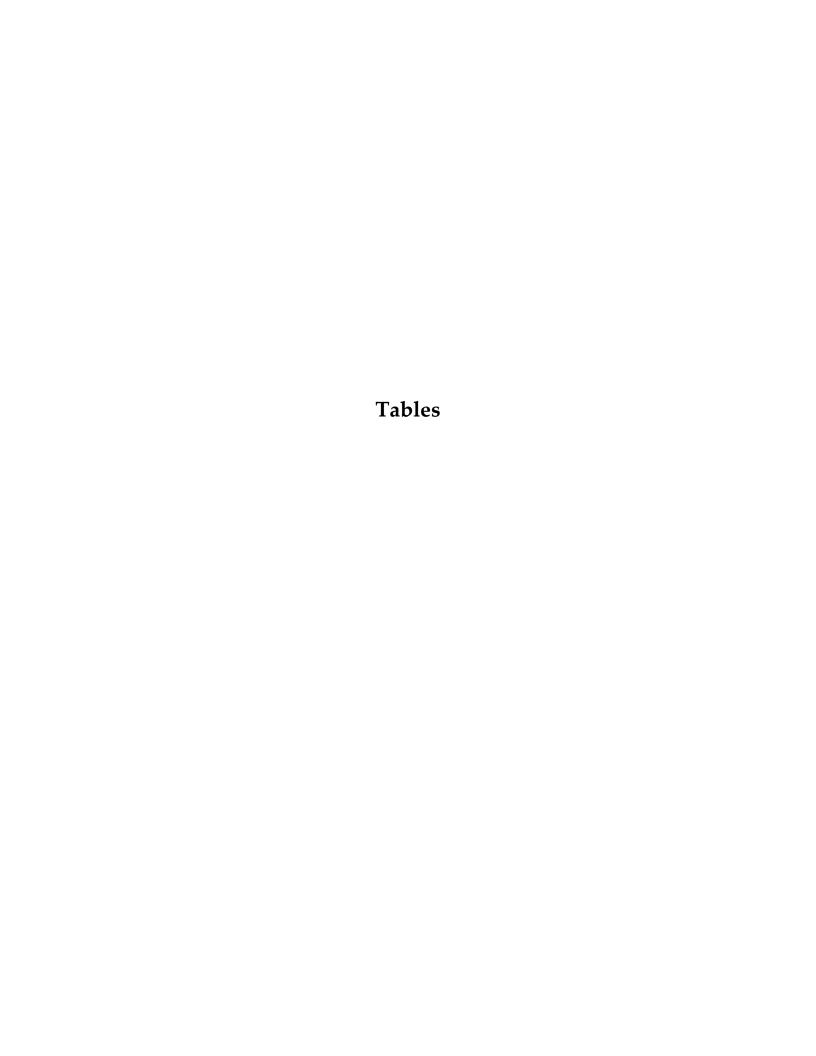

Figure 7: Geophysical Anomaly Location Plan

Figure 8: Example GPR Data - Line 4

Figure 9: Example GPR Data – Lines 6 and 7

Appendix I: Photographs **Appendix II:** Boring Logs

Appendix III: Laboratory Analytical Reports and Chain of Custody

TABLE 1 SUMMARY OF SOIL SAMPLING RESULTS NCDOT Project I-5878

Parcel 50 - (Former Double T Restaurant) 508 Spring Branch Road Dunn, Harnett County, North Carolina S&ME Project No. 4305-19-161

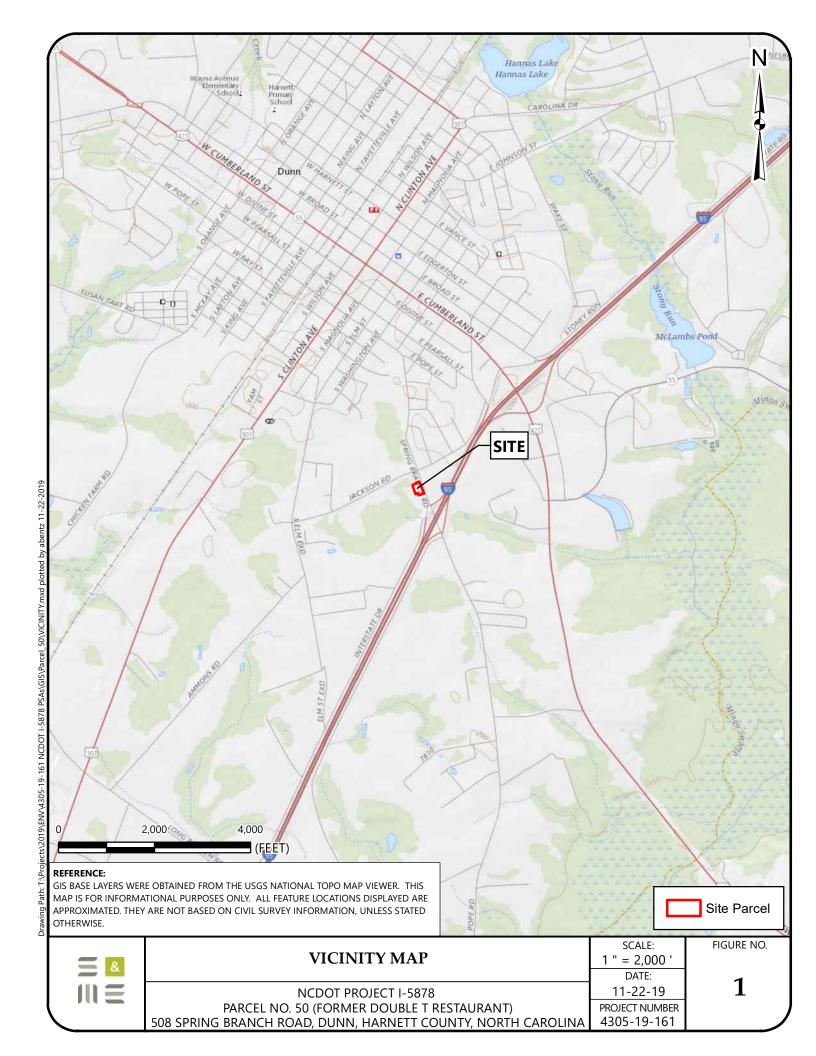
Ar	nalytical Metho	d→	Total Petroleum Hydrocarbons (TPH) Gasoline Range Organics (GRO) and Diesel Range Organics (DRO) by Ultraviolet Fluorescence (UVF) Spectrometry						
Sample ID	Date	Contaminant of Concern→ Sample Depth (ftbgs)	TPH-GRO	TPH-DRO					
B-1	10/21/2019	6 to 8	<0.28	<0.28					
B-2	10/21/2019	4 to 6	<0.51	<0.51					
B-3	10/21/2019	4 to 6	<0.49	<0.49					
B-4	10/21/2019	4 to 6	<0.59	<0.59					
B-5	10/21/2019	4 to 6	<0.51	<0.51					
B-6	10/21/2019	6 to 8	<0.5	<0.5					
B-7	10/23/2019	6 to 8	<0.58	<0.58					
B-8	10/23/2019	6 to 8	<0.56	<0.56					
B-9	10/23/2019	6 to 8	150.5	362.7					
B-10	10/23/2019	6 to 8	<0.61	1.3					
B-11	10/23/2019	6 to 8	<0.62	<0.62					
B-12	10/23/2019	6 to 8	<0.62	<0.62					
B-13	10/23/2019	6 to 8	<0.6	1.1					
B-14	10/23/2019	6 to 8	<0.66	<0.66					
No	orth Carolina T	PH Action Levels	50	100					

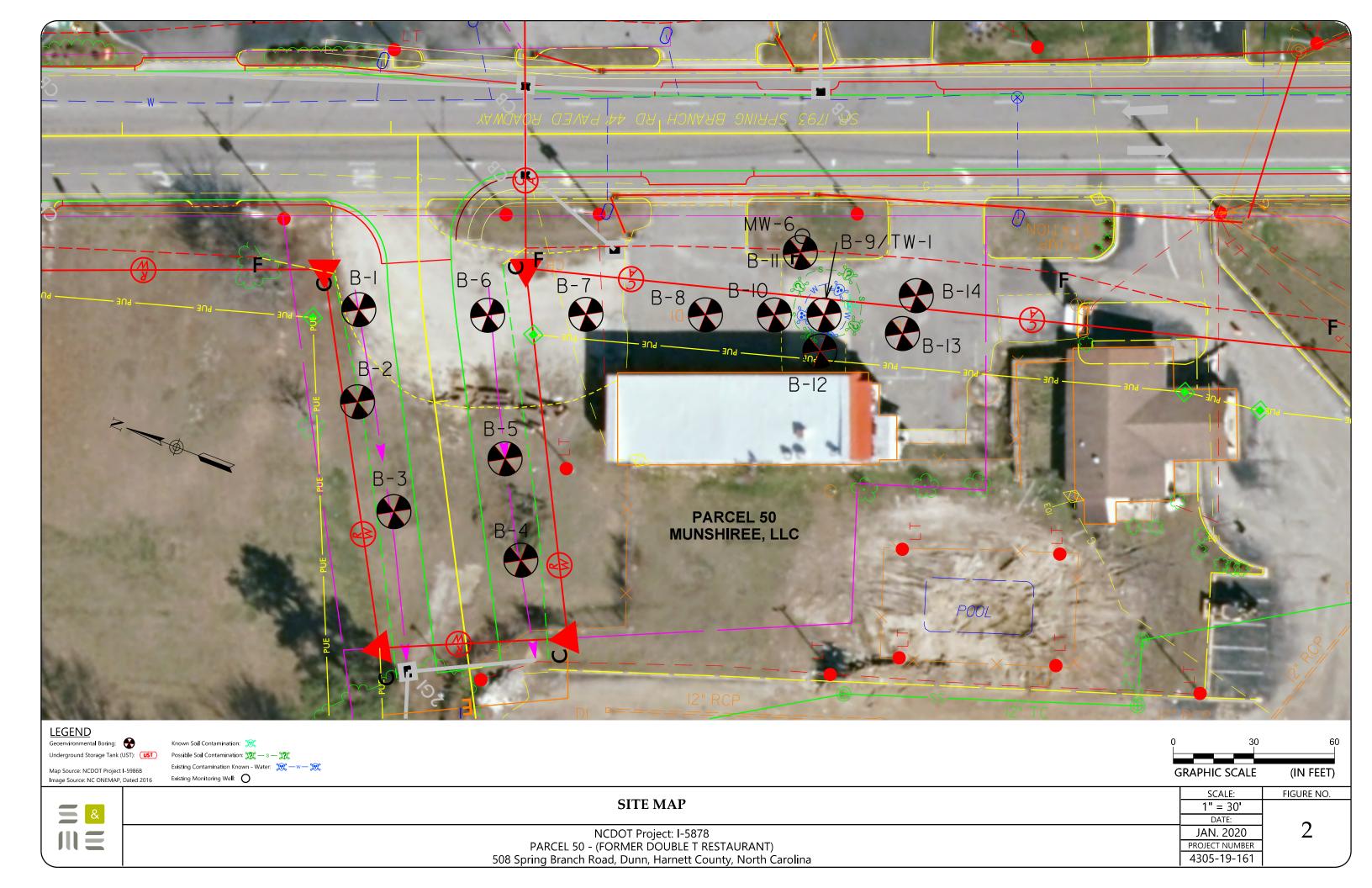
Notes:

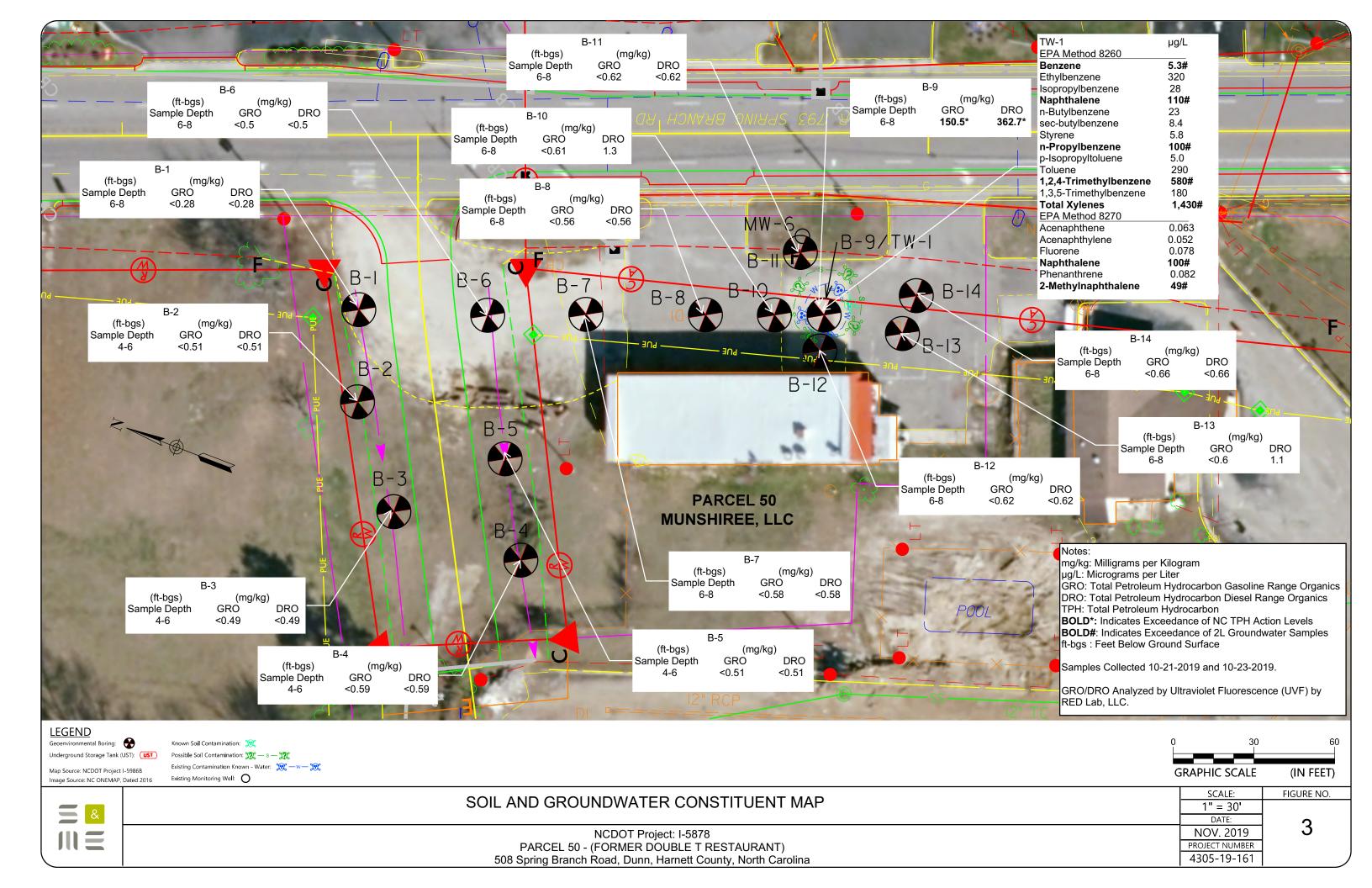
- 1. UVF analysis performed by RED Lab, LLC
- 2. Concentrations are reported in milligrams per kilogram (mg/Kg).
- 3. ft.-bgs:- feet below ground surface.
- 4. Concentrations exceeding the laboratory's reporting limits are shown in **BOLD** fields.
- Concentrations exceeding the North Carolina TPH Action Levels are shown in Shaded and BOLD fields.

TABLE 2 SUMMARY OF GROUNDWATER SAMPLING RESULTS

NCDOT Project I-5878


Parcel 50 - (Former Double T Restaurant) 508 Spring Branch Road Dunn, Harnett County, North Carolina S&ME Project No. 4305-19-161


Analytical	Method→		Volatile Organic Compounds by EPA Method 8260													Polycyclic Aromatic Compounds (PAHs) by EPA Method 8270				
Sample ID	Contaminant of Concern→	Benzene	Ethylbenzene	Isopropylbenzene	Naphthalene	n-Butylbenzene	sec-Butylbenzene	Styrene	n-Propylbenzene	p-Isopropyltoluene	Toluene	1,2,4- Trimethylbenzene	1,3,5- Trimethylbenzene	Total Xylenes	Acenaphthene	Acenaphthylene	Fluorene	Naphthalene	Phenanthrene	2-Methylnaphthalene
B-9/TW-1	10/23/2019	5.3 J	320	28	110	23	8.4 J	5.8 J	100	5.0 J	290	580	180	1,430	0.063 J	0.052 J	0.078 J	100	0.082	49
2L Standard (μg/L)		1	600	70	6	70	70	70	70	25	600	400	400	500	80	200	300	6	200	30
GCL (µg/L)		5,000	84,500	25,000	6,000	6,900	8,500	70,000	30,000	11,700	260,000	28,500	25,000	85,500	2,120	1,965	990	6,000	410	12,500


Notes:

- 1. Analytes that are not shown for the method were not detected.
- 2. Concentrations are reported in micrograms per liter (µg/L).
- 3. 2L Standard: North Carolina Groundwater Quality Standards: 15A NCAC 2L.0202
- 4. Concentrations exceeding the laboratory's reporting limits are shown in **BOLD** fields.
- 5. Concentrations exceeding the 2L Standards are shown in Shaded and BOLD fields.
- 6. GCL: Gross Contamination Level.
- 7. J: Estimated concentration detected below the reporting limit.

REFERENCE:

GOOGLE EARTH PRO AERIAL PHOTOGRAPH (DATED MARCH 4, 2018)

LEGEND

--- Approximate TDEM Path

Approximate Requested Survey Area

TDEM PATH LOCATION PLAN

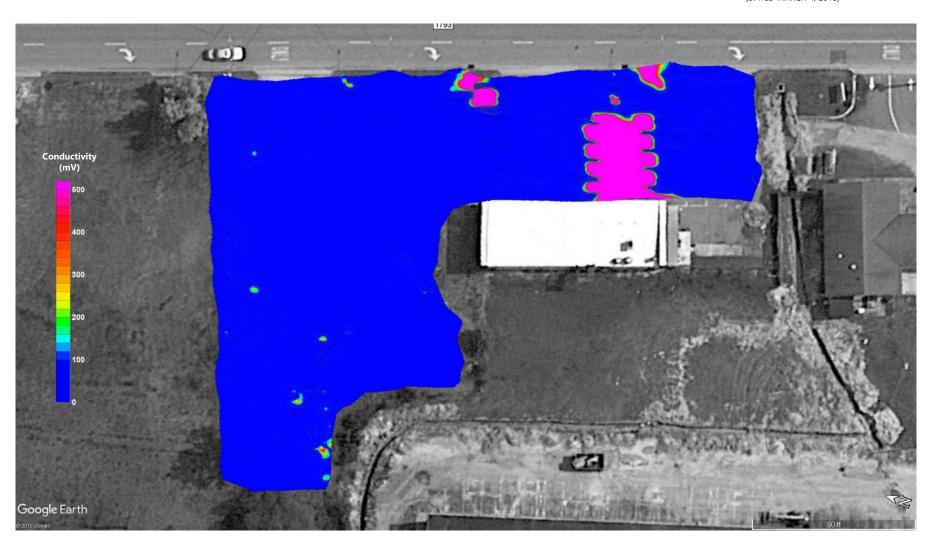
NCDOT PROJECT: 1-5878 PARCEL #50 - (FORMER DOUBLE T RESTAURANT) 508 SPRING BRANCH ROAD, DUNN, HARNETT COUNTY, NORTH CAROLINA

SCALE: AS SHOWN

DATE: 11/20/2019

PROJECT NUMBER 4305-19-161

FIGURE NO.


4

REFERENCE:GOOGLE EARTH PRO AERIAL PHOTOGRAPH (DATED MARCH 4, 2018)

TDEM DATA PLOT A

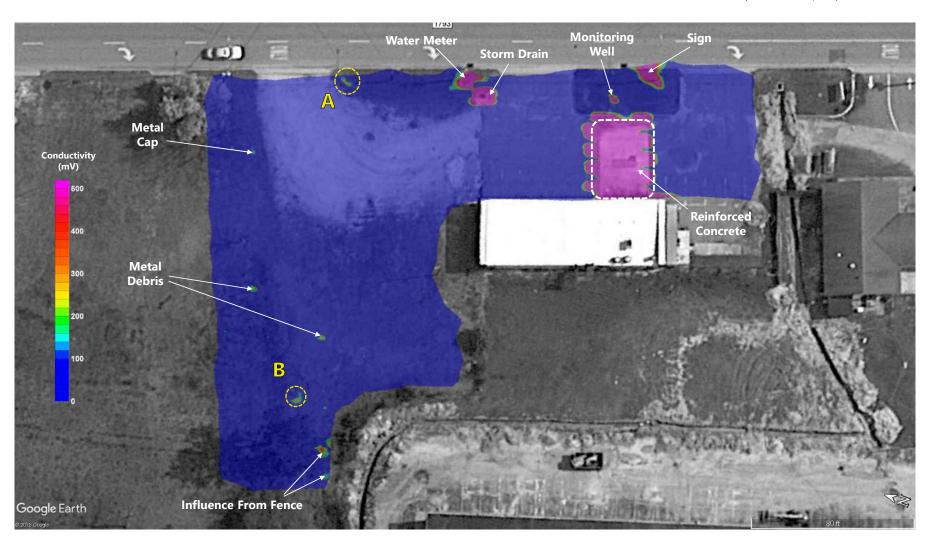
NCDOT PROJECT: 1-5878 PARCEL #50 - (FORMER DOUBLE T RESTAURANT) 508 SPRING BRANCH ROAD, DUNN, HARNETT COUNTY, NORTH CAROLINA

SCALE: AS SHOWN

DATE: 11/20/2019

PROJECT NUMBER 4305-19-161

FIGURE NO.


5

REFERENCE:

GOOGLE EARTH PRO AERIAL PHOTOGRAPH (DATED MARCH 4, 2018)

LEGEND

 \bigcirc

Approximate Location of Geophysical Anomaly

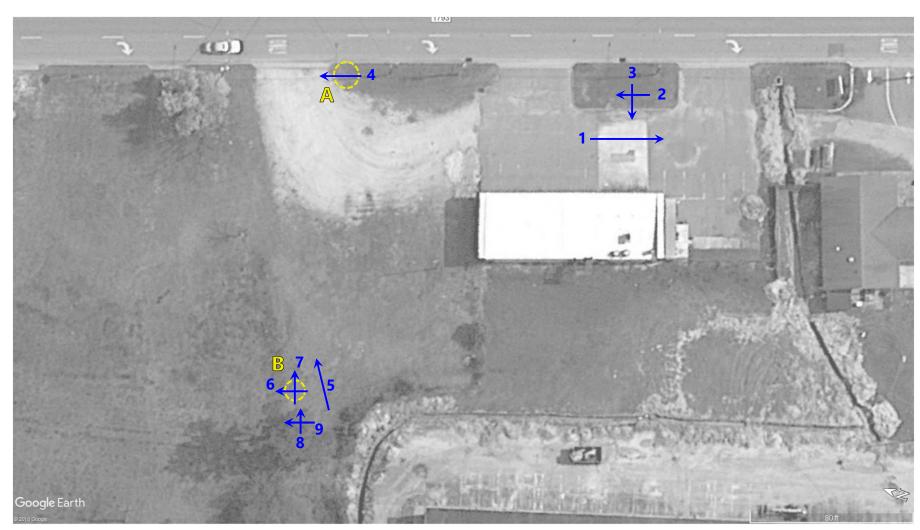
SCALE: AS SHOWN

NCDOT PROJECT: 1-5878 PARCEL #50 - (FORMER DOUBLE T RESTAURANT) 508 SPRING BRANCH ROAD, DUNN, HARNETT COUNTY, NORTH CAROLINA

TDEM DATA PLOT B

DATE: 11/20/2019

PROJECT NUMBER 4305-19-161


FIGURE NO.

REFERENCE:

GOOGLE EARTH PRO AERIAL PHOTOGRAPH (DATED MARCH 4, 2018)

SCALE: AS SHOWN

NCDOT PROJECT: I-5878 PARCEL #50 - (FORMER DOUBLE T RESTAURANT) 508 SPRING BRANCH ROAD, DUNN, HARNETT COUNTY, NORTH CAROLINA

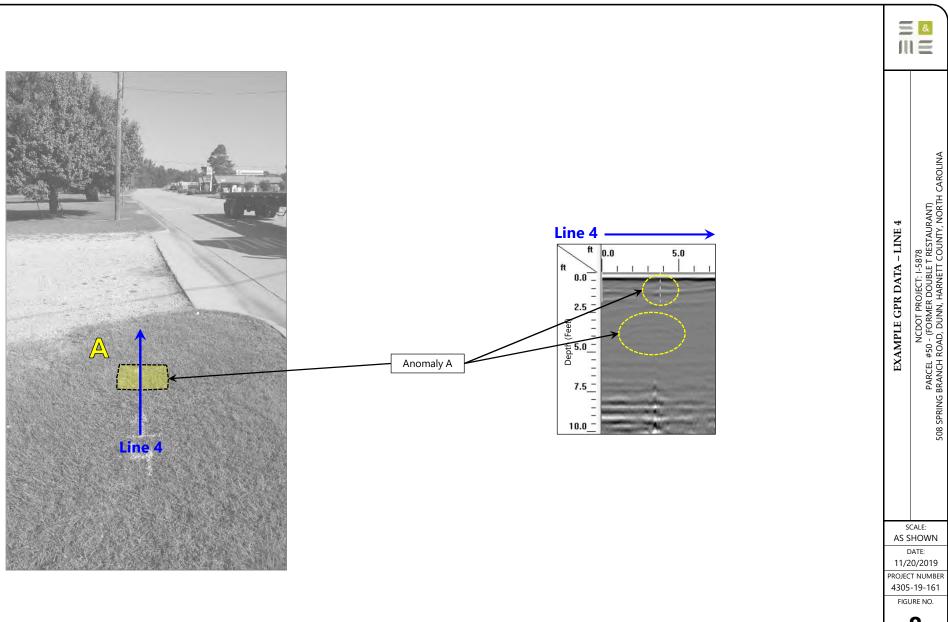
GEOPHYSICAL ANOMALY LOCATION PLAN

DATE: 11/20/2019

PROJECT NUMBER 4305-19-161

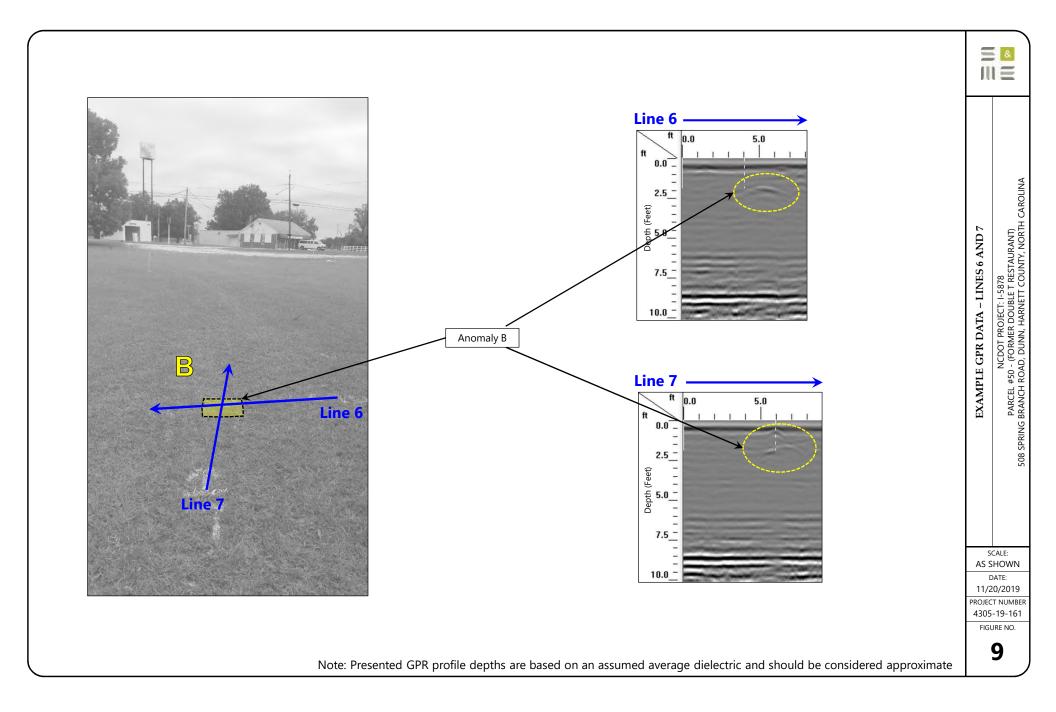
FIGURE NO.

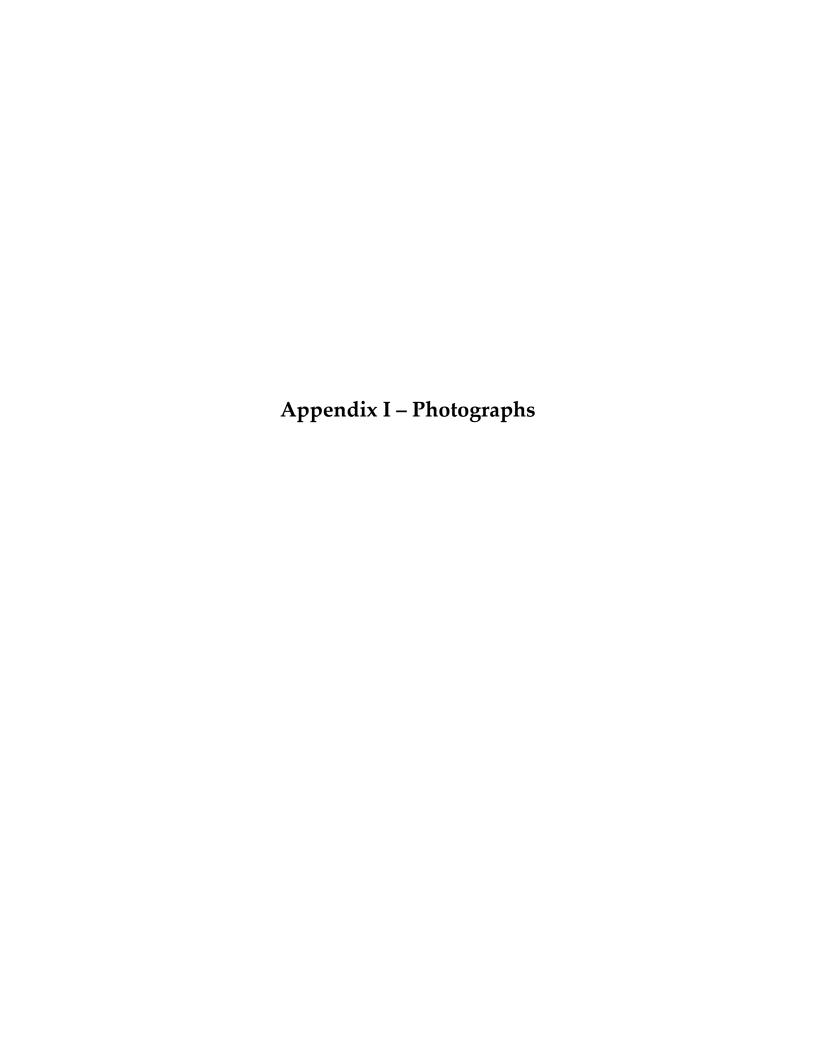
7


LEGEND

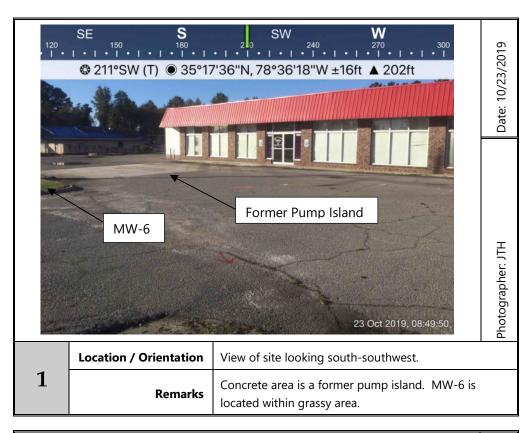
 \bigcirc

Approximate Location of Geophysical Anomaly




Approximate Location of GPR Profile

Note: Presented GPR profile depths are based on an assumed average dielectric and should be considered approximate


8

Preliminary Site Assessment Report NCDOT Project I-5878, WBS Element 53078.1.1 Parcel 50-Former Double T Restaurant Dunn, Harnett County, North Carolina S&ME Project No. 4305-19-161

January 9, 2020 i

PROJECT:	NCDOT I-5878 Parcel 50-508 Spring Branch Rd (Former Double T Restar S&ME Project No. 4305-19-161	urant), Dunn, NC			BORIN	NG LOG:	B-1			
DATE DRILLED:	Monday, October 21, 2019	BORING DEPTH (FT):	10							
DRILL RIG:	Geoprobe 54DT	WATER LEVEL:								
DRILLER:				l'aslala						
	Troxler Geologic, Inc.	CAVE-IN DEPTH:								
HAMMER TYPE:	Not Applicable	LOGGED BY:	J. Honey	cutt						
Sampling Method:	Macro-Core Sampler	NORTHING:								
DRILLING METHOD:	Macro-Core Sampler (3-in. OD)	EASTING:								
DEPTH (feet) GRAPHIC LOG	MATERIAL DESCRIPTION		WATER LEVEL	SAMPLE	PID READING (PPM)	LABORATORY ANALYSES	Sample Time / 1st 6in	2nd 6in	3rd 6in	N VALUE
l — line	ey Sand, Tan, Brown,			İ	3.1	No				
5 - 11 - 15 - 15 - 15 - 15 - 15 - 15 -	dy Clay, Orange, Gray,			Ĭ	4.6	No				
	uy Clay, Orange, Gray,			I	2.9	No				
::::::			•	11	5.1	Yes	1545			
40	r Sand, Orange, ng Terminated at 10 Ft-BGS		•							
15 —										
20 —										
25 —										
30										

PROJECT:	NCDOT I-5878 Parcel 50-508 Spring Branch Rd (Former Double T Resta S&ME Project No. 4305-19-161	urant), Dunn, NC			BORIN	NG LOG:	: B-2			
DATE DRILLED:	Monday, October 21, 2019	BORING DEPTH (FT):	8							
DRILL RIG:	Geoprobe 54DT									
DRILLER:	Troxler Geologic, Inc.	CAVE-IN DEPTH:		icable						
HAMMER TYPE:	Not Applicable	LOGGED BY:	J. Honeyo	cutt						
SAMPLING METHOD:	Macro-Core Sampler	NORTHING:								
DRILLING METHOD:	Macro-Core Sampler (3-in. OD)	EASTING:								
DEPTH (feet) (feet) GRAPHIC LOG	MATERIAL DESCRIPTION		WATER LEVEL	SAMPLE	PID READING (PPM)	LABORATORY ANALYSES	Sample Time / 1st 6in	2nd 6in	3rd 6in	N VALUE
	ey Sand, Orange,			I	5.6	No				
5				I	6.6	No				
11.1.1.1	d, Tan, Orange,		*	ł	1.0	Yes	1600			
	ng Terminated at 8 Ft-BGS				6.5	No				
10 —										
15										
20 —										
25 —										
30										

PROJECT:	NCDOT I-5878 Parcel 50-508 Spring Branch Rd (Former Double T Resta	urant) Dunn MC			PODIA	NG LOG:	D_2			
	S&ME Project No. 4305-19-161	lurant), Dunn, NC			DUKII	NG LOG	D-3			
DATE DRILLED:	Monday, October 21, 2019	BORING DEPTH (FT):	8							
DRILL RIG:	Geoprobe 54DT	WATER LEVEL:								
DRILLER:	Troxler Geologic, Inc.	CAVE-IN DEPTH:		licable						
HAMMER TYPE:	Not Applicable	LOGGED BY:								
SAMPLING METHOD:	Macro-Core Sampler	NORTHING:	J. T. Onley							
DRILLING METHOD:	Macro-Core Sampler (3-in. OD)	EASTING:								
DIVIDENTO METHOD.	macro core sampler (5 m. 65)	LASTING.					1			
(feet) (feet) GRAPHIC LOG	MATERIAL DESCRIPTION		WATER LEVEL	SAMPLE	PID READING (PPM)	LABORATORY ANALYSES	Sample Time / 1st 6in	2nd 6in	3rd 6in	N VALUE
Clay	soil, <i>y</i> ey Sand, Tan, Orange,				4.9	No				
5				ł	7.1	No				ļ
	r Sand, Tan, Orange,		•		7.9	Yes	1615			
Bori	ing Terminated at 8 Ft-BGS									
10 —										
15 —										
20 —										
25 —										
30				1						

PROJECT	:			NCDOT I-5878 Parcel 50-508 Spring Branch Rd (Former Double T Rest	taurant), Dunn, NC			BORIN	NG LOG	: B-4			
DATE DRILI	I FD:			S&ME Project No. 4305-19-161 Monday, October 21, 2019	BORING DEPTH (FT):	8							
	LLD.												
DRILL RIG:				Geoprobe 54DT	WATER LEVEL:								
DRILLER:				Troxler Geologic, Inc.	CAVE-IN DEPTH:								
HAMMER 1				Not Applicable	LOGGED BY:	J. Honey	cutt						
SAMPLING	METH	IOD:		Macro-Core Sampler	NORTHING:								
DRILLING N	METHO	DD:		Macro-Core Sampler (3-in. OD)	EASTING:								
DEPTH (feet)	GRAPHIC		T	MATERIAL DESCRIPTION		WATER LEVEL	SAMPLE	PID READING (PPM)	LABORATORY ANALYSES	Sample Time / 1st 6in	2nd 6in	3rd 6in	N VALUE
_			Tops Silty	ioli, Sand, Orange, Brown,				3.7	No				
				Sand, Black, Sand, Orange, Gray,			ł	4.3	No				
5 —						•	Н	5.9	Yes	1630			
_		Ш	Borin	ng Terminated at 8 Ft-BGS									
10 —													
<u> </u>													
-													
15 —													
20 —													
_	1												
25 — —													
_													
30 —	-												
50					-								

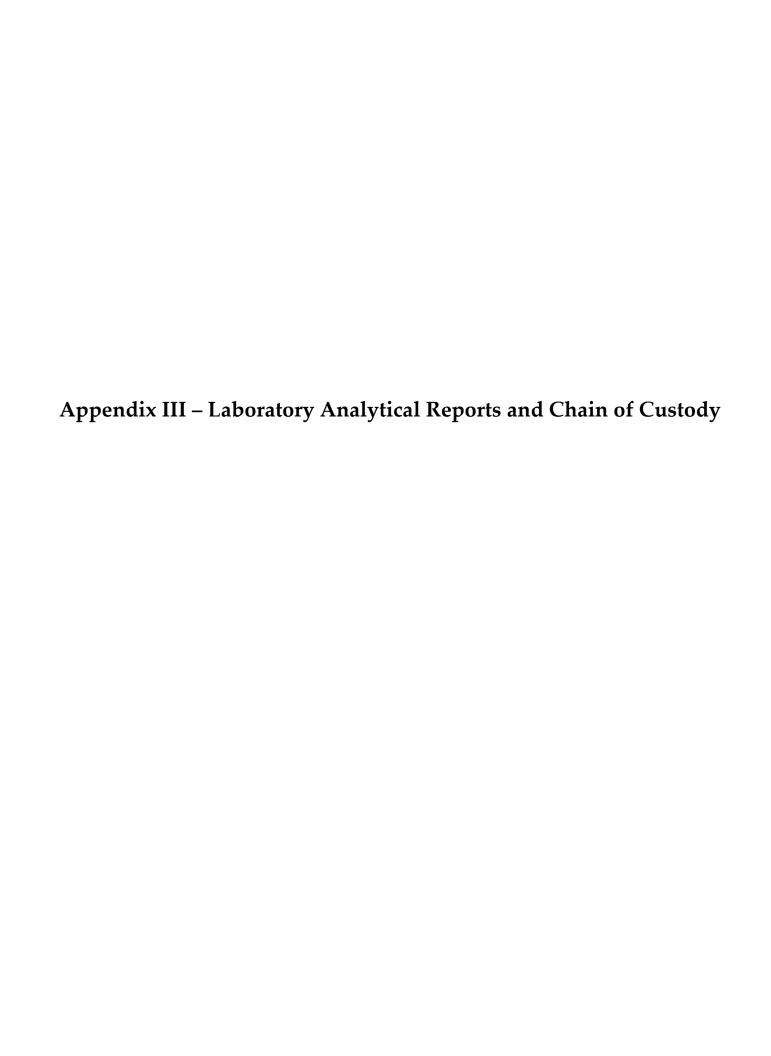
PROJECT:	NCDOT I-5878 Parcel 50-508 Spring Branch Rd (Former Double T Resta	urant), Dunn, NC			BORIN	NG LOG	: B-5			
DATE DRILLED:	S&ME Project No. 4305-19-161 Monday, October 21, 2019	PODING DEDTH (FT).	0							
		BORING DEPTH (FT):								
DRILL RIG:	Geoprobe 54DT	WATER LEVEL:								
DRILLER:	Troxler Geologic, Inc.	CAVE-IN DEPTH:	Not Appl	icable						
HAMMER TYPE:	Not Applicable	LOGGED BY:	J. Honey	cutt						
SAMPLING METHOD:	Macro-Core Sampler	NORTHING:								
DRILLING METHOD:	Macro-Core Sampler (3-in. OD)	EASTING:								
DEPTH (feet) (feet) CAPHIC LOG	MATERIAL DESCRIPTION roil, ey Sand, Orange, Brown,		WATER LEVEL	SAMPLE	PID READING (PPM)	LABORATORY ANALYSES	Sample Time / 1st 6in	2nd 6in	3rd 6in	N VALUE
	Sand, Tan, Orange,			I	4.5	No				
5 —	·			I	2.2 3.4	No Yes	1645			
Boriu	ng Terminated at 8 Ft-BGS		•							
10 —										
15 —										
20 —										
25 —										
30										

PROJECT:	NCDOT I-5878 Parcel 50-508 Spring Branch Rd (Former Double T Restar S&ME Project No. 4305-19-161	urant), Dunn, NC			BORIN	NG LOG	В-6			
DATE DRILLED:	Monday, October 21, 2019	BORING DEPTH (FT):	8							
DRILL RIG:	Geoprobe 54DT	WATER LEVEL:								
DRILLER:	Troxler Geologic, Inc.			l'aslala						
		CAVE-IN DEPTH:								
HAMMER TYPE:	Not Applicable	LOGGED BY:	J. Honey	cutt						
SAMPLING METHOD:	Macro-Core Sampler	NORTHING:								
DRILLING METHOD:	Macro-Core Sampler (3-in. OD)	EASTING:								
DEPTH (feet) (feet) GRAPHIC LOG	MATERIAL DESCRIPTION		WATER LEVEL	SAMPLE	PID READING (PPM)	LABORATORY ANALYSES	Sample Time / 1st 6in	2nd 6in	3rd 6in	N VALUE
Cla	yey Sand, Orange,			I	3.2	No				
5 — Clar	yey Sand, Tan, Orange,			İ	4.6	No				
				I	4.8	No				
Bor	ing Terminated at 8 Ft-BGS		•	11	4.0	Yes	1700			
10 —										
15 —										
20 —										
25 —										
30										

PROJECT:	NCDOT I-5878 Parcel 50-508 Spring Branch Rd (Former Double T Resta	aurant), Dunn, NC			BORIN	IG LOG:	B-7			
DATE DRILLED:	S&ME Project No. 4305-19-161 Wednesday, October 23, 2019	BORING DEPTH (FT):	Ω							
DRILL RIG:	Geoprobe 54DT	WATER LEVEL:								
DRILLER:	Troxler Geologic, Inc.	CAVE-IN DEPTH:		cable						
HAMMER TYPE:	Not Applicable		J. Honeyo	utt						
SAMPLING METHOD:	Macro-Core Sampler	NORTHING:								
DRILLING METHOD:	Macro-Core Sampler (3-in. OD)	EASTING:								
DEPTH (feet) GRAPHIC LOG	MATERIAL DESCRIPTION		WATER LEVEL	SAMPLE	PID READING (PPM)	LABORATORY ANALYSES	Sample Time / 1st 6in	2nd 6in	3rd 6in	N VALUE
1 1111	Sand, Tan, ey Sand, Tan, Orange,			ŧ	3.1	No				
5				ŧ	5.1	No				
11.1.1.	, Tan, Sand, Red, Gray,			ŧ	3.2	No				
	ng Terminated at 8 Ft-BGS		•		4.2	Yes	950			
10 —										
15 —										
20 —										
25 —										
30										

SIME Project No. 4305-19-161 SIME Project No. 4305-19-161	PROJECT:	NCDOT I-5878 Parcel 50-508 Spring Branch Rd (Former Double T Re	staurant), Dunn, NC			BORIN	NG LOG:	- B-8			
MONTH Month Mont			staarant, Dann, IVC			DOM	10 200	. D-0			
SOUTH SEC	DATE DRILLED:		BORING DEPTH (FT):	8							
SPILLSK Triest Georgic Inc											
SAMMENT NYE					licable						
SAMPLING METHOD: Macro-Core Sampler (G-in-OD)											
Delication Del											
10 15 15 15 15 15 15 15		· · · · · · · · · · · · · · · · · · ·									
Asphalt, Gravel Clayey Sand, Orange, 5 Sitty Sand, Tan, Orange, Boring Terminated at 8 Ft-BGS 10 20 20 20 20 20 20 20 20 20				Æ		92	RY S	/ e			l
Clayey Sand, Orange. 4.3 No 2.9 No 7.3 No 7.4 Yes 1000 10 — 115 — 20 — 20 — 20 — 20 — 21 — 22 — 23 — 24 — 4.3 No 4.3 No 4.3 No 4.3 No 4.3 No 4.3 No 4.3 No 4.3 No 4.3 No 4.3 No 4.3 No 4.3 No 7.4 Yes 1000	DEPTH (feet) GRAPHIC			WATER LEV	SAMPLE	PID READIN (PPM)	LABORATO	Sample Tim 1st 6in	2nd 6in	3rd 6in	N VALUE
2.9 No 7.3 No 7.4 Yes 1000 10 — 15 — 20 — 20 — 20 — 20 — 20 — 20 — 20 — 20	_7//	Asphalt, Gravel, Clayey Sand, Orange,			ш						
5 —	- <i> </i>				H	4.3	No				
10 — Sitty Sand, Tan, Orange, 7.4 Yes 1000					H	2.9	No				
Silty Sand, Tan, Orange,	5 —///					73	No				
Boring Terminated at 8 Pt-BGS 10 —		Silty Sand, Tan, Orange,			H	7.0					
	<u> </u>			•		7.4	Yes	1000			
	10 —										
	20 —										
25 —											
	25 —										
I <u> </u>											
30	30										

PROJECT:	NCDOT I-5878 Parcel 50-508 Spring Branch Rd (Former Double T Resta	aurant), Dunn, NC			BORIN	IG LOG:	B-9/	TW-1		
	S&ME Project No. 4305-19-161						•			
DATE DRILLED:	Wednesday, October 23, 2019	BORING DEPTH (FT):	12							
DRILL RIG:	Geoprobe 54DT	WATER LEVEL:								
DRILLER:	Troxler Geologic, Inc.	CAVE-IN DEPTH:	Not Appl	icable						
HAMMER TYPE:	Not Applicable	LOGGED BY:	J. Honeyo	cutt						
SAMPLING METHOD:	Macro-Core Sampler	NORTHING:								
DRILLING METHOD:	Macro-Core Sampler (3-in. OD)	EASTING:								
DEPTH (feet) GRAPHIC LOG	MATERIAL DESCRIPTION		WATER LEVEL	SAMPLE	PID READING (PPM)	LABORATORY ANALYSES	Sample Time / 1st 6in	2nd 6in	3rd 6in	N VALUE
Asp Clay	halt, Gravel, /ey Sand, Orange,									
					3.8	No				
				I	4.1	No				
5 — Clay	vey Sand, Orange, Petroleum Odors			I	7.9	No				
Silty	y Sand, Tan, Orange, Petroleum Odors		•	H	1468	Yes	1015			
10 —										
Bori	ing Terminated at 12 Ft-BGS									
I —										
15 —										
20 —										
25 —										
30							L			


PROJECT:	NCDOT I-5878 Parcel 50-508 Spring Branch Rd (Former Double T Resta	aurant), Dunn, NC			BORII	NG LOG:	B-10			
DATE DRILLED:	S&ME Project No. 4305-19-161 Wednesday, October 23, 2019	PODING DEPTH (FT).	0							
		BORING DEPTH (FT):								
DRILL RIG:	Geoprobe 54DT	WATER LEVEL:								
DRILLER:	Troxler Geologic, Inc.	CAVE-IN DEPTH:	Not Appl	icable						
HAMMER TYPE:	Not Applicable	LOGGED BY:	J. Honey	cutt						
SAMPLING METHOD:	Macro-Core Sampler	NORTHING:								
DRILLING METHOD:	Macro-Core Sampler (3-in. OD)	EASTING:								
DEPTH (feet) (GRAPHIC LOG	MATERIAL DESCRIPTION		WATER LEVEL	SAMPLE	PID READING (PPM)	LABORATORY ANALYSES	Sample Time / 1st 6in	2nd 6in	3rd 6in	N VALUE
Clay	ey Sand, Orange, Sand, Tan, Orange,				2.0	No				
5 —				ł	4.6	No				
				İ	7.4	No				
Borii	ng Terminated at 8 Ft-BGS		•		7.2	Yes	1045			
10 —										
15 —										
20 —										
25 —										
30										

PROJECT:	NCDOT I-5878 Parcel 50-508 Spring Branch Rd (Former Double T Resta S&ME Project No. 4305-19-161	aurant), Dunn, NC			BORII	NG LOG:	B-11			
DATE DRILLED:	Wednesday, October 23, 2019	BORING DEPTH (FT):	ρ							
DRILL RIG:										
	Geoprobe 54DT	WATER LEVEL:								
DRILLER:	Troxler Geologic, Inc.	CAVE-IN DEPTH:								
HAMMER TYPE:	Not Applicable	LOGGED BY:	J. Honey	cutt						
SAMPLING METHOD:	Macro-Core Sampler	NORTHING:								
DRILLING METHOD:	Macro-Core Sampler (3-in. OD)	EASTING:								
DEPTH (feet) (Get) GRAPHIC LOG	MATERIAL DESCRIPTION		WATER LEVEL	SAMPLE	PID READING (PPM)	LABORATORY ANALYSES	Sample Time / 1st 6in	2nd 6in	3rd 6in	N VALUE
-{///	ey Sand, Orange,			I	3.3	No				
5 —				I	5.9	No				
				I	5.2 6.1	No Yes	1100			
Bori	ng Terminated at 8 Ft-BGS		▼							
15 —										
20 —										
25 —										
30			<u> </u>	<u> </u>	<u>l</u>	<u> </u>	<u> </u>		<u> </u>	

PROJECT:	NCDOT I-5878 Parcel 50-508 Spring Branch Rd (Former Double T Resta	aurant), Dunn, NC			BORIN	NG LOG:	B-12	1		
DATE DRILLED:	S&ME Project No. 4305-19-161 Wednesday, October 23, 2019	BORING DEPTH (FT):	0							
DRILL RIG:										
	Geoprobe 54DT	WATER LEVEL:								
DRILLER:	Troxler Geologic, Inc.	CAVE-IN DEPTH:								
HAMMER TYPE:	Not Applicable		J. Honeyo	utt						
SAMPLING METHOD:	Macro-Core Sampler	NORTHING:								
DRILLING METHOD:	Macro-Core Sampler (3-in. OD)	EASTING:								
DEPTH (feet) GRAPHIC LOG	MATERIAL DESCRIPTION		WATER LEVEL	SAMPLE	PID READING (PPM)	LABORATORY ANALYSES	Sample Time / 1st 6in	2nd 6in	3rd 6in	N VALUE
	crete, Gravel, ey Sand, Orange,			ŧ	5.2	No				
				ŧ	6.8	No				
5 —				ŧ	6.7	No				
Silty	Sand, Tan, Gray,			ŧ	6.4	Yes	1115			
Borii	ng Terminated at 8 Ft-BGS		•		0.4	103	1113			
10 —										
15 —										
20 —										
25 —										
30										

PROJECT:	NCDOT I-5878 Parcel 50-508 Spring Branch Rd (Former Double T Resta	aurant), Dunn, NC			BORIN	NG LOG:	B-13					
	S&ME Project No. 4305-19-161											
DATE DRILLED:	Wednesday, October 23, 2019	BORING DEPTH (FT):										
DRILL RIG:	Geoprobe 54DT	WATER LEVEL:										
DRILLER:	Troxler Geologic, Inc.	CAVE-IN DEPTH:										
HAMMER TYPE:	Not Applicable	LOGGED BY:	LOGGED BY: J. Honeycutt									
Sampling method:	Macro-Core Sampler	NORTHING:										
DRILLING METHOD:	Macro-Core Sampler (3-in. OD)	EASTING:										
DEPTH (feet) GRAPHIC LOG	MATERIAL DESCRIPTION		WATER LEVEL	SAMPLE	PID READING (PPM)	LABORATORY ANALYSES	Sample Time / 1st 6in	2nd 6in	3rd 6in	N VALUE		
1818181	alt, Gravel, , Gray,			ŧ	4.3	No						
				ŧ	7.6	No						
5 —				ŧ	7.1	No						
				ŧ								
Silty Claye	Sand, Tan, Gray, ey Sand, Orange,		•	"	6.7	Yes	1200					
10 Borir	g Terminated at 10 Ft-BGS											
15 —												
20 —												
25 —												
30												

PROJECT:	NCDOT I-5878 Parcel 50-508 Spring Branch Rd (Former Double T Resta S&ME Project No. 4305-19-161	aurant), Dunn, NC			BORIN	NG LOG:	B-14			
DATE DRILLED:	Wednesday, October 23, 2019	BORING DEPTH (FT):	R							
DRILL RIG:	Geoprobe 54DT	WATER LEVEL:								
DRILLER:	Troxler Geologic, Inc.	CAVE-IN DEPTH:								
HAMMER TYPE:	Not Applicable		J. Honeyo	utt						
SAMPLING METHOD:	Macro-Core Sampler	NORTHING:								
DRILLING METHOD:	Macro-Core Sampler (3-in. OD)	EASTING:				1				
DEPTH (feet) GRAPHIC LOG	MATERIAL DESCRIPTION		WATER LEVEL	SAMPLE	PID READING (PPM)	LABORATORY ANALYSES	Sample Time / 1st 6in	2nd 6in	3rd 6in	N VALUE
Aspi Clay	nalt, Gravel, ey Sand, Orange,			11						
	-, · · · · · · · · · · · · · · · · · · ·			ł	5.0	No				
5 —				ŧ	11.2	No				
Sany	d, White,			I	8.6	No				
17.17.1	ng Terminated at 8 Ft-BGS		•	***	9.6	Yes	1215			
10 —										
15 —										
20 —										
25 —										
30										

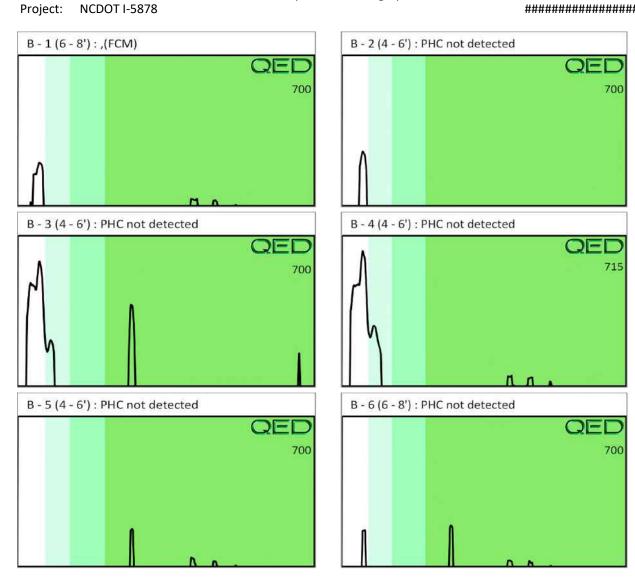
Hydrocarbon Analysis Results

Client: S&ME Address: 3201 SPRING FOREST RD

RALEIGH NC

Samples taken Samples extracted Samples analysed Monday, October 21, 2019 Monday, October 21, 2019 Wednesday, October 23, 2019

Contact: JAMIE HONEYCUTT Operator JENN RYAN


Project: NCDOT I-5878

													F03640
Matrix	Sample ID	Dilution used	BTEX (C6 - C9)	GRO (C5 - C10)	DRO (C10 - C35)	TPH (C5 - C35)	Total Aromatics (C10-C35)	16 EPA PAHs	ВаР		Ratios H		HC Fingerprint Match
										% light	% mid	% heavy	
S	B - 1 (6 - 8')	11.0	<0.28	<0.28	<0.28	<0.28	<0.06	<0.09	<0.011	0	0	0	,(FCM)
S	B - 2 (4 - 6')	20.5	<0.51	< 0.51	< 0.51	< 0.51	<0.1	< 0.16	< 0.02	0	0	0	PHC not detected
S	B - 3 (4 - 6')	19.5	<0.49	<0.49	< 0.49	< 0.49	<0.1	<0.16	< 0.02	0	0	0	PHC not detected
S	B - 4 (4 - 6')	23.6	<0.59	<0.59	<0.59	<0.59	<0.12	<0.19	<0.024	0	0	0	PHC not detected
S	B - 5 (4 - 6')	20.3	<0.51	<0.51	<0.51	<0.51	<0.1	<0.16	< 0.02	0	0	0	PHC not detected
S	B - 6 (6 - 8')	20.2	<0.5	<0.5	<0.5	<0.5	<0.1	<0.16	<0.02	0	0	0	PHC not detected
	Initial Ca	alibrator (QC check	OK					Final F	CM QC	Check	OK	99.6 %

Results generated by a QED HC-1 analyser. Concentration values in mg/kg for soil samples and mg/L for water samples. Soil values are not corrected for moisture or stone content

Fingerprints provide a tentative hydrocarbon identification. The abbreviations are:- FCM = Results calculated using Fundamental Calibration Mode: % = confidence for sample fingerprint match to library

(SBS) or (LBS) = Site Specific or Library Background Subtraction applied to result: (PFM) = Poor Fingerprint Match: (T) = Turbid: (P) = Particulate present

Hydrocarbon Analysis Results

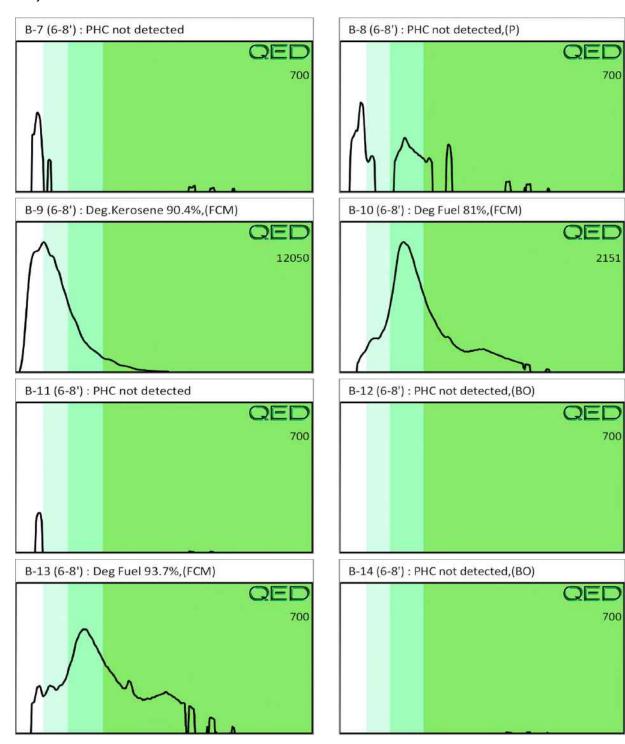
Client: S & ME

Address: RALEIGH, NC

Samples taken Samples extracted Samples analysed Wednesday, October 23, 2019 Wednesday, October 23, 2019

Friday, October 25, 2019

Contact: JAMIE HONEYCUTT


Project: NCDOT I-5878 PARCEL 50

Operator **CAROLINE STEVENS**

													F03640
Matrix	Sample ID	Dilution used	BTEX (C6 - C9)	GRO (C5 - C10)	DRO (C10 - C35)	TPH (C5 - C35)	Total Aromatics (C10-C35)	16 EPA PAHs	ВаР		Ratios		HC Fingerprint Match
										% light	% mid	% heavy	
S	B-7 (6-8')	23.0	<0.58	<0.58	<0.58	<0.58	<0.12	<0.18	<0.023	0	0	0	PHC not detected
S	B-8 (6-8')	22.2	<0.56	<0.56	<0.56	<0.56	<0.11	<0.18	<0.022	0	100	0	PHC not detected,(P)
S	B-9 (6-8')	21.0	<0.52	150.5	362.7	513.2	11.3	0.41	<0.021	99.8	0.2	0	Deg.Kerosene 90.4%,(FCM)
S	B-10 (6-8')	24.3	<0.61	<0.61	1.3	1.3	0.73	<0.19	<0.024	0	88.7	11.3	Deg Fuel 81%,(FCM)
S	B-11 (6-8')	24.8	< 0.62	<0.62	<0.62	< 0.62	<0.12	<0.2	<0.025	0	0	0	PHC not detected
S	B-12 (6-8')	24.8	<0.62	<0.62	<0.62	< 0.62	<0.12	<0.2	<0.025	0	0	0	PHC not detected,(BO)
S	B-13 (6-8')	24.1	<0.6	<0.6	1.1	1.1	<0.12	<0.19	<0.024	0	100	0	Deg Fuel 93.7%,(FCM)
S	B-14 (6-8')	26.3	<0.66	<0.66	<0.66	<0.66	<0.13	<0.21	<0.026	0	0	0	PHC not detected,(BO)
			·										
	Initial C	alibrator (C check	OK					Final FO	CM OC	Check	ΟK	99.6 %

Results generated by a QED HC-1 analyser. Concentration values in mg/kg for soil samples and mg/L for water samples. Soil values are not corrected for moisture or stone content Fingerprints provide a tentative hydrocarbon identification. The abbreviations are:- FCM = Results calculated using Fundamental Calibration Mode: % = confidence for sample fingerprint match to library (SBS) or (LBS) = Site Specific or Library Background Subtraction applied to result : (PFM) = Poor Fingerprint Match : (T) = Turbid : (P) = Particulate present

Project: NCDOT I-5878 PARCEL 50

Client Name: STME RED Lab, LLC 320; Spring tought 180 Palacy NC 5598 Marvin K Moss Lane Address: MARBIONC Bldg, Suite 2003 Jame T Unarlill Wilmington, NC 28409 Contact: JCDOT I-5818 Each UVF sample will be analyzed for Project Ref.: total BTEX, GRO, DRO, TPH, PAH total Email: Thomas Bloscomeraccon aromatics and BaP. Standard GC RAPID ENVIRONMENTAL DIAGNOSTICS Phone #: Analyses are for BTEX and Chlorinated Solvents: VC, 1,1 DCE, 1,2 cis DCE, 1,2 Taimet Honers Collected by: trans DCE, TCE, and PCE. Specify target **CHAIN OF CUSTODY AND ANALYTICAL REQUEST FORM** analytes in the space provided below. **Sample Collection TAT Requested Analysis Type** Total Wt. Tare Wt. Sample Wt. Initials Sample ID Date/Time 24 Hour 48 Hour **UVF** GC JTH 44.8 12.7 10 arial 1545 6-81 B-1 569 12.7 Ba 4-6 44.2 1600 **13**.3 4-6-44.8 1615 55.8 44.8 1630 4-6 110 57.5 1645 44.7 4-6 1700 44.0 B6.68 **COMMENTS/REQUESTS: TARGET GC/UVF ANALYTES:** Relinquished by Date/Time Accepted by **RED Lab USE_ONLY** Janil Hercel 1220 18 21-19 /190n 10/22/19 MM Relinquished by Accepted by Date/Time Ref. No

NCOUT I-5878 bucch 50 DUNN, NC

Client Name:	SAMS
Address:	Balance of the
Contact:	James + Honer Day
Project Ref.:	NCDOT- I-8878 DUNN-
Email:	ponerale swelle com
Phone #:	96 977-7614
Collected by:	Janua 7-Heneral

REDLAB

RAPID ENVIRONMENTAL DIAGNOSTICS CHAIN OF CUSTODY AND ANALYTICAL REQUEST FORM

RED Lab, LLC 5598 Marvin K Moss Lane MARBIONC Bldg, Suite 2003 Wilmington, NC 28409

Each sample will be analyzed for BTEX, GRO, DRO, TPH, PAH total aromatics and BaP

Sample Collection	TAT Re	quested	Initials	2011.10				60 - 1 - 150
Date/Time	24 Hour	48 Hour	mitiass	Sample ID		Total Wt.	Tare Wt.	Sample Wt.
10-2319 0950			STH	3-7 6-8		55.4	44.1	11.3
11000				3.8 6.8		56-2	44.5	117
1015				3-9 6-8'		56.7	44.3	12-4
1045				710 6-8		55.5	44.8	10.7
[1100			1	311 6-8		54.9	44.4	10.5
(1115				3-12 6-8'		54.5	45.0	10.5
100	- 1200			B-13 68°		SS-S	44.7	8.01
1 [1215		4	1	314 6.8		54.2	44.3	9.9
					*			
· ·								
	1222							
	ő							
								
Comments:					-	RF	D Lab USE	ONLY
						110		
Au / Relingu	ished by		Date/Tim	Accepted by	Date/Time	1	(8)	
Kem Konsel				800		-		
	ished by		Date/Tim		Date/Time			
			, (1117)			-	13141	
	Water the contract of the cont			Cl3	10/25/19 12:00		DIII	

November 7, 2019

Jamie Honeycutt S&ME, Inc - Raleigh, NC 3201 Spring Forest Rd. Raleigh, NC 27616

Project Location: Dunn, NC

Client Job Number:

Project Number: 4305-19-161

Laboratory Work Order Number: 19J1774

Keny K. Mille

Enclosed are results of analyses for samples received by the laboratory on October 28, 2019. If you have any questions concerning this report, please feel free to contact me.

Sincerely,

Kerry K. McGee Project Manager

Table of Contents

Sample Summary	3
Hits Only Report	4
Case Narrative	5
Sample Results	7
19J1774-01	7
Sample Preparation Information	10
QC Data	11
Volatile Organic Compounds by GC/MS	11
B244975	11
Semivolatile Organic Compounds by GC/MS	16
B244837	16
Flag/Qualifier Summary	18
Certifications	19
Chain of Custody/Sample Receipt	22

S&ME, Inc - Raleigh, NC 3201 Spring Forest Rd. Raleigh, NC 27616 ATTN: Jamie Honeycutt

REPORT DATE: 11/7/2019

PURCHASE ORDER NUMBER:

PROJECT NUMBER: 4305-19-161

ANALYTICAL SUMMARY

WORK ORDER NUMBER: 19J1774

The results of analyses performed on the following samples submitted to the CON-TEST Analytical Laboratory are found in this report.

PROJECT LOCATION: Dunn, NC

FIELD SAMPLE # LAB ID: MATRIX SAMPLE DESCRIPTION TEST SUB LAB

TW-1 19J1774-01 Ground Water SW-846 8260D
SW-846 8270E

040 02/0L

EXECUTIVE SUMMARY

Client ID: TW-1 Lab ID: 19J1774-01

Analyte	Results/Qua	l	DL	RL	Units	Method
1,2,4-Trimethylbenzene	580		1.8	10	$\mu g/L$	SW-846 8260D
1,3,5-Trimethylbenzene	180		1.4	10	$\mu g/L$	SW-846 8260D
Benzene	5.3	J	1.8	10	$\mu g/L$	SW-846 8260D
Ethylbenzene	320		1.3	10	$\mu g/L$	SW-846 8260D
Isopropylbenzene (Cumene)	28		1.7	10	$\mu g/L$	SW-846 8260D
m+p Xylene	1000		3.0	20	$\mu g/L$	SW-846 8260D
Naphthalene	110		3.1	50	$\mu g/L$	SW-846 8260D
n-Butylbenzene	23		2.1	10	$\mu g/L$	SW-846 8260D
n-Propylbenzene	100		1.3	10	$\mu g/L$	SW-846 8260D
o-Xylene	430		1.7	10	$\mu g/L$	SW-846 8260D
p-Isopropyltoluene (p-Cymene)	5.0	J	2.0	10	$\mu g/L$	SW-846 8260D
sec-Butylbenzene	8.4	J	1.6	10	$\mu g/L$	SW-846 8260D
Styrene	5.8	J	1.1	10	$\mu g/L$	SW-846 8260D
Toluene	290		1.4	10	$\mu g/L$	SW-846 8260D
2-Methylnaphthalene (SIM)	49		1.3	21	$\mu g/L$	SW-846 8270E
Acenaphthene (SIM)	0.063	J	0.034	0.31	$\mu g/L$	SW-846 8270E
Acenaphthylene (SIM)	0.052	J	0.036	0.21	$\mu g/L$	SW-846 8270E
Fluorene (SIM)	0.078	J	0.035	1.0	$\mu g/L$	SW-846 8270E
Naphthalene (SIM)	100		5.3	21	$\mu g/L$	SW-846 8270E
Phenanthrene (SIM)	0.082		0.031	0.052	$\mu g/L$	SW-846 8270E

Con-Test does not accept liability for the consequences of any actions taken solely on the basis of the information provided in the Executive Summary section of this report. Users must review this report in its entirety to determine data usability and assessment.

CASE NARRATIVE SUMMARY

All reported results are within defined laboratory quality control objectives unless listed below or otherwise qualified in this report.

For method 8270, only PAHs were requested and reported.

SW-846 8260D

Qualifications:

L-02

Laboratory fortified blank/laboratory control sample recovery and duplicate recoveries outside of control limits. Data validation is not affected since all results are "not detected" for associated samples in this batch and bias is on the high side.

Analyte & Samples(s) Qualified:

trans-1,4-Dichloro-2-butene

B244975-BS1, B244975-BSD1, S042201-CCV1

Vinyl Chloride

B244975-BS1, B244975-BSD1, S042201-CCV1

RL-11

Elevated reporting limit due to high concentration of target compounds.

Analyte & Samples(s) Qualified:

19J1774-01[TW-1]

V-05

Continuing calibration verification (CCV) did not meet method specifications and was biased on the low side for this compound.

Analyte & Samples(s) Qualified:

tert-Amyl Methyl Ether (TAME)

19J1774-01[TW-1], B244975-BLK1, B244975-BS1, B244975-BSD1, S042201-CCV1

V-20

Continuing calibration verification (CCV) did not meet method specifications and was biased on the high side. Data validation is not affected since sample result was "not detected" for this compound.

Analyte & Samples(s) Qualified:

2-Hexanone (MBK)

B244975-BS1, B244975-BSD1, S042201-CCV1

4-Methyl-2-pentanone (MIBK)

B244975-BS1, B244975-BSD1, S042201-CCV1

Acetone

B244975-BS1, B244975-BSD1, S042201-CCV1

trans-1,4-Dichloro-2-butene

B244975-BS1, B244975-BSD1, S042201-CCV1

Vinyl Chloride

B244975-BS1, B244975-BSD1, S042201-CCV1

The results of analyses reported only relate to samples submitted to the Con-Test Analytical Laboratory for testing.

I certify that the analyses listed above, unless specifically listed as subcontracted, if any, were performed under my direction according to the approved methodologies listed in this document, and that based upon my inquiry of those individuals immediately responsible for obtaining the information, the material contained in this report is, to the best of my knowledge and belief, accurate and complete.

Lisa A. Worthington
Technical Representative

Project Location: Dunn, NC Sample Description: Work Order: 19J1774

Date Received: 10/28/2019 Field Sample #: TW-1

Sampled: 10/23/2019 13:00

Sample ID: 19J1774-01 Sample Matrix: Ground Water

Sample Matrix: Ground Water Sample Flags: RL-11			Volatile	e Organic Co	mpounds by G	C/MS				
Analyte	Results	RL	DL	Units	Dilution	Flag/Qual	Method	Date Prepared	Date/Time Analyzed	Analyst
Acetone	ND	500	38	μg/L	10	r rag/Quar	SW-846 8260D	11/4/19	11/4/19 16:14	EEH
Acrylonitrile	ND	50	5.2	μg/L	10		SW-846 8260D	11/4/19	11/4/19 16:14	EEH
tert-Amyl Methyl Ether (TAME)	ND	10	1.4	μg/L	10	V-05	SW-846 8260D	11/4/19	11/4/19 16:14	EEH
Benzene	5.3	10	1.8	μg/L	10	J	SW-846 8260D	11/4/19	11/4/19 16:14	EEH
Bromobenzene	ND	10	1.5	μg/L	10		SW-846 8260D	11/4/19	11/4/19 16:14	EEH
Bromochloromethane	ND	10	3.2	μg/L	10		SW-846 8260D	11/4/19	11/4/19 16:14	EEH
Bromodichloromethane	ND	5.0	1.6	μg/L	10		SW-846 8260D	11/4/19	11/4/19 16:14	EEH
Bromoform	ND	10	4.6	μg/L	10		SW-846 8260D	11/4/19	11/4/19 16:14	EEH
Bromomethane	ND	20	7.8	μg/L	10		SW-846 8260D	11/4/19	11/4/19 16:14	EEH
2-Butanone (MEK)	ND	200	19	$\mu g/L$	10		SW-846 8260D	11/4/19	11/4/19 16:14	EEH
tert-Butyl Alcohol (TBA)	ND	200	42	$\mu g/L$	10		SW-846 8260D	11/4/19	11/4/19 16:14	EEH
n-Butylbenzene	23	10	2.1	$\mu g/L$	10		SW-846 8260D	11/4/19	11/4/19 16:14	EEH
sec-Butylbenzene	8.4	10	1.6	$\mu g/L$	10	J	SW-846 8260D	11/4/19	11/4/19 16:14	EEH
tert-Butylbenzene	ND	10	1.7	$\mu g/L$	10		SW-846 8260D	11/4/19	11/4/19 16:14	EEH
tert-Butyl Ethyl Ether (TBEE)	ND	5.0	1.6	$\mu g/L$	10		SW-846 8260D	11/4/19	11/4/19 16:14	EEH
Carbon Disulfide	ND	50	44	$\mu g/L$	10		SW-846 8260D	11/4/19	11/4/19 16:14	EEH
Carbon Tetrachloride	ND	10	1.1	$\mu g/L$	10		SW-846 8260D	11/4/19	11/4/19 16:14	EEH
Chlorobenzene	ND	10	1.5	$\mu g/L$	10		SW-846 8260D	11/4/19	11/4/19 16:14	EEH
Chlorodibromomethane	ND	5.0	2.1	$\mu g/L$	10		SW-846 8260D	11/4/19	11/4/19 16:14	EEH
Chloroethane	ND	20	3.5	$\mu g/L$	10		SW-846 8260D	11/4/19	11/4/19 16:14	EEH
Chloroform	ND	20	1.7	$\mu g/L$	10		SW-846 8260D	11/4/19	11/4/19 16:14	EEH
Chloromethane	ND	20	4.5	$\mu g/L$	10		SW-846 8260D	11/4/19	11/4/19 16:14	EEH
2-Chlorotoluene	ND	10	1.2	$\mu g/L$	10		SW-846 8260D	11/4/19	11/4/19 16:14	EEH
4-Chlorotoluene	ND	10	1.4	$\mu g/L$	10		SW-846 8260D	11/4/19	11/4/19 16:14	EEH
1,2-Dibromo-3-chloropropane (DBCP)	ND	50	5.3	$\mu g/L$	10		SW-846 8260D	11/4/19	11/4/19 16:14	EEH
1,2-Dibromoethane (EDB)	ND	5.0	1.9	$\mu g/L$	10		SW-846 8260D	11/4/19	11/4/19 16:14	EEH
Dibromomethane	ND	10	3.7	$\mu g/L$	10		SW-846 8260D	11/4/19	11/4/19 16:14	EEH
1,2-Dichlorobenzene	ND	10	1.6	$\mu g/L$	10		SW-846 8260D	11/4/19	11/4/19 16:14	EEH
1,3-Dichlorobenzene	ND	10	1.2	$\mu g/L$	10		SW-846 8260D	11/4/19	11/4/19 16:14	EEH
1,4-Dichlorobenzene	ND	10	1.3	$\mu g/L$	10		SW-846 8260D	11/4/19	11/4/19 16:14	EEH
trans-1,4-Dichloro-2-butene	ND	20	3.1	$\mu g/L$	10		SW-846 8260D	11/4/19	11/4/19 16:14	EEH
Dichlorodifluoromethane (Freon 12)	ND	20	2.6	$\mu g/L$	10		SW-846 8260D	11/4/19	11/4/19 16:14	EEH
1,1-Dichloroethane	ND	10	1.6	$\mu g/L$	10		SW-846 8260D	11/4/19	11/4/19 16:14	EEH
1,2-Dichloroethane	ND	10	4.1	$\mu g/L$	10		SW-846 8260D	11/4/19	11/4/19 16:14	EEH
1,1-Dichloroethylene	ND	10	3.2	$\mu \text{g}/L$	10		SW-846 8260D	11/4/19	11/4/19 16:14	EEH
cis-1,2-Dichloroethylene	ND	10	1.3	$\mu g/L$	10		SW-846 8260D	11/4/19	11/4/19 16:14	EEH
trans-1,2-Dichloroethylene	ND	10	3.1	$\mu g/L$	10		SW-846 8260D	11/4/19	11/4/19 16:14	EEH
1,2-Dichloropropane	ND	10	2.0	$\mu g/L$	10		SW-846 8260D	11/4/19	11/4/19 16:14	EEH
1,3-Dichloropropane	ND	5.0	1.1	$\mu g/L$	10		SW-846 8260D	11/4/19	11/4/19 16:14	EEH
2,2-Dichloropropane	ND	10	2.0	$\mu g/L$	10		SW-846 8260D	11/4/19	11/4/19 16:14	EEH
1,1-Dichloropropene	ND	20	1.6	$\mu g/L$	10		SW-846 8260D	11/4/19	11/4/19 16:14	EEH
cis-1,3-Dichloropropene	ND	5.0	1.3	$\mu g/L$	10		SW-846 8260D	11/4/19	11/4/19 16:14	EEH
trans-1,3-Dichloropropene	ND	5.0	2.3	$\mu g/L$	10		SW-846 8260D	11/4/19	11/4/19 16:14	EEH
Diethyl Ether	ND	20	3.4	$\mu g/L$	10		SW-846 8260D	11/4/19	11/4/19 16:14	EEH

Page 7 of 24

Project Location: Dunn, NC Sample Description: Work Order: 19J1774

Date Received: 10/28/2019 Field Sample #: TW-1

Sampled: 10/23/2019 13:00

Sample ID: 19J1774-01 Sample Matrix: Ground Water

Sample Flags: RL-11

Analyte	Results	RL	DL	Units	Dilution	Flag/Qual	Method	Date Prepared	Date/Time Analyzed	Analyst
Diisopropyl Ether (DIPE)	ND	5.0	1.7	μg/L	10	<u> </u>	SW-846 8260D	11/4/19	11/4/19 16:14	EEH
1,4-Dioxane	ND	500	220	μg/L	10		SW-846 8260D	11/4/19	11/4/19 16:14	EEH
Ethylbenzene	320	10	1.3	μg/L	10		SW-846 8260D	11/4/19	11/4/19 16:14	EEH
Hexachlorobutadiene	ND	6.0	4.7	μg/L	10		SW-846 8260D	11/4/19	11/4/19 16:14	EEH
2-Hexanone (MBK)	ND	100	15	μg/L	10		SW-846 8260D	11/4/19	11/4/19 16:14	EEH
Isopropylbenzene (Cumene)	28	10	1.7	μg/L	10		SW-846 8260D	11/4/19	11/4/19 16:14	EEH
p-Isopropyltoluene (p-Cymene)	5.0	10	2.0	μg/L	10	J	SW-846 8260D	11/4/19	11/4/19 16:14	EEH
Methyl tert-Butyl Ether (MTBE)	ND	10	2.5	μg/L	10		SW-846 8260D	11/4/19	11/4/19 16:14	EEH
Methylene Chloride	ND	50	3.4	μg/L	10		SW-846 8260D	11/4/19	11/4/19 16:14	EEH
4-Methyl-2-pentanone (MIBK)	ND	100	17	μg/L	10		SW-846 8260D	11/4/19	11/4/19 16:14	EEH
Naphthalene	110	50	3.1	μg/L	10		SW-846 8260D	11/4/19	11/4/19 16:14	EEH
n-Propylbenzene	100	10	1.3	μg/L	10		SW-846 8260D	11/4/19	11/4/19 16:14	EEH
Styrene	5.8	10	1.1	μg/L	10	J	SW-846 8260D	11/4/19	11/4/19 16:14	EEH
1,1,1,2-Tetrachloroethane	ND	10	2.7	μg/L	10		SW-846 8260D	11/4/19	11/4/19 16:14	EEH
1,1,2,2-Tetrachloroethane	ND	5.0	2.2	μg/L	10		SW-846 8260D	11/4/19	11/4/19 16:14	EEH
Tetrachloroethylene	ND	10	1.8	μg/L	10		SW-846 8260D	11/4/19	11/4/19 16:14	EEH
Tetrahydrofuran	ND	100	5.1	μg/L	10		SW-846 8260D	11/4/19	11/4/19 16:14	EEH
Toluene	290	10	1.4	μg/L	10		SW-846 8260D	11/4/19	11/4/19 16:14	EEH
1,2,3-Trichlorobenzene	ND	50	5.7	μg/L	10		SW-846 8260D	11/4/19	11/4/19 16:14	EEH
1,2,4-Trichlorobenzene	ND	10	4.0	μg/L	10		SW-846 8260D	11/4/19	11/4/19 16:14	EEH
1,3,5-Trichlorobenzene	ND	10	3.0	μg/L	10		SW-846 8260D	11/4/19	11/4/19 16:14	EEH
1,1,1-Trichloroethane	ND	10	2.0	μg/L	10		SW-846 8260D	11/4/19	11/4/19 16:14	EEH
1,1,2-Trichloroethane	ND	10	1.6	μg/L	10		SW-846 8260D	11/4/19	11/4/19 16:14	EEH
Trichloroethylene	ND	10	2.4	μg/L	10		SW-846 8260D	11/4/19	11/4/19 16:14	EEH
Trichlorofluoromethane (Freon 11)	ND	20	3.3	μg/L	10		SW-846 8260D	11/4/19	11/4/19 16:14	EEH
1,2,3-Trichloropropane	ND	20	2.5	μg/L	10		SW-846 8260D	11/4/19	11/4/19 16:14	EEH
1,1,2-Trichloro-1,2,2-trifluoroethane (Freon 113)	ND	10	3.2	μg/L	10		SW-846 8260D	11/4/19	11/4/19 16:14	EEH
1,2,4-Trimethylbenzene	580	10	1.8	μg/L	10		SW-846 8260D	11/4/19	11/4/19 16:14	EEH
1,3,5-Trimethylbenzene	180	10	1.4	μg/L	10		SW-846 8260D	11/4/19	11/4/19 16:14	EEH
Vinyl Chloride	ND	20	4.5	μg/L	10		SW-846 8260D	11/4/19	11/4/19 16:14	EEH
m+p Xylene	1000	20	3.0	$\mu g/L$	10		SW-846 8260D	11/4/19	11/4/19 16:14	EEH
o-Xylene	430	10	1.7	$\mu g/L$	10		SW-846 8260D	11/4/19	11/4/19 16:14	EEH
Surrogates		% Reco	very	Recovery Limits		Flag/Qual				
1,2-Dichloroethane-d4		103		70-130					11/4/19 16:14	
Toluene_d8		98.8		70-130					11/4/19 16:14	

Sample Description: Work Order: 19J1774

Project Location: Dunn, NC
Date Received: 10/28/2019
Field Sample #: TW-1

Sampled: 10/23/2019 13:00

Sample ID: 19J1774-01
Sample Matrix: Ground Water

Semivolatile Organic	Compounds by GC/MS
----------------------	--------------------

								Date	Date/Time	
Analyte	Results	RL	DL	Units	Dilution	Flag/Qual	Method	Prepared	Analyzed	Analyst
Acenaphthene (SIM)	0.063	0.31	0.034	$\mu g/L$	1	J	SW-846 8270E	10/30/19	11/1/19 20:28	IMR
Acenaphthylene (SIM)	0.052	0.21	0.036	$\mu g/L$	1	J	SW-846 8270E	10/30/19	11/1/19 20:28	IMR
Anthracene (SIM)	ND	0.21	0.033	$\mu g/L$	1		SW-846 8270E	10/30/19	11/1/19 20:28	IMR
Benzo(a)anthracene (SIM)	ND	0.052	0.016	$\mu g/L$	1		SW-846 8270E	10/30/19	11/1/19 20:28	IMR
Benzo(a)pyrene (SIM)	ND	0.10	0.012	$\mu g/L$	1		SW-846 8270E	10/30/19	11/1/19 20:28	IMR
Benzo(b)fluoranthene (SIM)	ND	0.052	0.015	$\mu g/L$	1		SW-846 8270E	10/30/19	11/1/19 20:28	IMR
Benzo(g,h,i)perylene (SIM)	ND	0.52	0.019	$\mu g/L$	1		SW-846 8270E	10/30/19	11/1/19 20:28	IMR
Benzo(k)fluoranthene (SIM)	ND	0.21	0.012	$\mu g/L$	1		SW-846 8270E	10/30/19	11/1/19 20:28	IMR
Chrysene (SIM)	ND	0.21	0.015	$\mu g/L$	1		SW-846 8270E	10/30/19	11/1/19 20:28	IMR
Dibenz(a,h)anthracene (SIM)	ND	0.10	0.018	$\mu g/L$	1		SW-846 8270E	10/30/19	11/1/19 20:28	IMR
Fluoranthene (SIM)	ND	0.52	0.026	$\mu g/L$	1		SW-846 8270E	10/30/19	11/1/19 20:28	IMR
Fluorene (SIM)	0.078	1.0	0.035	$\mu g/L$	1	J	SW-846 8270E	10/30/19	11/1/19 20:28	IMR
Indeno(1,2,3-cd)pyrene (SIM)	ND	0.10	0.019	$\mu g/L$	1		SW-846 8270E	10/30/19	11/1/19 20:28	IMR
2-Methylnaphthalene (SIM)	49	21	1.3	$\mu g/L$	20		SW-846 8270E	10/30/19	11/4/19 10:11	IMR
Naphthalene (SIM)	100	21	5.3	$\mu g/L$	20		SW-846 8270E	10/30/19	11/4/19 10:11	IMR
Phenanthrene (SIM)	0.082	0.052	0.031	$\mu g/L$	1		SW-846 8270E	10/30/19	11/1/19 20:28	IMR
Pyrene (SIM)	ND	1.0	0.024	$\mu g/L$	1		SW-846 8270E	10/30/19	11/1/19 20:28	IMR
Surrogates		% Reco	very	Recovery Limit	ts	Flag/Qual				
Nitrobenzene-d5		72.4		30-130					11/1/19 20:28	
Nitrobenzene-d5		75.1		30-130					11/4/19 10:11	
2-Fluorobiphenyl		47.1		30-130					11/1/19 20:28	
2-Fluorobiphenyl		54.9		30-130					11/4/19 10:11	
p-Terphenyl-d14		56.9		30-130					11/1/19 20:28	
p-Terphenyl-d14		52.3		30-130					11/4/19 10:11	

Sample Extraction Data

Prep Method: SW-846 5030B-SW-846 8260D

Lab Number [Field ID]	Batch	Initial [mL]	Final [mL]	Date
19J1774-01 [TW-1]	B244975	0.5	5.00	11/04/19

Prep Method: SW-846 3510C-SW-846 8270E

Lab Number [Field ID]	Batch	Initial [mL]	Final [mL]	Date
19J1774-01 [TW-1]	B244837	970	1.00	10/30/19
19J1774-01RE1 [TW-1]	B244837	970	1.00	10/30/19

QUALITY CONTROL

Volatile Organic Compounds by GC/MS - Quality Control

Analyte	Result	Reporting Limit	Units	Spike Level	Source Result	%REC	%REC Limits	RPD	RPD Limit	Notes
Batch B244975 - SW-846 5030B										
Blank (B244975-BLK1)				Prepared &	Analyzed: 11	/04/19				
Acetone	ND	50	$\mu g/L$							
Acrylonitrile	ND	5.0	$\mu g/L$							
tert-Amyl Methyl Ether (TAME)	ND	0.50	$\mu g/L$							V-05
Benzene	ND	1.0	$\mu g/L$							
Bromobenzene	ND	1.0	$\mu g/L$							
Bromochloromethane	ND	1.0	$\mu g/L$							
Bromodichloromethane	ND	0.50	$\mu g/L$							
Bromoform	ND	1.0	$\mu g/L$							
Bromomethane	ND	2.0	$\mu g/L$							
2-Butanone (MEK)	ND	20	$\mu g/L$							
tert-Butyl Alcohol (TBA)	ND	20	$\mu g/L$							
n-Butylbenzene	ND	1.0	$\mu g/L$							
sec-Butylbenzene	ND	1.0	$\mu g/L$							
tert-Butylbenzene	ND	1.0	μg/L							
tert-Butyl Ethyl Ether (TBEE)	ND	0.50	μg/L							
Carbon Disulfide	ND	5.0	μg/L							
Carbon Tetrachloride	ND	1.0	μg/L							
Chlorobenzene	ND	1.0	μg/L							
Chlorodibromomethane	ND	0.50	μg/L							
Chloroethane	ND	2.0	μg/L							
Chloroform	ND ND	2.0	μg/L							
Chloromethane	ND ND	2.0	μg/L							
2-Chlorotoluene	ND ND	1.0	μg/L μg/L							
4-Chlorotoluene	ND ND	1.0	μg/L							
1,2-Dibromo-3-chloropropane (DBCP)		5.0	μg/L μg/L							
1,2-Dibromoethane (EDB)	ND	0.50	μg/L μg/L							
Dibromomethane	ND	1.0	μg/L μg/L							
1,2-Dichlorobenzene	ND	1.0								
1,3-Dichlorobenzene	ND	1.0	μg/L							
1,4-Dichlorobenzene	ND	1.0	μg/L μg/L							
trans-1,4-Dichloro-2-butene	ND	2.0								
· · · · · · · · · · · · · · · · · · ·	ND		μg/L							
Dichlorodifluoromethane (Freon 12)	ND	2.0	μg/L							
1,1-Dichloroethane	ND	1.0	μg/L							
1,2-Dichloroethane	ND	1.0	μg/L							
1,1-Dichloroethylene	ND	1.0	μg/L							
cis-1,2-Dichloroethylene	ND	1.0	μg/L							
trans-1,2-Dichloroethylene	ND	1.0	μg/L							
1,2-Dichloropropane	ND	1.0	μg/L							
1,3-Dichloropropane	ND	0.50	μg/L							
2,2-Dichloropropane	ND	1.0	μg/L							
1,1-Dichloropropene	ND	2.0	μg/L							
cis-1,3-Dichloropropene	ND	0.50	μg/L							
trans-1,3-Dichloropropene	ND	0.50	μg/L							
Diethyl Ether	ND	2.0	μg/L							
Diisopropyl Ether (DIPE)	ND	0.50	μg/L							
1,4-Dioxane	ND	50	μg/L							
Ethylbenzene	ND	1.0	$\mu g/L$							
Hexachlorobutadiene	ND	0.60	$\mu g/L$							
2-Hexanone (MBK)	ND	10	μg/L							
Isopropylbenzene (Cumene)	ND	1.0	$\mu g/L$							
p-Isopropyltoluene (p-Cymene)	ND	1.0	$\mu g/L$							
Methyl tert-Butyl Ether (MTBE)	ND	1.0	$\mu g/L$							

QUALITY CONTROL

Spike

Source

%REC

RPD

Volatile Organic Compounds by GC/MS - Quality Control

Reporting

Analyte	Result	Reporting Limit	Units	Spike Level	Source Result	%REC	%REC Limits	RPD	RPD Limit	Notes
eatch B244975 - SW-846 5030B										
Blank (B244975-BLK1)				Prepared & A	Analyzed: 11	04/19				
1ethylene Chloride	ND	5.0	μg/L							
-Methyl-2-pentanone (MIBK)	ND	10	$\mu g/L$							
aphthalene	ND	2.0	$\mu g/L$							
Propylbenzene	ND	1.0	$\mu g/L$							
tyrene	ND	1.0	$\mu g/L$							
1,1,2-Tetrachloroethane	ND	1.0	$\mu g/L$							
1,2,2-Tetrachloroethane	ND	0.50	μg/L							
etrachloroethylene	ND	1.0	μg/L							
etrahydrofuran	ND	10	μg/L							
bluene	ND	1.0	μg/L							
2,3-Trichlorobenzene	ND	5.0	μg/L							
2,4-Trichlorobenzene	ND	1.0	μg/L							
3,5-Trichlorobenzene	ND ND	1.0	μg/L							
1,1-Trichloroethane		1.0	μg/L μg/L							
1,2-Trichloroethane	ND	1.0	μg/L μg/L							
richloroethylene	ND									
•	ND	1.0	μg/L							
richlorofluoromethane (Freon 11)	ND	2.0	μg/L							
2,3-Trichloropropane	ND	2.0	μg/L							
1,2-Trichloro-1,2,2-trifluoroethane (Freon 3)	ND	1.0	μg/L							
2,4-Trimethylbenzene	ND	1.0	μg/L							
3,5-Trimethylbenzene	ND	1.0	μg/L							
nyl Chloride	ND	2.0	μg/L							
+p Xylene	ND	2.0	μg/L							
Xylene	ND	1.0	μg/L							
urrogate: 1,2-Dichloroethane-d4	25.8		μg/L	25.0		103	70-130			
urrogate: Toluene-d8	25.2		μg/L	25.0		101	70-130			
nrrogate: 4-Bromofluorobenzene	24.3		μg/L	25.0		97.4	70-130			
CS (B244975-BS1)				Prepared & A	Analyzed: 11	/04/19				
cetone	140	50	μg/L	100		140	70-160			V-20
			μg/L	10.0		123	70-130			
crylonitrile	12.3	5.0	μg/L	10.0						
·	12.3 7.90	5.0 0.50	μg/L μg/L	10.0		79.0	70-130			V-05
rt-Amyl Methyl Ether (TAME)	7.90	0.50	$\mu g/L$	10.0						V-05
rt-Amyl Methyl Ether (TAME) enzene	7.90 9.60		μg/L μg/L	10.0 10.0		96.0	70-130			V-05
rt-Amyl Methyl Ether (TAME) enzene romobenzene	7.90 9.60 11.0	0.50 1.0 1.0	μg/L μg/L μg/L	10.0 10.0 10.0		96.0 110	70-130 70-130			V-05
rt-Amyl Methyl Ether (TAME) enzene romobenzene romochloromethane	7.90 9.60 11.0 11.3	0.50 1.0 1.0 1.0	μg/L μg/L μg/L μg/L	10.0 10.0 10.0 10.0		96.0 110 113	70-130 70-130 70-130			V-05
rt-Amyl Methyl Ether (TAME) enzene romobenzene romochloromethane romodichloromethane	7.90 9.60 11.0 11.3 11.2	0.50 1.0 1.0 1.0 0.50	μg/L μg/L μg/L μg/L μg/L	10.0 10.0 10.0 10.0 10.0		96.0 110 113 112	70-130 70-130 70-130 70-130			V-05
rt-Amyl Methyl Ether (TAME) enzene romobenzene romochloromethane romodichloromethane romoform	7.90 9.60 11.0 11.3 11.2	0.50 1.0 1.0 1.0 0.50	μg/L μg/L μg/L μg/L μg/L μg/L	10.0 10.0 10.0 10.0 10.0 10.0		96.0 110 113 112 100	70-130 70-130 70-130 70-130 70-130			V-05
rt-Amyl Methyl Ether (TAME) enzene romobenzene romochloromethane romodichloromethane romoform romomethane	7.90 9.60 11.0 11.3 11.2 10.0 5.87	0.50 1.0 1.0 1.0 0.50 1.0 2.0	µg/L µg/L µg/L µg/L µg/L µg/L	10.0 10.0 10.0 10.0 10.0 10.0		96.0 110 113 112 100 58.7	70-130 70-130 70-130 70-130 70-130 40-160			V-05
rt-Amyl Methyl Ether (TAME) enzene romobenzene romochloromethane romodichloromethane romoform romomethane Butanone (MEK)	7.90 9.60 11.0 11.3 11.2 10.0 5.87	0.50 1.0 1.0 1.0 0.50 1.0 2.0	µg/L µg/L µg/L µg/L µg/L µg/L µg/L	10.0 10.0 10.0 10.0 10.0 10.0 10.0		96.0 110 113 112 100 58.7 114	70-130 70-130 70-130 70-130 70-130 40-160 40-160			V-05
rt-Amyl Methyl Ether (TAME) enzene romobenzene romochloromethane romodichloromethane romoform romomethane Butanone (MEK) rt-Butyl Alcohol (TBA)	7.90 9.60 11.0 11.3 11.2 10.0 5.87 114 96.7	0.50 1.0 1.0 1.0 0.50 1.0 2.0 20	µg/L µg/L µg/L µg/L µg/L µg/L µg/L µg/L	10.0 10.0 10.0 10.0 10.0 10.0 10.0 10.0		96.0 110 113 112 100 58.7 114 96.7	70-130 70-130 70-130 70-130 70-130 40-160 40-160			V-05
rt-Amyl Methyl Ether (TAME) enzene romobenzene romochloromethane romodichloromethane romoform romomethane Butanone (MEK) rt-Butyl Alcohol (TBA) Butylbenzene	7.90 9.60 11.0 11.3 11.2 10.0 5.87 114 96.7 11.6	0.50 1.0 1.0 1.0 0.50 1.0 2.0 20 20	µg/L µg/L µg/L µg/L µg/L µg/L µg/L µg/L	10.0 10.0 10.0 10.0 10.0 10.0 10.0 100 10		96.0 110 113 112 100 58.7 114 96.7	70-130 70-130 70-130 70-130 70-130 40-160 40-160 40-160 70-130			V-05
rt-Amyl Methyl Ether (TAME) enzene romobenzene romochloromethane romodichloromethane romoform romomethane Butanone (MEK) rt-Butyl Alcohol (TBA) Butylbenzene c-Butylbenzene	7.90 9.60 11.0 11.3 11.2 10.0 5.87 114 96.7 11.6 11.3	0.50 1.0 1.0 0.50 1.0 2.0 20 1.0	µg/L µg/L µg/L µg/L µg/L µg/L µg/L µg/L	10.0 10.0 10.0 10.0 10.0 10.0 10.0 100 10		96.0 110 113 112 100 58.7 114 96.7 116 113	70-130 70-130 70-130 70-130 70-130 40-160 40-160 40-160 70-130 70-130			V-05
enzene eromobenzene eromochloromethane eromomothane eromomothane eromomothane eromomothane eromomothane eromothane 90 9.60 11.0 11.3 11.2 10.0 5.87 114 96.7 11.6 11.3 10.8	0.50 1.0 1.0 1.0 0.50 1.0 2.0 20 1.0 1.0 1.0	μg/L μg/L μg/L μg/L μg/L μg/L μg/L μg/L	10.0 10.0 10.0 10.0 10.0 10.0 10.0 10.0		96.0 110 113 112 100 58.7 114 96.7 116 113	70-130 70-130 70-130 70-130 70-130 40-160 40-160 40-160 70-130 70-130			V-05	
rt-Amyl Methyl Ether (TAME) enzene romobenzene romochloromethane romodichloromethane romoform romomethane Butanone (MEK) rt-Butyl Alcohol (TBA) Butylbenzene c-Butylbenzene rt-Butylbenzene rt-Butyl Ethyl Ether (TBEE)	7.90 9.60 11.0 11.3 11.2 10.0 5.87 114 96.7 11.6 11.3	0.50 1.0 1.0 1.0 0.50 1.0 2.0 20 20 1.0 1.0 0.50	µg/L µg/L µg/L µg/L µg/L µg/L µg/L µg/L	10.0 10.0 10.0 10.0 10.0 10.0 10.0 10.0		96.0 110 113 112 100 58.7 114 96.7 116 113 108 74.2	70-130 70-130 70-130 70-130 70-130 40-160 40-160 40-160 70-130 70-130 70-130			V-05
rt-Amyl Methyl Ether (TAME) enzene romobenzene romochloromethane romoform romomethane Butanone (MEK) rt-Butyl Alcohol (TBA) Butylbenzene c-Butylbenzene rt-Butyl Ethyl Ether (TBEE) arbon Disulfide	7.90 9.60 11.0 11.3 11.2 10.0 5.87 114 96.7 11.6 11.3 10.8	0.50 1.0 1.0 1.0 0.50 1.0 2.0 20 1.0 1.0 0.50 5.0	µg/L µg/L µg/L µg/L µg/L µg/L µg/L µg/L	10.0 10.0 10.0 10.0 10.0 10.0 10.0 10.0		96.0 110 113 112 100 58.7 114 96.7 116 113	70-130 70-130 70-130 70-130 70-130 40-160 40-160 70-130 70-130 70-130 70-130			V-05
rt-Amyl Methyl Ether (TAME) enzene romobenzene romochloromethane romodichloromethane romomethane Butanone (MEK) rt-Butyl Alcohol (TBA) Butylbenzene c-Butylbenzene rt-Butyl Ether (TBEE) arbon Disulfide arbon Tetrachloride	7.90 9.60 11.0 11.3 11.2 10.0 5.87 114 96.7 11.6 11.3 10.8 7.42	0.50 1.0 1.0 1.0 0.50 1.0 2.0 20 1.0 1.0 0.50 5.0 1.0	µg/L µg/L µg/L µg/L µg/L µg/L µg/L µg/L	10.0 10.0 10.0 10.0 10.0 10.0 10.0 10.0		96.0 110 113 112 100 58.7 114 96.7 116 113 108 74.2	70-130 70-130 70-130 70-130 70-130 40-160 40-160 40-160 70-130 70-130 70-130			V-05
rt-Amyl Methyl Ether (TAME) enzene romobenzene romochloromethane romodichloromethane romoform romomethane Butanone (MEK) rt-Butyl Alcohol (TBA) Butylbenzene c-Butylbenzene rt-Butyl Ether (TBEE) arbon Disulfide arbon Tetrachloride	7.90 9.60 11.0 11.3 11.2 10.0 5.87 114 96.7 11.6 11.3 10.8 7.42 11.2	0.50 1.0 1.0 1.0 0.50 1.0 2.0 20 1.0 1.0 0.50 5.0	µg/L µg/L µg/L µg/L µg/L µg/L µg/L µg/L	10.0 10.0 10.0 10.0 10.0 10.0 10.0 10.0		96.0 110 113 112 100 58.7 114 96.7 116 113 108 74.2	70-130 70-130 70-130 70-130 70-130 40-160 40-160 70-130 70-130 70-130 70-130			V-05
rt-Amyl Methyl Ether (TAME) enzene romobenzene romochloromethane romoform romomethane Butanone (MEK) rt-Butyl Alcohol (TBA) Butylbenzene cc-Butylbenzene rt-Butyl Ethyl Ether (TBEE) arbon Disulfide arbon Tetrachloride hlorobenzene	7.90 9.60 11.0 11.3 11.2 10.0 5.87 114 96.7 11.6 11.3 10.8 7.42 11.2	0.50 1.0 1.0 1.0 0.50 1.0 2.0 20 1.0 1.0 0.50 5.0 1.0	µg/L µg/L µg/L µg/L µg/L µg/L µg/L µg/L	10.0 10.0 10.0 10.0 10.0 10.0 10.0 10.0		96.0 110 113 112 100 58.7 114 96.7 116 113 108 74.2 112	70-130 70-130 70-130 70-130 70-130 40-160 40-160 40-160 70-130 70-130 70-130 70-130 70-130			V-05
rt-Amyl Methyl Ether (TAME) enzene romobenzene romochloromethane romodichloromethane romomethane romomethane -Butanone (MEK) rt-Butyl Alcohol (TBA) -Butylbenzene ex-Butylbenzene rt-Butylbenzene rt-Butyl Ethyl Ether (TBEE) arbon Disulfide arbon Tetrachloride hlorobenzene hlorodibromomethane	7.90 9.60 11.0 11.3 11.2 10.0 5.87 114 96.7 11.6 11.3 10.8 7.42 11.2 11.2 10.6	0.50 1.0 1.0 1.0 0.50 1.0 2.0 20 1.0 1.0 0.50 5.0 1.0 1.0 1.0 1.0 1.0	µg/L µg/L µg/L µg/L µg/L µg/L µg/L µg/L	10.0 10.0 10.0 10.0 10.0 10.0 10.0 10.0		96.0 110 113 112 100 58.7 114 96.7 116 113 108 74.2 112 112	70-130 70-130 70-130 70-130 70-130 40-160 40-160 40-160 70-130 70-130 70-130 70-130 70-130 70-130			V-05
crylonitrile crt-Amyl Methyl Ether (TAME) tenzene tromobenzene tromochloromethane tromodichloromethane tromomethane 9.60 11.0 11.3 11.2 10.0 5.87 114 96.7 11.6 11.3 10.8 7.42 11.2 11.2 10.6 10.8	0.50 1.0 1.0 1.0 0.50 1.0 2.0 20 1.0 1.0 1.0 1.0 1.0 0.50 5.0 1.0 0.50	Hg/L Hg/L Hg/L Hg/L Hg/L Hg/L Hg/L Hg/L	10.0 10.0 10.0 10.0 10.0 10.0 10.0 10.0		96.0 110 113 112 100 58.7 114 96.7 116 113 108 74.2 112 112 106 108	70-130 70-130 70-130 70-130 70-130 40-160 40-160 40-160 70-130 70-130 70-130 70-130 70-130 70-130 70-130			V-05	
rt-Amyl Methyl Ether (TAME) enzene romobenzene romochloromethane romodichloromethane romoform romomethane -Butanone (MEK) rt-Butyl Alcohol (TBA) -Butylbenzene ex-Butylbenzene rt-Butyl Ethyl Ether (TBEE) arbon Disulfide arbon Tetrachloride hlorodibromomethane hlorodibromomethane	7.90 9.60 11.0 11.3 11.2 10.0 5.87 114 96.7 11.6 11.3 10.8 7.42 11.2 10.6 10.8 9.65	0.50 1.0 1.0 1.0 0.50 1.0 2.0 20 1.0 1.0 1.0 0.50 5.0 1.0 0.50 2.0	Hg/L Hg/L Hg/L Hg/L Hg/L Hg/L Hg/L Hg/L	10.0 10.0 10.0 10.0 10.0 10.0 10.0 10.0		96.0 110 113 112 100 58.7 114 96.7 116 113 108 74.2 112 106 108 96.5	70-130 70-130 70-130 70-130 70-130 40-160 40-160 40-160 70-130 70-130 70-130 70-130 70-130 70-130 70-130 70-130			V-05

QUALITY CONTROL

Spike

Source

%REC

RPD

Volatile Organic Compounds by GC/MS - Quality Control

Reporting

Analyte	Result	Limit	Units	Level	Result	%REC	Limits	RPD	Limit	Notes
eatch B244975 - SW-846 5030B										
LCS (B244975-BS1)				Prepared & A	Analyzed: 11	/04/19				
-Chlorotoluene	11.3	1.0	μg/L	10.0		113	70-130			
,2-Dibromo-3-chloropropane (DBCP)	10.4	5.0	μg/L	10.0		104	70-130			
,2-Dibromoethane (EDB)	10.7	0.50	μg/L	10.0		107	70-130			
Dibromomethane	10.5	1.0	μg/L	10.0		105	70-130			
,2-Dichlorobenzene	10.8	1.0	μg/L	10.0		108	70-130			
,3-Dichlorobenzene	11.0	1.0	μg/L	10.0		110	70-130			
,4-Dichlorobenzene	10.7	1.0	$\mu g/L$	10.0		107	70-130			
rans-1,4-Dichloro-2-butene	13.2	2.0	μg/L	10.0		132 *	70-130			L-02, V-20
Dichlorodifluoromethane (Freon 12)	6.19	2.0	μg/L	10.0		61.9	40-160			
,1-Dichloroethane	10.6	1.0	$\mu g/L$	10.0		106	70-130			
,2-Dichloroethane	11.7	1.0	$\mu g/L$	10.0		117	70-130			
,1-Dichloroethylene	11.7	1.0	μg/L	10.0		117	70-130			
is-1,2-Dichloroethylene	10.8	1.0	$\mu g/L$	10.0		108	70-130			
rans-1,2-Dichloroethylene	11.4	1.0	$\mu g/L$	10.0		114	70-130			
,2-Dichloropropane	10.9	1.0	$\mu g/L$	10.0		109	70-130			
,3-Dichloropropane	10.5	0.50	μg/L	10.0		105	70-130			
,2-Dichloropropane	11.8	1.0	μg/L	10.0		118	40-130			
,1-Dichloropropene	10.5	2.0	μg/L	10.0		105	70-130			
is-1,3-Dichloropropene	11.3	0.50	μg/L	10.0		113	70-130			
rans-1,3-Dichloropropene	10.9	0.50	μg/L	10.0		109	70-130			
riethyl Ether	10.8	2.0	μg/L	10.0		108	70-130			
iisopropyl Ether (DIPE)	12.1	0.50	μg/L	10.0		121	70-130			
4-Dioxane	116	50	μg/L μg/L	100		116	40-130			
thylbenzene	10.7	1.0	μg/L	10.0		107	70-130			
exachlorobutadiene		0.60	μg/L μg/L	10.0		118	70-130			
-Hexanone (MBK)	11.8	10	μg/L μg/L	10.0		132	70-130			V-20
opropylbenzene (Cumene)	132	1.0								V-20
* **	11.0		μg/L	10.0		110	70-130			
-Isopropyltoluene (p-Cymene)	10.5	1.0	μg/L	10.0		105	70-130			
Methyl tert-Butyl Ether (MTBE)	9.41	1.0	μg/L	10.0		94.1	70-130			
Methylene Chloride	11.6	5.0	μg/L	10.0		116	70-130			***
-Methyl-2-pentanone (MIBK)	137	10	μg/L	100		137	70-160			V-20
Japhthalene	9.20	2.0	μg/L	10.0		92.0	40-130			
-Propylbenzene	11.3	1.0	μg/L	10.0		113	70-130			
tyrene	9.10	1.0	μg/L	10.0		91.0	70-130			
,1,1,2-Tetrachloroethane	11.2	1.0	μg/L	10.0		112	70-130			
,1,2,2-Tetrachloroethane	11.4	0.50	μg/L	10.0		114	70-130			
etrachloroethylene	11.4	1.0	μg/L	10.0		114	70-130			
etrahydrofuran	10.3	10	μg/L	10.0		103	70-130			
Coluene	10.7	1.0	μg/L	10.0		107	70-130			
,2,3-Trichlorobenzene	8.52	5.0	$\mu g/L$	10.0		85.2	70-130			
,2,4-Trichlorobenzene	10.4	1.0	$\mu g/L$	10.0		104	70-130			
,3,5-Trichlorobenzene	10.5	1.0	μg/L	10.0		105	70-130			
,1,1-Trichloroethane	11.1	1.0	$\mu g/L$	10.0		111	70-130			
,1,2-Trichloroethane	10.6	1.0	$\mu g/L$	10.0		106	70-130			
richloroethylene	10.7	1.0	μg/L	10.0		107	70-130			
richlorofluoromethane (Freon 11)	10.0	2.0	μg/L	10.0		100	70-130			
,2,3-Trichloropropane	11.1	2.0	μg/L	10.0		111	70-130			
,1,2-Trichloro-1,2,2-trifluoroethane (Freon 13)	10.9	1.0	μg/L	10.0		109	70-130			
,2,4-Trimethylbenzene	9.65	1.0	$\mu \text{g}/L$	10.0		96.5	70-130			
,3,5-Trimethylbenzene	10.7	1.0	μg/L	10.0		107	70-130			
Vinyl Chloride	26.4	2.0	μg/L	10.0		264 *	40-160			L-02, V-20

QUALITY CONTROL

Volatile Organic Compounds by GC/MS - Quality Control

Analyte	Result	Reporting Limit	Units	Spike Level	Source Result	%REC	%REC Limits	RPD	RPD Limit	Notes
Batch B244975 - SW-846 5030B										
LCS (B244975-BS1)				Prepared &	Analyzed: 11	/04/19				
m+p Xylene	21.6	2.0	μg/L	20.0		108	70-130			
o-Xylene	11.1	1.0	$\mu g/L$	10.0		111	70-130			
Surrogate: 1,2-Dichloroethane-d4	26.2		μg/L	25.0		105	70-130			
Surrogate: Toluene-d8	24.7		μg/L	25.0		98.8	70-130			
Surrogate: 4-Bromofluorobenzene	25.5		μg/L	25.0		102	70-130			
LCS Dup (B244975-BSD1)				Prepared &	Analyzed: 11	/04/19				
Acetone	145	50	μg/L	100		145	70-160	3.73	25	V-20
Acrylonitrile	12.0	5.0	μg/L	10.0		120	70-130	3.21	25	. 20
tert-Amyl Methyl Ether (TAME)	7.77	0.50	μg/L	10.0		77.7	70-130	1.66	25	V-05
Benzene	9.68	1.0	μg/L	10.0		96.8	70-130	0.830	25	. 05
Bromobenzene	10.6	1.0	μg/L	10.0		106	70-130	3.90	25	
Bromochloromethane	11.1	1.0	μg/L	10.0		111	70-130	1.43	25	
Bromodichloromethane	10.6	0.50	μg/L	10.0		106	70-130	4.86	25	
Bromoform	10.6	1.0	μg/L μg/L	10.0		103	70-130	2.46	25	
Bromomethane	6.68	2.0	μg/L μg/L	10.0		66.8	40-160	12.9	25	
2-Butanone (MEK)	6.68	2.0	μg/L μg/L	10.0		117	40-160	2.32	25 25	
tert-Butyl Alcohol (TBA)		20	μg/L μg/L			90.2		7.03	25	
n-Butylbenzene	90.2	1.0		100		116	40-160 70-130	0.172	25 25	
sec-Butylbenzene	11.6	1.0	μg/L	10.0						
-	11.4		μg/L	10.0		114	70-130	0.440	25	
rert-Butylbenzene	10.9	1.0	μg/L	10.0		109	70-130	0.368	25	
tert-Butyl Ethyl Ether (TBEE)	7.38	0.50	μg/L	10.0		73.8	70-130	0.541	25	
Carbon Disulfide	10.4	5.0	μg/L	10.0		104	70-130	6.66	25	
Carbon Tetrachloride	11.1	1.0	μg/L	10.0		111	70-130	0.809	25	
Chlorobenzene	10.1	1.0	μg/L	10.0		101	70-130	5.02	25	
Chlorodibromomethane	10.5	0.50	μg/L	10.0		105	70-130	2.73	25	
Chloroethane	9.87	2.0	μg/L	10.0		98.7	70-130	2.25	25	
Chloroform	9.64	2.0	μg/L	10.0		96.4	70-130	2.96	25	
Chloromethane	7.89	2.0	μg/L	10.0		78.9	40-160	1.13	25	
2-Chlorotoluene	10.2	1.0	μg/L	10.0		102	70-130	1.17	25	
4-Chlorotoluene	10.8	1.0	μg/L	10.0		108	70-130	4.70	25	
1,2-Dibromo-3-chloropropane (DBCP)	10.5	5.0	μg/L	10.0		105	70-130	0.573	25	
1,2-Dibromoethane (EDB)	10.6	0.50	μg/L	10.0		106	70-130	1.31	25	
Dibromomethane	10.7	1.0	μg/L	10.0		107	70-130	1.60	25	
1,2-Dichlorobenzene	10.5	1.0	$\mu g/L$	10.0		105	70-130	2.54	25	
1,3-Dichlorobenzene	11.1	1.0	μg/L	10.0		111	70-130	0.542	25	
1,4-Dichlorobenzene	10.5	1.0	μg/L	10.0		105	70-130	1.60	25	
trans-1,4-Dichloro-2-butene	13.4	2.0	$\mu g/L$	10.0		134 *	70-130	1.13	25	L-02, V-20
Dichlorodifluoromethane (Freon 12)	6.16	2.0	$\mu g/L$	10.0		61.6	40-160	0.486	25	
1,1-Dichloroethane	10.6	1.0	$\mu g/L$	10.0		106	70-130	0.00	25	
1,2-Dichloroethane	11.7	1.0	$\mu g/L$	10.0		117	70-130	0.0856	25	
1,1-Dichloroethylene	11.7	1.0	$\mu g/L$	10.0		117	70-130	0.428	25	
cis-1,2-Dichloroethylene	10.6	1.0	$\mu g/L$	10.0		106	70-130	1.68	25	
trans-1,2-Dichloroethylene	11.2	1.0	$\mu g/L$	10.0		112	70-130	1.95	25	
1,2-Dichloropropane	11.0	1.0	$\mu g/L$	10.0		110	70-130	0.183	25	
1,3-Dichloropropane	10.7	0.50	$\mu g/L$	10.0		107	70-130	1.70	25	
2,2-Dichloropropane	11.3	1.0	$\mu g/L$	10.0		113	40-130	4.17	25	
1,1-Dichloropropene	10.4	2.0	$\mu g/L$	10.0		104	70-130	1.24	25	
cis-1,3-Dichloropropene	10.8	0.50	$\mu g/L$	10.0		108	70-130	4.34	25	
trans-1,3-Dichloropropene	11.0	0.50	$\mu g/L$	10.0		110	70-130	0.915	25	
Diethyl Ether	10.7	2.0	μg/L	10.0		107	70-130	1.39	25	
Diisopropyl Ether (DIPE)	11.6	0.50	μg/L	10.0		116	70-130	3.96	25	

QUALITY CONTROL

Volatile Organic Compounds by GC/MS - Quality Control

Analyte	Result	Reporting Limit	Units	Spike Level	Source Result	%REC	%REC Limits	RPD	RPD Limit	Notes	
Batch B244975 - SW-846 5030B											_
LCS Dup (B244975-BSD1)				Prepared &	Analyzed: 11	/04/19					
1,4-Dioxane	122	50	μg/L	100		122	40-130	4.65	50		 † ‡
Ethylbenzene	10.7	1.0	$\mu g/L$	10.0		107	70-130	0.561	25		
Hexachlorobutadiene	11.8	0.60	$\mu g/L$	10.0		118	70-130	0.508	25		
2-Hexanone (MBK)	132	10	$\mu g/L$	100		132	70-160	0.137	25	V-20	†
Isopropylbenzene (Cumene)	10.8	1.0	$\mu g/L$	10.0		108	70-130	2.57	25		
p-Isopropyltoluene (p-Cymene)	10.6	1.0	$\mu g/L$	10.0		106	70-130	0.190	25		
Methyl tert-Butyl Ether (MTBE)	9.24	1.0	$\mu g/L$	10.0		92.4	70-130	1.82	25		
Methylene Chloride	11.1	5.0	$\mu g/L$	10.0		111	70-130	4.22	25		
4-Methyl-2-pentanone (MIBK)	140	10	$\mu g/L$	100		140	70-160	2.14	25	V-20	†
Naphthalene	9.12	2.0	$\mu g/L$	10.0		91.2	40-130	0.873	25		†
n-Propylbenzene	10.8	1.0	$\mu g/L$	10.0		108	70-130	4.24	25		
Styrene	9.13	1.0	$\mu g/L$	10.0		91.3	70-130	0.329	25		
1,1,1,2-Tetrachloroethane	11.2	1.0	μg/L	10.0		112	70-130	0.0890	25		
1,1,2,2-Tetrachloroethane	11.2	0.50	μg/L	10.0		112	70-130	1.41	25		
Tetrachloroethylene	10.9	1.0	$\mu g/L$	10.0		109	70-130	3.94	25		
Tetrahydrofuran	10.7	10	μg/L	10.0		107	70-130	4.28	25		
Toluene	10.5	1.0	μg/L	10.0		105	70-130	2.45	25		
1,2,3-Trichlorobenzene	8.47	5.0	μg/L	10.0		84.7	70-130	0.589	25		
1,2,4-Trichlorobenzene	10.1	1.0	μg/L	10.0		101	70-130	3.42	25		
1,3,5-Trichlorobenzene	10.5	1.0	μg/L	10.0		105	70-130	0.0954	25		
1,1,1-Trichloroethane	11.0	1.0	μg/L	10.0		110	70-130	1.63	25		
1,1,2-Trichloroethane	10.6	1.0	μg/L	10.0		106	70-130	0.661	25		
Trichloroethylene	10.3	1.0	μg/L	10.0		103	70-130	4.29	25		
Trichlorofluoromethane (Freon 11)	10.0	2.0	μg/L	10.0		100	70-130	0.399	25		
1,2,3-Trichloropropane	11.3	2.0	μg/L	10.0		113	70-130	1.16	25		
1,1,2-Trichloro-1,2,2-trifluoroethane (Freon	10.7	1.0	μg/L	10.0		107	70-130	1.86	25		
113)											
1,2,4-Trimethylbenzene	9.50	1.0	$\mu g/L$	10.0		95.0	70-130	1.57	25		
1,3,5-Trimethylbenzene	10.4	1.0	$\mu g/L$	10.0		104	70-130	2.93	25		
Vinyl Chloride	25.0	2.0	$\mu g/L$	10.0		250 *	40-160	5.64	25	L-02, V-20	†
m+p Xylene	21.3	2.0	$\mu g/L$	20.0		107	70-130	1.44	25		
o-Xylene 	10.9	1.0	μg/L	10.0		109	70-130	1.82	25		
Surrogate: 1,2-Dichloroethane-d4	25.2		μg/L	25.0		101	70-130				_
Surrogate: Toluene-d8	25.1		$\mu g/L$	25.0		100	70-130				
Surrogate: 4-Bromofluorobenzene	25.1		$\mu g/L$	25.0		100	70-130				

QUALITY CONTROL

Semivolatile Organic Compounds by GC/MS - Quality Control

Analyte	Result	Reporting Limit	Units	Spike Level	Source Result	%REC	%REC Limits	RPD	RPD Limit	Notes
Batch B244837 - SW-846 3510C										
Blank (B244837-BLK1)				Prepared: 10	0/30/19 Analy	yzed: 11/01/1	9			
Acenaphthene (SIM)	ND	0.30	$\mu g/L$							
Acenaphthylene (SIM)	ND	0.20	$\mu g/L$							
Anthracene (SIM)	ND	0.20	$\mu g/L$							
Benzo(a)anthracene (SIM)	ND	0.050	$\mu g/L$							
enzo(a)pyrene (SIM)	ND	0.10	$\mu g/L$							
Senzo(b)fluoranthene (SIM)	ND	0.050	$\mu g/L$							
enzo(g,h,i)perylene (SIM)	ND	0.50	$\mu g/L$							
enzo(k)fluoranthene (SIM)	ND	0.20	$\mu g/L$							
hrysene (SIM)	ND	0.20	$\mu g/L$							
ribenz(a,h)anthracene (SIM)	ND	0.10	$\mu g/L$							
luoranthene (SIM)	ND	0.50	$\mu g/L$							
luorene (SIM)	ND	1.0	$\mu g/L$							
ndeno(1,2,3-cd)pyrene (SIM)	ND	0.10	$\mu g/L$							
-Methylnaphthalene (SIM)	ND	1.0	$\mu g/L$							
Taphthalene (SIM)	ND	1.0	$\mu g/L$							
henanthrene (SIM)	ND	0.050	$\mu g/L$							
yrene (SIM)	ND	1.0	$\mu g/L$							
urrogate: Nitrobenzene-d5	83.8		μg/L	100		83.8	30-130			
urrogate: 2-Fluorobiphenyl	54.8		μg/L	100		54.8	30-130			
urrogate: p-Terphenyl-d14	73.4		$\mu g/L$	100		73.4	30-130			
LCS (B244837-BS1)				Prepared: 10	0/30/19 Analy	zed: 11/01/1	19			
Acenaphthene (SIM)	37.1	6.0	μg/L	50.0		74.1	40-140			
cenaphthylene (SIM)	38.1	4.0	$\mu g/L$	50.0		76.2	40-140			
inthracene (SIM)	41.5	4.0	$\mu g/L$	50.0		83.1	40-140			
enzo(a)anthracene (SIM)	42.4	1.0	$\mu g/L$	50.0		84.9	40-140			
enzo(a)pyrene (SIM)	40.2	2.0	$\mu g/L$	50.0		80.4	40-140			
Benzo(b)fluoranthene (SIM)	44.2	1.0	$\mu g/L$	50.0		88.4	40-140			
Benzo(g,h,i)perylene (SIM)	41.9	10	$\mu g/L$	50.0		83.9	40-140			
Benzo(k)fluoranthene (SIM)	43.5	4.0	$\mu g/L$	50.0		87.0	40-140			
Chrysene (SIM)	32.8	4.0	$\mu g/L$	50.0		65.5	40-140			
Dibenz(a,h)anthracene (SIM)	46.1	2.0	$\mu g/L$	50.0		92.1	40-140			
luoranthene (SIM)	40.0	10	$\mu g/L$	50.0		80.0	40-140			
luorene (SIM)	38.6	20	$\mu g/L$	50.0		77.3	40-140			
ndeno(1,2,3-cd)pyrene (SIM)	52.7	2.0	$\mu g/L$	50.0		105	40-140			
-Methylnaphthalene (SIM)	37.6	20	$\mu g/L$	50.0		75.2	40-140			
Japhthalene (SIM)	34.8	20	μg/L	50.0		69.6	40-140			
henanthrene (SIM)	38.1	1.0	μg/L	50.0		76.2	40-140			
yrene (SIM)	35.8	20	μg/L	50.0		71.6	40-140			
urrogate: Nitrobenzene-d5	84.0		μg/L	100		84.0	30-130			
urrogate: 2-Fluorobiphenyl	58.3		μg/L	100		58.3	30-130			
Surrogate: p-Terphenyl-d14	56.1		μg/L	100		56.1	30-130			

QUALITY CONTROL

Semivolatile Organic Compounds by GC/MS - Quality Control

Analyte	Result	Reporting Limit	Units	Spike Level	Source Result	%REC	%REC Limits	RPD	RPD Limit	Notes
Batch B244837 - SW-846 3510C										
LCS Dup (B244837-BSD1)				Prepared: 10	0/30/19 Anal	yzed: 11/01/	19			
Acenaphthene (SIM)	36.6	6.0	μg/L	50.0		73.3	40-140	1.14	20	
Acenaphthylene (SIM)	37.7	4.0	$\mu g/L$	50.0		75.4	40-140	1.16	20	
Anthracene (SIM)	40.8	4.0	$\mu g/L$	50.0		81.6	40-140	1.85	20	
Benzo(a)anthracene (SIM)	41.9	1.0	μg/L	50.0		83.7	40-140	1.38	20	
Benzo(a)pyrene (SIM)	38.8	2.0	μg/L	50.0		77.5	40-140	3.65	20	
Benzo(b)fluoranthene (SIM)	43.3	1.0	μg/L	50.0		86.5	40-140	2.15	20	
Benzo(g,h,i)perylene (SIM)	41.4	10	μg/L	50.0		82.8	40-140	1.34	20	
Benzo(k)fluoranthene (SIM)	43.9	4.0	$\mu g/L$	50.0		87.9	40-140	1.05	20	
Chrysene (SIM)	32.3	4.0	$\mu g/L$	50.0		64.5	40-140	1.54	20	
Dibenz(a,h)anthracene (SIM)	45.7	2.0	$\mu g/L$	50.0		91.3	40-140	0.872	20	
Fluoranthene (SIM)	38.8	10	$\mu g/L$	50.0		77.6	40-140	3.04	20	
Fluorene (SIM)	38.3	20	$\mu g/L$	50.0		76.6	40-140	0.884	20	
Indeno(1,2,3-cd)pyrene (SIM)	51.0	2.0	$\mu g/L$	50.0		102	40-140	3.28	20	
2-Methylnaphthalene (SIM)	37.3	20	$\mu g/L$	50.0		74.6	40-140	0.854	20	
Naphthalene (SIM)	34.4	20	$\mu g/L$	50.0		68.8	40-140	1.21	20	
Phenanthrene (SIM)	37.5	1.0	$\mu g/L$	50.0		74.9	40-140	1.69	20	
Pyrene (SIM)	34.9	20	$\mu g/L$	50.0		69.8	40-140	2.55	20	
Surrogate: Nitrobenzene-d5	78.5		μg/L	100		78.5	30-130			
Surrogate: 2-Fluorobiphenyl	55.7		$\mu g/L$	100		55.7	30-130			
Surrogate: p-Terphenyl-d14	58.0		μg/L	100		58.0	30-130			

FLAG/QUALIFIER SUMMARY

*	QC result is outside of established limits.
†	Wide recovery limits established for difficult compound.
‡	Wide RPD limits established for difficult compound.
#	Data exceeded client recommended or regulatory level
	Percent recoveries and relative percent differences (RPDs) are determined by the software using values in the calculation which have not been rounded.
	No results have been blank subtracted unless specified in the case narrative section.
J	Detected but below the Reporting Limit (lowest calibration standard); therefore, result is an estimated concentration (CLP J-Flag).
L-02	Laboratory fortified blank/laboratory control sample recovery and duplicate recoveries outside of control limits. Data validation is not affected since all results are "not detected" for associated samples in this batch and bias is on the high side.
RL-11	Elevated reporting limit due to high concentration of target compounds.
V-05	Continuing calibration verification (CCV) did not meet method specifications and was biased on the low side for this compound.
V-20	Continuing calibration verification (CCV) did not meet method specifications and was biased on the high side. Data validation is not affected since sample result was "not detected" for this compound.

CERTIFICATIONS

Certified Analyses included in this Report

Analyte	Certifications
W-846 8260D in Water	
Acetone	NC
Acrylonitrile	NC
tert-Amyl Methyl Ether (TAME)	NC
Benzene	NC
Bromobenzene	NC
Bromochloromethane	NC
Bromodichloromethane	NC
Bromoform	NC
Bromomethane	NC
2-Butanone (MEK)	NC
tert-Butyl Alcohol (TBA)	NC
n-Butylbenzene	NC
sec-Butylbenzene	NC
tert-Butylbenzene	NC
tert-Butyl Ethyl Ether (TBEE)	NC
Carbon Disulfide	NC
Carbon Tetrachloride	NC
Chlorobenzene	NC
Chlorodibromomethane	NC
Chloroethane	NC
Chloroform	NC
Chloromethane	NC
2-Chlorotoluene	NC
4-Chlorotoluene	NC
1,2-Dibromo-3-chloropropane (DBCP)	NC
1,2-Dibromoethane (EDB)	NC
Dibromomethane	NC
1,2-Dichlorobenzene	NC
1,3-Dichlorobenzene	NC
1,4-Dichlorobenzene	NC
trans-1,4-Dichloro-2-butene	NC
Dichlorodifluoromethane (Freon 12)	NC
1,1-Dichloroethane	NC
1,2-Dichloroethane	NC
1,1-Dichloroethylene	NC
cis-1,2-Dichloroethylene	NC
trans-1,2-Dichloroethylene	NC
1,2-Dichloropropane	NC
1,3-Dichloropropane	NC
2,2-Dichloropropane	NC
1,1-Dichloropropene	NC
cis-1,3-Dichloropropene	NC
trans-1,3-Dichloropropene	NC
Diethyl Ether	NC
Diisopropyl Ether (DIPE)	NC
1,4-Dioxane	NC
Ethylbenzene	NC

CERTIFICATIONS

Certified Analyses included in this Report

Analyte	Certifications
SW-846 8260D in Water	
Hexachlorobutadiene	NC
2-Hexanone (MBK)	NC
Isopropylbenzene (Cumene)	NC
p-Isopropyltoluene (p-Cymene)	NC
Methyl tert-Butyl Ether (MTBE)	NC
Methylene Chloride	NC
4-Methyl-2-pentanone (MIBK)	NC
Naphthalene	NC
n-Propylbenzene	NC
Styrene	NC
1,1,1,2-Tetrachloroethane	NC
1,1,2,2-Tetrachloroethane	NC
Tetrachloroethylene	NC
Tetrahydrofuran	NC
Toluene	NC
1,2,3-Trichlorobenzene	NC
1,2,4-Trichlorobenzene	NC
1,3,5-Trichlorobenzene	NC
1,1,1-Trichloroethane	NC
1,1,2-Trichloroethane	NC
Trichloroethylene	NC
Trichlorofluoromethane (Freon 11)	NC
1,2,3-Trichloropropane	NC
1,1,2-Trichloro-1,2,2-trifluoroethane (Freon 113)	NC
1,2,4-Trimethylbenzene	NC
1,3,5-Trimethylbenzene	NC
Vinyl Chloride	NC
m+p Xylene	NC
o-Xylene	NC

 $The \ CON-TEST\ Environmental\ Laboratory\ operates\ under\ the\ following\ certifications\ and\ accreditations:$

Code	Description	Number	Expires
AIHA	AIHA-LAP, LLC - ISO17025:2017	100033	03/1/2020
MA	Massachusetts DEP	M-MA100	06/30/2020
CT	Connecticut Department of Publilc Health	PH-0567	09/30/2021
NY	New York State Department of Health	10899 NELAP	04/1/2020
NH-S	New Hampshire Environmental Lab	2516 NELAP	02/5/2020
RI	Rhode Island Department of Health	LAO00112	12/30/2019
NC	North Carolina Div. of Water Quality	652	12/31/2019
NJ	New Jersey DEP	MA007 NELAP	06/30/2020
FL	Florida Department of Health	E871027 NELAP	06/30/2020
VT	Vermont Department of Health Lead Laboratory	LL015036	07/30/2020
ME	State of Maine	2011028	06/9/2021
VA	Commonwealth of Virginia	460217	12/14/2019
NH-P	New Hampshire Environmental Lab	2557 NELAP	09/6/2020
VT-DW	Vermont Department of Health Drinking Water	VT-255716	06/12/2020
NC-DW	North Carolina Department of Health	25703	07/31/2020
PA	Commonwealth of Pennsylvania DEP	68-05812	06/30/2020

	Γ-	T	I 1			8ŅV		14 S N		. 13	. \		1911				4000	e Nati			17.74V	S. M.		YEST.		NE:			Tab	le of	Conte	ents
Pageof(# of Containers	² Preservation Code	³ Container Code	Dissolved Weitals Samples	Tield Filtered		enatus patospiteite Samples	Field Filtered	Lab to Filter	1 Matrix Codes:	WW = Waste Water	A = Air	SL = Sludge	O = Other (please	derine)	2 Preservation Codes:	H = HCL	N = Nitric Acid	B = Sodium Bisulfate V = Codium Underside	T = Sodium	0 = Other (please	detine)	3 Container Codes:	6 = Glass	ST = Sterile	V = Vial S = Summa Canister	T = Tedlar Bag	define)	A CONTRACTOR OF THE PROPERTY O	PCB ONLY	Non Soxhlet	**************************************
Doc # 379 Rev 1_03242017 39 Spruce Street East Longmeadow. MA 01028				ANALYSIS REQUESTED																		riease use the following codes to indicate possible sample concentration within the Conc Code column above:	H - High; M - Medium; L - Low; C - Clean; U - Unknown	gram Informa	DSCA UST/Trust Fund	Sws Lalium REC	State Lead	Other:	NELAC and AHA-LAP, LLC Accredited	Other	AIHA-IAP, LIC	The second secon
Doc # 379 CHAIN OF CUSTODY RECORD (North Carolina) Recoussited Mithersofting little	7-Day 10-Day 🗹	Due Date:	Rush-Appro	1-bay 3-bay	J. Barall		Other:	Data Pkg Required:	hack the smeller con	Ending Composite Grab Metrix Conc (1) Code (2)	13co / 6tu										Discussion the College	Prease use the following within	H - High; M - Mec	North Carolins Detection Limit Requirements	ZL CANOC			WSCC STORING CORPUS		tity Government Municinality) 🗆 🗆	
(() + + / Phone: 413-525-2332 Fax: 413-525-6405	Email: info@contestlabs.com		Forest RB (Latery HC		TORIO MINA LOND	19-16 i	Jamie Thangs		1 Honerald	Client Sample 10 / Description Beginning	1-X-1 10-23-19													Time:	+		bate/Time:	Date/Time: Cliber		Date/Time: Project Entity	Date/Time:	
CON-TEST		Company hame. SyME	306 Sprim	Phone: 910 9771-7614	on: Dusk	Project Number: 4305-19	Project Manager: Jawie	ne/Numbel	Sampled By: Tarmer 1	Con-Test Work Order#											Comments:			ed by: (Received by (Salasture)	かって	Relinquished by: (signature)	eived by: (signature)		6 inquished by: (signature)	5 (signature)	4

IMPORTANT!

The wildfires are causing hazardous conditions in California. Learn More

Delivered Tuesday 10/29/2019 at 9:06 am

DELIVERED

Signed for by: B.BECCA

GET STATUS UPDATES OBTAIN PROOF OF DELIVERY

TO

EAST LONGMEADOW, MA US

Shipment Facts

TRACKING NUMBER

411359783313

DELIVERED TO

Shipping/Receiving

PACKAGING

Your Packaging

SHIP DATE

Mon 10/28/2019

SERVICE

FedEx Priority Overnight

TOTAL PIECES

SPECIAL HANDLING SECTION

Deliver Weekday

STANDARD TRANSIT

WEIGHT

34.8 lbs / 15.79 kgs

34.8 lbs / 15.79 kgs

10/29/2019 by 10:30 am

TOTAL SHIPMENT WEIGHT

ACTUAL DELIVERY

Tue 10/29/2019 9:06 am

Travel History

Tuesday, 10/29/2019

Delivered

9:06 am 7:46 am

WINDSOR LOCKS, CT

On FedEx vehicle for delivery

7:35 am

WINDSOR LOCKS, CT

At local FedEx facility

6:23 am

EAST GRANBY, CT

At destination sort facility

Page 23 of 24

Local Scan Time

I Have Not Confirmed Sample Container
Numbers With Lab Staff Before Relinquishing
Over Samples_____

Doc# 277 Rev 5 2017

Login Sample Receipt Checklist - (Rejection Criteria Listing - Using Acceptance Policy) Any False Statement will be brought to the attention of the Client - State True or False

Client	S+nE									<u> </u>
Receiv	ed By	- MY		Date	10 2	9	16)	Time	906	······
How were th	•	In Cooler		No Cooler			On Ice	T	No Ice	
receiv	ea?	Direct from Samp	ling				Ambient		Melted Ice	
Were samp	dee within		By Gun#	2			Actual Tem	p- 3-4		
Temperatu		1	By Blank #				Actual Tem	n -		•
•	Custody Se	eal Intact?	NA		re Sami		Tampered		M	•
	COC Relin		7	•			ee With Sar			•
		eaking/loose caps		•	F	9.	00 ,,,,,,,			
Is COC in in		•	,	•	nples re	ceiv	ed within ho	olding time?		
Did COC in	-	Client	T	Analysis				er Name	<u> </u>	•
pertinent Inf	ormation?	Project		ID's	-7		Collection	Dates/Times	T	_
Are Sample	labels filled	dout and legible?	+	'				·		•
Are there La	to Filters?	•	F	•	Who	vas	notified?			
Are there Ru	shes?		F	•	Who	vas	notified?			•
Are there Sh	ort Holds?		F	'	Who v	vas	notified?			•
Is there enou	igh Volume	?	T							•
Is there Head	dspace whe	ere applicable?	F		MS/MSI	D?_	<u> </u>		ϵ	
Proper Media	a/Container	s Used?		,			samples req	uired?		
Were trip bla	nks receive	ed?	<u>'</u> F		On CO	ጋ? _	<u> </u>			
Do all sample	es have the	proper pH?	M	Acid				Base		
Vials	#	Containers:	#				#			#
Unp-		1 Liter Amb.	2	1 Liter	Plastic			16 oz	Amb.	
HCL-	3	500 mL Amb.		500 mL	Plastic			8oz Am	b/Clear	
Meoh-		250 mL Amb.		250 mL				4oz Am	b/Clear	
Bisulfate-		Flashpoint		Col./Ba				2oz Am		
DI-		Other Glass		Other		_		End	ore	
Thiosulfate-		SOC Kit		Plasti		4		Frozen:		
Sulfuric-		Perchlorate		Zipl	ock					
				Unused f	Viedia					
Vials	#	Containers:	#				#			#
Unp-		1 Liter Amb.		1 Liter				16 oz		
HCL-		500 mL Amb.		500 mL				8oz Am		
Meoh-		250 mL Amb.		250 mL		\dashv		4oz Am		
Bisulfate-		Col./Bacteria		Flash			 	2oz Am		
DI-		Other Plastic		Other	·····			Enc	ore	
Thiosulfate- Sulfuric-		SOC Kit Perchlorate		Plastie Zipl		+		Frozen:		
Comments:		reichiorate		<u> </u>	OCK					
Comments.										