011 K B REFERENCE

9

STATE OF NORTH CAROLINA

DEPARTMENT OF TRANSPORTATION **DIVISION OF HIGHWAYS** GEOTECHNICAL ENGINEERING UNIT

CONTENTS

SHEET NO.	DESCRIPTION
1	TITLE SHEET
2	LEGEND (SOIL & ROCK)
2A	SUPPLEMENTAL LEGEND (GSI)
3	SITE PLAN
4	PROFILE(S)
5-8	CROSS SECTION(S)
9-15	BORE LOG(S), CORE REPORT(S), & CORE PHOTOGRAPH(S)

SITE PHOTOGRAPH(S)

STRUCTURE SUBSURFACE INVESTIGATION

COUNTY <u>Iredell</u> SITE DESCRIPTION Bridge No. 166 on SR 1595 (Coolbrook Rd.) over Rocky Creek

STATE PROJECT REPERENCE NO. BR-0115 16

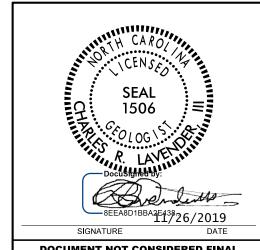
CAUTION NOTICE

THE SUBSURFACE INFORMATION AND THE SUBSURFACE INVESTIGATION ON WHICH IT IS BASED WERE MADE FOR THE PURPOSE OF STUDY, PLANNING AND DESIGN, AND NOT FOR CONSTRUCTION OR PAY PURPOSES. THE VARIOUS FIELD BORING LOGS, ROCK CORES AND SOIL TEST DATA AVAILABLE MAY BE REVIEWED OR INSPECTED IN RALEIGH BY CONTACTING THE N. C. DEPARTMENT OF TRANSPORTATION, GEOTECHNICAL ENGINEERING UNIT AT 1919 707-6850. THE SUBSURFACE PLANS AND REPORTS, FIELD BORING LOGS, ROCK CORES AND SOIL TEST DATA ARE NOT PART OF THE CONTRACT.

CENERAL SOIL AND ROCK STRATA DESCRIPTIONS AND INDICATED BOUNDARIES ARE BASED ON A GEOTECHNICAL INTERPRETATION OF ALL AVAILABLE SUBSURFACE DATA AND MAY NOT NECESSARILY REFLECT THE ACTUAL SUBSURFACE CONDITIONS BETWEEN BORINGS OR BETWEEN SAMPLED STRATA WITHIN THE BOREHOLE. THE LABORATORY SAMPLE DATA AND THE IN SITU (INP-PLACE) TEST DATA CAN BE RELIED ON ONLY TO THE DEGREE OF RELIABILITY INHERENT IN THE STANDARD TEST METHOD. THE OBSERVED WATER LEVELS OR SOIL MOISTURE CONDITIONS NIDICATED IN THE SUBSURFACE INVESTIGATIONS ARE AS RECORDED AT THE TIME OF THE INVESTIGATION. THESE WATER LEVELS OR SOIL MOISTURE TOTAL WITH THE ACCORDING TO CLIMATIC CONDITIONS INCLUDING TEMPERATURES, PRECIPITATION AND WIND, AS WELL AS OTHER NON-CLIMATIC FACTORS.

THE BIDDER OR CONTRACTOR IS CAUTIONED THAT DETAILS SHOWN ON THE SUBSURFACE PLANS ARE PRELIMINARY ONLY AND IN MANY CASES THE FINAL DESIGN DETAILS ARE DIFFERENT, FOR BIDDING AND CONSTRUCTION PURPOSES, REFER TO THE CONSTRUCTION PLANS AND DOCUMENTS FOR FINAL DESIGN INFORMATION ON THIS PROJECT. THE DEPARTMENT DOES NOT WARRANT OR GUARANTEE THE SUFFICIENCY OR ACCURACY OF THE INVESTIGATION MADE, NOR THE INTERPRETATIONS MADE, OR THE OPENION OF THE DEPARTMENT AS TO THE TOP OF MATERIALS AND CONDITIONS TO BE ENCOUNTERED. THE BIDDER OR CONTRACTOR IS CAUTIONED TO MAKE SUCH INDEPENDENT SUBSURFACE INVESTIGATIONS AS HE DEEMS NECESSARY TO SATISFY HIMSELF AS TO CONDITIONS TO BE ENCOUNTERED ON THE PROJECT. THE CONTRACTOR SHALL HAVE NO CLAIM FOR ADDITIONAL COMPENSATION OR FOR AN EXTENSION OF TIME FOR ANY REASON RESULTING FROM THE ACTUAL CONDITIONS ENCOUNTERED AT THE SITE DIFFERING FROM THOSE INDICATED IN THE SUBSURFACE INFORMATION.

- NOTES:


 1. THE INFORMATION CONTAINED HEREIN IS NOT IMPLIED OR GUARANTEED BY THE N.C. DEPARTMENT OF TRANSPORTATION AS ACCURATE NOR IS IT CONSIDERED PART OF THE PLANS, SPECIFICATIONS OR CONTRACT FOR THE PROJECT.

 2. BY HAVING REQUESTED THIS INFORMATION, THE CONTRACTOR SPECIFICALLY WAIVES ANY CLAIMS FOR INCREASED COMPENSATION OR EXTENSION OF TIME BASED ON DIFFERENCES BETWEEN THE CONDITIONS INDICATED HEREIN AND THE ACTUAL CONDITIONS AT THE PROJECT SITE.

PERSONNEL

	C.L. Smith
	B.E. Foster
INVESTI	GATED BY J.K. Stickney
	BY T.T. Walker, F&R Inc.
CHECKE	D BY <i>K.B. Miller</i>
	TED BY <i>C.R. Lavender, III</i>
	November 2019

J.K. Stickney

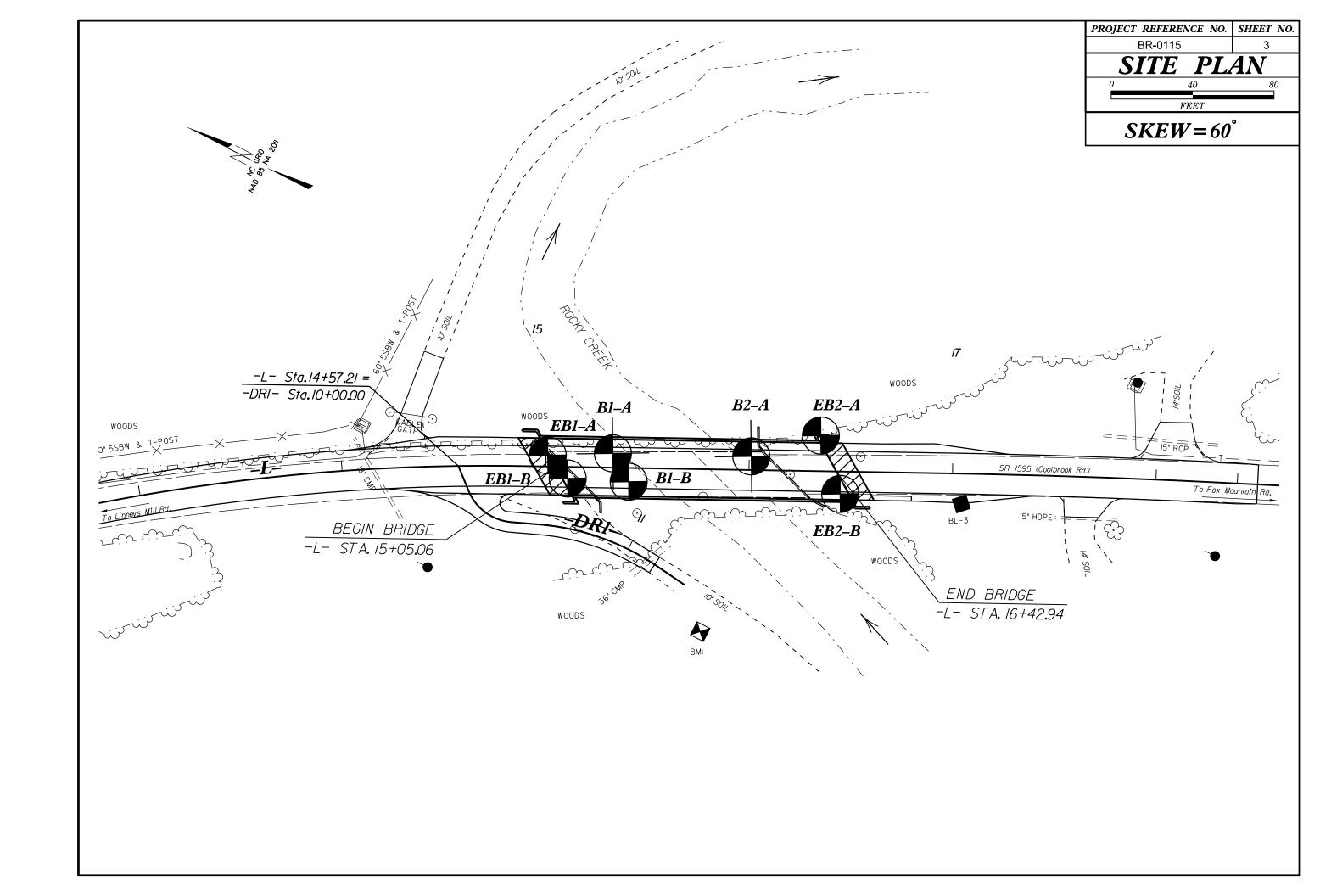
DOCUMENT NOT CONSIDERED FINAL UNLESS ALL SIGNATURES COMPLETED

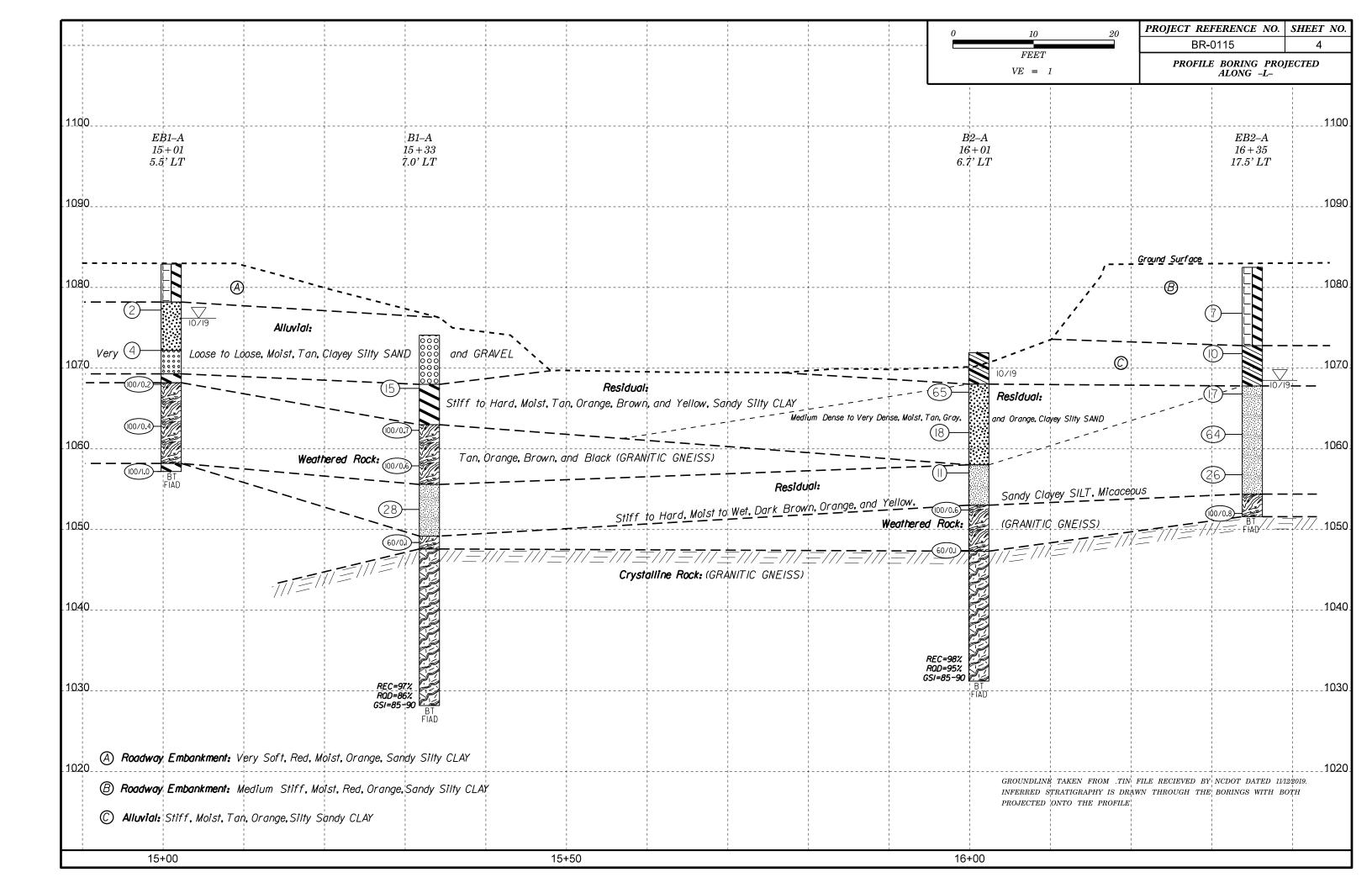
PROJECT REFERENCE NO.	SHEET NO.
BR-0115	2

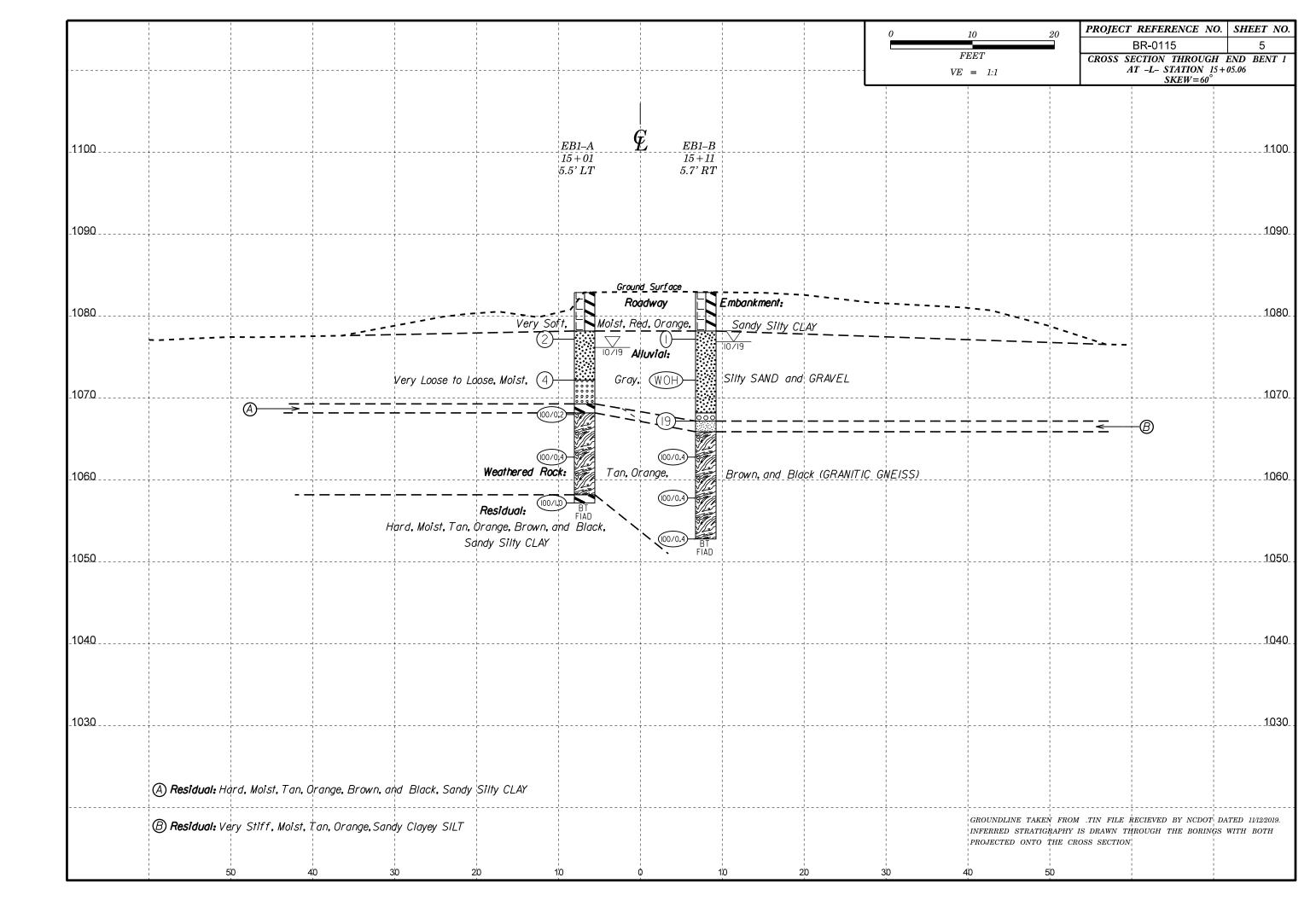
NORTH CAROLINA DEPARTMENT OF TRANSPORTATION DIVISION OF HIGHWAYS GEOTECHNICAL ENGINEERING UNIT

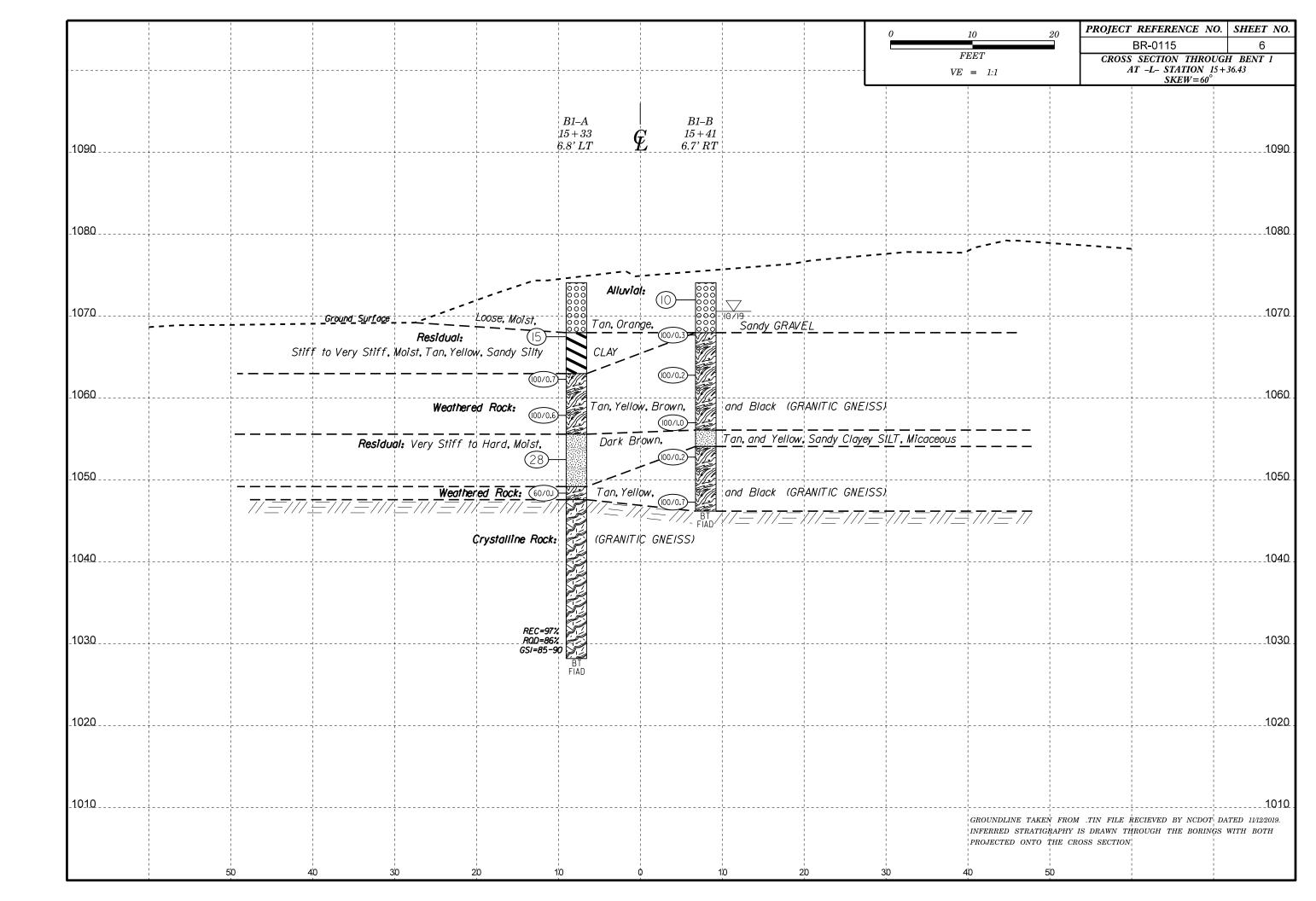
SUBSURFACE INVESTIGATION

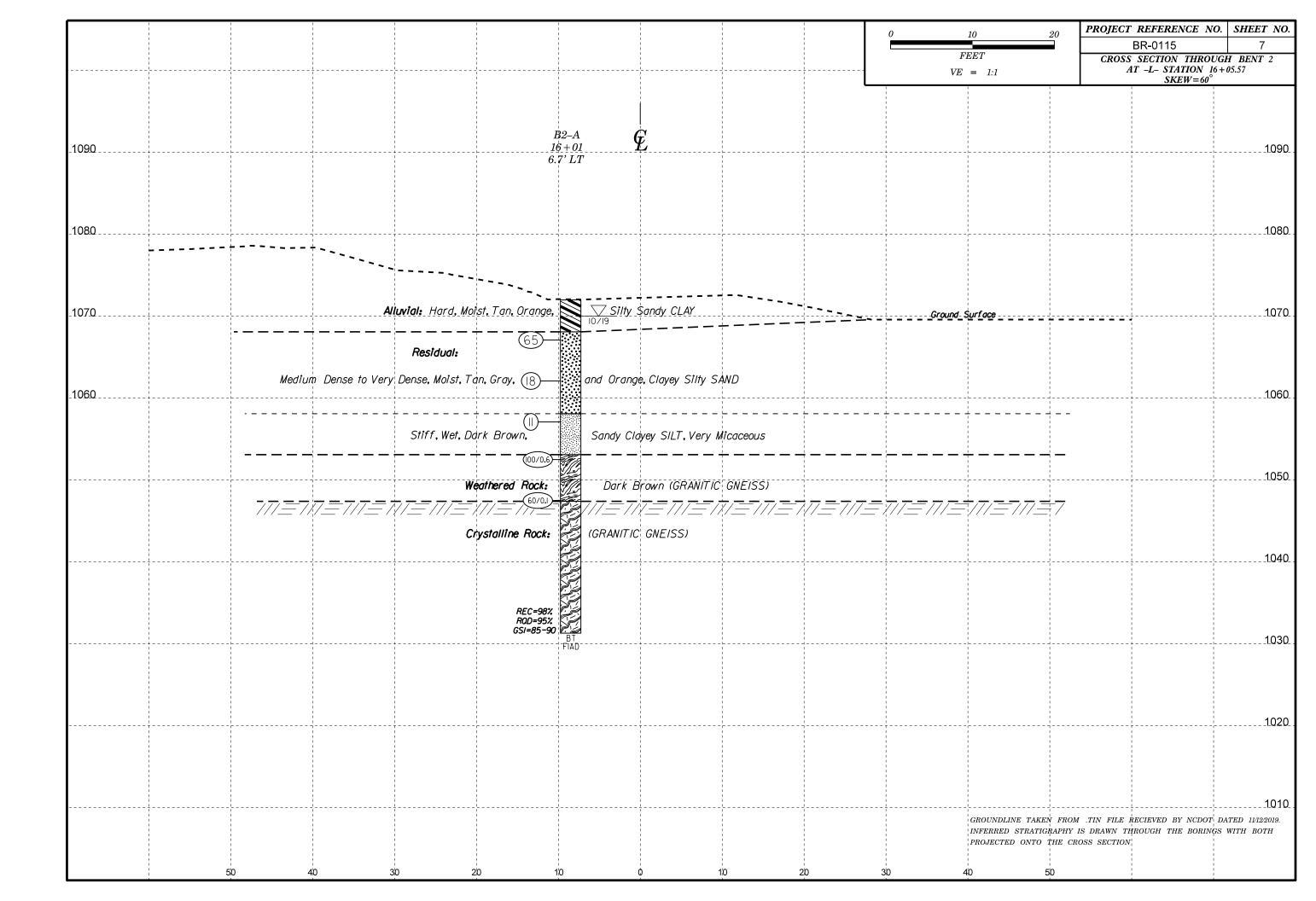
SOIL AND ROCK LEGEND, TERMS, SYMBOLS, AND ABBREVIATIONS

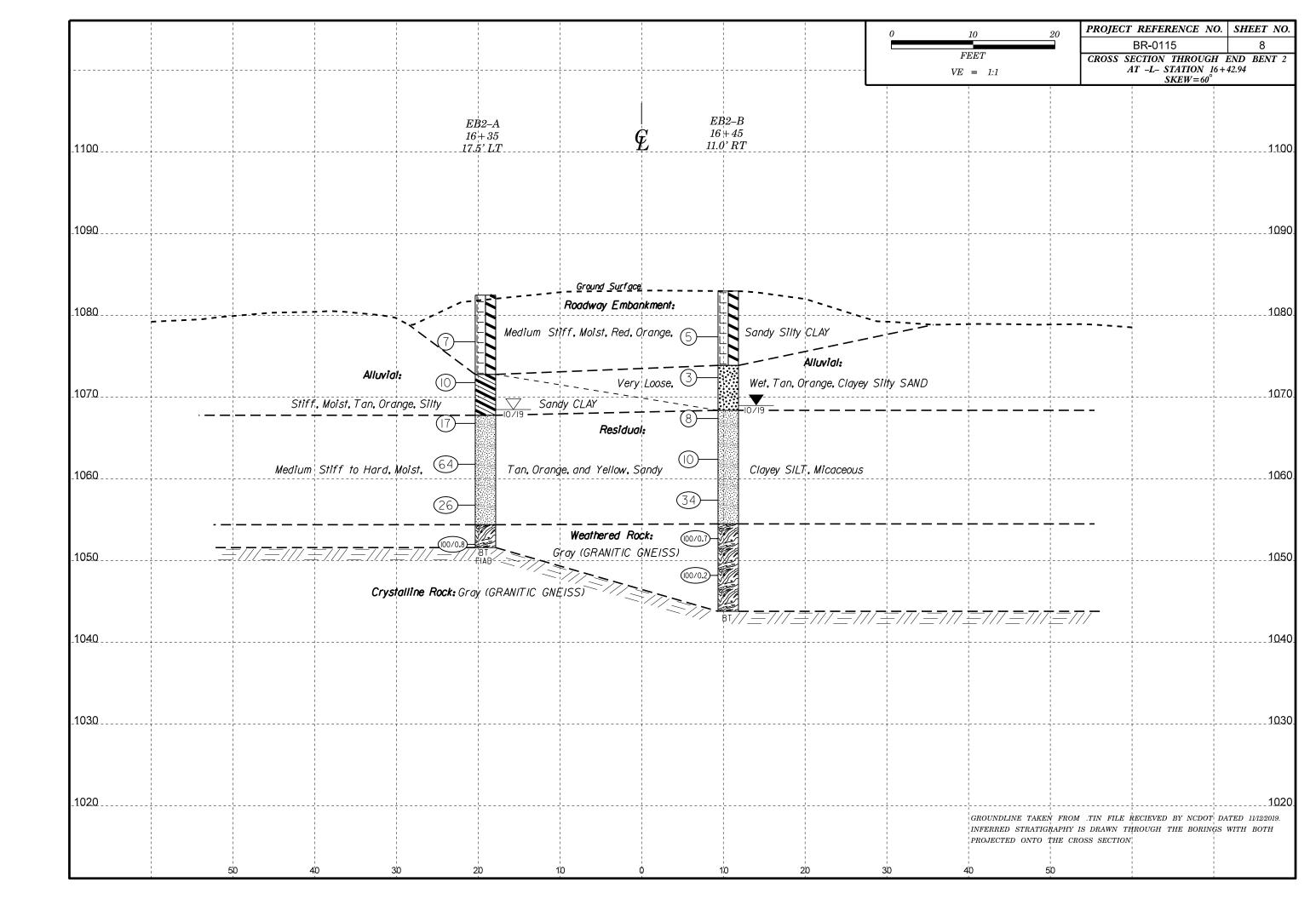

SOIL DESCRIPTION	GRADATION	ROCK DESCRIPTION	TERMS AND DEFINITIONS
SOIL IS CONSIDERED UNCONSOLIDATED, SEMI-CONSOLIDATED, OR WEATHERED EARTH MATERIALS THAT CAN	WELL GRADED - INDICATES A GOOD REPRESENTATION OF PARTICLE SIZES FROM FINE TO COARSE.	HARD ROCK IS NON-COASTAL PLAIN MATERIAL THAT WOULD YIELD SPT REFUSAL IF TESTED. AN INFERRED ROCK LINE INDICATES THE LEVEL AT WHICH NON-COASTAL PLAIN MATERIAL WOULD YIELD SPT REFUSAL.	ALLUVIUM (ALLUV.) - SOILS THAT HAVE BEEN TRANSPORTED BY WATER.
BE PENETRATED WITH A CONTINUOUS FLIGHT POWER AUGER AND YIELD LESS THAN 100 BLOWS PER FOOT ACCORDING TO THE STANDARD PENETRATION TEST (AASHTO T 206, ASTM D1586). SOIL CLASSIFICATION	<u>UNIFORMLY GRADED</u> - INDICATES THAT SOIL PARTICLES ARE ALL APPROXIMATELY THE SAME SIZE. <u>GAP-GRADED</u> - INDICATES A MIXTURE OF UNIFORM PARTICLE SIZES OF TWO OR MORE SIZES.	SPT REFUSAL IS PENETRATION BY A SPLIT SPOON SAMPLER EQUAL TO OR LESS THAN 0.1 FOOT PER 60	AGUIFER - A WATER BEARING FORMATION OR STRATA.
IS BASED ON THE AASHTO SYSTEM. BASIC DESCRIPTIONS GENERALLY INCLUDE THE FOLLOWING: CONSISTENCY, COLOR, TEXTURE, MOISTURE, AASHTO CLASSIFICATION, AND OTHER PERTINENT FACTORS SUCH	ANGULARITY OF GRAINS	BLOWS IN NON-COASTAL PLAIN MATERIAL, THE TRANSITION BETWEEN SOIL AND ROCK IS OFTEN REPRESENTED BY A ZONE OF WEATHERED ROCK.	ARENACEOUS - APPLIED TO ROCKS THAT HAVE BEEN DERIVED FROM SAND OR THAT CONTAIN SAND.
AS MINERALOGICAL COMPOSITION, ANGULARITY, STRUCTURE, PLASTICITY, ETC. FOR EXAMPLE, VERY STIFF, GRAY, SILTY CLAY, MOIST WITH INTERBEDDED FINE SAND LAYERS, HIGHLY PLASTIC, A-7-6	THE ANGULARITY OR ROUNDNESS OF SOIL GRAINS IS DESIGNATED BY THE TERMS:	ROCK MATERIALS ARE TYPICALLY DIVIDED AS FOLLOWS:	ARGILLACEOUS - APPLIED TO ALL ROCKS OR SUBSTANCES COMPOSED OF CLAY MINERALS, OR HAVING A NOTABLE PROPORTION OF CLAY IN THEIR COMPOSITION, SUCH AS SHALE, SLATE, ETC.
SOIL LEGEND AND AASHTO CLASSIFICATION	ANGULAR, SUBANGULAR, SUBROUNDED, OR ROUNDED.	WEATHERED NON-COASTAL PLAIN MATERIAL THAT WOULD YIELD SPT N VALUES > ROCK (WR) 100 BLOWS PER FOOT IF TESTED.	ARTESIAN - GROUND WATER THAT IS UNDER SUFFICIENT PRESSURE TO RISE ABOVE THE LEVEL AT
CEMERAL CRANIII AR MATERIAI S SILT-CLAY MATERIAI S	MINERALOGICAL COMPOSITION	FINE TO COARSE CRAIN ICNEOUS AND METAMORPHIC POCK THAT	WHICH IT IS ENCOUNTERED, BUT WHICH DOES NOT NECESSARILY RISE TO OR ABOVE THE GROUND
CLASS. (≤ 35% PASSING *200) (> 35% PASSING *200) UNGANIC MATERIALS	MINERAL NAMES SUCH AS QUARTZ, FELDSPAR, MICA, TALC, KAOLIN, ETC.	CRYSTALLINE ROCK (CR) WOULD YIELD SPT REFUSAL IF TESTED. ROCK TYPE INCLUDES GRANITE, GNEISS, GABBRO, SCHIST, ETC.	SURFACE.
GROUP A-1 A-3 A-2 A-4 A-5 A-6 A-7 A-1, A-2 A-4, A-5 CLASS. A-1-a A-1-b A-2-4 A-2-5 A-2-6 A-2-7 A-3 A-6, A-7	ARE USED IN DESCRIPTIONS WHEN THEY ARE CONSIDERED OF SIGNIFICANCE. COMPRESSIBILITY	NON-CRYSTALLINE FINE TO COARSE GRAIN METAMORPHIC AND NON-COASTAL PLAIN	CALCAREOUS (CALC.) - SOILS THAT CONTAIN APPRECIABLE AMOUNTS OF CALCIUM CARBONATE.
00000000000000000000000000000000000000	SLIGHTLY COMPRESSIBLE LL < 31	ROCK (NCR) SEDIMENTARY ROCK THAT WOULD YEILD SPT REFUSAL IF TESTED. ROCK TYPE INCLUDES PHYLLITE, SLATE, SANDSTONE, ETC.	COLLUVIUM - ROCK FRAGMENTS MIXED WITH SOIL DEPOSITED BY GRAVITY ON SLOPE OR AT BOTTOM OF SLOPE.
SYMBOL 000000000000000000000000000000000000	MODERATELY COMPRESSIBLE LL = 31 - 50 HIGHLY COMPRESSIBLE LL > 50	COASTAL PLAIN COASTAL PLAIN SEDIMENTS CEMENTED INTO ROCK, BUT MAY NOT YIELD SEDIMENTARY ROCK SPT REFUSAL. ROCK TYPE INCLUDES LIMESTONE, SANDSTONE, CEMENTED	CORE RECOVERY (REC.) - TOTAL LENGTH OF ALL MATERIAL RECOVERED IN THE CORE BARREL DIVIDED
7. PASSING GRANULAR SILT-	PERCENTAGE OF MATERIAL	(CP) SHELL BEDS, ETC.	BY TOTAL LENGTH OF CORE RUN AND EXPRESSED AS A PERCENTAGE.
■ 40 30 MX 50 MX 51 MN SOILS COILS PEAT	GRANULAR SILT - CLAY	WEATHERING WEATHERING	DIKE - A TABULAR BODY OF IGNEOUS ROCK THAT CUTS ACROSS THE STRUCTURE OF ADJACENT ROCKS OR CUTS MASSIVE ROCK.
#2080 15 MX 25 MX 18 MX 35 MX 35 MX 35 MX 36 MN	ORGANIC MATERIAL SOILS SOILS OTHER MATERIAL TRACE OF ORGANIC MATTER 2 - 3% 3 - 5% TRACE 1 - 10%	FRESH ROCK FRESH, CRYSTALS BRIGHT, FEW JOINTS MAY SHOW SLIGHT STAINING, ROCK RINGS UNDER HAMMER IF CRYSTALLINE.	DIP - THE ANGLE AT WHICH A STRATUM OR ANY PLANAR FEATURE IS INCLINED FROM THE
PASSING *40 SOILS WITH	LITTLE ORGANIC MATTER 3 - 5% 5 - 12% LITTLE 10 - 20%	VERY SLIGHT ROCK GENERALLY FRESH, JOINTS STAINED, SOME JOINTS MAY SHOW THIN CLAY COATINGS IF OPEN,	HORIZONTAL.
LL	MODERATELY ORGANIC 5 - 10% 12 - 20% SOME 20 - 35% HIGHLY ORGANIC > 10% > 20% HIGHLY 35% AND ABOVE	(V SLI.) CRYSTALS ON A BROKEN SPECIMEN FACE SHINE BRIGHTLY. ROCK RINGS UNDER HAMMER BLOWS IF	DIP DIRECTION (DIP AZIMUTH) - THE DIRECTION OR BEARING OF THE HORIZONTAL TRACE OF THE LINE OF DIP, MEASURED CLOCKWISE FROM NORTH.
CROID INDEX A A A AWY 9 MY 12 MY 16 MY NO MY MODINES OF ORGANIC	GROUND WATER	OF A CRYSTALLINE NATURE. SLIGHT ROCK GENERALLY FRESH, JOINTS STAINED AND DISCOLORATION EXTENDS INTO ROCK UP TO	FAULT - A FRACTURE OR FRACTURE ZONE ALONG WHICH THERE HAS BEEN DISPLACEMENT OF THE
USUAL TYPES STORE FRACS ORGANIC SUILS	✓ WATER LEVEL IN BORE HOLE IMMEDIATELY AFTER DRILLING	(SLI.) 1 INCH. OPEN JOINTS MAY CONTAIN CLAY. IN GRANITOID ROCKS SOME OCCASIONAL FELDSPAR	SIDES RELATIVE TO ONE ANOTHER PARALLEL TO THE FRACTURE.
OF MAJOR GRAVEL, AND SAMD GRAVEL AND SAMD SOULS SOULS	▼ STATIC WATER LEVEL AFTER 24 HOURS	CRYSTALS ARE DULL AND DISCOLORED. CRYSTALLINE ROCKS RING UNDER HAMMER BLOWS. MODERATE SIGNIFICANT PORTIONS OF ROCK SHOW DISCOLORATION AND WEATHERING EFFECTS. IN	FISSILE - A PROPERTY OF SPLITTING ALONG CLOSELY SPACED PARALLEL PLANES.
MALEMIALS SANU		(MOD.) GRANITOID ROCKS, MOST FELDSPARS ARE DULL AND DISCOLORED, SOME SHOW CLAY. ROCK HAS	FLOAT - ROCK FRAGMENTS ON SURFACE NEAR THEIR ORIGINAL POSITION AND DISLODGED FROM PARENT MATERIAL.
AS SUBGRADE EXCELLENT TO GOOD FAIR TO POOR POOR UNSUITABLE	SPRING OR SEEP	DULL SOUND UNDER HAMMER BLOWS AND SHOWS SIGNIFICANT LOSS OF STRENGTH AS COMPARED WITH FRESH ROCK.	FLOOD PLAIN (FP) - LAND BORDERING A STREAM, BUILT OF SEDIMENTS DEPOSITED BY THE STREAM.
PI OF A-7-5 SUBGROUP IS ≤ LL - 30 ;PI OF A-7-6 SUBGROUP IS > LL - 30		MODERATELY ALL ROCK EXCEPT QUARTZ DISCOLORED OR STAINED. IN GRANITOID ROCKS, ALL FELDSPARS DULL	FORMATION (FM.) - A MAPPABLE GEOLOGIC UNIT THAT CAN BE RECOGNIZED AND TRACED IN THE FIELD.
CONSISTENCY OR DENSENESS	MISCELLANEOUS SYMBOLS	SEVERE AND DISCOLORED AND A MAJORITY SHOW KAOLINIZATION, ROCK SHOWS SEVERE LOSS OF STRENGTH (MOD. SEV.) AND CAN BE EXCAVATED WITH A GEOLOGIST'S PICK, ROCK GIVES 'CLUNK' SOUND WHEN STRUCK.	JOINT - FRACTURE IN ROCK ALONG WHICH NO APPRECIABLE MOVEMENT HAS OCCURRED.
PRIMARY SOIL TYPE COMPACTNESS OR PENETRATION RESISTENCE COMPRESSIVE STRENGTH CONSISTENCY RANGE OF STANDARD RANGE OF UNCONFINED COMPRESSIVE STRENGTH COMPRESSIVE STRENGTH COMPRESSIVE STRENGTH	ROADWAY EMBANKMENT (RE) 25/025 DIP & DIP DIRECTION	IF TESTED, WOULD YIELD SPT REFUSAL	LEDGE - A SHELF-LIKE RIDGE OR PROJECTION OF ROCK WHOSE THICKNESS IS SMALL COMPARED TO
(N-VALUE) (TUNS/FT=)	WITH SOIL DESCRIPTION → OF ROCK STRUCTURES	SEVERE ALL ROCK EXCEPT QUARTZ DISCOLORED OR STAINED, ROCK FABRIC CLEAR AND EVIDENT BUT (SEV.) REDUCED IN STRENGTH TO STRONG SOIL. IN GRANITOID ROCKS ALL FELDSPARS ARE KAOLINIZED	ITS LATERAL EXTENT.
GENERALLY VERY LOOSE < 4 LOOSE 4 TO 10	SOIL SYMBOL OPT DMT TEST BORING SLOPE INDICATOR INSTALLATION	TO SOME EXTENT. SOME FRAGMENTS OF STRONG ROCK USUALLY REMAIN.	LENS - A BODY OF SOIL OR ROCK THAT THINS OUT IN ONE OR MORE DIRECTIONS.
GRANULAR MEDIUM DENSE 10 TO 30 N/A MATERIAL DENSE 30 TO 50	ARTIFICIAL FILL (AF) OTHER THAN ROADWAY FMRANKMENT AUGER BORING CONE PENETROMETER TEST	IF TESTED, WOULD YIELD SPT N VALUES > 100 BPF	MOTTLED (MOT.) - IRREGULARLY MARKED WITH SPOTS OF DIFFERENT COLORS. MOTTLING IN SOILS USUALLY INDICATES POOR AERATION AND LACK OF GOOD DRAINAGE.
(NON-COHESIVE) VERY DENSE > 50	THAN ROADWAY EMBANKMENT THOUER BURING TEST	VERY ALL ROCK EXCEPT QUARTZ DISCOLORED OR STAINED. ROCK FABRIC ELEMENTS ARE DISCERNIBLE SEVERE BUT MASS IS EFFECTIVELY REDUCED TO SOIL STATUS, WITH ONLY FRAGMENTS OF STRONG ROCK	PERCHED WATER - WATER MAINTAINED ABOVE THE NORMAL GROUND WATER LEVEL BY THE PRESENCE
VERY SOFT < 2 < 0.25	— INFERRED SOIL BOUNDARY — CORE BORING ● SOUNDING ROD	(V SEV.) REMAINING. SAPROLITE IS AN EXAMPLE OF ROCK WEATHERED TO A DEGREE THAT ONLY MINOR VESTIGES OF ORIGINAL ROCK FABRIC REMAIN. <u>IF TESTED, WOULD YIELD SPT N VALUES < 100 BPF</u>	OF AN INTERVENING IMPERVIOUS STRATUM.
GENERALLY SOFT 2 TO 4 0.25 TO 0.5 SILT-CLAY MEDIUM STIFF 4 TO 8 0.5 TO 1.0	INFERRED ROCK LINE MONITORING WELL TEST BORING WITH CORE	COMPLETE ROCK REDUCED TO SOIL. ROCK FABRIC NOT DISCERNIBLE, OR DISCERNIBLE ONLY IN SMALL AND	RESIDUAL (RES,) SOIL - SOIL FORMED IN PLACE BY THE WEATHERING OF ROCK. ROCK QUALITY DESIGNATION (ROD) - A MEASURE OF ROCK QUALITY DESCRIBED BY TOTAL LENGTH OF
MATERIAL STIFF 8 TO 15 1 TO 2	A PIFZOMETER	SCATTERED CONCENTRATIONS. QUARTZ MAY BE PRESENT AS DIKES OR STRINGERS. SAPROLITE IS ALSO AN EXAMPLE.	ROCK SEGMENTS EQUAL TO OR GREATER THAN 4 INCHES DIVIDED BY THE TOTAL LENGTH OF CORE
HARD > 30 > 4	INSTREETION	ROCK HARDNESS	RUN AND EXPRESSED AS A PERCENTAGE. SAPROLITE (SAP.) - RESIDUAL SOIL THAT RETAINS THE RELIC STRUCTURE OR FABRIC OF THE PARENT
TEXTURE OR GRAIN SIZE	RECOMMENDATION SYMBOLS	VERY HARD CANNOT BE SCRATCHED BY KNIFE OR SHARP PICK, BREAKING OF HAND SPECIMENS REQUIRES	ROCK,
U.S. STD. SIEVE SIZE 4 10 40 60 200 270 OPENING (MM) 4.76 2.00 0.42 0.25 0.075 0.053	UNCLASSIFIED EXCAVATION - UNCLASSIFIED EXCAVATION - ACCEPTABLE, BUT NOT TO BE	SEVERAL HARD BLOWS OF THE GEOLOGIST'S PICK.	SILL - AN INTRUSIVE BODY OF IGNEOUS ROCK OF APPROXIMATELY UNIFORM THICKNESS AND
COARCE FINE	H SHALLOW UNCLASSIFIED EXCAVATION - USED IN THE TUP 3 FEET OF	HARD CAN BE SCRATCHED BY KNIFE OR PICK ONLY WITH DIFFICULTY. HARD HAMMER BLOWS REQUIRED TO DETACH HAND SPECIMEN.	RELATIVELY THIN COMPARED WITH ITS LATERAL EXTENT, THAT HAS BEEN EMPLACED PARALLEL TO THE BEDDING OR SCHISTOSITY OF THE INTRUDED ROCKS.
BUDLDER CUBBLE GRAVEL SAND SAND (SL) (CL)		MODERATELY CAN BE SCRATCHED BY KNIFE OR PICK. GOUGES OR GROOVES TO 0.25 INCHES DEEP CAN BE	SLICKENSIDE - POLISHED AND STRIATED SURFACE THAT RESULTS FROM FRICTION ALONG A FAULT
(LSE, SU.) (F SU.)	ABBREVIATIONS AR - AUGER REFUSAL MED MEDIUM VST - VANE SHEAR TEST	HARD EXCAVATED BY HARD BLOW OF A GEOLOGIST'S PICK, HAND SPECIMENS CAN BE DETACHED BY MODERATE BLOWS.	OR SLIP PLANE. STANDARD PENETRATION TEST (PENETRATION RESISTANCE) (SPT) - NUMBER OF BLOWS (N OR BPF) OF
GRAIN MM 305 75 2.0 0.25 0.05 0.005 SIZE IN. 12 3	BT - BORING TERMINATED MICA MICACEOUS WEA WEATHERED	MEDIUM CAN BE GROOVED OR GOUGED 0.05 INCHES DEEP BY FIRM PRESSURE OF KNIFE OR PICK POINT.	A 140 LB. HAMMER FALLING 30 INCHES REQUIRED TO PRODUCE A PENETRATION OF 1 FOOT INTO SOIL
SOIL MOISTURE - CORRELATION OF TERMS	CL CLAY MOD MODERATELY 7 - UNIT WEIGHT CPT - CONE PENETRATION TEST NP - NON PLASTIC 7 - DRY UNIT WEIGHT	HARD CAN BE EXCAVATED IN SMALL CHIPS TO PEICES I INCH MAXIMUM SIZE BY HARD BLOWS OF THE POINT OF A GEOLOGIST'S PICK.	WITH A 2 INCH OUTSIDE DIAMETER SPLIT SPOON SAMPLER. SPT REFUSAL IS PENETRATION EQUAL TO OR LESS THAN 0.1 FOOT PER 60 BLOWS.
SOIL MOISTURE SCALE FIELD MOISTURE CHIDE FOR FIELD MOISTURE DESCRIPTION	CSE COARSE ORG ORGANIC	SOFT CAN BE GROVED OR GOUGED READILY BY KNIFE OR PICK. CAN BE EXCAVATED IN FRAGMENTS	STRATA CORE RECOVERY (SREC.) - TOTAL LENGTH OF STRATA MATERIAL RECOVERED DIVIDED BY
(ATTERBERG LIMITS) DESCRIPTION OF THE BOSTONE BESCHIFTION	DMT - DILATOMETER TEST PMT - PRESSUREMETER TEST SAMPLE ABBREVIATIONS DPT - DYNAMIC PENETRATION TEST SAP SAPROLITIC S - BULK	FROM CHIPS TO SEVERAL INCHES IN SIZE BY MODERATE BLOWS OF A PICK POINT. SMALL, THIN PIECES CAN BE BROKEN BY FINGER PRESSURE.	TOTAL LENGTH OF STRATUM AND EXPRESSED AS A PERCENTAGE.
- SATURATED - USUALLY LIOUID; VERY WET, USUALLY (SAT.) FROM BELOW THE GROUND WATER TABLE	e - VOID RATIO SD SAND, SANDY SS - SPLIT SPOON	VERY CAN BE CARVED WITH KNIFE. CAN BE EXCAVATED READILY WITH POINT OF PICK, PIECES 1 INCH	STRATA ROCK QUALITY DESIGNATION (SRQD) - A MEASURE OF ROCK QUALITY DESCRIBED BY TOTAL LENGTH OF ROCK SEGMENTS WITHIN A STRATUM EQUAL TO OR GREATER THAN 4 INCHES DIVIDED BY
LL LIQUID LIMIT	FOSS FOSSILIFEROUS SLI SLIGHTLY RS - ROCK	SOFT OR MORE IN THICKNESS CAN BE BROKEN BY FINGER PRESSURE. CAN BE SCRATCHED READILY BY FINGERNAIL.	THE TOTAL LENGTH OF STRATA AND EXPRESSED AS A PERCENTAGE. TOPSOIL (TS.) - SURFACE SOILS USUALLY CONTAINING ORGANIC MATTER.
PLASTIC SEMISOLID; REQUIRES DRYING TO ATTAIN COTTAIN MOSTUPE	FRAC FRACTURED, FRACTURES TCR - TRICONE REFUSAL RT - RECOMPACTED TRIAXIAL FRAGS FRAGMENTS ω - MOISTURE CONTENT CBR - CALIFORNIA BEARING	FRACTURE SPACING BEDDING	
(PI) PLASTIC LIMIT	HI HIGHLY V - VERY RATIO	TERM SPACING TERM THICKNESS	BENCH MARK: BM#1: RR SPIKE IN BASE OF 18" HICKORY, -BL- STA. 13+33.00, 64' RIGHT, N: 829,986, E: 1,407,394
- MOIST - (M) COLID. AT OR NEAR ORTIMIN MOISTURE	EQUIPMENT USED ON SUBJECT PROJECT	VERY WIDE MORE THAN 10 FEET VERY THICKLY BEDDED 4 FEET WIDE 3 TO 10 FEET THICKLY BEDDED 1.5 - 4 FEET	N: 829,986, E: I,407,394 ELEVATION: N/A FEET
OM _ OPTIMUM MOISTURE SL _ SHRINKAGE LIMIT	DRILL UNITS: ADVANCING TOOLS: HAMMER TYPE:	MODERATELY CLOSE 1 TO 3 FEET THINLY BEDDED 0.16 - 1.5 FEET	NOTES:
REQUIRES ADDITIONAL WATER TO	CME-45C CLAY BITS X AUTOMATIC MANUAL	CLOSE 0.16 TO 1 FOOT VERY THINLY BEDDED 0.03 - 0.16 FEET VERY CLOSE LESS THAN 0.16 FEET THICKLY LAMINATED 0.008 - 0.03 FEET	FIAD= FILLED IMMEDIATELY AFTER DRILLING
ATTAIN OPTIMUM MOISTURE	CME-55 CME-55 CONTINUOUS FLIGHT AUGER CORE SIZE:	THINLY LAMINATED < 0.008 FEET	
PLASTICITY	X 8*HOLLOW AUGERS	INDURATION	
PLASTICITY INDEX (PI) NON PLASTIC VERY LOW	CME-550 HARD FACED FINGER BITS X -N WL -2	FOR SEDIMENTARY ROCKS, INDURATION IS THE HARDENING OF MATERIAL BY CEMENTING, HEAT, PRESSURE, ETC. RUBBING WITH FINGER FREES NUMEROUS GRAINS;	
NON PLASTIC 0-5 VERY LOW SLIGHTLY PLASTIC 6-15 SLIGHT	VANE SHEAR TEST VANE SHEAR TEST	FRIABLE GENTLE BLOW BY HAMMER DISINTEGRATES SAMPLE.	
MODERATELY PLASTIC 16-25 MEDIUM HIGHLY PLASTIC 26 OR MORE HIGH	X CASING X W/ ADVANCER POST HOLE DIGGER	MODERATELY INDURATED GRAINS CAN BE SEPARATED FROM SAMPLE WITH STEEL PROBE:	
COLOR	PORTABLE HOIST TRICONE STEEL TEETH HAND AUGER	BREAKS EASILY WHEN HIT WITH HAMMER. GRAINS ARE DIFFICULT TO SEPARATE WITH STEEL PROBE;	
	☐ X CME-550X	INDURATED GRAINS ARE DIFFICULT TO SEPARATE WITH STEEL PROBE; DIFFICULT TO BREAK WITH HAMMER.	
DESCRIPTIONS MAY INCLUDE COLOR OR COLOR COMBINATIONS (TAN, RED, YELLOW-BROWN, BLUE-GRAY). MODIFIERS SUCH AS LIGHT, DARK, STREAKED, ETC. ARE USED TO DESCRIBE APPEARANCE.	CORE BIT VANE SHEAR TEST	EXTREMELY INDURATED SHARP HAMMER BLOWS REQUIRED TO BREAK SAMPLE;	
THE SECOND CONTRACTOR OF THE COLD TO DESCRIBE MY EMPRICE		SAMPLE BREAKS ACROSS GRAINS.	DATE: 8-15-14

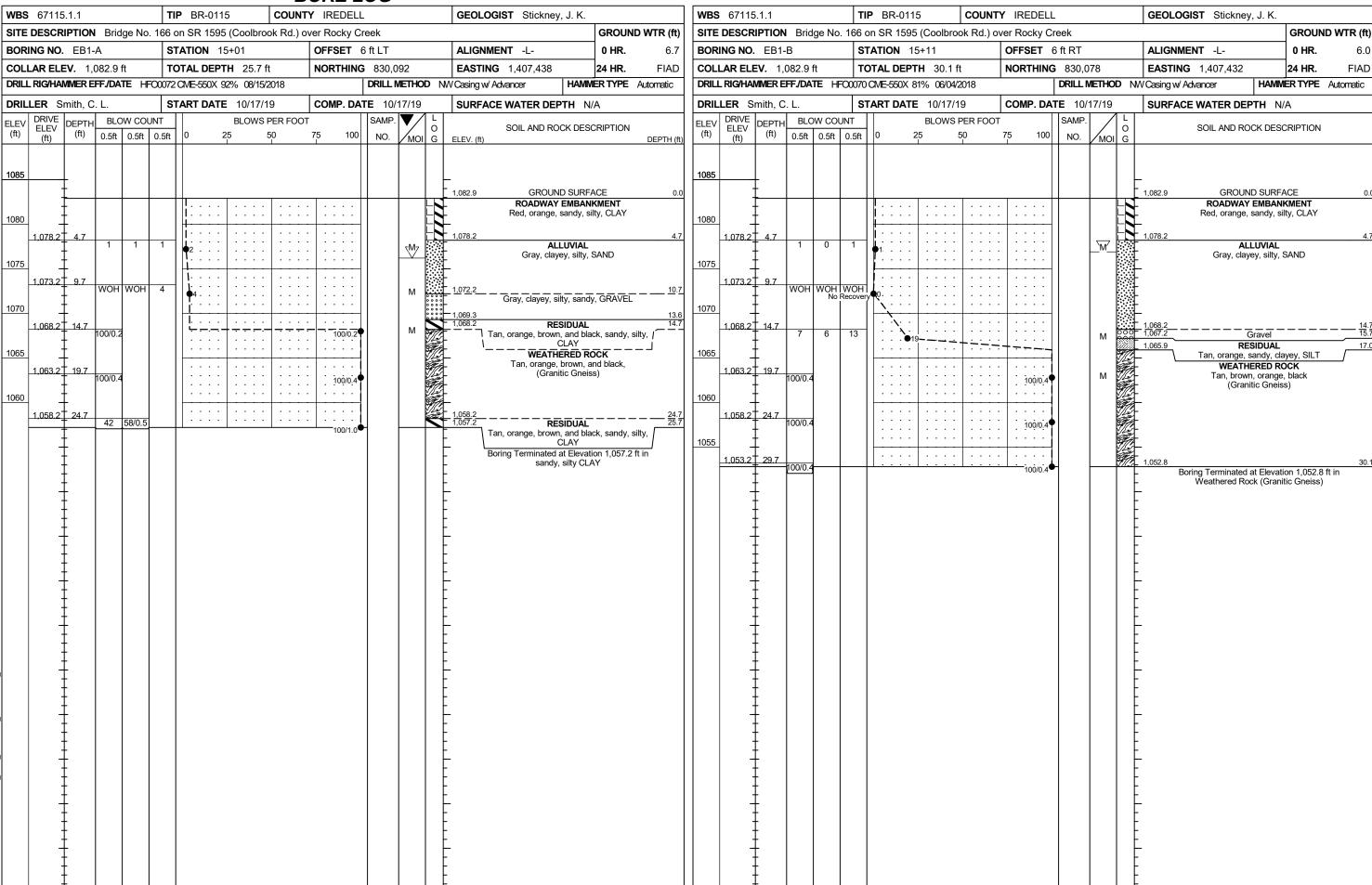

PROJECT REFERENCE NO.	SHEET NO.
BR-0115	2A


NORTH CAROLINA DEPARTMENT OF TRANSPORTATION DIVISION OF HIGHWAYS GEOTECHNICAL ENGINEERING UNIT


SUBSURFACE INVESTIGATION


		SUPPLEMI FR	ENTAL LI OM AAS	EGEND, G. HTO LRI	EOLOGIC FD BRID	AL STRENGTH INDEX (GSI) TABLES GE DESIGN SPECIFICATIONS
AASHTO LRFD Figure 10.4.6.4-1 $-$ Determination of GSI for Joint	d Rock Mass (Ma	nnos and Hoek,	2000)			AASHTO LRFD Figure 10.4.6.4-2 — Determination of GSI for Tectonically Deformed Heterogeneous Rock Masses (Marinos and Hoek, 2000)
GEOLOGICAL STRENGTH INDEX (GSI) FOR JOINTED ROCKS (Hoek and Marinos, 2000) From the lithology, structure and surface conditions of the discontinuities, estimate the average value of GSI. Do not try to be too precise. Quoting a range from 33 to 37 is more realistic than stating that GSI = 35. Note that the table does not apply to structurally controlled failures. Where weak planar structural planes are present in an unfavorable orientation with respect to the excavation face, these will dominate the rock mass behaviour. The shear strength of surfaces in rocks that are prone to deterioration as a result of changes in moisture content will be reduced if water is present. When working with rocks in the fair to very poor categories, a shift to the right may be made for wet conditions. Water pressure is dealt with by effective stress analysis.	SURFACE CONDITIONS VERY GOOD Very rough, fresh unweathered surfaces	GOOD Rough, slightly weathered, iron stained surfaces	FAIR Smooth, moderately weathered and altered surfaces	POOR Slickensided, highly weathered surfaces with compact coatings or fillings or angular fragments	VERY POOR Slickensided, highly weathered surfaces with soft clay coatings or fillings	GSI FOR HETEROGENEOUS ROCK MASSES SUCH AS FLYSCH (Marinos. P and Hoek E., 2000) From a description of the lithology, structure and surface conditions (particularly of the bedding planes), choose a box in the chart. Locate the position in the box that corresponds to the condition of the discontinuities and estimate the average value of GSI from the contours. Do not attempt to be too precise. Quoting a range from 33 to 37 is more realistic than giving a range from 35 to 37 is more realistic than giving controlled failures. Where unfavourably oriented continuous weak planar discontinuities are present, these will dominate the behaviour of the rock mass. The strength of some rock masses is reduced by the presence of groundwater and this can be allowed for by a slight shift to the right in the columns for fair, poor and very poor thingly weathered such conditions. Water pressure does not change the value of GSI and it is dealt with by using effective stress analysis.
STRUCTURE	- 1	CREASING S		ALITY =	!	COMPOSITION AND STRUCTURE
INTACT OR MASSIVE - intact rock specimens or massive in situ rock with few widely spaced discontinuities	90 80 80			N/A	N/A	A. Thick bedded, very blocky sandstone The effect of pelitic coating on the bedding planes is minimized by the confinement of the rock mass, in shallow tunnels or slopes these bedding planes may cause structurally controlled instability. A. Thick bedded, very blocky sandstone 70 A.
BLOCKY - well interlocked undisturbed rock mass consisting of cubical blocks formed by three intersecting discontinuity sets VERY BLOCKY - interlocked, partially disturbed mass with	OF ROCK	70 60	50			B. Sand- stone with stone and siltstone in similar amounts B. Sand- Stone and siltstone or silty shale with sand- stone layers or clayey shale with sandstone layers amounts Solution Or Siltstone or clayey shale with sandstone layers
multi-faceted angular blocks formed by 4 or more joint sets BLOCKY/DISTURBED/SEAMY -	INTERLOCKING		40			C. D. E. and G - may be more or less folded than illustrated but The folded faulted, The conically deformed, Intensively folded/faulted,
folded with angular blocks formed by many intersecting discontinuity sets. Persistence of bedding planes or schistosity	ASING			30		this does not change the strength. Tectonic deformation, faulting and loss of continuity moves these categories to F and H . sheared clayey shale or siltstone with broken and deformed sandstone layers forming an almost chaotic structure
DISINTEGRATED - poorly inter- locked, heavily broken rock mass with mixture of angular and rounded rock pieces	DECKE			20		G. Undisturbed silty or clayey shale formed silty or clayey shale with or without a few very thin sandstone layers H. Tectonically deformed silty or clayey shale forming a chaptic structure with pockets of clay. Thin layers of sandstone are transformed
LAMINATED/SHEARED - Lack of blockiness due to close spacing of weak schistosity or shear planes	V N/A	N/A			10	into small rock pieces. → Means deformation after tectonic disturbance DATE: 8-19-16

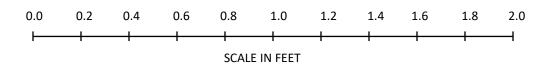




WBS	67115	5.1.1			Т	P BR	-011	 5	COUNT	YIRE					GEOLOGIST Stickney	. J. K.		
			l Brid	dge No					ook Rd.) o						102020000		ROUN	D WTR (ft)
	NG NO.					TATIO		•	· · ·		SET 7				ALIGNMENT -L-		0 HR.	N/A
COLL	AR ELE	EV. 1,	074.1	ft	T	OTAL I	DEPT	H 45.9	ft	NOR'	THING	830,0)64		EASTING 1,407,453	2	4 HR.	FIAD
DRILL	. RIG/HAI	MMER E	FF./DA	ATE H	F00072	CME-5	50X 9	2% 08/15	/2018			DRILL I	METHO	D N	V Casing w/ Core	HAMMER	TYPE	Automatic
RILI	LER S	mith, C	. L.		S	TART I	DATE	10/09/	19	СОМ	P. DA	TE 10/	09/19		SURFACE WATER DEP	TH N/A		
LEV	DRIVE ELEV	DEPTH	BLO	ow co	UNT			BLOWS	PER FOOT	-		SAMP.	lacksquare	L	SOIL AND RO	CK DESCR	IPTION	
(ft)	(ft)	(ft)	0.5ft	0.5ft	0.5ft	0	2	25 	50	75 	100	NO.	МО		ELEV. (ft)			DEPTH (f
1075		<u> </u>													1,074.1 GROUN	D SURFAC	E	0.
	-						.							000	ALI Tan, orange, sil	LUVIAL Itv. sandv. 0	GRAVEL	
1070	-	Ī					į .			.					, 3,	3, 3,		
	1,068.5	5.6	17	8	7								l	000	1,068.0			6.
	-	-	''	°	'		∮ 15						M		RES Tan, yellow, s	SIDUAL sandv. siltv.	CLAY	
1065	4 000 5						<u> </u>		+ : : :						-	3, 3,		
	1,063.5	10.6	8	32	68/0.2						00/0.7	,		77		RED ROC	.— — —	11.:
1060	_	E													Tan, yellow, (Grani	brown, and tic Gneiss)	black	
	1,058.5	15.6	53	47/0.1	1										(,		
	-	-	33	47/0.1							00/0.6	'			1,055.6			18.
1055	4.050.5	[RES	SIDUAL		
	1,053.5	20.6	14	16	12			€28					М	E		aceous	SILT, VEI	/
1050	_	E					• •	j						E				
	1,048.5	25.6	60/0.1						+	+	60/0.1	,		773		ERED ROC	K	24.
	-	Ŧ.	00/0.1	'						No Re	covery				(Grani	tic Gneiss) LLINE ROC	:K	
1045	-	<u> </u>								+						tic Gneiss)		
	-	-																
1040	-	-								.								
	-	<u> </u>																
	-	ŀ																
1035	-	<u> </u>								+					-			
	-	ł																
1030	_	Ł													_			
	-														1,028.2			45.9
	-	ŀ													Boring Terminated a Crystalline Roo	at Elevation k (Granitic	1,028.21 Gneiss)	ft in
	_	E												E	-			
	-	ł												l E				
	_	Ł												l E	_			
	-	ł												l E				
	-	ŀ												l E				
	-	<u> </u>												1 E	-			
		Ŧ.																
	-	<u> </u>												E	_			
	-	ŧ												E				
	-	ł												F				
	_	Ē												F	-			
	-	Ŧ																
	-	ļ																
	-	‡													-			
	-	‡																
	-	<u> </u>																

GEOTECHNICAL BORING REPORT CORE LOG

BORING NO. B1-A STATION 15+33 OFFSET 7 ft LT ALIGNMENT -L- 0 H COLLAR ELEV. 1,074.1 ft TOTAL DEPTH 45.9 ft NORTHING 830,064 EASTING 1,407,453 24 H		
BORING NO. B1-A STATION 15+33 OFFSET 7 ft LT ALIGNMENT -L- O H		
COLLAR ELEV. 1,074.1 ft TOTAL DEPTH 45.9 ft NORTHING 830,064 EASTING 1,407,453 24 H	GROUND WTR (ft)	
DRILL RIGHAMMER EFF./DATE	R. N/A	
DRILLER Smith, C. L. START DATE 10/09/19 COMP. DATE 10/09/19 SURFACE WATER DEPTH N/A	R. FIAD	
CORE SIZE NWL-2 TOTAL RUN 19.4 ft	PE Automatic	
1047.6 Begin Coring @ 26.5 ft CRYSTALLINE ROCK Gray, white, fresh, hard to very hard Granitic Gneiss, moderately wide fracture spacing. GSI 85 - 90. 1,037.2 36.9 1,032.2 41.9 4.0 (3.7) 93% 93% 1,028.2 45.9 1,028.2 Boring Terminated at Elevation 1,028.2 ft in Crystalline Rock (Gine in Crystalline R		
1047.6 Begin Coring @ 26.5 ft CRYSTALLINE ROCK Gray, white, fresh, hard to very hard Granitic Gneiss, moderately wide fracture spacing. GSI 85 - 90. 1,037.2 36.9 1,032.2 41.9 4.0 (3.7) 93% 93% 1,028.2 45.9 1,028.2 Boring Terminated at Elevation 1,028.2 ft in Crystalline Rock (Gine in Crystalline R		
1047.6 Begin Coring @ 26.5 ft (0.4) (0.0)	DEPTH (ft	
1045 1040	26.5	
1,042.2 31.9 100% 64% 1,037.2 36.9 5.0 (5.0) 100% 100% 100% 100% 100% 100% 100% 10		
1040 1,037.2 36.9 1,032.2 41.9 1,032.2 45.9 1,028.2 45.9 1,028.2 Boring Terminated at Elevation 1,028.2 ft in Crystalline Rock (Gi		
1,037.2 36.9 5.0 (5.0) (5.0) 100% 100% 100% 1,032.2 41.9 4.0 (3.7) 93% 93% 1,028.2 45.9		
1035 5.0 (5.0) (5.0) 100% 100% 1,032.2 41.9 4.0 (3.7) 93% 93% 1,028.2 45.9		
1035 1,032.2		
1030 4.0 (3.7) 93% 93% 1,028.2 45.9 1,028.2 Boring Terminated at Elevation 1,028.2 ft in Crystalline Rock (Gi		
1030 93% 93% 1,028.2 45.9 8oring Terminated at Elevation 1,028.2 ft in Crystalline Rock (Gi		
1,028.2 45.9 1,028.2 Boring Terminated at Elevation 1,028.2 ft in Crystalline Rock (Gi		
	45.9	
	anitic	
 		
<u> </u>		
‡		


CORE PHOTOGRAPHS: Bridge No. 166 on SR1595 (Coolbrook Rd.) over Rocky Creek, B1-A 15+33, 7.0' LT

Begin 26.5 feet

RUN 1

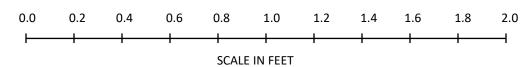
RUN 2

RUN 3

Project WBS: 67115.1.1 TIP: BR-0115 Bridge No. 166 on SR 1595 (Coolbrook Rd.) over Rocky Creek

SHEET 12

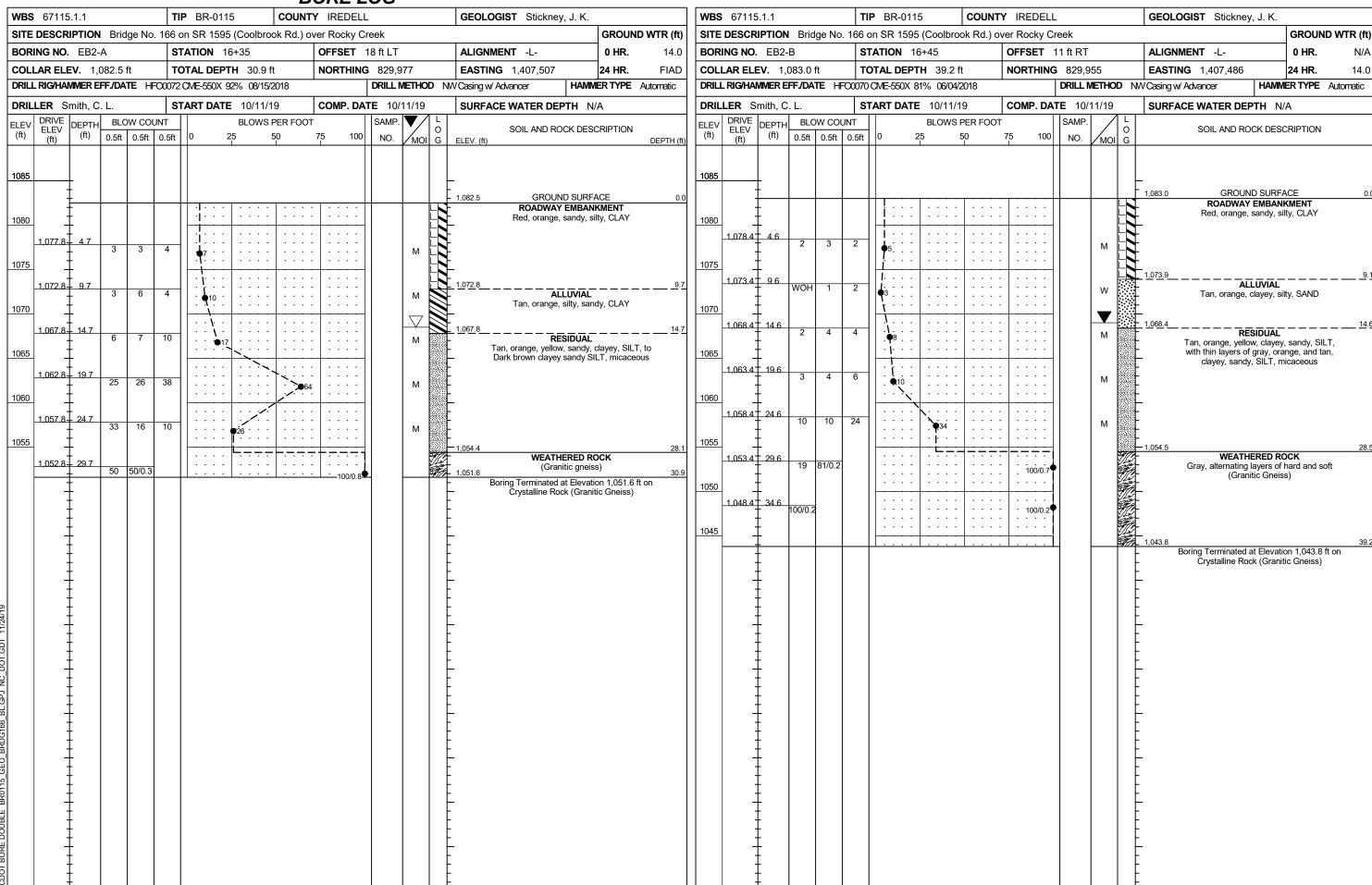
NBS	67115	5.1.1			TI	P BR-011	5	COUNTY	/ IREDELL	-			GEOLOGIST Stickney	/, J. K.		
SITE	DESCR	IPTION	I Brid	dge No	o. 166 d	on SR 1595	(Coolbrool	k Rd.) ov	er Rocky C	reek					GROUN	D WTR (ft
30RI	NG NO.	B1-B	3		S	TATION 1	5+41		OFFSET	7 ft RT			ALIGNMENT -L-		0 HR.	3.5
COLL	AR ELE	EV. 1,	074.1	ft	TO	OTAL DEPT	H 27.9 ft		NORTHING	830,0	51		EASTING 1,407,444		24 HR.	FIAD
DRILL	.RIG/HAI	VIMER E	FF./DA	TE H	F00070	CME-550X 8	1% 06/04/20)18		DRILL N	/IETHO	D N	W Casing w/ Advancer	HAMME	R TYPE	Automatic
ORILI	LER S	mith, C). L.		S	TART DATE	10/17/19)	COMP. DA	TE 10/	17/19		SURFACE WATER DEI	PTH N/A	١	
LEV	DRIVE ELEV	DEPTH	BLO	ow co	UNT		BLOWS PE	ER FOOT		SAMP.	V /		SOIL AND BO	OK DESC	DIDTION	
(ft)	(ft)	(ft)		0.5ft	0.5ft	0 2	25 50)	75 100	NO.	моі	O G	SOIL AND RC ELEV. (ft)	ICK DESCR	RIPTION	DEPTH (
075															OF	
	1,073.0	1.1				 : ; : :			T : : : :			000	AL	ID SURFAC LUVIAL		(
	-	_	2	5	5	· •10 ·						000	Tan, orange, s	ilty, sandy,	GRAVEL	
)70	_	_							+			000	<u>-</u>			
-	1,068.0	6.1	100/0.3	3		- '-	 		100/0.3	,		000	1,068.0 WEATH	ERED ROO	CK	
)65	-												Tan, yell	ow, and bla	ack	
	1,063.0	[11 1											- (0.44)	g. 10100 <i>)</i>	•	
	-	-	100/0.2	2					100/0.2)			•			
60	_	-											• -			
-	1,058.0	16.1	35	57	43/0.5								- -			
55	-	-		"	10/0.0				100/1.0)				SIDUAL		1
	1,053.0											3477	1,05 <u>4.</u> 1Tan, yellow, and bl	ack, sandy,		SILT 20
	1,053.0_	- 21.1	100/0.2	2					100/0.2	•			Tan, yellow, and bl	ERED ROC ack, alterna	c k ating layer	s of
50	-	-											- hard	d and soft iitic gneiss)		
	1,048.0	26.1		47/0.0									- -	,		
	-		53	47/0.2					- 100/0.7	<u>'</u>			1,046.2 Boring Terminated		1.010.0	2
	- - - -															
	- - - - -	- - - - - -											- - - - -			
	-	-											• •			


									UKE L				1	
	67115					P BR-0115			/ IREDELI				GEOLOGIST Stickney, J. K.	
				dge No		on SR 1595 (GROUND WTR (ft)
	ING NO.					TATION 16+			OFFSET	7 ft LT			ALIGNMENT -L-	0 HR. 2.0
	LAR ELE					OTAL DEPTH			NORTHING					24 HR. FIAD
RILL	_ RIG/HAI	MMER E	FF./DA	ATE H	FO0070	CME-550X 819	% 06/04/2	018					V Casing w/ Core HAMINI	ER TYPE Automatic
RIL	LER S	mith, C				TART DATE			COMP. DA		10/19	4	SURFACE WATER DEPTH N/A	A
LEV (ft)	DRIVE ELEV (ft)	DEPTH (ft)	0.5ft	OW CO	_	0 25		PER FOOT	7 <u>5</u> 100	SAMP. NO.	МО	0 1 G	SOIL AND ROCK DESC	CRIPTION DEPTH (fi
	-	-						T	T				1,072.0 GROUND SURFA ALLUVIAL	ACE 0.
070	_								+ : : : :		\vdash		. Tan, orange, silty, sand	
	1,068.1	3.9	12	35	30						M		1,068.1 RESIDUAL	3.9
)65	_	_						<u></u>				<u> </u>	Tan, gray, orange, clayey,	silty, SAND
	1,063.1	8.9	15	10	8		./				١,,	+		
060	-	-	13	"		•18					M			
,00	1.058.1	13.9										-	_1,058.1	13.
	-1,000.1_	10.5	5	4	7	. •11					w		Dark brown,sandy, clayey, micaceous	, SILT, very
)55	_											E	-	
	1,053.1	18.9	42	58/0.1	1				. 100/0.6	•		7/2	.1,053.1 WEATHERED RO	OCK 18
50	_	_											Dark brown (Granitic Gneiss	s)
	1,048.1	23.9	60/0.1										1,047.4	24.
45	-	-	00/0.1						60/0.1				CRYSTALLINE RO (Granitic Gneiss	OCK
143	-	-							1				. (-,
	-	-												
)40	_	-												
	-	[
35	_													
	-	_												
	-									4			1,031.3 Boring Terminated at Elevation	40.
	-	-											Crystalline Rock (Graniti	ic Gneiss)
	-											F		
	_	[1 E		
	-											E		
	-	Ŀ										l E		
	-	_												
	-	_												
	_	-											•	
	-	-												
	_	-												
	-	-												
	-													
	-	Ē										F	•	
	-	E										F		
	_	[F	-	
	_ 	_										E		
	-	-										F		

GEOTECHNICAL BORING REPORT CORE LOG

	· · · · · · · · · · · · · · · · · · ·	CORE LOG
WBS 67115.1.1		NTY IREDELL GEOLOGIST Stickney, J. K.
SITE DESCRIPTION Bridge No. 1	· · · · · · · · · · · · · · · · · · ·	
BORING NO. B2-A	STATION 16+01	OFFSET 7 ft LT ALIGNMENT -L- 0 HR. 2.0
COLLAR ELEV. 1,072.0 ft	TOTAL DEPTH 40.7 ft	NORTHING 830,003
DRILL RIG/HAMMER EFF./DATE HFC	0070 CME-550X 81% 06/04/2018	DRILL METHOD NW Casing w/ Core HAMMER TYPE Automatic
DRILLER Smith, C. L.	START DATE 10/10/19	COMP. DATE 10/10/19 SURFACE WATER DEPTH N/A
CORE SIZE NWL-2	TOTAL RUN 16.1 ft	<u> </u>
$ \begin{array}{c c} \text{ELEV} \\ \text{(ft)} \end{array} \hspace{0.5cm} \begin{array}{c c} \text{RUN} \\ \text{ELEV} \\ \text{(ft)} \end{array} \hspace{0.5cm} \begin{array}{c c} \text{DEPTH} \\ \text{(ft)} \end{array} \hspace{0.5cm} \begin{array}{c c} \text{RUN} \\ \text{RUN} \\ \text{RATE} \\ \text{(Min/ft)} \end{array} $	RUN SAMP. REC. RQD (ft) (ft) % % NO. (ft) % %	DESCRIPTION AND REMARKS
/ft/ ELEV /ft/ /ft/ RATE	(ft) (ft) (ft) (ft) (ft) (ft) (ft) (ft)	Begin Coring @ 24.6 ft

CORE PHOTOGRAPHS: Bridge No. 166 on SR1595 (Coolbrook Rd.) over Rocky Creek, B2-A 16+01, 7.0' LT



End 40.7 feet

Bridge No. 166 on SR 1595 (Coolbrook Rd.) over Rocky Creek

SITE PHOTOGRAPHS

Photograph No. 1: Looking at End Bent 1 toward End Bent 2

Photograph No. 2: Looking Downstream