

I-5986B Final Pavement Design Recommendations Report Addendum I-95 Widening MM 69 to MM 82 Johnston and Harnett Counties S&ME Project No. 623517048

PREPARED FOR

Michael Baker International 8000 Regency Parkway, Suite 600 Cary, NC 27518

PREPARED BY

S&ME, Inc. 3201 Spring Forest Road Raleigh, NC 27616

April 27, 2021

Michael Baker International 8000 Regency Parkway, Suite 600 Cary, NC 27518

Attention: Mr. Mickie Wing

Reference: I-5986B Final Pavement Design Recommendations Report Addendum

I-95 Widening

Johnston, Harnett Counties S&ME Project No. 623517048 PE Firm License No. F-0176

Dear Mr. Wing:

The purpose of this report is to provide pavement design recommendations to the design team for the subject I-5986B project. The information contained in this report pertains to the pavements for the roadway widening of I-95 as well as the widening and realignments of ramps, loops and Y-lines within the project limits, which begin at approximate mile marker 69, just south of Bud Hawkins Rd. and end just north of the interchange of I-95 and I-40 (Approximate mile marker 81). The Y-lines included are part of previous TIP numbers I-5878 and I-5883 in addition to I-5986B. This addendum is to combine previous submittals and incorporates comments by Michael Baker International. It is to be noted that if additional Y-line alignments, service roads, driveways, or any other alignment changes are proposed as part of I-5986B project, S&ME will have to review and submit an addendum to this report. The revision is based on comments from NCDOT and Michael Baker International on March 19, 2021. Our services are being performed in general accordance with the approved scope of services in the Master Agreement for Subcontracted Technical Services between S&ME, Inc. and Michael Baker International dated February 13, 2017 for Task 3.

Sincerely,

S&ME, Inc.

Stewart Laney, PE Senior Project Manager Vasinin G. Motcher

Vladimir Mitchev

Project Manager/Pavement Engineer

NC PE License No. 031484

Johnston, Harnett Counties S&ME Project No. 623517048

Contents

1.0	Project Overview	3
2.0	Traffic	5
3.0	Soil Conditions	7
3.1	Dynamic Cone Penetrometer Testing	7
3.2	Falling Weight Deflectometer Testing	8
3.3	Previous Projects Data	9
3.4	Existing Pavement Conditions	10
3.5	Ground Penetrating Radar Survey	10
3.6	Falling Weight Deflectometer Testing	11
3.7	I-5877 Additional Falling Weight Deflectometer Testing	12
3.8	Pavement Coring	12
4.0	Pavement Design Recommendations	13
4.1	I-95 Widening Design	13
4.2	Existing I-95 Pavement	14
4.3	Y-Lines Pavement Design	15
5.0	Limitations of Report	17

Appendices

Appendix I - Pavement Design Calculations

Appendix II - FWD Analyses

Appendix III - GPR Survey Results

Appendix IV - Kessler DCP Test Results

Appendix V - Core Photos

Johnston, Harnett Counties S&ME Project No. 623517048

1.0 Project Overview

The project consists of widening and rehabilitation of the existing 4-6 lane roadway section of I-95 to an 8 lane roadway section from approximate MM 69 to approximate MM 81, located in Harnett and Johnston Counties, North Carolina. Included in the project are the interchanges and Y-lines along the approximately 10-mile long I-95 corridor. The following table presents how the project has been divided for the purposes of the pavement recommendations:

Table 1.1

Route	Begin Station	End Station	New Location Y/N	Number of Lanes	Curb & Gutter	Pavement Design life
-L- I-95*	80+00	1452+20.87	Yes	6	No	30
-Y14- SR 1793 (West) (Spring Branch Rd.)	10+00	24+66	No	2	Yes	20
-Y14- SR 1793 (East) (Pope Rd.)	27+42	46+81.23	No	2	No	20
Ramps at -Y14- SR 1798	Var	ries	Yes	1	No	30
-Y15- US 421 (West)	10+00	21+85	No	4	Yes	30
-Y15- US 421 (East)	21+85	57+96.55	No	4	No	30
Ramps at -Y15- US 421	Var	ies	Yes	1	No	30
-Y16- SR 1808 (Jonesboro Rd.)	10+00	49+21.99	Yes	2	No	20
Ramps at -Y16- SR 1808	Var	ies	Yes	1	No	30
-Y17- SR 1709 (Hodges Chapel Rd.)	10+00	45+56.91	No	2	No	20
Ramps at -Y17- SR 1709	Var	ies	Yes	1	No	30
-Y18- NC 50/NC 242 (East Main St.)	10+00	45+44.03	No	2	Yes	30
Ramps at -Y18- NC 50/NC 242	Var	ies	Yes	1	No	30
		I-5878	3			
-SR9A- New Alignment (Interstate Drive)	10+12.00	93+04.22	Yes	2	No	20
-SR9- Elm Street Ext.	10+00	93+04.64	Yes	2	No	20
-SR11- Stoney Run Drive	-	-	Yes	2	No	20
-SR12- Old State Hwy 55 E	-	-	Yes	2	No	20
-SR18- Jackson Road	-	-	Yes	2	No	20
-Y25- Sampson Road	-	-	Yes	2	No	20

Johnston, Harnett Counties S&ME Project No. 623517048

		1		1	<u> </u>	
-Y25A- E Broad Street	-	-	Yes	2	No	20
-DR1 & DR1A- New Alignment (Bud Hawkins Rd)	-	-	Yes	2	No	20
-NBCD & SBCD- Y 14 Ramps	-	-	Yes	2	No	20
-Y14RAA- New Roundabout on Spring Branch Rd	10+00.00	13+95.84	Yes/No	2	Yes	20
-Y14RAB- New Roundabout on Pope Rd	10+00.00	13+61.28	Yes/No	2	Yes	20
-DR10- New Location	10+24.70	12+00.00	Yes	2	No	20
-Y24- Bud Hawkins Road	13+59.60	49+82.28	Yes	2	No	20
		I-5883				
-SR13- Jerry Carr Road	10+00.00	59+58.54	Yes	2	No	20
-SR14- Saddlebred Road/ Rooms to Go Way	-	-	Yes	2	No	20
-SR15- George Perry Lee Road	10+13.43	98+25.00	Yes	2	No	20
-SR16- Sadler Road	10+00.00	85+93.68	Yes	2	No	20
-SR17- Robin Hood Road	10+09.89	65+97.99	Yes	2	No	20
-Y26- New Alignment (George Perry Lee Road)	10+11.21	30+84.53	Yes	2	No	20
-DR2- New Alignment (Jerry Carr Rd)	10+11.00	12+91.61	Yes	2	No	20
-Y32- Core Rd (Cul-De-Sac)	10+43.60	11+48.60	Yes	2	No	20
		I-5986E	3			
-SR19- SR 1834 Foundation Rd	10+45.00	28+98.68	Yes	2	No	20
-Y18RAA- New Roundabout on NC 50	10+00.00	14+46.11	Yes	2	Yes	30
-Y27- SR1809 Webb Rd	25+77.06	27+84.39	Yes	2	No	20
-Y28- SR1100 Chicopee Rd	15+75.00	31+00.00	Yes	2	No	20
-Y28A- E Brocklyn St	15+60.85	-	Yes	2	No	20
-Y29- SR1204/SR1101 S Market St Cub Rd Connection	20+00.00	35+50.00	Yes/No	2	No	20
-Y29A-SR1101 Cub Rd (New Service Rd)	10+14.04	39+88.01	Yes/No	2	No	20

Johnston, Harnett Counties S&ME Project No. 623517048

-Y30-S Walton Dr (NC 242)	19+00.00	24+22.91	Yes	2	Yes	30
-Y33-SR1219 (N Walton Av)	10+50.00	45+65.00	Yes	2	No	20
-Y19RPB- I40 Ramp	26+00.00	30+97.86	Yes	1	No	30
-Y19RPCA- I40 Ramp	10+00.00	18+34.55	Yes	1	No	30

^{*} The existing pavement of I-95 within the project limits has been further divided for the purpose of pavement rehabilitation recommendations.

2.0 Traffic

Traffic data for pavement designs is based on information provided by Michael Baker and NCDOT, more specifically obtained from the Traffic Forecast Diagrams prepared by Atkins, dated November 23, 2016. Pavement designs are based on the AASHTO 93 Interim Guide for Design of Pavement Structures and the NCDOT Pavement Design Procedure (2017). As shown in the table below, the following traffic conditions have been incorporated into our analyses:

Table 2.1

Route	Initial Year ADT 2018	Future Year ADT 2040	Duals %	TTST %	Life	Lanes	Directional Split
-L- I-95	57,000	74,600	7	17	30	6	50
-Y14- SR 1798 (West) (Spring Branch Rd.)	4,100	7,200	4	1	20	2	50
-Y14- SR 1798 (East) (Pope Rd.)	3,600	5,300	4	1	20	2	50
Ramps at -Y14- SR 1798	3,450	7,350	4	3	30	1	100
-Y15- US 421 (West)	19,800	27,400	3	3	30	4	50
-Y15- US 421 (East)	15,500	19,800	3	3	30	4	50
Ramps at -Y15- US 421	4,100	6,250	4	3	30	1	100
-Y16- SR 1808 (Jonesboro Rd.)	6,900	9,100	6	17	20	2	50
Ramps at -Y16- SR 1808	1,450	1,800	6	17	30	1	100
-Y17- SR 1709 (Hodges Chapel Rd.)	3,600	4,900	5	30	20	2	50
Ramps at -Y17- SR 1709	1,350	1,850	5	30	30	1	100
-Y18- NC 50/NC 242 (East Main St.)	13,600	20,400	3	3	30	2	50
Ramps at -Y18- NC 50/NC 242	3,850	6,300	3	4	30	1	100

Johnston, Harnett Counties S&ME Project No. 623517048

	I	-5878					
-SR9A- New Alignment (Interstate Drive)	500	700	8	1	20	2	50
-SR9- Elm Street Ext.	1,400	1,900	3	1	20	2	50
-SR11- Stoney Run Drive	600	900	10	7	20	2	50
-SR12- Old State Hwy 55 E	1,900	2,300	3	2	20	2	50
-SR18- Jackson Road	1,500	2,200	5	1	20	2	50
-Y25- Sampson Road	2,400	3,700	2	1	20	2	50
-Y25A- E Broad Street	700	900	10	7	20	2	50
-DR1 & DR1A- New Alignment (Bud Hawkins Rd)	300	500	5	1	20	2	50
-NBCD & SBCD- Y 14 Ramps	3,450	7,350	4	3	20	2	50
-Y14RAA- New Roundabout on Spring Branch Rd	4,100	7,200	4	1	20	2	100
-Y14RAB- New Roundabout on Pope Rd	3,600	5,300	4	1	20	2	100
-DR10- New Location	500	800	10	3	20	2	50
-Y24- Bud Hawkins Road	500	900	8	13	20	2	50
		I-5883					
-SR13- Jerry Carr Road	100	200	10	1	20	2	50
-SR14- Saddlebred Road/ Rooms to Go Way	2,000	2,400	5	4	20	2	50
-SR15- George Perry Lee Road	700	900	7	10	20	2	50
-SR16- Sadler Road	2,200	2,600	5	9	20	2	50
-SR17- Robin Hood Road	600	700	5	15	20	2	50
-Y26- New Alignment (George Perry Lee Road)	700	900	7	10	20	2	50
-DR2- New Alignment (Jerry Carr Rd)	100	200	10	1	20	2	50
-Y32- Core Rd (Cul-De-Sac)	100	200	10	1	20	2	50
	I	-5986B					
-Y29- SR1204/SR1101 S Market St Cub Rd Connection *	700	1,000	2	5	20	2	50

Johnston, Harnett Counties S&ME Project No. 623517048

-Y29A-SR1101 Cub Rd (New Service Rd) *	100	200	2	1	20	2	50
-Y30-S Walton Dr (NC 242)	4,900	7,500	5	5	30	2	50
-Y33-SR1219 (N Walton Av)	850	950	5	5	20	2	50
-Y19RPCA- I-40 Ramp	14,200	23,700	3	5	30	1	100
-Y19RPB- I-40 Ramp	12,000	19,900	3	5	30	1	100
-Y18RAA- apron	10,400	15,400	3	4	30	2	100
-SR19- SR 1834 Foundation Rd	100	200	2	1	20	2	50
-Y18RAA- New Roundabout on NC50	10,400	15,400	3	4	30	2	100
-Y27- SR1809 Webb Rd	600	700	5	15	20	2	50
-Y28- SR1100 Chicopee Rd	1,800	2,500	3	3	20	2	50
-Y28A- E Brocklyn St	200	300	6	1	20	2	50

^{*}Traffic data for -Y29- and Y-29A- was not available. We have assumed ADT and truck percentages similar to neighboring Y-lines. Note that pavement thickness can be modified if needed when traffic data is available.

3.0 Soil Conditions

Existing geotechnical conditions along the project alignment are based on the Preliminary Roadway Geotechnical Engineering Report (PRGER) prepared by S&ME which will be submitted at a later date. During this evaluation, asphalt coring was performed at twenty-six locations (26) (C-1 through C-26) and subgrade tests were performed at twenty-one (21) locations along the existing I-95 alignment. Subgrade underneath the pavement structure was evaluated by Kessler Dynamic Cone Penetrometer Testing (KDCP). Falling weight deflectometer testing was done and deflection data used to back calculate subgrade modulus values and CBR.

3.1 Dynamic Cone Penetrometer Testing

The subgrade was evaluated by Kessler Dynamic Cone Penetrometer Testing (KDCP). The KDCP is driven into the subgrade soils by dropping a Dual-Mass Hammer form a height of 22.6 inches. The depth of cone penetration is measures at selected penetration of hammer drop intervals and the soil shear strength is reported in terms of DCP index. The DCP index is used to estimate weighted average field California Bearing Ratio (CBR) values. The following table shows the testing that has been performed:

Table 3.1

Test ID	I-95 Approx. Station	Direction	Location	Offset (ft)	Asphalt Thickness (in.)	Base Thickness (in.)	Base Type	Weighted Average CBR
C-1	908+59	NB	OSS	4.8	7.0	-	-	34
C-2	950+90	NB	OSS	6.0	7.0	-	-	30

Johnston, Harnett Counties S&ME Project No. 623517048

C-3	1038+19	NB	OSS	5.5	11.5	-	-	42
C-4	1122+19	NB	OSS	4.8	8.0	-	-	27
C-5	1254+62	NB	OSS	5.0	10.75	-	-	38
C-6	1323+56	NB	OSS	5.4	11.0	-	-	47
C-7	1347+73	NB	OSS	4.7	16.0	-	-	No Kessler
C-8	1362+58	NB	OSS	5.6	17.0	-	-	No Kessler
C-9	1382+97	NB	OSS	7.0	8.0	-	-	No Kessler
C-10	1405+76	NB	OSS	5.0	6.75	-	-	33
C-11	1236+35	NB	OSL	2.1	13.5	-	-	76
C-12	1070+06	NB	OSL	2.0	6.5	9.0 Concrete	Econocrete	No Kessler
C-12-1	1070+06	NB	OSL	2.8	18.5	-	-	No Kessler
C-13	1432+26	SB	OSS	6.5	6.0	-	-	61
C-14	1375+37	SB	OSS	4.5	13.75	-	-	31
C-15	1340+86	SB	OSS	6.2	14.0	-	-	46
C-16	1316+18	SB	OSS	5.6	11.0	-	-	23
C-17	1299+78	SB	OSS	6.2	10.0	-	-	40
C-18	1247+37	SB	OSS	6.5	7.0	-	-	62
C-19	1141+06	SB	OSS	7.5	8.75	-	-	37
C-20	950+68	SB	OSS	6.8	9.0	-	-	31
C-21	926+49	SB	OSS	5.5	8.75	-	-	41
C-22	904+92	SB	OSS	5.0	9.25	-	-	26
C-23	-	SB	OSL	4.5	6.5	9.0 Concrete	Econocrete	No Kessler
C-24	1290+13	SB	OSL	2.2	14.5	-	-	47
C-25	1136+72	SB	OSL	3.0	12.5	-	-	63
C-26	1391+76	SB	OSL	4.3	14.5	-	-	22

3.2 Falling Weight Deflectometer Testing

Falling weight deflectometer (FWD) testing was performed in the outside wheel path of the outside travel lane in both the north and southbound directions. Testing was done at approximately every 250 feet, as 208 tests were conducted in the southbound direction, and 204 tests were done in the northbound direction of I-95. Two seating drops were done followed by two loading drops targeting approximately 9,000 pounds in accordance with NCDOT procedures. Subgrade characteristics were found through back-calculation of the FWD deflection data.

Johnston, Harnett Counties S&ME Project No. 623517048

Backcalculated subgrade modulus values were above 10,000 psi for all tested locations in both directions; a value of 10,000 psi is considered adequate for subgrade strength per NCDOT. In addition, backcalculated subgrade moduli values were used to calculate the in-situ CBR values using the empirical equation: $Mr = 2,555 * (CBR Value) ^ 0.64$, as recommended by AASHTO in NCHRP Project 1-37A and by the NCDOT Pavement Design Procedure (2017). The data is summarized below in Table 3.2.

Table 3.2

I-95 Tested Section (Approx. Stations)	Direction	Minimum Subgrade Modulus psi	Maximum Subgrade Modulus psi	Average Subgrade Modulus psi	Standard Deviation %	Average In-Situ CBR
Sta. 896+43 to Sta. 1405+82	NB	15,269	57,886	31,933	24.9	53.12
Sta. 1435+99 to Sta. 894+53	SB	15,299	63,653	32,187	27.0	54.01

3.3 Previous Projects Data

S&ME has recently conducted pavement design investigation projects for NCDOT for three interchanges included in the current I-5986B project limits. These projects were as follows: I-5877 (I-95 at SR 1811 and SR 1001), I-5878 (I-95 at US 421 and SR 1793), and I-5883 (I-95 at SR 1808 and SR 1709). As part of the investigation and reporting for these projects we obtained pavement core data along the I-95 travel lanes, outside and inside shoulders, as well as acceleration lanes. Pavement and Subgrade Inventory submittals for the above mentioned projects are available and information from them could be included in future submittals. Core information for the inside and outside travel lanes is presented in the table below:

Table 3.3

Test ID	Project	I-95 Approx. Station	Direction	Location	Offset (ft)	Asphalt Thickness (in.)	Base Thick- ness (in.)	Base Type	Core Condition
C-1	I-5877	845+76	NB	OSL	2.2	15.0	1	-	Good condition, separated at 8" depth
C-2	I-5877	897+77	NB	OSL	1.6	13.75	-	-	Top 3" debonded, separated at 8-9" depth
C-3	I-5877	801+80	SB	OSL	1.6	13.25	-	-	Good condition

Johnston, Harnett Counties S&ME Project No. 623517048

C-4	I-5877	872+79	SB	OSL	1.9	14.0	-	-	Some stripping at 6-8" depth
C-5	I-5878	1012+63	NB	ISL	3.0	11.5	-	-	Some stripping at 7" depth
C-6	I-5878	1026+88	NB	OSL	3.0	13.0	6.0	Drainage sand	Stripping at 8-9" depth
C-7	I-5878	950+80	SB	OSL	4.3	13.0	-	-	Top 3" debonded, stripping at 7-8" depth
C-8	I-5878	984+55	SB	ISL	2.2	14.25	-	-	Stripping at 7" depth
C-9	I-5883	1117+63	NB	OSL	3.2	13.0	6.0	Drainage sand	Good condition
C-10	I-5883	1223+63	NB	OSL	1.5	13.5	6.0	Drainage sand	Good condition, begin stripping at 5-6" depth
C-11	I-5883	1080+63	SB	OSL	2.6	13.0	6.0	Drainage sand	Moderate stripping at 5-7" depth
C-12	I-5883	1185+63	SB	OSL	3.2	13.0	6.0	Drainage sand	Moderate stripping at 4-7" depth

3.4 Existing Pavement Conditions

Existing pavement distress along the project were evaluated at the time of testing. In Johnston County, the pavement along the travel lanes exhibits minimal distress consisting of occasional low severity transverse cracking. The travel lanes and 3-6 feet of the outside shoulder pavement have been resurfaced with an open graded friction asphalt course (OGFAC). Outside shoulder pavement exhibited low to moderate severity transverse and occasional low severity longitudinal cracking. In Harnett County, no visual distresses were observed due to recent resurfacing along both the travel lanes and shoulder pavements.

3.5 Ground Penetrating Radar Survey

S&ME performed a supplemental exploration of the existing pavements that included a GPR survey. GPR survey was performed along the existing mainline travel lanes and outside shoulders. GPR is an electromagnetic method that detects interfaces between subsurface materials with differing dielectric constants. The transmitter radiates electromagnetic waves into the earth from an antenna moving across the ground surface. Electromagnetic waves are reflected back to the receiver by interfaces between materials with differing dielectric constants. The intensity

Johnston, Harnett Counties S&ME Project No. 623517048

of the reflected signal is a function of the contrast in the dielectric constant at the interface, the conductivity of the material that the wave is traveling through, and the frequency of the signal. Asphalt cores were also performed to complement the GPR survey and help calibrate the GPR data. Core results and the plots of the GPR data are attached to this letter for you review. The core and GRP data have been used to determine the in place pavement layer thicknesses along the project alignment.

The GPR survey conducted in the travel lanes suggested the presence of two distinctive pavement sections within the project limits, in both the northbound and the southbound directions; a full-depth asphalt section, built on subgrade (from approximate MM 71 to approximate MM 79.3), and a composite pavement section (asphalt on concrete), built on econocrete/ABC base (from approximate MM 79.3 to approximate MM 81). GPR results were confirmed by the core samples. An example of the GPR scan as well as the full survey GPR plot along the existing outside lanes can be found in Appendix II.

3.6 Falling Weight Deflectometer Testing

Falling Weight Deflectometer (FWD) testing was conducted in the outside wheel path of the outside travel lane in both the southbound and northbound directions of I-95 between MM 71 and MM 81. Load and temperature corrected FWD deflections were used to calculate a 15-year overlay design using the AASHTO 93 Interim Guide for Design of Pavement Structures and the NCDOT Pavement Design Procedure (2017). Deflection and overlay results can be seen in the table below:

Table 3.4

I-95 Tested Section (Approx. Station)	Direction	Minimum Deflection mils	Maximum Deflection mils	Average Deflection mils	Standard Deviation %	Required Overlay in
Sta. 1318+05 to Sta. 894+53 Composite pavement	SB	2.13	5.07	3.37	22.8	0.0"
Sta. 1435+99 to Sta. 1320+55 Full-depth asphalt	SB	4.03	9.51	6.10	17.0	0.0 - 1.5"
Sta. 896+43 to Sta. 1314+92 Composite pavement	NB	2.44	6.21	3.97	22.7	0.0"
Sta. 1317+42 to Sta. 1405+82 Full-depth asphalt	NB	3.17	8.94	5.72	18.4	0.0"

It is to be noted that deflection limit was set to satisfy a-15 year overlay design requirement, as target deflection limit was 8.31 mils. By this requirement, in the southbound direction FWD testing suggested that structural overlay is required at 7 out of the tested 208 locations, or 3.4% of the tested locations. In the northbound direction, deflection analysis showed that structural overlay is required at 2 of the tested 204 location, or 0.98%.

Johnston, Harnett Counties S&ME Project No. 623517048

3.7 I-5877 Additional Falling Weight Deflectometer Testing

Additional Falling Weight Deflectometer (FWD) testing was conducted within the I-5877 project limits in the outside wheel path of the outside travel lane in both the southbound and northbound directions, from approximate station 785+25 to approximate station 949+00 on December 19 and 20, 2018. Load and temperature corrected FWD deflections were used to calculate a 15-year overlay design using the AASHTO 93 Interim Guide for Design of Pavement Structures and the NCDOT Pavement Design Procedure (2017). Deflection and overlay results can be seen in the table below:

Table 3.5

I-95 Tested Section	Direction	Minimum Deflection mils	Maximum Deflection mils	Average Deflection mils	Standard Deviation %	Required Overlay in
Approx. Sta. 949+00 to Approx. Sta. 785+50	SB	4.23	9.61	5.58	15.8	0.0"
Approx. Sta. 785+25 Approx. Sta. 940+00	NB	3.78	8.43	5.51	17.9	0.0"

Similarly to the I-5986B section, the deflection limit was set to satisfy a-15 year overlay design requirement, and the target deflection limit was 8.31 mils. By this requirement, in the southbound direction FWD testing suggested that structural overlay is required at 1 out of the tested 57 locations, or 1.8% of the tested locations. In the northbound direction, deflection analysis showed that structural overlay is required at 1 of the tested 56 locations, or 1.8% of the tested locations.

3.8 Pavement Coring

Coring was conducted in the outside travel lane in both directions of I-95. Core data is presented below:

Table 3.6

Test ID	I-95 Approx. Station	Direction	Location	Offset (ft)	Asphalt Thickness (in.)	Concrete Thickness (in.)	Base Type	Core Description and Condition
C-11	1236+35	NB	OSL	2.1	13.5	-	-	Fair-good condition, separation at 6.5" depth 1.75" of surface, 4.5" intermediate courses, and 7.25" of base mixes
C-12	1070+06	NB	OSL	2.0	6.5	9.0	Econocrete	Fair condition, asphalt disintegrated from about 3" depth to the top of concrete

Johnston, Harnett Counties S&ME Project No. 623517048

				1.0" OGFAC, 1.75" of surface, about 2.5"
				intermediate courses, and
				9.0" of concrete

Test ID	I-95 Approx. Station	Direction	Location	Offset (ft)	Asphalt Thickness (in.)	Concrete Thickness (in.)	Base Type	Core Description and Condition
C-12-1	1070+06	NB	OSL	2.8	18.5	-	-	-
C-23	-	SB	OSL	4.5	6.5	9.0	Econocrete	-
C-24	1290+13	SB	OSL	2.2	14.5	-	-	Fair-good condition, stripping & separation at 7.0" depth 0.75" OGFAC, 1.5" of surface, 6.0" intermediate courses, and 5.75" of base mixes
C-25	1136+72	SB	OSL	3.0	12.5	-	-	Fair-good condition, stripping & separation at 4.25" depth 2.0" of surface, 6.0" intermediate courses, and 4.5" of base mixes
C-26	1391+76	SB	OSL	4.3	14.5	-	-	-

4.0 Pavement Design Recommendations

Provided project information and the data and analyses from our pavement evaluation were used for the below pavement recommendations for roadway widening, as well as rehabilitation of the existing pavement.

4.1 I-95 Widening Design

Based on the provided traffic information, our preliminary alternate designs and feedback from NCDOT, we have recommended a full-depth asphalt widening pavement section. Calculations were done in accordance with AASHTO 93 Interim Design of Pavement Structures and the NCDOT Pavement Design Procedure (2017).

Johnston, Harnett Counties S&ME Project No. 623517048

Table 4.1

Alignment	Open Graded Friction Course OGFAC	Surface Course In.	Intermediate Course In.	Base Course In.	ABC In.	Subgrade Stabilization Yes/No
-L- I-95 Outside Widening	* Type FC-1 Modified	3.0" S9.5D	4.0" I19.0C	11.0" B25.0C	-	No
-L- I-95 Inside Widening	* Type FC-1 Modified	3.0" S9.5D	4.0" I19.0C	11.0" B25.0C	-	No

^{*}Open graded friction asphalt course (OGFAC) could be applied based on roadway longitudinal profile and typical section. OGFAC thickness was not included in the calculation of the required structural pavement design.

4.2 Existing I-95 Pavement

Based on the existing pavement condition, FWD, coring and Kessler DCP data, the table below presents our recommendations for the existing I-95 travel lanes pavement. Both the outside and inside shoulder pavements will have to be removed and replaced with the full-depth pavement section recommended in Table 5.1 for the final alignment configuration due to insufficient pavement thickness. Existing Shoulder pavements will be evaluated further as part of the temporary pavements needed for the project construction staging, and report will be submitted separately.

Table 4.2

Alignment	Direction	Recommendations for Existing Travel Lanes
Johnston County Section Sta. 1425+12 to Sta. 1270+94	SB	Mill the existing OGFAC, place 1.5" S9.5D surface course
Harnett County Section 1270+94 to 894+53	I NK	Overlay the existing travel lanes pavement with 1.5" S9.5D, surface course
Johnston County Section Sta. 1270+94 to 1425+12	NB	Mill the existing OGFAC, place 1.5" S9.5D surface course
Harnett County Section 894+53 to 1270+94	I INIK	Overlay the existing travel lanes pavement with 1.5" S9.5D, surface course

The analyses and recommendations submitted herein are based, in part, upon the data provided to S&ME by NCDOT, and Michael Baker International, and information obtained from S&ME explorations. In the event that any changes in the design, design parameters, project data, and estimated traffic are planned, the conclusions and recommendations contained in this report will not be valid unless the changes are reviewed and conclusions modified or verified in writing.

Johnston, Harnett Counties S&ME Project No. 623517048

4.3 Y-Lines Pavement Design

Table 4.4 Y-Lines

Alignment	Surface Course In.	Intermediate Course In.	Base Course In.	ABC In.	Subgrade Stabilization Yes/No
-Y14- SR 1793 (West) (Spring Branch Rd.)	3.0" S9.5C	4.0" I19.0C	4.0" B25.0C	-	No
-Y14- SR 1793 (East) (Pope Rd.)	3.0" S9.5C	-	4.5" B25.0C	-	No
Ramps at -Y14- SR 1798	3.0" S9.5C	4.0" I19.0C	-	8.0"	No
-Y15- US 421 (West)	3.0" S9.5C	4.0" I19.0C	4.0" B25.0C	-	No
-Y15- US 421 (East)	3.0" S9.5C	4.0" I19.0C	4.0" B25.0C	-	No
Ramps at -Y15- US 421	3.0" S9.5C	4.0" I19.0C	-	8.0"	No
-Y16- SR 1808 (Jonesboro Rd.)	3.0" S9.5C	4.0" I19.0C	4.0" B25.0C	-	No
Ramps at -Y16- SR 1808	3.0" S9.5C	4.0" I19.0C	-	8.0"	No
-Y17- SR 1709 (Hodges Chapel Rd.)	3.0" S9.5C	4.0" I19.0C	4.0" B25.0C	-	No
Ramps at -Y17- SR 1709	3.0" S9.5C	4.0" I19.0C	-	10.0"	No
-Y18- NC 50/NC 242 (East Main St.)	3.0" S9.5C	4.0" I19.0C	4.0" B25.0C	-	No
Ramps at –Y18- NC 50/NC 242	3.0" S9.5C	4.0" I19.0C	-	8.0"	No
		I-5878			
-SR9A- New Alignment (Interstate Drive)	3.0" S9.5B	-	-	8.0"	No
-SR9- Elm Street Ext.	3″0 S9.5B	-	-	8.0"	No
-SR11- Stoney Run Drive	3.0" S9.5B	4.0" I19.0C	-	8.0"	No
-SR12- Old State Hwy 55 E	3.0" S9.5B	-	-	8.0"	No
-SR18- Jackson Road	3.0" S9.5B	-	-	8.0"	No
-Y25- Sampson Ave	3.0" S9.5B	4.0" I19.0C	4.0" B25.0C	-	No
-Y25A- E Broad Street	3.0" S9.5B	4.0" I19.0C	4.0" B25.0C	-	No

Johnston, Harnett Counties S&ME Project No. 623517048

				I	
DR1 & DR1A- New Alignment (Bud Hawkins Rd)	3.0" S9.5B	4.0" I19.0C	-	8.0"	No
NBCD & SBCD- Y 14 Ramps	3.0" S9.5C	4.0" I19.0C	-	8.0"	No
Y14RAA- New Roundabout on Spring Branch Rd	3.0" S9.5C	4.0" I19.0C	-	8.0″	No
Y14RAB- New Roundabout on Pope Rd	3.0" S9.5C	4.0" I19.0C	-	8.0"	No
DR10- New Location	3.0" S9.5B	-	4.0" B25.0C	-	No
Y24- Bud Hawkins Road	3.0" S9.5C	4.0" I19.0C	-	8.0"	No
		I-5883			
SR13- Jerry Carr Road	3.0" S9.5B	-	-	8.0"	No
SR14- Saddlebred Road/ Rooms to Go Way	3.0" S9.5B	2.5" I19.0C	-	10.0″	No
SR15- George Perry Lee Road	3.0" S9.5B	-	-	8.0"	No
SR16- Sadler Road	3.0" S9.5B	2.5" I19.0C	-	8.0"	No
SR17- Robin Hood Road	3.0" S9.5B	-	-	10.0″	No
Y26- New Alignment George Perry Lee Road)	3.0" S9.5B	-	-	8.0"	No
DR2- New Alignment Jerry Carr Rd)	3.0" S9.5B	-	-	8.0"	No
Y32- Core Rd (Cul-De- Sac)	3.0" S9.5B	-	4.0" B25.0C	-	No
DR3-	3.0" S9.5B	-	-	8.0"	No
DR4-	3.0" S9.5B	-	-	8.0"	No
		I-5986B			
SR19- SR 1834 Foundation Rd	3.0" S9.5B	-	4.0" B25.0C	-	No
Y18RAA- New Roundabout on NC50**	3.0" S9.5C	4.0" I19.0C	4.0" B25.0C	8.0"	No
Y27- SR1809 Webb Rd	3.0" S9.5B	-	-	10.0″	No
Y28- SR1100 Chicopee Rd	3.0" S9.5B	4.0" I19.0C	-	8.0"	No
Y28A- E Brocklyn St	3.0" S9.5B	-	-	8.0"	No
SR14- Saddlebred Road/ Rooms to Go Way SR15- George Perry Lee Road SR16- Sadler Road SR17- Robin Hood Road Y26- New Alignment George Perry Lee Road) DR2- New Alignment Jerry Carr Rd) Y32- Core Rd (Cul-De-Sac) DR3- DR4- SR19- SR 1834 Foundation Rd Y18RAA- New Roundabout on NC50** Y27- SR1809 Webb Rd Y28- SR1100 Chicopee Rd	3.0" S9.5B	- 2.5" I19.0C 4.0" I19.0C -	- - 4.0" B25.0C	10.0" 8.0" 8.0" 10.0" 8.0" 8.0" - 8.0" - 8.0" 10.0" 8.0"	No N

Johnston, Harnett Counties S&ME Project No. 623517048

-Y29- SR1204/SR1101 S Market St Cub Rd Connection	3.0″ S9.5B	-	4.0" B25.0C	-	No
-Y29A-SR1101 Cub Rd (New Service Rd)	3.0" S9.5B	-	4.0" B25.0C	-	No
-Y30-S Walton Dr (NC 242)	3.0" S9.5C	4.0" I19.0C	-	8.0"	No
-Y33-SR1219 (N Walton Av)	3.0" S9.5B	-	4.0" B25.0C	-	No
-Y19RPCA- I40 Ramp	3.0" S9.5C	3.5" I19.0C	5.0" B25.0C	8.0"	No
-Y19RPB- I40 Ramp	3.0" S9.5C	3.5" I19.0C	5.0" B25.0C	8.0"	No

The ABC base could be substituted with an asphalt base course, B25.0C as the thickness of the asphalt base should equal half the thickness of the ABC. Conversely, the where 4 or 5 inches of B25.0C is proposed in the table above, it could be substituted with ABC, as the ABC thickness should be twice the thickness of the black base.

If ABC base is constructed, and asphalt surface course is paved directly on top of the ABC, prime coat must be applied at rate as specified in the NCDOT Standard Specification for Road and Structures.

Overlay all existing pavements of the alignments in the above table with the full amount of the recommended surface course, 3.0" S9.5B. Where milling and resurfacing is required on Y34, Y35, and Y36, resurface with 3.0" S9.5C.

Table 4.5: Concrete Apron

Alignment	Concrete Thickness	Base Thickness	ABC Thickness
-Y14RAA- & -Y14RAB-	12" with a 4x4 W5.5xW5.5	-	8 inches
apron	wire mesh reinforcement*		
-Y18RAA- apron	12" with a 4x4 W5.5xW5.5	4.0" B25.0C	8 inches
	wire mesh reinforcement*		

^{*6}x6 W8.5xW8.5 wire mesh reinforcement can be used or heavier.

5.0 Limitations of Report

This report has been prepared in accordance with generally accepted geotechnical and pavement engineering practices for specific application to this project. The conclusions and recommendations contained in this report are based upon applicable standards of our practice in this geographic area at the time this report was prepared. No other warranty, expressed or implied, is made.

The analyses and recommendations submitted herein are based, in part, upon the data provided to S&ME by NCDOT, and Michael Baker International, and information obtained from S&ME explorations. In the event that any changes in the design, design parameters, project data, and estimated traffic are planned, the conclusions and

Johnston, Harnett Counties S&ME Project No. 623517048

recommendations contained in this report will not be valid unless the changes are reviewed and conclusions modified or verified in writing.

The Consultant should note that the existing pavement structure recommendations have some inherent risk due to variability in the existing pavements and base thickness, as well as seasonal pavement and subgrade conditions. S&ME cannot qualify or warrant the material properties, or the dimensions or existing conditions in their entirety. As such, the Consultant should assess such parameters and the construction contingency risk this poses to the project.

Regardless of the thoroughness of a geophysical study, there is always a possibility that actual conditions may not match the interpretations. GPR survey was conducted at two longitudinal scans, one in each travel; no additional transverse surveys were conducted. The results should be considered accurate only to the degree implied by the methods used and the method's limitations and data coverage. Accordingly, the possibility exists that not all features at a project site have been identified due to asphalt and/or concrete conditions or the occurrence of features outside the lateral limits and below the depth of penetration of the methods used.

We recommend that S&ME be provided the opportunity to review and comment upon the final design plans and specifications.

Johnston, Harnett Counties S&ME Project No. 623517048

Appendices

Johnston, Harnett Counties S&ME Project No. 623517048

Appendix I - Pavement Design Calculations

Project Information

Date: February 25, 2018
Site: I-5986B-I-95 Widening
Location: Harnett County, NC
Project No.: 6235-17-048
Engineer: VGM

-L- Line

Asphalt
Stone Subbase

Design Criteria

Design Onteria	
CBR Design Value	9
Fine Grained?	Yes
Resilient Modulus (M _r) (psi)=	10,426
Road Type	Freeway
Design Equivalent (18 kip) Single Axle Loads (ESALs)	66,150,017
20 Year ADT	73,693
30 Year ADT	83,281
Design Life (years)	30
Initial Serviceability	4.2
Terminal Serviceability	2.8
Design Serviceability	1.5
Reliability (%)	95
Standard Normal Deviate (ZR)	-1.645
Standard Deviation	0.45

Required Structural Number

6.40

commended Flexible Pavement Section			Option 1 - Full-Depth A	sphalt	Option 2 - Asphalt with	ABC	Option 3 - Asphalt with	CTABC	Option 4 - Full-Depth As Stab.	phalt w
	SN / inch	Drainage Coefficient	Thickness (inches)	SN	Thickness (inches)	SN	Thickness (inches)	SN	Thickness (inches)	SN
Asphalt Surface Course, S9.5D	0.44	-	3.00	1.32	3.00	1.32	3.00	1.32	3.00	1.32
Asphalt Intermediate Course, I19.0C	0.44	-	4.00	1.76	4.00	1.76	4.00	1.76	3.00	1.32
Asphalt Base Course, B25.0C	0.30	-	11.00	3.30	5.50	1.65	6.00	1.80	10.00	3.00
ABC Stone	0.14	1.0			10.00	1.40				
Cement Treated CTABC	0.23	1.0					8.00	1.84		
Lime Stabilized Subgrade	0.13	1.0				1.00				1.00
Cement Stabilized Subgrade	0.14	1.0								
CMRB	0.26	1.0								
·			Total Structural Number	6.38	Total Structural Number	7.13	Total Structural Number	6.72	Total Structural Number	6.64
SHTO Guide for Design of Pavement Structures, 1993		Thickness, inches								

	Total Structural Number	0.38	Total Structural Number	7.13	Total Structural Number	6.72	Total Structural Number	6.64
Thickness, inches								
Asphalt	18.00		12.50		13.00		16.00	
ABC	-		10.00		-		-	
CTABC			-		8.00		-	
CMRB	-		-		-		-	
Stabilization	-		-		-		-	

INPUT CELLS

ESALs Calculation:

	DATA	TRAFI	
2040	Projection Year:	2018	Initial Year:
74,600	Proj. Yr. ADT:	57,000	Initial Year ADT:
17	% TTST:	7	% DUALS:
1.2	Growth (%):		

DESIGN PARAMETERS

Construction Year:	2019	Des. Life (Years):	30
Constr. Year ADT:	57,701	30 YEAR ADT=	83,281
DIR %:	50	TERM. SI:	2.75
LANES/DIRECT:	3	LANE DIST:	0.8
Rural/Urban:	R	Freeway/Other:	F
DUAL FACT (flex).:	0.3	TTST FACT (flex):	1.15
DUAL FACT (rig).:	0.30	TTST FACT (rig):	1.6
Contr. Year ADT (Trucks)	13848		
		ADDITIONAL 18K:	0
DAILY 18K (flex):	6,037	TOTAL 18K (flex):	66,150,017
(rigid)	8,163	(rigid)	89446038

ADDITIONAL ESAL CALCULATIONS**

TTST		Duals	
Trucks Per Day	0	Trucks Per Day	0
Trucks Per Year	0	Trucks Per Year	0
Years	30	Years	30
Total TTST	0	Total Dual	0
ESALs	0	ESALs	0

ESAL (for Asphalt Pavement)

R (%)	95	-
z _R	-1.65	•
S ₀	0.45	•
Δ psi	1.45	•
M_R	10,426	psi
SN	6.40	-
W ₁₈	66,870,262	ESALS
log ₁₀ W ₁₈	7.83	
W ₁₈ (Needed)	66,150,017	ESALS

Design Serviceability Loss = p₀ - p_t

AASHTO Guide for Design of Pavement Structures, 1993.

Route	Initial Year AADT	Future Year AADT (2040)	Duals %	TTST %	Design Life (Years)	No. of Lanes	Directional Split (%)
L	57,000	74,600	7.0	17.0	30	3	50
L Shoulder	57,000	74,600	7.0	17.0	30	3	50
Y14-SR 1798 (West) (Spring Branch Rd)	4,100	7,200	4.0	1.0	20	1	50
Y14-SR 1798 (East) (Pope Rd)	3,600	5,300	4.0	1.0	20	1	50
Ramps at Y14-SR 1798	3,450	7,350	4.0	3.0	30	1	100
Y15-US 421 (West)	19,800	27,400	3.0	3.0	30	2	50
Y15-US 421 (East)	15,500	19,800	3.0	3.0	30	2	50
Ramps at Y15-US 421	4,100	6,250	4.0	3.0	30	1	100
Y16-SR 1808 (Jonesboro Rd)	6,900	9,300	6.0	17.0	20	1	50
Ramps at Y16-SR 1808	1,450	1,800	6.0	17.0	30	1	100
Y17-SR 1709 (Hodges Chapel Rd)	3,600	4,900	5.0	30.0	20	1	50
Ramps at Y17-SR 1709	1,350	1,850	5.0	30.0	30	1	100
Y18-NC 50/NC 242 (East Main St)	13,600	20,400	3.0	3.0	30	1	50
Ramps at Y18-NC 50/NC 242	3,850	6,300	3.0	4.0	30	1	100
	l	l					

	SURFACE		INTERME	EDIATE	BASE						
	DEPTH	TYPE	DEPTH	TYPE	DEPTH	TYPE	ABC	CTABC	STAB ¹	SN Prov	SN Req
L Shoulder	3	S9.5D	4	I19.0C	12	B25.0C	0.0		No	6.68	5.11
Y14-SR 1798 (West) (Spring Branch Rd)	3	S9.5C	4	I19.0C	4	B25.0C	0.0		No	4.28	2.59
Y14-SR 1798 (East) (Pope Rd)	3	S9.5C	0	I19.0C	4.5	B25.0C	0.0		No	2.67	2.49
Ramps at Y14-SR 1798	3	S9.5C	4	I19.0C	0	B25.0C	8.0		No	4.20	3.75
Y15-US 421 (West)	3	S9.5C	4	I19.0C	4	B25.0C	0.0		No	4.28	4.09
Y15-US 421 (East)	3	S9.5C	4	I19.0C	4	B25.0C	0.0		No	4.28	3.89
Ramps at Y15-US 421	3	S9.5C	4	I19.0C	0	B25.0C	8.0		No	4.20	3.68
Y16-SR 1808 (Jonesboro Rd)	3	S9.5C	4	I19.0C	4	B25.0C	0.0		No	4.28	3.85
Ramps at Y16-SR 1808	3	S9.5C	4	I19.0C	0	B25.0C	8.0		No	4.20	3.87
Y17-SR 1709 (Hodges Chapel Rd)	3	S9.5C	4	I19.0C	4	B25.0C	0.0		No	4.28	3.91
Ramps at Y17-SR 1709	3	S9.5C	4	I19.0C	0	B25.0C	10.0		No	4.48	4.22
Y18-NC 50/NC 242 (East Main St)	3	S9.5C	4	I19.0C	4	B25.0C	0.0		No	4.28	3.95
Ramps at Y18-NC 50/NC 242	3	S9.5C	4	I19.0C	0	B25.0C	8.0		No	4.20	3.77
1											

	orma	

Date: November 15, 2018 Site: Location: Harnett County, NC Project No.: 6235-17-048 Engineer: vgm

INPUT CELLS

Asphalt ABC

Design Criteria

200.9.1 0.110.10
CBR Design Value
Fine Grained?
Resilient Modulus (M _r) (psi)=
Road Type
Design Equivalent (18 kip) Single Axle Loads (ESALs)
20 Year ADT
Design Life (years)
Initial Serviceability
Terminal Serviceability
Design Serviceability
Reliability (%)
Standard Normal Deviate (ZR)
Standard Deviation

7
No
10,628
Secondary
65,404
689
20
4.2
2.5
1.7
85
-1.036
0.45
<u> </u>

1.86

CTABC

7	
No	
10,628	
Secondary	
234,430	
884	
20	
4.2	
2.5	
1.7	
85	
-1.036	
0.45	

2.34

7	
No	
10,628	
Secondary	
192,654	
2,280	
20	
4.2	
2.5	
1.7	
85	
-1.036	
0.45	

2.26

7
No
10,628
Secondary
147,044
2,162
20
4.2
2.5
1.7
85
-1.036
0.45

2.15

Required Structural Number

Recommended Flexible	Pavement	Section

Recommended Flexible Pavement Section			SR9A (New, Interstate	Dr.)	SR11 (Stoney Run D	Or)	SR12 (Old State Hwy	55 E)	SR18 (Jackson Rd/Samp	son Ave)
	SN / inch	Drainage Coefficient	Thickness (inches)	SN	Thickness (inches)	SN	Thickness (inches)	SN	Thickness (inches)	SN
Asphalt Surface Course, S9.5B	0.44	-	3.00	1.32	3.00	1.32	3.00	1.32	3.00	1.32
Asphalt Intermediate Course, I19.0C	0.44	-	-		-		-		4.00	1.76
Asphalt Base Course, B25.0C	0.30	-	-		-		-			
ABC Stone	0.14	1.0	8.00	1.12	8.00	1.12	8.00	1.12	8.00	1.12
Cement Treated CTABC	0.23	1.0								
Lime Stabilized Subgrade	0.13	1.0								
Cement Stabilized Subgrade	0.14	1.0								
			Total Structural Number	2.44	Total Structural Number	2.44	Total Structural Number	2.44	Total Structural Number	4.20
AASHTO Guide for Design of Pavement Structures, 1993	3.	Thickness, inches Asphalt ABC	3.00 8.00	*	3.00 8.00	*	3.00 8.00	*	7.00 8.00	*

Stabilization * Use prime coat at rate as required in the NCDOT Standard Specifications for Roads and Structures, 2018.

T				
Pro	iect	Int	orn	natior

Date: November 15, 2018
Site: L-5878
Location: Harnett County, NC
Project No.: 6235-17-048
Engineer: vgm

INPUT CELLS

•••••

Asphalt ABC

Design Criteria

Design Criteria
CBR Design Value
Fine Grained?
Resilient Modulus (M _r) (psi)=
Road Type
Design Equivalent (18 kip) Single Axle Loads (ESALs)
20 Year ADT
Design Life (years)
Initial Serviceability
Terminal Serviceability
Design Serviceability
Reliability (%)
Standard Normal Deviate (ZR)
Standard Deviation

Ren	uired	Structural	Number

7
No
10,628
Secondary
252,333
890
20
4.2
2.5
1.7
85
-1.036
0.45

2.37	

7
No
10,628
Secondary
31,473
489
20
4.2
2.5
1.7
85
-1.036
0.45
•

1.63	

7
No
10,628
Secondary
683,695
7,102
20
4.2
2.5
1.7
85
-1.036
0.45

2.85

Recommended Flexible Pavement Section			Y25A (E Broad St) DR1 & DR1A (New, Bud Hawkins Rd) NBCD & SBCD (Y-14 n					amps)
	SN / inch	Drainage Coefficient	Thickness (inches)	SN	Thickness (inches)	SN	Thickness (inches)	SN
Asphalt Surface Course, S9.5B	0.44	-	3.00	1.32	3.00	1.32	3.00	1.32
Asphalt Intermediate Course, I19.0C	0.44	-	4.00	1.76	4.00	1.76	4.00	1.76
Asphalt Base Course, B25.0C	0.30	-	-		-		4.00	1.20
ABC Stone	0.14	1.0	0.00	0.00	8.00	1.12	0.00	0.00
Cement Treated CTABC	0.23	1.0						
Lime Stabilized Subgrade	0.13	1.0						
Cement Stabilized Subgrade	0.14	1.0						
			Total Structural Number	3.08	Total Structural Number	4.20	Total Structural Number	4.28

AASHTO Guide for Design of Pavement Structures, 1993.

	Total Structural Number	3.08	Total Structural Number	4.20	Total Structural Number	4.28
Thickness, inches						
Asphalt	7.00		7.00		11.00	
ABC	-	*	8.00	*	-	*
CTABC	-		-		-	
Stabilization	-		-		-	

^{*} Use prime coat at rate as required in the NCDOT Standard Specifications for Roads and Structures, 2018.

ESALs Calculation:

	TC DATA	TRAF	
2040	Projection Year:	2018	Initial Year:
83,400	Proj. Yr. ADT:	59,800	Initial Year ADT:
17	% TTST:	7	% DUALS:
1.5	Growth (%):		

DESIGN PARAMETERS

Construction Year:	2019	Des. Life (Years):	30
Constr. Year ADT:	60,711	30 YEAR ADT=	95,558
DIR %:	50	TERM. SI:	3
LANES/DIRECT:	4	LANE DIST:	0.8
Rural/Urban:	R	Freeway/Other:	F
DUAL FACT (flex).:	0.3	TTST FACT (flex):	1.15
DUAL FACT (rig).:	0.30	TTST FACT (rig):	1.6
Contr. Year ADT (Trucks)	14571		
		ADDITIONAL 18K:	0
DAILY 18K (flex):	6,653	TOTAL 18K (flex):	72,897,533
(rigid)	0	(rigid)	

ADDITIONAL ESAL CALCULATIONS**

TTST		Duals	
Trucks Per Day	0	Trucks Per Day	0
Trucks Per Year	0	Trucks Per Year	0
Years	30	Years	30
Total TTST	0	Total Dual	0
ESALs	0	ESALs	0

ESAL (for Asphalt Pavement)

95	-
-1.65	•
0.45	•
1.2	
10,628	psi
6.85	•
75,513,685	ESALS
7.88	
72,897,533	ESALS
	-1.65 0.45 1.2 10,628 6.85 75,513,685 7.88

Design Serviceability Loss = p_o - p_t

AASHTO Guide for Design of Pavement Structures, 1993.

Route	Initial Year AADT	Future Year AADT (2040)	Duals %	TTST %	Design Life (Years)	No. of Lanes	Directional Split (%)
SR9A (New, Interstate Dr.)	500	700	8.0	1.0	20	2	50
SR11 (Stoney Run Dr)	600	900	10.0	7.0	20	2	50
SR12 (Old State Hwy 55 E)	1,900	2,300	3.0	2.0	20	2	50
SR18 (Jackson Rd/Sampson Ave)	1,500	2,200	5.0	1.0	20	2	50
Y25A (E Broad St)	700	900	10.0	7.0	20	2	50
DR1 & DR1A (New, Bud Hawkins Rd)	300	500	5.0	1.0	20	2	50
NBCD & SBCD (Y-14 ramps)	3,450	7,350	4.0	3.0	20	2	50
Y14RAA New RAB on Spring Branch Rd	4,100	7,200	4.0	1.0	20	2	100
Y14RAB New RAB on Pope Road	3,600	5,300	4.0	1.0	20	2	100
DR10 New Location	500	800	10.0	3.0	20	2	50
Y25 Sampson Ave	2,400	3,700	2.0	1.0	20	2	50
SR9	1,400	1,900	3.0	1.0	20	2	50
Y24 Bud Hawkins Road	550	900	8.0	13.0	20	2	50

123 Sampson Ave	2,400	3,700	2.0	1.0	20	2	30							
SR9	1,400	1,900	3.0	1.0	20	2	50	J						
Y24 Bud Hawkins Road	550	900	8.0	13.0	20	2	50							
	SURFACE		INTERM	EDIATE	BASE			Var.			SURF.	LOAD		
	DEPTH	TYPE	DEPTH	TYPE	DEPTH	TYPE	ABC	ABC:	CTABC	STAB1	TYPE ²	LEVEL ³	SN Prov	SN Req
SR9A (New, Interstate Dr.)	3	S9.5B	0	I19.0C	0	B25.0C	8.0			No			2.44	
SR11 (Stoney Run Dr)	3	S9.5B	4	I19.0C	0	B25.0C	8.0			No			4.20	2.34
SR12 (Old State Hwy 55 E)	3	S9.5B	0	I19.0C	0	B25.0C	8.0			No			2.44	2.26
SR18 (Jackson Rd/Sampson Ave)	3	S9.5B	4	I19.0C	0	B25.0C	8.0			No			4.20	2.15
Y25A (E Broad St)	3	S9.5B	4	I19.0C	4	B25.0C	0.0			No			4.28	2.37
DR1 & DR1A (New, Bud Hawkins Rd)	3	S9.5B	4	I19.0C	0	B25.0C	8.0			No			4.20	1.63
NBCD & SBCD (Y-14 ramps)	3	S9.5C	4	I19.0C	0	B25.0C	0.0			No			3.08	2.85
Y14RAA New RAB on Spring Branch Rd	3	S9.5C	4	I19.0C	0	B25.0C	8.0			No			4.20	2.92
Y14RAB New RAB on Pope Road	3	S9.5C	4	I19.0C	0	B25.0C	8.0			No			4.20	2.80
DR10 New Location	3	S9.5B	0	I19.0C	4	B25.0C	0.0			No			2.52	2.08
Y25 Sampson Ave	3	S9.5B	4	I19.0C	4	B25.0C	0.0			No			4.28	2.17
SR9	3	S9.5B	0	I19.0C	0	B25.0C	8.0			No			2.44	2.01
		S9.5B		I19.0C		B25.0C	10.0			No			2.72	2.51

Pro			

Date: November 15, 2018 Site: Location: Harnett County, NC Project No.: 6235-17-048 Engineer: vgm

INPUT CELLS

Asphalt ABC

Design Criteria

CBR Design Value
Fine Grained?
Resilient Modulus (M _r) (psi)=
Road Type
Design Equivalent (18 kip) Single Axle Loads (ESALs)
20 Year ADT
Design Life (years)
Initial Serviceability
Terminal Serviceability
Design Serviceability
Reliability (%)
Standard Normal Deviate (ZR)
Standard Deviation

No 10,628 Secondary 18,668 194 20 4.2 2.5 1.7 -1.036 0.45

1.48

CTABC

7
No
10,628
Secondary
382,143
2,380
20
4.2
2.5
1.7
85
-1.036
0.45

2.56

7
No
10,628
Secondary
303,323
890
20
4.2
2.5
1.7
85
-1.036
0.45

2.45

7
No
10,628
Secondary
790,886
2,580
20
4.2
2.5
1.7
85
-1.036
0.45

2.93

Required Structural Number

Recommended	Elevible	Davomont	Contina

Recommended Flexible Pavement Section			SR 13 (Jerry Carr Rd)			SR 14 (Saddlebred Rd/ Rd Go Way)	ooms to	SR 15 (George Perry Le	e Rd)	SR 16 (Sadler Rd)	
		SN / inch	Drainage Coefficient	Thickness (inches)	SN	Thickness (inches)	SN	Thickness (inches)	SN	Thickness (inches)	SN
	Asphalt Surface Course, S9.5B	0.44	-	3.00	1.32	3.00	1.32	3.00	1.32	3.00	1.32
	Asphalt Intermediate Course, I19.0C	0.44	-			-		-		2.50	1.10
	Asphalt Base Course, B25.0C	0.30	-			-		-		0.00	0.00
	ABC Stone	0.14	1.0	8.00	1.12	10.00	1.40	8.00	1.12	8.00	1.12
	Cement Treated CTABC	0.23	1.0								
	Lime Stabilized Subgrade	0.13	1.0								
	Cement Stabilized Subgrade	0.14	1.0								
				Total Structural Number	2.44	Total Structural Number	2.72	Total Structural Number	2.44	Total Structural Number	3.54
AASHTO (Guide for Design of Pavement Structures, 1993.		Thickness, inches Asphalt		*	3.00 10.00	*	3.00 8.00	*	5.50 8.00	*

Stabilization * Use prime coat at rate as required in the NCDOT Standard Specifications for Roads and Structures, 2018.

Project Information

Date: November 15, 2018
Site: I-5883
Location: Harnett County, NC
Project No.: 6235-17-048
Engineer: vgm

INPUT CELLS

Asphalt ABC

Design Criteria

CBR Design Value
Fine Grained?
Resilient Modulus (M_r) (psi)=
Road Type
Design Equivalent (18 kip) Single Axle Loads (ESALs)
20 Year ADT
Design Life (years)
Initial Serviceability
Terminal Serviceability
Design Serviceability
Reliability (%)
Standard Normal Deviate (ZR)
Standard Deviation

10,628
Secondary
335,810
695
20
4.2
2.5
1.7
85
-1.036

2.50

3.00

10.00

Asphalt

CTABC Stabilization

ABC

No

No 10,628 Secondary 303,323 890 20 4.2 2.5 1.7 85 -1.036 0.45

3.00

8.00

7
No
10,628
Secondary
382,143
2,380
20
4,2
2,5
1,7
85
-1,036
0,45

3.00

10.00

7
No
10,628
Secondary
18,668
194
20
4.2
2.5
1.7
85
-1.036
0.45

1.48

3.00

8.00

Required Structural Number

Recommended Flexible Pavement Section

ABC Stone Cement Treated CTABC

SN / inch

0.44

0.44

0.30

0.23

0.13

0.14

	SR 17 (Robin Hood Rd)		Y26 (New, George Perry	Lee Rd)	Y32 (New, Saddlebred	d Rd)	DR2 (New, Jerry Carr)		
Drainage Coefficient	Thickness (inches)	SN	Thickness (inches)	SN	Thickness (inches)	SN	Thickness (inches)	SN	
-	3.00	1.32	3.00	1.32	3.00	1.32	3.00	1.32	
-	-		-		-		-		
-	-		-		0.00	0.00	0.00	0.00	
1.0	10.00	1.40	8.00	1.12	10.00	1.40	8.00	1.12	
1.0									
1.0									
1.0									
	Total Structural Number	2.72	Total Structural Number	2.44	Total Structural Number	2.72	Total Structural Number	2.44	
Thickness, inches									

AASHTO Guide for Design of Pavement Structures, 1993.

Lime Stabilized Subgrade

Cement Stabilized Subgrade

Asphalt Surface Course, S9.5B

Asphalt Base Course, B25.0C

Asphalt Intermediate Course, I19.0C

^{*} Use prime coat at rate as required in the NCDOT Standard Specifications for Roads and Structures, 2018.

ESALs Calculation:

	TC DATA	TRAF	
2040	Projection Year:	2018	Initial Year:
83,400	Proj. Yr. ADT:	59,800	Initial Year ADT:
17	% TTST:	7	% DUALS:
1.5	Growth (%):		

DESIGN PARAMETERS

		**	
Construction Year:	2019	Des. Life (Years):	30
Constr. Year ADT:	60,711	30 YEAR ADT=	95,558
DIR %:	50	TERM. SI:	3
LANES/DIRECT:	4	LANE DIST:	0.8
Rural/Urban:	R	Freeway/Other:	F
DUAL FACT (flex).:	0.3	TTST FACT (flex):	1.15
DUAL FACT (rig).:	0.30	TTST FACT (rig):	1.6
Contr. Year ADT (Trucks)	14571		
		ADDITIONAL 18K:	0
DAILY 18K (flex):	6,653	TOTAL 18K (flex):	72,897,533
(rigid)	0	(rigid)	

ADDITIONAL ESAL CALCULATIONS**

TTST	Duals				
Trucks Per Day	0	Trucks Per Day	0		
Trucks Per Year	0	Trucks Per Year	0		
Years	30	Years	30		
Total TTST	0	Total Dual	0		
ESALs	0	ESALs	0		

ESAL (for Asphalt Pavement)

95	-
-1.65	•
0.45	•
1.2	
10,628	psi
6.85	
75,513,685	ESALS
7.88	
72,897,533	ESALS
	-1.65 0.45 1.2 10,628 6.85 75,513,685 7.88

Design Serviceability Loss = p_o - p_t

AASHTO Guide for Design of Pavement Structures, 1993.

Route	Initial Year AADT	Future Year AADT (2040)	Duals %	TTST %	Design Life (Years)	No. of Lanes	Directional Split (%)
SR 13 (Jerry Carr Rd)	100	200	10.0	1.0	20	2	50
SR 14 (Saddlebred Rd/ Rooms to Go Way)	2,000	2,400	5.0	4.0	20	2	50
SR 15 (George Perry Lee Rd)	700	900	7.0	10.0	20	2	50
SR 16 (Sadler Rd)	2,200	2,600	5.0	9.0	20	2	50
SR 17 (Robin Hood Rd)	600	700	5.0	15.0	20	2	50
Y26 (New, George Perry Lee Rd)	700	900	7.0	10.0	20	2	50
DR2 (New, Jerry Carr Rd)	100	200	10.0	1.0	20	2	50
Y32 Core Rd (Cul de Sac)	100	200	10.0	1.0	20	2	50

	SURFACE		INTERME	EDIATE	BASE			Var.			SURF.	LOAD		
	DEPTH	TYPE	DEPTH	TYPE	DEPTH	TYPE	ABC	ABC:	CTABC	STAB ¹	TYPE ²	LEVEL ³	SN Prov	SN Req
SR 13 (Jerry Carr Rd)	3	S9.5B	0	I19.0C	0	B25.0C	8.0			No			2.44	1.48
SR 14 (Saddlebred Rd/ Rooms to Go Way)	3	S9.5B	2.5	I19.0C	0	B25.0C	10.0			No			3.82	2.56
SR 15 (George Perry Lee Rd)	3	S9.5B	0	I19.0C	0	B25.0C	8.0			No			2.44	2.45
SR 16 (Sadler Rd)	3	S9.5B	2.5	I19.0C	0	B25.0C	8.0			No			3.54	2.93
SR 17 (Robin Hood Rd)	3	S9.5B	0	I19.0C	0	B25.0C	10.0			No			2.72	2.50
Y26 (New, George Perry Lee Rd)	3	S9.5B	0	I19.0C	0	B25.0C	8.0			No			2.44	2.45
DR2 (New, Jerry Carr Rd)	3	S9.5B	0	I19.0C	0	B25.0C	8.0			No			2.44	1.48
Y32 Core Rd (Cul de Sac)	3	S9.5B	0	I19.0C	4	B25.0C	0.0			No			2.52	1.48

Date: September 9, 2019 Site: I-5986B-I-95 Widening Location: Harnett and Johnston County, NC Project No.: 6235-17-048 Engineer: vgm

······

Asphalt <u>ABC</u>

Design Criteria CBR Design Value Fine Grained? Resilient Modulus (Mr) (psi)= Road Type Design Equivalent (18 kip) Single Axle Loads (ESALs) 20 Year ADT Design Life (years) Initial Serviceability Terminal Serviceability Design Serviceability Reliability (%) Standard Normal Deviate (ZR) Standard Deviation

Required Structural Number

9 Yes 10,426 Secondary 862,677 7,018 20 4.2 2.5 1.7 85 -1.036 0.45

3.00

Yes 10,426 Secondary 689,577 5,208 20 4.2 2.5 1.7 85 -1.036 0.45 2.87

INPUT CELLS

Yes 10,426 Secondary 136,168 0 783 4.2 2.5 1.7 85 -1.036 0.45 2.14

9 Yes 10,426 Secondary 20,743 0 194 4.2 2.5 1.7 85 -1.036 0.45

1.52

Recommended Flexible Pavement Section			Y14RAA-New Roundabout on Y14RAB-New Rounda Spring Branch Rd Pope Rd		Y14RAB-New Roundabo Pope Rd	bout on DR10-New Lo		n	Y32-Core Rd (Cul De Sac)		
		SN / inch	Drainage Coefficient	Thickness (inches)	SN	Thickness (inches)	SN	Thickness (inches)	SN	Thickness (inches)	SN
	Asphalt Surface Course, S9.5B	0.44	-	3.00	1.32	3.00	1.32	3.00	1.32	3.00	1.32
	Asphalt Intermediate Course, I19.0C	0.44	-	4.00	1.76	4.00	1.76	0.00	0.00	0.00	0.00
	Asphalt Base Course, B25.0C	0.30	-	0.00	0.00	0.00	0.00	4.00	1.20	4.00	1.20
	ABC Stone	0.14	1.0	8.00	1.12	8.00	1.12	0.00	0.00	0.00	0.00
	Cement Treated CTABC	0.23	1.0								
	Lime Stabilized Subgrade	0.13	1.0								
	Cement Stabilized Subgrade	0.14	1.0								
				Total Structural Number	4.20	Total Structural Number	4.20	Total Structural Number	2.52	Total Structural Number	2.52

_		Total of dotal al Nambel	4.20	Total of dotal al Number	4.20	Total of dotal al Namber	1.01	Total Ott dotal al Number	2.02
	Thickness, inches								
	Asphalt	7.00		7.00		7.00		7.00	
	ABC	8.00	1.12	8.00		-		-	
	CTABC	-		-		-		-	
	Stabilization	-		-		-		-	

Date: September 9, 2019 Site: I-5986B-I-95 Widening Location: Harnett and Johnston County, NC Project No.: 6235-17-048 Engineer: vgm

......

<u>Asphalt</u> **ABC**

Design Criteria

CBR Design Value
Fine Grained?
Resilient Modulus (M _r) (psi)=
Road Type
Design Equivalent (18 kip) Single Axle Loads (ESALs)
20 Year ADT
Design Life (years)
Initial Serviceability
Terminal Serviceability
Design Serviceability
Reliability (%)
Standard Normal Deviate (ZR)
Standard Deviation

Required Structural Number

9
Yes
10,426
Secondary
8,140
194
20
4.2
2.5
1.7
85
-1.036
0.45

9
Yes
10,426
Primary
4,368,148
15,128
30
4.2
2.5
1.7
90
-1.282
0.45
4.04

INPUT CELLS

4.64

9
Yes
10,426
Freeway
7,573,184
19,448
30
4.2
2.5
1.7
95
-1.645
0.45

8,992,430	
`	
30	
4.2	
3.0	
1.2	
95	
-1.645	
0.45	

9 Yes 10,426 Freeway

5.53

Recommended	Flexible	Pavement	Section

Recommended Flexible Pavement Section		SR19-SR1834 (Foundation Rd)		Y18RAA-New Roundabo	out on	Y19RPB-I40 Ramp	Y19RPB-I40 Ramp		пр		
		SN / inch	Drainage Coefficient	Thickness (inches)	SN	Thickness (inches)	SN	Thickness (inches)	SN	Thickness (inches)	SN
	Asphalt Surface Course, S9.5B	0.44	-	3.00	1.32	3.00	1.32	3.00	1.32	3.00	1.32
	Asphalt Intermediate Course, I19.0C	0.44	-	0.00	0.00	4.00	1.76	3.50	1.54	3.50	1.54
	Asphalt Base Course, B25.0C	0.30	-	4.00	1.20	4.00	1.20	5.00	1.50	5.00	1.50
	ABC Stone	0.14	1.0	0.00	0.00	8.00	1.12	8.00	1.12	8.00	1.12
	Cement Treated CTABC	0.23	1.0								
	Lime Stabilized Subgrade	0.13	1.0								
	Cement Stabilized Subgrade	0.14	1.0								
				Total Structural Number	2.52	Total Structural Number	5.40	Total Structural Number	5.48	Total Structural Number	5.48

	Total Structural Number	2.52	Total Structural Number	5.40	Total Structural Number	5.48	Total Structural Number	5.48
Thickness, inches								
Asphalt	7.00		11.00		11.50		11.50	
ABC	-	-	8.00		8.00		8.00	
CTABC	-		-		-		-	
Stabilization	-		-		-		-	

Date: September 9, 2019 Site: I-5986B-I-95 Widening Location: Harnett and Johnston County, NC Project No.: 6235-17-048 Engineer: vgm

......

Asphalt

<u>ABC</u>

Design Criteria

CBR Design Value
Fine Grained?
Resilient Modulus (M _r) (psi)=
Road Type
Design Equivalent (18 kip) Single Axle Loads (ESALs)
20 Year ADT
Design Life (years)
Initial Serviceability
Terminal Serviceability
Design Serviceability
Reliability (%)
Standard Normal Deviate (ZR)
Standard Deviation

Required Structural Number

9
Yes
10,426
Secondary
373,122
695
20
4.2
2.5
1.7
85
-1.036
0.45

2.57

9
Yes
10,426
Secondary
291,636
2,463
20
4.2
2.5
1.7
85
-1.036
0.45
2.45

INPUT CELLS

1.7 85 -1.036 0.45

Yes

10,426

Secondary

24,743

295

20

4.2

2.5

9 Yes 10,426 Secondary 164,208 984 20 4.2 2.5 1.7 85 -1.036 0.45

2.21

1.57

Recommend	ed Flexible Pavement Section			Y27-SR1809 (Webb	Y28-SR1100 (Chicopee	Rd)	Y28A-E Brocklyn S	St	Y29-SR1204/SR1101 (S Maket St/ Cub Rd Connection)		
		SN / inch	Drainage Coefficient	Thickness (inches)	SN	Thickness (inches)	SN	Thickness (inches)	SN	Thickness (inches)	SN
	Asphalt Surface Course, S9.5B	0.44	-	3.00	1.32	3.00	1.32	3.00	1.32	3.00	1.32
	Asphalt Intermediate Course, I19.0C	0.44	-	0.00	0.00	4.00	1.76	0.00	0.00	0.00	0.00
	Asphalt Base Course, B25.0C	0.30	-	0.00	0.00	0.00	0.00	0.00	0.00	4.00	1.20
	ABC Stone	0.14	1.0	10.00	1.40	8.00	1.12	8.00	1.12	0.00	0.00
	Cement Treated CTABC	0.23	1.0								
	Lime Stabilized Subgrade	0.13	1.0								
	Cement Stabilized Subgrade	0.14	1.0								
				Total Structural Number	2.72	Total Structural Number	4.20	Total Structural Number	2.44	Total Structural Number	2.52

		Total of dotal al Nambel	2.72	Total Oli uotal ai Nambel	7.20	Total of dotal al Hamber	1	Total of actural Humber	i
ſ	Thickness, inches								
ı	Asphalt	3.00		7.00		3.00		7.00	
ı	ABC	10.00	1.4	8.00		8.00		-	
ı	CTABC	-		-		-		-	
ı	Stabilization	-		-		-		-	

Date: September 9, 2019 Site: I-5986B-I-95 Widening Location: Harnett and Johnston County, NC Project No.: 6235-17-048 Engineer: vgm

Asphalt <u>ABC</u>

Design Criteria

CBR Design Value
Fine Grained?
Resilient Modulus (M _r) (psi)=
Road Type
Design Equivalent (18 kip) Single Axle Loads (ESALs)
20 Year ADT
Design Life (years)
Initial Serviceability
Terminal Serviceability
Design Serviceability
Reliability (%)
Standard Normal Deviate (ZR)
Standard Deviation

Yes 10,426 Secondary 8,140 194 20 4.2 2.5 1.7 85 -1.036 0.45

1.27

Y29A-SR1101 Cub Rd (New Service

Yes 10,426 Primary 1,392,532 7,356 4.2 2.5 1.7 90 -1.282 0.45 3.80

INPUT CELLS

Yes 10,426 Secondary 205,223 945 20 4.2 2.5 1.7 85 -1.036 0.45

2.30

Required Structural Number

Recommended Flexible Pavement Section

Recommended Flexible Pavement Section				Y29A-SR1101 Cub Rd (Nev Rd)	v Service	Y30-S Walton Dr (NC	242)	Y33-SR1219 (N Walton Av)		
		SN / inch	Drainage Coefficient	Thickness (inches)	SN	Thickness (inches)	SN	Thickness (inches)	SN	
	Asphalt Surface Course, S9.5B	0.44	-	3.00	1.32	3.00	1.32	3.00	1.32	
	Asphalt Intermediate Course, I19.0C	0.44	-	0.00	0.00	4.00	1.76	0.00	0.00	
	Asphalt Base Course, B25.0C	0.30	-	4.00	1.20	0.00	0.00	4.00	1.20	
	ABC Stone	0.14	1.0	0.00	0.00	8.00	1.12	0.00	0.00	
	Cement Treated CTABC	0.23	1.0							
	Lime Stabilized Subgrade	0.13	1.0							
	Cement Stabilized Subgrade	0.14	1.0							
				Total Structural Number	2.52	Total Structural Number	4.20	Total Structural Number	2.52	

	Total of dotal al Nambel	2.02	Total of actural Number	7.20	Total Oil dotal al Number	2.02
Thickness, inches						
Asphalt	7.00		7.00		7.00	
ABC	-	-	8.00		-	
CTABC	-		-		-	
Stabilization	-		-		-	

ESALs Calculation:

	TRAF	FIC DATA	
Initial Year:	2018	Projection Year:	2040
Initial Year ADT:	64,100	Proj. Yr. ADT:	92,900
% DUALS:	5	% TTST:	13
		Growth (%):	1.7

DESIGN PARAMETERS

Construction Year:	2019	Des. Life (Years):	30
Constr. Year ADT:	65,190	30 YEAR ADT=	108,129
DIR %:	50	TERM. SI:	3
LANES/DIRECT:	3	LANE DIST:	0.8
Rural/Urban:	R	Freeway/Other:	F
DUAL FACT (flex).:	0.3	TTST FACT (flex):	1.15
DUAL FACT (rig).:	0.30	TTST FACT (rig):	1.6
Contr. Year ADT (Trucks)	11734		
		ADDITIONAL 18K:	0
DAILY 18K (flex):	5,584	TOTAL 18K (flex):	61,182,129
(rigid)	7,561	(rigid)	82846596

ADDITIONAL ESAL CALCULATIONS**

TTST	TTST							
Trucks Per Day	0	Trucks Per Day	0					
Trucks Per Year	0	Trucks Per Year	0					
Years	30	Years	30					
Total TTST	0	Total Dual	0					
ESALs	0	ESALs	0					

ESAL (for Asphalt Pavement)

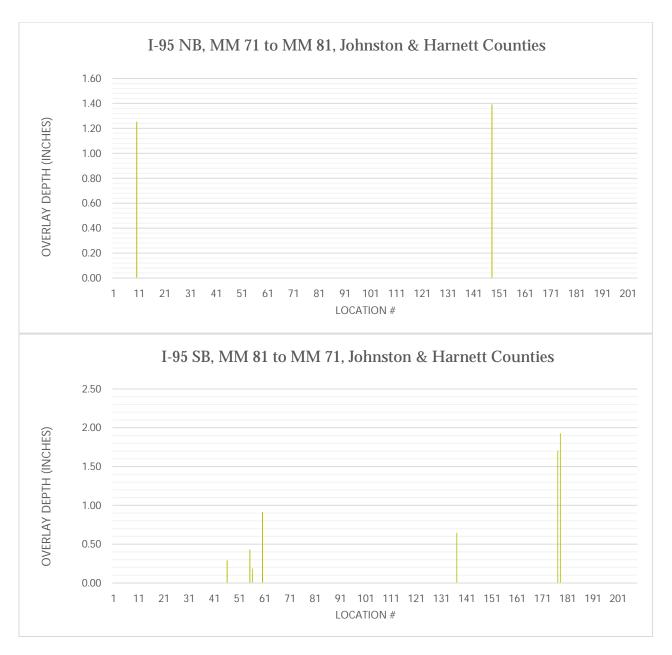
R (%)	95	-
z _R	-1.65	•
S ₀	0.45	•
Δ psi	1.2	-
M _R	10,426	psi
SN	6.75	•
W ₁₈	64,551,258	ESALS
log ₁₀ W ₁₈	7.81	
W ₁₈ (Needed)	61,182,129	ESALS

Design Serviceability Loss = p_o - p_t

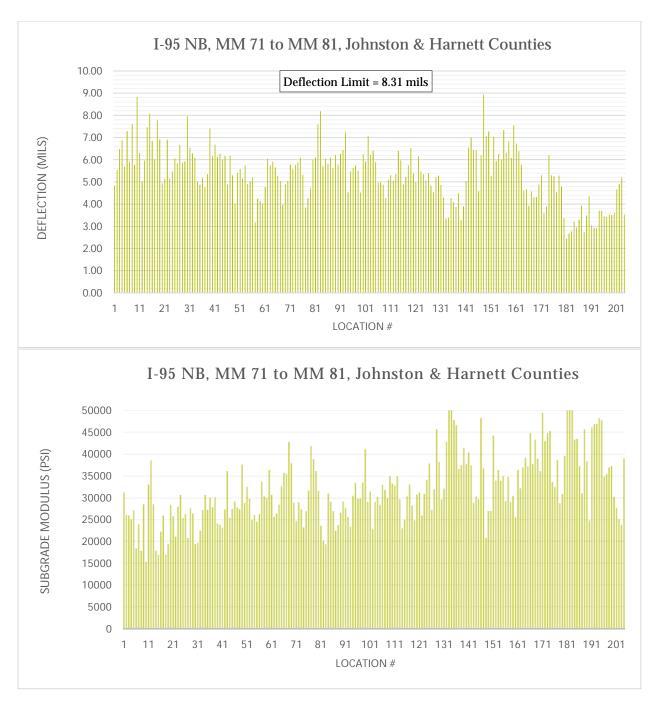
Pavement Design (Y-Lines)

	Init.	Fut.		Const. YR=	2019																			
	Year	Year		MR (psi)=	10,426						_													
LINES	2018	2040	% DU	%TT	Life F	Realiab.	S Error	Initial SI			Road	No. Lanes	Dir, %	Add. ESAL's	Lane Dist		20 Yrs ESAL 2		SN Rqd	% grth	Frw/Oth	Ru/Urb	Flex Dual Fact 1	TTST Fact
Y14RAA-New Roundabout on Spring Branch Rd	4,100	7,200	4	1.0	20	85	0.45	4.20		Rural	Secondary	1	100	0	1	862,677	862,677	7018	3.00	2.6	О	R	0.3	0.95
Y14RAB-New Roundabout on Pope Rd	3,600	5,300	4	1.0	20	85	0.45	4.20		Rural	Secondary	1	100	0	1	689,577	689,577		2.87	1.8	О	R	0.3	0.95
DR10-New Location	500	800	10	3.0	20	85	0.45	4.20	2.50		Secondary	1	50	0	1	136,168	136,168	783	2.14	2.1	О	R	0.3	0.95
Y32-Core Rd (Cul De Sac)	100	200	10	1.0	20	85	0.45	4.20		Rural	Secondary	1	50	0	1	20,743	20,743	194	1.52	3.2	О	R	0.3	0.95
SR19-SR1834 (Foundation Rd)	100	200	2	1.0	20	85	0.45	4.20		Rural	Secondary	1	50	0	1	8,140	8,140	194	1.27	3.2	O	R	0.3	0.95
Y18RAA-New Roundabout on NC50	10,400	15,400	3	4.0	30	90	0.45	4.20	2.50		Primary	1	100	0	1	7,211,185	4,368,148	15128	4.64	1.8	О	R	0.3	0.95
Y19RPB-I40 Ramp	12,000	19,900	3	5.0	30	95	0.45	4.20	2.50	Rural	Freeway	1	100	0	1	12,884,002	7,573,184	19448	5.39	2.3	F	R	0.3	1.15
Y19RPCA-I40 Ramp	14,200	23,700	3	5.0	30	95	0.45	4.20		Rural	Freeway	1	100	0	1	15,325,118	8,992,430	23155	5.53	2.3	F	R	0.3	1.15
Y27-SR1809 (Webb Rd)	600	700	5	15.0	20	85	0.45	4.20	2.50		Secondary	1	50	0	1	373,122	373,122	695	2.57	0.7	0	R	0.3	0.95
Y28-SR1100 (Chicopee Rd)	1,800	2,500	3	3.0	20	85	0.45	4.20		Rural	Secondary	1	50	0	1	291,636	291,636	2463	2.45	1.5	О	R	0.3	0.95
Y28A-E Brocklyn St	200	300	6	1.0	20	85	0.45	4.20		Rural	Secondary	1	50	0	1	24,743	24,743	295	1.57	1.8	О	R	0.3	0.95
Y29-SR1204/SR1101 (S Maket St/ Cub Rd Connection)	700	1,000	2	5.0	20	85	0.45	4.20		Rural	Secondary	1	50	0	1	164,208	164,208	984	2.21	1.6	О	R	0.3	0.95
Y29A-SR1101 Cub Rd (New Service Rd)	100	200	2.0	1.0	20	85	0.45	4.20	2.50	Rural	Secondary	1	50	0	1	8,140	8,140	194	1.27	3.2	О	R	0.3	0.95
Y30-S Walton Dr (NC 242)	4,900	7,500	5.0	5.0	30	90	0.45	4.20		Rural	Primary	1	50	0	1	2,318,915	1,392,532	7356	3.80	1.9	0	R	0.3	0.95
Y33-SR1219 (N Walton Av)	850	950	5.0	5.0	20	85	0.45	4.20	2.50	Rural	Secondary	1	50	0	1	205,223	205,223	945	2.30	0.5	O	R	0.3	0.95
DR3	100	200	10.0	1.0	20	85	0.45	4.20	2.50	Rural	Secondary	1	50	0	1	20,743	20,743	194	1.52	3.2	О	R	0.3	0.95
DR4	100	200	10.0	1.0	20	85	0.45	4.20	2.50	Rural	Secondary	1	50	0	1	20,743	20,743	194	1.52	3.2	О	R	0.3	0.95

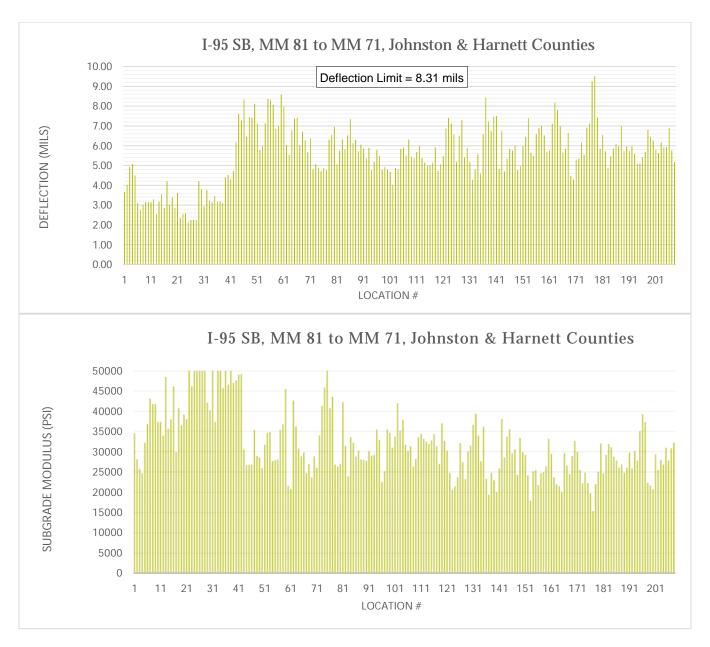
Route	Initial Year AADT	Future Year AADT (2040)	Duals %	TTST %	Design Life (Years)	No. of Lanes	Directional Split (%)
Y14RAA-New Roundabout on Spring Branch Rd	4,100	7,200	4.0	1.0	20	1	100
Y14RAB-New Roundabout on Pope Rd	3,600	5,300	4.0	1.0	20	1	100
DR10-New Location	500	800	10.0	3.0	20	1	50
Y32-Core Rd (Cul De Sac)	100	200	10.0	1.0	20	1	50
SR19-SR1834 (Foundation Rd)	100	200	2.0	1.0	20	1	50
Y18RAA-New Roundabout on NC50	10,400	15,400	3.0	4.0	30	1	100
Y19RPB-I40 Ramp	12,000	19,900	3.0	5.0	30	1	100
Y19RPCA-I40 Ramp	14,200	23,700	3.0	5.0	30	1	100
Y27-SR1809 (Webb Rd)	600	700	5.0	15.0	20	1	50
Y28-SR1100 (Chicopee Rd)	1,800	2,500	3.0	3.0	20	1	50
Y28A-E Brocklyn St	200	300	6.0	1.0	20	1	50
Y29-SR1204/SR1101 (S Maket St/ Cub Rd Connection)	700	1,000	2.0	5.0	20	1	50
Y29A-SR1101 Cub Rd (New Service Rd)	100	200	2.0	1.0	20	1	50
Y30-S Walton Dr (NC 242)	4,900	7,500	5.0	5.0	30	1	50
Y33-SR1219 (N Walton Av)	850	950	5.0	5.0	20	1	50
DR3	100	200	10.0	1.0	20	1	50
DR4	100	200	10.0	1.0	20	1	50

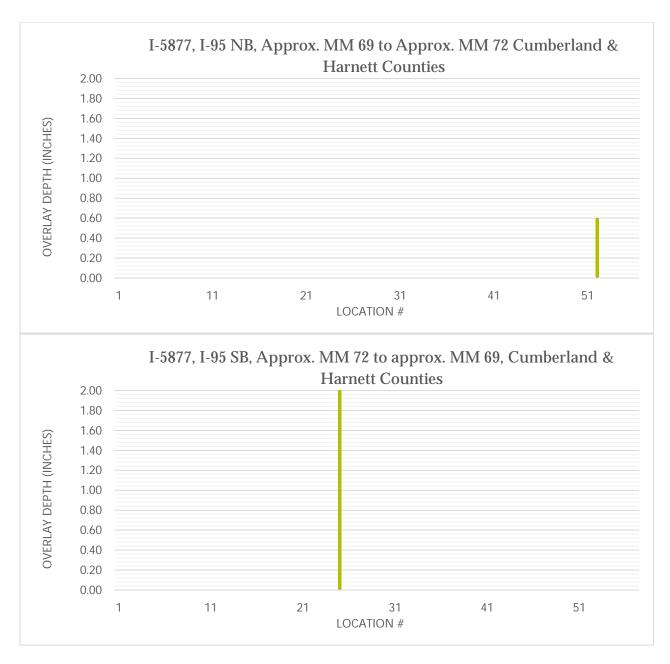

	SURFACE		INTERM	EDIATE	BASE						
	DEPTH	TYPE	DEPTH	TYPE	DEPTH	TYPE	ABC	CTABC	STAB1	SN Prov	SN Req
Y14RAA-New Roundabout on Spring Branch Rd	3	S9.5B	4	I19.0C	0	B25.0C	8.0		No	4.20	3.00
Y14RAB-New Roundabout on Pope Rd	3	S9.5B	4	I19.0C	0	B25.0C	8.0		No	4.20	2.87
DR10-New Location	3	S9.5B	0	I19.0C	4	B25.0C	0.0		No	2.52	2.14
Y32-Core Rd (Cul De Sac)	3	S9.5B	0	I19.0C	4	B25.0C	0.0		No	2.52	1.52
SR19-SR1834 (Foundation Rd)	3	S9.5B	0	I19.0C	4	B25.0C	0.0		No	2.52	1.27
Y18RAA-New Roundabout on NC50	3	S9.5C	4	I19.0C	4	B25.0C	8.0		No	5.40	4.64
Y19RPB-I40 Ramp	3	S9.5C	3.5	I19.0C	5	B25.0C	8.0		No	5.48	5.39
Y19RPCA-I40 Ramp	3	S9.5C	3.5	I19.0C	5	B25.0C	8.0		No	5.48	5.53
Y27-SR1809 (Webb Rd)	3	S9.5B	0	I19.0C	0	B25.0C	10.0		No	2.72	2.57
Y28-SR1100 (Chicopee Rd)	3	S9.5B	4	I19.0C	0	B25.0C	8.0		No	4.20	2.45
Y28A-E Brocklyn St	3	S9.5B	0	I19.0C	0	B25.0C	8.0		No	2.44	1.57
Y29-SR1204/SR1101 (S Maket St/ Cub Rd Connection)	3	S9.5B	0	I19.0C	4	B25.0C	0.0		No	2.52	2.21
Y29A-SR1101 Cub Rd (New Service Rd)	3	S9.5B	0	I19.0C	4	B25.0C	0.0		No	2.52	1.27
Y30-S Walton Dr (NC 242)	3	S9.5C	4	I19.0C	0	B25.0C	8.0		No	4.20	3.80
Y33-SR1219 (N Walton Av)	3	S9.5B	0	I19.0C	4	B25.0C	0.0		No	2.52	2.30

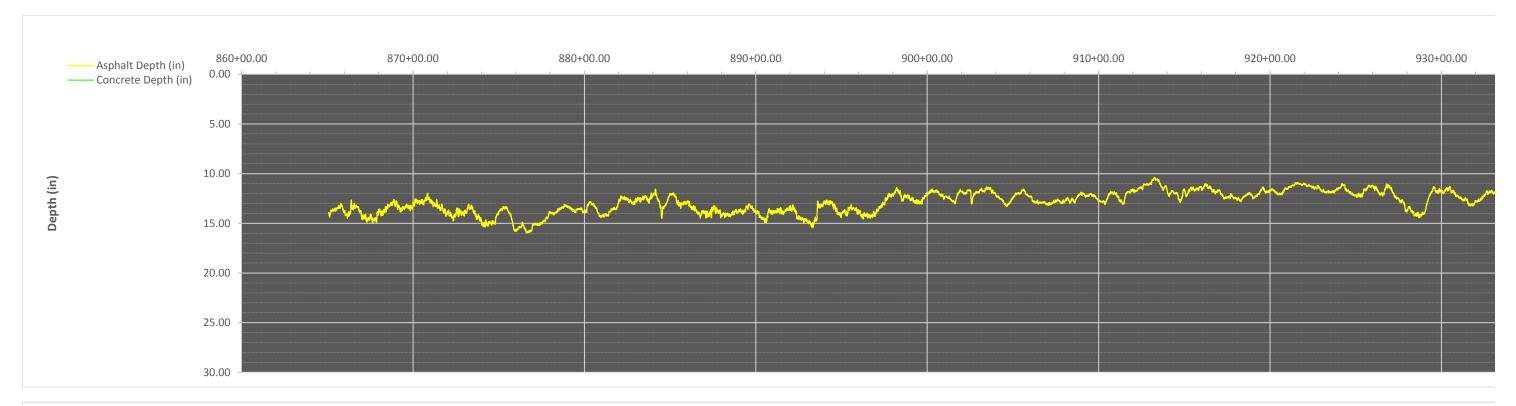
Johnston, Harnett Counties S&ME Project No. 623517048

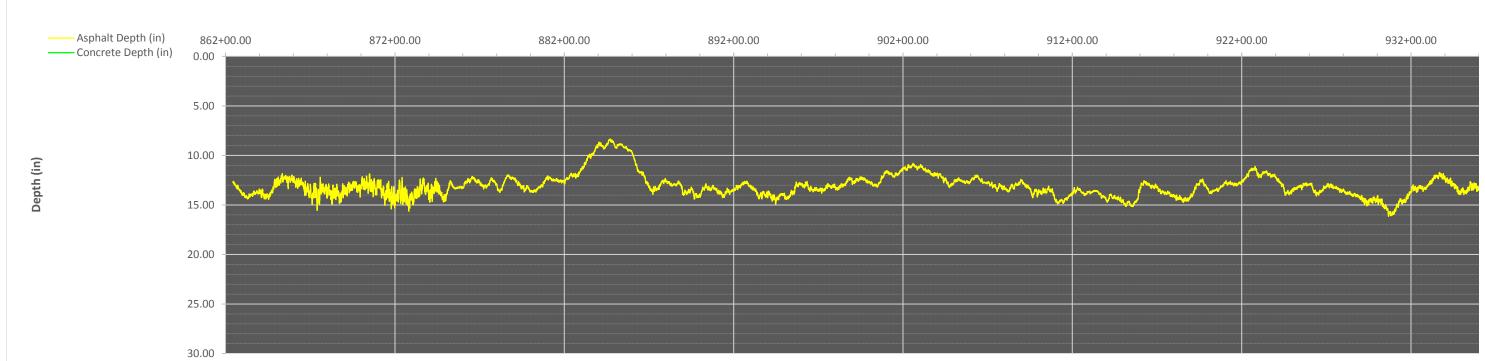


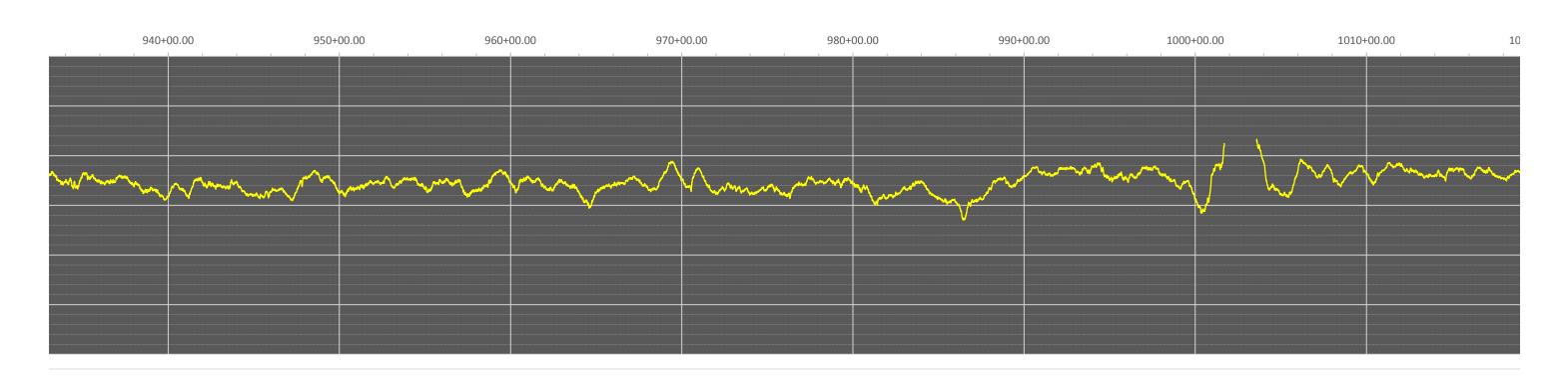
Appendix II- FWD Analyses

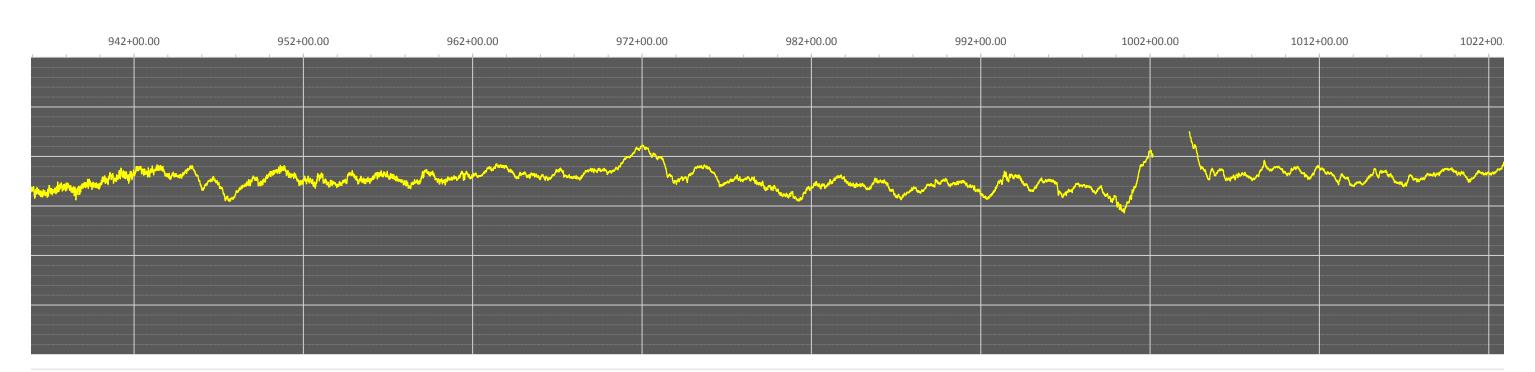


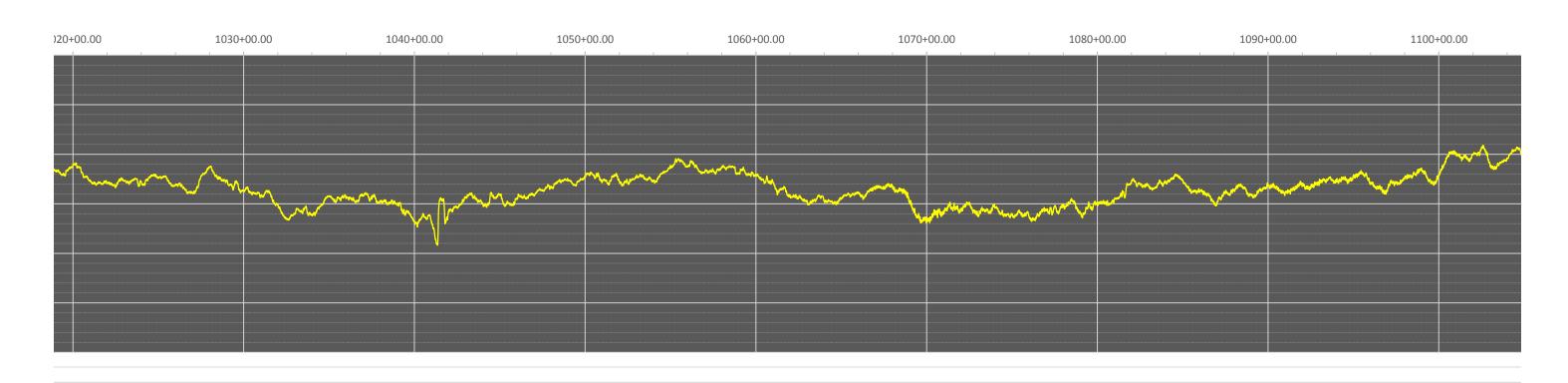


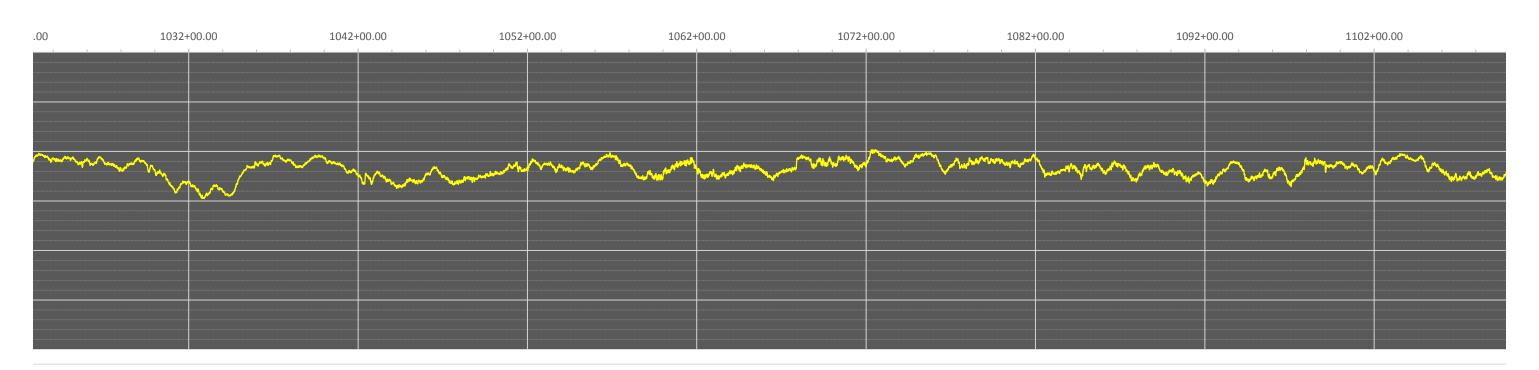


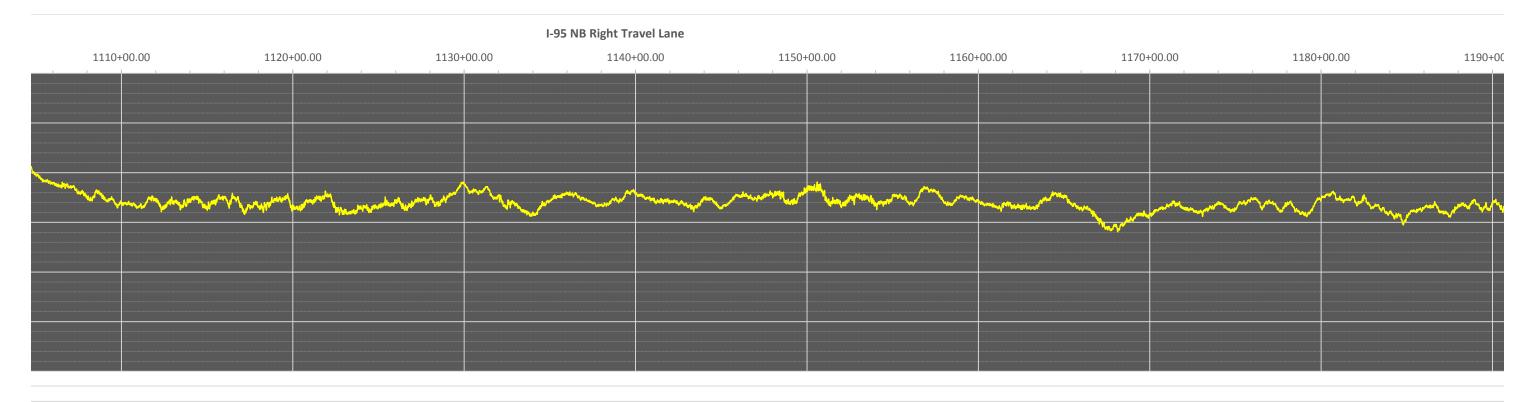


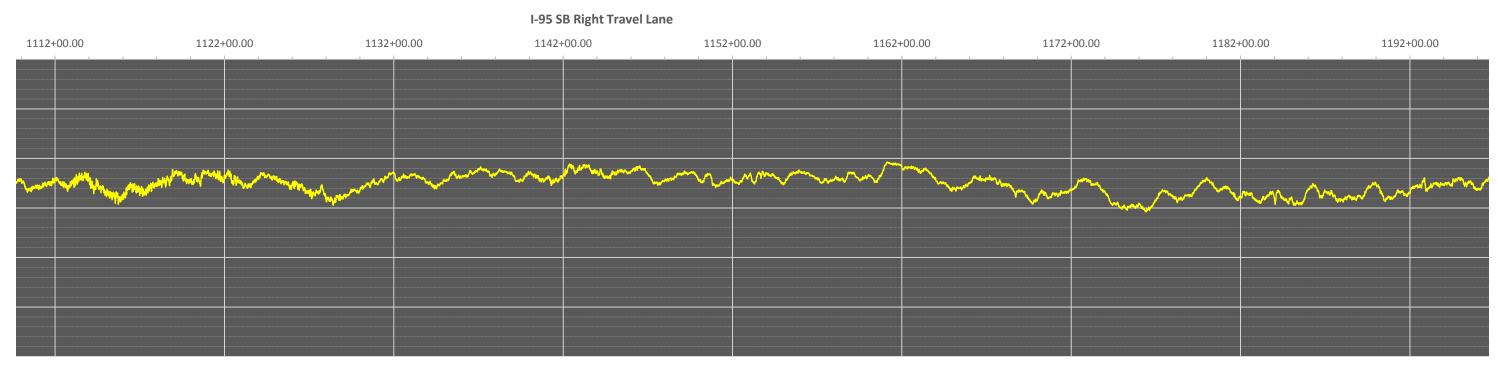

Johnston, Harnett Counties S&ME Project No. 623517048

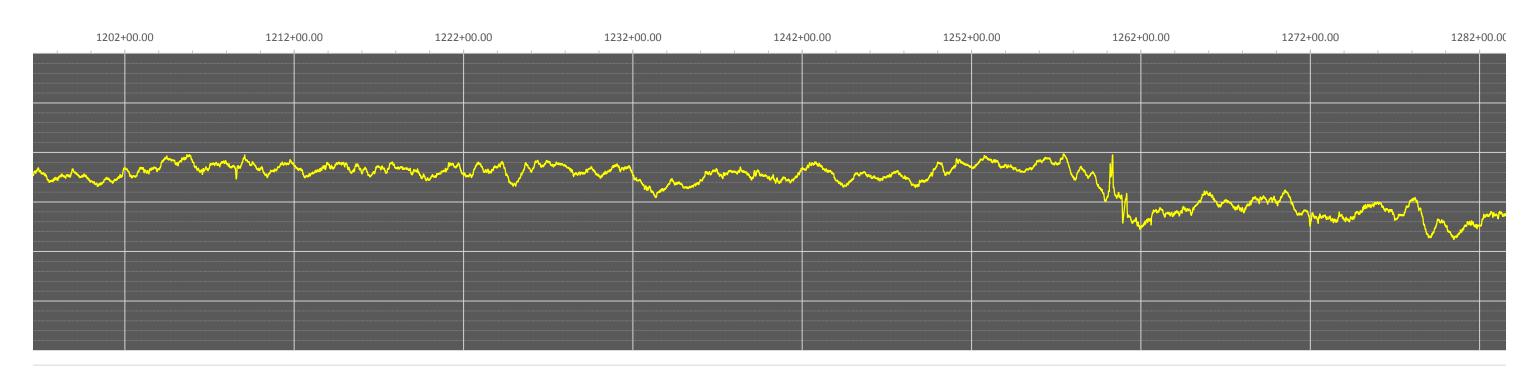


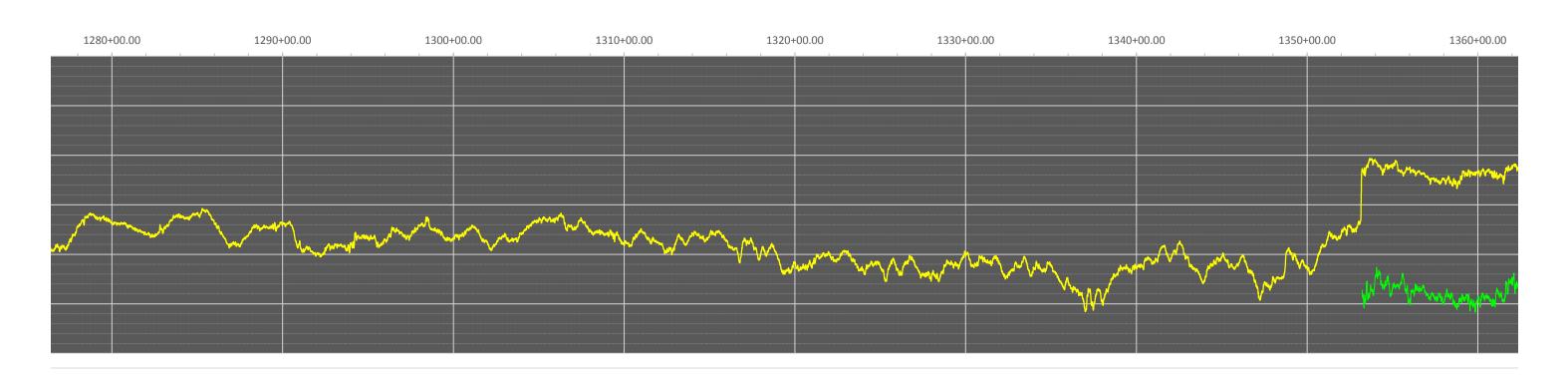

Appendix III - GPR Survey Results

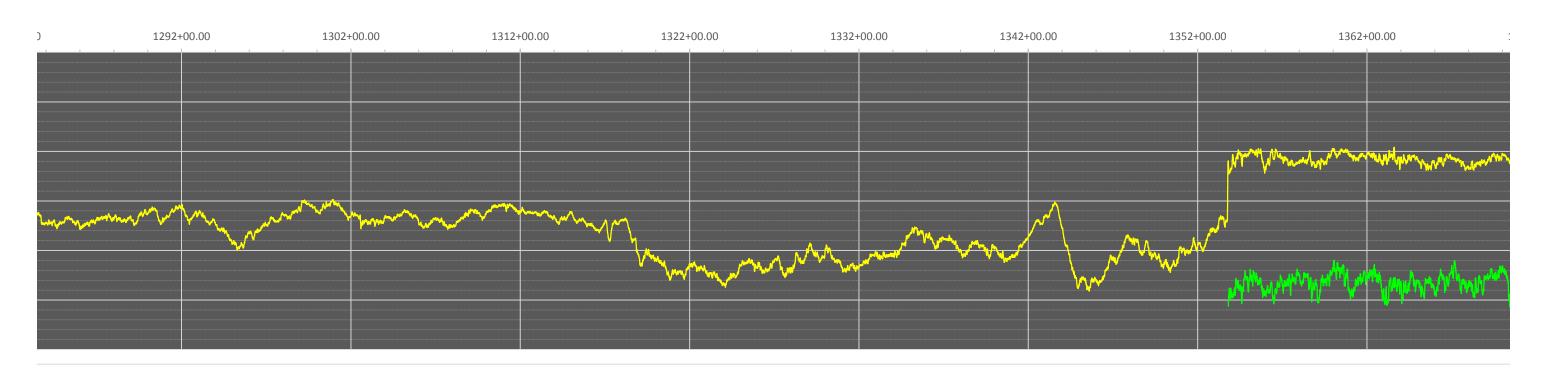


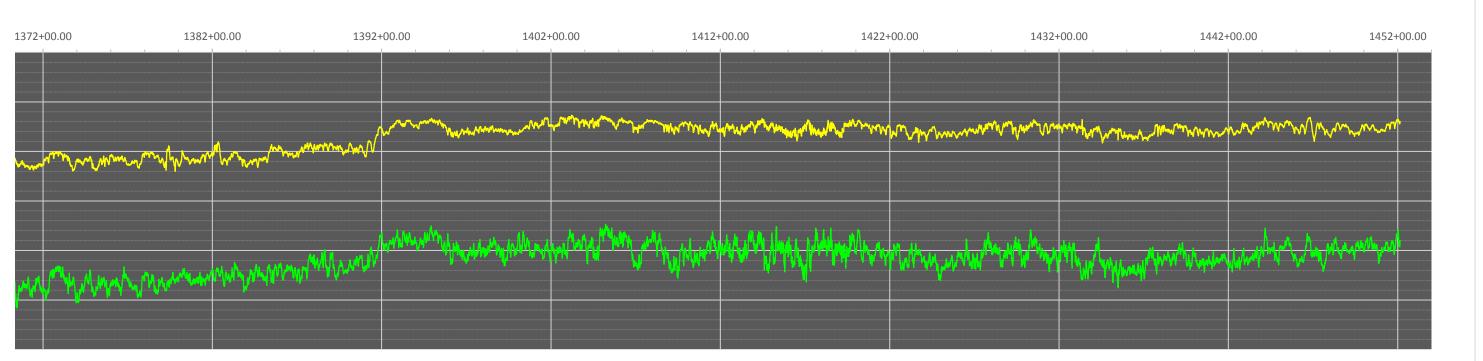










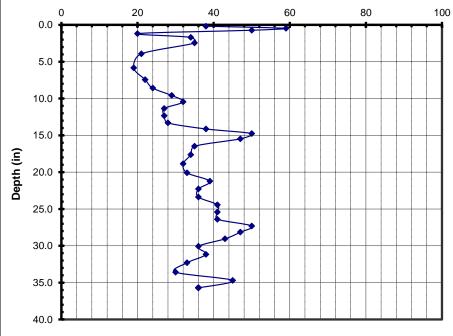


Johnston, Harnett Counties S&ME Project No. 623517048

Appendix IV - Kessler DCP Test Results

Project Name: NC DOT I-95 Widening

S&ME Project No.: 6235-17-048


Test Location: C-1 NB-OSS 1/23/2018 Personnel: VGM Date: 0

Thickness of Stone (in):

inickness of Stone (in):				
Test Data				
No. of	Cummulative			
Blows	Penetration			
	(mm)			
1	9			
1	15			
1	22			
1	38			
1	48			
3	77			
3	123			
3	174			
3 3 2 2 2 2 2 2 2 2 2 2 3 3 3	204			
2	232			
2	255			
2	276			
2	301			
2	326			
2	350			
2	368			
2	382			
3	404			
3	433			
3	463			
3 3	495			
3	526			
3	552			
3	580			
3 3 3 3	608			
3	633			
3 3	658			
3	683			
3 3	704			
3	726			
3	750			
3 3 3 3	778			
3	805			
3	836			
3	870			
3 3	893			
3	921			

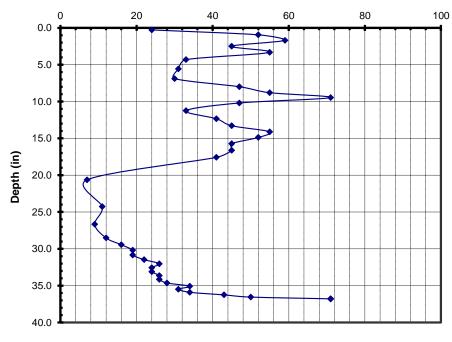
CBR - DCP Correlation for Soil Subgrade
North Carolina Department of Transportation (Shin, et al 1989)
○ U.S. Army Corps of Engineers (Webster, et al 1992)
O Piedmont Residual Soils (Coonse 1999)

Test Summary				
Stone		Soil Subgrade		
# Values	n/a	# Values	37	
Average CBR	n/a	Average CBR	36	
Weighted Avera	n/a	Weighted Average	34	
Max CBR	n/a	Max CBR	59	
Min CBR	n/a	Min CBR	19	

^{*} Stone Field CBR estimated using published NCDOT relationship. Subgrade Field CBR estimated using relationship indicated above.

Project Name: NC DOT I-95 Widening

S&ME Project No.: 6235-17-048


Test Location: C-2 NB-OSS 1/23/2018 Personnel: VGM Date: 0

Thickness of Stone (in):				
Test Data				
	Cummulative			
No. of	Penetration			
Blows	(mm)			
1	14			
3	34			
3	52			
3	75			
3	94			
	125			
3	158			
3 3	192			
	214			
3 3 3	233			
3	248			
	270			
3	301			
3	326			
3	349			
3	368			
3	388			
3	411			
3	434			
3	459			
3 3 2 2	589			
2	644			
2	711			
1	738			
1	758			
1	775			
1	792			
1	807			
1	820			
1	834			
1	848			
1				
1	861 974			
	874			
1	886			
1	896			
1	907			
1	917			
1	925			

932 937

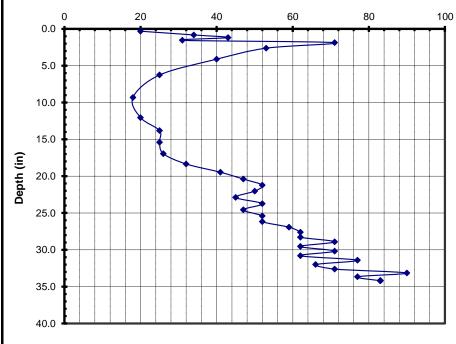
CBR - DCP Correlation for Soil Subgrade
North Carolina Department of Transportation (Shin, et al 1989)
○ U.S. Army Corps of Engineers (Webster, et al 1992)
O Piedmont Residual Soils (Coonse 1999)

Test Summary				
Stone		Soil Subgrade		
# Values	n/a	# Values	40	
Average CBR	n/a	Average CBR	36	
Weighted Avera	n/a	Weighted Average	30	
Max CBR	n/a	Max CBR	71	
Min CBR	n/a	Min CBR	7	

^{*} Stone Field CBR estimated using published NCDOT relationship. Subgrade Field CBR estimated using relationship indicated above.

KESSLER DCP TEST RESULTS

Project Name: NC DOT I-95 Widening


S&ME Project No.: 6235-17-048

Test Location: C-3 NB-OSS Date: 1/23/2018 Personnel: VGM

Thickness of Stone (in):

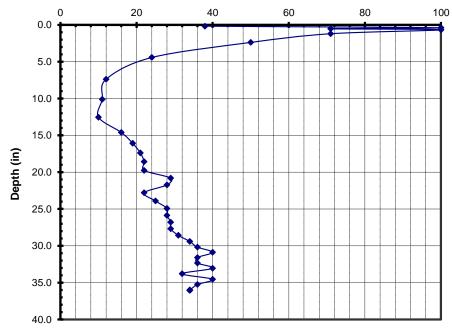
Te	est Data	CBR - DCP Correlation for Soil Subgrade
No. of Blows	Cummulative Penetration (mm)	North Carolina Department of Transportation (Shin, et al 1989) Old Carolina Department of Transportation (Webster, et al 1993)
1	16	O U.S. Army Corps of Engineers (Webster, et al 1992)
1	26	O Piedmont Residual Soils (Coonse 1999)
1	34	O Ficultion (Coolide 1999)
1	45	
1	50	Test Summary
5	83	

Test Summary				
Stone		Soil Subgrade		
# Values	n/a	# Values	36	
Average CBR	n/a	Average CBR	50	
Weighted Avera	n/a	Weighted Average	42	
Max CBR	n/a	Max CBR	90	
Min CBR	n/a	Min CBR	18	

^{*} Stone Field CBR estimated using published NCDOT relationship. Subgrade Field CBR estimated using relationship indicated above.

Project Name: NC DOT I-95 Widening

S&ME Project No.: 6235-17-048


Test Location: C-4 NB-OSS Date: 2/24/2018 Personnel: VGM 0

Thickness of Stone (in):

Test Data				
Cummulative				
No. of	Penetration			
Blows	(mm)			
1	9			
1	11			
1	16			
1	18			
5	43			
5	78			
5	147			
3	228			
2	286			
2	351			
2	391			
2	426			
2	457			
2	487			
2	517			
2	540			
2	564			
2	594			
2	621			
2	645			
2	669			
2	692			
2	715			
2	737			
2	757			
2	776			
2	793			
2	812			
2	831			
1 1 5 5 3 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	848			
2	869			
2	886			
2	905			
2	925			

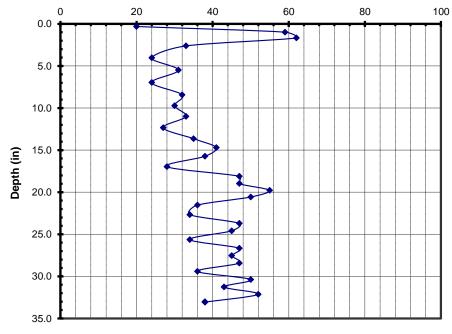
CBR - DCP Correlation for Soil Subgrade	
North Carolina Department of Transportation (Shin, et al 1989)	
O U.S. Army Corps of Engineers (Webster, et al 1992)	
O Piedmont Residual Soils (Coonse 1999)	

Test Summary				
Stone		Soil Subgrade		
# Values	n/a	# Values	34	
Average CBR	n/a	Average CBR	35	
Weighted Avera	n/a	Weighted Average	27	
Max CBR	n/a	Max CBR	100	
Min CBR	n/a	Min CBR	10	

^{*} Stone Field CBR estimated using published NCDOT relationship. Subgrade Field CBR estimated using relationship indicated above.

Project Name: NC DOT I-95 Widening

S&ME Project No.: 6235-17-048


Test Location: C-5 NB-OSS 1/24/2018 Personnel: VGM Date: 0

Thickness of Stone (in):

Test Data		
No. of	Cummulative	
Blows	Penetration	
	(mm)	
1	16	
3	34	
3	51	
3	82	
3 3 3 3	123	
3 3 3 3	156	
3	198	
3	230	
3	264	
3	295	
3	332	
3	361	
3	386	
3	413	
3	449	
3	471	
3 3 3 3 3 3 3 3	493	
3	512	
3	533	
3 3 3 3	561	
3	591	
3	613	
3	636	
3	666	
3	688	
3 3	711	
3	733	
3 3	761	
3 3	782	
3	806	
3	826	
3	853	

CBR - DCP Correlation for Soil Subgrade				
North Carolina Department of Transportation (Shin, et al 1989)				
○ U.S. Army Corps of Engineers (Webster, et al 1992)				
O Piedmont Residual Soils (Coonse 1999)				

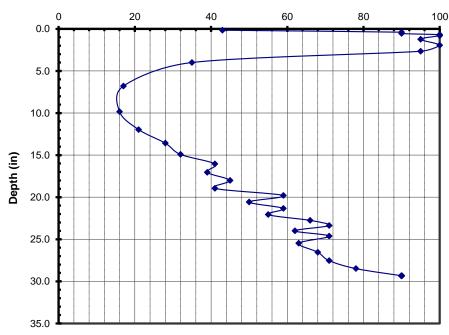
Test Summary			
Stone		Soil Subgrade	
# Values	n/a	# Values	32
Average CBR	n/a	Average CBR	40
Weighted Avera	n/a	Weighted Average	38
Max CBR	n/a	Max CBR	62
Min CBR	n/a	Min CBR	20

^{*} Stone Field CBR estimated using published NCDOT relationship. Subgrade Field CBR estimated using relationship indicated above.

Project Name: NC DOT I-95 Widening

0

S&ME Project No.: 6235-17-048


Test Location: C-6 NB-OSS Date: 1/24/2018 Personnel: VGM

Thickness of Stone (in):

inickness of Stone (in):		
Test Data		
No. of	Cummulative	
	Penetration	
Blows	(mm)	
1	8	
1	12	
1	16	
1	19	
1	22	
5	41	
	58	
5 5	77	
5	126	
5	219	
3	281	
5 5 3 3	327	
3	363	
3	395	
3	420	
3	446	
3	469	
3	494	
3	512	
3	533	
3	551	
3	570	
3	586	
3	601	
3	618	
3	633	
5	661	
5	687	
5	712	
5	735	
5	755	
1	1	

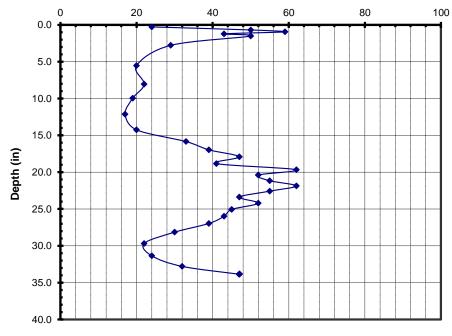
CBR - DCP Correlation for Soil Subgrade				
● North Carolina Department of Transportation (Shin, et al 1989)				
○ U.S. Army Corps of Engineers (Webster, et al 1992)				
O Piedmont Residual Soils (Coonse 1999)				

Test Summary			
Stone		Soil Subgrade	
# Values	n/a	# Values	31
Average CBR	n/a	Average CBR	61
Weighted Avera	n/a	Weighted Average	47
Max CBR	n/a	Max CBR	100
Min CBR	n/a	Min CBR	16

^{*} Stone Field CBR estimated using published NCDOT relationship. Subgrade Field CBR estimated using relationship indicated above.

Project Name: NC DOT I-95 Widening

0


S&ME Project No.: 6235-17-048

Test Location: C-10 NB-OSS Date: 1/24/2018 Personnel: VGM

Thickness of Stone (in):

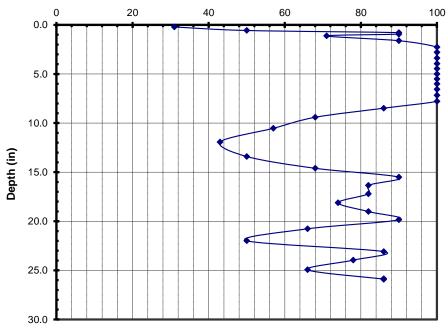
Test Data		
No of Cummulativ		
No. of	Penetration	
Blows	(mm)	
1	14	
1	21	
1	27	
1	35	
1	42	
5	99	
5	182	
3	227	
3	279	
3	337	
3	387	
3	418	
3	444	
3	466	
3	491	
3	508	
3	528	
3	547	
3	564	
3	583	
3	605	
3	625	
3	648	
3	672	
3	698	
3	732	
3	776	
3	817	
1 1 1 5 5 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3	849	
3	871	

Test Summary			
Stone		Soil Subgrade	
# Values	n/a	# Values	30
Average CBR	n/a	Average CBR	39
Weighted Avera	n/a	Weighted Average	33
Max CBR	n/a	Max CBR	62
Min CBR	n/a	Min CBR	17

^{*} Stone Field CBR estimated using published NCDOT relationship. Subgrade Field CBR estimated using relationship indicated above.

Project Name: NC DOT I-95 Widening

S&ME Project No.: 6235-17-048


Test Location: C-11 NB-OSL Date: 1/24/2018 Personnel: VGM

Thickness of Stone (in):

Test Data			
No. of	Cummulative		
	Penetration		
Blows	(mm)		
1	11		
1	18		
1	22		
1	26		
1 1	31		
5	51		
5	64		
5	78		
5	94		
5	107		
5	120		
5	134		
5	146		
5	159		
5	174		
5	190		
5			
5	205		
5	226		
5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5	252		
5	283		
5	323		
5	358		
5	384		
5	404		
5	426		
5	448		
5	472		
5	494		
5	514		
5	541		
5	576		
5	597		
5	620		
5 5	647		
5	668		

CBR - DCP Correlation for Soil Subgrade				
North Carolina Department of Transportation (Shin, et al 1989)				
○ U.S. Army Corps of Engineers (Webster, et al 1992)				
O Piedmont Residual Soils (Coonse 1999)				

Test Summary			
Stone		Soil Subgrade	
# Values	n/a	# Values	35
Average CBR	n/a	Average CBR	81
Weighted Avera	n/a	Weighted Average	76
Max CBR	n/a	Max CBR	100
Min CBR	n/a	Min CBR	31

^{*} Stone Field CBR estimated using published NCDOT relationship. Subgrade Field CBR estimated using relationship indicated above.

Project Name: NC DOT I-95 Widening

S&ME Project No.: 6235-17-048

Test Location: C-13 SB-OSS Date: 1/15/2018 Personnel: VGM

Thickness of Stone (in):

-			
Test Data			
No. of	Cummulative		
Blows	Penetration		
	(mm)		
1	12		
1	21		
1	27		
1	34		
1	40		
3	55		
5	75		
5	93		
5	111		
5	131		
5	148		
5	167		
5	189		
5	203		
5	218		
5	234		
5	249		
5	270		
5	294		
5	330		
5	364		
5	404		
1 1 3 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5	435		
3	471		
3	512		
3	541		
3	561		
3	586		
3	610		
3	628		
3 3	644		
3	657		

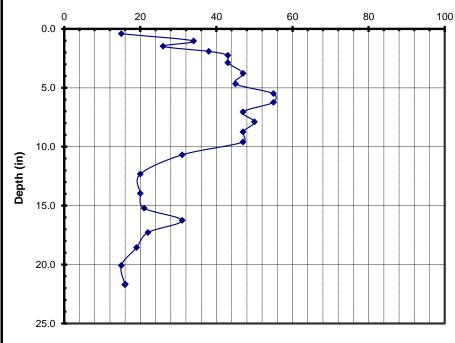
CBR - DCP Correlation for Soil Subgrade				
North Carolina Department of Transportation (Shin, et al 1989)				
○ U.S. Army Corps of Engineers (Webster, et al 1992)				
O Piedmont Residual Soils (Coonse 1999)				

Test Summary			
Stone		Soil Subgrade	
# Values	n/a	# Values	32
Average CBR	n/a	Average CBR	67
Weighted Avera	n/a	Weighted Average	61
Max CBR	n/a	Max CBR	100
Min CBR	n/a	Min CBR	24

^{*} Stone Field CBR estimated using published NCDOT relationship. Subgrade Field CBR estimated using relationship indicated above.

NC DOT I-95 Widening **Project Name:**

0


S&ME Project No.: 6235-17-048

Test Location: C-14 SB-OSS **Date:** 1/15/2018 Personnel: VGM

Thickness of Stone (in):			
No. of Blows	st Data Cummulative Penetration (mm)		
Blows 1 1 1 1 1 3 3 3 3 3 3 3 3 3 2 2 2 2 2	(mm) 21 31 44 53 61 85 107 130 149 168 190 211 233 255 288 338 371 402		
2 2 2 2 2 2 2	402 424 454 489 531 571		

CBR - DCP Correlation for Soil Subgrade
North Carolina Department of Transportation (Shin, et al 1989)
○ U.S. Army Corps of Engineers (Webster, et al 1992)
O Piedmont Residual Soils (Coonse 1999)

Test Summary			
Stone		Soil Subgrade	
# Values	n/a	# Values	23
Average CBR	n/a	Average CBR	34
Weighted Avera	n/a	Weighted Average	31
Max CBR	n/a	Max CBR	55
Min CBR	n/a	Min CBR	15

^{*} Stone Field CBR estimated using published NCDOT relationship. Subgrade Field CBR estimated using relationship indicated above.

Project Name: NC DOT I-95 Widening

0

S&ME Project No.: 6235-17-048

Test Location: C-15 SB-OSS Date: 1/16/2018 Personnel: VGM

Thickness of Stone (in):

Timokness of Gloric (iii).			
Test Data			
No. of	Cummulative		
Blows	Penetration		
	(mm)		
1	21		
1	34		
1	43		
1	51		
1 3 5 5 5 5 3 3 3 3 3 3 3 3 3 3 3 3 3 3	59		
3	75		
5	97		
5	121		
5	159		
3	186		
3	215		
3	255		
3	294		
3	317		
3	338		
3	354		
3	379		
3	397		
3	415		
3	435		
3	455		
3	475		
3	496		
3	515		
3	535		
3	555		

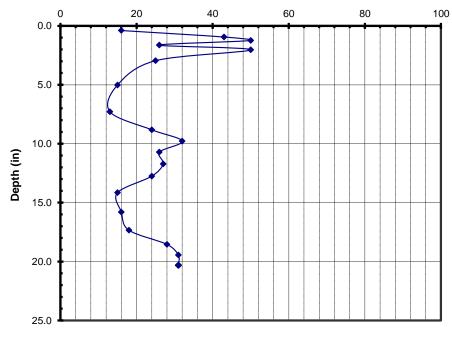
CBR - DCP Correlation for Soil Subgrade				
North Carolina Department of Transportation (Shin, et al 1989)				
○ U.S. Army Corps of Engineers (Webster, et al 1992)				
O Piedmont Residual Soils (Coonse 1999)				

Test Summary			
Stone		Soil Subgrade	
# Values	n/a	# Values	26
Average CBR	n/a	Average CBR	48
Weighted Avera	n/a	Weighted Average	46
Max CBR	n/a	Max CBR	82
Min CBR	n/a	Min CBR	15

^{*} Stone Field CBR estimated using published NCDOT relationship. Subgrade Field CBR estimated using relationship indicated above.

Project Name: NC DOT I-95 Widening

S&ME Project No.: 6235-17-048


Test Location: C-26 SB-OSL 1/16/2018 Personnel: VGM Date: 0

Thickness of Stone (in):

inickness of Stone (in):			
Test Data			
No. of	Cummulative		
Blows	Penetration		
	(mm)		
1	20		
1 1	28		
1	35		
1 1 3 3 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	48		
1	55		
3	95		
3	160		
2	210		
2	238		
2	259		
2	285		
2	310		
2	338		
2	381		
2	422		
2	459		
2	483		
2	505		
2	527		
	l		

CBR - DCP Correlation for Soil Subgrade			
North Carolina Department of Transportation (Shin, et al 1989)			
○ U.S. Army Corps of Engineers (Webster, et al 1992)			
O Piedmont Residual Soils (Coonse 1999)			

Test Summary			
Stone		Soil Subgrade	
# Values	n/a	# Values	19
Average CBR	n/a	Average CBR	27
Weighted Avera	n/a	Weighted Average	22
Max CBR	n/a	Max CBR	50
Min CBR	n/a	Min CBR	13

^{*} Stone Field CBR estimated using published NCDOT relationship. Subgrade Field CBR estimated using relationship indicated above.

Project Name: NC DOT I-95 Widening

S&ME Project No.: 6235-17-048

Test Location: C-16 SB-OSS Date: 1/22/2018 Personnel: VGM

Thickness of Stone (in):

Test Data				
ie	Cummulative			
No. of				
Blows	Penetration			
	(mm)			
1	20			
1	39			
1	50			
1	61			
1	82			
1	101			
1	127			
1	181			
3	225			
3	270			
3 3	317			
	377			
3	418			
3	437			
3	452			
3	483			
3	525			
3	587			
3 3 3 3 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	623			
2	646			
2				
2	670			
2	696			
2	724			
2	753			
2	780			
2	806			
2	834			
2	860			
2	880			
2	905			
2	927			
2	951			
2	970			
2	970			
	l			

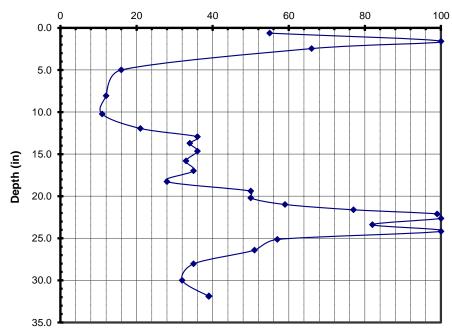
CBR - DCP Correlation for Soil Subgrade		
North Carolina Department of Transportation (Shin, et al 1989)		
○ U.S. Army Corps of Engineers (Webster, et al 1992)		
O Piedmont Residual Soils (Coonse 1999)		

Test Summary					
Stone		Soil Subgrade			
# Values	n/a	# Values	33		
Average CBR	n/a	Average CBR	26		
Weighted Avera	n/a	Weighted Average	23		
Max CBR	n/a	Max CBR	71		
Min CBR	n/a	Min CBR	6		

^{*} Stone Field CBR estimated using published NCDOT relationship. Subgrade Field CBR estimated using relationship indicated above.

Project Name: NC DOT I-95 Widening

S&ME Project No.: 6235-17-048


Personnel: VGM **Test Location:** C-17 SB-OSS Date: 1/22/2018 0

Thickness of Stone (in):

Thickness of Stone (in):				
Test Data				
	Cummulative			
No. of	Penetration			
Blows	(mm)			
5	32			
5	49			
5 5 2 2 2 2 2 3 3 3 3 3 3	76			
5	178			
2	232			
2	288			
2	319			
2	338			
2	358			
3	386			
3	417			
3	446			
3	482			
3	503			
3	524			
3	542			
3 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5	556			
3	567			
5	583			
5	605			
5	623			
5	654			
5	688			
5	736			
5	788			
5	832			

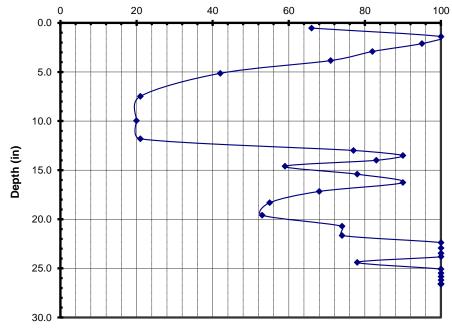
CBR - DCP Correlation for Soil Subgrade		
North Carolina Department of Transportation (Shin, et al 1989)		
○ U.S. Army Corps of Engineers (Webster, et al 1992)		
O Piedmont Residual Soils (Coonse 1999)		

Test Summary					
Stone		Soil Subgrade			
# Values	n/a	# Values	26		
Average CBR	n/a	Average CBR	51		
Weighted Avera	n/a	Weighted Average	40		
Max CBR	n/a	Max CBR	100		
Min CBR	n/a	Min CBR	11		

^{*} Stone Field CBR estimated using published NCDOT relationship. Subgrade Field CBR estimated using relationship indicated above.

Project Name: NC DOT I-95 Widening

S&ME Project No.: 6235-17-048


Test Location: C-18 SB-OSS Date: 1/22/2018 Personnel: VGM

Thickness of Stone (in):

Test Data		
No. of	Cummulative	
Blows	Penetration	
	(mm)	
5	27	
5	44	
5	63	
5	85	
5	110	
5	151	
5	229	
3	277	
3	323	
3	337	
3	349	
3	362	
3	380	
5	403	
5	423	
5	449	
5 5 5 5 5 5 3 3 3 3 3 3 5 5 5 5 5 5 5 5	481	
5	514	
5	538	
5	562	
5	575	
5	590	
5	602	
5	608	
5	631	
5	643	
5	652 661	
5 E	670	
5 E	681	
5	001	

CBR - DCP Correlation for Soil Subgrade
North Carolina Department of Transportation (Shin, et al 1989)
○ U.S. Army Corps of Engineers (Webster, et al 1992)
O Piedmont Residual Soils (Coonse 1999)

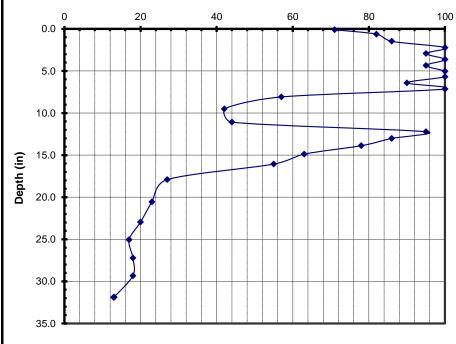
Test Summary			
Stone		Soil Subgrade	
# Values	n/a	# Values	30
Average CBR	n/a	Average CBR	77
Weighted Avera	n/a	Weighted Average	62
Max CBR	n/a	Max CBR	100
Min CBR	n/a	Min CBR	20

^{*} Stone Field CBR estimated using published NCDOT relationship. Subgrade Field CBR estimated using relationship indicated above.

KESSLER DCP TEST RESULTS

Project Name: NC DOT I-95 Widening

S&ME Project No.: 6235-17-048


Test Location: C-24 SB-OSL Date: 1/22/2018 Personnel: VGM

Thickness of Stone (in):

Tes	st Data	CBR - DCP Correlation for Soil Subgrade
No. of Blows	Cummulative Penetration (mm)	North Carolina Department of Transportation (Shin, et al 1989) O. U.S. Army Corps of Engineers (Webster, et al 1993)
1	5	O U.S. Army Corps of Engineers (Webster, et al 1992)
5	27	O Piedmont Residual Soils (Coonse 1999)
5	48	,
5	65	
5	84	Test Summary
5	101	
5	120	Stone Soil Subgrade

Test Summary			
Stone		Soil Subgrade	
# Values	n/a	# Values	26
Average CBR	n/a	Average CBR	64
Weighted Avera	n/a	Weighted Average	47
Max CBR	n/a	Max CBR	100
Min CBR	n/a	Min CBR	13

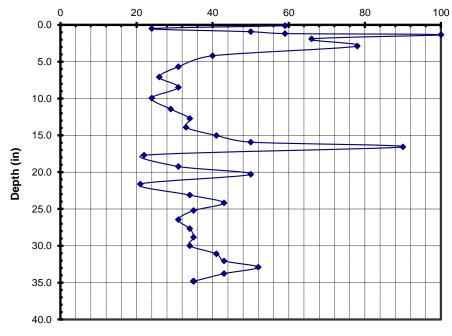
Estimated Field CBR Value*

* Stone Field CBR estimated using published NCDOT relationship. Subgrade Field CBR estimated using relationship indicated above.

Project Name: NC DOT I-95 Widening

0

S&ME Project No.: 6235-17-048


Test Location: C-19 SB-OSS Date: 1/22/2018 Personnel: VGM

Thickness of Stone (in):

Test Data		
No. of	Cummulative	
Blows	Penetration	
	(mm)	
1	6	
1	20	
1	27	
1	33	
1	35	
5	62	
5 5 3 3 3 3	85	
5	128	
3	161	
3	199	
3	232	
3	273	
	308	
3	338	
3 3 3	369	
3	394	
3	415	
3 3 3	427	
3	472	
3 3 3 3 3 3	505	
3	526	
3	572	
3	602	
3	626	
3	655	
3	688	
3	718	
3	747	
3 3 3 3	777	
	802	
3 3	826	
3	846	
3	870	
3	899	
3	555	

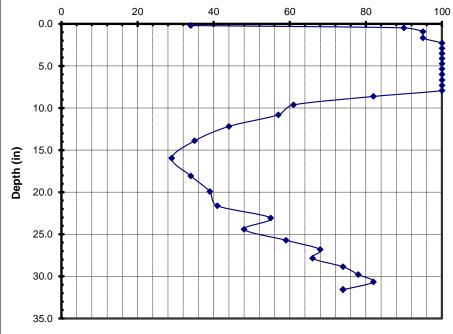
CBR - DCP Correlation for Soil Subgrade
North Carolina Department of Transportation (Shin, et al 1989)
○ U.S. Army Corps of Engineers (Webster, et al 1992)
O Piedmont Residual Soils (Coonse 1999)
O Piedmont Residual Soils (Coonse 1999)

Test Summary			
Stone		Soil Subgrade	
# Values	n/a	# Values	34
Average CBR	n/a	Average CBR	43
Weighted Avera	n/a	Weighted Average	37
Max CBR	n/a	Max CBR	100
Min CBR	n/a	Min CBR	21

^{*} Stone Field CBR estimated using published NCDOT relationship. Subgrade Field CBR estimated using relationship indicated above.

Project Name: NC DOT I-95 Widening

S&ME Project No.: 6235-17-048


Test Location: C-25 SB-OSL 1/22/2018 Personnel: MSH Date: 0

Thickness of Stone (in):

Test Data		
	Cummulative	
No. of	Penetration	
Blows	(mm)	
1	10	
1	14	
5	33	
5	52	
5	65	
5	83	
5	96	
5	113	
5	127	
5	144	
5	161	
5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5	178	
5	194	
5	208	
5	230	
5	259	
5	290	
5	329	
5	377	
5	434	
5	484	
5	528	
5	570	
5	602	
5	638	
5	668	
5	694	
5	721	
5	745	
5	768	
5	790	
5	814	

CBR - DCP Correlation for Soil Subgrade
North Carolina Department of Transportation (Shin, et al 1989)
○ U.S. Army Corps of Engineers (Webster, et al 1992)
O Piedmont Residual Soils (Coonse 1999)

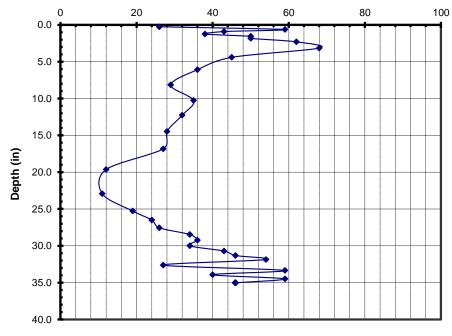
Test Summary			
Stone		Soil Subgrade	
# Values	n/a	# Values	32
Average CBR	n/a	Average CBR	73
Weighted Avera	n/a	Weighted Average	63
Max CBR	n/a	Max CBR	100
Min CBR	n/a	Min CBR	29

^{*} Stone Field CBR estimated using published NCDOT relationship. Subgrade Field CBR estimated using relationship indicated above.

Project Name: NC DOT I-95 Widening

0

S&ME Project No.: 6235-17-048


Test Location: C-20 SB-OSS Date: 1/23/2018 Personnel: MSH

Thickness of Stone (in):

Test Data		
No. of	Cummulative	
Blows	Penetration	
	(mm)	
1	13	
1	19	
1	27	
	36	
1	43	
1	50	
2	67	
5	93	
5		
5	131	
5	178	
5	236	
5	285	
5	338	
5	397	
5	458	
3	540	
3	625	
2	659	
1 1 1 3 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5	687	
2	713	
2	733	
2	752	
2	772	
2	788	
2	803	
2	816	
2		
2	841	
2	853	
2	870	
2	882	
2	897	

CBR - DCP Correlation for Soil Subgrade
North Carolina Department of Transportation (Shin, et al 1989)
○ U.S. Army Corps of Engineers (Webster, et al 1992)
O Piedmont Residual Soils (Coonse 1999)

Test Summary					
Stone		Soil Subgrade			
# Values	n/a	# Values	31		
Average CBR	n/a	Average CBR	39		
Weighted Avera	n/a	Weighted Average	31		
Max CBR	n/a	Max CBR	68		
Min CBR	n/a	Min CBR	11		

^{*} Stone Field CBR estimated using published NCDOT relationship. Subgrade Field CBR estimated using relationship indicated above.

Project Name: NC DOT I-95 Widening

0

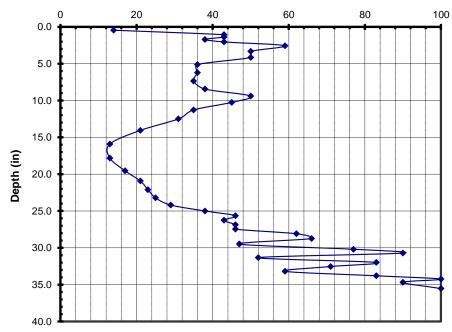
S&ME Project No.: 6235-17-048

Personnel: MSH **Test Location:** C-21 SB-OSS Date: 1/23/2018

Thickness of Stone (in):				
Test Data				
	Cummulative			
No. of	Penetration			
Blows	(mm)			
1	23			
1	31			
1	39			
1	48			
1	56			
3	74			
	95			
3 3 3	116			
3	144			
3	172			
3 3 3	201			
3				
	228			
3	249			
3	272			
3 3 3 3	301			
3	334			
3	380			
2	428			
2	477			
2	516			
2	547			
2	576			
2	603			
3 2 2 2 2 2 2 2 2 2 2 2 2 2 2 3 3 3	626			
2	644			
2	659			
2	675			
2	690			
2	705			
3	722			
3	738			
3 3	760			
3	774			
3	786			
3	806			
	819			
3	834			
3	852			

865

875


887 918

3

3

CBR - DCP Correlation for Soil Subgrade
North Carolina Department of Transportation (Shin, et al 1989)
○ U.S. Army Corps of Engineers (Webster, et al 1992)
O Piedmont Residual Soils (Coonse 1999)

Test Summary				
Stone		Soil Subgrade		
# Values	n/a	# Values	42	
Average CBR	n/a	Average CBR	48	
Weighted Avera	n/a	Weighted Average	41	
Max CBR	n/a	Max CBR	100	
Min CBR	n/a	Min CBR	13	

^{*} Stone Field CBR estimated using published NCDOT relationship. Subgrade Field CBR estimated using relationship indicated above.

Project Name: NC DOT I-95 Widening

S&ME Project No.: 6235-17-048

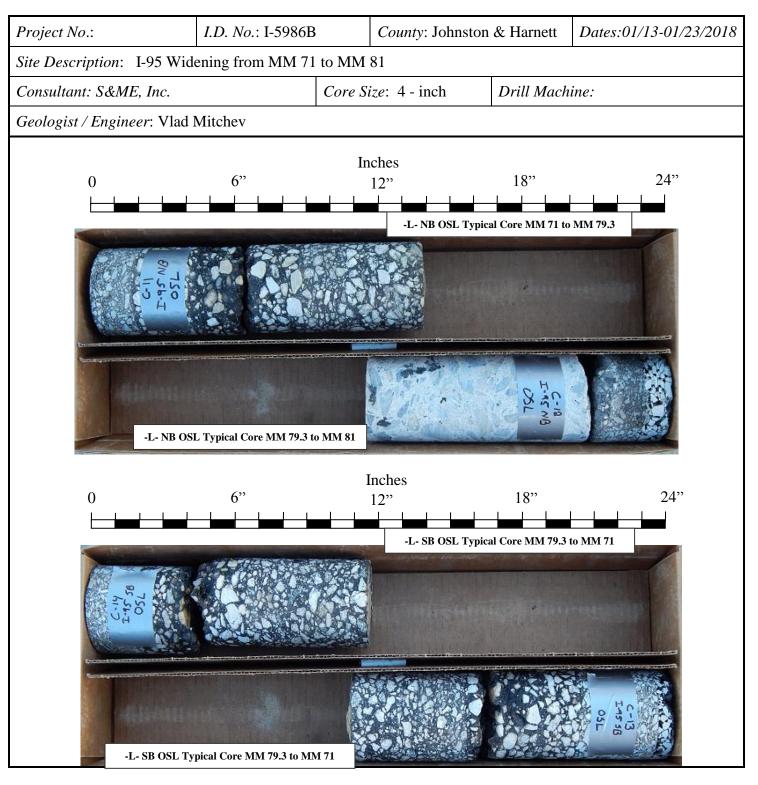
Test Location: C-22 SB-OSS Date: 1/23/2018 Personnel: MSH

Thickness of Stone (in):

Test Data					
No. of	Cummulative				
Blows	Penetration				
	(mm)				
1	19				
1	35				
1	54				
1	88				
1	127				
1	163				
1 1	204				
1	240				
1	264				
1	282				
1 1	297				
	310				
3	357				
3	404				
3	462				
2	518				
2	555				
2	582				
2	603				
2	622				
2	642				
3 3 2 2 2 2 2 2 2 2 2 2 3	665				
2	676				
2	686				
3	701				
3	716				

CBR - DCP Correlation for Soil Subgrade
North Carolina Department of Transportation (Shin, et al 1989)
○ U.S. Army Corps of Engineers (Webster, et al 1992)
O Piedmont Residual Soils (Coonse 1999)

Test Summary				
Stone		Soil Subgrade		
# Values	n/a	# Values	34	
Average CBR	n/a	Average CBR	33	
Weighted Avera	n/a	Weighted Average	26	
Max CBR	n/a	Max CBR	71	
Min CBR	n/a	Min CBR	7	


^{*} Stone Field CBR estimated using published NCDOT relationship. Subgrade Field CBR estimated using relationship indicated above.

I-5986B Final Pavement Design Recommendations Report I-95 Widening

Johnston, Harnett Counties S&ME Project No. 623517048

Appendix V – Core Photos

Notes:

OSL = Outside Lane ISL = Inside Lane

RTL = Right Turn Lane OSS = Outside Shoulder ACCEL = Acceleration Lane

PS = Paved Shoulder LTL = Left Turn Lane

ISS = Inside Shoulder

MED = Median

S&ME, Inc. 3201 Spring Forest Road Raleigh, North Carolina 27616

STATE OF NORTH CAROLINA DEPARTMENT OF TRANSPORTATION

ROY COOPER
GOVERNOR

JAMES H. TROGDON, III
SECRETARY

August 18, 2017

MEMORANDUM TO: Christopher A. Peoples, PE

State Materials Engineer

Steve Kendall, PE

Division Project Engineer

FROM: J. L. Pilipchuk, PE, LG

State Geotechnical Engineer

STATE PROJECT: 53077.1.1 (I-5877) – Turnkey, DDC

COUNTY: Harnett

DESCRIPTION: Improve Interchanges at SR 1811 (Bud Hawkins Road) and

SR 1002 (Long Branch Road)

SUBJECT: Geotechnical Recommendations for Pavement Design

The Geotechnical Engineering Unit has completed the evaluation of the pavement design investigation for this project and presents the following recommendations.

The proposed work consist of improving the interchanges on I-95 at Bud Hawkins Road and Long Branch Road. Improvements consist of modifying ramps and loops at the interchange as well as improving some Y lines and services roads.

<u>Soil Type</u>: The soils encountered beneath the existing roadway consist of roadway embankment and Coastal Plain soils. The predominant soil types are silty/clayey sand (A-2-4/A-2-6) sandy silt (A-4) and sandy/silty clay (A-6/A-7).

Anticipated borrow will likely consist of residual soils that consist of fine and silty sands (A-3, A-2-4). The design soil type is silty sand (A-2-4).

The length of this project is 2.095 miles.

Pavement Design Inputs: The following values are recommended to be used with the Design soil type:

ENVIRONMENTAL INPUTS								
		OPTIMUM	MAXIMUM					
DESIGN	PASSING	MOISTURE	DRY				SPECIFIC	
SOIL	#200	CONTENT	DENSITY				GRAVITY	
TYPE(S)	SIEVE (%)	(%)	(pcf)	D ₆₀ (in)	LL	(PI)	(G_S)	CBR
Sandy Silt (A-2-4)	22	9.8	121.0	0.0136	20	3	2.69	21.5

*Note: Soil data taken from county soil results.

Areas of Special Geotechnical Interest

1) Highly Plastic Clays:

Line	Station and Offset	PI
L	97+00 SB ACCEL	26
L	89+00 SB OSS	24
L	70+00 NB ISS	25
L	122+00 NB ISS	20
L	122+00 NB OSL	25
L	127+00 NB OS	16

2) Wet to Saturated Soils:

			Moisture	Percent
Line	Station and Offset	Depth	Description	Moisture
L	26+00 SB OSS	2.0' - 5.6'	Wet	NT
L	26+00 SB ACCEL	0.0' - 0.6'	Wet	13%
L	26+00 SB OSL	4.5' – 5.6'	Saturated	24.8
L	26+00 SB ISS	0.0' - 4.8'	Wet	NT
L	97+00 SB OSS	3.0' – 5.6'	Wet	19.8%
L	97+00 SB ACCEI	0.0' - 0.8'	Wet	17.6%

• NT = Not Tested

• ACCEL = Acceleration Lane

3) Existing Pavement

Drainage sand was not recorded on this project, however a distinct layer of sand was encountered on the I-5878 project and appeared to be a drainage layer. The Geotechnical Engineering Unit anticipates that this sand layer will be present on this project as well. If the drainage sand is encountered on this project it should be removed. The new pavement structure should be designed to accommodate the lateral movement of water to prevent the blockage of water underneath the pavement.

DESIGN AND CONSTRUCTION RECOMMENDATIONS

I. Subgrade Stability

A. Aggregate Subgrade

Recommend a quantity of 1,600 cubic yards of shallow undercut to be included in the project contract as a contingency item.

Geotextile for Soil Stabilization

Recommend 4,800 square yards of Geotextile for Soil Stabilization to be included in the project contract as a contingency item.

Class IV Subgrade Stabilization

Recommend 3,200 tons of Class IV Subgrade Stabilization material to be included in the project contract as a contingency item.

II. Miscellaneous

A. Proof Rolling

It is recommended that proof rolling be performed on this project and should conform to Standard Specifications, Article 260.

Note: For additional recommendation and quantities refer to the forthcoming Geotechnical Report-Final Design and Construction Recommendations.

JLP/MAM/JBB

ATTACHMENT 1:	Pavement and Subgrade Inventory	12
ATTACHMENT 2:	Core Evaluation Sheet	2
ATTACHMENT 4:	Dynamic Cone Penetrometer Graphs	9

NORTH CAROLINA DEPARTMENT OF TRANSPORTATION GEOTECHNICAL ENGINEERING UNIT

Summary of Quantities

WBS Number: 53077.1.1 County: Harnett Project Engineer: TIP Number: I-5877 Field Office: Central Project Geologist: J. B. Barfield Description: Improve Interchanges at SR 1811 (Bud Hawkins Road) and SR 1002 (Long Branch Road)

Pay Item No.	Pay Item/ Quantity Adjustment	Spec Book Section No. or Special Provision (SP) Reference	Report Section	Alignment	Begin Station	End Station	Quantity	Units / %
0196000000-Е	Geotextile for Soil Stabilization	270 - Geotextile for Soil Stabilization	I. A	Contingency	N/A	N/A	4,800	SY
		To	tal Quan	tity of Geotex	tile for Soil S	tabilization =	4,800	SY
1099500000-Е	Shallow Undercut	505 - Aggregate Subgrade	I. A	Contingency	N/A	N/A	1,600	CY
				Total Quant	tity of Shallov	w Undercut =	1,600	CY
1099700000-Е	Class IV Subgrade Stabilization	505 - Aggregate Subgrade	I. A	Contingency	N/A	N/A	3,200	TON
		To	tal Quant	tity of Class IV	/ Subgrade S	tabilization =	3,200	TON

STATE PROJECT REFERENCE NO. STATE OF NORTH CAROLINA DEPARTMENT OF TRANSPORTATION **DIVISION OF HIGHWAYS CAUTION NOTICE** GEOTECHNICAL ENGINEERING UNIT THE SUBSURFACE INFORMATION AND THE SUBSURFACE INVESTIGATION ON WHICH IT IS BASED WERE MADE FOR THE PURPOSE OF PREPARING THE SCOPE OF WORK TO BE INCLUDED IN THE REQUEST FOR PROPOSAL. THE VARIOUS FELD BORRING LOSS, ROCK CORES AND SOLL TEST DATA AVAILABLE MAY BE REVIEWED OR INSPECTED IN RALEGH BY CONTACTING THE N.C. DEPARTMENT OF TRANSPORTATION, GEOTECHNICAL ENGAGERING UNIT AT 1999 707-680. THE SUBSURFACE PLANS AND REPORTS, FELD BORRING LOGS, ROCK CORES AND SOLL TEST DATA ARE NOT PART OF THE CONTRACT. **ROADWAY** AND ROCK BOUNDARIES WITHIN A BOREHOLE ARE BASED ON CEOTECHWICAL INTERPRETATION ESS ENCOUNTERED IN A SAMPLE, INTERPRETED BOUNDARIES MAY NOT INCESSARLY REFLECT UAL SUBSURFACE CONDITIONS BETWEEN SAMPLED STRATA AND BORGHOLE MYGINATION MAY NOT ESSARLY REFLECT ACTUAL SUBSURFACE CONDITIONS BETWEEN BORNIGS. THE GRANDATION PLACED TEST DATA CAN BE RELED ON ONLY TO THE DEGREE RELIABILITY INNERENT IN THE STANDARD TEST METHOD. THE OBSERVED WATER LEVELS OR SOLL STURE CONDITIONS MICHAELD IN THE STANDARD TEST METHOD. THE OBSERVED WATER LEVELS OR SOL STURE CONDITIONS MICHAELD IN THE SUBSURFACE INVESTIGATIONS ARE AS RECORDED AT THE E OF THE INVESTIGATION, THESE WATER LEVELS OR SOL MOSTURE CONDITIONS MAY VARY SECREMELY WITH TIME ACCORDING TO CLUMATIC CONDITIONS MICLUDING TEMPERATURES, CEPITATION AND WIND, AS WELL AS OTHER NON-CLIMATIC FACTORS. SUBSURFACE INVESTIGATION SHEET NO. **DESCRIPTION** TITLE SHEET LEGEND (SOIL & ROCK) 3-4 PAVEMENT DATA COUNTY HARNETT DCP LOGS 5-9 PROJECT DESCRIPTION I-95 INTERCHANGES AT **CORE PHOTOS** THE BODER OR CONTRACTOR IS CAUTIONED THAT DETAILS SHOWN ON THE SUBSURFACE PLANS ARE PRELAMBARY ONLY AND IN MANY CASES THE FINAL DESIGN DETAILS ARE DEFERENT, FOR BODING AND CONSTRUCTION PLANS AND DOCUMENTS FOR FINAL DESIGN ARE ORDERATION ON THAT PROJECT, THE DEPARTMENT DAYS NOT WARRANT OR GUARANTEE THE SUFFICIENCY OR ACCURACY OF THE INVESTIGATION MADE, NOR THE INTERPRETATIONS MADE, OR OPINION OF THE DEPARTMENT AS TO THE TYPE OF MATERIALS AND CONSTROSS TO BE ENCOUNTERED. THE BODER OR CONTRACTOR IS CAUTONED TO MAKE SUCH ROPERDENT SUBSURFACE INVESTIGATIONS AS HE DEEMS MCCESSARY TO SATISFY HINSELF AS TO CONDITIONS TO BE ENCOUNTERED ON THE PROJECT. THE CONTRACTOR SHALL MAYE NO CLAM FOR ADDITIONAL COMPENSATION OR FOR AN EXCENSION RESULTED FROM THE ACTUAL COMPENSATION OR FOR AN THE SUB-CASED ON THE SUBSURFACE INFORMATIONS. SR 1811 (BUD HAWKINS ROAD) AND SR 1002) (LONG BRANCH ROAD) PAVEMENT AND SUBGRADE INVENTORY REFEREN IESA THE INFORMATION CONTAINED HEREN IS NOT IMPLED OR GUARANTEED BY THE N. C. DEPARTMENT OF TRANSPORTATION AS ACCURATE NOR IS IT CONSIDERED PART OF THE PLANS, SPECEFICATIONS OR CONTRACT FOR THE PROLECT. BY HAVING REQUESTED THIS INFORMATION, THE CONTRACTOR SPECEFICALLY WAVES ANY CLAMS FOR INCREASED COMPRISATION OR EXTENSION OF THE BASED ON DIFFERENCES BETWEEN THE CONDITIONS INDICATED HEREN AND THE ACTUAL CONDITIONS AT THE PROJECT SITE. S&ME Inc. INVESTIGATED BY V.G. MITCHEV DRAWN BY J.R. SWARTLEY CHECKED BY S.S. LANEY SUBMITTED BY S.S. LANEY DATE AUGUST 2017 Madimir G. Mitslysy/2017

DOCUMENT NOT CONSIDERED FINAL UNLESS ALL SIGNATURES COMPLETED

PERSONNEL

PROJECT REPERENCE NO. SHEET NO.

I - 5877

2

NORTH CAROLINA DEPARTMENT OF TRANSPORTATION DIVISION OF HIGHWAYS GEOTECHNICAL ENGINEERING UNIT

SUBSURFACE INVESTIGATION

SOIL AND ROCK LEGEND, TERMS, SYMBOLS, AND ABBREVIATIONS

SOIL DESCRIPTION	GRADATION	ROCK DESCRIPTION	TERMS AND DEFINITIONS
SOIL IS CONSIDERED UNCONSOLIDATED, SEMI-CONSOLIDATED, OR WEATHERED EARTH MATERIALS THAT CAN BE PENETRATED WITH A CONTINUOUS FLIGHT POWER AUGER AND YIELD LESS THAN 190 BLOWS PER FOOT	WELL GRADED - INDICATES A GOOD REPRESENTATION OF PARTICLE SIZES FROM FINE TO COARSE.	HARD ROCK IS NON-COASTAL PLAIN MATERIAL THAT WOULD YIELD SPT REFUSAL IF TESTED. AN INFERRED ROCK LINE INDICATES THE LEVEL AT WHICH NON-COASTAL PLAIN MATERIAL WOULD YIELD SPT REFUSAL.	ALLUVIUM (ALLUV.) - SOILS THAT HAVE BEEN TRANSPORTED BY WATER.
ACCORDING TO THE STANDARD PENETRATION TEST (AASHTO T 206, ASTM DI586). SOIL CLASSIFICATION	UNIFORMLY GRADED - INDICATES THAT SOIL PARTICLES ARE ALL APPROXIMATELY THE SAME SIZE. GAP-GRADED - INDICATES A MIXTURE OF UNIFORM PARTICLE SIZES OF TWO OR MORE SIZES.	SPT REFUSAL IS PENETRATION BY A SPLIT SPOON SAMPLER EQUAL TO OR LESS THAN 0.1 FOOT PER 60 BLOWS IN NON-COASTAL PLAIN MATERIAL. THE TRANSITION BETWEEN SOIL AND ROCK IS OFTEN	AQUIFER - A WATER BEARING FORMATION OR STRATA,
IS BASED ON THE AASHTO SYSTEM, BASIC DESCRIPTIONS GENERALLY INCLUDE THE FOLLOWING: CONSISTENCY, COLOR, TEXTURE, MOISTURE, AASHTO CLASSIFICATION, AND OTHER PERTINENT FACTORS SUCH	ANGULARITY OF GRAINS	REPRESENTED BY A ZONE OF WEATHERED ROCK.	ARENACEOUS - APPLIED TO ROCKS THAT HAVE BEEN DERIVED FROM SAND OR THAT CONTAIN SAND.
AS MINERALOGICAL COMPOSITION, ANGULARITY, STRUCTURE, PLASTICITY, ETC. FOR EXAMPLE, VERY STIFF, GRAY, SILTY CLAY, MOIST WITH INTERBEDDED FINE SAND LAYERS, HIGHLY PLASTIC, A-7-6	THE ANGULARITY OR ROUNDNESS OF SOIL GRAINS IS DESIGNATED BY THE TERMS:	ROCK MATERIALS ARE TYPICALLY DIVIDED AS FOLLOWS: WEATHERED WEATHERED WON-COASTAL PLAIN MATERIAL THAT WOULD YIELD SPT N VALUES >	ARGILLACEOUS - APPLIED TO ALL ROCKS OR SUBSTANCES COMPOSED OF CLAY MINERALS, OR HAVING A NOTABLE PROPORTION OF CLAY IN THEIR COMPOSITION, SUCH AS SHALE, SLATE, ETC.
SOIL LEGEND AND AASHTO CLASSIFICATION	ANGULAR, SUBANGULAR, SUBROUNDED, OR ROUNDED.	ROCK (WR) NON-CUASTAL PLAIN MATERIAL THAT WOULD FIELD SPT N VALUES >	ARTESIAN - GROUND WATER THAT IS UNDER SUFFICIENT PRESSURE TO RISE ABOVE THE LEVEL AT
GENERAL GRANULAR MATERIALS SILT-CLAY MATERIALS ORGANIC MATERIALS CLASS. (≤ 35% PASSING "200) (> 35% PASSING "200) ORGANIC MATERIALS	MINERALOGICAL COMPOSITION MINERAL NAMES SUCH AS QUARTZ, FELDSPAR, MICA, TALC, KAOLIN, ETC.	CRYSTALLINE FINE TO COARSE GRAIN IGNEOUS AND METAMORPHIC ROCK THAT WOULD YIELD SPT REFUSAL IF TESTED, ROCK TYPE INCLUDES GRANITE,	WHICH IT IS ENCOUNTERED, BUT WHICH DOES NOT NECESSARILY RISE TO OR ABOVE THE GROUND SURFACE.
CROUP A-1 A-3 A-2 A-4 A-5 A-6 A-7 A-1, A-2 A-4, A-5	ARE USED IN DESCRIPTIONS WHEN THEY ARE CONSIDERED OF SIGNIFICANCE.	RUCK (CH) GNEISS, GABBRO, SCHIST, ETC.	CALCAREOUS (CALC.) - SOILS THAT CONTAIN APPRECIABLE AMOUNTS OF CALCIUM CARBONATE.
CLASS. A-1-8 A-1-6 A-2-4 A-2-5 A-2-6 A-2-7 A-7-5 A-3 A-6, A-7	COMPRESSIBILITY	NON-CRYSTALLINE ROCK (NCR) FINE TO COARSE GRAIN METAMORPHIC AND NON-COASTAL PLAIN SEDIMENTARY ROCK THAT WOULD YELLD SPT REFUSAL IF TESTED. ROCK (NCR)	COLLUVIUM - ROCK FRAGMENTS MIXED WITH SOIL DEPOSITED BY GRAVITY ON SLOPE OR AT BOTTOM
SYMBOL COORDOOG	SLIGHTLY COMPRESSIBLE LL < 31 MODERATELY COMPRESSIBLE LL = 31 - 50	ROCK TYPE INCLUDES PHYLLITE, SLATE, SANDSTONE, ETC. COASTAL PLAIN COASTAL PLAIN SEDIMENTS CEMENTED INTO ROCK, BUT MAY NOT YIELD	OF SLOPE.
7. PASSING SILT	HIGHLY COMPRESSIBLE LL > 50	SEDIMENTARY ROCK SPT REFUSAL. ROCK TYPE INCLUDES LIMESTONE, SANDSTONE, CEMENTED CP) SHELL BEDS, ETC.	CORE RECOVERY (REC.) - TOTAL LENGTH OF ALL MATERIAL RECOVERED IN THE CORE BARREL DIVIDED BY TOTAL LENGTH OF CORE RUN AND EXPRESSED AS A PERCENTAGE.
"10 50 MX GRANULAR GRANULAR CLAY MUCK,	PERCENTAGE OF MATERIAL	WEATHERING	DIKE - A TABULAR BODY OF IGNEOUS ROCK THAT CUTS ACROSS THE STRUCTURE OF ADJACENT
"200 15 MX 25 MX 10 MX 35 MX 35 MX 35 MX 35 MX 36 MN 36 MN 36 MN 36 MN 36 MN 36 MN	ORGANIC MATERIAL SOILS SOILS OTHER MATERIAL	FRESH ROCK FRESH, CRYSTALS BRIGHT, FEW JOINTS MAY SHOW SLIGHT STAINING, ROCK RINGS UNDER	ROCKS OR CUTS MASSIVE ROCK. DIP - THE ANGLE AT WHICH A STRATUM OR ANY PLANAR FEATURE IS INCLINED FROM THE
MATERIAL PASSING *40	TRACE OF ORGANIC MATTER 2 - 3% 3 - 5% TRACE 1 - 10% LITTLE ORGANIC MATTER 3 - 5% 5 - 12% LITTLE 10 - 20%	HAMMER IF CRYSTALLINE. VERY SLIGHT ROCK GENERALLY FRESH, JOINTS STAINED, SOME JOINTS MAY SHOW THIN CLAY COATINGS IF OPEN.	HORIZONTAL.
LL 48 MX 41 MN 48 MX 41 MN 48 MX 41 MN 48 MX 41 MN 50015 WIH	MODERATELY ORGANIC 5 - 10% 12 - 20% SOME 20 - 35% HIGHLY ORGANIC > 10% > 20% HIGHLY 35% AND ABOVE	(V SLI.) CRYSTALS ON A BROKEN SPECIMEN FACE SHINE BRIGHTLY. ROCK RINGS UNDER HAMMER BLOWS IF	DIP DIRECTION (DIP AZIMUTH) - THE DIRECTION OR BEARING OF THE HORIZONTAL TRACE OF THE LINE OF DIP, MEASURED CLOCKWISE FROM NORTH.
COOLD TARGET OR A MY O MY 12 MY ID MY AMOUNTS OF ORGANIC	GROUND WATER	OF A CRYSTALLINE NATURE. SLIGHT ROCK GENERALLY FRESH, JOINTS STAINED AND DISCOLORATION EXTENDS INTO ROCK UP TO	FAULT - A FRACTURE OR FRACTURE ZONE ALONG WHICH THERE HAS BEEN DISPLACEMENT OF THE
USIAL TYPES CTOME EPACS ORGANIC	₩ATER LEVEL IN BORE HOLE IMMEDIATELY AFTER DRILLING	(SLI.) I INCH. OPEN JOINTS MAY CONTAIN CLAY. IN GRANITOID ROCKS SOME OCCASIONAL FELDSPAR	SIDES RELATIVE TO ONE ANOTHER PARALLEL TO THE FRACTURE.
OF MAJOR GRAVEL, AND SAND SAND CRAVEL AND SAND SOILS SOILS MATERIALS SAND CRAVEL AND SAND SOILS	STATIC WATER LEVEL AFTER 24 HOURS	CRYSTALS ARE DULL AND DISCOLORED. CRYSTALLINE ROCKS RING UNDER HAMMER BLOWS. MODERATE SIGNIFICANT PORTIONS OF ROCK SHOW DISCOLORATION AND WEATHERING EFFECTS. IN	FISSILE - A PROPERTY OF SPLITTING ALONG CLOSELY SPACED PARALLEL PLANES.
CEN DATING SARU	✓ PW PERCHED WATER, SATURATED ZONE, OR WATER BEARING STRATA	(MOD.) GRANITOID ROCKS, MOST FELDSPARS ARE DULL AND DISCOLORED, SOME SHOW CLAY. ROCK HAS	FLOAT - ROCK FRAGMENTS ON SURFACE NEAR THEIR ORIGINAL POSITION AND DISLODGED FROM PARENT MATERIAL.
AS SUBGRADE EXCELLENT TO GOOD FAIR TO POOR POOR UNSUITABLE	SPRING OR SEEP	DULL SOUND UNDER HAMMER BLOWS AND SHOWS SIGNIFICANT LOSS OF STRENGTH AS COMPARED WITH FRESH ROCK.	FLOOD PLAIN (FP) - LAND BORDERING A STREAM, BUILT OF SEDIMENTS DEPOSITED BY THE STREAM.
PI OF A-7-5 SUBCROUP IS ≤ LL - 30 :PI OF A-7-6 SUBCROUP IS > LL - 30		MODERATELY ALL ROCK EXCEPT QUARTZ DISCOLORED OR STAINED. IN GRANITOID ROCKS, ALL FELDSPARS DULL	FORMATION (FM.) - A MAPPABLE GEOLOGIC UNIT THAT CAN BE RECOGNIZED AND TRACED IN THE FIELD.
CONSISTENCY OR DENSENESS RANGE OF STANDARD RANGE OF UNCONFINED	MISCELLANEOUS SYMBOLS	SEVERE AND DISCOLORED AND A MAJORITY SHOW KAOLINIZATION. ROCK SHOWS SEVERE LOSS OF STRENGTH (MOD. SEV.) AND CAN BE EXCAVATED WITH A GEOLOGIST'S PICK, ROCK GIVES "CLUNK" SOUND WHEN STRUCK.	JOINT - FRACTURE IN ROCK ALONG WHICH NO APPRECIABLE MOVEMENT HAS OCCURRED.
PRIMARY SOIL TYPE COMPACTNESS OF PENETRATION RESISTENCE COMPRESSIVE STRENGTH	ROADWAY EMBANKMENT (RE) 25/825 DIP & DIP DIRECTION	IF TESTED, WOULD YIELD SPT REFUSAL	LEGGE - A SHELF-LIKE RIDGE OR PROJECTION OF ROCK WHOSE THICKNESS IS SMALL COMPARED TO
CUNSISTENCY (N-VALUE) (TONS/FT ²) VERY LOOSE < 4	WITH SOIL DESCRIPTION OF ROCK STRUCTURES OF ROCK STRUCTURES SLOPE INDICATOR SLOPE INDICATOR	SEVERE ALL ROCK EXCEPT QUARTZ DISCOLORED OR STAINED, ROCK FABRIC CLEAR AND EVIDENT BUT REDUCED IN STRENGTH TO STRONG SOIL. IN GRANITOID ROCKS ALL FELDSPARS ARE KAOLINIZED	ITS LATERAL EXTENT.
CRANII AP LOOSE 4 TO 10	SOIL SYMBOL SOIL SYMBOL SUPE INDICATOR INSTALLATION	TO SOME EXTENT. SOME FRAGMENTS OF STRONG ROCK USUALLY REMAIN.	LENS - A BODY OF SOIL OR ROCK THAT THINS OUT IN ONE OR MORE DIRECTIONS. MOTTLED (MOT.) - IRREGULARLY MARKED WITH SPOTS OF DIFFERENT COLORS, MOTTLING IN SOILS
MATERIAL MEDIUM DENSE 10 10 30 N/A	ARTIFICIAL FILL (AF) OTHER THAN ROADWAY EMBANKMENT AUGER BORING CONE PENETROMETER	IF TESTED, WOULD YIELD SPT N VALUES > 100 BPF VERY ALL ROCK EXCEPT QUARTZ DISCOLORED OR STAINED, ROCK FABRIC ELEMENTS ARE DISCERNIBLE	USUALLY INDICATES POOR AERATION AND LACK OF GOOD DRAINAGE.
(NON-COHESIVE) VERY DENSE > 50		SEVERE BUT MASS IS EFFECTIVELY REDUCED TO SOIL STATUS, WITH ONLY FRADMENTS OF STRONG ROCK (V SEV.) REMAINING, SAPROLITE IS AN EXAMPLE OF ROCK WEATHERED TO A DEGREE THAT ONLY MINOR	PERCHED WATER - WATER MAINTAINED ABOVE THE NORMAL GROUND WATER LEVEL BY THE PRESENCE OF AN INTERVENING IMPERVIOUS STRATUM.
VERY SOFT < 2 < 0.25 GENERALLY SOFT 2 TO 4 0.25 TO 0.5	— INFERRED SOIL BOUNDARY — CORE BORING SOUNDING ROD	VESTIGES OF ORIGINAL ROCK FABRIC REMAIN. <u>IF TESTED, WOULD YIELD SPT N VALUES < 100 BPF</u>	RESIDUAL (RES.) SOIL - SOIL FORMED IN PLACE BY THE WEATHERING OF ROCK.
SILT-CLAY MEDIUM STIFF 4 TO 8 0.5 TO 1.0 MATERIAL STIFF 8 TO 15 1 TO 2	## INFERRED ROCK LINE MONITORING WELL TEST BORING WITH CORE	COMPLETE ROCK REDUCED TO SOIL. ROCK FABRIC NOT DISCERNIBLE, OR DISCERNIBLE ONLY IN SMALL AND SCATTERED CONCENTRATIONS, QUARTZ MAY BE PRESENT AS DIKES OR STRINGERS, SAPROLITE IS	ROCK QUALITY DESIGNATION (ROD) - A MEASURE OF ROCK QUALITY DESCRIBED BY TOTAL LENGTH OF
(COHESIVE) VERY STIFF 15 TO 30 2 TO 4	TTTTT ALLUVIAL SOIL BOUNDARY A PIEZOMETER NSTALLATION - SPT N-VALUE	SLATTERED CONCENTRATIONS, QUARTZ MAY BE PRESENT AS DIKES OR STRINGERS, SAPROLITE IS ALSO AN EXAMPLE.	ROCK SEGMENTS EQUAL TO OR GREATER THAN 4 INCHES DIVIDED BY THE TOTAL LENGTH OF CORE RUN AND EXPRESSED AS A PERCENTAGE.
HARD > 30 > 4 TEXTURE OR GRAIN SIZE	RECOMMENDATION SYMBOLS	ROCK HARDNESS	SAPROLITE (SAP.) - RESIDUAL SOIL THAT RETAINS THE RELIC STRUCTURE OR FABRIC OF THE PARENT
		VERY HARD CANNOT BE SCRATCHED BY KNIFE OR SHARP PICK, BREAKING OF HAND SPECIMENS REQUIRES SEVERAL HARD BLOWS OF THE GEOLOGIST'S PICK.	ROCK,
U.S. STD. SIEVE SIZE 4 10 40 60 200 270 OPENING (MM) 4.76 2.80 0.42 0.25 0.075 0.053	UNDERCUT UNSUITABLE WASTE ACCEPTABLE, BUT NOT TO BE	HARD CAN BE SCRATCHED BY KNIFE OR PICK ONLY WITH DIFFICULTY. HARD HAMMER BLOWS REQUIRED	SILL - AN INTRUSIVE BODY OF IGNEOUS ROCK OF APPROXIMATELY UNIFORM THICKNESS AND RELATIVELY THIN COMPARED WITH ITS LATERAL EXTENT, THAT HAS BEEN EMPLACED PARALLEL TO
BOULDER COBBLE GRAVEL COARSE FINE SILT CLAY	SHALLOW UNDERCUT UNCLASSIFIED EXCAVATION - USED IN THE TOP 3 FEET OF EMBANKMENT OR BACKFILL	TO DETACH HAND SPECIMEN.	THE BEDDING OR SCHISTOSITY OF THE INTRUDED ROCKS.
(BLDR.) (COB.) (GR.) (CSE. SD.) (F SD.) (SL.) (CL.)	ABBREVIATIONS	MODERATELY CAN BE SCRATCHED BY KNIFE OR PICK, GOUGES OR GROOVES TO 0.25 INCHES DEEP CAN BE HARD EXCAVATED BY HARD BLOW OF A GEOLOGIST'S PICK, HAND SPECIMENS CAN BE DETACHED	SLICKENSIDE - POLISHED AND STRIATED SURFACE THAT RESULTS FROM FRICTION ALONG A FAULT OR SLIP PLANE.
GRAIN MM 305 75 2.0 0.25 0.05 0.005	AR - AUGER REFUSAL MED MEDIUM VST - VANE SHEAR TEST	BY MODERATE BLOWS.	STANDARD PENETRATION TEST (PENETRATION RESISTANCE) (SPT) - NUMBER OF BLOWS (N OR BPF) OF
SIZE IN. 12 3	BT - BORING TERMINATED MICA MICACEOUS WEA WEATHERED CL CLAY MOD MODERATELY 7 - UNIT WEIGHT	MEDIUM CAN BE GROOVED OR GOUGED 0.05 INCHES DEEP BY FIRM PRESSURE OF KNIFE OR PICK POINT. CAN BE EXCAVATED IN SMALL CHIPS TO PEICES I INCH MAXIMUM SIZE BY HARD BLOWS OF THE	A 140 LB. HAMMER FALLING 30 INCHES REQUIRED TO PRODUCE A PENETRATION OF 1 FOOT INTO SOIL WITH A 2 INCH OUTSIDE DIAMETER SPLIT SPOON SAMPLER. SPT REFUSAL IS PENETRATION EQUAL
SOIL MOISTURE - CORRELATION OF TERMS	CPT - CONE PENETRATION TEST NP - NON PLASTIC $\hat{\gamma}_{ m d}$ - DRY UNIT WEIGHT CSE COARSE ORG ORGANIC	POINT OF A GEOLOGIST'S PICK.	TO OR LESS THAN 0.1 FOOT PER 60 BLOWS.
SOIL MOISTURE SCALE FIELD MOISTURE GUIDE FOR FIELD MOISTURE DESCRIPTION GUIDE FOR FIELD MOISTURE DESCRIPTION	DMT - DILATOMETER TEST PMT - PRESSUREMETER TEST SAMPLE ABBREVIATIONS	SOFT CAN BE GROVED OR GOUGED READILY BY KNIFE OR PICK. CAN BE EXCAVATED IN FRAGMENTS FROM CHIPS TO SEVERAL INCHES IN SIZE BY MODERATE BLOWS OF A PICK POINT. SMALL, THIN	STRATA CORE RECOVERY (SREC.) - TOTAL LENGTH OF STRATA MATERIAL RECOVERED DIVIDED BY TOTAL LENGTH OF STRATUM AND EXPRESSED AS A PERCENTAGE.
- SATURATED - USUALLY LIQUID; VERY WET, USUALLY	DPT - DYNAMIC PENETRATION TEST SAP SAPROLITIC S - BULK e - VOID RATIO SD SAND, SANDY SS - SPLIT SPOON	PIECES CAN BE BROKEN BY FINGER PRESSURE.	STRATA ROCK QUALITY DESIGNATION (SROD) - A MEASURE OF ROCK QUALITY DESCRIBED BY TOTAL LENGTH OF ROCK SEGMENTS WITHIN A STRATUM EQUAL TO OR GREATER THAN 4 INCHES DIVIDED BY
(SAT.) FROM BELOW THE GROUND WATER TABLE	F - FINE SL SILT, SILTY ST - SHELBY TUBE	VERY CAN BE CARVED WITH KNIFE. CAN BE EXCAVATED READILY WITH POINT OF PICK. PIECES 1 INCH SOFT OR MORE IN THICKNESS CAN BE BROKEN BY FINGER PRESSURE. CAN BE SCRATCHED READILY BY	THE TOTAL LENGTH OF STRATA AND EXPRESSED AS A PERCENTAGE.
PLASTIC SEMISOLID; REQUIRES DRYING TO	FOSS FOSSILIFEROUS SLI SLIGHTLY RS - ROCK FRAC FRACTURED, FRACTURES TCR - TRICONE REFUSAL RT - RECOMPACTED TRIAXIAL	FINGERNAIL.	TOPSOIL (TS.) - SURFACE SOILS USUALLY CONTAINING ORGANIC MATTER.
RANGE < - WET - (W) ATTAIN OPTIMUM MOISTURE	FRAGS FRAGMENTS	FRACTURE SPACING BEDDING TERM SPACING TERM THICKNESS	BENCH MARK: • see note
	EQUIPMENT USED ON SUBJECT PROJECT	VERY WIDE MORE THAN 10 FEET VERY THICKLY BEDDED 4 FEET	ELEVATION: FEET
OM OPTIMUM MOISTURE - MOIST - (M) SOLID; AT OR NEAR OPTIMUM MOISTURE SL SHRINKAGE LIMIT	DRILL UNITS: ADVANCING TOOLS: HAMMER TYPE:	WIDE	
PERMISES ARRITIONAL WATER TO	CME-45C CLAY BITS AUTOMATIC MANUAL	CLOSE 0.16 TO 1 FOOT VERY THINLY BEDDED 0.03 - 0.16 FEET VERY CLOSE LESS THAN 0.16 FEET THICKLY LAMINATED 0.008 - 0.03 FEET	NOTES:
- DRY - (D) ATTAIN OPTIMUM MOISTURE	CME-55 G* CONTINUOUS FLIGHT AUGER CORE SIZE: CORE SIZE:	THINLY LAMINATED < 0.008 FEET]
PLASTICITY	☐ ☐ 8"HULLOW AUGERS ☐-B ☐-H	INDURATION	NBL - NORTHBOUND LANE
PLASTICITY INDEX (PI) DRY STRENGTH	CME-550	FOR SEDIMENTARY ROCKS, INDURATION IS THE HARDENING OF MATERIAL BY CEMENTING, HEAT, PRESSURE, ETC. RUBBING WITH FINGER FREES NUMEROUS GRAINS;	SBL - SOUTHBOUND LANE OSS - OUTSIDE SHOULDER
NON PLASTIC 0-5 VERY LOW SLIGHTLY PLASTIC 6-15 SLIGHT	VANE SHEAR TEST LUNGCARBIDE INSERTS	FRIABLE GENTLE BLOW BY HAMMER DISINTEGRATES SAMPLE.	ISS - INSIDE SHOULDER
MODERATELY PLASTIC 16-25 MEDIUM HIGHLY PLASTIC 26 OR MORE HIGH	CASING W/ ADVANCER POST HOLE DIGGER	MODERATELY INDURATED GRAINS CAN BE SEPARATED FROM SAMPLE WITH STEEL PROBE:	OSL - OUTSIDE LANE ISL - INSIDE LANE
COLOR	PORTABLE HOIST TRICONE STEEL TEETH HAND AUGER	BREAKS EASILY WHEN HIT WITH HAMMER.	I IS INSIDE LAINE
	TRICONE TUNGCARB. SOUNDING ROD	INDURATED GRAINS ARE DIFFICULT TO SEPARATE WITH STEEL PROBE: DIFFICULT TO BREAK WITH HAMMER.	
DESCRIPTIONS MAY INCLUDE COLOR OR COLOR COMBINATIONS (TAN, RED, YELLOW-BROWN, BLUE-GRAY). MODIFIERS SUCH AS LIGHT, DARK, STREAKED, ETC. ARE USED TO DESCRIBE APPEARANCE.	CORE BIT VANE SHEAR TEST	EXTREMELY INDURATED SHARP HAMMER BLOWS REQUIRED TO BREAK SAMPLE;	
The state of the s		SAMPLE BREAKS ACROSS GRAINS.	DATE: 8-15-14

PAVEMENT INVESTIGATION DATA SHEET

Project:	53077.1.1	County:	HARNETT
TIP:	I-5877	Route:	I-95 INTERCHANGES AT SR 1811 (BUD HAWKINS ROAD) & SR 1002 (LONG BRANCH ROAD)

07/26/2017 - 07/27/2017 Date: VGM/JRW Notes By:

		Width						Thickness	3			Subgrade						GPS Coo	rdinates
Position (Sta.,Lane,Shldr.)	Cut/Fill (Est. of Amount)	Lane(s)	Shoulder(s)	Offset Distance (See Notes)	Crown "C" or Super "S"	Gross to Top of Soil	Asphalt	Concrete	ABC	Stabilized Subgrade Soil	Pavement Layering	Description	Sample Number	AASHTO Classification	Soil Moisture	Probe Depth	Asphalt Notes	Northing	Easting
1 00.00					1							0.0'-2.0' Roadway Embankment, Tan, Orange, Sandy Clay	I D (00	A 7.0 I	M				
-L- 26+00 SB OSS	FILL 2.0'	-		1.5'	С	11.0"	11.0"	-	-	-		2.0'-5.6' Coastal Plain, Gray, Sandy Silt	Reference S-6 Reference S-3	A-7-6 A-4	W	5.6'	No visual distress. Core disintegrated, measured in core hole.	546037.5	2110733.0
-L- 26+00 SB ACCEL	FILL 2.0'	ACCEL 10.1'	2.8'	3.8'	С	10.50"	10.50"	-	-	-	Aspnait	4.5'-5.6' Gray, Sandy Silt	S-7 Reference S-6 Reference S-9 S-8	A-2-4 A-7-6 A-4 A-4	W M M S	5.6'	Low severity transverse cracking, oxidation (loss of aggregate), moderate severity longitudinal joint crack between the accel lane and travel lane.	546037.5	2110732.9
-L- 26+00 SB OSL	FILL 3.5'	12.2'		1.6'	С	13.25"	13.25"	-	-	-	Asphalt	0-0.6' Roadway Embankment, Tan, Silty Sand 0.6'-3.5' Tan, Orange, Sandy Clay 3.5'-5.6' Coastal Plain. Grav Silt	Reference S-7 Reference S-6 S-9	A-2-4 A-7-6 A-4	W M M	5.6'	Low severity longitudinal fatigue cracking in outside wheel path of outside lane. Oxidation (loss of aggregate).	546033.1	2110742.3
-L- 26+00 SB ISS	FILL 3.5'	11.6'	3.8'	1.9'	С	10.75"	10.75"	-	-	-	Asphalt	0.0'-3.5' Roadway Embankment, Tan, Orange, Sandy Clay 3.5'-4.8' Coastal Plain, Gray Silt 4.8'-5.6' Gray, Sandy Silt	Reference S-6 Reference S-9 Reference S-8	A-7-6	W W S	5.6'	Low severity longitudinal fatigue cracking in outside wheel path of inside lane.	546023.5	2110763.0
-L- 89+00 SB OSS	FILL 3.3'	12.0'	10.5'	5.8'	С	7.50"	7.50"	-	-	-	Asphalt	0.0'-0.6' Roadway Embankment, Tan, Orange, Silty Sand 0.6'-3.3' Tan, Orange, Silty Clay 3.3'-5.6' Coastal Plain, Gray, Sandy Silt	S-5 S-6 Reference S-3	A-2-4 A-7-6 A-4	M M	5.6'	Moderate severity transverse cracking in shoulder, 2-3' in length. Low severity longitudinal cracking in midwidth lane.	551742.2	2113406.6
-	-	-	-	-	-	-		-	-	-	-	-	-	=	-	-	-	-	-
-	-	-	-	-	-	-	i i	-	-	-	-	-	-	-	-	-	-	-	-
-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
						<u> </u>				<u> </u>	L			l l					
-L- 97+00 SB OSS	FILL 3.0'	-		1.8'	С	10.25"	10.25"	-	-	-	Asphalt	0.0'-3.0' Roadway Embankment, Tan, Orange, Sandy Clay 3.0'-5.6' Coastal Plain, Gray, Sandy Silt	Reference S-2 S-3	A-7-6 A-4	M W	5.6'	Low to moderate severity longitudinal cracking in shoulder (1' in length).	552468.1	2113742.7
-L- 97+00 SB ACCEL	FILL 3.4'	ACCEL 10.8'	2.5'	-4.0'	С	9.75"	9.75"	-	-	-	Asphalt	0.0'-0.8' Roadway Embankment, Tan, Orange, Clayey, Fine Sand 0.8'-3.4' Tan, Orange, Sandy Clay 3.4'-5.6' Coastal Plain, Gray, Sandy Silt	S-1 S-2 Reference S-3		W M	5.6'	Severe transverse cracking (4-8' in length). Moderate severity longitudinal fatigue cracking in both wheel paths of accel lane. Oxidation (loss of aggregate). Severe longitudinal joint crack between accel and travel lane.	552463.9	2113751.5
-L- 97+00 SB OSL	FILL 3.4'	12.1'		1.9'	С	14.0"	14.0"	-	-	-	Asphalt	0.0'-1.0' Roadway Embankment, Tan, Orange, Clayey, Fine Sand 1.0'-3.4' Tan, Orange, Sandy Clay 3.4'-5.6' Coastal Plain, Gray, Sandy Silt	S-4 Reference S-2 Reference S-3	A-2-6 A-7-6	M M	5.6'	No visual distress in travel lanes, newly resurfaced.	552459.0	2113762.1
-L- 97+00 SB ISS	FILL 3.7'	12.0'	3.5'	2.0'	С	9.75"	9.75"	-	-	-	Asphalt	0.0'-3.7' Roadway Embankment, Tan, Orange, Sandy Clay 3.7'-5.6' Coastal Plain, Gray, Sandy Silt	Fererence S-2 Reference S-3	A-7-6	M M	5.6'	No visual distress.	552447.7	2113786.1
					1						1		<u>'</u> T	<u> </u>					
	-				1					ļ	1		1	· · · · · · · · ·	<u> </u>				

Notes:
OSL = Outside Lane
ISL = Inside Lane CTL = Center Turn Lane RTL = Right Turn Lane CL = Center Lane DECEL = Deceleration Lane LTL = Left Turn Lane ACCEL = Acceleration Lane

OSS = Outside Shoulder ISS = Inside Shoulder GM = Grass Median OGS = Outside Grass Shoulder PS = Paved Shoulder RT LN = Right Lane LT LN = Left Lane COL = Collector Lane

RT = Right NB = Northbound LT = Left SB = Southbound (I) = Inside FW = From White (O) = Outside FY = From Yellow

S&ME, Inc. 3201 Spring Forest Road Raleigh, North Carolina 27616

PAVEMENT INVESTIGATION DATA SHEET

Project:	53077.1.1
TIP:	I-5877

County: HARNETT I-95 INTERCHANGES AT SR 1811 (BUD HAWKINS ROAD) & SR 1002 (LONG BRANCH ROAD) Route:

07/26/2017 - 07/27/2017 Date: VGM/JRW Notes By:

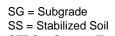
		Width			T			Thickn	ess			Subgrade					T	GPS Coo	rdinates
Position (Sta.,Lane,Shldr.)	Cut/Fill (Est. of Amount)	Lane(s)	Shoulder(s)	Offset Distance (See Notes)	Crown "C" or Super "S"	Gross to Top of Soil	Asphalt	Concrete	ABC	Stabilized Subgrade Soil	Pavement Layering	Description	Sample Number	AASHTO Classification	Soil Moisture	Probe Depth	Asphalt Notes	Northing	Easting
-L- 70+00	FILL		ı	_							ı	0.0'-3.5' Roadway Embankment, Orange Sand		1 A 1 b	T N4		High accords to a constitution of the constitu		
NB OSS	3.5'			4.9'	С	11.0"	11.0"	-	-	-	Asphalt	3.5'-5.6' Coastal Plain, Tan, Orange, Sandy Clay	S-3 Reference S-1	A-1-b A-7-6	M	5.6'	High severity transverse cracking (2-4' in length). Moderate severity longitudinal cracking (3-5" in length).	549995.2	2112656.6
-L- 70+00 NB OSL	FILL 3.4'	12.2'	9.0'	2.2'	С	15.0'	15.0"	-	-	-	Asphalt	0.0'-3.4' Roadway Embankment, Orange Sand 0.6'-2.0' Tan, Orange, Sandy Clay	Reference S-3 Reference S-1	A-1-b A-7-6	M	5.6'	No visual distress in travel lanes, newly resurfaced.	549984.0	2112680.5
-L- 70+00 NB ISS	FILL 3.1'	11.8'	3.7'	2.9'	С	10.25"	10.25"	-	-	-	Asphalt	0.0'-3.1' Roadway Embankment, Tan, Orange, Sandy Clay 3.1'-5.6' Coastal Plain, Tan, Sandy Clay	S-1 -	A-7-6 A-7-6	M M	5.6'	Asphalt core disintegrated, measured core hole.	549976.9	2112695.7
-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
-L- 122+00	FILL			Т	T	ı	I								П		I		
NB OSS	5.6'	ACCEL 9.8'		1.9'	С	13.75"	13.75"	-	-	-	Asphalt	0.0'-5.6' Roadway Embankment, Tan, Orange, Sandy Clay	Reference S-4	A-6	М	5.6'	No visual distress.	554683.0	2114907.5
-L- 122+00 NB ACCEL	FILL 5.6'	ACCLL 9.0	2.8'	5.2'	С	10.0"	10.0"	-	-	-	Asphalt	0.0'-5.6' Roadway Embankment, Tan, Orange, Silty Clay	S-4	A-7-5	М	5.6'	Moderate to severe longitudinal fatigue cracking in inside wheel path. Moderate severity transverse cracking (3-5' in length). Oxidation.	554688.2	2114896.5
-L- 122+00 NB OSL	FILL 5.6'	12.3'		1.6'	С	13.75"	13.75"	-	-	-		0.0'-5.6' Roadway Embankment, Tan, Orange, Sandy Clay	S-5	A-7-6	М	5.6'	No visual distress in travel lanes, newly resurfaced.	554693.3	2114885.6
-L- 122+00 NB ISS	FILL 3.0'	12.1'	4.1'	2.9'	С	10.25"	10.25"	-	-	-	Asphalt	0.0'-3.0' Roadway Embankment, Tan, Orange, Sandy Clay 3.0'-5.6' Coastal Plain, Tan, Silty Clay	Reference S-1 S-2	A-7-6 A-6	M M		No visual distress.	554703.4	2114864.0
-L- 127+00			I	1		Ī	1				ı	0.0'-2.3' Roadway Embankment, Orange Sand	Deference C 2	1 A 1 h	L N4		Madagata		
NB OSS	FILL 2.3'	12.3'	10.2'	6.7'	С	7.50"	7.50"	-	-	-	Asphalt	2.3'-5.6' Coastal Plain, Tan, Sandy Clay	Reference S-3 S-6	A-1-b A-6	M	5.6'	Moderate severity transverse cracking, sealed but some reopened. Oxidation.	555136.6	2115117.8
						I							Ī	l	Ī				
			•		-	<u> </u>	•			•			+		-				+

Notes:
OSL = Outside Lane CTL = Center Turn Lane RTL = Right Turn Lane ISL = Inside Lane CL = Center Lane DECEL = Deceleration Lane LTL = Left Turn Lane

ACCEL = Acceleration Lane

OSS = Outside Shoulder ISS = Inside Shoulder LT LN = Left Lane GM = Grass Median OGS = Outside Grass Shoulder

PS = Paved Shoulder RT LN = Right Lane COL = Collector Lane


RT = Right NB = Northbound LT = Left SB = SouthboundFW = From White (I) = Inside (O) = Outside FY = From Yellow

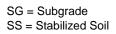
S&ME, Inc. 3201 Spring Forest Road Raleigh, North Carolina 27616

	COME DEVICED OMETER			IP	P	ROJECT I		ROUTE				
		ROMETER		877		53077.1.1				I-95		
D/	ATA COD	E SHEET		JNTY		ENGINEE		T		HNICIAN	S	
TECTI	OCATIONS	PRECEDITION		NETT RUN		AD MITCH		DIDTION	1	S&ME DATE	DLIN	
TESTL	-L- 26+00	S DESCRIPTION SB OSS		/27/2017	IEST	-L- 26+00				7/26 - 7/2		
DATUM	CUT/ FILL			TING	DATUM CUT/ FILL			NORTHIN			STING	
SG	FILL	546037.5	2110	733.0	SG FILL			546037.5			0732.9	
	Cumulativ	e Penetration in Centi	meters				ulative Pe	enetration ir	n Centi	meters		
2.4					1.8	87.3						
5.3					2.2	90.3 92.4						
7.9 9.7					2.8 3.5	94.2						
10.9					4.1	95.7						
12.6					4.9	97.1						
15.5					5.7	98.8						
19.9					6.4	101.0						
24.5					7.4	103.5						
27.0 28.4					8.4 9.5	106.2 109.1						
30.0					9.5 10.5	112.3						
31.5					11.5	115.3						
32.9					12.4	1.5.5						
34.7					13.6							
36.2					14.8							
38.0					16.1							
40.2 42.7					17.2 18.4							
45.4					19.6							
48.0					21.5							
50.4					23.5							
52.9					25.5							
56.1					27.4							
59.4					29.3	_				_		
62.7 65.6					30.6 31.9							
68.7					33.0							
71.4					34.2							
74.5					35.7							
77.4					37.2							
80.0					38.5							
82.0 83.6					39.9 41.2	_				_		
85.1					42.5							
86.7					43.8							
88.3					45.2							
90.2					46.7							
92.1					48.2							
93.6 95.6					49.7 51.3							
95.6					53.0							
99.6					54.8							
102.0					58.2							
104.7					61.7							
107.1					65.1							
110.1					68.2							
113.9					70.7 73.5							
					73.5 76.4							
					79.2							
					81.8							
					84.6							

CONE PENETROMETER			I-5877	Ę	53077.1.1		I-95				
1 .	DATA CO	DE SHEET	COUNTY	Е	NGINEER		TECHNICIANS				
			HARNETT		D MITCHEV		S&ME				
TEST	LOCATION	S DESCRIPTION			OCATION DES	SCRIPTION	DATE RUN				
,		0 SB OSL	7/26 - 7/27/2017		-L- 26+00 SB I		7/26 - 7/27/2017				
DATUM	CUT/ FILL	NORTHING		DATUM	CUT/ FILL	NORTHING	EASTING				
SG	FILL	546033.1	2110742.3	SG	FILL	546023.5	2110763.0				
	Cumula	tive Penetration in	n Centimeters		Cumulative	e Penetration in (Centimeters				
1.3	21.8	77.7		2.3	53.0						
2.1	22.1	78.8		4.0	54.2						
2.8	22.5	80.1		5.0	55.5						
3.4	22.9	81.5		5.7	56.4						
3.8	23.3	84.4		6.8	57.3						
4.1	23.8	86.8		7.5	58.2						
4.5	24.2	89.8		8.0	59.0						
4.8	24.8	91.8		8.4	59.7						
5.2	25.4	94.1		9.0	60.5						
5.6	26.0	96.5		9.7	61.2						
5.9	26.6	97.8		10.3	61.8						
6.2	27.3	99.3		11.0	62.5						
6.6	28.1			11.6	63.2						
7.0	28.9			12.2	63.9						
7.3	29.7			12.8	64.6						
7.6	30.6			13.3	65.3						
7.9	31.5			13.9	66.1						
8.2 8.5	32.2 32.9			14.6 15.3	66.9 67.8						
8.8	33.6			15.9	68.7						
9.2	34.5			16.6	69.6						
9.6	35.4			17.3	70.6						
10.0	36.4			18.0	71.5		_				
10.3	37.3			18.7	72.5						
10.7	38.2			19.5	73.8						
11.0	39.1			20.2	75.1						
11.3	40.5			21.1	76.5						
11.7	41.9			22.0	78.5						
12.0	43.4			23.0	80.5						
12.4	45.4			24.0	82.4						
12.8	47.4			25.0	85.4						
13.2	48.6			26.0	88.4						
13.6	49.8			27.3	91.3						
14.1	51.4			28.7	94.4						
14.6	53.0			30.2	97.5						
15.0	54.5			33.2	100.0						
15.4 15.8	55.9 57.3			36.2 39.1	102.2						
15.8 16.2	57.3			40.5	104.0						
16.5	59.9			41.5	106.9						
16.9	61.2			42.4	108.4						
17.3	62.7			42.4	109.6						
17.7	64.3			43.6	111.3						
18.1	65.5			44.0	112.3						
18.5	66.8			44.7	113.9						
18.8	68.0			45.4	115.5						
19.3	69.2			46.0	116.7						
19.6	70.5			46.9	118.0						
19.9	71.9			47.9	119.5						
20.2	73.3			48.9	120.9						
20.6	74.6			49.9	122.3						
21.0	75.6			50.8							
21.4	76.6			51.7							

CTBC = Cement-Treated Base Course
ABC = Aggregate Base Course
ESG = Estimated Subgrade

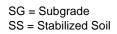
				IP .	PROJECT I.D.	ROUTE
	ONE PENE	TROMETER		877	53077.1.1	I-95
1 ~	DATA COL			JNTY	ENGINEER	TECHNICIANS
	DATACOL	L SHLLI		NETT	VLAD MITCHEV	S&ME
TEST	LOCATION D	ESCRIPTION	DATER		TEST LOCATION DESCR	
ILSI	-L- 89+00 SE		7/26 - 4/27		TEST LOCATION DESCR	FIION DATE NON
DATUM		NORTHING		STING		
SG	FILL	551742.2		3406.6		
		ve Penetration in C			Cumulative Per	netration in Centimeters
1.9	75.7					
2.9	77.2					
3.9	78.7					
5.0	80.1					
6.3	81.8					
8.5	83.5					
11.5	85.4	_	_			
15.5 19.3	86.4 87.4					
21.6	88.3					
22.8	88.9					
23.9	89.5					
24.9	89.9					
25.7	90.4					
26.7	90.9					
27.9	91.5					
29.2	92.1					
30.8	92.7					
32.5	93.3					
34.2	93.9					
36.8 40.1	94.5 95.1					
43.3	95.1					
44.8	96.5					
46.0	97.3					
47.1	98.2					
48.2	99.1					
49.3	99.9					
50.7	101.0					
51.9	102.1					
53.0	103.2 104.4					
53.9 54.6	104.4	_	_			
55.2	106.6					
55.9	108.0					
56.5	109.1					
57.0	110.3					
57.5	112.2					
58.0	114.1					
58.9	116.1					
59.8	119.4					
60.8	122.7					
61.6 62.4	126.5					
63.3						
64.7						
66.1						
67.6						
68.9						
70.1						
71.3						
72.8						
74.3						


SG = Subgrade
SS = Stabilized Soil
CTBC = Cement-Treated Base Course
ABC = Aggregate Base Course
ESG = Estimated Subgrade

S&ME, Inc. 3201 Spring Forest Road Raleigh, North Carolina 27616

			TIP	PF	ROJECT I.D.		ROUTE			
l cc	NE PENET	ROMETER	I-5877		53077.1.1	T	I-95			
	DATA CODE		COUNTY		ENGINEER	Т	ECHNICIANS			
			HARNETT		AD MITCHEV		S&ME			
TEST	LOCATIONS	DESCRIPTION	DATE RUN		LOCATION DES	CRIPTION	DATE RUN			
	-L- 97+00 S		7/26 - 7/27/2017		-L- 97+00 SB AC					
DATUM	CUT/ FILL	NORTHING	EASTING	DATUM	CUT/ FILL	NORTHING EASTING				
SG	FILL	552468.1	2113742.7	SG	FILL	552463.9	2113751.5			
1.0	Cumulativ	e Penetration in Centin	neters	1.5		Penetration in Ce	ntimeters			
4.8 9.2				1.5 2.4	77.7 78.5					
10.6				3.5	79.4					
11.8				5.0	80.4					
13.0				7.6	81.3					
14.5				10.5	82.3					
16.4				12.4	83.3					
18.8				14.3	84.4					
21.9				16.7	85.5					
25.3				18.5	86.6					
28.8				20.5	87.7					
33.6 39.1				22.2 24.0	88.7 89.8					
41.9				26.7	90.9					
44.4				28.9	92.0					
47.7				30.7	93.0					
51.1				32.0	94.1					
55.6				32.8	95.2					
60.1				33.7	96.4					
66.5				34.5	97.6					
72.5				35.4	98.8					
83.4				36.50	100.1					
91.0				37.6 38.7	101.4 102.7					
110.4 121.1	_			39.9	104.0					
121.1				41.1	105.0					
				42.4	106.1					
				43.7	10011					
				45.0						
				46.3						
				48.0						
				49.7						
				51.0						
				52.4 53.4						
				54.5						
				55.7						
				56.9						
				58.1						
				59.4						
				60.8						
				62.2						
				63.6						
				65.0						
				66.4 67.8						
				69.3						
				70.8						
				72.1						
				73.5						
				74.6						
				75.8						
				76.8						

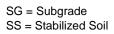
CONE PENETROMETER			I-5877		53077.1.1		I-95				
	DATA COI	DE SHEET	Γ	COUNTY	E	NGINEER		TECHNICIANS			
				HARNETT	VL/	AD MITCHEV	T	S&ME			
TES	T LOCATION	IS DESCRIF	TION	DATE RUN	TEST	LOCATION DES	CRIPTION	DATE RUN			
		SB OSL		7/26 - 7/27/201		-L- 97+00 SB IS		7/26 - 7/27/2017			
DATUM	CUT/ FILL	NORT	THING	EASTING	DATUM	CUT/ FILL	NORTHING	EASTING			
SG	FILL	5524	159.0	2113762.1	SG	FILL	552447.7	2113786.1			
	Cumula	itive Penetra	tion in Cen	timeters		Cumulative	Penetration in (Centimeters			
1.2	25.3	64.3			2.4	71.6					
2.0	26.0	64.6			3.8	72.6					
2.7	26.8	64.9			5.2	73.6					
3.3	27.6	65.2			5.8	74.7					
3.9	28.4	65.5			6.6	75.7					
4.4	29.2	65.8			7.6	76.7					
4.9	29.9	66.1			8.5	77.8					
5.3	31.0	66.4			10.2	78.9					
5.8 6.3	32.0 33.0	66.7 67.1			11.8 13.5	79.9 80.9					
6.8	33.6	67.5			15.1	81.9					
7.3	34.3	68.0			17.1	82.9					
7.8	34.9	68.5			19.1	83.9					
8.2	35.6	69.0			23.8	85.0					
8.6	36.3	69.5			27.0	86.0					
9.0	37.0	70.1			30.1	87.1					
9.4	37.8	71.0			32.3	87.8					
9.7	38.6	71.9			33.3	88.8					
10.0	39.4	72.8			34.8	89.8					
10.4	40.5	73.7			36.1	90.8					
10.7	41.6	74.6			37.5	91.7					
11.0	42.7	75.2			39.0	92.6					
11.4	43.8	75.8			40.5	93.5					
11.8	44.8	76.4			41.5	94.4					
12.1 12.4	45.8 46.9	77.1 77.9			42.6	95.3 96.2					
12.4	48.0	78.5			43.7 44.8	96.2					
13.0	48.9	79.2			45.7	98.1					
13.4	49.9	79.7			46.5	99.0					
13.8	50.4	80.2			47.3	99.9					
14.1	50.9	80.7			48.1	100.8					
14.4	51.4	81.3			49.1	101.7					
14.8	51.9	81.8			50.1	102.6					
15.2	52.5	82.3			50.7	103.5					
15.5	53.2	82.9			52.4	104.5					
15.9	53.9	83.5			53.1	105.5					
16.4	54.6	84.1			54.8	106.4					
16.8	55.7	84.7			56.0	107.3					
17.2	56.8	85.3			57.2	108.2					
17.7	57.8	85.9			58.1	109.2					
18.2	57.9	86.4			59.1	110.2					
18.7 19.2	58.7 59.4	87.2 88.0			60.0 60.9	111.2 112.2					
19.2	60.0	88.8			61.8	113.2					
20.3	60.7	89.6			62.6	114.3					
20.8	61.2	90.4			63.5	115.4					
21.3	61.8	30.1			64.4	116.6					
21.8	62.2				65.3	118.0					
22.3	62.5				66.3	119.2					
22.9	62.9				67.4	120.4					
23.4	63.2				68.5	121.6					
23.9	63.5				69.5	123.0					
24.6	63.9				70.6						



CTBC = Cement-Treated Base Course
ABC = Aggregate Base Course
ESG = Estimated Subgrade

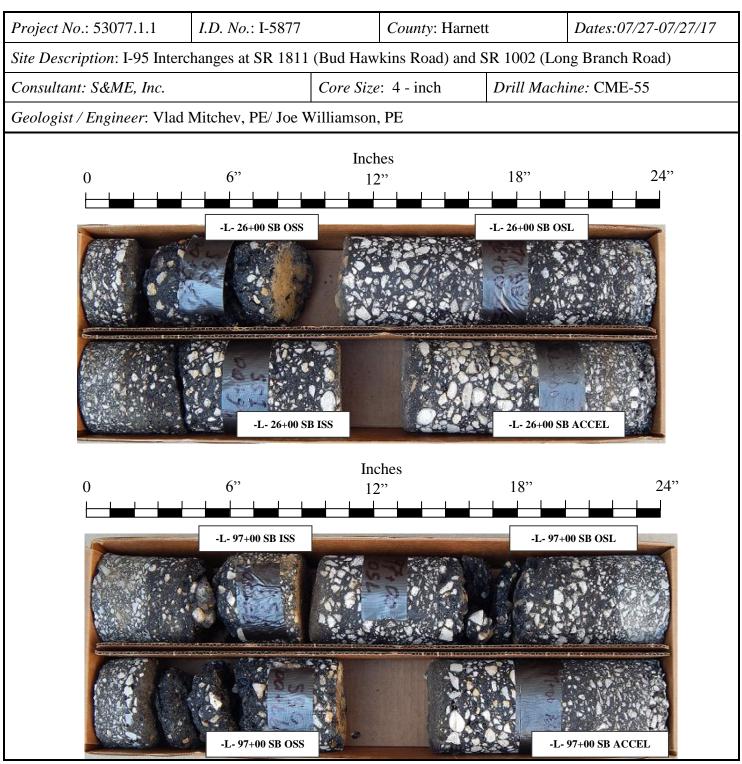
			TIP	PF	ROJECT I.D.		ROUTE			
C	ONE PENE	TROMETER	I-5877		53077.1.1		I-95			
	DATA COD	E SHEET	COUNTY	E	NGINEER	Т	ECHNICIANS			
			HARNETT		AD MITCHEV		S&ME			
TES	T LOCATIONS	SIDESCRIPTION	DATE RUN	TEST	LOCATION [DESCRIPTION	DATE RUN			
	-L- 70+00		7/26 - 7/27/2017		-L- 70+00 N		7/26 - 7/27/2017			
DATUM	CUT/ FILL	NORTHING	EASTING	DATUM	CUT/ FILL		EASTING			
SG	FILL	549995.2	2112656.6	SG	FILL	549984.0	2112680.5			
0.0		ve Penetration in Centir	neters	0.0		tive Penetration in Ce	entimeters			
0.6	39.2 42.8			0.8	11.0	61.0 62.2				
1.2 1.5	46.1			1.4	11.2	63.3				
1.6	48.7			2.1	Augered —	64.5				
1.7	51.1			2.6	13.2 cm	65.6				
1.8	53.5			2.9		66.7				
2.0	55.5			3.2	1.0	67.7				
2.2	57.4			3.5	1.5	68.8				
2.6	59.8			3.7	2.1	69.9				
3.0	61.6			3.9	2.5	71.0				
3.4	63.4			4.1	2.9	71.9				
3.8 4.2	65.1 66.7			4.3 4.5	3.2	72.8 73.8				
4.2	68.2			4.5	3.5	73.8				
5.0	69.8			5.0	4.2	75.8				
5.4	71.5			5.2	4.6	76.9				
5.8	73.1			5.4	5.1	77.7				
6.2	74.8			5.6	5.6	78.5				
6.6	76.2			5.8	6.1	79.3				
7.0	77.4			5.9	6.6	80.3				
7.4	78.8			6.0	7.2	81.3				
7.8	80.1			6.20	8.8	82.3				
8.2	81.4			6.4	10.4	83.2				
8.6 9.0	82.8 84.0			6.5 6.7	13.6	84.1 85.0				
9.4	85.2			6.8	15.2	85.9				
9.8	86.3			6.9	17.7	86.8				
10.3	87.9			7.0	20.1	87.7				
10.9	89.2			7.2	22.3					
11.5	90.4			7.4	24.8					
12.1	91.7			7.5	28.3					
12.7	93.0			7.6	30.7					
13.2	94.4			7.8	32.7					
13.6 14.2	95.7 97.0			8.0 8.1	34.8 36.4					
14.2	98.2			8.1	38.3					
15.4	99.4			8.3	39.8					
16.0	100.6			8.5	40.3					
16.7	101.7			8.6	42.7					
17.4	103.1			8.8	44.2					
18.1	104.4			9.0	45.7					
18.8	105.8			9.2	46.9					
19.6	107.0			9.4	48.2					
20.5	108.2			9.6	49.4					
21.4	109.3			9.7	50.8 51.8					
22.3 23.2	110.5			9.9	51.8					
24.1	112.8			10.1	54.2					
25.4	113.9			10.2	55.4					
26.7	115.0			10.5	56.4					
28.1	116.1			10.6	57.8					
31.8				10.7	58.8					
35.5				10.9	59.9					

DATA CODE SHEET			COUNTY					ROUTE I-95					
HARNETT	CONE PENETROMETER DATA CODE SHEET												
HARNETT										VS.			
TEST LOCATIONS DESCRIPTION DATE RUN 1-0-00 NB ISS 77.68 - 727.2017 1-1-127.00 NB ISS 77.68 - 72.20 1-1-127.00 NB ISS 77.69 1-1-127.00 NB ISS 77.60 NB ISS 7											\neg		
1.2 1.2	TE	TEST LOCATIONS DESCRIPTION							ESCRIPTION			F RIIN	
SOLID FILL NORTHING EASTING SG FILL SOLID FILL SOLID SSI SOLID SSI SOLID SSI SOLID SOL	12			11011			120						
SG	DATIM			HING			DATIIM			ING			
Currel on Parents on Controlleds Currel of Parents of Controlleds	_												
12	30					000.1	- 00					110117.0	
29 76.7	1.2			on in Centil	ileters	_	2.4		ive i ellettation	i iii Ociilii	Ticleis	_	
7.6 7.6 7.8 7.6 7.8 7.8 7.8 7.8 7.8 7.8 7.8 7.8 7.8 7.8 7.8 7.8 7.8 7.8 7.8 7.9			112.3								_		
50 78.9 10.4 79.9 11.1 80.6 80.7 79.5 16.3 81.3 16.7 80.5 19.3 82.1 12.2 79.5 16.3 81.3 18.3 18.3 18.3 18.3 18.2 18.3 18.2 18.2 18.2 18.2 18.2 18.2 18.3 18.2 18.2 18.3 18.2 18.3 18.2 18.3 18.2 18.3 18.2 18.3 18.2 18.3 18.2 18.3 18.4 18.3 18.4 18.4 18.4 18.3 18.4 18.3 18.3 18.3 18.3 18.3 18.3 18.3 18.3 18.3 18.4 19.1 18.4 19.1 18.4 1													
13.1 80.6													
16.7 30.5													
16.7 80.5 19.3 82.1 19.3 82.1 19.2 23.5 81.5 22.8 83.8 22.8 83.8 22.8 83.8 22.8 83.8 22.8 83.8 23.2 24.5 84.7 23.2 83.5 23.6 84.7 23.2 83.5 23.6 84.7 23.2 83.5 23.6 86.6 33.8 23.2 83.5 23.6 86.6 33.8 34.2 29.6 87.4 34.8 84.2 29.6 87.4 34.8 34.2 36.7 34.9 31.2 88.2 33.5 35.6 32.4 89.1 33.2 88.2 33.5 35.6 32.4 89.1 33.6 89.8 32.4 89.1 33.6 89.8 33.6 89.8 33.6 89.8 33.6 89.8 33.6 89.8 33.6 89.8 33.6 89.8 33.6 89.8 33.8 33.9 92.0 33.9 32.0 33.6 33.8 33.9 92.0 33.8 33.9 32.0 33.8 33.9 32.0 33.8 33.9 33.8 33.9 33.8 33.9 33.8 33.9 33.8 33.9 33.8 33.9 33.8 33.9 33.8 33.9 33.8 33.9 33.8 33.9 33.9 33.8 33.9 33.8 33.9 33.8 33.9 33.8 33.9 33.8 33.9 33.8 33.9 33.8 33.9 33.8 33.9 33.8 33.9 33.8 33.9 33.8 33.9 33.8 33.9 33.8 33.9 33.9 33.8 33.9 33.9 33.9 33.8 33.9 33													
22.2 81.5 22.8 83.8 8.8 2.8 4.7 2.8 4.5 84.7 2.8 2.8 83.8 8.8 2.8 4.8 1.2 2.4 5.8 4.7 2.8 2.8 2.8 3.8 3.8 2.8 2.8 2.8 3.5 2.8 2.8 0.8 6.6 6.8 2.8 2.8 2.8 3.5 2.8 0.8 6.6 6.8 2.8 2.8 2.8 3.5 2.8 0.8 6.6 6.8 2.8 2.8 2.8 3.5 2.8 0.8 6.6 6.8 2.8 2.8 2.8 2.8 2.8 3.8 3.8 2.9 3.8 2.9 3.8 2.9 3.8 2.9 3.8 2.9 3.8 2.9 3.8 2.9 3.8 2.9 3.8 3.8 3.9 3.9 3.0 3.3 6.8 3.8 8.8 3.0 3.3 6.8 3.8 8.8 3.0 3.3 6.8 3.8 8.8 3.0 3.3 6.8 3.8 8.8 3.0 3.3 6.8 3.8 8.8 3.0 3.3 6.8 3.8 8.8 3.0 3.3 6.8 3.8 3.0 3.3 6.8 3.8 3.0 3.3 6.8 3.8 3.8 3.0 3.9 3.9 3.0 3.3 6.8 3.8 3.0 3.9 3.9 3.0 3.3 6.8 3.8 3.0 3.9 3.9 3.0 3.0 3.7 9.9 3.7 9.0 6.0 3.3 9.9 3.0 9.2 9.2 9.0 9.0 9.2 9.2 9.0 9.0 9.2 9.2 9.0 9.0 9.2 9.2 9.0 9.0 9.0 9.2 9.2 9.0 9.0 9.0 9.0 9.0 9.0 9.0 9.0 9.0 9.0													
23.5 81.5 22.8 83.8 2 26.4 81.2 24.5 84.7 2 22.2 81.9 26.4 85.6 3 34.8 84.2 28.0 86.6 3 36.7 84.9 31.2 88.2 3 36.6 33.4 89.1 3 3 40.7 86.3 33.6 88.2 3 40.7 86.3 33.6 89.8 3 42.2 87.0 34.7 90.6 3 43.9 87.6 35.8 91.3 3 43.3 83.3 36.9 92.0 92.0 44.7 99.0 37.9 92.7 47.7 49.9 49.2 92.7 47.9 49.7 93.4 49.3 93.4 93.4 93.4 93.4 93.9 93.9 93.9 93.9 93.9 93.9 93.9 93.9 93.9 93.9 93.9 94.6 94.9 <td< td=""><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td></td<>													
28.4 81.2 24.5 84.7 22.8 84.7 22.2 83.5 22.0 85.6 85.6 22.2 83.5 22.0 85.6 87.4 84.9 31.2 88.2 33.5 85.6 85.6 87.4 89.1 88.2 88.2 88.2 88.2 88.2 88.2 88.2 88													
22.2 81.9 283.5 280.0 86.6 38.6 34.2 36.7 34.8 34.2 36.7 34.8 34.2 36.7 36.7 36.7 36.3 36.6 36.6 36.6 36.6											-	-	
32.2 83.5 94.2 9.8 86.6 97.4 9.8 94.9 9.3 12.2 88.2 9.8 87.4 9.8 94.9 9.3 12.2 88.2 9.8 98.8 9.8 98.8 97.6 97.6 97.6 97.6 97.6 97.6 97.6 97.6											_		
34.8 84.2 29.6 87.4 31.2 88.2 36.5 85.6 32.4 89.1 34.7 90.6 44.7 88.3 33.6 89.8 44.2 89.1 43.9 87.6 43.9 87.6 43.9 87.6 43.9 87.6 43.9 89.2 46.7 89.0 46.7 89.0 37.9 92.0 44.3 46.7 89.0 49.9 93.9 92.0 44.3 46.7 89.0 40.9 93.9 92.0 44.3 44.9 93.9 93.9 93.9 93.9 93.9 93.9 93.9 93.9 93.9 93.9 93.9 94.4 94.4 94.4 94.4 94.4 94.4 94.4 94.4 94.9													
36.7 84.9 32.4 89.1 32.4 89.1 33.5 85.6 32.4 89.1 33.6 89.8 32.4 89.1 33.6 89.8 33.6 89.8 33.6 89.8 34.9 34.7 90.6 35.8 91.3 34.7 90.6 35.8 91.3 34.7 90.6 35.8 91.3 34.7 90.6 35.8 91.3 34.7 90.6 35.8 91.3 34.7 90.6 35.8 91.3 34.7 90.6 35.8 91.3 34.9 34.9 34.9 34.9 34.9 34.9 34.9 34													
38.5 86.6 32.4 89.1 32.4 89.1 40.7 86.3 3.6 89.8 34.7 90.6 34.7 90.6 34.7 90.6 34.7 90.6 35.8 91.3 36.8 89.8 34.8 36.5 36.8 91.3 36.9 92.0 36.7 36.9 36.9 36.9 36.9 36.9 36.9 36.9 36.9													
40.7 86.3 3.6 89.8 4.2 87.0 34.7 90.6 4.3 9.8 8.3 88.3 91.3 35.6 99.2 92.0 4.5 99.0 92.0 92.0 92.0 92.0 92.0 92.0 92.0													
42.2 87.0 34.7 90.6 43.9 87.6 35.8 91.3 46.7 89.0 37.9 92.7 47.9 89.7 39.4 93.4 49.3 90.4 40.9 93.9 51.4 91.9 44.0 94.9 52.7 92.6 45.6 95.5 53.7 93.3 47.2 96.0 54.7 94.0 48.6 95.5 55.6 94.3 50.0 97.3 56.5 94.3 50.0 97.3 57.4 96.1 52.6 98.8 55.5 95.4 51.3 98.0 57.4 96.1 52.6 98.8 57.4 96.1 52.6 98.8 57.4 96.1 52.6 98.8 58.3 96.4 54.0 99.5 59.3 97.5 56.4 100.2 60.1 98.2 56.7 100.9 61.0 98.8 58.0 101.6 62.7 100.1													
43.9													
46.7 89.0 37.9 92.7 47.9 89.7 93.4 93.4 93.4 93.4 93.4 93.4 93.4 93.4													
46.7 89.0 37.9 92.7 47.9 39.7 39.4 93.4 49.3 90.4 40.9 93.9 50.4 91.2 42.4 94.4 51.4 91.9 44.0 94.9 52.7 92.6 45.6 95.5 53.7 93.3 47.2 96.0 54.7 94.0 48.6 96.6 55.6 94.3 50.0 97.3 56.5 95.4 51.3 98.0 57.4 96.1 52.6 98.8 58.3 96.4 51.3 98.0 57.4 96.1 52.6 98.8 68.3 96.4 100.2 90.5 59.3 97.5 56.4 100.2 100.0 60.1 98.2 56.7 100.9 100.9 61.0 98.8 58.0 101.6 100.9 61.8 99.4 59.4 102.3 100.9 62.7 100.1 60.5 102.9 102.9 63.6 10													
47.9 89.7 39.4 93.9 93.3 93.3 93.3 93.3 93.3 93.3 93.0 93.9 93.9 93.8 93.8 93.8 93.8 93.8 93.8 93.8 93.8 93.8 93.8 93.8 93.8 93.8 93.9 93.9 93.9 93.9 93.9 93.9 93.9 93.9													
49.3 90.4 40.9 93.9 <td< th=""><th></th><th></th><th></th><th></th><th></th><th></th><th></th><th>_</th><th></th><th></th><th></th><th></th><th></th></td<>								_					
50.4 91.2 42.4 94.4 51.4 91.9 44.0 94.9 52.7 92.6 45.6 95.5 53.7 93.3 47.2 96.0 54.7 94.0 48.6 96.6 55.6 94.3 50.0 97.3 56.5 95.4 51.3 98.0 57.4 96.1 52.6 98.8 58.3 96.4 54.0 99.5 59.3 97.5 55.4 100.2 60.1 98.2 56.7 100.9 61.0 98.8 58.0 101.6 61.8 99.4 59.4 102.3 62.7 100.1 60.5 102.9 63.6 100.8 61.6 103.6 64.5 101.6 62.8 104.3 65.2 102.4 63.9 104.9 65.9 103.1 65.0 105.5 66.6 103.8 66.0 106.0 67.5 104.4 66.0 106.0 68.4 <													
52.7 92.6 45.6 95.5 53.7 93.3 47.2 96.0 54.7 94.0 48.6 96.6 55.6 94.3 50.0 97.3 56.5 95.4 51.3 98.0 57.4 96.1 52.6 98.8 58.3 96.4 54.0 99.5 59.3 97.5 56.4 100.2 60.1 98.2 56.7 100.9 61.0 98.8 58.0 101.6 61.0 98.8 58.0 101.6 61.0 98.8 58.0 101.6 61.0 98.8 58.0 101.6 61.0 98.8 58.0 101.6 61.0 98.8 58.0 101.6 61.0 98.8 58.0 101.6 62.7 100.1 60.5 102.9 62.7 101.1 60.5 102.9 65.2 102.4 63.9 104.9 </td <td></td>													
53.7 93.3 47.2 96.0 54.7 94.0 48.6 96.6 55.6 94.3 50.0 97.3 56.5 95.4 51.3 98.0 57.4 96.1 52.6 98.8 58.3 96.4 54.0 99.5 59.3 97.5 55.4 100.2 60.1 98.2 56.7 100.9 61.0 98.8 58.0 101.6 61.8 99.4 59.4 102.3 62.7 100.1 60.5 102.9 63.6 100.8 61.6 103.6 64.5 101.6 62.8 104.3 65.2 102.4 63.9 104.9 65.9 103.1 66.0 105.5 66.6 103.8 66.0 106.0 67.5 104.4 66.7 106.6 68.4 105.1 68.1 107.1 69.4 105.8 66.0 106.0 67.5 104.4 66.7 106.6 68.4		91.9						94.9					
54.7 94.0 48.6 96.6 55.6 94.3 50.0 97.3 57.4 96.1 52.6 98.8 58.3 96.4 54.0 99.5 59.3 97.5 55.4 100.2 60.1 98.2 56.7 100.9 61.0 98.8 58.0 101.6 61.8 99.4 59.4 102.3 62.7 100.1 60.5 102.9 63.6 100.8 61.6 103.6 64.5 101.6 62.8 104.3 65.2 102.4 63.9 104.9 65.9 103.1 65.0 105.5 66.6 103.8 66.0 106.0 67.5 104.4 67.1 106.6 68.4 105.1 68.1 107.1 69.4 105.8 69.1 107.6 70.0 106.4 70.1 108.7 70.0 106.4 70.1 108.7 71.2 107.8 72.0 109.3 72.6 <td>52.7</td> <td>92.6</td> <td></td> <td></td> <td></td> <td></td> <td>45.6</td> <td>95.5</td> <td></td> <td></td> <td></td> <td></td> <td></td>	52.7	92.6					45.6	95.5					
55.6 94.3 50.0 97.3 97.3 98.0 98.0 98.0 98.0 98.0 98.0 98.0 98.0 98.0 98.0 98.0 99.0 99.0 99.5 99.5 99.5 99.5 99.5 99.5 99.0 99.5 99.0 <td< td=""><td>53.7</td><td>93.3</td><td></td><td></td><td></td><td></td><td>47.2</td><td>96.0</td><td></td><td></td><td></td><td></td><td></td></td<>	53.7	93.3					47.2	96.0					
56.5 95.4 96.1 52.6 98.8 99.5 58.3 96.4 52.6 98.8 59.5 99.5 59.3 97.5 99.5 99.5 99.5 99.5 99.5 99.5 99.5 99.5 99.5 99.5 99.5 99.5 99.5 99.5 99.5 99.5 99.6 99.5 99.5 99.6 99.6 99.5 99.6 99	54.7	94.0					48.6	96.6					
57.4 96.1 52.6 98.8 58.3 96.4 58.3 97.5 99.5	55.6	94.3					50.0	97.3					
58.3 96.4 54.0 99.5 59.3 97.5 55.4 100.2 60.1 98.8 56.7 100.9 61.0 98.8 101.6 61.6 61.8 99.4 59.4 102.3 62.7 100.1 60.5 102.9 63.6 100.8 61.6 103.6 64.5 101.6 62.8 104.3 65.2 102.4 63.9 104.9 65.9 103.1 65.0 105.5 66.6 103.8 66.0 106.0 67.5 104.4 67.1 106.6 68.4 105.1 68.1 107.1 69.4 105.8 69.1 107.6 70.0 106.4 70.1 108.1 70.6 107.1 71.0 108.7 71.9 108.4 73.0 109.9 72.6 109.0 74.0 73.2 109.6 75.0 73.9 110.3 75.7 74.6 76.4	56.5	95.4					51.3	98.0					
59.3 97.5 60.1 98.2 61.0 98.8 61.8 99.4 62.7 100.1 63.6 100.8 64.5 101.6 65.2 102.4 65.9 103.1 66.6 103.8 67.5 104.4 69.4 105.8 69.4 105.8 69.4 105.8 69.1 107.1 69.4 105.8 69.1 107.6 69.1 107.6 70.0 106.4 70.1 108.7 71.9 108.4 73.2 109.6 73.9 110.3	57.4	96.1					52.6	98.8					
60.1 98.2 56.7 100.9 61.0 98.8 58.0 101.6 61.8 99.4 59.4 102.3 62.7 100.1 60.5 102.9 63.6 100.8 61.6 103.6 64.5 101.6 62.8 104.3 65.2 102.4 63.9 104.9 65.9 103.1 65.0 105.5 66.6 103.8 66.0 106.0 67.5 104.4 67.1 106.6 68.4 105.1 68.1 107.1 69.4 105.8 69.1 107.6 70.0 106.4 70.1 108.1 70.6 107.1 71.0 108.7 71.2 107.8 72.0 109.3 71.9 108.4 73.0 109.9 72.6 109.0 74.0 75.0 73.9 110.3 75.7 75.0 74.6 76.4 76.4 76.4	58.3	96.4					54.0	99.5					
61.0 98.8 58.0 101.6 102.3 100.1 100.1 100.1 100.2 100.2 100.2 100.8 100.9 10	59.3	97.5						100.2					
61.8 99.4 59.4 102.3 62.7 100.1 60.5 102.9 63.6 100.8 61.6 103.6 64.5 101.6 62.8 104.3 65.2 102.4 63.9 104.9 65.9 103.1 65.0 105.5 66.6 103.8 66.0 106.0 67.5 104.4 67.1 106.6 68.4 105.1 68.1 107.1 69.4 105.8 69.1 107.6 70.0 106.4 70.1 108.1 70.6 107.1 71.0 108.7 71.9 108.4 73.0 109.9 72.6 109.0 74.0 75.0 73.9 110.3 75.7 74.6	60.1												
62.7 100.1 60.5 102.9 63.6 100.8 61.6 103.6 64.5 101.6 62.8 104.3 65.2 102.4 63.9 104.9 65.9 103.1 65.0 105.5 66.6 103.8 66.0 106.0 67.5 104.4 67.1 106.6 68.4 105.1 68.1 107.1 69.4 105.8 69.1 107.6 70.0 106.4 70.1 108.1 70.6 107.1 71.0 108.7 71.2 107.8 72.0 109.3 71.9 108.4 73.0 109.9 72.6 109.0 74.0 75.0 73.9 110.3 75.7 75.7 74.6 76.4 76.4													
63.6 100.8 61.6 103.6 64.5 101.6 62.8 104.3 65.2 102.4 63.9 104.9 65.9 103.1 65.0 105.5 66.6 103.8 66.0 106.0 67.5 104.4 67.1 106.6 68.4 105.1 68.1 107.1 69.4 105.8 69.1 107.6 70.0 106.4 70.1 108.1 70.6 107.1 71.0 108.7 71.2 107.8 72.0 109.3 71.9 108.4 73.0 109.9 72.6 109.0 74.0 75.0 73.9 110.3 75.7 75.7 74.6 76.4 76.4													
64.5 101.6 62.8 104.3 65.2 102.4 63.9 104.9 65.9 103.1 65.0 105.5 66.6 103.8 66.0 106.0 67.1 106.0 67.1 106.6 68.4 105.1 68.1 107.1 69.4 105.8 69.1 107.6 70.0 106.4 70.1 108.1 70.0 108.1 71.0 108.7 71.0 108.7 71.2 107.8 72.0 109.3 71.9 108.4 73.0 109.9 74.0 73.0 109.9 74.0 73.9 110.3 75.7 74.6 76.4													
65.2 102.4 63.9 104.9 65.0 65.0 65.0 65.0 66.1 106.0 66.1 107.1 66.1 66.1 107.1 66.1 107.1 66.1 107.6 70.0 108.1 70.0 108.7 70.0 108.7 70.0 109.3 70.0 109.9 70.0 70.0 70.0 70.0 70.													
65.9 103.1 65.0 105.5 66.6 103.8 66.0 106.0 67.5 104.4 67.1 106.6 68.4 105.1 68.1 107.1 69.4 105.8 69.1 107.6 70.0 106.4 70.1 108.1 70.6 107.1 71.0 108.7 71.2 107.8 72.0 109.3 71.9 108.4 73.0 109.9 72.6 109.0 74.0 73.2 109.6 75.0 73.9 110.3 75.7 74.6 76.4													
66.6 103.8 66.0 106.0 67.5 104.4 67.1 106.6 68.4 105.1 68.1 107.1 69.4 105.8 69.1 107.6 70.0 106.4 70.1 108.1 70.6 107.1 71.0 108.7 71.2 107.8 72.0 109.3 71.9 108.4 73.0 109.9 72.6 109.0 74.0 73.2 109.6 75.0 73.9 110.3 75.7 74.6 76.4													
67.5 104.4 67.1 106.6 68.4 68.4 105.1 68.1 107.1 69.4 69.4 105.8 69.1 107.6 69.1 70.0 106.4 70.1 108.1 70.1 108.1 70.6 107.1 71.0 108.7 71.0 108.7 71.0 109.3 71.0 109.3 72.0 109.3 72.0 109.3 72.0 109.9 72.0 109.9 72.0 109.9 72.0 109.9 72.0 109.9 72.0 73.2 109.6 75.0 75.0 75.7 74.0 75.7 74.0 75.7 74.0 75.7 74.0 75.7 76.4 <													
68.4 105.1 68.1 107.1 69.4 105.8 69.1 107.6 69.1 107.6 69.1 107.6 69.1 107.6 108.1 70.1 108.1 70.1 108.1 70.1 108.1 70.1 108.7 70.1 108.7 70.1 108.7 70.1 109.3 70.1 109.3 70.1 109.3 70.1 109.3 70.1 109.9 70.1													
69.4 105.8 69.1 107.6 107.6 70.0 106.4 70.1 108.1 108.1 70.6 107.1 71.0 108.7 108.7 71.2 107.8 72.0 109.3 109.3 71.9 108.4 73.0 109.9 109.9 72.6 109.0 74.0 75.0 75.0 73.9 110.3 75.7 76.4 76.4											\perp		
70.0 106.4 70.1 108.1 70.6 107.1 71.0 108.7 71.2 107.8 72.0 109.3 71.9 108.4 73.0 109.9 72.6 109.0 74.0 73.0 73.2 109.6 75.0 75.7 74.6 76.4 76.4											-		
70.6 107.1 71.0 108.7 71.2 107.8 72.0 109.3 71.9 108.4 73.0 109.9 72.6 109.0 74.0 9 73.2 109.6 75.0 9 73.9 110.3 75.7 9 74.6 76.4 76.4 9											\vdash		
71.2 107.8 72.0 109.3 71.9 108.4 73.0 109.9 72.6 109.0 74.0 73.2 109.6 75.0 73.9 110.3 75.7 74.6 76.4											\vdash		
71.9 108.4 72.6 109.0 73.0 109.9 74.0 74.0 73.2 109.6 73.9 110.3 74.6 76.4											-		
72.6 109.0 73.2 109.6 73.9 110.3 74.0 75.7 76.4 76.4											\perp		
73.2 109.6 73.9 110.3 74.6 76.4								109.9			-		
73.9 110.3 75.7 74.6 76.4											-		
74.6											-		
		110.3									-		
/5.4											\vdash		
	/5.4						//.1						



CTBC = Cement-Treated Base Course

ABC = Aggregate Base Course ESG = Estimated Subgrade


			TIP		PROJECT I.D.		ROUTE	
CONE PENETROMETER		I-5877		53077.1.1	I-95			
	DATA COD		COUNTY		ENGINEER	TECHNICIANS S&ME		
· ·			HARNETT	V	LAD MITCHEV			
TEST	LOCATIONS	DESCRIPTION	DATE RUN	TES	T LOCATION DESCR	RIPTION	DATE RUN	
	-L- 122+00		7/26 - 7/27/2017		-L- 122+00 NB ACCI		7/26 - 7/27/2017	
DATUM	CUT/ FILL	NORTHING	EASTING	DATUM	CUT/ FILL	NORTHING	EASTING	
SG	FILL	554683.0	2114907.5	SG	FILL	554688.2 enetration in Cer	2114896.5	
1.7	103.1	renetiation in Centil	Heleis	0.6	79.3	enetration in Cer	IUITIELEIS	
3.8	104.0			1.7	80.1			
5.7	104.9			3.0	81.0			
8.1	105.8			4.7	81.8			
10.9	106.7			7.0	82.6			
13.6	107.6			9.7	83.4			
15.9 18.7	108.6 109.3			13.4 16.0	84.3 85.2			
22.0	1109.3			18.8	86.0			
25.5	110.6			21.7	86.9			
28.8	111.5			24.4	87.8			
33.2	112.4			27.6	88.6			
37.0	113.4			30.5	89.5			
40.9				33.0	90.4			
44.0 46.4	_			35.2 37.4	91.2 92.1			
49.4				39.4	93.0			
52.8				41.4	93.9			
55.4				43.0	94.8			
57.6				44.7	95.7			
60.3				46.5	96.5			
62.0				48.10	97.3	_		
63.6 65.5				49.6 51.1	98.1 99.0			
67.0				52.6	99.8			
68.5				54.0	100.6			
69.8				55.5	101.4			
71.1				56.8	102.2			
72.6				58.2	103.0			
73.9 75.2				59.5 60.6	103.8			
76.4	_			61.6	104.7			
77.8	_			63.0	106.4			
79.2				64.1	107.2			
80.8				65.0	108.1			
82.0				65.9	109.0			
83.2				66.8	109.9			
84.5 85.7				67.8 68.6	110.8 111.6			
86.9				69.4	112.2			
88.0				70.1	112.8			
89.1				70.8	113.3			
90.2				71.5	114.0			
91.4				72.2	114.7			
92.5				72.8	115.4			
93.6 94.6				73.4 74.0	116.1 116.8			
94.6 95.6				74.8	117.4			
96.6				75.6				
97.5				76.4				
98.5				77.1				
99.5				77.8				
100.5				78.5				

C	ONE PEN	ETROMETER	I-5877	;	53077.1.1	I-95			
	DATA CO	DE SHEET	COUNTY	E	NGINEER	TECHNICIANS			
			HARNETT		AD MITCHEV		S&ME		
TES	TEST LOCATIONS DESCRIPTION		DATE RUN	TEST	TEST LOCATION DESCR		DATE RUN		
		00 NB OSL	7/26 - 7/27/2017	1	-L- 122+00 NB IS		7/26 - 7/27/2017		
DATUM	CUT/ FILL	NORTHING	EASTING	DATUM	CUT/ FILL	NORTHING	EASTING		
SG	FILL	554693.3	2114885.6	SG	FILL	554703.4	211486.0		
	Cumula	ative Penetration in Ce	ntimeters		Cumulative F	Penetration in C	Centimeters		
0.5	14.0	58.8		2.7	85.9				
1.3	14.2	59.6		5.5	87.0				
1.8		60.4		8.2	88.1				
2.1	Augered	61.2		11.5	89.2				
2.4	12.5 cm	62.0		14.2	90.4				
2.7		62.9		16.4	91.5				
3.0	1.0	63.7		18.3	92.6				
3.3	1.3	64.6		20.0	93.6				
3.7	2.6	65.5		22.0	94.7				
4.1	4.0 6.5	66.4		24.0 26.8	95.8 96.8				
4.5	8.5	68.1		29.5	97.7				
4.8	11.0	69.0		31.8	98.6				
5.1	13.0	69.8		33.7	99.6				
5.4	15.0	70.6		35.3	100.5				
5.6	16.6	71.4		37.2	101.4				
5.8	18.3	72.2		39.2	102.4				
6.1	19.9	73.0		41.4	103.3				
6.3	21.5	73.8		43.6	104.2				
6.6	23.1	74.5		45.7	105.1				
6.8	24.7	75.3		47.7	106.1				
7.1	26.1	76.1		49.5	107.1				
7.3	27.6	76.8		51.5	108.0				
7.5	28.9	77.6		53.1	108.7				
7.8	30.2	78.4		54.6	109.5				
8.0	31.4	79.1		56.0	110.2				
8.2	32.6	79.7		57.4	111.0				
8.4	33.9	80.3		58.8	111.9				
8.6	35.2	81.0		60.2	112.8				
8.9	36.4	81.8		61.6					
9.2	37.6	82.7		63.1					
9.5 9.7	38.6 39.6	83.5 84.2		64.3 65.5					
10.0	39.6	84.9		66.7					
10.0	40.2	85.7		67.7					
10.2	41.6	86.5		68.7					
10.4	43.0	87.3		69.8					
10.8	44.0	88.2		70.7					
11.0	45.0			71.6					
11.3	46.1			72.6					
11.5	47.1			73.5					
11.7	48.1			74.4					
11.9	49.2			75.2					
12.0	50.2			76.1					
12.1	51.2			77.0					
12.3	52.2			77.9					
12.5	53.0			78.9					
12.8	53.7			79.9					
13.1	54.5			81.0					
13.4	55.4 56.3			82.3					
13.6				83.6					
13.8 13.9	57.2 58.0			83.9 84.9					
13.3	30.0			04.5					

CTBC = Cement-Treated Base Course
ABC = Aggregate Base Course
ESG = Estimated Subgrade

Notes:

OSL = Outside Lane ISL = Inside Lane

RTL = Right Turn Lane OSS = Outside Shoulder ACCEL = Acceleration Lane

PS = Paved Shoulder LTL = Left Turn Lane

ISS = Inside Shoulder

MED = Median

S&ME, Inc. 3201 Spring Forest Road Raleigh, North Carolina 27616

Project No.: 53077.1.1	I.D. No.: I-5877 County: Harnett		Dates:07/27-07/27/17			
Site Description: I-95 Interchanges at SR 1811 (Bud Hawkins Road) and SR 1002 (Long Branch Road)						
Consultant: S&ME, Inc.	Core Size	: 4 - inch	Drill Mach	ine: CME-55		
Coologist / Engineer: Vlad Mitchey, DE / Ioo Williamson, DE						

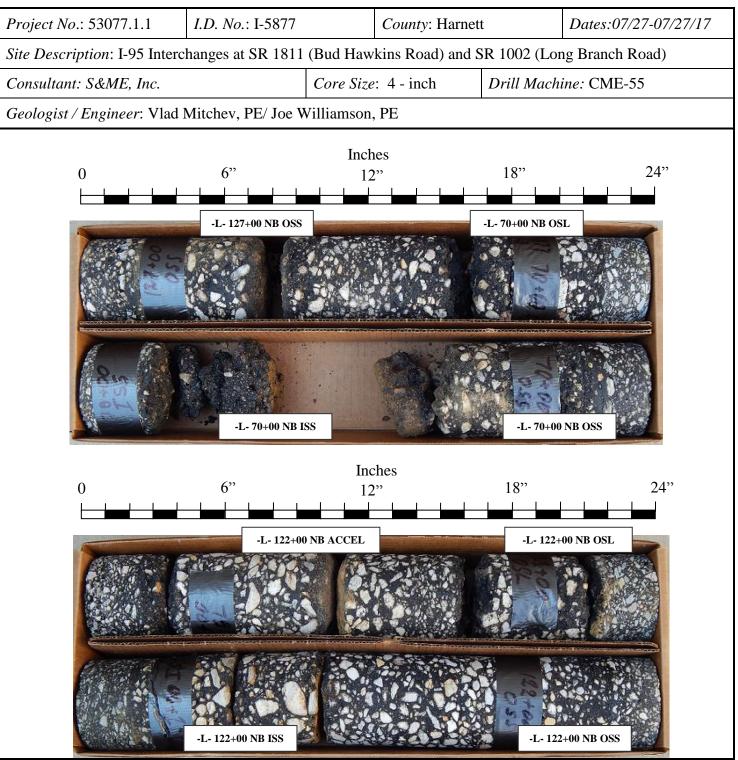
Geologist / Engineer: Vlad Mitchev, PE/ Joe Williamson, PE

Notes:

OSL = Outside Lane ACC = Acceleration Lane ISL = Inside Lane PS = Paved Shoulder

RTL = Right Turn Lane

OSS = Outside Shoulder


LTL = Left Turn Lane

ISS = Inside Shoulder

MED = Median

S&ME, Inc. 3201 Spring Forest Road Raleigh, North Carolina 27616

Notes:

OSL = Outside Lane ACCEL = Acceleration Lane

ISL = Inside Lane PS = Paved Shoulder RTL = Right Turn Lane LTL = Left Turn Lane OSS = Outside Shoulder ISS = Inside Shoulder MED = Median

PAVEMENT CORES FOR 53077.1.1, I-5877, Harnett County

		LAYER		
		THICKNESS		
LINE	STATION	(in)	LAYERS	REMARKS
	26+00 SB OSS	2.00	S	1 lift, superpave mix,
-L-	11" Asphalt		I/B	The remaining 2 pieces are highly stripped, bleeding present, subround to sub angular quartz aggregate, poor
	11 Aspirant		1/15	grain to grain contact.
	26+00 SB ACCEL	0.75		1 lift, open graded friction course (OGFC), low severity stripping
		2.00		1-2 lifts, super pave mix
-L-	10.5" Asphalt	2.00		1 lift, older mix design, subround to subangular quartz aggregate, poor grain to grain contact
	10.5 Aspirate	4.50		1 lift, low severity stripping
		1.25		1 lift, large quartz aggregate in sand asphalt matrix
	26+00 SB OSL	0.50		1 lift, low severity stripping
-L-		2.00		1 lift, superpave mix, low severity stripping
-L-	13.25" Asphalt	4.25		2 lifts, older mix design, low severity stripping, poor grain to grain contact
		6.25		1 lift, minor bleeding present
	26+00 SB ISS	2.00		1 lift, Superpave mix
-L-		2.00		1 lift, older mix design, moderate severity stripping, delaminated from lower lift
-L-	10.75" Asphalt	6.75		2 lifts, low to moderate severity stripping, lifts delaminated, subround to subangular quartz aggregate, poor
		0.73		grain to grain contact of large aggregate.
	89+00 SB OSS	1.00	_	1 lift, superpave mix
		1.50		1 lift, older mix design, round to subround quartz aggregate, poor grain to grain contact,
-L-	7.5" Asphalt	4.50		1 lift, low severity stripping in bottom 3.5", bleeding present, round to subround quartz aggregate, poor grain to
	7.5 Aspilait			grain contact
		0.75		1 lift, sand asphalt (SD), 0.75" bottom-up crack
	97+00 SB OSS	1.75		1 lift, superpave mix
-L-	10.25" Asphalt	ı		older design mix, lifts are highly stripped (pieces)
	-	4.00	В	1 lift, moderate severity stripping, subround to subangular quartz aggregate, poor grain to grain contact
	97+00 SB ACCEL	1.00		1 lift, low severity stripping
-L-		4.00		3 lifts, lift three has subrounded quartz aggregate, sparse aggregate in sandy matrix.
-L-	9.75" Asphalt	4.00		1 lift, low severity stripping, bleeding present, round to subround quartz aggregate
		0.75		1 lift, low severity oxidation
	97+00 SB OSL	2.00		1 lift, superpave mix
		1.00		1 lift, older mix design
-L-		2.25		1 lift, low severity stripping, bleeding present
	14" Asphalt	-		1 lift, high severity stripping (rubble) with bleeding present
		1.75	_	1 lift
		3.00		1 lift, bleeding present
	97+00 SB ISS	2.25		1 lift, Superpave
		1.50		1 lift, older mix design, moderate severity stripping
-L-	9.75" ASphalt	-	-	1 lift, high severity stripping (rubble), round to subround quartz aggregate
	3.73 Aspirant	3.00	В	1 lift, moderate severity stripping, round to subround quartz aggregate
			_	-,

^{* -}L- stationing was used for all coring locations

PAVEMENT CORES FOR 53077.1.1, I-5877, Harnett County

		LAYEK		
		THICKNESS		
LINE	STATION	(in)	LAYERS	REMARKS
	70+00 NB OSS	1.75	S	1 lift, superpave mix
		2.00	S	1 lift, older mix design, subround to subangular quartz aggregate, poor grain to grain contact, low sev. stripping
-L-	11" Asphalt	4.00	В	1 lift, low severity stripping, quartz aggregate
	·	2.00	-	1 lift, large quartz aggregate in sand asphalt matrix, moderately stripped, asphalt missing
	70+00 NB OSL	2.00	S	1 lift, Superpave mix
l .		1.50	S	1 lift, older mix design, low severity stripping
-L-	15" Asphalt	6.50	ı	2 lifts, moderate to high severity stripping with a portion of these lifts missing, quartz aggregate
	·	4.50	В	1 lift, low severity stripping in bottom 2"
	70+00 NB ISS	2.50	S	1 lift, superpave mix
-L-	10.25" Asphalt	-	-	remaining portion of this core is highly stripped into 3 large pieces, bleeding present
	122+00 NB OSS	1.75		2 lifts, superpave mix
-L-	42.75!! 4	2.25	ı	1 lift, older mix design, round to subround quartz aggregate, poor grain to grain contact, bleeding at upper contact
	13.75" Asphalt	9.75	В	2 lifts, moderate severity stripping in bottom 3" of top lift
	122+00 NB ACCEL	0.75	OGFC	1 lift
		2.00		1 lift, superpave mix
-L-	10" Asphalt	1.00	S	1 lift, low to moderate stripping, delaminated from lower lift
		6.00	В	2 lifts, high severity stripping in top 0.5" with asphalt missing, subground to round quartz aggregate
		0.50	SD	1 lift, sand asphalt
	122+00 NB OSL	2.25	S	1 lift, superpave mix
		-	-	surface lift has been stripped away
		4.00	ı	1 lift, older mix design, moderate severity stripping, subround to subangular quartz aggregate, bottom of lift
-L-	13.75 Asphalt	13.75 Asphalt 4.00		has been stripped
		2.00	I	1 lift
		3.00	В	1 lift, poor grain to grain contact
	122+00 NB ISS	2.50	S	lifts indistinquishible, superpave mix design
		1.50	S	1 lift, older mix design, mechanical break in center of lift, moderate severity stripping, subround to subangular
-L-	10.25" Asphalt	1.50	3	quartz aggregate, poor grain to grain contact
-L-		2.50	I	1 lift, moderate severity stripping, subround to subangular quartz aggregate, delaminated from lower lift
		3.75	В	1 lift, sparse large aggregate, low severity stripping, large quartz aggregates are subround to subangular, majority
		5./5	D	of aggregate in lift are less than 10mm.
-L-	127+00 NB OSS	1.50	S	1 lift, superpave mix
-L-	7" Asphalt	5.50	В	1 lift, low severity stripping, subround to subangular quartz aggregate

^{* -}L- stationing was used for all coring locations

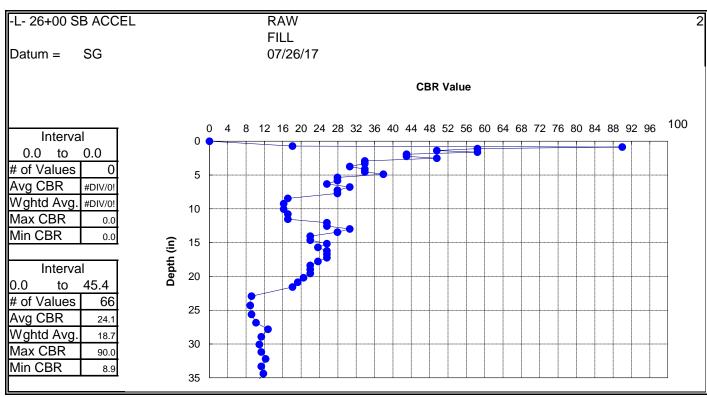
NC - DOT, GEOTECHNICAL ENGINEERING UNIT
GEOLOGI
GEOTECH

PROJECT NO.

PROJECT ID

ROUTE

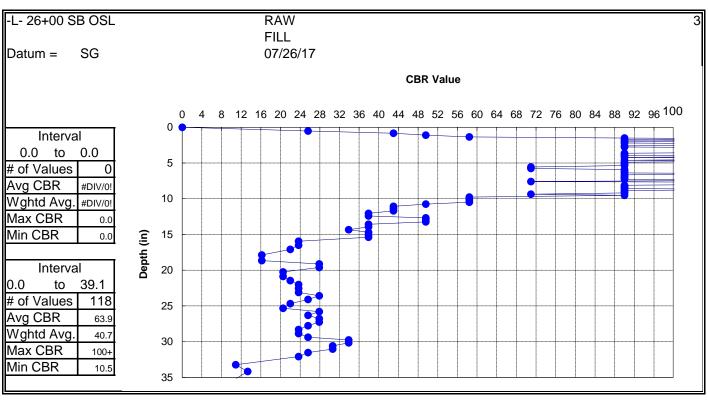
COUNTY


53077.1.1

HARNETT

i-5877 I-95

ING UNIT	Pa	age	1
GEOLOGIST	JBB		
GEOTECHS	S&ME		



NC - DOT, GEOTECHNICAL ENGINEERING UNIT

		110	DOT, OLOTEOTHIOAL
PROJECT NO.	53077.1.1		
PROJECT ID	i-5877		
ROUTE	I-95		
COUNTY	HARNETT		

GEOLOGIST	JBB
GEOTECHS	S&ME

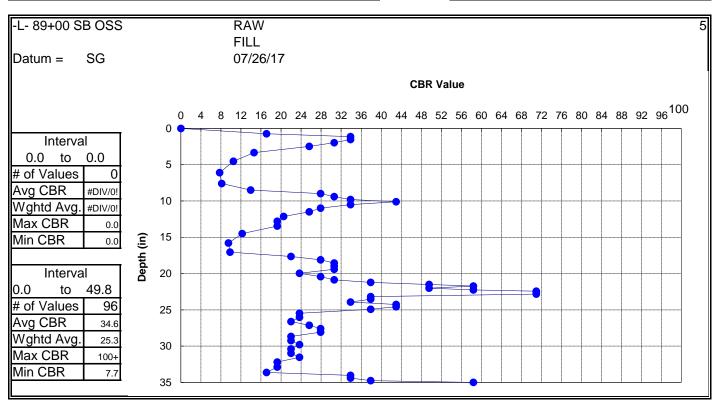
Page 2

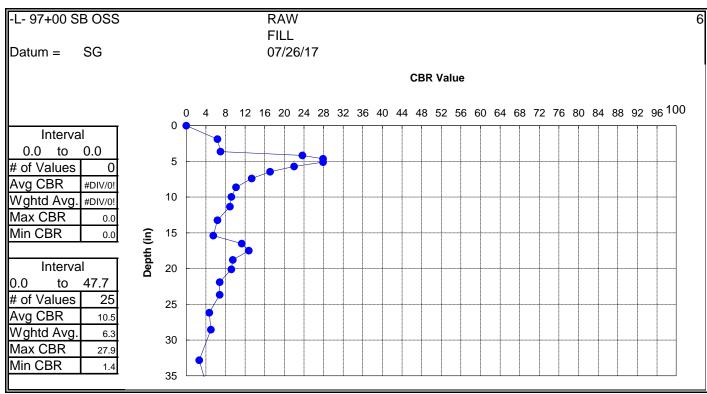
NC - DOT, GEOTECHNICAL ENGINEERING UNIT
GEOLOGI
GEOTECH

PROJECT NO.

PROJECT ID

ROUTE


COUNTY


53077.1.1

HARNETT

i-5877 I-95

RING UNIT		Page	3
GEOLOGIST	JBB		
GEOTECHS	S&ME		

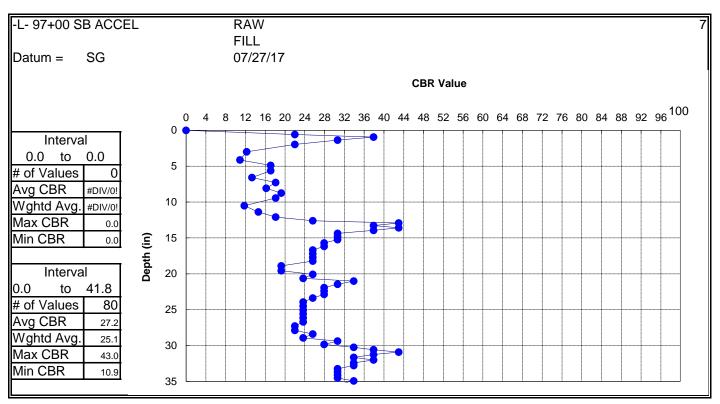
NC - DOT, GEOTECHNICAL ENGINEERING UNIT
GEOLOGI
GEOTECH

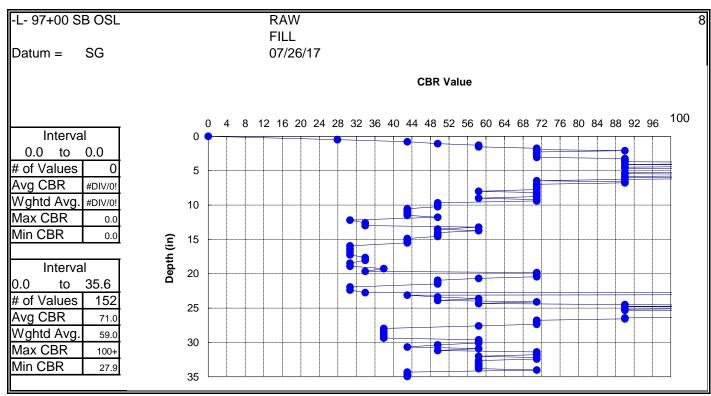
PROJECT NO.

PROJECT ID

ROUTE

COUNTY


53077.1.1


HARNETT

i-5877 I-95

GEOLOGIST	JBB
GEOTECHS	S&ME

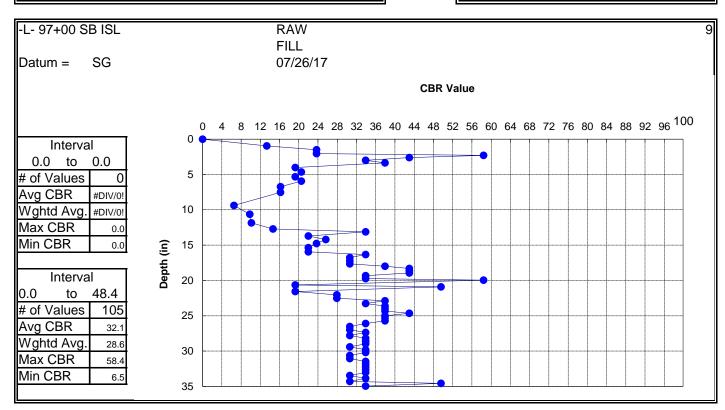
Page 4

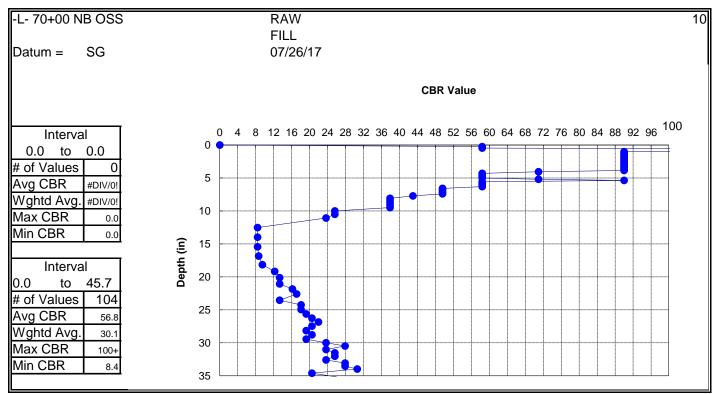
NC - DOT, GEOTECHNICAL ENGINEERING UNIT 53077.1.1

PROJECT NO.

PROJECT ID

ROUTE

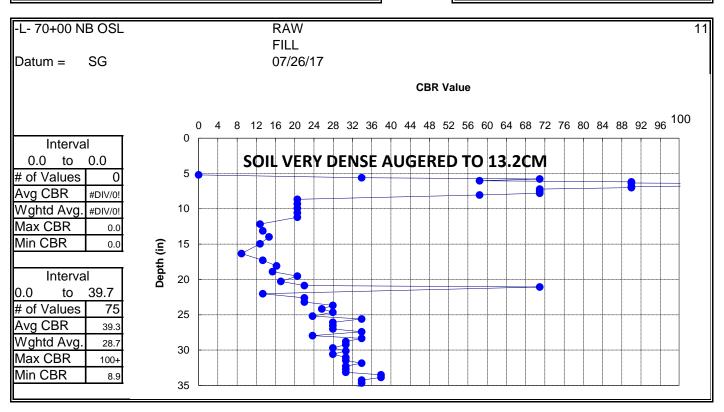

COUNTY

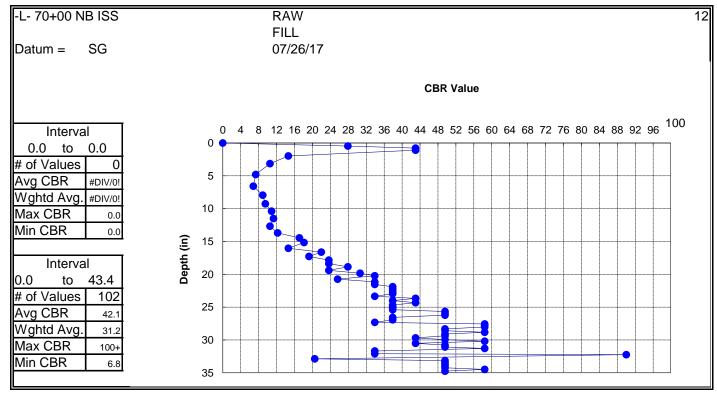

i-5877

HARNETT

I-95

RING UNIT		Page	5
GEOLOGIST	JBB		
GEOTECHS	S&ME		





GEOTECHNICAL ENGINEERING UNIT

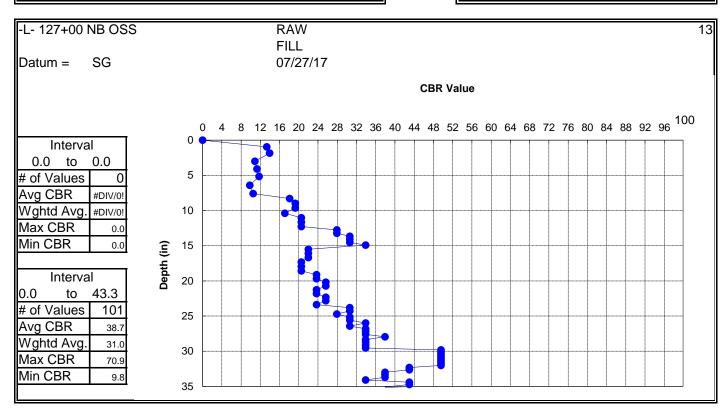
		NC - DOT, GEOTECHNICAL
PROJECT NO.	53077.1.1	
PROJECT ID	i-5877	
ROUTE	I-95	
COUNTY	HARNETT	

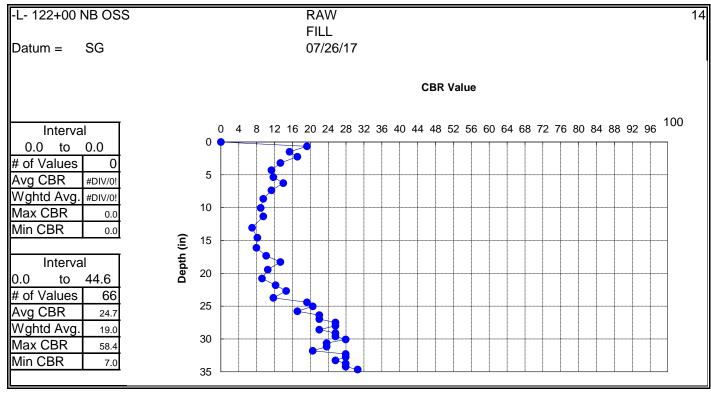
RING UNIT		Page	6
GEOLOGIST	JBB		
GEOTECHS	S&ME		

NC - DOT, GEOTECHNICAL ENGINEERING UNIT
GEOLOGI
GEOTECH

PROJECT NO.

PROJECT ID


ROUTE COUNTY 53077.1.1 i-5877


HARNETT

I-95

GEOLOGIST	JBB
GEOTECHS	S&ME

Page 7

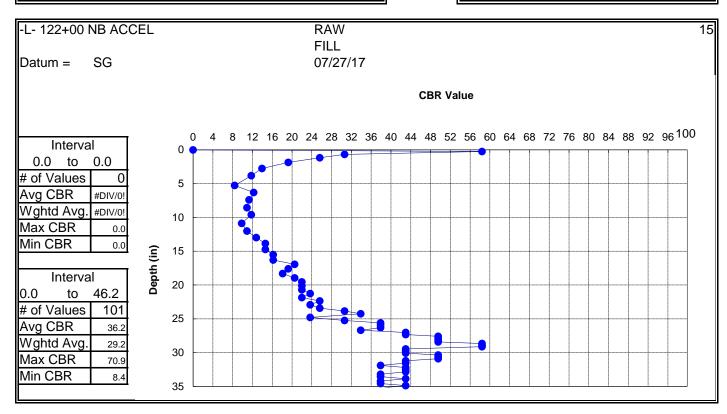
NC - DOT, GEOTECHNICAL ENGINEERING UNIT
GEOLOGI
GEOTECH

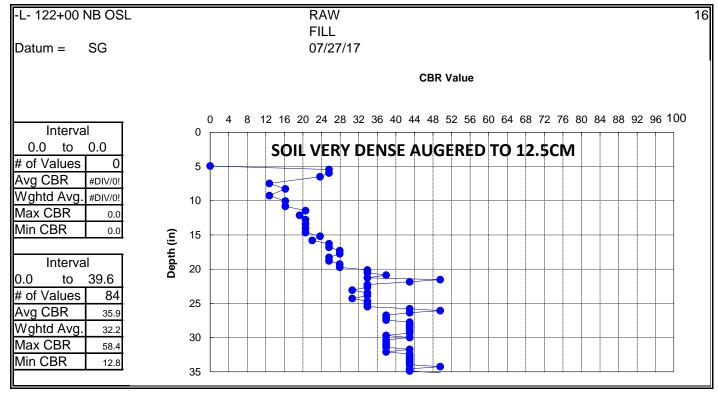
PROJECT NO.

PROJECT ID

ROUTE

COUNTY


53077.1.1


HARNETT

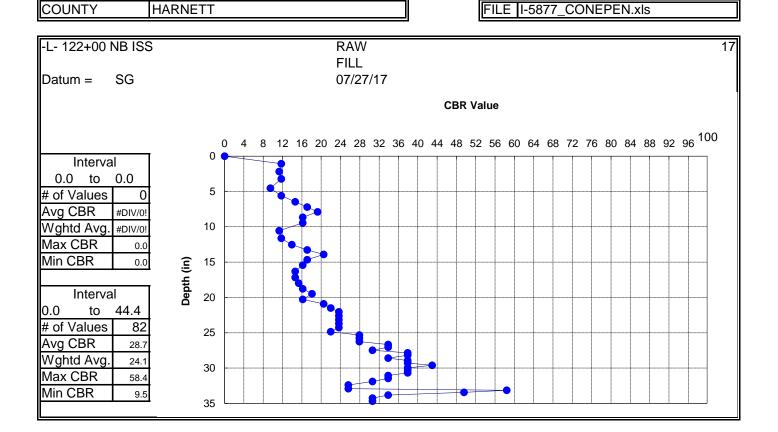
i-5877

I-95

ING UNIT		Page	8
GEOLOGIST	JBB		
GEOTECHS	S&ME		

PROJECT NO.

PROJECT ID


ROUTE

53077.1.1

i-5877

I-95

NC - DOT, GEOTECHNICAL ENGINEERING UNIT				Page	9	
		GEOLOGIST	JBB			•
		GEOTECHS	S&ME			
	ľ '					4

