
Preliminary Site Assessment

US 401 (Raeford Road) from West Hampton Oaks Drive to East of Fairway Drive in Fayetteville

Parcel 258 – Dax's Deals Property

3301 Raeford Road, Fayetteville, North Carolina

State Project No. U-4405 WBS Element: 39049.1.1 December 15, 2016 Terracon Project No. 70167490

Prepared for: North Carolina Department of Transportation Raleigh, North Carolina

Prepared by:

Terracon Consultants, Inc. Raleigh, North Carolina

TABLE OF CONTENTS

Page No.

1.0		1
1.1	Site Description	1
1.2	Site History	1
1.3	Scope of Work	1
1.4	Standard of Care	2
1.5	Additional Scope Limitations	2
1.6	Reliance	2
2.0	FIELD ACTIVITIES	3
2.1	Geophysical Survey	3
2.2	Soil Sampling	3
3.0	LABORATORY ANALYSES	4
4.0	DATA EVALUATION	4
4.1	Soil Analytical Results	4
5.0	CONCLUSIONS AND RECOMMENDATIONS	5
6.0	REFERENCES	6

TABLES

Table 1 – Summary of Soil Analytical Results

EXHIBITS

Exhibit 1 – Topographic Vicinity Map Exhibit 2 – Site Diagram with Soil Boring Locations and Analytical Data

APPENDICES

- Appendix A: Geophysical Survey Report
- Appendix B: Soil Boring Logs
- Appendix C: Laboratory Analytical Reports and Chain-of-Custody Forms

December 15, 2016

North Carolina Department of Transportation Attention: Mr. Terry W. Fox, LG, GeoEnvironmental Engineering Unit Century Center Complex Building B 1020 Birch Ridge Road Raleigh, North Carolina 27610

Re: Preliminary Site Assessment (PSA)
 US 401 (Raeford Road) from West Hampton Oaks Drive to East of Fairway Drive in Fayetteville
 Parcel 258 – Dax's Deals Property
 3301 Raeford Road, Fayetteville, North Carolina
 State Project No. U-4405
 WBS Element: 39049.1.1

Dear Mr. Fox:

Terracon Consultants, Inc. (Terracon) is pleased to submit a Preliminary Site Assessment (PSA) report for the above referenced site. This assessment was performed in accordance with our Proposal for Preliminary Site Assessment (Terracon Proposal No. P70167490) dated September 27, 2016. This report includes the findings of the investigation, and provides our conclusions and recommendations.

Terracon appreciates the opportunity to provide these services to the North Carolina Department of Transportation. If you have any questions concerning this report or need additional information, please contact us at 919-873-2211.

Sincerely,

Terracon Consultants, Inc.

Prepared by:

Ethan H. Smith Field Geologist

Reviewed by:

Michael T. Jordan, P.G. Environmental Department Manager

Terracon Consultants, Inc. 2401 Brentwood Road, Suite 107 Raleigh, NC 27604 P [919] 873 2211 F [919] 873 9555 terracon.com

PRELIMINARY SITE ASSESSMENT

US 401 (RAEFORD ROAD) FROM WEST HAMPTON OAKS DRIVE TO EAST OF FAIRWAY DRIVE IN FAYETTEVILLE, CUMBERLAND COUNTY, NORTH CAROLINA STATE PROJECT NO. U-4405 WBS ELEMENT: 39049.1.1 PARCEL 258 – DAX'S DEALS PROPERTY 3301 RAEFORD ROAD, FAYETTEVILLE, NORTH CAROLINA

1.0 INTRODUCTION

1.1 Site Description

Site Name	US 401 (Raeford Road) from West Hampton Oaks Drive to East of Fairway Drive in Fayetteville
Site Location/Address	3301 Raeford Road, Fayetteville, NC 28303 (Cumberland County Tax PIN: 0417-90-3924)
General Site Description	The site consists of a one-story commercial building that is currently operated as an active car retail business. The site is further improved with a paved access drive and parking areas.

1.2 Site History

The site is located at 3301 Raeford Road in Fayetteville, Cumberland County, North Carolina. At the time of the Preliminary Site Assessment (PSA), the site was operating as Dax's Deals Auto Sales. This facility formerly operated as an Exxon gas station (NCDOT, 2016). According to the North Carolina Department of Environmental Quality (NCDEQ) – Division of Waste Management Underground Storage Tank (UST) Section Incident Management Database, the former Exxon gas station was assigned Groundwater Incident #03866 on December 9, 1988 and was closed on June 6, 2002. Additional details for the USTs and the groundwater incident were not provided.

1.3 Scope of Work

Terracon conducted the following PSA scope of work (SOW) in accordance with Terracon's proposal for PSA (Proposal No. P70167490) dated September 27, 2016. This PSA is being completed prior to planned median improvements and lane widening along US 401 (Raeford Road) in Fayetteville, North Carolina (site). The scope of work included a geophysical investigation, collection of six soil samples, and preparation of a report documenting our investigation activities. The PSA is not intended to delineate potential impacts. The PSA was performed within the proposed Right of Way (ROW) as indicated by NCDOT provided plan sheets.

1.4 Standard of Care

Terracon's services were performed in a manner consistent with generally accepted practices of the profession undertaken in similar studies in the same geographical area during the same time period. Terracon makes no warranties, either expressed or implied, regarding the findings, conclusions or recommendations. Please note that Terracon does not warrant the work of laboratories, regulatory agencies or other third parties supplying information used in the preparation of the report. These services were performed in accordance with our proposal for PSA (Terracon Proposal No. P70167490) dated September 27, 2016 and were not conducted in accordance with ASTM E1903-11.

1.5 Additional Scope Limitations

Findings, conclusions and recommendations resulting from these services are based upon information derived from the on-site activities and other services performed under this scope of work; such information is subject to change over time. Certain indicators of the presence of hazardous substances, petroleum products, or other constituents may have been latent, inaccessible, unobservable, undetectable or not present during these services; thus, we cannot represent that the site is free of hazardous substances, toxic materials, petroleum products, or other latent conditions beyond those identified during this PSA. Subsurface conditions may vary from those encountered at specific borings or wells or during other surveys, tests, assessments, investigations or exploratory services; the data, interpretations, findings, and our recommendations are based solely upon data obtained at the time and within the scope of these services.

1.6 Reliance

This report has been prepared for the exclusive use of the NCDOT. Authorization for use or reliance by any other party (except a governmental entity having jurisdiction over the site) is prohibited without the expressed written authorization of the client and Terracon.

2.0 FIELD ACTIVITIES

The following PSA activities are presented in the order that they were conducted in the field.

Exhibit 1 presents the topography of the site on a portion of the USGS topographic quadrangle map of Fayetteville, NC 1997. **Exhibit 2** is a site layout plan that indicates the approximate locations of the site features, soil boring locations, and analytical results.

2.1 Geophysical Survey

On October 27, October 28 and November 8, 2016, Geophysical Survey Investigations, PLLC conducted a geophysical investigation at the site in an effort to determine if unknown, metallic USTs were present beneath the proposed ROW area. The geophysical investigation included an electromagnetic (EM) induction survey using a Geonics EM61-MK2A metal detection instrument and a ground penetrating radar (GPR) survey using a Geophysical Survey Systems SIR-3000 unit.

The geophysical investigation did not reveal possible or probable metallic USTs. However, sections of metallic conduits, buried lines, utility line-related surface objects, bollards, and/or buried miscellaneous metal objects were identified in the area of investigation for this site. In addition to metal detection and GPR scans, NC One Call public utility locator identified several underground utility lines. A copy of the geophysical report is included in **Appendix A**.

2.2 Soil Sampling

Based on the findings of the geophysical investigation and Terracon's site observations, Terracon provided oversight for the advancement of six soil borings (SB-36 through SB-41) along the north and eastern portion of Parcel 258 and within the NCDOT ROW. The borings were completed by a North Carolina Certified Well Contractor (Regional Probing Services) using a truck-mount Geoprobe® 5410 direct-push drill rig.

Soil samples were collected in 4-foot, disposable, Macro-Core® sampler tubes to document soil lithology, color, moisture content, and sensory evidence of impacts. Each soil sample was screened for organic vapors using an 11.7 eV photoionization detector (PID). The PID data were collected in order to corroborate laboratory data and assist in selection of sample intervals for laboratory analysis. PID readings from the borings were less than 0.1 parts per million (ppm).

Based on the proposed disturbance depths and discussion with the NCDOT, each of the soil borings was advanced to a depth of approximately 15 feet below land surface (bls). Six soil samples, one from each boring, were collected from depths ranging between 5 to 15 feet bls and placed in laboratory provided sample containers and shipped to REDLAB/QROS, LLC –

Environmental Testing for analysis by UVF. Soil samples were collected in the depth interval that was most likely to be impacted.

The drilling equipment used at the site was decontaminated prior to use and between the advancement of each boring. Non-dedicated sampling equipment was decontaminated using a Liquinox®/water wash followed by a distilled water rinse. Each of the boreholes was backfilled with hydrated bentonite pellets and investigation derived waste (IDW) was containerized in a 55-gallon DOT approved drum. The drum was staged beside the dumpster north of the Dunkin Donuts located at 2628 Raeford Road, Fayetteville, NC 28303 (Dunkin Donuts contact - Matt Ellsworth [910-920-1992] for subsequent disposal by the NCDOT).

Soil generally consisted of clay and sandy clay. Groundwater was not encountered in the six borings. The soil boring logs are included in **Appendix B**. Sample locations were measured relative to site features and the locations depicted on **Exhibit 2** are approximate.

3.0 LABORATORY ANALYSES

Soil samples were submitted to QROS for analysis of the following:

- TPH-gasoline range organics (C₅-C₁₀) (GRO);
- TPH-diesel range organics (C₁₀-C₃₅) (DRO);
- Total petroleum hydrocarbons (C₅-C₃₅) (TPH);
- Benzene, toluene, ethylbenzene, and xylenes (BTEX);
- Total aromatics $(C_{10}-C_{35})$;
- 16 EPA Polycyclic Aromatic Hydrocarbons (16 EPA PAHs); and
- Benzo(a)pyrene (BaP).

Please refer to **Appendix C** for the laboratory analytical reports.

4.0 DATA EVALUATION

4.1 Soil Analytical Results

Laboratory analysis reported the following detections above the laboratory reporting limits in soil borings SB-36 through SB-41:

- TPH-GRO (C₅-C₁₀) was not detected above laboratory reporting limits;
- TPH-DRO (C₁₀-C₃₅) was reported between 2.1 and 6.1 milligrams per kilogram (mg/kg);
- TPH (C₅-C₃₅) was reported between 2.1 and 6.1 mg/kg;
- BTEX was not detected above laboratory reporting limits;
- Total aromatics (C₁₀-C₃₅) was reported between 1.9 and 5.2 mg/kg;

Terracon

- December 15, 2016 Terracon Project No. 70167490
 - 16 EPA PAHs was reported between 0.19 and 0.29 mg/kg; and
 - BaP was reported from less than 0.001 to 0.22 (mg/kg).

Laboratory analysis revealed that concentrations were not detected above the NCDEQ Action Levels for TPH in soil borings SB-36 through SB-41.

Table 1 summarizes the results of the analyses of the soil samples.**Exhibit 2** depicts the boringlocations and detected compounds.

5.0 CONCLUSIONS AND RECOMMENDATIONS

The findings of this investigation are discussed below.

- The geophysical investigation did not reveal a probable or possible buried object or metallic UST. However, sections of metallic conduits, buried lines, utility line-related surface objects, bollards, and/or buried miscellaneous metal objects were identified in the area of investigation for this site.
- Laboratory analysis reported that concentrations were not detected above the NCDEQ Action Levels for TPH in soil borings SB-36 through SB-41.
- Terracon recommends NCDOT provide a copy of the results to the owner and/or operator of the site.
- Terracon does not recommend further assessment of the ROW at this site. However, based on detections of petroleum compounds, construction workers should be alert for potential soil and/or groundwater impacts in other locations at the site.

6.0 **REFERENCES**

NCDOT, 2016. Revised GeoEnvironmental Report for Preliminary Site Assessments. "Hazardous Material Report." August 30, 2016.

TABLES

Table 1Summary of Soil Analytical ResultsPreliminary Site AssessmentParcel 258 - Dax's Deal PropertyFayetteville, Cumberland County, North CarolinaTerracon Project No. 70167490

Sample ID: Sample Depth (ft bls):	SB-36 5-7	SB-37 7-9	SB-38 9-11	SB-39 11-13	SB-40 13-15	SB-41 13-15	NCDEQ Action Level	MSCC Industrial/ Commercial
GRO (C ₅ -C ₁₀)	<1.1	<0.56	<0.22	<0.21	<0.2	<0.42	100	NE
DRO (C ₁₀ -C ₃₅)	6.1	2.1	<0.22	<0.21	<0.2	<0.42	100	NE
TPH (C ₅ -C ₃₅)	6.1	2.1	<0.22	<0.21	<0.2	<0.42	NE	NE
BTEX	<1.1	<0.56	<0.22	<0.21	<0.2	<0.42	NE	NE
Total Aromatics (C ₁₀ -C ₃₅)	5.2	1.9	<0.04	<0.04	<0.04	<0.08	NE	NE
16 EPA PAHs	0.29	0.19	<0.007	<0.007	<0.007	<0.01	NE	NE
Benzo(a)pyrene	0.022	<0.002	<0.001	<0.001	<0.001	<0.002	NE	0.78

Notes:

Soil samples were collected on November 10, 2016.

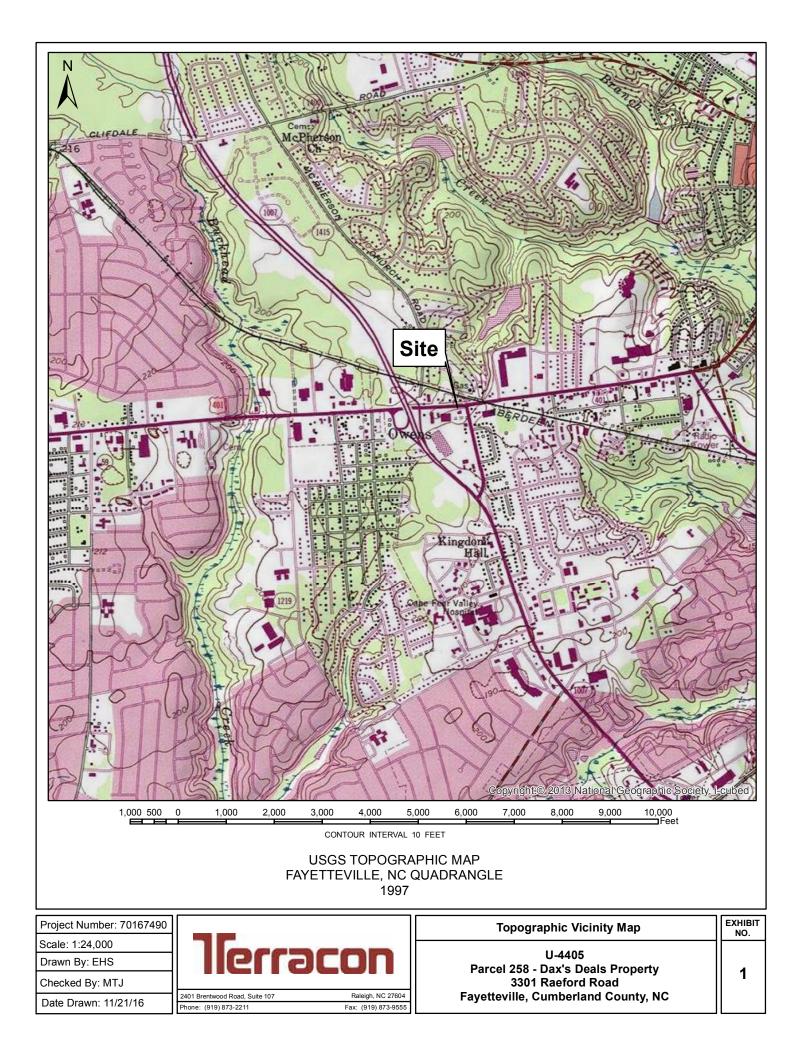
Detected compounds are shown in the table.

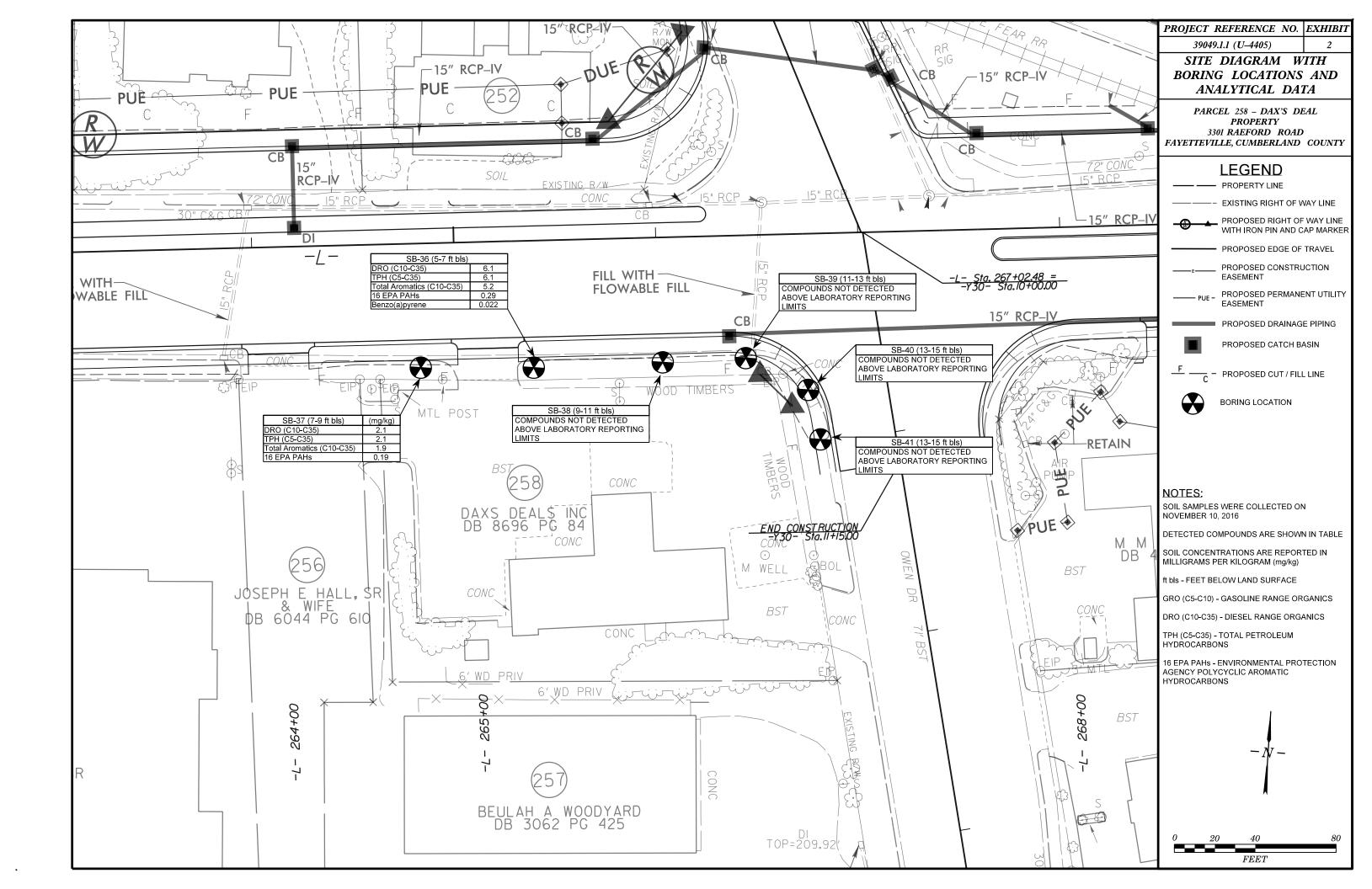
Concentrations are reported in milligrams per kilogram (mg/kg).

ft bls - feet below land surface.

GRO - Gasoline Range Organics.

DRO - Diesel Range Organics.


TPH - Total Petroleuem Hydrocarbons.


BTEX - Benzene, Toluene, Ethylbenzene, and Xylenes.

16 EPA PAHs - Environmental Protection Agency Polycyclic Aromatic Hydrocarbons (acenaphthene, acenaphthylene, antrancene, benz[a]anthrancene, benzo[b]fluoranthene, benzo[k]fluoranthene, benzo[g,h,i]perylene, benzo[a]pyrene,

chrysene, dibenz[a,h]anthracene, fluoranthene, fluorene, indeno[1,2,3-c,d]pyrene, naphthalene, phenanthrene, pyrene). NE - Standard not established.

Detections shaded in gray exceed the North Carolina Department of Environmental Quality (NCDEQ) Action Level. MSCC Industrial/Commercial - Maximum Soil Contaminant Concentration Levels Industrial/Commercial soil cleanup levels. Bold: Constituent concentration reported above the method detection limit. **EXHIBITS**

APPENDIX A

GEOPHYSICAL SURVEY REPORT

Terracon Consultants, Inc.

GEOPHYSICAL INVESTIGATION TO LOCATE METALLIC USTS

Dax's Deals Auto Property (Parcel 258) 3301 Raeford Road Fayetteville, North Carolina

November 09, 2016 Geophysical Survey Investigations, PLLC Project No. 2016-37

Terracon Consultants, Inc. GEOPHYSICAL INVESTIGATION TO LOCATE METALLIC USTS Dax's Deals Auto Property (Parcel 258) 3301 Raeford Road Fayetteville, North Carolina

TABLE OF CONTENTS

Page

1.0	INTRODUCTION	1
2.0	FIELD METHODOLOGY	1
3.0	DISCUSSION OF RESULTS	2
4.0	SUMMARY & CONCLUSIONS	3
5.0	LIMITATIONS	4

FIGURES

Figure 1	Geophysical Equipment & Site Photographs
Figure 2	EM61-MK2A Metal Detection – Early Time Gate Results
Figure 3	EM61-MK2A Metal Detection – Differential Results

Report prepared for:

Stephen J. Kerlin, PG Terracon Consultants, Inc. 2401 Brentwood Road, Suite 107 Raleigh, North Carolina 27604

Prepared by:

all P. Denil

Mark J. Denil/P.G. Geophysical Survey Investigations, PLLC

1.0 INTRODUCTION

Geophysical Survey Investigations, PLLC (GSI) conducted an electromagnetic (EM) metal detection survey, ground penetrating radar (GPR) scanning and utility line clearance search for Terracon Consultants, Inc. on October 27, October 28 and November 8, 2016 across a portion of the Dax's Deals Auto property (Parcel 258) located at 3301 Raeford Road in Fayetteville, North Carolina. The geophysical investigation was performed as part of the North Carolina Department of Transportation (NCDOT) preliminary site assessment for State Project U-4405 (WBS Element 39049.1.1) US 401 (Raeford Road) from West of SR-1409 to US 401 Business (Robeson Street).

The geophysical investigation was conducted to determine if buried, metallic, underground, storage tanks (USTs) are present beneath the proposed Right-of-Way (ROW) and PUE areas of the site. The perimeter of the ROW/PUE area is shown as a red polygon in the aerial photograph presented in **Figure 1**. The property consists of an active used car dealer facility.

Terracon representative Mr. Stephen Kerlin, PG provided guidance and site maps to Geophysical Survey Investigations, PLLC personnel prior to conducting the geophysical field work. The geophysical survey area at Parcel 241 has a maximum length and width of 220 feet and 75 feet, respectively. Please note that the ROW and PUE areas at this site were not marked or the survey markers were not visible at the time the geophysical investigation was conducted.

2.0 FIELD METHODOLOGY

The EM investigation was performed across the geophysical survey area (proposed ROW and PUE areas) using a Geonics EM61-MK2A metal detection instrument with a Trimble AG-114 GPS unit. EM61 metal detection data and GPS coordinates were digitally collected in latitude and longitude geodetic format (NAD83) using a Juniper data recorder at approximately 1.0 foot intervals along survey lines spaced approximately five feet apart. The Trackmaker NAV61MK2 software program was used with the data recorder to view the relative positions of the survey lines in real time during data acquisition.

According to the instrument specifications, the EM61-MK2A can detect a metal drum down to a maximum depth of approximately 8 to 10 feet. Objects less than one foot in size can be detected to a maximum depth of 4 or 5 feet. The EM61 and GPS data were downloaded to a computer and processed in the field using the Trackmaker61MK2 and Surfer for Windows software programs. GPS coordinates were converted during data processing to Universal Transverse Mercator (UTM) coordinates (in feet) which are used as location control in this report.

GPR scans were performed along northerly-southerly and easterly-westerly directions spaced primarily 3 to 5 feet apart across selected EM61differential anomalies and areas containing steel reinforced concrete using the Geophysical Survey Systems SIR-3000 unit equipped with a 400 MHz antenna. GPR data were viewed in real time in a continuous mode using a vertical scan of 512 samples, at a sampling rate of 48 scans per second. A 70 MHz high pass filter and an 800 MHz low pass filter were used during data acquisition with the 400 MHz antenna. GPR data were viewed to a maximum investigating depth of approximately 5.0 feet based on an estimated two-way travel time of 8.0 nanoseconds per foot.

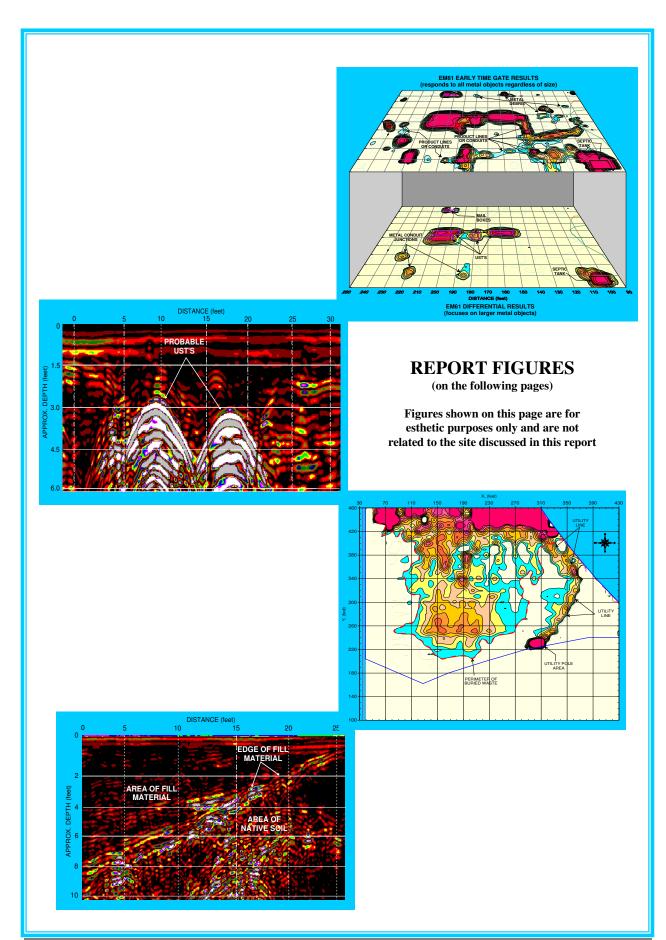
Following the UST investigation, areas around the proposed Terracon soil borings were scanned with the GPR unit and a DitchWitch 910 utility locator for buried utility line clearance and no further discussion regarding the utility clearance work will be made in this report. Photographs of the geophysical equipment used for the investigation and of the site are presented in Figure 1.

3.0 DISCUSSION OF RESULTS

Contour plots of the EM61 early time gate results and the EM61 differential results are presented in **Figures 2 and 3**, respectively. The early time gate results represent the most sensitive component of the EM61 instrument and detect metal objects regardless of size. The early time gate response can be used to delineate metallic conduits or utility lines, small, isolated, metal objects and areas containing insignificant metal debris. The differential results are obtained from the difference between the early time gate channel and late time gate channel of the EM61 instrument. The differential results focus on the larger metal objects such as drums and UST-size objects and ignore the smaller, insignificant, metal objects or debris.

GPR scans suggest the majority of EM61 early time gate anomalies, such as the ones centered around UTM coordinates 2258129-E 12729300-N, 2258189-E 12729305-N, 2258228-E 12729314-N, 2258244-E 12729316-N, and 2258314-E 12729322-N, are in response to portions of buried lines, conduits, utility line-related surface objects, bollards, and/or other miscellaneous metal debris or objects. Similarly, the early time gate anomalies centered near coordinates 2258329-E 12729313-N, 2258331-E 12729291-N and 2258336-E 12729266-N are in response to buried conduits or metal surface objects.

The remaining EM61 anomalies are probably in response to known surface objects, buried miscellaneous objects/debris or portions of conduits. The EM61 and GPR investigation suggests the proposed ROW/PUE area does not contain metallic USTs. Please refer to Figures 2 and 3 for additional (detailed) information regarding the geophysical findings at this site.


4.0 SUMMARY & CONCLUSIONS

Our evaluation of the EM61 and GPR data collected across the geophysical survey area at the Dax's Deals Auto property (Parcel 258) located at 3301 Raeford Road in Fayetteville, North Carolina provides the following summary and conclusions:

- The combination of EM61 and GPR surveys provided reliable results for the detection of metallic USTs across the survey area within the depth interval of 0 to 6 feet.
- GPR scans suggest the majority of EM61 early time gate anomalies, such as the ones centered around UTM coordinates 2258129-E 12729300-N, 2258189-E 12729305-N, 2258228-E 12729314-N, 2258244-E 12729316-N, and 2258314-E 12729322-N, are in response to portions of buried lines, conduits, utility line-related surface objects, bollards, and/or other miscellaneous metal debris or objects.
- The EM61 and GPR investigation suggests the proposed ROW/PUE area does not contain metallic USTs.

5.0 LIMITATIONS

EM61 and GPR surveys have been performed and this report prepared for Terracon Consultants, Inc. in accordance with generally accepted guidelines for EM61 and GPR surveys. It is generally recognized that the results of the geophysical surveys are non-unique and may not represent actual subsurface conditions. Some of the EM61 and GPR anomalies interpreted as possible/probable USTs, utility lines, conduits, steel reinforced concrete, or miscellaneous, metal debris may be attributed to other surface or subsurface features and/or interference from cultural features.

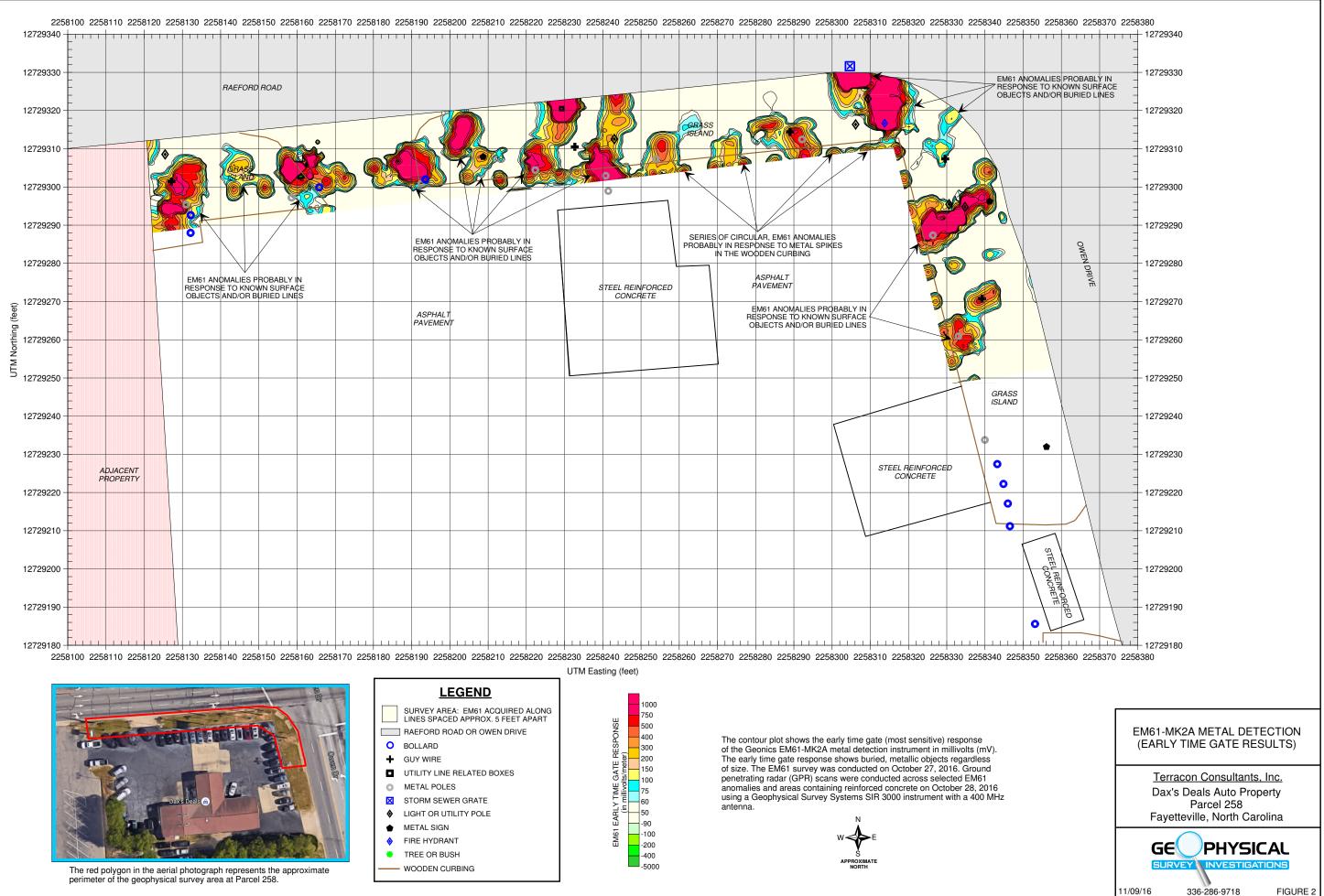
Geophysical Investigation Report – Dax's Deals Auto Property (Parcel 258) Geophysical Survey Investigations, PLLC

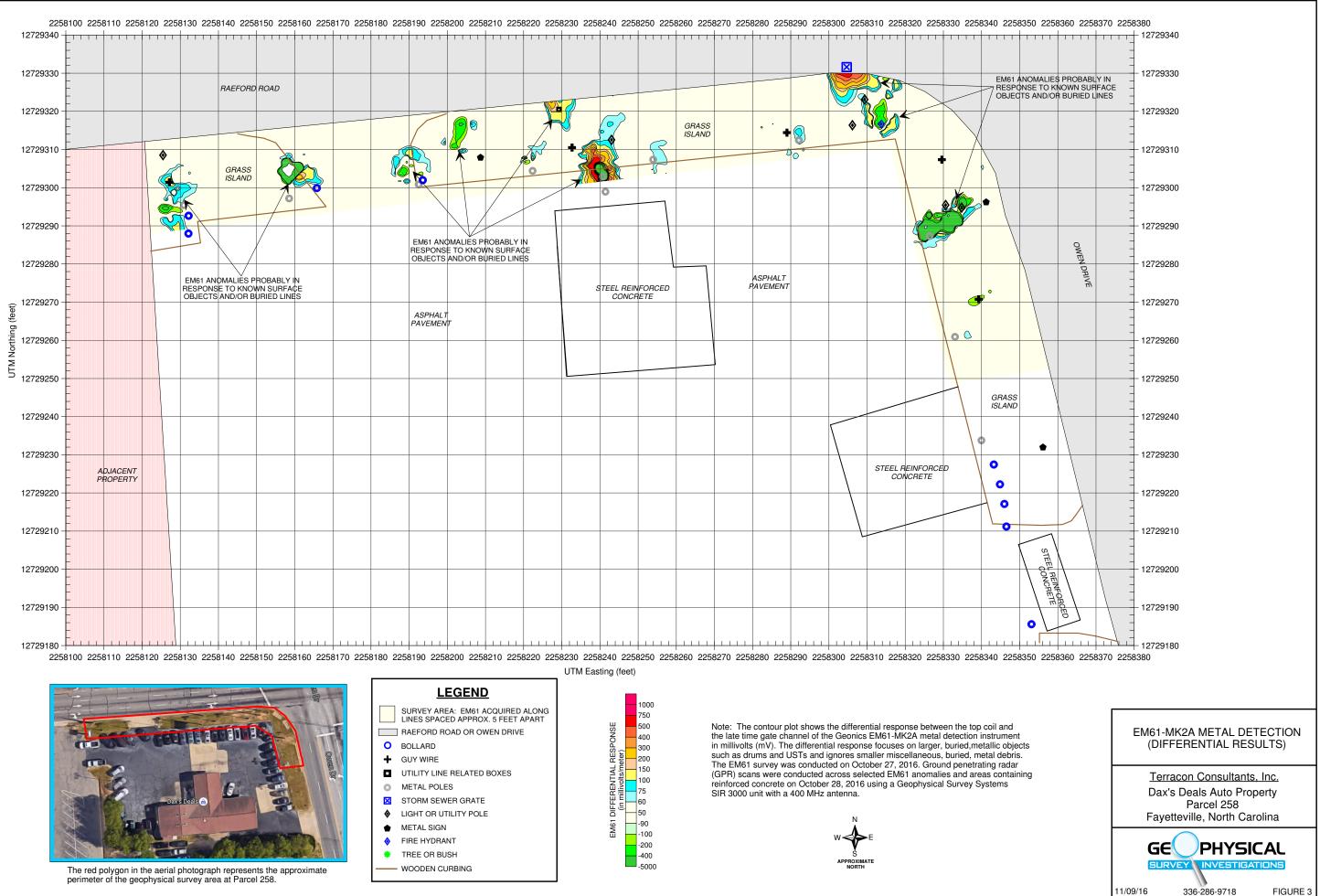
DITCHWITCH UTILITY LOCATOR

EM61 METAL DETECTOR

GROUND PENETRATING RADAR UNIT

The photographs show the DitchWitch 910 utility line locator, the Geonics EM61-MK2A metal detector and the GSSI SIR-3000 ground penetrating radar (GPR) unit that were used to conduct the geophysical investigation across the area of interest at Parcel 258.


The red polygon in the aerial photograph represents the approximate perimeter of the geophysical survey area at the Dax's Deals property (Parcel 258) located along Raeford Road in Fayetteville, North Carolina.



<u>Terracon Consultants, Inc.</u> Dax's Deals Auto Property Parcel 258 Fayetteville, North Carolina

GEOPHYSICAL EQUIPMENT & SITE PHOTOGRAPHS

11/09/16

APPENDIX B

SOIL BORING LOGS

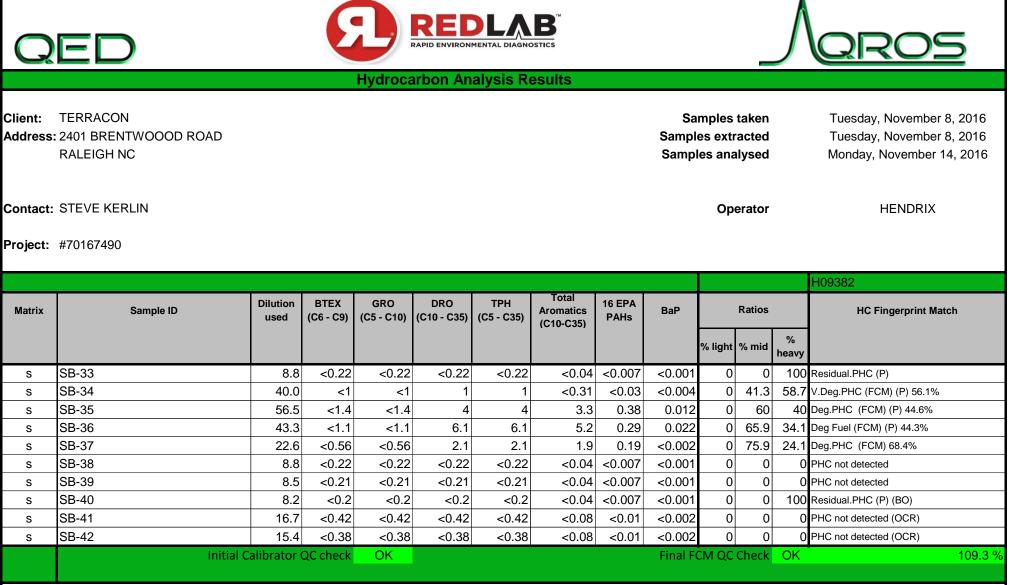
Litiology Log			. 0	21				llerracor		
Boring ID:		-	36-	<u>JQ</u> 70167490				Start Date/Time: 10/16 1010	Sample Method	Drilling Method
Project Number:				/016/490 /etteville,				End Date/Time: 11/10/16 10/20	Hand Auger	X DPT
Site Location: Weather:	11 11 11 11 11 11 11 11 11 11 11 11 11			sunn				Boring Diameter: 77	X Macro-Core	□ HSA
Logged By:			a =1	EHS	1			Total Depth: 5 Kips	 Split Spoon Shelby Tube 	 Mud Rotary Air Rotary
Drilling Sub:				Probing	Services		11.05	Water Level: No. Well Installed: No.		Rock Core
Drill Rig:		~114	K M	ount (Geopr	pe 5	410			
Depth (ft bls) Recovery (inches)	Blow Counts (n)	dqq / mqq	CH₄	CO ₂	02	H ₂ S	U.S.C.S	(Depth interval) Color, MAIN COMPONENT, minor component(s), structure, moisture, angularity, odor, staining	Lab Sample: ID, analysis, time	Drilling method, tooling, depth
)-1 1/12	-	<0.(SC	(0-1) SANDY CLAY. red. Moist		
- 3 24/24	-	<0.1					SC	(1-3) SAA		
3-5 24/24	-	<0.1					5%CL	(3-4) SAA (4-5) CLAY. red moist		-
5-7 21/24	-	١. ٥٧					CL	(5-7)SAA	Somple a.R.) 1025	5
7-9 24/24	-	201					SC	(7-9) SANDY CLAY- red/orang. moist		
9-11 24/24	-	٤٥.(SC	(9-11) SAA		
11-13 24/24	-	KO. [SM	Cockse grand mont		
13-15 24/24	-	<01					SM	(13-15) SAA		
								Boring terminated cet 15 Stalls		
0									- ² -	÷
					34 1				8	
Notes:										
ppm: parts per mil	lion	ppb: pa	arts per bi	llion				NA= Not applicable bls = be	elow land surface	

Bo	ring ID:	6	R-=	37					lierracoi		
	t Number:	~		21	70167490)			Start Date/Time: 11/10/16 1030	Sample Method	Drilling Method
Site	Location:				yetteville,				End Date/Time: 11/10/10 1040	Hand Auger	X DPT
	Weather:			50,5	unny				Boring Diameter:	X Macro-Core	□ HSA
	ogged By: illing Sub:			Degion	EHS	Convicor			Total Depth: 15 ftb/s Water Level: Na	Split Spoon Shalbu Tuba	Mud Rotary Air Potent
Dr	Drill Rig:		The	regiona	al Probing	GRO	probe 5	410	Water Level: Na Well Installed: NO	Shelby Tube	 Air Rotary Rock Core
Depth (ft bls)	Recovery (inches)	Blow Counts (n)	dqq / mqq	CH4	ő	0	H ₂ S	n.s.c.s	(Depth interval) Color, MAIN COMPONENT, minor component(s), structure, moisture, angularity, odor, staining	Lab Sample: ID, analysis, time	Drilling method, tooling, depth
0-(12/12	-	<0.1					CL	(0-1) CLAY.red. moist	In-manufacture and the second	
1-3	24/24	1	<0.1					CL	(1-3) CLAY. red. moist. Some sonals		1
3-5	24/24	1	40.((3-5) SAA		
5-7	24/24	-	20.1						(5-7)SAA		
-	24/24	~	<0,1					SC	(7-9)SANDY CLAY. Orang/ind. Moist	sampl aros	Ч _т
9-11	/24		K0.1						(9-11)SAA		
11-13	21/24		<0. I					5M	(11-13)SAND. Invarge. Cocise grand. moist		i.
13.15	24/24	-	<0.1					SM	(13-15) SAA		s 1.
									+5 ftbs Boring terminated at 15 Pabls		
				ý							
Notes:											
ppm: parts	per millior	ı	ppb: parts	s per billio	'n				NA= Not applicable bls = below	w land surface	

Litholog	y Log	-	00						lerracor		
Во	ring ID:	58	-38							Sample Method	Drilling Method
	Number:				70167490		*		Start Date/Time: 1/10/10 1100	Hand Auger	X DPT
	Location:				etteville,				Boring Diameter:	X Macro-Core	🗆 HSA
	Weather:		2	J/ OVR	EHS	<u>ny </u>		1200	Total Depth: 15 Cubs	Split Spoon	Mud Rotary
	ogged By: illing Sub:				I Probing				Water Level: Na	Shelby Tube	 Air Rotary Rock Core
DI	Drill Rig:		Th	ck M	ant	Greon	obe 5	410	Well Installed: NO		
Depth (ft bls)	Recovery (inches)	Blow Counts (n)	DIA DIA / mdd	CH4	CO2	02	H ₂ S	U.S.C.S	(Depth interval) Color, MAIN COMPONENT, minor component(s), structure, moisture, angularity, odor, staining	Lab Sample: ID, analysis, time	Drilling method, tooling, depth
0-1	17/2	~	<0.1					CL	(0-1) CLAY. Ned. moist		
1-3	24/24	-	<0.1					CL	(1-3) SAA		
3-5	24/24	-	40-1					5((3-5) SANDY CLAY. red/orang.moist (5-7) SAH		
5-7	24/24	٤	<0.1					5C	(5-7) SAA	-	
7-9	24/24	-	20.1			5		SC	(7-9) SA1A		1
9-11	24/24	-	<0.1					SM	(9-11) SAND. Envorange. Moist. (Oause grainel	scomple areas at 1115	
11-13	24/24	-	<0.1				8.	SM	(11-13) SHA	1	1
13-15	24/24	-	20.1					SC	(13-15) SANDY CLAY. tan/brown. moist Borny terminated at		
- Contraction of the same									Bonny terminated at 15 ftbls		
				Ъ.					the second s		
									2		
											*
Notes:											
nnm: n	arts per mil	llion	ppb: pa	arts per bi	illion				NA= Not applicable bls = b	elow land surface	

Be	oring ID:	5	6-39						lierraco		
	ct Number:				7016749				Start Date/Time: 11/0/16 1120	Sample Method	Drilling Method
Sit	e Location:				yetteville,				End Date/Time: (1/10/10/11/36	□ Hand Auger	X DPT
	Weather:			60,	<u>Sunj</u> EHS	1Y			Boring Diameter: 2"	X Macro-Core	 HSA Mud Rotary
	Logged By: rilling Sub:			Rogion	EHS al Probing	Services			Total Depth: 15,54615 Water Level: No	□ Shelby Tube	Air Rotary
U	Drill Rig:		54		ombe <	THICK	Mant		Well Installed: No		Rock Core
Depth (ft bls)	Recovery (inches)	Blow Counts (n)	dqq / mqq	CH CH	co CO	020	S ² H	U.S.C.S	(Depth interval) Color, MAIN COMPONENT, minor component(s), structure, moisture, angularity, odor, staining	Lab Sample: ID, analysis, time	Drilling method, tooling, depth
0-1	12/12	-	<0.(1				CL	(0-1) CLAY, red. moist	3	
1.3	24/24	-	<0.1					CL	(1-3) CLAY/some SAIND. Wed. moist		
3-5	24/24	-	<0.)					CL	(3-5) SAA	· ·	- 1- r
5-7	24/24	1	<0.1					CY/SC	(5-6) SAA (6-7) SANDY CKAY. orange/red. moist	•	-
7-9	24/24	c	<0.1					SC	(7-9) SAA		
9-11	24/24		<0.(50	(9-11) SAVA	2	
11-13	24/24	2	20.1					SC	(11-13) SAA. some SAND seams	Somple aro	5
13-15	24/24	-	< 6.1			2		S((13-15) SAA	1135	
	e e e e e e e e e e e e e e e e e e e							y	Boring terminadol et 15 FHbls		
Notes:				2							
ppm: part	s per millio	n	ppb: part	s per billio	n			211-0	NA= Not applicable bls = belo	w land surface	

Terracon


Litholo	gy Log		.			8					
В	oring ID:	51	3-40	5		1			Terraco	n	
	t Number				70167490	1			Start Date/Time: 110/16 1155	Sample Method	Drilling Method
Sit	e Location			+	yetteville,	NC			End Date/Time: 1/10/16 1205	Hand Auger	X DPT
	Weather: .ogged By:		1	D, OV	Ercast EHS				Boring Diameter: 2" Total Depth: 15 Studes	X Macro-Core	□ HSA
	rilling Sub:			Regiona	I Probing	Services			Total Depth: 15 Aus Water Level: Na	Split Spoon Shelby Tube	 Mud Rotary Air Rotary
	Drill Rig:		Tweck	Ma		CODIDE	54	10	Well Installed: No		Rock Core
Depth (ft bls)	Recovery (inches)	Blow Counts (n)	Diq ddd / mdd	CH ₄	CO2	02	H ₂ S	U.S.C.S	(Depth interval) Color, MAIN COMPONENT, minor component(s), structure, moisture, angularity, odor, staining	Lab Sample: ID, analysis, time	Drilling method, tooling, depth
0-1	12/2	~	<0. j					CL	(0-1) CLAY. red. moist		
1-3	R.		<0.1					CL	(1-3) SAA		
	24/24								(3-5)SAA		
35	/HE	-	×0.1					CL			19
5.7	124	-	<0,1			Ð		SC	(5-7) SANDY CLAY. tayloring, moist		
7-9	24/24	-	K0.1					SC	(7-9) SAA		
9-11	24/24	-	K0.1					SC	(9-11) SAA		× .
11-13	24/24	-	CO.1						CII-13) SAA		17
13-15	24 /24		K0.1					54/CL	(13-14) SALA (14-15) CLAY. red. modified.	sample QROS at 1210	in statistica Statistica
¥*****		3 - 8							(13-14) SALA (14-15) CLAY. red. modified. Moist Boring terminated at 15 ftbls	at 1210	х
		8 19 16				¢.		21			÷.
20									~		
								R.			
Notes:			II	I	J	l		L		I	
ppm: parts	per millio	n	ppb: parts	per billio	1				NA= Not applicable bls = belo	w land surface	

7-11 24/24 - 1-13 24/24 -	Faye	0167490 etteville, NC そむらいれい/ EHS	Start Date/Time: 1/10/1(p / 220) End Date/Time: 1/10/1(p / 230) Boring Diameter: 2/10/10	Sample Method Hand Auger X Macro-Core	Drilling Method X DPT HSA
Site Location: Weather: Logged By: Drilling Sub: Drill Rig: $\frac{1}{12}$	Regional	EHS	Boring Diameter: 2"	X Macro-Core	
Logged By: Drilling Sub: Drill Rig: $\frac{1}{24}$ $\frac{1}{24}$ 1	Regional	EHS		-	LI HSA
$\begin{array}{c c} \text{Drilling Sub:} \\ \text{Drill Rig:} \\ Image: State of the second second$				Caffa Para	
Drill Rig: 1 - 1 12 -1 12 -1 12 -1 12 -1 -1 12 -1 -1 12 -1 -1 -2 24 24 -1 -1 -1 24 24 -1 -1 -1 -1 24 24 -1 -1 12 -1 24 -1 -1 12 -1 24 -1 -1 -1 -1 -1 -1 -1 -1		n 1: n :	Total Depth: 15 flbb	Split Spoon Shelby Tube	 Mud Rotary Air Rotary
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$			Water Level: Ma Well Installed: No		Rock Core
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$		Geophile 5410			Li Heatterre
$\frac{-3}{3-5} \frac{24}{24} - \frac{-3}{24} - \frac{24}{24} - \frac{-3}{5-7} \frac{24}{24} - \frac{-3}{7-9} \frac{24}{24} - \frac{-3}{7-9} \frac{24}{24} - \frac{-3}{7-9} - \frac{24}{24} - \frac{-3}{1-13} - \frac{24}{24} - \frac{-3}{1-13} - \frac{-3}{24} - -$	Counts (n) PID ppm / ppb CH4	CO ₂ 02 H ₂ S	(Depth interval) Color, MAIN COMPONENT, minor component(s), structure, moisture, angularity, odor, staining	Lab Sample: ID, analysis, time	Drilling method, tooling, depth
$\frac{7}{3-5} \frac{7}{24} - \frac{7}{24} - \frac{7}{5-7} \frac{24}{24} - \frac{7}{7-9} \frac{24}{24} - \frac{7}{9} - \frac{7}{24} \frac{24}{24} - \frac{7}{1-13} \frac{24}{24} - \frac{7}{1-13} - \frac{7}{24} - \frac{7}{24} - \frac{7}{1-13} - \frac{7}{1-$	<0.1	(L (0-1)CLAY.red stiff. moist	2	
5-7 24/24 - 7-9 24/24 - 1-13 24/24 -	20.(С	L (1-3) SAA		
9-11 24/24 - 1-13 24/24 -	20.1	0	L (3-5)SAA		
9-11 24/24 -	(0.1		SC (S-7) SANDY CLAY red/orang.moist		1
1-13 24/24 -	<0.(5C (7-9) SAIA		្ល
š	(0.1		ic (9-11) SAAH		¢Å.
3-15 24/24 +	<0.1	5	C (11-13)SMA	P	
×	<0.1	C	L (13-15)CLAY. mostled. Jow/gray/red. moist	Single Okos at 1235	
					E.
Notes:					

APPENDIX C

LABORATORY ANALYTICAL REPORTS AND CHAIN-OF-CUSTODY FORMS

Results generated by a QED HC-1 analyser. Concentration values in mg/kg for soil samples and mg/L for water samples. Soil values are not corrected for moisture or stone content

Fingerprints provide a tentative hydrocarbon identification. The abbreviations are:- FCM = Results calculated using Fundamental Calibration Mode : % = confidence for sample fingerprint match to library

(SBS) or (LBS) = Site Specific or Library Background Subtraction applied to result : (PFM) = Poor Fingerprint Match : (T) = Turbid : (P) = Particulate present

Client Name: Address: Contact:	in No	Road				MARBIONC Bldg, Suite 2003 Wilmington, NC 28409	n K Moss La Bldg, Suite , NC 28409	ine 2003
Project Ref.: Email:	70167490 Severkerline Tem	licen Can	RAPID ENVIRONMENTAL DIAGN		OSTICS	Each sam	Each sample will be analyzed for	inalyze
Phone #:	(919) 802 ->	2091	CHAIN OF CUSTODY AND ANA	ANALY		aro	aromatics and BaP	BaP
Sample Collection	- e	Matrix	Sample ID	UVF	GC BTEX	Total Wt.	Tare Wt.	Sample Wt.
Date/Time	24 Hour 48 Hour)(s/w)	58-33	\checkmark		49.9	44-60	5.3
11/10 0915		-1	5 6 -34			\$2.0	45.5	6.5
1V10 0940			58-35			49.2	44.6	4.6
11/10 1025			SB-36			51.1	45.1	5
2401 01/1			58-37			100+	45.5	1.9
Vio HAN			NB - 29			50.1	44.10	UTI
ALCI NIN			58-40			50.5	44.8	5.7
1/1/ 1235			SB - 41			51.5	45.5	6.0
SIHI 01/11			58-42			51-6	45.	6.5
1/10 1445			SB-43			5.4.	4.4	6.7
1/10 1505			5B-44	and a second		20.5	45.2	151
11/10 1530			54 - 85			52.3	44.8	4.5
0/0/0/0/1/1		_	27 - 92 94 - 90			21.9	46.	200
0111 41/1			84-45			52.0	45.4	6-6
1/10 1730			54 - 9.S		ke je konstruktion og en sen sen sen sen sen sen sen sen sen	8.05	45.3	5.5
11/11 0835			SB - 36		An one of the second	51-0	4.4	6.3
11/11 0900			78-51			50.2	4.+	5.5
Comments:		L	26-22	e		51.4 R	RED Lab USE ONLY	ONLY
Relin	Relinquished by	Date	Date/Time Accepted by	n de la companya de La companya de la comp	Date/Time	<u> </u>		
LAw L		aVIVIO	LANTY STOIL	والمحتجز والمعالمة المعالية والمحتجز والمحتجز والمحتجز والمحتجز والمراجع	11.14.16 0000	00	20	
Relin	Relinguished by	Date	Date/Time Accepted by		Date/Time		(