3825B 2 REFERENCE

S 4 M

STATE OF NORTH CAROLINA

DEPARTMENT OF TRANSPORTATION **DIVISION OF HIGHWAYS** GEOTECHNICAL ENGINEERING UNIT

CONTENTS

SHEET NO.	<u>DESCRIPTION</u>
1	TITLE SHEET
2	LEGEND (SOIL & ROCK)
2A	SUPPLEMENTAL LEGEND (GSI)
3	SITE PLAN
4	PROFILE(S)
5-8	CROSS SECTION(S)
9-16	BORE LOG(S) & CORE REPORT(S
17	ROCK TEST RESULTS
18-21	CORE PHOTOGRAPH(S)
22	SITE PHOTOGRAPH(S)

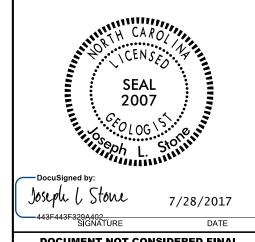
STRUCTURE SUBSURFACE INVESTIGATION

COUNTY Johnston
PROJECT DESCRIPTION NC 42 from SR 1902 (Glen Laurel
Rd.) to SR 1003 (Buffalo Rd.)
SITE DESCRIPTION Bridge No. 75 on NC 42 over the
Neuse River at -L- Sta. 64+20

STATE PROJECT REFERENCE NO. TOTAL SHEETS 22 R-3825B

CAUTION NOTICE

THE SUBSURFACE INFORMATION AND THE SUBSURFACE INVESTIGATION ON WHICH IT IS BASED WERE MADE FOR THE PURPOSE OF STUDY, PLANNING AND DESIGN, AND NOT FOR CONSTRUCTION OR PAY PURPOSES. THE VARIOUS FIELD BORING LOGS, ROCK CORES AND SOIL TEST DATA AVAILABLE MAY BE REVIEWED OR INSPECTED IN RALEIGH BY CONTACTING THE N. C. DEPARTMENT OF TRANSPORTATION, GEOTECHNICAL ENGINEERING UNIT AT 1991 707-6805. THE SUBSURFACE PLANS AND REPORTS, FIELD BORING LOGS, ROCK CORES AND SOIL TEST DATA ARE NOT PART OF THE CONTRACT.


CENERAL SOIL AND ROCK STRATA DESCRIPTIONS AND INDICATED BOUNDARIES ARE BASED ON A GEOTECHNICAL INTERPRETATION OF ALL AVAILABLE SUBSURFACE DATA AND MAY NOT NECESSARILY REFLECT THE ACTUAL SUBSURFACE CONDITIONS BETWEEN BORINGS OR BETWEEN SAMPLED STRATA WITHIN THE BOREHOLE. THE LABDRATORY SAMPLE DATA AND THE IN SITU (IM-PLACE) TEST DATA CAN BE RELIED ON ONLY TO THE DEGREE OF RELIABILITY INHERENT IN THE STANDARD TEST METHOD. THE OBSERVED WATER LEVELS OR SOIL MOISTURE CONDITIONS NIDICATED IN THE SUBSURFACE INVESTIGATIONS ARE AS RECORDED AT THE TIME OF THE INVESTIGATION. THESE WATER LEVELS OR SOIL MOISTURE CONDITIONS MAY VARY CONSIDERABLY WITH TIME ACCORDING TO CLIMATIC CONDITIONS INCLUDING TEMPERATURES, PRECIPITATION AND WIND, AS WELL AS OTHER NON-CLIMATIC FACTORS.

THE BIDDER OR CONTRACTOR IS CAUTIONED THAT DETAILS SHOWN ON THE SUBSURFACE PLANS ARE PRELIMINARY ONLY AND IN MANY CASES THE FINAL DESIGN DETAILS ARE DIFFERENT. FOR BIDDING AND CONSTRUCTION PURPOSES, REFER TO THE CONSTRUCTION PLANS AND DOCUMENTS FOR FINAL DESIGN INFORMATION ON THIS PROJECT. THE DEPARTMENT DOES NOT WARRANT OR GUARANTEE THE SUFFICIENCY OR ACCURACY OF THE INVESTIGATION MADE, NOR THE INTERPRETATIONS MADE, OR OPINION OF THE DEPARTMENT AS TO THE TYPE OF MATERIALS AND CONDITIONS TO BE ENCOUNTERED. THE BIDDER OR CONTRACTOR IS CAUTIONED TO MAKE SUCH INDEPENDENT SUBSURFACE INVESTIGATIONS AS HE DEEMS NECESSARY TO SATISTY HIMSELF AS TO CONDITIONS TO BE ENCOUNTERED ON THE PROJECT. THE CONTRACTOR SHALL HAVE NO CLAIM FOR ADDITIONAL COMPENSATION OR FOR AN EXTENSION OF TIME FOR ANY REASON RESULTING FROM THE ACTUAL CONDITIONS FOOD THE PROJECT OF THE FOR ANY REASON RESULTING FROM THE ACTUAL CONDITIONS ENCOUNTERED AT THE SITE DIFFERING FROM THOSE INDICATED IN THE SUBSURFACE INFORMATION.

- NOTES:
 1. THE INFORMATION CONTAINED HEREIN IS NOT IMPLIED OR GUARANTEED BY THE N. C. DEPARTMENT
 OF TRANSPORTATION AS ACCURATE NOR IS IT CONSIDERED PART OF THE PLANS, SPECIFICATIONS
 OR CONTRACT FOR THE PROJECT.
 2. BY HAVING REQUESTED THIS INFORMATION, THE CONTRACTOR SPECIFICALLY WAIVES ANY CLAIMS
 FOR INCREASED COMPENSATION OR EXTENSION OF TIME BASED ON DIFFERENCES BETWEEN THE
 CONDITIONS INDICATED HEREIN AND THE ACTUAL CONDITIONS AT THE PROJECT SITE.

	Lindsay Pugh
	Mid Atlantic Drilling
INVESTIG	ATED BY J.L. Stone
DRAWN B	Y _ J.L. Stone
	BY J.L. Pedro
SUBMITTE	D BY J.L. Stone
DATE	June <i>2017</i>

DOCUMENT NOT CONSIDERED FINAL UNLESS ALL SIGNATURES COMPLETED

PROJECT REFERENCE NO. SHEET NO.

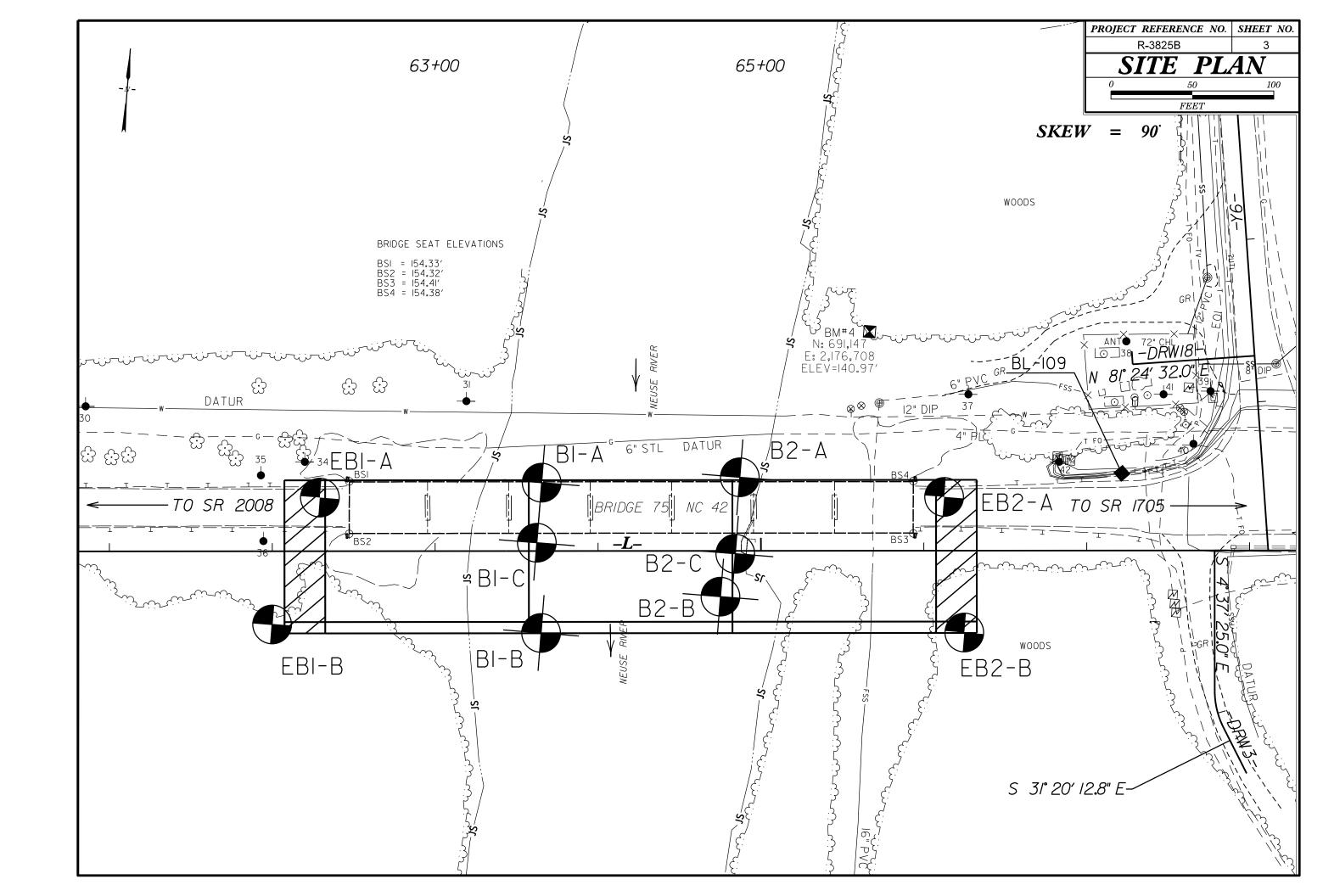
R-3825B
2

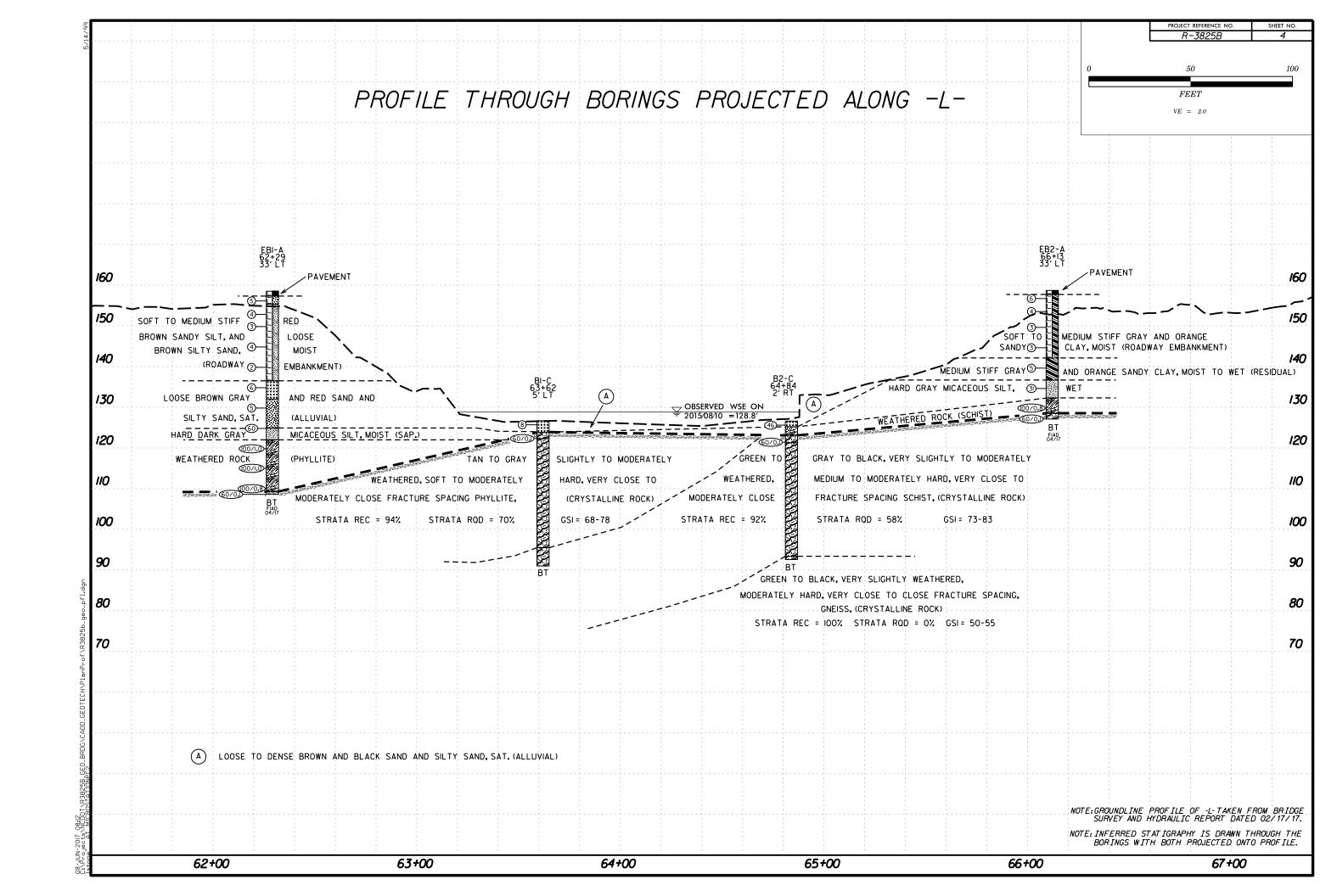
NORTH CAROLINA DEPARTMENT OF TRANSPORTATION DIVISION OF HIGHWAYS GEOTECHNICAL ENGINEERING UNIT

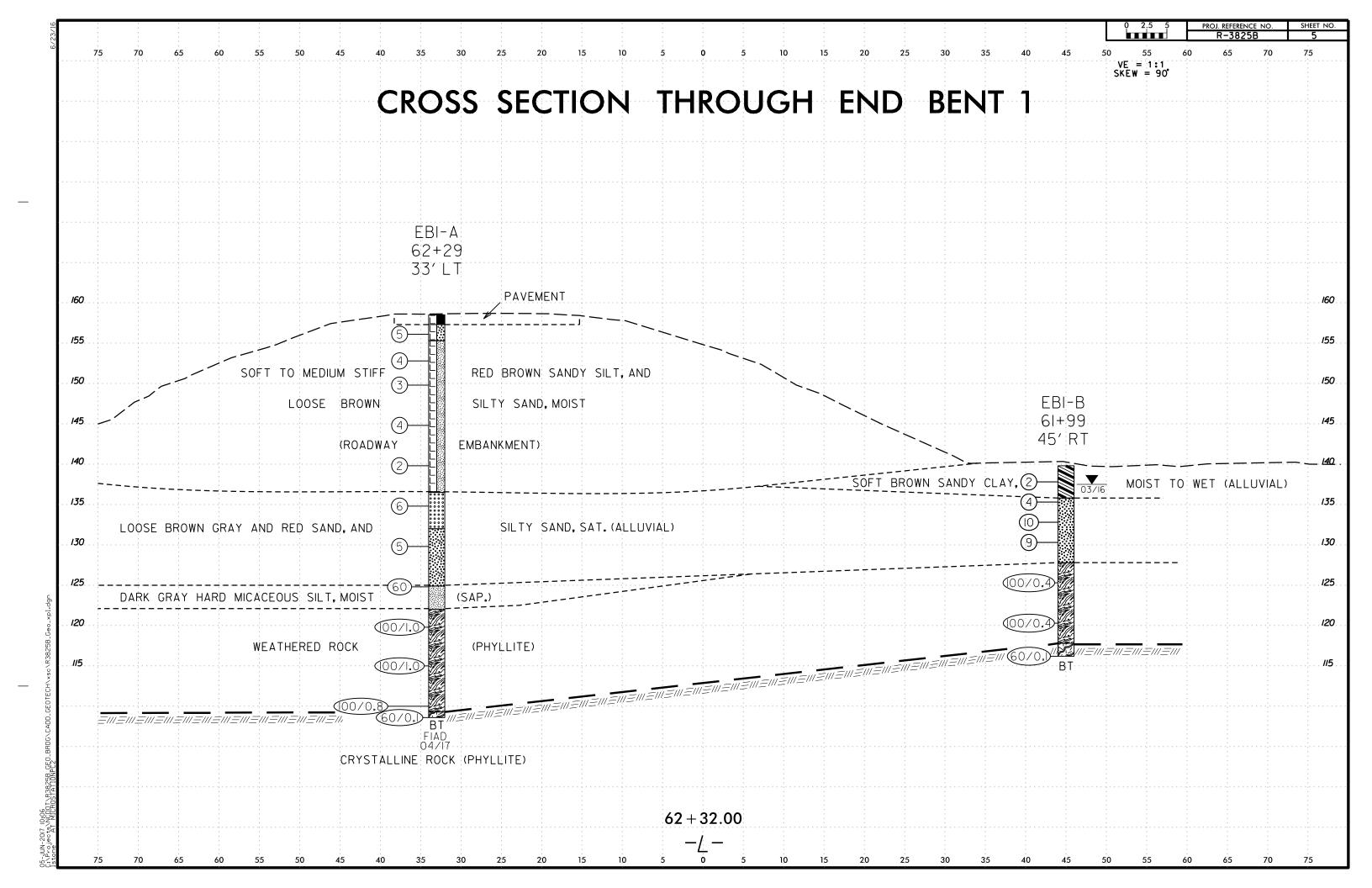
SUBSURFACE INVESTIGATION

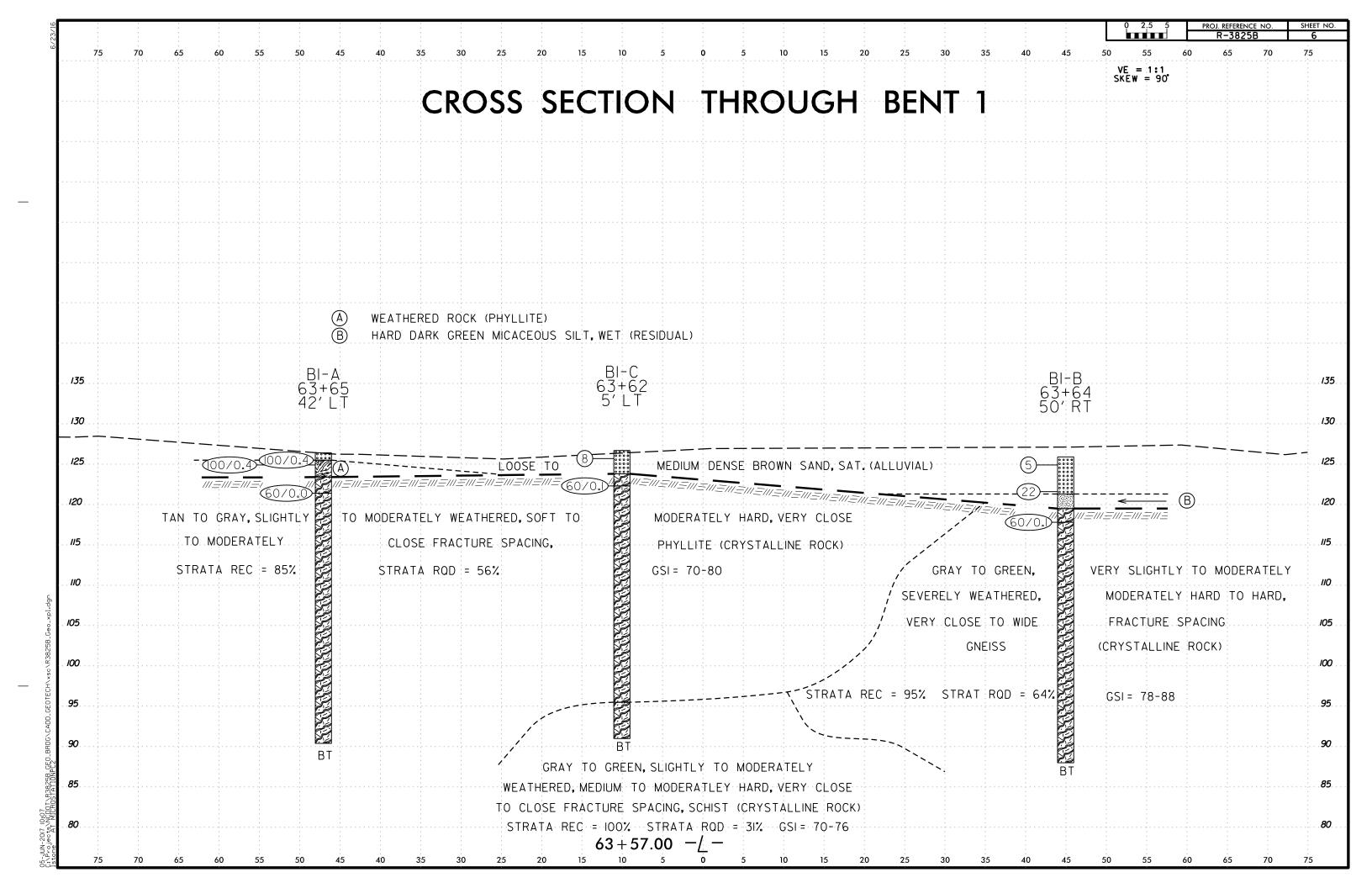
SOIL AND ROCK LEGEND, TERMS, SYMBOLS, AND ABBREVIATIONS

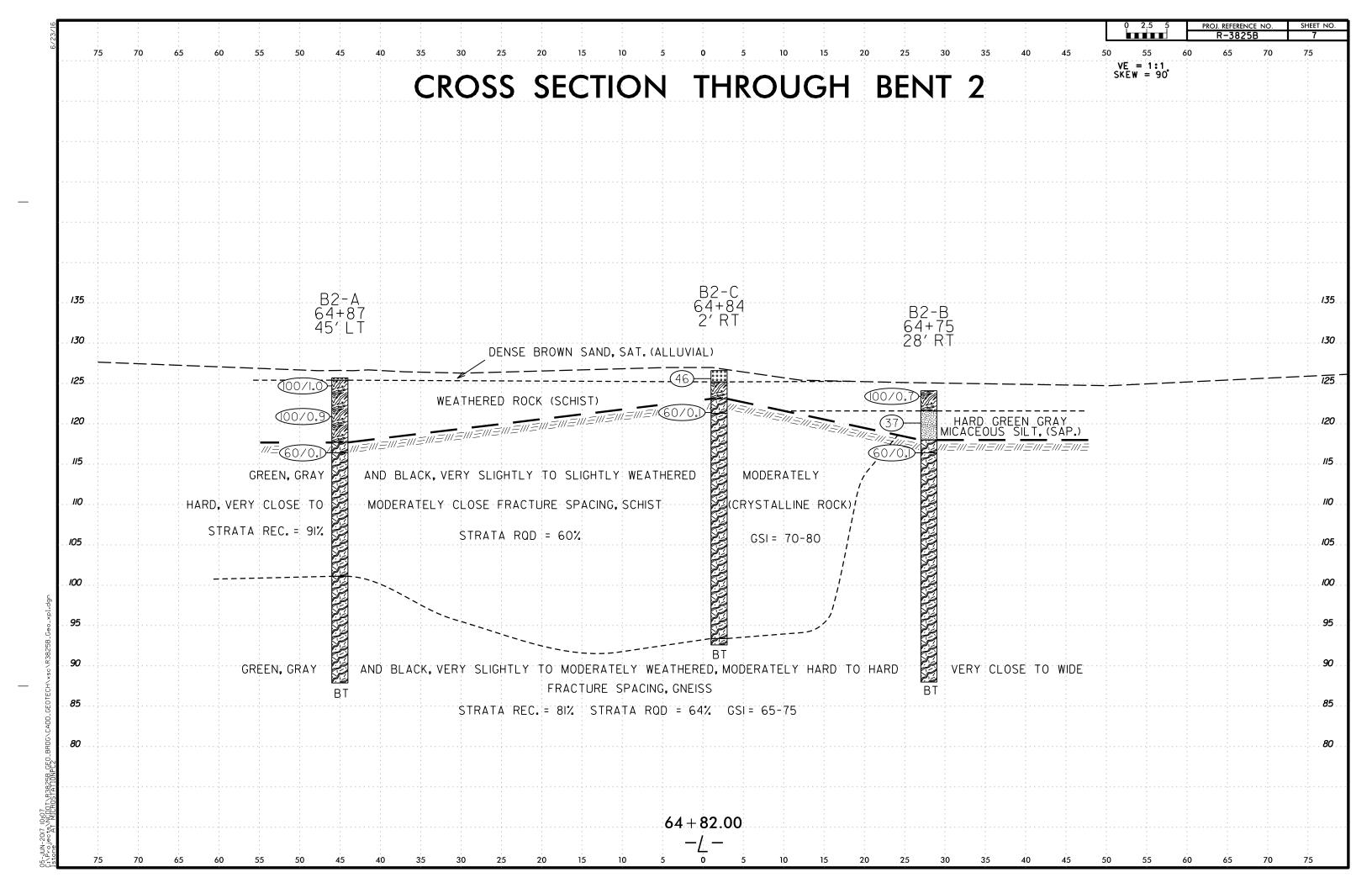
SOIL DESCRIPTION	GRADATION	ROCK DESCRIPTION	TERMS AND DEFINITIONS
SOIL IS CONSIDERED UNCONSOLIDATED, SEMI-CONSOLIDATED, OR WEATHERED EARTH MATERIALS THAT CAN BE PENETRATED WITH A CONTINUOUS FLIGHT POWER AUGER AND YIELD LESS THAN 100 BLOWS PER FOOT	WELL GRADED - INDICATES A GOOD REPRESENTATION OF PARTICLE SIZES FROM FINE TO COARSE. UNIFORMLY GRADED - INDICATES THAT SOIL PARTICLES ARE ALL APPROXIMATELY THE SAME SIZE.	HARD ROCK IS NON-COASTAL PLAIN MATERIAL THAT WOULD YIELD SPT REFUSAL IF TESTED. AN INFERRED ROCK LINE INDICATES THE LEVEL AT WHICH NON-COASTAL PLAIN MATERIAL WOULD YIELD SPT REFUSAL.	ALLUVIUM (ALLUV.) - SOILS THAT HAVE BEEN TRANSPORTED BY WATER.
ACCORDING TO THE STANDARD PENETRATION TEST (AASHTO T 206, ASTM DI586). SOIL CLASSIFICATION IS BASED ON THE AASHTO SYSTEM. BASIC DESCRIPTIONS GENERALLY INCLUDE THE FOLLOWING:	GAP-GRADED - INDICATES A MIXTURE OF UNIFORM PARTICLE SIZES OF TWO OR MORE SIZES.	SPT REFUSAL IS PENETRATION BY A SPLIT SPOON SAMPLER EQUAL TO OR LESS THAN 0.1 FOOT PER 60 BLOWS IN NON-COASTAL PLAIN MATERIAL, THE TRANSITION BETWEEN SOIL AND ROCK IS OFTEN	AQUIFER - A WATER BEARING FORMATION OR STRATA.
CONSISTENCY, COLOR, TEXTURE, MOISTURE, AASHTO CLASSIFICATION, AND OTHER PERTINENT FACTORS SUCH	ANGULARITY OF GRAINS	REPRESENTED BY A ZONE OF WEATHERED ROCK. ROCK MATERIALS ARE TYPICALLY DIVIDED AS FOLLOWS:	ARENACEOUS - APPLIED TO ROCKS THAT HAVE BEEN DERIVED FROM SAND OR THAT CONTAIN SAND.
AS MINERALOGICAL COMPOSITION, ANGULARITY, STRUCTURE, PLASTICITY, ETC. FOR EXAMPLE, VERY STIFF, GRAY, SILTY CLAY, MOIST WITH INTERBEDDED FINE SAID LAYERS, HIGHLY PLASTIC, A-7-6	THE ANGULARITY OR ROUNDNESS OF SOIL GRAINS IS DESIGNATED BY THE TERMS:	NI//ANI//A	ARGILLACEOUS - APPLIED TO ALL ROCKS OR SUBSTANCES COMPOSED OF CLAY MINERALS, OR HAVING A NOTABLE PROPORTION OF CLAY IN THEIR COMPOSITION, SUCH AS SHALE, SLATE, ETC.
SOIL LEGEND AND AASHTO CLASSIFICATION	ANGULAR, SUBANGULAR, SUBROUNDED, OR ROUNDED.	WEATHERED NON-COASTAL PLAIN MATERIAL THAT WOULD YIELD SPT N VALUES > ROCK (WR) 100 BLOWS PER FOOT IF TESTED.	ARTESIAN - GROUND WATER THAT IS UNDER SUFFICIENT PRESSURE TO RISE ABOVE THE LEVEL AT
GENERAL GRANULAR MATERIALS SILT-CLAY MATERIALS ORGANIC MATERIALS	MINERALOGICAL COMPOSITION	CRYSTALLINE CRYSTA	WHICH IT IS ENCOUNTERED, BUT WHICH DOES NOT NECESSARILY RISE TO OR ABOVE THE GROUND
LLASS. (\$\(\sigma\) 9% PASSING "2001 (> 35% PASSING "2001	MINERAL NAMES SUCH AS QUARTZ, FELDSPAR, MICA, TALC, KAOLIN, ETC. ARE USED IN DESCRIPTIONS WHEN THEY ARE CONSIDERED OF SIGNIFICANCE.	ROCK (CR) WOULD YIELD SPT REFUSAL IF TESTED. ROCK TYPE INCLUDES GRANITE, GNEISS, GABBRO, SCHIST, ETC.	SURFACE. <u>CALCAREOUS (CALC.)</u> - SOILS THAT CONTAIN APPRECIABLE AMOUNTS OF CALCIUM CARBONATE.
CROUP A-1 A-3 A-2 A-4 A-5 A-6 A-7 A-1, A-2 A-4, A-5 CLASS. A-1-0 A-1-b A-2-4 A-2-5 A-2-6 A-2-7 A-2-5 A-2-6 A-2-7 A-3-4 A-3 A-6, A-7	COMPRESSIBILITY	NON-CRYSTALLINE FINE TO COARSE GRAIN METAMORPHIC AND NON-COASTAL PLAIN SEDIMENTARY ROCK THAT WOULD YELLD SPT REFUSAL IF TESTED.	COLLUVIUM - ROCK FRAGMENTS MIXED WITH SOIL DEPOSITED BY GRAVITY ON SLOPE OR AT BOTTOM
SYMBOL SOCIOROGE STATES	SLIGHTLY COMPRESSIBLE LL < 31	ROCK TYPE INCLUDES PHYLLITE, SLATE, SANDSTONE, ETC.	OF SLOPE.
5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5	MODERATELY COMPRESSIBLE LL = 31 - 50 HIGHLY COMPRESSIBLE LL > 50	COASTAL PLAIN COASTAL PLAIN SEDIMENTS CEMENTED INTO ROCK, BUT MAY NOT YIELD SEDIMENTARY ROCK SPT REFUSAL. ROCK TYPE INCLUDES LIMESTONE, SANDSTONE, CEMENTED	CORE RECOVERY (REC.) - TOTAL LENGTH OF ALL MATERIAL RECOVERED IN THE CORE BARREL DIVIDED BY TOTAL LENGTH OF CORE RUN AND EXPRESSED AS A PERCENTAGE.
7. PASSING 10 50 MX GRANULAR SILT- CLAY MUCK,	PERCENTAGE OF MATERIAL	(CP) SHELL BEDS, ETC.	DIKE - A TABULAR BODY OF IGNEOUS ROCK THAT CUTS ACROSS THE STRUCTURE OF ADJACENT
*40	GRANULAR SILT - CLAY ORGANIC MATERIAL SOILS SOILS OTHER MATERIAL	WEATHERING	ROCKS OR CUTS MASSIVE ROCK.
MATERIAL	ORGANIC MATERIAL SOILS SOILS OTHER MATERIAL TRACE OF ORGANIC MATTER 2 - 3% 3 - 5% TRACE 1 - 10%	FRESH ROCK FRESH, CRYSTALS BRIGHT, FEW JOINTS MAY SHOW SLIGHT STAINING, ROCK RINGS UNDER HAMMER IF CRYSTALLINE.	DIP - THE ANGLE AT WHICH A STRATUM OR ANY PLANAR FEATURE IS INCLINED FROM THE
PASSING *40 SOILS WITH	LITTLE ORGANIC MATTER 3 - 5% 5 - 12% LITTLE 10 - 20% MODERATELY ORGANIC 5 - 10% 12 - 20% SOME 20 - 35%	VERY SLIGHT ROCK GENERALLY FRESH, JOINTS STAINED, SOME JOINTS MAY SHOW THIN CLAY COATINGS IF OPEN,	HORIZONTAL.
LL — — 40 MX 41 MN 40 MX 41 MN 40 MX 41 MN 40 MX 41 MN LITTLE OR LITCHLY OR LITCHLY	HIGHLY ORGANIC > 10% > 20% HIGHLY 35% AND ABOVE	(V SLI.) CRYSTALS ON A BROKEN SPECIMEN FACE SHINE BRIGHTLY. ROCK RINGS UNDER HAMMER BLOWS IF OF A CRYSTALLINE NATURE.	OIP DIRECTION (DIP AZIMUTH) - THE DIRECTION OR BEARING OF THE HORIZONTAL TRACE OF THE LINE OF DIP, MEASURED CLOCKWISE FROM NORTH,
CODIE INDEX A A A A WY A MY 12 MY 16 MY NO MY AMDINIST OF	GROUND WATER	SLIGHT ROCK GENERALLY FRESH, JOINTS STAINED AND DISCOLORATION EXTENDS INTO ROCK UP TO	FAULT - A FRACTURE OR FRACTURE ZONE ALONG WHICH THERE HAS BEEN DISPLACEMENT OF THE
USIAL TYPES STONE FRACS ORGANIC	✓ WATER LEVEL IN BORE HOLE IMMEDIATELY AFTER DRILLING	(SLI.) I INCH. OPEN JOINTS MAY CONTAIN CLAY. IN GRANITOID ROCKS SOME OCCASIONAL FELDSPAR	SIDES RELATIVE TO ONE ANOTHER PARALLEL TO THE FRACTURE.
OF MAJOR GRAVEL AND SAND GRAVEL AND SAND SOILS SOILS FINE SILTY OR CLAYEY SILTY CLAYEY MATTER SAND SAND SOILS SOILS	STATIC WATER LEVEL AFTER 24 HOURS	CRYSTALS ARE DULL AND DISCOLORED. CRYSTALLINE ROCKS RING UNDER HAMMER BLOWS. MODERATE SIGNIFICANT PORTIONS OF ROCK SHOW DISCOLORATION AND WEATHERING EFFECTS. IN	FISSILE - A PROPERTY OF SPLITTING ALONG CLOSELY SPACED PARALLEL PLANES.
CEN BATING FAIR TO	✓ PW PERCHED WATER, SATURATED ZONE, OR WATER BEARING STRATA	(MOD.) GRANITOID ROCKS, MOST FELDSPARS ARE DULL AND DISCOLORED, SOME SHOW CLAY. ROCK HAS	FLOAT - ROCK FRAGMENTS ON SURFACE NEAR THEIR ORIGINAL POSITION AND DISLODGED FROM PARENT MATERIAL.
AS SUBGRADE EXCELLENT TO GOOD FAIR TO POOR POOR UNSUITABLE	SPRING OR SEEP	DULL SOUND UNDER HAMMER BLOWS AND SHOWS SIGNIFICANT LOSS OF STRENGTH AS COMPARED WITH FRESH ROCK.	FLOOD PLAIN (FP) - LAND BORDERING A STREAM, BUILT OF SEDIMENTS DEPOSITED BY THE STREAM.
PI OF A-7-5 SUBGROUP IS ≤ LL - 30 ; PI OF A-7-6 SUBGROUP IS > LL - 30	SPRING ON SEEP	MODERATELY ALL ROCK EXCEPT QUARTZ DISCOLORED OR STAINED. IN GRANITOID ROCKS, ALL FELDSPARS DULL	FORMATION (FM.) - A MAPPABLE GEOLOGIC UNIT THAT CAN BE RECOGNIZED AND TRACED IN THE
CONSISTENCY OR DENSENESS	MISCELLANEOUS SYMBOLS	SEVERE AND DISCOLORED AND A MAJORITY SHOW KAOLINIZATION, ROCK SHOWS SEVERE LOSS OF STRENGTH	FIELD. JOINT - FRACTURE IN ROCK ALONG WHICH NO APPRECIABLE MOVEMENT HAS OCCURRED.
PRIMARY SOIL TYPE COMPACTNESS OR RANGE OF STANDARD RANGE OF UNCONFINED PENETRATION RESISTENCE COMPRESSIVE STRENGTH	ROADWAY EMBANKMENT (RE) 25/025 DIP & DIP DIRECTION	(MOD. SEV.) AND CAN BE EXCAVATED WITH A GEOLOGIST'S PICK, ROCK GIVES "CLUNK" SOUND WHEN STRUCK, IF TESTED, WOULD YIELD SPT REFUSAL	LEDGE - A SHELF-LIKE RIDGE OR PROJECTION OF ROCK WHOSE THICKNESS IS SMALL COMPARED TO
CONSISTENCY CONSISTENCY (N-VALUE) (TONS/FT ²)	₩ITH SOIL DESCRIPTION → OF ROCK STRUCTURES	SEVERE ALL ROCK EXCEPT QUARTZ DISCOLORED OR STAINED. ROCK FABRIC CLEAR AND EVIDENT BUT	ITS LATERAL EXTENT.
GENERALLY VERY LOOSE < 4 CONNECTED 10	SOIL SYMBOL SOIL SYMBOL SPET DOPT DATE TEST BORING SLOPE INDICATOR INSTALLATION	(SEV.) REDUCED IN STRENGTH TO STRONG SOIL. IN GRANITOID ROCKS ALL FELDSPARS ARE KAOLINIZED TO SOME EXTENT. SOME FRAGMENTS OF STRONG ROCK USUALLY REMAIN.	LENS - A BODY OF SOIL OR ROCK THAT THINS OUT IN ONE OR MORE DIRECTIONS.
MATERIAL MEDIUM DENSE 10 TO 30 N/A	一 图 — — — — — — — — — — — — — — — — — —	IF TESTED, WOULD YIELD SPT N VALUES > 100 BPF	MOTILED (MOT.) - IRREGULARLY MARKED WITH SPOTS OF DIFFERENT COLORS, MOTILING IN SOILS
(NON-COHESIVE) DENSE 30 TO 50 VERY DENSE > 50	ARTIFICIAL FILL (AF) OTHER THAN ROADWAY EMBANKMENT AUGER BORING CONE PENETROMETER TEST	VERY ALL ROCK EXCEPT QUARTZ DISCOLORED OR STAINED. ROCK FABRIC ELEMENTS ARE DISCERNIBLE SEVERE BUT MASS IS EFFECTIVELY REDUCED TO SOIL STATUS, WITH ONLY FRAGMENTS OF STRONG ROCK	USUALLY INDICATES POOR AERATION AND LACK OF GOOD DRAINAGE. PERCHED WATER - WATER MAINTAINED ABOVE THE NORMAL GROUND WATER LEVEL BY THE PRESENCE
VERY SOFT < 2 < 0.25	───── INFERRED SOIL BOUNDARY -()- CORE BORING ● SOUNDING ROD	(V SEV.) REMAINING. SAPROLITE IS AN EXAMPLE OF ROCK WEATHERED TO A DEGREE THAT ONLY MINOR	OF AN INTERVENING IMPERVIOUS STRATUM.
GENERALLY SOFT 2 TO 4 0.25 TO 0.5 SILT-CLAY MEDIUM STIFF 4 TO 8 0.5 TO 1.0	INFERRED ROCK LINE MONITORING WELL TEST BORING	VESTIGES OF ORIGINAL ROCK FABRIC REMAIN. IF TESTED, WOULD YIELD SPT N VALUES < 100 BPF	RESIDUAL (RES.) SOIL - SOIL FORMED IN PLACE BY THE WEATHERING OF ROCK.
MATERIAL STIFF 8 TO 15 1 TO 2	WITH CORE	COMPLETE ROCK REDUCED TO SOIL. ROCK FABRIC NOT DISCERNIBLE, OR DISCERNIBLE ONLY IN SMALL AND SCATTERED CONCENTRATIONS. QUARTZ MAY BE PRESENT AS DIKES OR STRINGERS. SAPROLITE IS	ROCK QUALITY DESIGNATION (ROD) - A MEASURE OF ROCK QUALITY DESCRIBED BY TOTAL LENGTH OF ROCK SEGMENTS EQUAL TO OR GREATER THAN 4 INCHES DIVIDED BY THE TOTAL LENGTH OF CORE
(COHESIVE) VERY STIFF 15 TO 30 2 TO 4 HARD > 30 > 4	→ PIEZOMETER INSTALLATION SPT N-VALUE	ALSO AN EXAMPLE.	RUN AND EXPRESSED AS A PERCENTAGE.
TEXTURE OR GRAIN SIZE	RECOMMENDATION SYMBOLS	ROCK HARDNESS	SAPROLITE (SAP.) - RESIDUAL SOIL THAT RETAINS THE RELIC STRUCTURE OR FABRIC OF THE PARENT ROCK.
U.S. STD. SIEVE SIZE 4 10 40 60 200 270	UNDERCUT UNCLASSIFIED EXCAVATION - UNCLASSIF	VERY HARD CANNOT BE SCRATCHED BY KNIFE OR SHARP PICK. BREAKING OF HAND SPECIMENS REQUIRES SEVERAL HARD BLOWS OF THE GEOLOGIST'S PICK.	SILL - AN INTRUSIVE BODY OF IGNEOUS ROCK OF APPROXIMATELY UNIFORM THICKNESS AND
OPENING (MM) 4.76 2.00 0.42 0.25 0.075 0.053	USED IN THE TOP 2 FEET OF	HARD CAN BE SCRATCHED BY KNIFE OR PICK ONLY WITH DIFFICULTY. HARD HAMMER BLOWS REQUIRED	RELATIVELY THIN COMPARED WITH ITS LATERAL EXTENT, THAT HAS BEEN EMPLACED PARALLEL TO
BOULDER COBBLE GRAVEL SAND SAND SILT CLAY	SHALLOW UNDERCUT UNCLASSIFIED EXCAVATION - GENERAL OR BACKFILL	TO DETACH HAND SPECIMEN.	THE BEDDING OR SCHISTOSITY OF THE INTRUDED ROCKS.
(BLDR.) (COB.) (GR.) (SE. SD.) (F SD.) (SL.) (CL.)	ABBREVIATIONS	MODERATELY CAN BE SCRATCHED BY KNIFE OR PICK. GOUGES OR GROOVES TO 0.25 INCHES DEEP CAN BE HARD EXCAVATED BY HARD BLOW OF A GEOLOGIST'S PICK. HAND SPECIMENS CAN BE DETACHED	SLICKENSIDE - POLISHED AND STRIATED SURFACE THAT RESULTS FROM FRICTION ALONG A FAULT OR SLIP PLANE.
GRAIN MM 305 75 2.0 0.25 0.05 0.005	AR - AUGER REFUSAL MED MEDIUM VST - VANE SHEAR TEST	BY MODERATE BLOWS.	STANDARD PENETRATION TEST (PENETRATION RESISTANCE) (SPT) - NUMBER OF BLOWS (N OR BPF) OF
SIZE IN. 12 3	BT - BORING TERMINATED MICA MICACEOUS WEA WEATHERED CL CLAY MOD MODERATELY 7 - UNIT WEIGHT	MEDIUM CAN BE GROOVED OR GOUGED 0.05 INCHES DEEP BY FIRM PRESSURE OF KNIFE OR PICK POINT. CAN BE EXCAVATED IN SMALL CHIPS TO PEICES I INCH MAXIMUM SIZE BY HARD BLOWS OF THE	A 140 LB. HAMMER FALLING 30 INCHES REQUIRED TO PRODUCE A PENETRATION OF 1 FOOT INTO SOIL WITH A 2 INCH OUTSIDE DIAMETER SPLIT SPOON SAMPLER, SPT REFUSAL IS PENETRATION EQUAL
SOIL MOISTURE - CORRELATION OF TERMS	_ CPT - CONE PENETRATION TEST NP - NON PLASTIC $\gamma_{ m d}$ - DRY UNIT WEIGHT	POINT OF A GEOLOGIST'S PICK.	TO OR LESS THAN 0.1 FOOT PER 60 BLOWS.
SOIL MOISTURE SCALE FIELD MOISTURE GUIDE FOR FIELD MOISTURE DESCRIPTION (ATTERBERG LIMITS) DESCRIPTION	CSE COARSE ORG ORGANIC DMT - DILATOMETER TEST PMT - PRESSUREMETER TEST SAMPLE ABBREVIATIONS	SOFT CAN BE GROVED OR GOUGED READILY BY KNIFE OR PICK, CAN BE EXCAVATED IN FRAGMENTS	STRATA CORE RECOVERY (SREC.) - TOTAL LENGTH OF STRATA MATERIAL RECOVERED DIVIDED BY TOTAL LENGTH OF STRATUM AND EXPRESSED AS A PERCENTAGE.
	DPT - DYNAMIC PENETRATION TEST SAP SAPROLITIC S - BULK	FROM CHIPS TO SEVERAL INCHES IN SIZE BY MODERATE BLOWS OF A PICK POINT. SMALL, THIN PIECES CAN BE BROKEN BY FINGER PRESSURE.	STRATA ROCK QUALITY DESIGNATION (SROD) - A MEASURE OF ROCK QUALITY DESCRIBED BY TOTAL LENGTH OF ROCK SEGMENTS WITHIN A STRATUM EQUAL TO OR CREATER THAN 4 INCHES DIVIDED BY
(SAT.) FROM BELOW THE GROUND WATER TABLE	e - VOID RATIO SD SAND, SANDY SS - SPLIT SPOON F - FINE SL SILT, SILTY ST - SHELBY TUBE	VERY CAN BE CARVED WITH KNIFE, CAN BE EXCAVATED READILY WITH POINT OF PICK, PIECES 1 INCH SOFT OR MORE IN THICKNESS CAN BE BROKEN BY FINGER PRESSURE. CAN BE SCRATCHED READILY BY	LENGTH OF ROCK SEGMENTS WITHIN A STRATUM EQUAL TO OR GREATER THAN 4 INCHES DIVIDED BY THE TOTAL LENGTH OF STRATA AND EXPRESSED AS A PERCENTAGE.
PLASTIC LIQUID LIMIT	FOSS FOSSILIFEROUS SLI SLIGHTLY RS - ROCK	SOFT OR MORE IN THICKNESS CAN BE BROKEN BY FINGER PRESSURE, CAN BE SCRATCHED READILY BY FINGERNAIL.	TOPSOIL (TS.) - SURFACE SOILS USUALLY CONTAINING ORGANIC MATTER.
RANGE - WET - (W) SEMISOLID; REGULRES DATING TO	FRAC FRACTURED, FRACTURES TCR - TRICONE REFUSAL RT - RECOMPACTED TRIAXIAL FRAGS FRAGMENTS W - MOISTURE CONTENT CBR - CALIFORNIA BEARING	FRACTURE SPACING BEDDING	BENCH MARK: BM # 4
(PI) PL PLASTIC LIMIT	HI HIGHLY V - VERY RATIO	TERM SPACING TERM THICKNESS	END BENT ELEVATION DATA COLLECTED USING A SURVEY GRADE GPS
OM OPTIMUM MOISTURE - MOIST - (M) SOLID; AT OR NEAR OPTIMUM MOISTURE	EQUIPMENT USED ON SUBJECT PROJECT	VERY WIDE MORE THAN 10 FEET VERY THICKLY BEDDED 4 FEET WIDE 3 TO 10 FEET THICKLY BEDDED 1.5 - 4 FEET	ELEVATION: 141.0 FEET
SL _ SHRINKAGE LIMIT	DRILL UNITS: ADVANCING TOOLS: HAMMER TYPE: X CME-45C	MODERATELY CLOSE 1 TO 3 FEET THINLY BEDDED 0.16 - 1.5 FEET CLOSE 0.16 TO 1 FOOT VERY THINLY BEDDED 0.03 - 0.16 FEET	NOTES:
- DRY - (D) REQUIRES ADDITIONAL WATER TO	CI CONTINUOUS FLICHT AUGED	VERY CLOSE LESS THAN 0.16 FEET THICKLY LAMINATED 0.008 - 0.03 FEET	
ATTAIN UPTIMUM MUISTURE	CME-55	THINLY LAMINATED < 0.008 FEET INDURATION	-
PLASTICITY	-	INDUM 1 ION FOR SEDIMENTARY ROCKS, INDURATION IS THE HARDENING OF MATERIAL BY CEMENTING, HEAT, PRESSURE, ETC.	1
PLASTICITY INDEX (PI) DRY STRENGTH NON PLASTIC 0-5 VERY LOW	CME-550 HARD FACED FINGER BITS X-N Q X-N Q	DURRING WITH FINGED EDEES NUMEROUS CRAINS.	
SLIGHTLY PLASTIC 6-15 SLIGHT	VANE SHEAR TEST TUNG, CAMBIDE INSERTS HAND TOOLS:	FRIABLE GENTLE BLOW BY HAMMER DISINTEGRATES SAMPLE.	
MODERATELY PLASTIC 16-25 MEDIUM HIGHLY PLASTIC 26 OR MORE HIGH	_ POST HOLE DIGGER	MODERATELY INDURATED GRAINS CAN BE SEPARATED FROM SAMPLE WITH STEEL PROBE; BREAKS EASILY WHEN HIT WITH HAMMER.	
COLOR	TRICOUS TRICOUS AND HAND HOUSER	CRAINC ARE DISCION T TO SERARATE WITH STEEL PROPE.	
	X D-25 TRICONE TUNGCARB. SOUNDING ROD	INDURATED DIFFICULT TO BREAK WITH HAMMER.	
DESCRIPTIONS MAY INCLUDE COLOR OR COLOR COMBINATIONS (TAN, RED, YELLOW-BROWN, BLUE-GRAY). MODIFIERS SUCH AS LIGHT, DARK, STREAKED, ETC. ARE USED TO DESCRIBE APPEARANCE.	X CORE BIT VANE SHEAR TEST	EXTREMELY INDURATED SHARP HAMMER BLOWS REQUIRED TO BREAK SAMPLE;	
		SAMPLE BREAKS ACROSS GRAINS.	DATE: 8-15-1

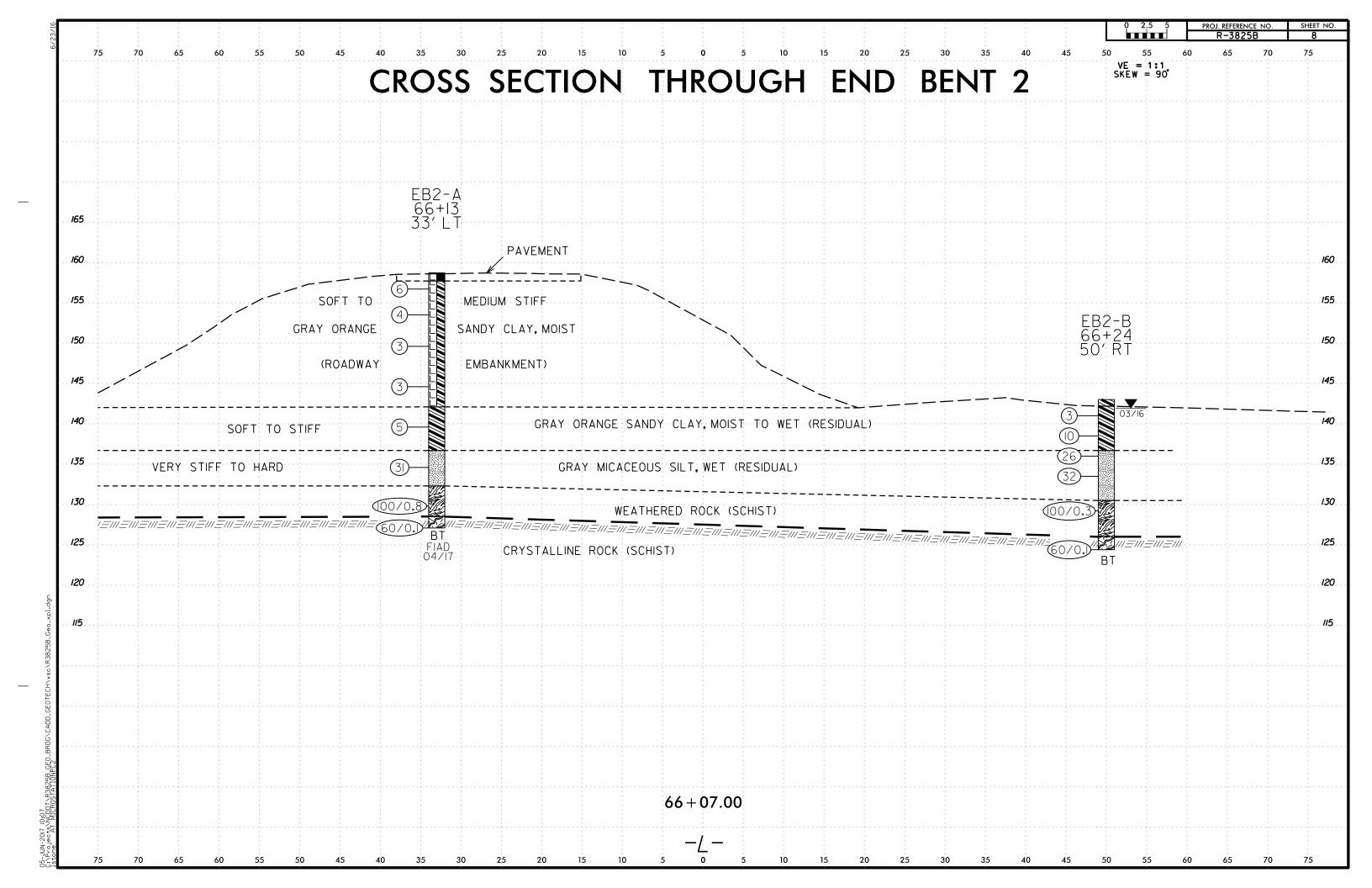

PROJECT REFERENCE NO.	SHEET NO.
R-3825B	2A

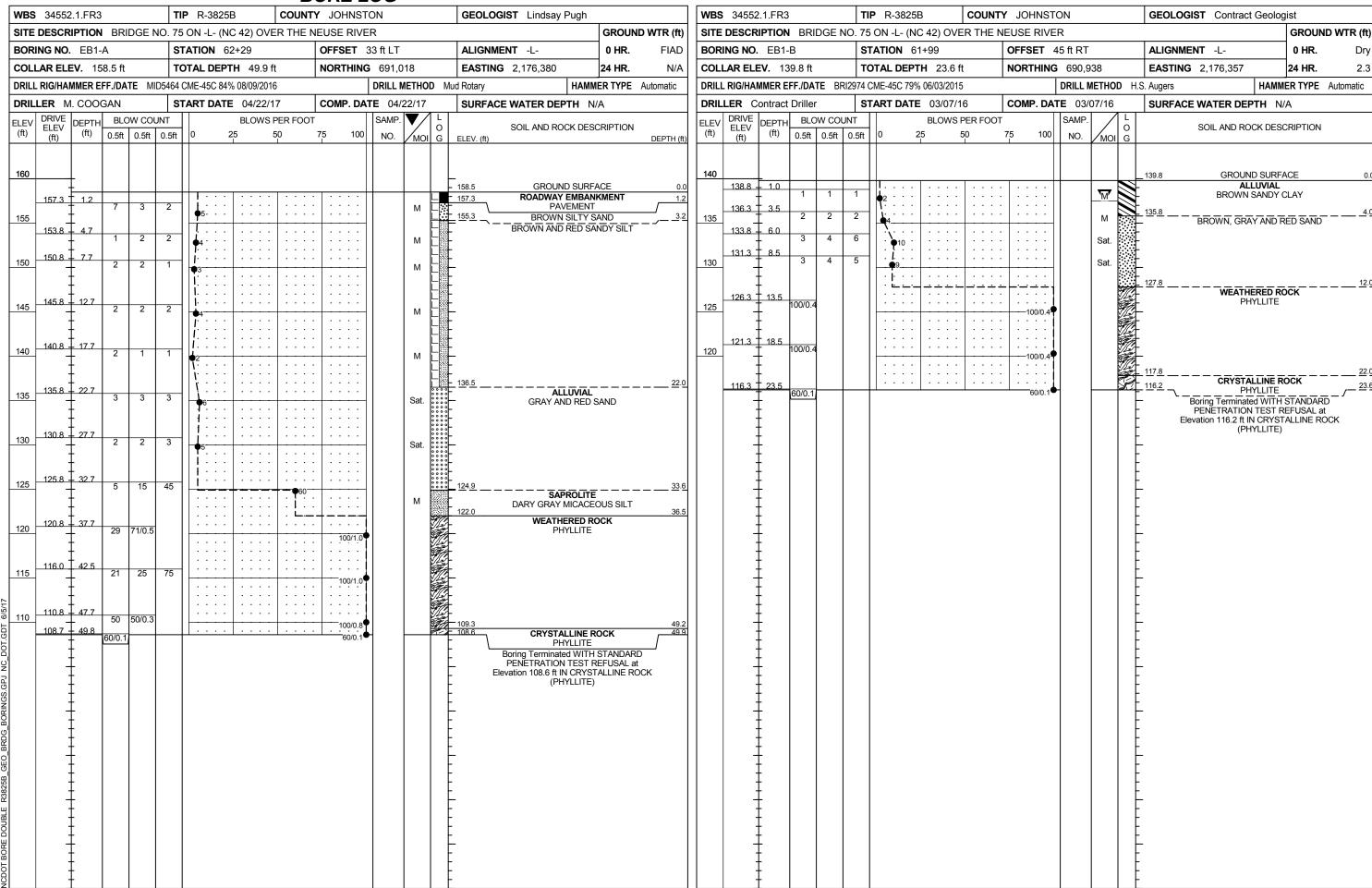

NORTH CAROLINA DEPARTMENT OF TRANSPORTATION DIVISION OF HIGHWAYS GEOTECHNICAL ENGINEERING UNIT


SUBSURFACE INVESTIGATION


SUPPLEMENTAL LEGEND, GEOLOGICAL STRENGTH INDEX (GSI) TABLES


		FROM AAS	SHTO LRFD BRI	CAL STRENGTH INDEX (GSI) TABLES DGE DESIGN SPECIFICATIONS	C		2000
AASHTO LRFD Figure 10.4.6.4-1 — Determination of GSI for Joint GEOLOGICAL STRENGTH INDEX (GSI) FOR JOINTED ROCKS (Hoek and Marinos, 2000) From the lithology, structure and surface conditions of the discontinuities, estimate the average value of GSI. Do not try to be too precise. Quoting a range from 33 to 37 is more realistic than stating that GSI = 35. Note that the table does not apply to structurally controlled failures. Where weak planar structural planes are present in an unfavorable orientation with respect to the excavation face, these will dominate the rock mass behaviour. The shear strength of surfaces in rocks that are prone to deterioration as a result of changes in moisture content will be reduced if water is present. When working with rocks in the fair to very poor categories, a shift to the right may be made for wet conditions. Water pressure is dealt with by effective stress analysis. STRUCTURE	VERY GOOD Very rough, fresh unweathered surfaces	Surfaces Sucoth, moderately weathered and Surfaces	POOR Slickensided, highly weathered surfaces with compact coatings or fillings or angular fragments VERY POOR Slickensided, highly weathered surfaces with soft clay coatings or fillings	GSI FOR HETEROGENEOUS ROCK MASSES SUCH AS FLYSCH (Marinos. P and Hoek E., 2000) From a description of the lithology, structure and surface conditions (particularly of the bedding planes), choose a box in the chart. Locate the position in the box that corresponds to the condition of the discontinuities and estimate the average value of GSI from the contours. Do not attempt to be too precise. Quoting a range from 33 to 37 is more realistic than giving GSI = 35. Note that the Hoek-Brown criterion does not apply to structurally controlled failures. Where unfavourably oriented continuous weak planar discontinuities are present, these will dominate the behaviour of the rock mass. The strength of some rock masses is reduced by the presence of groundwater and this can be allowed for by a slight shift to the right in the columns for fair, poor and very poor conditions. Water pressure does not change the value of GSI and it is dealt with by using effective stress analysis. COMPOSITION AND STRUCTURE	ugh, fresh	FAIR - Smooth, moderately weathered and altered surfaces POOR - Very smooth, occasionally slickensided surfaces with compact coatings or fillings with angular fragments	VERY POOR - Very smooth, slicken- sided or highly weathered surfaces with soft clay coatings or fillings
INTACT OR MASSIVE - intact rock specimens or massive in situ rock with few widely spaced discontinuities	90 80	SINO SOM REE GE	N/A N/A	A. Thick bedded, very blocky sandstone The effect of pelitic coatings on the bedding planes is minimized by the confinement of the rock mass. In shallow tunnels or slopes these bedding planes may cause structurally controlled instability.	70 A		
BLOCKY - well interlocked undisturbed rock mass consisting of cubical blocks formed by three intersecting discontinuity sets VERY BLOCKY - interlocked, partially disturbed mass with multi-faceted angular blocks formed by 4 or more joint sets	70 CKING OF HOUSE	60 50		8. Sand- stone with stone and stiltstone sultstone layers of sultstone amounts Solitatione or silty shale with sand- stone layers shale with sandstone layers		C D E	
BLOCKY/DISTURBED/SEAMY - folded with angular blocks formed by many intersecting discontinuity sets. Persistence of bedding planes or schistosity	Tabluo INIEK	40	30	C.D.E. and G - may be more or less folded than illustrated but this does not change the strength. Tectonic deformation, faulting and loss of continuity moves these categories to F and H.		30 F 20	
DISINTEGRATED - poorly inter- locked, heavily broken rock mass with mixture of angular and rounded rock pieces	DECKE ASING		20	G. Undisturbed silty or clayey shale with or without a few very thin sandstone layers G. Undisturbed silty or clayey shale formed silty or clayey shale forming a chaotic structure with pockets of clay. Thin layers of sandstone are transformed into small rock pieces.		\$	10
LAMINATED/SHEARED - Lack of blockiness due to close spacing of weak schistosity or shear planes	N/A	N/A	10	─────────────────────────────────────		/ / / /	DATE: 8-19-1





	E	BORE LOG						CORE LOG		
WBS 34552.1.FR3	TIP R-3825B COUN	TY JOHNSTON	GEOLOGIST Lindsay Pugh		WBS 34552.1.FR3	TIP R-3	3825B CO I	UNTY JOHNSTON	GEOLOGIST Lindsay F	Pugh
SITE DESCRIPTION BRIDGE NO	O. 75 ON -L- (NC 42) OVER THE	NEUSE RIVER		GROUND WTR (ft)	SITE DESCRIPTION BRID	OGE NO. 75 ON -L	(NC 42) OVER TH	HE NEUSE RIVER	•	GROUND WTR (ft)
BORING NO. B1-A	STATION 63+65	OFFSET 42 ft LT	ALIGNMENT -L-	0 HR . N/A	BORING NO. B1-A	STATIO	N 63+65	OFFSET 42 ft LT	ALIGNMENT -L-	0 HR. N/A
COLLAR ELEV. 126.4 ft	TOTAL DEPTH 36.0 ft	NORTHING 691,038	EASTING 2,176,515	24 HR . N/A	COLLAR ELEV. 126.4 ft	TOTAL I	DEPTH 36.0 ft	NORTHING 691,038	EASTING 2,176,515	24 HR. N/A
DRILL RIG/HAMMER EFF./DATE MIDO	0314 D-25 86% 08/04/2016	DRILL METHOD N	Q2 Casing W/SPT&Core HAMI	MER TYPE Automatic	DRILL RIG/HAMMER EFF./DAT	E MID0314 D-25 86	% 08/04/2016	DRILL METHOD	NQ2 Casing W/SPT&Core	HAMMER TYPE Automatic
DRILLER B. Fowler	START DATE 05/01/17	COMP. DATE 05/02/17	SURFACE WATER DEPTH 5	5.9ft	DRILLER B. Fowler	START I	DATE 05/01/17	COMP. DATE 05/02/17	SURFACE WATER DEP	TH 5.9ft
ELEV DRIVE DEPTH BLOW COUN	 	75 100	SOIL AND ROCK DES		CORE SIZE NQ2		RUN 31.0 ft	TA		
(ft) (ft) (ft) 0.5ft 0.5ft (0.511 0 25 50	75 100 NO. MOI G	ELEV. (ft) WATER SURFACE (DEPTH (ft)	ELEV RUN DEPTH RUN (ft) (ft)	DRILL RUN RATE REC. RC (Min/ft) (ft) (ft)	SAMP. REC. F NO. (ft)		DESCRIPTION AND REMARKS	
			WATEROOM AGE	(03/01/17)	(11)	(Min/ft) (11) (11)	5	(it) G ELEV. (ft)	Danis Ordan O F O f	DEPTH (ft)
130			_		121.4 120 121.4 - 5.0 2.4	N=60/0.0 (2.3) (2.	2) (23.9) (1 % 77% 4		Begin Coring @ 5.0 ft , SLIGHTLY TO MODERATLEY WI	
126.4 + 0.0			- - 126.4 RIVER BED		121.4	3:53/1.0 96% 92 3:08/0.4 (3.7) (3.	$\frac{\%}{1)}$ 77% 4	15% P	RATELY HARD, VERY CLOSE TO C SPACING, PHYLLITE, WITH	A
125 125.3 1.1 3 100/0.4		100/0.4 Sat.	- 125.5 ALLUVIAL - BROWN SAN	vd / I		3:24/1.0 74% 62 4:51/1.0	%	VOI	D AT 11.4 +/-, AND A CLAY SEAM GSI = 72-82	IAI 25.0 +/-
			WEATHERED F	ROCK ,— 3.0	115 114.0 12.4	3:24/1.0 74% 62 4:51/1.0 4:20/1.0 3:28/1.0 4:08/1.0				
120 + 5.0 60/0.0			CRYSTALLINE I	ROCK	4.7	3:10/1.0 (4.7) (1. 4:23/1.0 100% 38	8)			
			TAN TO GRAY, SLIC	SHTLY TO'	110 109.3 + 17.1	4:44/1.0 4:36/1.0 6:04/0.7				
			MODERATLEY WEATHE TO MODERATELY HARD TO CLOSE FRACTURI	, VERY CLOSE	3.9	12:40/1.0 (3.3) (1. 10:04/1.0 85% 36 8:40/1.0	4)			
115			PHYLLITE, WI	THA	105 105.4 T 21.0	10·54/0.91 I				
			VOID AT 11.4 +/-, AND A 25.0 +/- REC. =77%, RQD = 45%		5.0	4:14/1.0 (2.9) (0. 6:34/1.0 58% 18	9) %	90.4		
110 +			- NEG11 /0, NQD - 40 /	0 031 - 72-02	100 100.4 + 26.0	4:25/1.0 0:39/1.0				
			- -		100 100.4 7 26.0	4:43/1.0 4:18/1.0 (4.2) (3. 5:27/1.0 84% 62	1)			
105			•			5:55/1.0 5:26/1.0	% RS-1			
 			- ·		95 95.4 + 31.0 5.0	8:16/1.0 5:18/1.0 (2.8) (1.	3)			
			•			5:46/1.0 56% 26 6:14/1.0	%			
100			T125.5 ALLUVIAL BROWN SAI 123.4 WEATHERED PHYLLITE PHYLLITE PHYLLITE TAN TO GRAY, SLIC MODERATLEY WEATHE TO MODERATLEY HARD TO CLOSE FRACTURI PHYLLITE, WI VOID AT 11.4 +/-, AND A 25.0 +/- REC. =77%, RQD = 45%		90.4 + 36.0	1:57/1.0 2:50/1.0		90.4		36.0
		RS-1	• •					Boring Terminat	ed at Elevation 90.4 ft IN CRYSTALL	LINE ROCK (PHYLLITE)
95			- -					[
			. •					 		
			- - 90.4	36.0						
			 Boring Terminated at Elev CRYSTALLINE ROCK 	vation 90.4 ft IN (PHYLLITE)				-		
			•					-		
			• - -					-		
			· •					-		
4			-					-		
<u> </u>			<u>.</u>							
			• •							
			_					<u>E</u>		
g			• •					E		
0 +			• -							
			- -							
			•					-		
			- ·					-		
1528 T			• •					-		
			- - -							
			• •		‡					
			• -		‡					
			- -					[-		
			• •					<u>E</u>		

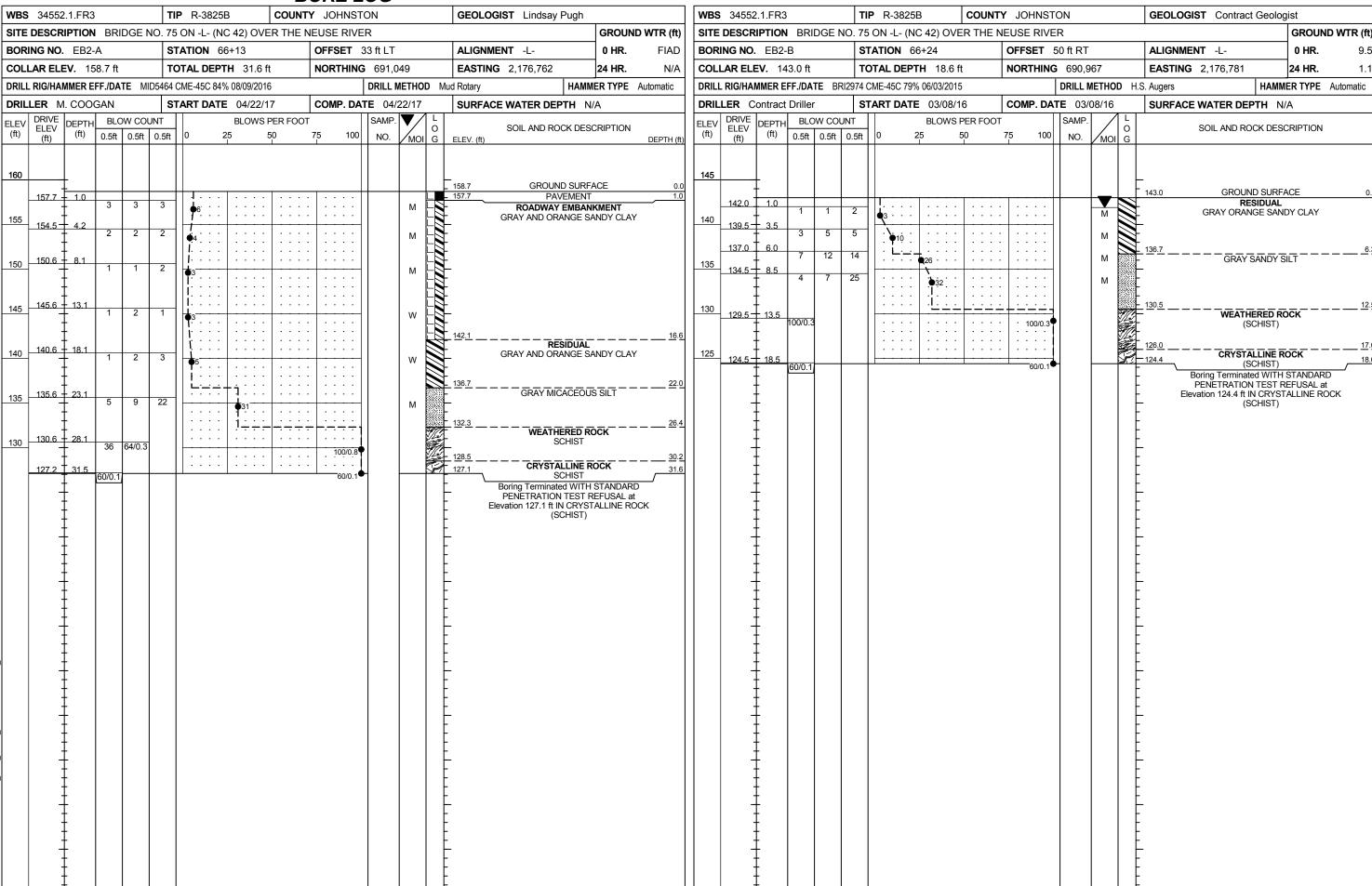
BORING NO. B1-C STATION 63-62 OFFSET 5ft LT ALIGNMENT -L 0 HR. NA		E	BORE LOG						(CORE LOG		
BORING NO. B1-C STATION 63+62 OFFSET 5 ft LT ALIGNMENT -L- 0 HR. N/A COLLAR ELEV. 126.7 ft TOTAL DEPTH 35.7 ft NORTHING 691,001 EASTING 2,176,515 24 HR. N/A DRILL RIGHAMMER EFF,IDATE MID0314 D-25 86% 08/04/2016 DRILL METHOD NQ2 Casing W/SPT&Core HAMMER TYPE Automatic DRILLER B. Fowler START DATE 04/20/17 COMP. DATE 04/21/17 SURFACE WATER DEPTH 2.2ft DRILL RIGHAMMER EFF,IDATE MID0314 D-25 86% 08/04/2016 DRILL METHOD NQ2 Casing W/SPT&Core HAMMER TYPE Automatic DRILLER B. Fowler START DATE 04/20/17 COMP. DATE 04/21/17 SURFACE WATER DEPTH 2.2ft DRILLER B. Fowler START DATE 04/20/17 COMP. DATE 04/21/17 SURFACE WATER DEPTH 2.2ft DRILLER B. Fowler START DATE 04/20/17 COMP. DATE 04/21/17 SURFACE WATER DEPTH 2.2ft DRILLER B. Fowler START DATE 04/20/17 COMP. DATE 04/21/17 SURFACE WATER DEPTH 2.2ft DRILLER B. Fowler START DATE 04/20/17 COMP. DATE 04/21/17 SURFACE WATER DEPTH 2.2ft DRILLER B. Fowler START DATE 04/20/17 COMP. DATE 04/21/17 SURFACE WATER DEPTH 2.2ft DRILLER B. Fowler START DATE 04/20/17 COMP. DATE 04/21/17 SURFACE WATER DEPTH 2.2ft DRILLER B. Fowler START DATE 04/20/17 COMP. DATE 04/21/17 SURFACE WATER DEPTH 2.2ft DRILLER B. Fowler START DATE 04/20/17 COMP. DATE 04/21/17 SURFACE WATER DEPTH 2.2ft DRILLER B. Fowler START DATE 04/20/17 SURFACE WATER DEPTH 2.2ft DRILLER B. Fowler START DATE 04/20/17 COMP. DATE 04/20/17 SURFACE WATER DEPTH 2.2ft DRILLER B. Fowler START DATE 04/20/17 SURFACE WATER DEPTH 2.2ft DRILLER B. Fowler START DATE 04/20/17 SURFACE WATER DEPTH 2.2ft DRILLER B. Fowler START DATE 04/20/17 SURFACE WATER DEPTH 2.2ft DRILLER B. Fowler START DATE 04/20/17 SURFACE WATER DEPTH 2.2ft DRILLER B. Fowler START DATE 04/20/17 SURFACE WATER DEPTH 2.2ft DRILLER B. Fowler START DATE 04/20/17 SURFACE WATER DEPTH 2.2ft DRILLER B. Fowler START DATE 04/20/17 SURFACE WATER DEPTH 2.2ft DRILLER B. Fowler START DATE 04/20/17 SURFACE WATER DEPTH 2.2ft DRILLER B. Fowler START DATE 04/20/17 SURFACE WATER DEPTH 2.2ft DRILLER B. Fowler START DATE 04/20/17 SURFACE WATER DEPTH 2.2ft DRILLER B. Fowler START DATE 04/20/17 S	WBS 34552.1.FR3	TIP R-3825B COUN	ITY JOHNSTON	GEOLOGIST Lindsay Pugh	_	WBS 34552.1.FR3		TIP R-3825B	COUN	ITY JOHNSTON	GEOLOGIST Lindsay Pr	ugh
COLLAR ELEV. 126.7 ft TOTAL DEPTH 35.7 ft NORTHING 691,001 EASTING 2,176,515 24 HR. N/A DRILL RIG/HAMMER EFF/DATE MID0314 D-25 86% 08/04/2016 DRILL METHOD NO2 Casing WiSPT&Core HAMMER TYPE Automatic DRILLER B. Fowler START DATE 04/20/17 COMP. DATE 04/21/17 SURFACE WATER DEPTH 2.2 ft ELEV ORIVE (ft) (ft) (ft) (7.5 t) 0.5	SITE DESCRIPTION BRIDGE N	O. 75 ON -L- (NC 42) OVER THE	NEUSE RIVER		GROUND WTR (ft)	SITE DESCRIPTION	BRIDGE N	O. 75 ON -L- (NC 4	2) OVER THE	NEUSE RIVER		GROUND WTR (ft)
DRILL RIG/HAMMER EFF,/DATE MID0314 D-25 86% 08/04/2016 DRILL METHOD NO2 Casing W/SPT&Core HAMMER TYPE Automatic	BORING NO. B1-C	STATION 63+62	OFFSET 5 ft LT	ALIGNMENT -L-	0 HR. N/A	BORING NO. B1-C		STATION 63+6	62	OFFSET 5 ft LT	ALIGNMENT -L-	0 HR. N/A
DRILLER B. Fowler START DATE 04/20/17 COMP. DATE 04/21/17 SURFACE WATER DEPTH 2.2ft	COLLAR ELEV. 126.7 ft	TOTAL DEPTH 35.7 ft	NORTHING 691,001	EASTING 2,176,515	24 HR . N/A	COLLAR ELEV. 12	6.7 ft	TOTAL DEPTH	35.7 ft	NORTHING 691,001	EASTING 2,176,515	24 HR. N/A
ELEV DRIVE (ft) DRIVE (ft	DRILL RIG/HAMMER EFF./DATE MID	00314 D-25 86% 08/04/2016	DRILL METHOD	NQ2 Casing W/SPT&Core HAMM	MER TYPE Automatic	DRILL RIG/HAMMER E	FF./DATE MID	00314 D-25 86% 08/04/2	2016	DRILL METHOD	NQ2 Casing W/SPT&Core	HAMMER TYPE Automatic
Company Comp		START DATE 04/20/17		SURFACE WATER DEPTH 2.	.2ft	DRILLER B. Fowle	r	START DATE	04/20/17	COMP. DATE 04/21/17	SURFACE WATER DEPT	H 2.2ft
(ft) (ft) (ft) (ft) (ft) (ft) (ft) (ft)	LLL F F DL			SOIL AND ROCK DES	CRIPTION	CORE SIZE NQ2						
130 WATER SURFACE (04/20/17) 126.7	(ft) (ft) (T) 0.5ft 0.5ft	0.5ft 0 25 50	75 100 NO. MOI G	ELEV. (ft)	DEPTH (ft)	ELEV RUN DEPTH	RUN DRILL	REC. RQD SAM	MP. STRATA	L C	DESCRIPTION AND REMARKS	
WATER SURFACE (04/20/17) 126.7 RIVER BED 126.7 RIVER BED 126.7 RIVER BED 127.3 PALLUVIAL BROWN SAND 128.8 BROWN SAND 129.8 PACTURE SPACING, PHYLLITE Sat. Significance of the property							^(π) (Min/ft) (11) (11) NO	J. (π) (π) % %	G ELEV. (ft)		DEPTH (ft)
126.7 RIVER BED 0.0 SOFT TO MODERATELY HARD, VERY CLOSE TO MODERATELY CLOSE TO MODERAT	130			WATER SURFACE ((04/20/17)		5.0 3:13/1	0 (46) (36)	(25.3) (18.3	7) TO THE 122 3 TANTO GRAVE	Begin Coring @ 4.4 ft	RELY WEATHERED. 4.4
125	1 1 1 1 1 1			L			3:44/1.	0 92% 72%	94% 70%	6 SOFT TO MODE	RATELY HARD, VERY CLOSE TO M	MODERATELY CLOSE
	I WOH 1	7 . 8	Sat.			117.3 + 9.4	3:11/1. 4:50/1	0			GSI = 68-78	
122.4	T I I I			123.8 — — — BROWN SAN	2.91	115 5 11 0	1.8 2:36/1. 4:50/0	0 (1.6) (1.1)				
110 110 110 110 110 110 110 110	122.4 † 4.3 60/0.1		60/0.1	122.3 PHYLLITE	1	115	4.6 3:32/1. 4:40/1.	0 (4.6) (4.3)				
SOFT TO MODERATELY HARD, VERY CLOSE TO MODERATELY CLOSE FRACTURE SPACING, PHYLLITE REC. = 94% RQD = 70% GSI = 68-78 110 110 110 110 110 110 110 1	120			TAN TO GRAY, SLIG MODERATELY SEVERELY	WEATHERED,	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	4.19/1	0 100% 93%				
FRACTURE SPACING, PHYLLITE REC. = 94% RQD = 70% GSI = 68-78 105 105 105 105 105 105 105 10				SOFT TO MODERATELY CLOSE TO MODERATE	ELY CLOSE	110	5:30/0. 3:55/1.	6 (5.0) (3.1)				
110 1 105.5 - 21.2 3:51/1.0 5:17/1.0 100% 1	115 7			FRACTURE SPACING, REC. = 94% RQD = 70%		‡	3:45/1.	0 95 /6 57 /6				
110	T			-		105.5 + 21.2	3:51/1. 5:17/1.	0 0				
110				-		103	4:39/1.	0 100% 100%				
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	110 —			_		‡	4:36/1. 5:43/1	0				
				-		100 100.5 + 26.2	5.0 3:39/1.	0 (4.5) (1.6)				
$oxed{105}$	105					‡	4:01/1. 4:10/1.	0 90% 32%				
105 T 4:10/1.0 6:57/1.0 95.5 95.5 95.5 95.5 95.5 95.5 95.5 95	\Box \exists \Box					95.5 + 31.2	6:57/1. 8:25/1.	0		95.5		31.2
95 + 4.5 4:34/1.0 (4.5) (1.4) GRAY TO GREEN, MODERATELY TO SLIGHTLY WEATHERED, MEDIUM + 4:47/1.0 100% 31% TO MODERATELY HARD, CLOSE TO VERY CLOSE FRACTURE							4.5 4:34/1. 4:47/1.	0 (4.5) (1.4) 0 100% 31%	(4.5) (1.4 100% 31%	GRAY TO GREE TO MODERA	ATELY HARD, CLOSE TO VERY CL	LOSE FRACTURE
100	$\frac{100}{1}$					91.0 + 35.7	l 5:13/1.	0		91.0	SPACING, SCHIST GSI = 70-7	6 35.7
91.0 33.7 4:16/0.5 Boring Terminated at Elevation 91.0 ft IN CRYSTALLINE ROCK (SCHIST)						+	4:16/0.	5			ed at Elevation 91.0 ft IN CRYSTALL	
95 - 31.2	95			- 95.5 CRAY TO GREEN MODE		‡				[
SLIGHTLY WEATHERED, MEDIUM TO SIGHTLY WEATHERED, MEDIUM TO MODERATELY HARD, CLOSE TO VERY				SLIGHTLY WEATHERED,	, MEDIUM TO	‡				[
91.0 CLOSE FRACTURE SPACING, SCHIST 35.7 REC. = 100% RQD = 31% GSI = 70-76				T 91.0 CLOSE FRACTURE SPAC	CING, SCHIST 35.7					F		
Boring Terminated at Elevation 91.0 ft IN +				Boring Terminated at Eleva	ation 91.0 ft IN							
The state of the s				CRYSTALLINE ROCK	(SCHIST)	1 7				F		
				_								
				_								
	<u>+</u> +			_						F		
) I			-								
	0.TO +			_						 		
				_								
										[-		
	 									F		
				-								
				_						F		
				_								
$reve{\forall}$)									[-		
	8825B					l l Ŧ						
				-								
$\exists \mid \downarrow \mid \mid \mid \mid \mid \mid \mid \mid$				‡		+				-		
				<u></u>								
				‡						<u> </u>		
				‡		‡						

							B	BORE	LOG							,									C	<u>ORE</u>	LOG					
WBS	34552	.1.FR3		TI	P R-3825	5B	COUNT	ry Johns	TON			GEOLO	DGIST Lindsa	y Pugh		WBS	3 345	52.1.FR	3		TIP	R-382	5B	С	OUNT	Y JOHN	STON		GEOLOGIST Lindsay	/ Pugh		
SITE D	ESCR	IPTION	BRIDGE	NO. 75	5 ON -L- (N	IC 42) OV	ER THE	NEUSE RIV	'ER					GI	ROUND WTR (ft)	SITE	DESC	RIPTIO	N BR	IDGE N	O. 75 (ON -L- (NC 42) (OVER	THE N	IEUSE R	VER				GROUND WI	R (ft)
BORIN	IG NO.	B1-B		S	TATION 6	3+64		OFFSET	50 ft R	Т		ALIGN	MENT -L-	0	HR. N/A	BOF	RING N	O . B1-	В		STA	ATION	63+64			OFFSET	50 ft RT		ALIGNMENT -L-		0 HR.	N/A
COLLA	AR ELE	V. 125	5.9 ft	T	OTAL DEP	TH 37.9	ft	NORTHIN	IG 690	,946		EASTIN	NG 2,176,522	24	HR. N/A	COL	LAR E	LEV. 1	25.9 ft		TO.	TAL DE	PTH 37	.9 ft		NORTH	NG 690,946		EASTING 2,176,522		24 HR.	N/A
DRILL F	RIG/HAN	MER EF	F./DATE	MID0314	D-25 86% 08	/04/2016		_	DRILL	METHOD	NQ2	2 Casing V	V/SPT&Core	HAMMER	TYPE Automatic	DRIL	L RIG/H	AMMER	EFF./DA	TE MID	00314 D	-25 86% 0	8/04/2016				DRILL METH	OD NO	Q2 Casing W/SPT&Core	HAMME	R TYPE Autor	natic
		Fowler		S	TART DAT	E 05/03/	17	COMP. D				SURFA	CE WATER DE	EPTH 8.8ft		DRII	LLER	B. Fow	er		STA	ART DA	TE 05/0	3/17		COMP.	DATE 05/04/17	7	SURFACE WATER DE	PTH 8.8	ft	
ELEV I	DRIVE ELEV		BLOW C				PER FOO			· 🔻	OΙ		SOIL AND R	ROCK DESCRIF	PTION	COF		NQ2				TAL RU	1 29.8 1	t								
(ft)	(ft)	(ft)	0.5ft 0.5f	ft 0.5ft	0	25	50	75 100	J NO.	MOI	G E	ELEV. (ft)			DEPTH (ft)	ELEV (ft)		, DEPT	H RUN (ft)	I IVAIL	REC		SAMP. NO.	REC.	RATA RQD (ft) %	LO			DESCRIPTION AND REMARI	KS		
																	(ft)	(ft)	(11)	(Min/ft)	(ft) %	(ft) %	NO.	(II) %	(11)	G _{ELE}	V. (ft)				DE	EPTH (ft)
135		-									_ -	- · · - · · -	WATER SI	URFACE (05/03	3/17)	117.8		} + 8:5	1.4	7:02/1 (0 (11) (0.4)		(28.4)	(19.2)	75 117	8 GRAY TO	GREEN	Begin Coring @ 8.1 ft N, VERY SLIGHTLY TO MOD	FRATI FY	SEVERELY	8.1
	}	-									E					115		9.5	4.5	4:44/0.4 2:45/1.0	4 79% 0 (4.1	(0.4) (6) (29%) (1.5) (6) 33%		95%	64%	117	WEATHERE	D. MOD	DERATLEY HARD TO HARD, FRACTURE SPACING, GNE	VERY CL	OSE TO WIDE	
130	}	_									E							<u>†</u>		7:19/1.0	0 (4.1	6 33%							GSI = 78-88			
	}	-									E							14.0	5.0	8;18/0.5	5 (4.9	(3.2) 6 64%										
	125.9	- 0.0									E_1	125.9	R	IVER BED	0.0	110		+		6:22/1.0 6:18/1.0 5:43/1.0 5:02/1.0	0 98% 0	64%										
125		-	10 2	3	5	+	+ : : :		Π	Sat.				ALLUVIAL OWN SAND			106.9	19.0		1 7:22/1.0	0 I											
	122.6	- 3.3	10 12	10	::::::					W		404.0			4.0	105		<u></u>	4.8	5:32/1.0 4:21/1.0	0 98%	') (1.7) % 35%										
120]	_				22		.		**	- F	1 <u>21.3</u> 119.5		RESIDUAL	4.6		100 4	‡		9:50/1.0	0 0											
	117.9	- 8.0			:::::	۱ آ	7					117.8	CRYST	N MICACEOUS		100		23.8	5.1	23:57/0. 11:56/1.	.8 (5.1) (4.4) % 86%										
	1	- ⁶	60/0.1				.		Ĭ				GRAY TO GREEN	GNEISS N. MODERATLE	Y SEVERE	100		‡		11:17/1.	.0	% 86%										
115		-			 	 			┤ │				TO VERY SLIC MODERATLEY	GHTLY WEATH	HERED.		97.0	28.9	1.0	6:34/1.0 15:04/1.	1 l)) (4.0)										
	‡	-											CLOSE TO WID	E FRACTURE : GNEISS	SPACING,	95		‡	4.2	6:48/1.	.0 (4.2 0 1009	?) (4.2) % 100%	RS-2									
110		-							<u> </u>				REC. = 95% R		I = 78-88		92.8	33.1		7:10/1.0	οl			-								
	‡	-			: : : :											90		‡	4.8	5:23/0.2 2:51/1.0 7:49/1.0	<u>4.3</u> 0 90%	8) (3.8) % 79%										
105	1	-														90	88.0	37.9		9:31/1.0 12.58/1. 14:37/0.	ŏ .ol					88.0						37.9
105	†	-				1			1								00.0	+ 37.3		14:37/0.	.8					- 00.0		inated at	t Elevation 88.0 ft IN CRYSTA	ALLINE RO	CK (GNEISS)	
	†	-																‡								<u> </u>						
100	‡	-							4									‡								-						
	‡	-																‡														
95	1	-																Ŧ								-						
	7	-				1			RS-2									Ŧ								-						
	1	-					1		1									Ŧ								F						
90	- 1	-							-									Ŧ														
_		-					1		4			88.0	Boring Terminat	ted at Flevation	37.9 88.0 ft IN			Ŧ								E						
6/5/1	1	-									F		CRYSTALLI	INE ROCK (GN	EISS)			Ŧ								E						
GDT	7	-									F							Ī								<u> </u>						
DOO	}	-									E							+														
NC NC		_									F							‡														
S.GP.	}	:									E							‡								_						
SING	}	_									Ŀ							‡								-						
BOF	}	:									ŀ							‡								-						
SRDG	1	:									ļ							‡								-						
EO_E	-	-									-							‡								-						
5B_G	1	:									F							‡														
R382		_									F							‡								-						
BLE	‡	-									-							‡								-						
DOO	‡	:									ļ							‡								-						
SORE	‡	-									-							‡														
DOTE	‡	:									-							‡														
NCE	-										L																					

BORE LOG			C	ORE LOG	
WBS 34552.1.FR3 TIP R-3825B COUNTY JOHNSTON	GEOLOGIST Lindsay Pugh	WBS 34552.1.FR3	TIP R-3825B COUN	TY JOHNSTON	GEOLOGIST Lindsay Pugh
SITE DESCRIPTION BRIDGE NO. 75 ON -L- (NC 42) OVER THE NEUSE RIVER	GROUND WTR (ft)	SITE DESCRIPTION BRIDGE NO). 75 ON -L- (NC 42) OVER THE	NEUSE RIVER	GROUND WTR (ft)
BORING NO. B2-A STATION 64+87 OFFSET 45 ft LT	ALIGNMENT -L- 0 HR. N/A	BORING NO. B2-A	STATION 64+87	OFFSET 45 ft LT	ALIGNMENT -L- 0 HR. N/A
COLLAR ELEV. 125.7 ft TOTAL DEPTH 37.8 ft NORTHING 691,051	EASTING 2,176,636 24 HR. N/A	COLLAR ELEV. 125.7 ft	TOTAL DEPTH 37.8 ft	NORTHING 691,051	EASTING 2,176,636 24 HR. N/A
DRILL RIG/HAMMER EFF./DATE MID0314 D-25 86% 08/04/2016 DRILL METHOD NQ	2 Casing W/SPT&Core HAMMER TYPE Automatic	DRILL RIG/HAMMER EFF./DATE MIDO	0314 D-25 86% 08/04/2016	DRILL METHOD	NQ2 Casing W/SPT&Core HAMMER TYPE Automatic
DRILLERContract DrillerSTART DATE05/02/17COMP. DATE05/03/17	SURFACE WATER DEPTH 7.8ft	DRILLER Contract Driller	START DATE 05/02/17	COMP. DATE 05/03/17	SURFACE WATER DEPTH 7.8ft
ELEV DRIVE ELEV DEPTH BLOW COUNT BLOWS PER FOOT SAMP. V	SOIL AND ROCK DESCRIPTION	CORE SIZE NQ2	TOTAL RUN 28.5 ft		
	ELEV. (ft) WATER SURFACE (05/02/17) DEPTH (ft)	ELEV RUN DEPTH RUN RATE	RUN SAMP. REC. RQD RGC. RQD NO. (ft) (ft) (ft) RGC. RQD RGC.	_ L	DESCRIPTION AND REMARKS
		(ft) ELEV (ft) (ft) RATE (Min/ft)	(ii) (ii) NO. (ii) (ii)	G ELEV. (ft)	DEPTH (ft)
130		116.4 9.3 1.2 4:54/1.0	(1.2) (0.7) (14.1) (8.5)	116.4 GRAY, VERY S	Begin Coring @ 9.3 ft SLIGHTLY TO SLIGHTLY WEATHERED, MODERATELY 9.3
		110.2 10.0 16 5:02/0.2	100% 58% (4.2) 92% 56% (4.2) 92% 56%	116.4 GRAY, VERY S HARD, VER	Y CLOSE TO CLOSE FRACTURE SPACING, SCHIST GSI = 65 - 75
125 125.7 + 0.0 Sat. \$277	135.7 RIVER BED 8.9	110 110.6 - 15.1 5.36/1.0 110 110.6 - 15.1 5.58/1.0 5.36/1.0 5.36/1.0 5.36/1.0 5.36/1.0 5.36/1.0 5.36/1.0 5.36/1.0	91% 54%		301 - 33 73
3dl. 3dl. 3dl.	BROWN SAND	110 110.6 + 15.1 5:58/1.0 7:11/0.6 6:49/1.0	(4.3) (2.2)		
120	WEATHERED ROCK SCHIST	5.1 6:49/1.0 6:04/1.0 4:49/1.0	84% 43%		
120 43 3770.4		+ 4:55/1.0 105.5 + 20.2 4:55/1.0 3:38/1.1			
	117.7	4.4 5:31/1.0 7:38/1.0	(4.4) (3.1) 100% 70%		
115 116.5 + 9.2 1 115 116.5 + 9.2 116.5 + 9	116.4 CRYSTALLINE ROCK 9.3 SCHIST 9.3	8:44/1.0		101.1	24.6
	GRAY, VERY SLIGHTLY TO SLIGHTLY WEATHERED, MODERATELY HARD,	100 4.8 7.54/0.4 4.8 8.45/1.0 12:05/1.0 12:57/1.0 12:57/1.0 12:58/0.1 14:11/0.9	(4.6) (4.6) RS-3 (12.1) (11.5) 96% 96% RS-3	GRAY, VERY S	SLIGHTLY TO SLIGHTLY WEATHERED, MODERATELY, MODERATELY CLOSE TO WIDE FRACTURE SPACING,
110	VERY CLOSE TO CLOSE FRACTURE SPACING, SCHIST	+ 12:05/1.0 12:57/1.0 15:58/0.1	90 / 90 / 90 / 90 / 90 / 90 / 90 / 90 /	TIARD TO TIARD	GNEISS GSI = 79 TO 90
110 + 1	REC. = 92% RQD = 56% GSI = 65-75	1 AE T 1 A B N D 4 3/U /	7/1/3 (3) 1/3 (3) 1 1 1		GSI = 79 10 90
		95 - 5:01/1.0 10:29/1.0 8:22/1.0 91.5 - 34.2 91.5 - 34.2	81% 69%		
105		91.5 + 34.2 9.18/1.0 10:32/0.8	3		
		90	0 100% 100%		
	101.1 24.6	87.9 37.8 11:45/1.0 14:37/0.6)	87.9 Roring Torminat	37.8 ed at Elevation 87.9 ft IN CRYSTALLINE ROCK (GNEISS)
100 RS-3	GRAY, VERY SLIGHTLY TO SLIGHTLY WEATHERED, MODERATELY HARD TO	‡		- Boring reminal	ed at Elevation 67.9 it in CR151 ALLINE ROCK (GNEISS)
	HARD, MODERATELY CLOSE TO WIDE FRACTURE SPACING, GNEISS	‡			
95 +	REC. = 92% RQD = 87% GSI = 79-90				
		‡		-	
95 RS-3		‡			
	Boring Terminated at Elevation 87.9 ft IN	1 1 7 1 1		F	
	CŘYSTALLINE ROCK (GNEISS)	‡			
		‡		-	
1,007		‡		F	
				F	
		1 1 7 1 1		F	
		‡			
		‡		-	
$\begin{bmatrix} g \\ 0 \end{bmatrix}$					
		‡			
		‡			
팅		‡		-	
858		‡		F	
		‡			
		‡		F	
		‡		F	
		‡		-	
				-	
<u> </u>				<u> </u>	

							B	ORE	LOG														C	ORE I	LOG					
WBS	34552	.1.FR3		TI	P R-3825	5B	COUNT	TY JOHNS	STON		GEOL	OGIST Lindsay Pugh		WB	SS 34	4552.1.F	FR3		TI	IP R-3	3825B	C	OUNT	Y JOHNS	TON	G	GEOLOGIST Lindsa	y Pugh		
SITE D	ESCR	IPTION B	RIDGE	NO. 75	ON -L- (N	IC 42) OV	ER THE I	NEUSE RI\	/ER				GROUND WTR (f	′ I —				RIDGE				OVER	THE N	IEUSE RIV					GROUND	
BORIN	IG NO.	B2-C		Sī	TATION 6	84+84		OFFSET	2 ft RT		ALIGN	IMENT -L-	0 HR. N/.	BOI	RING	NO . B	2-C		S.	TATIO	N 64+84			OFFSET	2 ft RT		ALIGNMENT -L-		0 HR.	N/A
COLLA	AR ELI	V. 126.6	ft	TO	OTAL DEP	TH 34.0	ft	NORTHIN	IG 691,	004	EASTI	NG 2,176,637	24 HR. N/.	CO	LLAR	R ELEV.	126.61	ft	T	OTAL I	DEPTH 3	4.0 ft		NORTHIN	IG 691,004	E	EASTING 2,176,637		24 HR.	N/A
DRILL F	RIG/HAI	MER EFF./	DATE N	/ID0314 I	D-25 86% 08	3/04/2016			DRILL	METHOD	NQ2 Casing	W/SPT&Core HAMI	MER TYPE Automatic	DRII	LL RIG	3/HAMME	R EFF./D	ATE N	/ID0314	D-25 86	% 08/04/201	6			DRILL METHO	NQ2 C	Casing W/SPT&Core	HAMME	R TYPE A	utomatic
<u> </u>		Fowler			TART DAT	E 04/18/	17	COMP. D			SURFA	ACE WATER DEPTH 2	2.5ft	→ 		R B. Fo			S ⁻	TART I	DATE 04/	/18/17		COMP. D	ATE 04/19/17	' s	SURFACE WATER DE	PTH 2.5	ft	
LLL V	ELEV		BLOW CC				PER FOO		SAMP			SOIL AND ROCK DES	SCRIPTION			IZE NO	Q2 	1 551			RUN 28.7	ft err	DATA							
(ft)	(ft)	(ft) 0.5	5ft 0.5ft	0.5ft	0	25	50	75 10	0 NO.	MOI G	ELEV. (ft)		DEPTH	ft) ELE\ (ft)		-∟∨ /£	PTH RUN	1 100		RUN EC. RC (ft) (ft	SAMP.	STI REC. (ft) %	RQD (ft)	0		DES	SCRIPTION AND REMAR	RKS		
																ft) (1	(1.7)	(Min	1/ft) 9	% %	,	<u>%</u>	%′	G ELEV.	. (ft)					DEPTH (ft
130		-										WATER SURFACE ((04/18/17)	121.3		21.3 + 5.	.3 5.0) 4:44/	/1.0 (4	1.2) (4.	0)	(24.2)) (16.5)	121.3	GREEN	TO GRAY	Begin Coring @ 5.3 ft TO BLACK VERY SLIGH	ITLY TO SL	IGHTLY	5.3
	126.6	[L 126.6	RIVER BED)	.0		Ŧ		4:35/	/1.0	4% 80	%	91%	62%	94.6	WEATHERE	D, MODER CLOSE	RATELY HARD, MODERA E FRACTURE SPACING,	ATELY CLOS SCHIST	SE TO VERY	Y
125	120.0	- 3	8	38			46			Sat.	125.2	ALLUVIAL BLACK SILTY S		.4	11	16.3 7 10		4:02/ 3:54/	/1.0 /1.0								GSI = 75-85			
	-]		123.1	WEATHERED R		.5 115	5	Ŧ	5.0	7:21/	/1.0 10	5.0) (4. 00% 88	4) %									
	121.5	- 5.1 - 60/0	1 1								121.3	SCHIST_ CRYSTALLINE F	1	1 1		Ī	_	5:34/ 6:56/ 6:12/	/1.0 /1.0											
120	_		J. 1		<u> </u>	+	<u> </u>				<u>}</u> \	SCHIST GREEN TO GRAY TO E	BLACK VERY	110		11.3 + 15	3.5	6:12/ 7:15/	/1.0 /1.0 (3	3.5) (1. 00% 31	1)									
	-										1	SLIGHTLY TO SLIGHTLY MODERATELY HARD, VE	WEATHERED,		10)7.8 T 18	3.8	7:52	/1.0	00% 31	%									
115	-										<u>{</u>	MODERATELY CLOSE SPACING, SCH	FRACTURE			Ŧ	3.8	6:34/ 5:31/ 6:20/ 6:23/	(0.5) (1.0) (1.0) (1.0)	3.8) (3. 00% 87	3)									
	-										1	REC. = 91% RQD = 62%		105	10	$_{04.0}$ $\pm _{22}$	2.6	6:23/ 6:03/	/0 8 L											
440											1					1	4.9	2:41/	/1.0 (3 /1.0 73	3.6) (1. 3% 39	9) %									
110	-	-							-		1			100)	, <u>†</u> ,,	, _	4:04/ 4:58/	/1.0											
	-	-						: : : : :	11						98	9.1 † 27	4.5	3:38/ 2:39/	/0.9 /1.0 (4	1.1) (2. 1% 62	8)									
105	-								<u> </u>		1					‡		4.13/	/1 0 l	1% 62	%									
	-	-									1			95	_	4.6 + 32	2.0	3:24/ 4:47/		1.0) (0.	0)	(1.0)	(0.0)	94.6	GREEN TO	D BLACK V	VERY SLIGHTLY WEATH	HERED. MOI	DERATELY	32.0
100															92	2.6 34	1.0	3:12/ 5:25/	1.0 50 1.0 50	1.0) (0. 0% 0%	%	50%	0%	92.6	HARD, V	ERY CLOS	SE TO CLOSE FRACTUR GSI = 50-55	RE SPACING	, GNEISS	34.0
100	-	-				<u> </u>	1		1							‡									Boring Termi	nated at Ele	levation 92.6 ft IN CRYST	ALLINE RO	CK (GNEISS	S)
																‡								-						
95	_	-							41		94.6		32	.0		‡														
		-					I	I .	Щ		92.6	GREEN TO BLACK VER WEATHERED, MODERA	ATELY HARD,34	.0		‡								-						
											F \	VERY CLOSE TO CLOSE SPACING, GNE	EISS			‡														
	-	-									F 1	REC. = 50% RQD = 0% Boring Terminated at Flev				‡														
	-	-									F	Boring Terminated at Elev CRYSTALLINE ROCK	(GNEISS)			‡														
	_	-									F					‡														
	-	-									F					‡														
6/5/1		-									F					‡								-						
GDT	-	-									F					‡														
DOT		-									F					ŧ														
ပ	_	-									F					‡														
.GPJ		-									F					Ŧ														
NGS		-									F					‡														
BOR	-	-									F					‡														
RDG.	-	-									F					Ŧ														
	_										F					Ŧ														
90	-	[E					Ŧ								F						
3825		-									E					Ŧ								F						
H H	-	-									F					‡														
BOOUB		-									F					‡														
ORE L	_	-									F					‡														
OT BC	-	-									F					‡								-						
CDC		[ţ.					‡														

GEOTECHNICAL BORING REPORT


WBS 34552.1.FR3

	BORE LOG				_
TIP R-3825B COUN	TY JOHNSTON	GEOLOGIST Lindsay Pugh			1
75 ON -L- (NC 42) OVER THE	GROUND WTR	(ft)	Ŀ		
STATION 64+75	OFFSET 28 ft RT	ALIGNMENT -L-	0 HR . N	I/A	
TOTAL DEPTH 36.1 ft	NORTHING 690.977	EASTING 2.176.630	24 HR.	I/A	ŀ

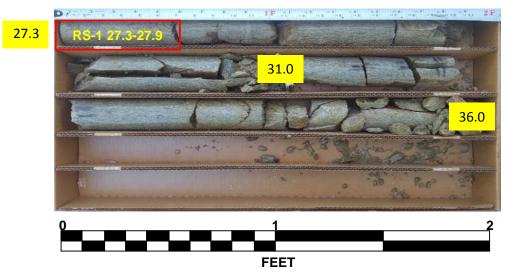
SECRIPTION BRIDGE NO. 75 ON L - (NC 42) OVER THE NEUSE RIVER GROUND WT
R ELEV. 124.1 ft TOTAL DEPTH 36.1 ft NORTHING 690,977 EASTING 2,176,630
GHAMMER EFF./DATE MID0314 D-25 86% 08/04/2016 DRILL METHOD NO2 Casing WiSPT&Core HAMMER TYPE Autority Autority Autority Autority START DATE 0.4/19/17 COMP. DATE 0.4/20/17 SURFACE WATER DEPTH 5.4ft
R B. Fowler START DATE 04/19/17 COMP. DATE 04/20/17 SURFACE WATER DEPTH 5.4ft RIVE DEPTH BLOW COUNT 0.5ft 0
RIVE DEPTH CITY DEPTH D
(ft)
WATER SURFACE (04/19/17) 24.1 0.0 49 51/0.2 21.1 3.0 38 25 12
24.1 0.0 49 51/0.2 21.1 3.0 38 25 12
24.1 0.0 49 51/0.2 21.1 3.0 38 25 12
21.1 3.0 38 25 12
21.1 3.0 38 25 12
21.1 3.0 38 25 12
21.1 3.0 38 25 12 937 W
38 25 12
16.5 7.6 60/0.1 60/0.1 60/0.1 118.0 CRYSTALLINE ROCK GREEN TO GRAY TO BLACK VERY SLIGHTLY TO MODERATELY WEATHERED, MODERATELY HARD, VERY CLOSE TO CLOSE FRACTURE SPACING, GNEISS WITH A 1.4 SAND FILLED FRACTURE AT 10.9' AND A QUARTZ VEIN AT 31.9' REC. = 75% RQD = 55% GSI = 65-75
88.0 Boring Terminated at Elevation 88.0 ft IN
WEATHERED, MODERATELY HARD, VERY CLOSE TO CLOSE FRACTURE SPACING, GNEISS WITH A 1.4' SAND FILLED FRACTURE AT 10.9' AND A QUARTZ VEIN AT 31.9' REC. = 75% RQD = 55% GSI = 65-75
SPACING, GNEISS WITH A 1.4' SAND FILLED FRACTURE AT 10.9' AND A QUARTZ VEIN AT 31.9' REC. = 75% RQD = 55% GSI = 65-75
QUARTZ VEIN AT 31.9' REC. = 75% RQD = 55% GSI = 65-75
RS-4 Boring Terminated at Elevation 88.0 ft IN
RS-4 88.0 Boring Terminated at Elevation 88.0 ft IN
RS-4 88.0 Boring Terminated at Elevation 88.0 ft IN
RS-4 88.0 Boring Terminated at Elevation 88.0 ft IN
RS-4 88.0 Boring Terminated at Elevation 88.0 ft IN
RS-4 88.0 Boring Terminated at Elevation 88.0 ft IN
RS-4 88.0 Boring Terminated at Elevation 88.0 ft IN
RS-4 88.0 Boring Terminated at Elevation 88.0 ft IN
RS-4 88.0 Boring Terminated at Elevation 88.0 ft IN
RS-4 88.0 Boring Terminated at Elevation 88.0 ft IN
RS-4 88.0 Boring Terminated at Elevation 88.0 ft IN
Boring Terminated at Elevation 88.0 ft IN
<u> </u>
+

<u> </u>
± E
<u> </u>
T
‡

GEOTECHNICAL BORING REPORT CORFIGG

									C	<u>Ol</u>	RE LOG		
WBS						25B	C	OUNT	Y J	JOHNSTON GEOLOGIST Lindsay Pugh	GEOLOGIST Lindsay Pugh		
SITE DESCRIPTION BRIDGE NO. 75 ON -L- (NC 42) OVER THE I					NC 42) C	VER	THE N	NEU:	SE RIVER GROUND WTR (ft)			
BOR	NG NO.	B2-B			STA	TION	64+75			OF	FFSET 28 ft RT ALIGNMENT -L- 0 HR. N/	/A	
COLI	AR ELE	V . 12	4.1 ft		TOT	AL DE	PTH 36	.1 ft		NO	DRTHING 690,977 EASTING 2,176,630 24 HR. N/	/A	
				TE MID03							DRILL METHOD NQ2 Casing W/SPT&Core HAMMER TYPE Automatic		
	LER B.		r				TE 04/1			CO	DMP. DATE 04/20/17 SURFACE WATER DEPTH 5.4ft		
	E SIZE			DDILL		AL RUI JN	N 28.4 f	t STR	ΔΤΔ		T		
ELEV (ft)	RUN ELEV (ft)	DEPTH (ft)	RUN (ft)	DRILL RATE (Min/ft)	REC. (ft) %		SAMP. NO.	REC. (ft) %	RQD (ft) %	L O G	DESCRIPTION AND REMARKS ELEV. (ft) DEPTH	l (ft)	
116.4 115	116.4	- 7.7	4.6	11:05/1.0	(2.5)	(1.2)		(21.3)	(15.5)		Begin Coring @ 7.7 ft 116.4 GREEN TO GRAY TO BLACK VERY SLIGHTLY TO MODERATELY	7.7	
113	111.8	- - - - 12.3		8:31/1.0 17:57/1.0 19:31/0.2 2:55/0.8 6:42/0.6	54%	26%		75%	(15.5) 55%		WEATHERED, MODERATELY HARD, VERY CLOSE TO CLOSE FRACTURE SPACING, GNEISS WITH A 1.4' SAND FILLED FRACTURE AT 10.9' AND A QUARTZ VEIN AT 31.9'		
110		• •	4.9	6:42/0.6 / 4:19/1.0 5:25/1.0 5:39/1.0 5:40/1.0 6:09/1.0	(4.5) 92%	(3.3) 67%					GSI = 65-75		
105	106.9	17.2	5.1	5:53/1.0 5:53/1.0	(4.7) 92%	(3.5) 69%							
400	101.8	22.3	4.9	5:39/1.0 7:29/1.0 5:37/1.1 4:37/1.0	(4.5)	(3.8)							
100	96.9	27.2		5:08/1.0 5:04/1.0 5:23/1.0	92%	78%							
95	+	-	5.0	6:26/0.9 4:25/1.0 5:35/1.0 5:11/1.0	(2.7) 54%	(2.3) 46%							
	91.9	32.2	3.9	4:01/1.0 5:22/1.0 4:40/1.0	(2.4)	(1.4)					[
90	88.0	- 36.1		5:04/1.0 11:05/0.5 2:23/0.5 5:35/0.9	62%	36%					88.0	36.1	

PROJECT REFERENCE NO.	SHEET NO.
R-3825B	17


ROCK TEST RESULTS							
SAMPLE	OFFSET	STATION	DEPTH	ROCK	UNIT WT.	UNIAXIAL COMPRESSIVE	
NO.	OFFSEI	STATION	INTERVAL	TYPE	(lb/ft³)	STRENGTH, (psi)	
RS-1	42' LT	63 + 65	27.3' - 27.9'	PHYLLITE	165.1	1,570	
RS– 2	50' RT	63 + 64	30.5' - 32.5'	GNEISS	179.3	4,630	
RS–3	45' LT	64+87	25.3' - 27.2'	GNEISS	174.2	7,700	
RS–4	28' RT	64 + 75	35.4' - 36.1'	GNEISS	171.4	14,580	

B1-A

BOXES 1,2 AND 3: 5.0 TO 36.0 FEET

CORE PHOTOGRAPHS

B1-C

BOXES 1,2,3 and 4: 4.4 TO 35.7 FEET

B1-B

FEET

B2-A

BOXES 1,2, and 3: 9.3 TO 37.8 FEET

FEET

SHEET 20 34552.1.FR3 (R-3825B)

CORE PHOTOGRAPHS

B2-C

BOXES 1,2, and 3: 5.3 TO 34.0 FEET

B2-B

BOXES 1,2, and 3: 7.7 TO 36.1 FEET

FEET

PROJECT REFERENCE NO.	SHEET NO.
R-3825B	22

SITE PHOTOGRAPH

Bridge No. 75 on NC 42 over the Neuse River

Looking west toward End Bent 1