

December 20, 2016

Mr. Terry Fox, L.G. North Carolina Department of Transportation Geotechnical Engineering Unit 1589 Mail Service Center Raleigh, North Carolina 27699-1589

Reference: Preliminary Site Assessment RREF II BB-NC LLC Property (Parcel #220) 4299 Raeford Road Fayetteville, Cumberland County, North Carolina State Project: U-4405 WBS Element 39049.1.1 SIES Project No. 2016.0054.NDOT

Dear Mr. Fox:

Solutions-IES, Inc., (SIES) has completed the Preliminary Site Assessment conducted at the abovereferenced property. The work was performed in accordance with the Technical and Cost proposal dated September 26, 2016, and the North Carolina Department of Transportation's (NCDOT's) Notice to Proceed dated September 26, 2016. Activities associated with the assessment consisted of conducting a geophysical investigation, collecting soil samples for analysis, and reviewing applicable North Carolina Department of Environmental Quality (NCDEQ) records. The purpose of this report is to document the field activities, present the laboratory analyses, and provide recommendations regarding the property.

Location and Description

The RREF II BB-NC LLC Property (Parcel #220) is located at 4299 Raeford Road in Fayetteville, Cumberland County, North Carolina. The property is situated on the south side of Raeford Road at the intersection of Raeford Road and Montclair Road (**Figure 1**). The property is the location of a former gas station and convenience store (Raeford Road Kwik Mart) that is now occupied by New Addiction Tattoos. Based on a review of on-line UST registry information, four gasoline underground storage tanks (USTs) were closed at the property in 1993.

An asphalt parking area is located in front of the building and extends almost to the property boundaries on the east and west sides (**Figure 2**). A concrete pad in front of the building on its west side suggests a former dispenser area, and an asphalt patch adjacent to the east side of the concrete may indicate the former UST locations. The proposed easement was not marked at the site on the date of the field work, but NCDOT plan sheets show that the easement will not affect the property structures. The NCDOT requested a Preliminary Site Assessment for the right-of-way/proposed easement because the site was a former gas station. The scope of work as defined in the Request for Technical and Cost Proposal was to evaluate the site with respect to the presence of known and unknown USTs and assess where contamination exists on the right-of-way/proposed easement. An estimate of the quantity of impacted soil was to be provided, should impacted soils be encountered.

SIES reviewed the on-line NCDEQ Incident Management database and Incident Number 10468 was assigned to the site. A further review of files regarding the incident from the NCDEQ Fayetteville Regional Office indicated that in April 1993, four USTs were closed at the site. A UST Closure Report¹, dated May 3,1993, described the closure of three 8,000-gallon and one 12,000-gallon gasoline USTs. The former UST locations shown in the closure report are consistent with the site asphalt patching and confirm the USTs were east of the building. During the UST closure, confirmation soil samples were collected from below the dispensers, product lines, and USTs and analyzed for total petroleum hydrocarbons gasoline range organics (TPH GRO).

Soil samples collected from beneath the 12,000-gallon UST, the product lines, and the dispenser islands were located within the currently proposed NCDOT right-of-way/easement. The UST closure soil sample analytical results indicated no GRO concentrations were reported in soil samples collected from below the 12,000-gallon UST above the applicable action level. The results also indicated that the GRO concentrations in soil samples collected from below the product lines and dispensers ranged from 14.7 to 63.6 milligrams per kilogram (mg/kg), which were above the 1993 action level of 10 milligrams per kilogram (mg/kg).

Soil samples collected from beneath the 8,000-gallon USTs contained GRO concentrations ranging from < 10 to 3892 mg/kg. The location of these USTs is south of the proposed NCDOT right-of-way/easement.

A groundwater sampling letter² was submitted to NCDEQ on July 15, 1994. UTTS Environmental installed four groundwater monitoring wells and collected samples from each. Sample analysis included volatile and semivolatile organic compounds. Three of the four wells contained BTEX concentrations above the 15A NCAC 2L groundwater quality standards. No other subsequent reports were noted in the NCDEQ files, but a No Further Action letter was issued dated June 11, 1996. As a convenience to the reader, relevant excerpts from the file documents are presented in **Attachment A** and the complete file reports are added to the end of this report.

¹ Hollowell Testing, UST Closure 4299 Raeford Road, May 3, 1993.

² UTTS Environmental, Dianne's Tanning Salon, July 15, 1994.

SIES also examined the UST registration database to obtain UST ownership information. According to the database, four USTs were closed at the property and were operated under Facility Number 00-0-0000012637. The owner and operator of the former UST system are listed as follows:

Owner Express Stop Stores PO Box 53557 Fayetteville, NC 28305 Operator Raeford Road Kwik Mart 4299 Raeford Road Fayetteville, NC 28304

Geophysical Survey

Prior to SIES' mobilization to the site, Pyramid Environmental & Engineering of Greensboro, NC (Pyramid) conducted a geophysical survey to determine if unknown USTs were present in the right-ofway/proposed easement. The geophysical survey consisted of an electromagnetic (EM) survey using a Geonics EM61 time-domain electromagnetic induction meter to locate buried metallic objects, and ground penetrating radar (GPR) using a Geophysical Survey Systems Inc. Utility Scan DF with a dual frequency 300/800 MHz antenna. The instruments were used specifically to locate USTs.

A survey grid was laid out along the right-of-way/proposed easement with the X-axis oriented approximately parallel to Raeford Road and the Y-axis oriented approximately perpendicular to Raeford Road. The grid was positioned to cover the entire right-of-way/proposed easement, as shown on **Figure 2** of the geophysical survey report in **Attachment B**.

The survey lines were spaced five feet apart and EM data were collected continuously along each survey line with a data logger. After collection, the data were reviewed in the field with graphical computer software. Following the EM survey, a GPR survey was conducted to further evaluate any significant metallic anomalies.

Access was available to all areas of the right-of-way/proposed easement. Several anomalies were detected with the geophysical survey that were mostly attributed to visual cultural features at the ground surface. The data did not show evidence of metallic USTs within the right-of-way/proposed easement. Pyramid's detailed report of findings and interpretations is presented in **Attachment B**.

Site Assessment Activities

On October 27, 2016, SIES mobilized to the site to conduct a Geoprobe[®] direct-push investigation to evaluate subsurface soil conditions on the property. Five direct-push borings (220-SB-1 through 220-SB-5) were advanced throughout the right-of-way/proposed easement (**Figure 2**). As directed by the NCDOT, the Geoprobe[®] borings were terminated at 10 feet below ground surface (ft bgs). The soil boring

3

logs are included as **Attachment C**. Borings 220-SB-1, 220-SB-2, and 220-SB-4 were located to evaluate the subsurface conditions near proposed drop inlets. Borings 220-SB-3 and 220-SB-5 were placed to assess the remainder of the right-of-way/proposed easement (see photos in **Attachment D**).

Continuous sampling using a Geoprobe[®] resulted in generally good recovery of soil samples from the direct-push holes. Soil samples were collected and contained in four-foot long acetate sleeves inside the direct-push Macro-Core[®] sampler. Each of the sleeves was divided into two-foot long sections for soil sample screening. Soil from each two-foot interval was placed in a resealable plastic bag and the bag was set aside for volatilization of organic compounds from the soil to the bag headspace. A photoionization detector (PID) probe was inserted into the bag and the reading was recorded.

The PID concentrations were consistently low in the borings and one sample from the bottom interval of each boring was selected for analysis. A second sample was collected from boring 220-SB-1 to evaluate a stained interval between six and eight ft bgs. The PID results are summarized in **Table 1**.

The selected soil samples were submitted to an on-site mobile laboratory for analysis of TPH diesel range organics (DRO) and GRO using ultraviolet fluorescence (UVF) methodology. Each boring was backfilled with bentonite and drill cuttings to the surface after completion.

The lithology encountered by the direct-push samples was generally consistent throughout the site. The ground surface was covered with about 0.5 feet of asphalt. Below this surface cover to a depth of about two to four feet was a tan clayey sand. Underlying the sand was a mottled light brown and red sandy clay. Mild hydrocarbon odors were observed in boring 220-SB-3 at a depth of eight to ten ft bgs. No groundwater or bedrock was noted in any of the borings.

According to the 1985 Geologic Map of North Carolina, the site is within of Coastal Plain Physiographic Province in North Carolina near the contact between the Cretaceous Black Creek and Middendorf Formations. The strata of the Black Creek Formation consist of gray to black clay, thin lenses of finegrained sand and thick lenses of cross-bedded sand. The lithology may also include glauconite and fossils. In comparison, the Middendorf Formation consists of sand, sandstone, and mudstone that are laterally discontinuous. The soils observed at the site are consistent with the MIddendorf Formation as the parent material.

Analytical Results

The laboratory data are summarized in **Table 1** and the complete report is presented in **Attachment E**. Six soil samples were submitted for analysis (two samples were collected from boring 220-SB-1). Of

4

these samples, one contained detectable GRO and all six contained detectable DRO. Soil sample 220-SB-3-8-10 contained a concentration of 1.8 mg/kg GRO. DRO concentrations ranged from 1.4 to 13.4 mg/kg. The action levels are 50 mg/kg for GRO and 100 mg/kg for DRO³. None of the soil samples analyzed for this site contained DRO or GRO concentrations above their respective action levels.

Conclusions and Recommendations

A Preliminary Site Assessment was conducted to evaluate the RREF II BB-NC LLC Property (Parcel #220) located at 4299 Raeford in Fayetteville, Cumberland County, North Carolina. Documents within the NCDEQ UST Section files indicated that a release occurred at the site in 1993. Soil and groundwater contamination were detected. Soil samples collected during the UST closure contained GRO above the action level. It is unclear from the closure report site map, but these samples may be located within the right-of-way/proposed easement. Groundwater samples collected in 1994 from four on-site monitoring wells indicated several petroleum related compounds present at concentrations above the North Carolina groundwater quality standards.

A geophysical survey conducted at the site indicated no metallic USTs within the right-of-way/proposed easement. Five soil borings were advanced to evaluate the subsurface soil conditions along the right-of-way/proposed easement, and six soil samples were collected and analyzed for GRO and DRO by UVF. None of the analyzed soil samples detected GRO or DRO concentrations above their respective action levels (**Table 1**). Therefore, no estimate of the volume of soil requiring possible remediation was made.

SIES appreciates the opportunity to work with the NCDOT on this project. Because compounds were detected above the method detection limit in the soil samples, SIES recommends that a copy of this report be submitted to the Division of Waste Management, UST Section, in the Fayetteville Regional Office. If you have any questions, please contact us at (919) 873-1060.

Sincerely,

Nicha W. Brusa

Michael W. Branson, P.G. Project Manager

Attachments

John Palmer, P.G. Senior Hydrogeologist

³ NCDEQ, Guidelines for North Carolina Action Limits for Total Petroleum Hydrocarbons (TPH), July 26, 2016.

TABLE 1 SOIL FIELD SCREENING AND ANALYTICAL RESULTS RREF II BB-NC LLC PROPERTY (PARCEL #220) FAYETTEVILLE, CUMBERLAND COUNTY, NORTH CAROLINA STATE PROJECT: U-4405 WBS ELEMENT 39049.1.1 SIES PROJECT NO. 2016.0054.NDOT

		T				
		PID READING (ppm)		ANALYTICAL RESULTS (mg/kg)		
SAMPLE ID	DEPTH (ft)		SAMPLE ID			
				D (mg/kg UVF GRO) 50 50 50 50 50 50 50 50 50 50 50 50 50 5	UVF DRO	
	ļ	50	100			
	0 - 2	0.2				
220-SB-1	2 - 4	0.3				
220-00-1	4 - 6	0.8				
	6 - 8	1.2	220-SB-1-6-8	<0.63	1.4	
	8 - 10	0.9	220-SB-1-8-10	<0.55	11.2	
	0 - 2	0.0				
	2 - 4	0.0				
220-SB-2	4 - 6	0.0				
	6 - 8	0.4				
	8 - 10	0.8	220-SB-2-8-10	D (mg/ UVF GRO 50 	3.6	
	0 - 2	0.6				
	2 - 4	1.3				
220-SB-3	4 - 6	2.4				
	6 - 8	2.5				
	8 - 10	62.1	220-SB-3-8-10	1.8	7.8	
	0 - 2	0.0				
	2 - 4	0.0				
220-SB-4	4 - 6	0.0				
	6 - 8	0.0				
	8 - 10	0.1	220-SB-4-8-10	<0.55	13.4	
	0 - 2	0.0				
	2 - 4	0.0				
220-SB-5	4 - 6	0.0				
	6 - 8	0.0				
	8 - 10	0.0	220-SB-5-8-10	<0.58	10.9	

1) ft - feet

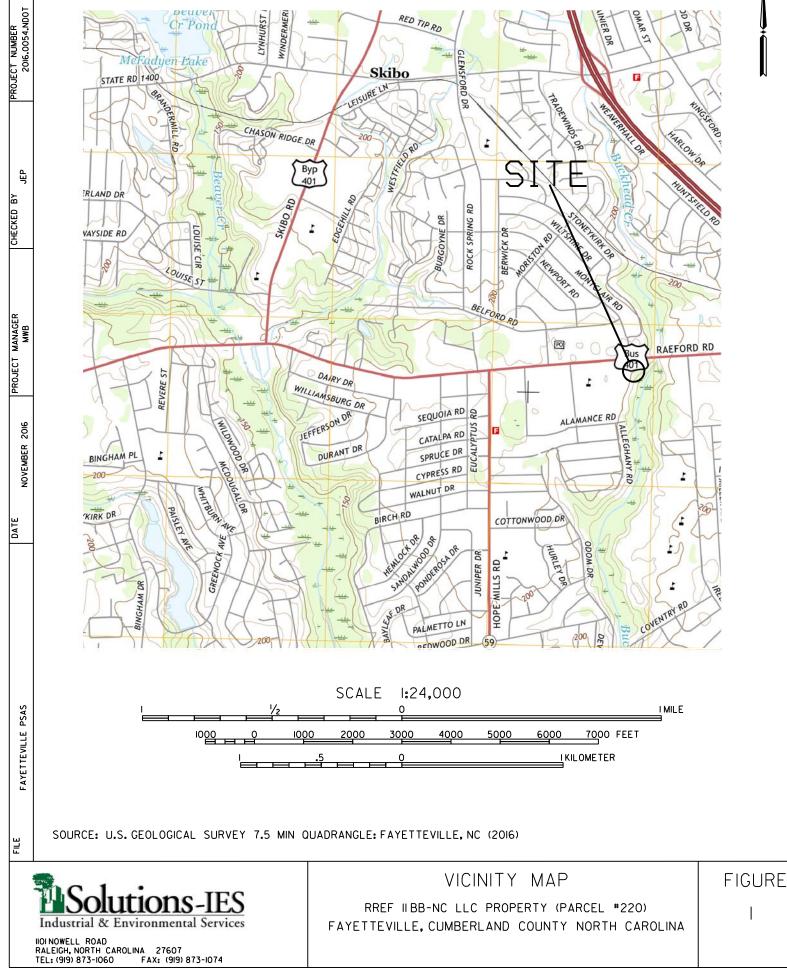
2) ppm - parts per million.

3) PID - photoionization ionization detector

4) mg/kg - milligrams per kilogram.

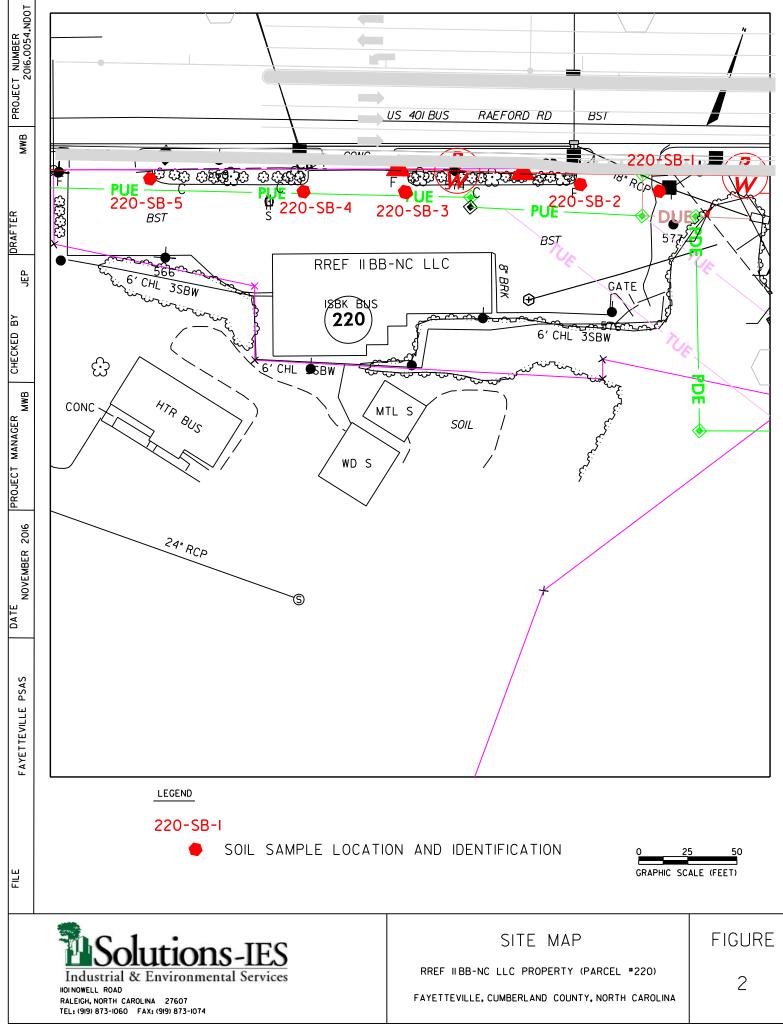
5) UVF DRO - Diesel range organics by UVF.

6) UVF GRO - Gasoline range organics by UVF.


7) Action level based upon NCDEQ memo *Guidelines for North Carolina Action Limits for Total Petroleum Hydrocarbons* - July 29, 2016.

8) Soil samples were collected on October 25, 2016.

9) Bold values are above the detection level.

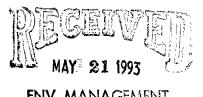


FIGURES

Ν

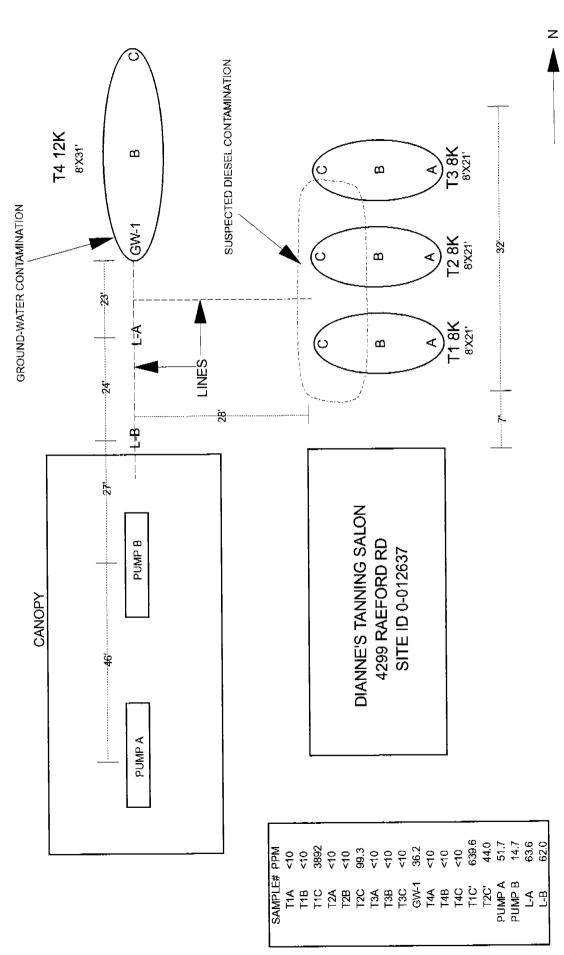
...\reports\FIGURES\220 FIG 1.dgn 10/5/2016 10:12:32 AM

^{...\}reports\FIGURES\220.dgn 12/19/2016 9:36:49 AM


ATTACHMENT A

MR. ROBERT E. BRYAN JR.

۰.


UST CLOSURE 4299 RAEFORD RD FAYETTEVILLE. N.C.

ID NO. 0-012637

ENV. MANAGEMENT FAYETTEVILLE REG. OFFICE

PREPARED BY HOLLOWELL TESTING

SAMPLE LOCATION MAP

SOIL SAMPLING:

SAMPLES WERE COLLECTED WITH DISPOSABLE SPATULAS AND PLACED IN GLASS JARS WITH ALUMINIUM FOIL LINED TOPS. THREE SAMPLES WERE COLLECTED UNDER THOSE TANKS GREATER THAN 20 FEET IN LENGTH. SAMPLES WERE COLLECTED ALONG LINES EVERY 20 FEET. ALL SAMPLES WERE PLACED ON ICE WHILE BEING TRANSPORTED TO THE LABORATORY.

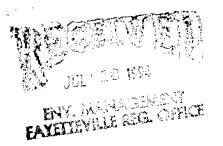
SOIL CHARACTERISTICS:

THE TOP TWO FEET CONSISTED OF A SAND/CLAY MIXTURE. FROM 2 FEET TO A DEPTH OF 13 FEET CONSISTED OF A GREY DRAB PLASTIC CLAY FOLLOWED BY SANDY CLAY.

PROPERTY DESCRIPTION AND SURROUNDING AREA:

THE SITE IS SITUATED IN THE CENTER OF THE CITY OF FAYETTEVILLE. THE AREA IS GENERALLY A BUSINESS DISTRICT ALONG WITH A FEW DWELLINGS. CITY WATER AND SEWAGE DISPOSAL SERVES THE AREA. THERE ARE NO KNOWN WELLS IN THE VICINITY OF THE SITE.

UTTS ENVIRONMENTAL


Corporate Headquarters Post Office Box 8148 Greenville, North Carolina 27835 919-758-0001 FAX 919-758-9652

Post Office Box 2102 Myrtle Beach South Carolina 29578 803-448-0000

July 15, 1994

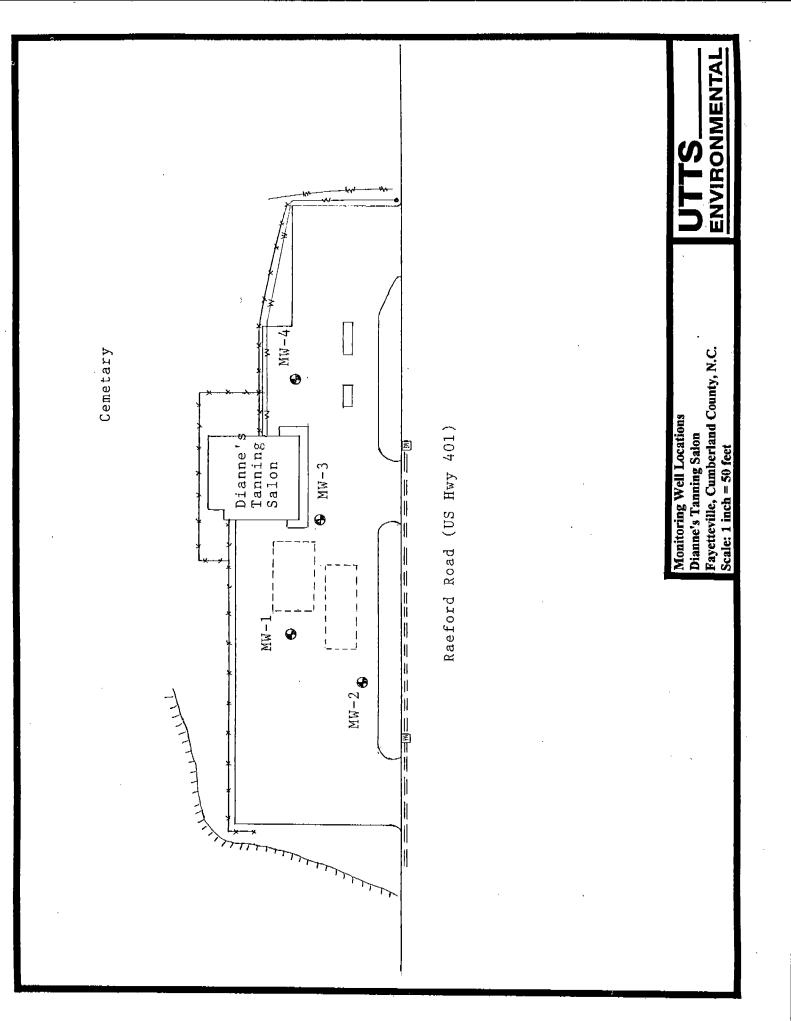
Mr. Jim Bales NC DEHNR - Fayetteville Regional Office Wachovia Building, Suite 714 Fayetteville, N.C. 28301

Re: Dianne's Tanning Salon 4299 Raeford Road Fayetteville, N.C. 28305

Dear Mr. Bales:

UTTS/Environmental (UTTS/E) is pleased to submit the preliminary findings of the ground water investigation at the above referenced subject site.

To date, UTTS/E has installed four monitoring wells at the subject site. The location of the monitoring wells is provided on a site map included herein.


In addition, UTTS/E personnel have obtained ground water samples from the subject site. The samples were submitted to GeoChem, Incorporated in Morrisville, N.C. for analysis by EPA Method 601, EPA Method 602 plus Methyl Tertiary Butyl Ether (MTBE), Ethylene Dibromide (EDB) and Isopropyl Ether (IPE) in addition to EPA Method 625 B/N. A copy of the analytical results is included herein.

Based on the confirmation of ground water contamination at the subject site, UTTS/E is currently seeking off site permission of adjacent property owners to access their property to continue needed investigative work.

Sincerely,

J/Alan Pinnix, P.G. Staff Geologist

cc: Mr Robert Bryan, Yaupon Corporation

Division of Waste Management Underground Storage Tank Section

May 7, 2001

MEMORANDUM

To: Fay Sweat

From: Rob Krebs, Field Operations Branch

Subject: Incident Closure

The following underground storage tank (UST) pollution incident has successfully met the requirements for closure and has been issued a no further action letter by the UST Section. A copy of the no further action letter is on file in the UST Section's regional office.

	r
Incident #:	10468
IncidentName:	DIANNE'S TANNING SALON
Address:	4299 RAEFORD RD.
City/Town:	FAYETTEVILLE
County:	CUMBE
CloseOut Date:	6/11/96
Region:	FAY

ATTACHMENT B

GEOPHYSICAL SURVEY

METALLIC UST INVESTIGATION: PARCEL 220 – RREF II BB-NC, LLC NCDOT PROJECT U-4405

4299 RAEFORD RD., FAYETTEVILLE, CUMBERLAND COUNTY, NC

NOVEMBER 4, 2016

Report prepared for:

Mike Branson Solutions, IES 1101 Nowell Road Raleigh, North Carolina 27607

Prepared by:

Eric C. Cross, P.G. NC License #2181

Reviewed by

Conovello

Reviewed by: ____

Douglas A. Canavello, P.G. NC License #1066

503 INDUSTRIAL AVENUE, GREENSBORO, NC 27406 P: 336.335.3174 F: 336.691.0648 C257: GEOLOGY C1251: ENGINEERING

Table of Contents

Executive Summary1	
Introduction	
Field Methodology2	
Discussion of Results	
Summary and Conclusions	
Limitations	

Figures

Figure 1 – Parcel 220 Geophysical Survey Boundaries and Site Photographs
Figure 2 – Parcel 220 EM61 Results Contour Map
Figure 3 – Parcel 220 GPR Transect Locations and Select Images

Appendices

Appendix A – GPR Transect Images

LIST OF ACRONYMS

DFDual Frequency EMElectromagnetic GPRGround Penetrating Radar GPSGlobal Positioning System NCDOTNorth Carolina Department of Transportation
GPRGround Penetrating Radar GPSGlobal Positioning System NCDOTNorth Carolina Department of Transportation
GPSGlobal Positioning System NCDOTNorth Carolina Department of Transportation
NCDOTNorth Carolina Department of Transportation
1 1
ROWRight-of-Way
SVESoil Vapor Extraction
USTUnderground Storage Tank

EXECUTIVE SUMMARY

Project Description: Pyramid Environmental conducted a geophysical investigation for Solutions, IES (Solutions) at Parcel 220, located at 4299 Raeford Road, Fayetteville, NC. The survey was part of a North Carolina Department of Transportation (NCDOT) Right-of-Way (ROW) investigation (NCDOT Project U-4405). Solutions directed Pyramid as to the geophysical survey boundaries at the project site, which were designed to extend from the existing edge of pavement to the proposed ROW lines and/or easement lines within the property, whichever distance was greater. Conducted from October 12-17, 2016, the geophysical investigation was performed to determine if unknown, metallic underground storage tanks (USTs) were present beneath the survey area.

Geophysical Results: A large portion of the EM anomalies were directly attributed to visible cultural features at the ground surface. EM interference from suspected metal reinforcement was observed across the central portion of the parking area and at the entrance driveway aprons. These areas were investigated by GPR. The GPR scans verified the presence of reinforcement in the asphalt. No additional structures were observed. Collectively, the geophysical data <u>did not show any evidence of unknown metallic USTs at Parcel 220</u>.

INTRODUCTION

Pyramid Environmental conducted a geophysical investigation for Solutions, IES (Solutions) at Parcel 220, located at 4299 Raeford Road, Fayetteville, NC. The survey was part of a North Carolina Department of Transportation (NCDOT) Right-of-Way (ROW) investigation (NCDOT Project U-4405). Solutions directed Pyramid as to the geophysical survey boundaries at the project site, which were designed to extend from the existing edge of pavement to the proposed ROW lines and/or easement lines within the property, whichever distance was greater. Conducted from October 12-17, 2016, the geophysical investigation was performed to determine if unknown, metallic underground storage tanks (USTs) were present beneath the survey area.

The site included a commercial building with an asphalt parking lot and grass medians. Aerial photographs showing the survey area boundaries and ground-level photographs are shown in **Figure 1**.

FIELD METHODOLOGY

The geophysical investigation consisted of electromagnetic (EM) induction-metal detection and ground penetrating radar (GPR) surveys. Pyramid collected the EM data using a Geonics EM61 metal detector integrated with a Trimble AG-114 GPS antenna. The integrated GPS system allows the location of the instrument to be recorded in real-time during data collection, resulting in an EM data set that is geo-referenced and can be overlain on aerial photographs and CADD drawings. A boundary grid was established around the perimeter of the site with marks every 10 feet to maintain orientation of the instrument throughout the survey and assure complete coverage of the area.

According to the instrument specifications, the EM61 can detect a metal drum down to a maximum depth of approximately 8 feet. Smaller objects (1-foot or less in size) can be detected to a maximum depth of 4 to 5 feet. The EM61 data were digitally collected at approximately 0.8 foot intervals along north-south trending or east-west trending, generally

parallel survey lines spaced five feet apart. The data were downloaded to a computer and reviewed in the field and office using the Geonics NAV61 and Surfer for Windows Version 11.0 software programs.

GPR data were acquired across select EM anomalies on October 17, 2016, using a Geophysical Survey Systems, Inc. (GSSI) UtilityScan DF unit equipped with a dual frequency 300/800 MHz antenna. Data were collected both in reconnaissance fashion as well as along formal transect lines across EM features. The GPR data were viewed in real-time using a vertical scan of 512 samples, at a rate of 48 scans per second. GPR data were viewed down to a maximum depth of approximately 4 feet, based on dielectric constants calculated by the DF unit in the field during the reconnaissance scans. GPR transects across specific anomalies were saved to the hard drive of the DF unit for post-processing and figure generation.

Pyramid's classifications of USTs for the purposes of this report are based directly on the geophysical UST ratings provided by the NCDOT. These ratings are as follows:

Geophysical Surveys for Underground Storage Tanks on NCDOT Projects								
High Confidence Intermediate Confidence Low Confidence No Confidence								
Known UST	Probable UST	Possible UST	Anomaly noted but not					
Active tank - spatial location, orientation, and approximate depth determined by geophysics.	Sufficient geophysical data from both magnetic and radar surveys that is characteristic of a tank. Interpretation may be supported by physical evidence such as fill/vent pipe, metal cover plate, asphal/concrete patch, etc.	Sufficient geophysical data from either magnetic or radar surveys that is characteristic of a tank. Additional data is not sufficient enough to confirm or deny the presence of a UST.	characteristic of a UST. Should be noted in the text and may be called out in the figures at the geophysicist's discretion.					

DISCUSSION OF RESULTS

Discussion of EM Results

A contour plot of the EM61 results obtained across the survey area at the property is presented in **Figure 2**. Each EM anomaly is numbered for reference in the figure. The

following table presents the list of EM anomalies and the cause of the metallic response, if known:

Metallic Anomaly #	Cause of Anomaly	Investigated with GPR
1	Reinforced Concrete	\bigotimes
2	Telephone Pole and Guy Wires	
3	Reinforced Concrete	\bigotimes
4	Reinforced Concrete	
5	Guy Wire	
6	Dumpster	
7	Telephone Pole	
8	Reinforced Concrete	\bigotimes

LIST OF METALLIC ANOMALIES IDENTIFIED BY EM SURVEY

A large portion of the EM anomalies recorded by the survey were directly attributed to visible cultural features such as utility poles, guy wires, and a dumpster. Suspected metal-reinforced concrete was present across the central portion of the asphalt parking area, as well as at each of the three entrance driveway aprons leading into the parking lot. These areas of reinforced concrete were investigated further by GPR.

Discussion of GPR Results

Figure 3 presents the locations of the formal GPR transects performed at the property, as well as select transect images. A total of 23 GPR transects were performed at the site across the areas containing reinforced concrete. The 23 transects all verified the presence of metal reinforcement in the concrete. No evidence of significant structures beneath the reinforcement such as USTs was observed.

Collectively, the geophysical data <u>did not show any evidence of unknown metallic USTs</u> <u>at Parcel 220</u>.

SUMMARY & CONCLUSIONS

Pyramid's evaluation of the EM61 and GPR data collected at Parcel 220 in Fayetteville, Cumberland County, North Carolina, provides the following summary and conclusions:

- The EM61 and GPR surveys provided reliable results for the detection of metallic USTs within the accessible portions of the geophysical survey area.
- A large portion of the EM anomalies were directly attributed to visible cultural features at the ground surface. EM interference from suspected metal reinforcement was observed across the central portion of the parking area and at the entrance driveway aprons. These areas were investigated by GPR.
- The GPR scans verified the presence of reinforcement in the asphalt. No additional structures were observed.
- Collectively, the geophysical data <u>did not show any evidence of unknown metallic</u> <u>USTs at Parcel 220</u>.

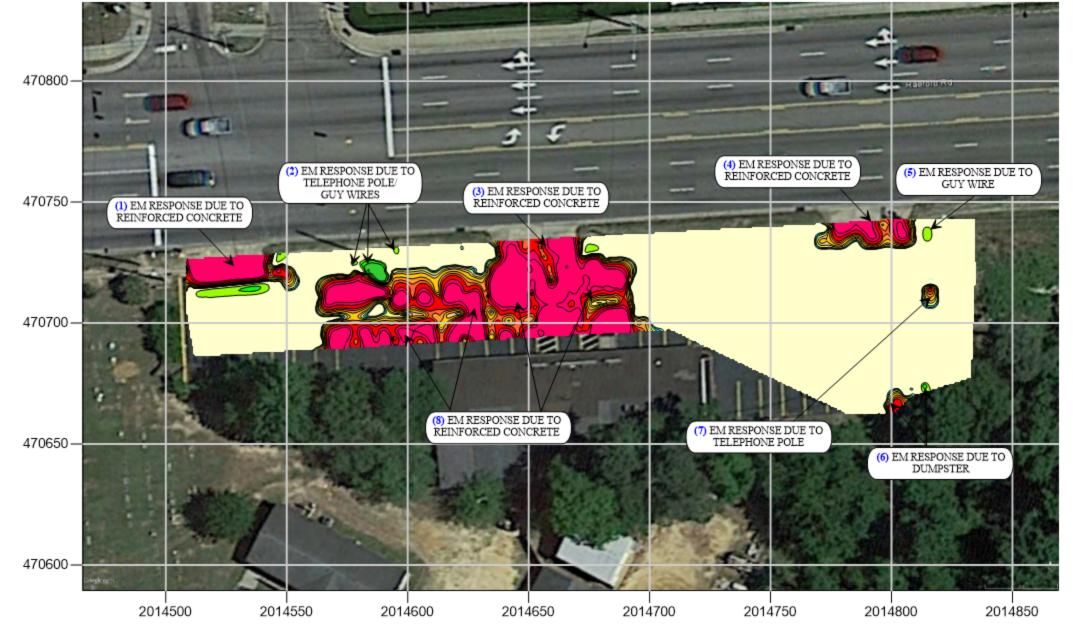
LIMITATIONS

Geophysical surveys have been performed and this report was prepared for Solutions, IES in accordance with generally accepted guidelines for EM61 and GPR surveys. It is generally recognized that the results of the EM61 and GPR surveys are non-unique and may not represent actual subsurface conditions. The EM61 and GPR results obtained for this project have not conclusively determined the definitive presence or absence of metallic USTs, but the evidence collected is sufficient to result in the conclusions made in this report. Additionally, it should be understood that areas containing extensive vegetation, reinforced concrete, or other restrictions to the accessibility of the geophysical instruments could not be fully investigated.

NÎ

APPROXIMATE BOUNDARIES OF GEOPHYSICAL SURVEY AREA

NC STATE PLANE, EASTING (NAD83, FEET)

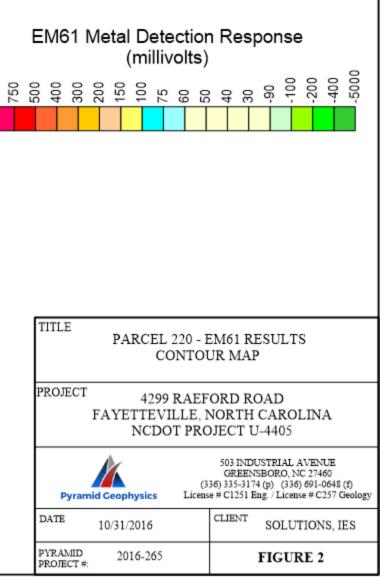

View of Survey Area (Facing Approximately East)

View of Survey Area (Facing Approximately East)

TITLE PARCEL 220 - GEOPHYSICAL SURVEY BOUNDARIES AND SITE PHOTOGRAPHS							
PROJECT 4299 RAEFORD ROAD FAYETTEVILLE, NORTH CAROLINA NCDOT PROJECT U-4405							
503 INDUSTRIAL AVENUE GREENSBORO, NC 27460 (336) 335-3174 (p) (336) 691-0648 (f) License # C1251 Eng. / License # C257 Geol							
DATE	10/31/16		CLIENT SOLUTIONS, IES				
PYRAMID PROJECT #:	2016-265		FIGURE 1				

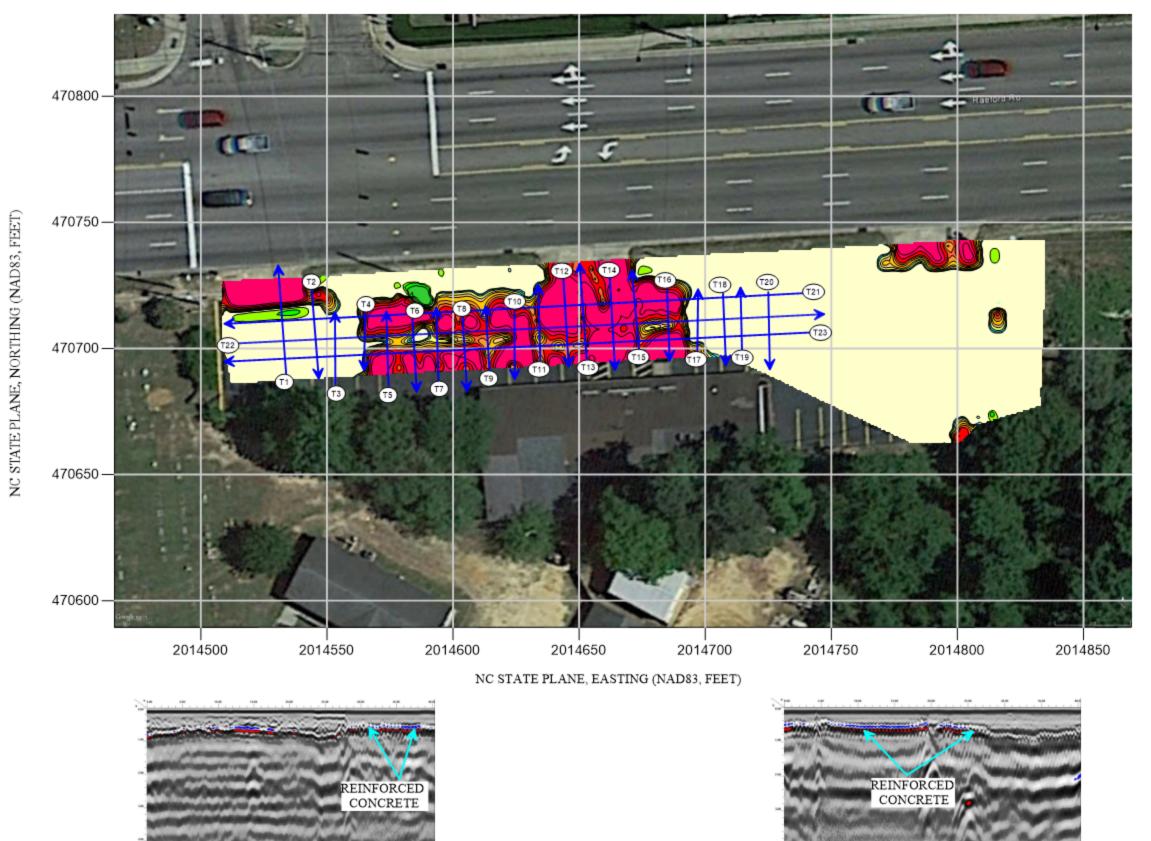
EM61 METAL DETECTION RESULTS

NC STATE PLANE, EASTING (NAD83, FEET)

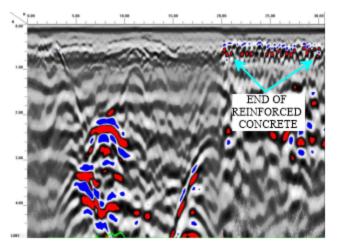

NUMBERS IN BLUE (x) CORRESPOND TO ANOMALY TABLE INCLUDED IN THE REPORT

NC STATE PLANE, NORTHING (NAD83, FEET)

The contour plot shows the differential results of the EM61 instrument in millivolts (mV). The differential results focus on larger metallic objects such as USTs and drums. The EM61 data were collected on October 13, 2016, using a Geonics EM61 instrument. Verification GPR data were collected using a GSSI UtilityScan DF instrument with a dual frequency 300/800 MHz antenna on October 17, 2016.

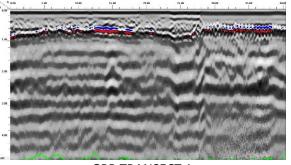

1000

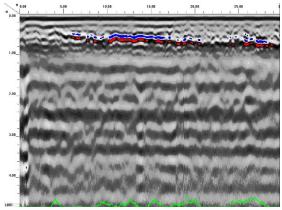
NO EVIDENCE OF UNKNOWN METALLIC USTs OBSERVED


NÎ

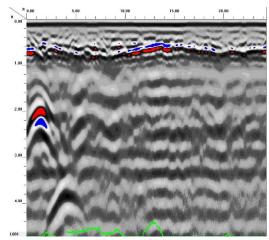
LOCATIONS OF GPR TRANSECTS

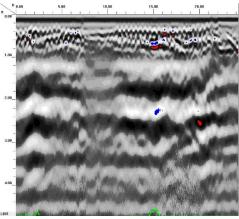
GPR TRANSECT 1 (T1)

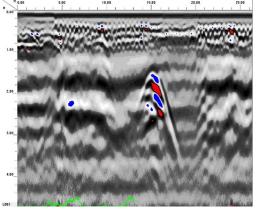

GPR TRANSECT 14 (T14)

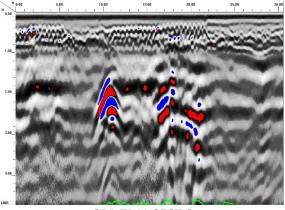

GPR TRANSECT 18 (T18)

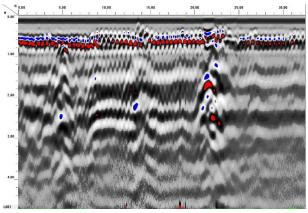
TITLE PARCEL 220 - GPR TRANSECT LOCATIONS AND SELECT IMAGES							
PROJECT	FAYETTEVII	LLE	EFORD ROAD E, NORTH CAROLINA PROJECT U-4405				
503 INDUSTRIAL AVENUE GREENSBORO, NC 27460 (336) 335-3174 (p) (336) 691-0648 (f) License # C1251 Eng. / License # C257 Geolo							
DATE	10/31/2016		CLIENT SOLUTIONS, IES				
PYRAMID PROJECT #:	2016-265		FIGURE 3				

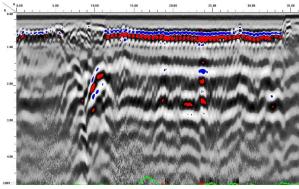

Appendix A – GPR Transect Images

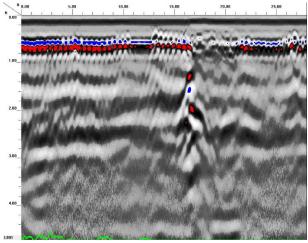

GPR TRANSECT 1


GPR TRANSECT 2

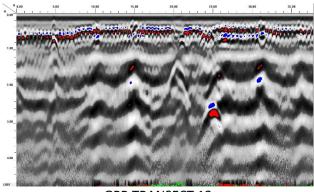

GPR TRANSECT 3


GPR TRANSECT 4


GPR TRANSECT 5

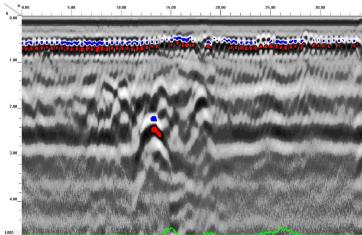

GPR TRANSECT 6

GPR TRANSECT 7



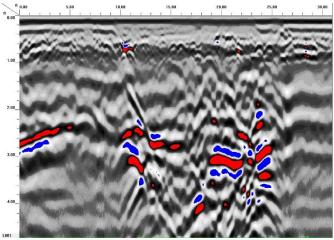
GPR TRANSECT 8

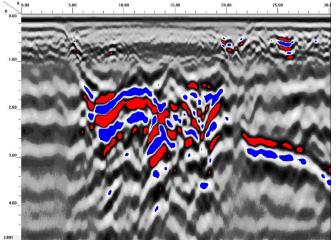

1.00 2.0 **GPR TRANSECT 10** 15.00


GPR TRANSECT 11

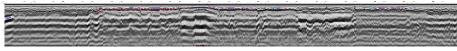
GPR TRANSECT 12

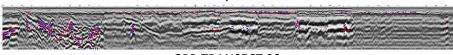
GPR TRANSECT 9

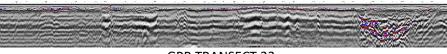



1.00 3.0 **GPR TRANSECT 16** 10.00 15.00 5.00 25.00 3.0 **GPR TRANSECT 17** 28.00 5.01 18.00 15.00

GPR TRANSECT 18


GPR TRANSECT 15


GPR TRANSECT 19


GPR TRANSECT 20

GPR TRANSECT 21

GPR TRANSECT 22

GPR TRANSECT 23

ATTACHMENT C

BORING LOCATION: Partel #220, Fayetteville, NC PROJECT NUMBER: 2016.0004 MOD DATE FINISHED: 100272016 DATE FINISHED: 100272016 DRILLING CONTRACTOR: Regional Probing Services DATE STATED: 10072016 DATE STATED: 10072016 DATE STATED: 10072016 SCREEN INTERVAL (fb dps): NA NO DRILLING METHOD: Deret Push BOREHOLE DIAMETER: 2.25' TOTAL DEPTH (fb dps): NA SCREEN INTERVAL (fb dps): SCREEN INTERVAL (fb dps): SC		Sol	ut	10	ns	-IES Il Service		Log of Bo	oring 220-SB-1		
DRILLING CONTRACTOR. Regional Proding Services Date Final End Date Final End DRILLING KETHOD: Device Pauls BOREHOLE DUARTER: 2.25' TOTAL DEPTHING table: SOREEN INTERVAL IR top: 100 million DRILLING EQUIFACENT: Gegrade 5410 MORTHING: EASTING: 100 million MARE SMMELIND EETHOD: Marce Core INTERVAL IR top: 100 million MARE MARE SMMELING EQUIFACENT: Gegrade 5410 MORTHING: EASTING: 100 million MARE SMMELING DEFINIC: Marce Core INTERVAL IR top: 100 million MARE MARE SMMELING DEFINIC: Gegrade 5410 MORTHING: EASTING: 100 million MARE SMMELING DEFINIC: Gegrade 5410 MARE INTERVAL IR top: 100 million MARE SMMELING DEFINIC: CHECKED 9Y: INTERVAL IR top: 100 million 2 0.2 0 Interval IR top: 100 million 3 0.2 0.3 Interval IR top:											
Descusse in induce Description BUDEPIDE LIAME ERC 10 https NA A DRLLING EQUIPRIENT Geograde 6410 NOTENO: NA PALLING ENDERING: NA PALLING ENDERING: NA PALLING INCOME NA PALLING CONTENNE: NA PALLING CONTENNE: NA PALLING ENDERING: NA PALLING ENDERING: NA <t< td=""><td>DRILL</td><td colspan="4">DRILLING CONTRACTOR: Regional Probing Services</td><td></td><td>Regional Probing Services</td><td colspan="3">DATE STARTED: DATE FINISHED:</td></t<>	DRILL	DRILLING CONTRACTOR: Regional Probing Services					Regional Probing Services	DATE STARTED: DATE FINISHED:			
DHILINE BOUMARTH Sequence 2410 NA NA SAMPLING METHOD More Core MITAL DTV: FINAL DTV: NA Same Montyre CHECKED BY: CHECKEEBY: CHECKED BY: CHEC	DRILLI	NG ME	THOD): Di	irect P	ush	BOREHOLE DIAMETER: 2.25"	TOTAL DEPTH (ft bgs): SCREEN INTERVAL (ft bgs):			
SAMULA BE HILD: MA NA DOGED BY: CHECKED BY: 0	DRILLI	ING EQI	JIPMI	ENT:	(Geoprobe 5	5410				
Samuel Kerthyre Eacher Eacher <t< td=""><td>SAMPL</td><td>LING ME</td><td>THO</td><td>D:</td><td>Macr</td><td>o Core</td><td></td><td></td><td></td><td></td></t<>	SAMPL	LING ME	THO	D:	Macr	o Core					
End End of Boring End of Boring			re		CHEC	CKED BY:					
0 0	Ta				Ê					E (s	
0 1 0 0 1 9 0.2 1 2 9 0.2 -1 3 0.3 1 -2 3 0.3 0.8 -3 4 -5 0.8 -5 6 9 9 -5 7 1.2 Light brown and red mottled fine sandy clay. Dry. Minor black staining at 9 ft bgs. -7 8 0 9 0.9 -9 10 10 End of Boring 10	DEPTH (ft bgs)		imple ID d Interva	Recovery	ndd) Ol		DESCRIPTION OF MATERIALS			DEPT (ft bg	
2 g g Tan clayey fine sand. Dry. 2 3 0.3 0.3 4 5 0.8 6 6 7 1.2 Light brown and red mottled fine sandy clay. Dry. Minor black staining at 9 ft bgs. 7 8 9 1.2 Light brown and red mottled fine sandy clay. Dry. Minor black staining at 9 ft bgs. 7 10 End of Boring 10	0	,	ances		ш.					0	
2 g g Tan clayey fine sand. Dry. 2 3 0.3 0.3 4 5 0.8 6 6 7 1.2 Light brown and red mottled fine sandy clay. Dry. Minor black staining at 9 ft bgs. 7 8 9 1.2 Light brown and red mottled fine sandy clay. Dry. Minor black staining at 9 ft bgs. 7 10 End of Boring 10	1_				0.2					-1	
3 4 -3 4 -6 5 -6 6 -7 8 -9 9 0.9 10 -7 End of Boring					0.2					-	
4 -	2—			100%		-	Tan clayey fine sand. Dry.			-2	
4 -	3-				0.3					-3	
5 0.8 6 7 1.2 Light brown and red mottled fine sandy clay. Dry. Minor black staining at 9 ft bgs. 8 0 9 0.9 10 End of Boring	-									-	
6 9 1.2 Light brown and red mottled fine sandy clay. Dry. Minor black staining at 9 ft bgs. 7 8 9 0.9 9 10 10 End of Boring	4-		-							-4	
6 9 1.2 Light brown and red mottled fine sandy clay. Dry. Minor black staining at 9 ft bgs. 7 8 9 0.9 9 10 10 End of Boring	5-				0.8					-5	
Image: second	-			. 0						-	
8 9 10 10 End of Boring	6-		œ	100%						-6	
8 9 10 10 End of Boring	7-		B-1-6-		1.2		Light brown and red mottled fine sandy clay. Di	v. Minor black staining at 9 f	ft bas.	-7	
9 10 10 End of Boring	-		220-S					,	5	-	
10 End of Boring	8-		10							-8	
10 End of Boring	9-		B-1-8-	%0C	0.9					9	
End of Boring	-		220-S	÷						-	
Page 1 of 1	10-					(////)	End of Boring			10	
Page 1 of 1											
Page 1 of 1											
Page 1 of 1											
Page 1 of 1											
Page 1 of 1											
Page 1 of 1											
Page 1 of 1											
Page 1 of 1											
									Page 1 of	f 1	

Tindus	Solu	Itic	ons	5-IES al Service	s	Log	of Boring 220-SB-	2
BORIN	BORING LOCATION: Parcel #220, Fayetteville, NC					PROJECT NUMBER: 2016.0054.NDOT		
DRILL	ING CONT	RACTO	R:		Regional Probing Services	DATE STARTED: 10/27/2016	DATE FINISHED: 10/27/2016	
DRILL	ING METH	OD:	Direct F	Push	BOREHOLE DIAMETER: 2.25"	TOTAL DEPTH (ft bgs): 10 ft bgs	SCREEN INTERVAL NA	. (ft bgs):
DRILL	ING EQUI	PMENT:		Geoprobe 5	5410	NORTHING: NA	EASTING: NA	
SAMP	LING MET	HOD:	Mac	ro Core		INITIAL DTW:	FINAL DTW: NA	
	ED BY: I McIntyre		CHE	CKED BY:				
	SAM		-					E (s
DEPTH (ft bgs)	Sample ID	Recovery	PID (ppm)		DESCRIPTION OF MATERIALS			DEPTH (ft bgs)
0	Š	E and		*****	Asphalt.			0
- 1-			0.0					
-								-
2-		100%	-		Tan clayey fine sand. Dry.			-2
3-			0.0					3
-								-
4-								-4
5-			0.0					- 5
								-
6-		100%		-////				-6
7-			0.4		Light brown and red mottled fine sandy clay.	Dry.		7
-								-
8-		2	_					-8
9-	-8-0-6	100%	0.8					9
-	220-SB-2-8-10	Ę						-
10-				(////)	End of Boring			10
							1	D
								Page 1 of 1

Industrial & Environmental Services					s	Log	of Boring 220-S	B-3			
BORIN	G LOCATIO	N:		Parcel #2	20, Fayetteville, NC	PROJECT NUMBER: 2016.0054.NDOT					
DRILLI	DRILLING CONTRACTOR: Regional Probing Services					DATE STARTED: 10/27/2016	DATE FINISHED: 10/27/2016				
DRILLI	NG METHO	D: D	irect P	ush	BOREHOLE DIAMETER: 2.25"	TOTAL DEPTH (ft bgs): 10 ft bgs	SCREEN INTERV NA	'AL (ft bgs):			
DRILLI	NG EQUIPI	IENT:	C	Geoprobe 5	410	NORTHING: NA	EASTING: NA				
SAMPL	ING METHO	DD:	Macr	o Core		INITIAL DTW: NA	FINAL DTW: NA				
LOGGE Samuel	ED BY: McIntyre		CHEC	KED BY:							
In	SAMPL	-	(c					HL (st			
DEPTH (ft bgs)	Sample ID and Interval	Recovery	PID (ppm)		DESCRIPTION OF MATERIALS			DEPTH (ft bgs)			
0	a õ		-		Asphalt.			0			
1-			0.6								
-					Tan clayey fine sand. Dry.			-			
2—		100%						-2			
3-			1.3					3			
_								-			
4-								-4			
5-			2.4					5			
_		.0				-					
6-		100%						-6			
7-			2.5		Light brown and red mottled fine sandy clay. D	Dry. Mild hydrocarbon odors at 8 ft bgs.					
_								_			
8-	10							-8			
9-	220-SB-3-8-10	100%	62.1					9			
_	220-S	→						_			
10-				/////	End of Boring			10			
								Page 1 of 1			

Industrial & Environmental Services					s	Log	of Boring 220-S	B-4
BORIN	IG LOCATIO	N:		Parcel #2	20, Fayetteville, NC	PROJECT NUMBER: 2016.0054.NDOT		
DRILL	DRILLING CONTRACTOR: Regional Probing Services					DATE STARTED: 10/27/2016	DATE FINISHED: 10/27/2016	
DRILLI	ING METHO	D: C	irect P	ush	BOREHOLE DIAMETER: 2.25"	TOTAL DEPTH (ft bgs): 10 ft bgs	SCREEN INTERV. NA	AL (ft bgs):
DRILL	ING EQUIPN	IENT:	C	Geoprobe 5	5410	NORTHING: NA	EASTING: NA	
SAMPI	LING METHO	DD:	Macr	o Core		INITIAL DTW: NA	FINAL DTW: NA	
	ED BY: I McIntyre		CHEC	CKED BY:				
	SAMPL	1	-					ت ه
DEPTH (ft bgs)	Sample ID and Interval	Recovery	PID (ppm)		DESCRIPTION OF MATERIALS			DEPTH (ft bgs)
0	Sa		<u>а</u>	****	Asphalt.			0
- 1-			0.0		Tan clayey fine sand. Dry.			
			0.0					
2—		100%						-2
-								-
3-			0.0					-3
4-								-4
_								-
5—			0.0					—5
6-		100%			Light brown and red mottled fine sandy clay. D	ry.		-6
-		7						-
7—			0.0					-7
8-								-8
_	8-10							
9—	220-SB-4-8-10	100%	0.1					-9
10	220							10
10-					End of Boring			10
								Page 1 of 1

Industrial & Environmental Services					s s	Log	of Boring 220-SB-5	
BORING LOCATION: Parcel #220, Fayetteville, NC						PROJECT NUMBER: 2016.0054.NDOT		
DRILLING CONTRACTOR: Regional Probing Services					Regional Probing Services	DATE STARTED: 10/27/2016	DATE FINISHED: 10/27/2016	
DRILL	ING METHO	D: D	irect P	ush	BOREHOLE DIAMETER: 2.25"	TOTAL DEPTH (ft bgs): 10 ft bgs	SCREEN INTERVAL (ft b NA	ogs):
DRILL	ING EQUIPM	/ENT:	C	Geoprobe 5	410	NORTHING: NA	EASTING: NA	
SAMP	LING METH	DD:	Macro	o Core		INITIAL DTW: NA	FINAL DTW: NA	
	ED BY: I McIntyre		CHEC	KED BY:				
DEPTH (ft bgs)	THMPS Sample ID and Interval	-	PID (ppm)		DESCRIPTION OF MATERIALS			DEPTH (ft bgs)
0	a õ	-			Asphalt.			0
1-			0.0					- 1 -
2—		100%			Tan clayey fine sand. Dry.			-2
3-			0.0					3
4-								-4
5-			0.0					- —5
6—		100%						-6
7-			0.0		Light brown and red mottled fine sandy clay. D	ry.		-7
8-	3-10							
9—	220-SB-5-8-10	100%	0.0					—9 -
10-					End of Boring			10
							F	Page 1 of 1

ATTACHMENT D

PHOTO I - VIEW OF SOIL BORING LOOKING NORTHEAST PHOTO 2 - VIEW OF SOIL BORING LOOKING NORTH

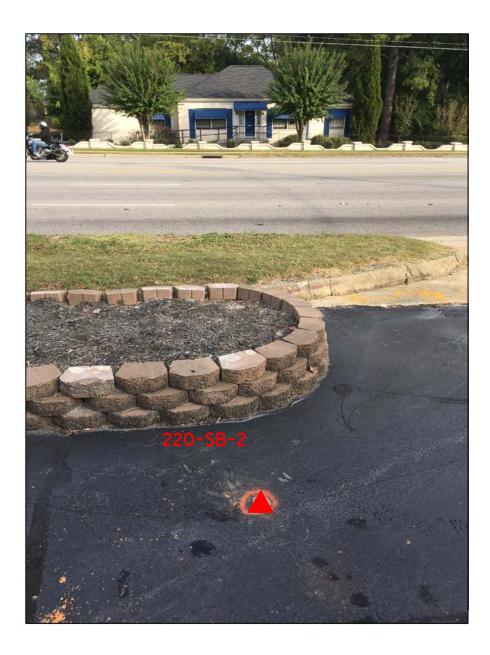
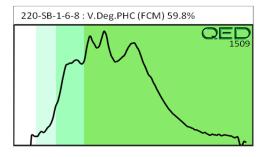
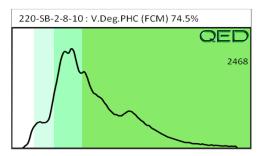


PHOTO 3 - VIEW OF SOIL BORING LOOKING NORTH PHOTO 4 - VIEW OF SOIL BORING LOOKING WEST

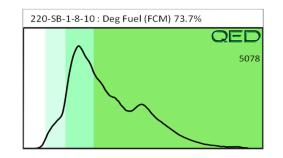
PHOTO 5 - VIEW OF SOIL BORING LOOKING WEST

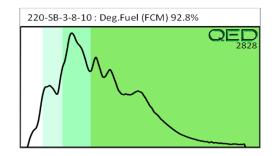
ATTACHMENT E

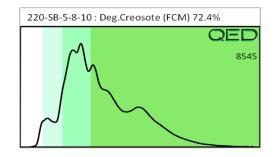

QE	Ð		6	RAPI	D ENVIRONMENT	LAB AL DIAGNOSTICS					J		<u>ROS</u>
Client: Address:	NCDOT Site 220: 4299 Raeford Road Fayetteville, NC									Samples	bles taken extracted analysed		10/27/2016 10/27/2016 10/27/2016
ontact:											Operator		Candy Elliott
roject:	2016.0054.NDOT												U04049
Matrix	Sample ID	Dilution used	BTEX (C6 · C9)	GRO (C5 - C10)	DRO (C10 - C35)	TPH (C5 - C35)	Total Aromatics (C10-C35)	16 EPA PAHs	BaP		Ratios		HC Fingerprint Match
										% light	% mid	% heavy	
S	220-SB-1-6-8	25.0	<0.63	<0.63	1.4	1.4	1.1	0.13	0.017	0	65.8	34.2	V.Deg.PHC (FCM) 59.8%
	220-SB-1-8-10	21.9	<0.55	<0.55	11.2	11.2	4.6	0.23	0.003	0	86.4	13.6	Deg Fuel (FCM) 73.7%
S		22.5	<0.56	<0.56	3.6	3.6	1.9	0.09	0.002	0	87.3	12.7	V.Deg.PHC (FCM) 74.5%
s S	220-SB-2-8-10	22.5								34.9	58.5	6.6	Deg.Fuel (FCM) 92.8%
	220-SB-2-8-10 220-SB-3-8-10	22.5		1.8	7.8	9.6	3.7	0.16	0.002	34.9	50.5	0.0	= = = = = (= = =) = = = = = = = = = =
S				1.8 <0.55		9.6 13.4	3.7 13.4	0.16 0.76	0.002	0 0	79.8		Deg Fuel (FCM) (P) 64.7%
S S	220-SB-3-8-10	23.5	<0.59 <0.55		13.4							20.2	•


Fingerprints provide a tentative hydrocarbon identification. The abbreviations are:- FCM = Results calculated using Fundamental Calibration Mode : % = confidence for sample fingerprint match to library

(SBS) or (LBS) = Site Specific or Library Background Subtraction applied to result : (PFM) = Poor Fingerprint Match : (T) = Turbid : (P) = Particulate present


QED Hydrocarbon Fingerprints


Project: 2016.0054.NDOT



10/27/2016

File Review Reports RREF II BB-NC LLC (Parcel #220) 4299 Raeford Road Fayetteville, Cumberland County, North Carolina State Project: U-4405 WBS Element 39049.1.1

ALAN G. HOLLOWELL

Rt. 1 Box 47 Goldsboro, N.C. 27530 PHONE (919)689-2114

MAY 3, 1993

MR. GENE JACKSON N.C. DEPARTMENT OR HEALTH AND NATURAL RESOURCES SUITE 714, WACHOVIA BLDG. FAYETTEVILLE, N.C. 28301

SUBJECT: UST CLOSURE 4299 RAEFORD RD.

SITE ID: 0-012637

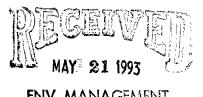
DEAR MR. JACKSON,

HOLLOWELL TESTING CONDUCTED THE REQUIRED SITE ASSESSMENT AT THE ABOVE MENTIONED SITE. THIS TANK REMOVAL COMMENCED 4/20/93 AND CONCLUDED 4/23/93. THREE 8,000 GALLON AND ONE 12,000 GALLON GASOLINE UST'S WERE REMOVED BY CARL TAYLOR AND DISPOSED OF BY M&M TANK SERVICE LOCATED IN LAGRANGE, N.C.

AS MENTIONED ABOVE, CARL TAYLOR REMOVED TANKS, LINES AND EXCAVATED CONTAMINATED SOIL. THIS CONTAMINATION WAS LAND FARMED BY MR. TOM HERRING (PERMIT NO. WQ 0004784). THIS PERMITTED SITE IS LOCATED IN AUTRYVILLE, N.C.

CONTAMINATION WAS DISCOVERED AT THE WEST END (PUMP, FILL END) OF THE TANK BED THAT HOUSED THREE 8K GALLON UST'S. CONTAMINATION WAS REMOVED AND SOIL SAMPLES WERE COLLECTED AND ANALYZED FOR REIMBURSEMENT PURPOSES. CONTAMINATION WAS ALSO DISCOVERED AT THE SOUTH END (PUMP, FILL END) OF THE 12K GALLON UST. WHILE REMOVING CONTAMINATION, GROUNDWATER WAS ENCOUNTERED. THIS WATER WAS SAMPLED AND ANALYZED FOR BETX/TPH.

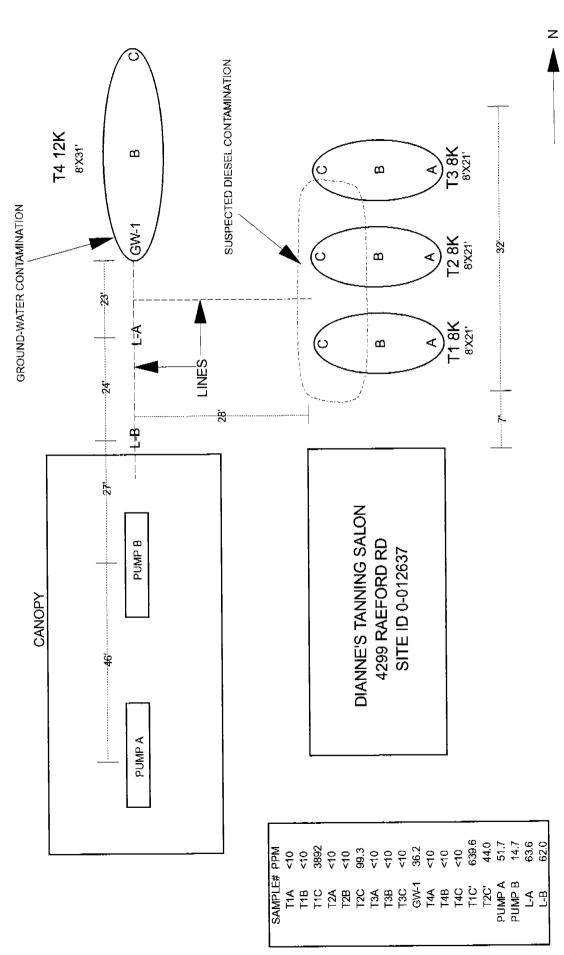
SINCERELY,

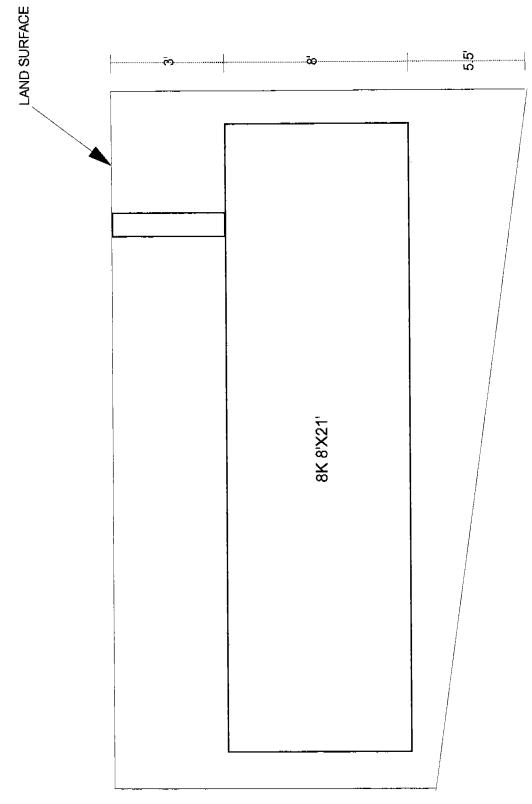

ALAN G. HOLLOWELL

MR. ROBERT E. BRYAN JR.

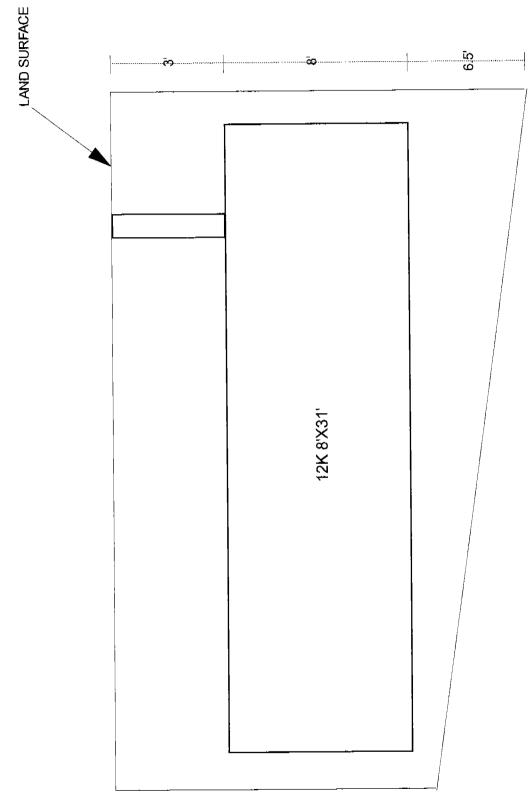
۰.

UST CLOSURE 4299 RAEFORD RD FAYETTEVILLE. N.C.


ID NO. 0-012637


ENV. MANAGEMENT FAYETTEVILLE REG. OFFICE

PREPARED BY HOLLOWELL TESTING SAMPLES WERE COLLECTED AT THE BOTTOM OF EACH UST IN THE NATIVE UNDISTURBED SOIL. MINOR CONTAMINATION WAS ENCOUNTERED AT SAMPLING POINTS "C" WHERE THREE 8K GASOLINE UST'S WERE LOCATED. WHILE REMOVING THIS CONTAMINATED SOIL, GREATER LEVELS OF CONTAMINATION WAS DISCOVERED IN THE VERTICAL DIRECTION. THE CHROMATAGRAM PRODUCED IN THE LABORATORY STRONGLY SUGGESTS CONTAMINATION CAUSED BY DIESEL OR ANOTHER HEAVIER FUEL. ACCORDING TO THE OWNER MR. BRYAN, ONLY GASOLINE WAS SOLD AT HIS FACILITY. APPARENTLY PREVIOUS OWNER/OPERATORS SOLD AND HOUSED SUCH FUELS AT THIS SITE.


WHILE REMOVING THE 12K GALLON UST CONTAMINATION WAS ALSO DISCOVERED AT THE PUMP/FILL END. CONTAMINATED SOIL WAS REMOVED DOWN TO THE GROUNDWATER TABLE (17.5'). THIS WATER WAS SAMPLED (GW-1) IN LIEU OF A SOIL SAMPLE AT THIS POINT. THIS SAMPLE WAS ANALYZED FOR TPH AS WELL AS BTEX.

SAMPLE LOCATION MAP

EXCAVATION CROSSECTION

EXCAVATION CROSSECTION

SOIL SAMPLING:

SAMPLES WERE COLLECTED WITH DISPOSABLE SPATULAS AND PLACED IN GLASS JARS WITH ALUMINIUM FOIL LINED TOPS. THREE SAMPLES WERE COLLECTED UNDER THOSE TANKS GREATER THAN 20 FEET IN LENGTH. SAMPLES WERE COLLECTED ALONG LINES EVERY 20 FEET. ALL SAMPLES WERE PLACED ON ICE WHILE BEING TRANSPORTED TO THE LABORATORY.

SOIL CHARACTERISTICS:

THE TOP TWO FEET CONSISTED OF A SAND/CLAY MIXTURE. FROM 2 FEET TO A DEPTH OF 13 FEET CONSISTED OF A GREY DRAB PLASTIC CLAY FOLLOWED BY SANDY CLAY.

PROPERTY DESCRIPTION AND SURROUNDING AREA:

THE SITE IS SITUATED IN THE CENTER OF THE CITY OF FAYETTEVILLE. THE AREA IS GENERALLY A BUSINESS DISTRICT ALONG WITH A FEW DWELLINGS. CITY WATER AND SEWAGE DISPOSAL SERVES THE AREA. THERE ARE NO KNOWN WELLS IN THE VICINITY OF THE SITE.

CONCLUSIONS:

SUSPECTED DIESEL CONTAMINATION IS NOTED ON THE SAMPLE LOCATION MAP. IT IS BELIEVED PREVIOUS OWNER/OPERATORS ARE RESPONSIBLE FOR THIS CONTAMINATION SINCE MR. BRYAN NEVER SOLD PRODUCTS OF THIS TYPE AT THIS SITE.

GROUNDWATER HAS BEEN IMPACTED AT THE PUMP/FILL END OF THE 12K GALLON TANK BED AREA. GASOLINE IS THE CONTAMINATE IN THIS AREA. A WATER SAMPLE WAS COLLECTED AND ANALYZED IN LIEU OF A SOIL SAMPLE.

T1C' AND T2C' REPRESENT SOIL SAMPLES COLLECTED AFTER RAESONABLE AMOUNTS OF CONTAMINATED SOIL HAD BEEN REMOVED. 3-8KSPA-D AND 12KSPA-D REPRESENT SOIL SAMPLES COLLECTED FROM CONTAMINATED SOIL STOCK PILED FOR DISPOSAL. THESE SAMPLES WERE COLLECTED AND ANALYZED FOR REIMBURSEMENT PURPOSES.

METHOD 5030

CLIENT ID LAB ID MATRIX	T1A 4229301 SOIL	T1B 4229302 SOIL	T1C 4229311 SOIL	T2A 4229303 SOIL	T2B 4229304 SOIL	T2C 4229312 SOIL
GASOLINE TPH	(PPM) <10	<10	3892	<10	<10	99.3
CLIENT ID LAB ID MATRIX	T3A 4229305 SOIL	T3B 4229306 SOIL	T3C 4229307 SOIL	GW-1 4259301 WATER	T4B 4229310 SOIL	T4C 4229308 SOIL
GASOLINE TPH	(PPM) <10	<10	<10	36.2	<10	<10
CLIENT ID LAB ID MATRIX	T1C' 4239301 SOIL	T2C' 4239302 SOIL			39303 539	L-B 9304 DIL
GASOLINE TPH	(PPM) 639.6	44.0	51.7	14.7	63.6 63	2.0
CLIEMT ID LAB ID MATRIX		A 3-8KSP 3 4239304 SOIL				
GASOLINE TPH	(PPM) 169.2	25.6	155.2	2881	<10*	<10*
* LESS THAN	10 BUT DETEC	TED				
CLIENT ID LAB ID MATRIX	12KSPC 423930 SOIL					
GASOLINE TPH	(PPM) 288.0	96.5				
JOB SITE: 42	99 RAEFORD F	D			,	
DATE REPORTE	D: 4/23/93		ANAL	YST		Mdul

1907 STATE ROAD 1243 GOLDSBORO, N.C. 27530 PHONE(919)-736-8002 (919)-689-2114

METHOD 602

CLIENT ID LAB ID MATRIX	GW-1 4239311 WATER	
GASOLINE TPH (PPM) BENZENE (PPB) TOLUENE (PPB) ETHYL BENZENE (PPB) XYLENES (PPB)	36.2 2686.1 4401.0 987.7 5745.5	

DATE REPORTED: 4\23\93

JOB SITE: 4299 RAEFORD RD FAYETTEVILLE, N.C.

ID NO: 0 - 012637

MM

ANALYST:

1907 STATE RD 1243 GOLDSBORO, N.C.27530 PHONE (919)-736-8002

Alan G. Hollowell

1

SAMPLE SUBMISSION FORM

Company: Hollowell Testing

Phone: Job No:

4299 Ryctod Rd

No. of Samples:_____

Date Submitted: 4/22/93	
Submitted By MMM	_
Recieved By	_

SAMPLE MATRIX	SAMPLE ID.	ANALYSIS	PPM LEVELS
50;/	Pump A	GASTPH 5030	210
	Pump A Pump B		
	<u>L-A</u>		
	L-B		V

Sample collection date $4/2\tau/93$ Time 10:50

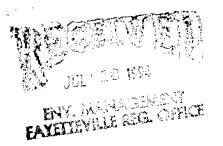
Special Instructions:

	', 		PON		V					
GW/UST FOR TANKS IN NC	Return Comp The appropriat	leted Form To: te DEM Regional N REVERSE SIDE IRESS].	Office accordi E OF OWNER	ng to the IS COPY	county	of the	facility's	, Incation	State	ge-in-Service of U.S.T. e Use Only Number e Received
								· · · ·		
	I. Ownership	p of Tank(s)	and return wit	nin (30) de	ays tollow				-	of Tank(s)
		Pon Comp ublic Agency, or Other En								
vner Name (Corporation, Individual, Pu	ublic Agency, or Other En PO BOX 5355	аку) та	51-	3 -	Facility	Name	or Comp	алу	
reet Address	5	Fayettaville			- -	Facility	<u>-0 /2 (</u> / ID # (if available	Pal	
ounty				<u> </u>	- -	Street	Address	or State	Boad	Le NIC
ty	State	Zip Code		~~~~~	- -	Count	y N	//A City	yetter.11	Zip Code
ea Code		phone Number				Area (Code		Tele	phone Number
Alm.	, G. ILI			a-301, 444)	/ 19.90 I	-eison	· · 1	<u>, , , , , , , , , , , , , , , , , , , </u>		
<u> </u>	Name	<u> </u>	<u> </u>	Job Title	<u>, , , , , , , , , , , , , , , , , , , </u>	re.al.	· 57		Tek	9/9-689-2/14 ephone No. (Area Code) 9/9-423-/273 ephone No. (Area Code) 9/9-736-8002 ephone No. (Area Code)
sure Contra	actor <u>(Narne)</u>	1 aylor	p.o. ,	<u>(SoX 6</u> (Address)	<u>91</u>	1+0p	c MJ/	Is N.C.		919-423-1273
م ي سر م	(Name)	icenmenter /	Abs	(Address)	<u>5.R.</u>	1243	<u>(71</u>	dshow	NC. Tek	919-736-8902
			2		V. Ex	Cavation	Cond	lition :		VL Additional Information Required
ank Size ko. Gallo		nk Insions	Last Contents		ter In avation	From Prov Yes		Visible Soil	Odor or Contamination	
		·····				165		Yes	No	See reverse side of pink copy (owner's copy) for additional
8K		<u> <u>\</u>'</u>	+sol:me	╡	/		/	/		information required by
<u>- 8k</u>	الربر '8	ľ <u> </u>					/	1		N.C DEM in the written report and sketch.
SK SK	8'x2	<u>'</u>					/	1		
· 12K	<u>8'x 31</u>	/	¥	1				1		
									·	
								· · · · ·		
			Arter Maria Ma	<i>∵</i> ⇔ V II. (Sheck (List				e Anno 1917 - Charles Martin, ang pananang ang
,			Ch	eck the a	ctivities	comple	_			
Notify Drain & Remov Excava Clean Remov Submer Cap or Cap or Cut on	8 flush piping into e all product and the down to tank, and inspect tank, e drop tube, fill pij sible pumps and plug all lines exce	fice before abandon tank. residuals from tank pe, gauge pipe, vap other tank fixtures. xpt the vent and fill & flammable vacors	xor recovery tar	ik connectio	xns,		Fill Plug Disc Solid Crea Labe	tank until or cap a onnect and inert ma inert ma <u>REN</u> tank	Il openings d cap or n terial used <u>MOVAL</u> ole	renflows tank opening; ;; ernove vent line - specify:
Date 1	ine area. Fank(s) Permanen of Change-In-Serv	tly closed:4/ nice:	22/93				Final	tank des	stination: _	rvier Lagrange N.C.
	r penalty of law	/ that I have per	sonally even	nined and	lamf	amiliar	Sign)	1.		
		on my inquiry c , accurate, and		iouais im	mediai	ely resj	ponsibl	e tor ob	itaining t	mitted in this and all attached ne information, I believe that the
mitted info	ormation is true		complete.	iouais im	mediati	ely res Signatu	ponsibl	e tor ob	itaining t	Date Signed

Yellow Copy - Central Office

Pink Copy - Owner

UTTS ENVIRONMENTAL


Corporate Headquarters Post Office Box 8148 Greenville, North Carolina 27835 919-758-0001 FAX 919-758-9652

Post Office Box 2102 Myrtle Beach South Carolina 29578 803-448-0000

July 15, 1994

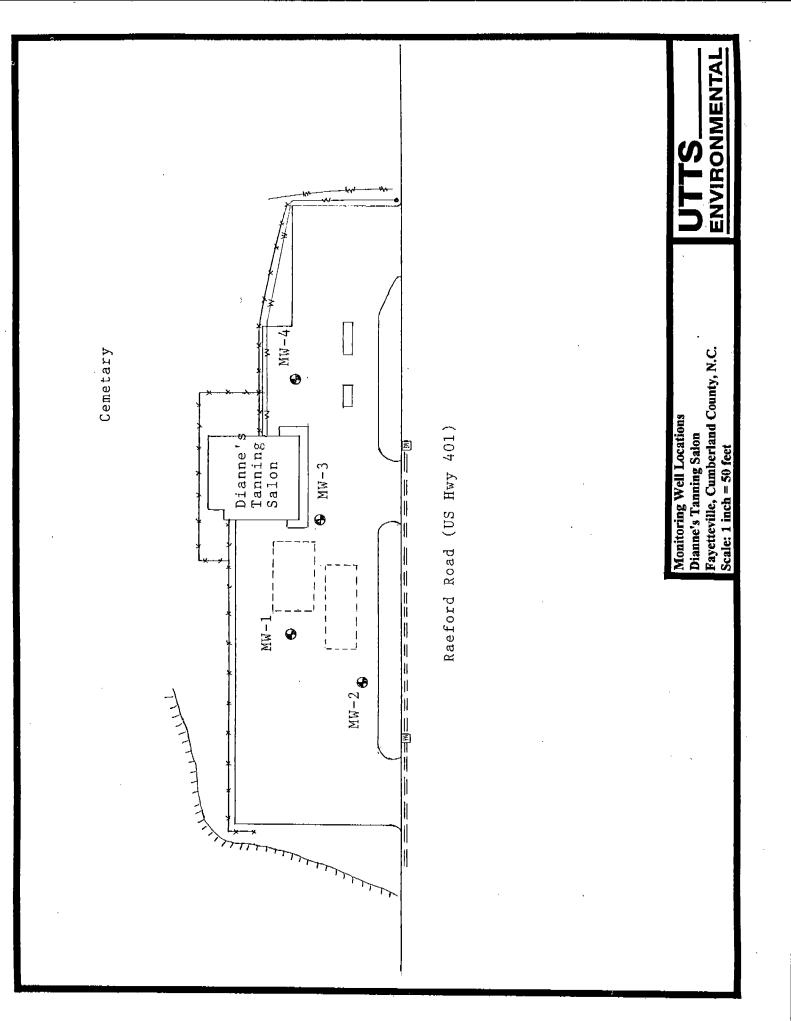
Mr. Jim Bales NC DEHNR - Fayetteville Regional Office Wachovia Building, Suite 714 Fayetteville, N.C. 28301

Re: Dianne's Tanning Salon 4299 Raeford Road Fayetteville, N.C. 28305

Dear Mr. Bales:

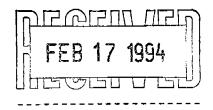
UTTS/Environmental (UTTS/E) is pleased to submit the preliminary findings of the ground water investigation at the above referenced subject site.

To date, UTTS/E has installed four monitoring wells at the subject site. The location of the monitoring wells is provided on a site map included herein.


In addition, UTTS/E personnel have obtained ground water samples from the subject site. The samples were submitted to GeoChem, Incorporated in Morrisville, N.C. for analysis by EPA Method 601, EPA Method 602 plus Methyl Tertiary Butyl Ether (MTBE), Ethylene Dibromide (EDB) and Isopropyl Ether (IPE) in addition to EPA Method 625 B/N. A copy of the analytical results is included herein.

Based on the confirmation of ground water contamination at the subject site, UTTS/E is currently seeking off site permission of adjacent property owners to access their property to continue needed investigative work.

Sincerely,


J/Alan Pinnix, P.G. Staff Geologist

cc: Mr Robert Bryan, Yaupon Corporation

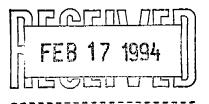
GeoChem, Incorporated \equiv

Environmental Laboratories

February 14, 1994

Mr. Charlie Harrison UTTS/E P.O. Box 8148 Greenville, NC 27835

Reference: Dians Tanning GCI# 9401-069 (additional information)


Dear Mr. Charlie Harrison:

This is the analytical report for the above referenced project. On January 20, 1994 we received one ground water sample for analysis. The analytical and quality control results are presented in separate tables for your convenience. Brief summaries of analytical methods employed are as follows. GeoChem analytical reports contain information based strictly on the analysis requested on the chain of custody (COC) accompanying this report. Non-target compounds are not identified or quantified. Our clients must request such additional documentation in writing.

EPA method 602

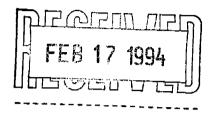
Samples are loaded into a specially designed purging chamber at ambient temperature. Helium is bubbled through the sample. This drives the organics onto a sorbent trap. Once purging has been completed the sorbent column is rapidly heated. This efficiently transfers the organics into the gas chromatograph which separates the components of the sample. The purgeable organics are then detected using flame ionization and photo ionization detectors.

Environmental Laboratories

EPA method 601

Samples are loaded into a specially designed purging chamber at ambient temperature. Helium is bubbled through the sample. This drives the organics onto a sorbent trap. Once purging has been completed the sorbent column is rapidly heated. This efficiently transfers the organics into the gas chromatograph which separates the components of the sample. The purgeable organics are then detected using a halide specific detector.

Semivolatiles EPA 625


This method is used to determine the concentration of semivolatile organic compounds in extracts prepared from waste water and ground water. The components are separated via gas chromatograph and detected using a mass spectrometer. This method can be used to quantify most neutral, acidic, and basic organic compounds that are soluble in methylene chloride.

If there are any technical questions please feel free to call me at 919-460-8093. Thank you for allowing **GEOCHEM** to serve your analytical needs.

Sincerely Dean Gokel President

Environmental Laboratories

1

Site Name Dians Tanning

Geochem (NC # 336/SC # 99008) Project#9401-069

LAB ID.	0257
DATE SAMPLED	01/19/94
DATE ANALYZED	01/22/94
FIELD ID.	MW 4

METHOD

ANALYTE	<u>ug/1</u>	pql
EPA 602		
Benzene Toluene Chlorobenzene Ethylbenzene Xylenes 1,3 Dichlorobenzene 1,4 Dichlorobenzene 1,2 Dichlorobenzene	BDL BDL 1.9 25 BDL BDL BDL	0.5
ntbe	BDL	1.0
EDB	BDL	1.0

<u>soil</u> <u>water</u> parts per million = mg/kg mg/l parts per billion = ug/kg ug/l pql = practical quantitation limit due to matrix effects. bdl = below method detection limit. bql = below quantitation limit.

Environmental Laboratories

Geochem (NC # 336/SC # 99008) Project#9401-069 2

Site Name Dians Tanning

	·····
LAB ID.	0257
DATE SAMPLED	01/19/94
DATE ANALYZED	01/22/94
FIELD ID.	MW 4

METHOD

ANALYTE	<u>ug/1</u>	pql
EPA 601		
Dichlorodifluoromethane	BDL	0.5
Chloromethane	BDL	
Vinyl chloride	BDL	
Bromomethane	BDL	
Chloroethane	BDL	
Methylene chloride	BDL	
Trichlorofluoromethane	BDL	
trans-1,2Dichloroethene	BDL	
1,1-Dichloroethane	BDL	
Chloroform	BDL	
1,1,1-Trichloroethane	BDL	
Carbon tetrachloride	BDL	
1,2-Dichloroethane	BDL	
Trichloroethene	BDL	
1,1-Dichloroethene	BDL	
1,2-Dichloropropane	BDL	
Bromodichloromethane	BDL	
trans1,3Dichloropropene	BDL	
cis-1,3-Dichloropropene	BDL	
1,1,2-Trichloroethane	BDL	
Tetrachloroethene	BDL	
Dibromochloromethane	BDL	
Chlorobenzene	BDL	
Bromoform	BDL	
1,1,2,2Tetrachloroethane	BDL	
1,3-Dichlorobenzene	BDL	
1,2-Dichlorobenzene	BDL	
1,4-Dichlorobenzene	BDL	
2-Chloroethylvinylether	BDL	

<u>soil</u> water parts per million = mg/kg mg/l parts per billion = ug/kg ug/l pql = practical quantitation limit due to matrix effects. bdl = below method detection limit. bql = below quantitation limit.

Environmental Laboratories

Geochem (NC #336/SC Project#9401-069	3	Site Name Dians Tanning
LAB ID. DATE SAMPLED DATE EXTRACTED FIELD ID.	0257 01/19/94 01/24/94 MW 4	
METHOD		
ANALYTE	ug/1 pgl	PECELEIN INEM
625 Base/Neutral		FEB 17 1994
1,2,4-Trichlorobenzene Bis2Chloroethyl Ether 1,3-Dichlorobenzene 1,4-Dichlorobenzene Bis2ChloroisopropylEthr Hexachloroethane n-Nitrosodipropylamine Nitrobenzene Isophorone Bis2ChloroethoxyMethane Naphthalene Hexachlorobutadiene Hexachlorobutadiene Hexachloroyclopentadien 2-Chloronaphthalene Acenaphthylene Dimethylphthalate 2,6-Dinitrotoluene Acenaphthene 2,4-Dinitrotoluene Fluorene 4ChlorophenylPhenylEthe Diethylphthalate n-Nitrosodiphenylamine 4-BromophenylPhenylEthe Hexachlorobenzene	BDL BDL BDL BDL BDL BDL BDL BDL BDL BDL	June Contraction of the second

parts per billion = mg/kg mg/l
parts per billion = ug/kg ug/l
pql = practical quantitation limit due to matrix effects.
bdl = below method detection limit.
bql = below quantitation limit.

GeoChem, Incorporated \equiv

Environmental Laboratories

Geochem (NC #336/SC #99008) Project#9401-069 4

LAB ID. 0257 DATE SAMPLED 01/19/94 DATE EXTRACTED 01/24/94 FIELD ID. MW 4

METHOD

ANALYTE	<u>uq/1</u>	<u>pq1</u>
625 B/N Continued		
Anthracene	BDL	10
Phenanthrene	BDL	
Di-N-Butylphthalate	BDL	
Fluoranthene	BDL	
Pyrene	BDL	
Benzidine	BDL	50
Indeno(1,2,3-cd)Pyrene	BDL	10
Butyl Benzyl Phthalate	BDL	20
Chrysene	BDL	10
Benzo(a)Anthracene	BDL	
3,3'-Dichlorobenzidine	BDL	20
Bis2EthylhexylPhthalate	BDL	10
Di-N-Octylphthalate	BDL	
Benzo(b)Fluoranthene	BDL	
Benzo(k)Fluoranthene	BDL	
Benzo(a)Pyrene	BDL	
Dibenz(a,h)Anthracene	BDL	
Benzo(g,h,i)Perylene	BDL	

FEB 17 1994

Site Name Dians Tanning

<u>soil</u> water parts per million = mg/kg mg/l parts per billion = ug/kg ug/l pql = practical quantitation limit due to matrix effects. bdl = below method detection limit. bql = below quantitation limit.

Environmental Laboratories

QUALITY CONTROL RESULTS

METHOD	RECOVE		METHOD DETECTION LIMIT
602 Benzene Toluene Chlorobenzene Ethylbenzene Xylenes 1,3-Dichlorobenzene 1,2-Dichlorobenzene 1,4-Dichlorobenzene	111 % 107 % 114 % 108 % 106 % 102 % 97 % 88 %	FEB 17 1994	0.5 ppb
MTBE	86 %		1.0 ppb
EDB	95 %		1.0 ppb
IPE	90 %		1.0 ppb
625 Base/Neutrals			
1,4-Dichlorobenzene n-Nitroso-di-n-propylamine 1,2,4-Trichlorobenzene Acenaphthene 2,4-Dinitrotoluene Pyrene	37 % 46 % 44 % 65 % 76 % 105 %		10 ppb
601 1,2-Dichloropropane Dibromochloromethane 1,4-Dichlorobenzene	117 % 114 % 109 %	· · ·	0.5 ppb

REVIEWED BY

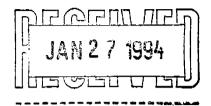
MO

REVIEWED BY

aleri G. Read

2500 Gate Way Centre Blvd., Suite 300 • Morrisville, NC 27560 Telephone: 919-460-8093 • FAX: 919-460-0167

	quested in the analyses section of this document.	perform the services requested	contract to	This Chain of Custody is considered a written contract to perform the services re-	ain of Custody	This Cha	.,
		Cally .					
DATE TIME	DATE TIME RELINQUISHED BY:	TIME RECEIVED BY:	DATE	RELINQUISHED BY:	DATE TIME	D/	RECEIVED BY:
	SHEBATY	ł					REMARKS
	Mart A Creel.						
		-					
		· · · · · · · · · · · · · · · · · · ·					
				2002	yound	\sim	
0257			Х	- 19-94 S	20 1	Stanlerd. F.	12/11/4
LAB ID NO. (for lab use only)	REMARKS		6	DATE AND 2	SAMPLE MATRIX T	TURNAROUND S. IN DAYS N	FIELD SAMPLE ID
			200	OF CO PER LO		(Bignature)	COLLECTED BY OBT
94	-03-	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	TRI	225	Q	CADINS	SITE NAME
		ANALYSES /	- /N	07675 RS	Po#	IUMBER	PROJECT SITE NUMBER
		Chain of Custody Record	n of (Lor Chai			
	Suite 300	2500 Gate Way Centre Blvd., Sui Morrisville, NC 27560	e Way Morris	- 2500 Gat	1 27835 1	V WILL N 758000	6100NV
	tories	Labora	onmental	Enviro		Box 814A	D. B.
r /1		GeoChem, Incorporated	Chen	Geo	Ì	1 mar	Report To:


4 Ş aiyəcə əccilu - CC

۰.

-

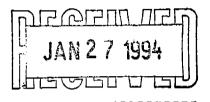
_

Environmental Laboratories

January 24, 1994

Mr. Brian Gray UTTS/E P.O. Box 8148 Greenville, NC 27835

Reference: Dianne's Tanning GCI# 9401-040

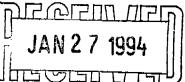

Dear Mr. Brian Gray:

This is the analytical report for the above referenced project. On January 10, 1994 we received three ground water samples for analysis. The analytical and quality control results are presented in separate tables for your convenience. Brief summaries of analytical methods employed are as follows. GeoChem analytical reports contain information based strictly on the analysis requested on the chain of custody (COC) accompanying this report. Non-target compounds are not identified or quantified. Our clients must request such additional documentation in writing.

EPA method 601

Samples are loaded into a specially designed purging chamber at ambient temperature. Helium is bubbled through the sample. This drives the organics onto a sorbent trap. Once purging has been completed the sorbent column is rapidly heated. This efficiently transfers the organics into the gas chromatograph which separates the components of the sample. The purgeable organics are then detected using a halide specific detector.

Environmental Laboratories

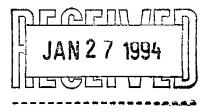

EPA method 602

Samples are loaded into a specially designed purging chamber at ambient temperature. Helium is bubbled through the sample. This drives the organics onto a sorbent trap. Once purging has been completed the sorbent column is rapidly heated. This efficiently transfers the organics into the gas chromatograph which separates the components of the sample. The purgeable organics are then detected using flame ionization and photo ionization detectors.

If there are any technical questions please feel free to call me at 919-460-8093. Thank you for allowing **GEOCHEM** to serve your analytical needs.

Sincerely Dean Gokel President

Environmental Laboratories

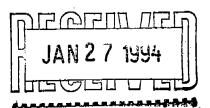

Geochem (NC # 336/SC # 99008) Project#9401-040 1 Site Name Dianne's Tanning LAB ID. 0127 0128 0129 DATE SAMPLED 01/10/94 01/10/94 01/10/94 01/11/94 MW-3 DATE ANALYZED 01/11/94 01/11/94 MW-2 MW-1 FIELD ID.

METHOD

ANALYTE	<u>ug/1</u>	pql	<u>uq/1</u>	lpq	<u>uq/1</u>	<u>pq1</u>
EPA 601						
Dichlorodifluoromethane	BQL	13	BQL	5.0	BQL	5.0
Chloromethane	BQL		BQL		BQL	
Vinyl chloride	BQL	1	BQL		BQL	
Bromomethane	BQL		BQL		BQL	
Chloroethane	BQL		BQL		BQL	
Methylene chloride	BQL		BQL		BQL	
Trichlorofluoromethane	BQL		BQL		26	
trans-1,2Dichloroethene			BQL		BQL	
1,1-Dichloroethane	BQL		BQL		BQL	
Chloroform	BQL		BQL		BQL	
1,1,1-Trichloroethane	BQL		BQL		BQL	
Carbon tetrachloride	BQL		BQL		BQĽ	
1,2-Dichloroethane	BQL		BQL		BQL	
Trichloroethene	BQL		BQL		BQL	
1,1-Dichloroethene	BQL		BQL		BQL	
1,2-Dichloropropane	BQL		BQL		BQL	
Bromodichloromethane	BQL		BQL		BQL	
trans1,3Dichloropropene	BQL		BQL		BQL	
cis-1,3-Dichloropropene	BQL		BQL		BQL	
1,1,2-Trichloroethane	BQL		BQL		BQL	
Tetrachloroethene	BQL		BQL		BQL	
Dibromochloromethane	BQL		BQL		BQL	
Chlorobenzene	BQL		BQL		BQL	
Bromoform	BQL		BQL		BQL	
1,1,2,2Tetrachloroethane	∋BQL		BQL		BÕL	
1,3-Dichlorobenzene	BQL		BQL		BQL	
1,2-Dichlorobenzene	BQL		BQL		BQL	
1,4-Dichlorobenzene	BQL		BQL		BOL	
2-Chloroethylvinylether	BQL		BQL		BQL	

<u>soil</u> water parts per million = mg/kg mg/l parts per billion = ug/kg ug/l pql = practical quantitation limit due to matrix effects. bdl = below method detection limit. bql = below quantitation limit.

Environmental Laboratories


LAB ID. DATE SAMPLED DATE ANALYZED FIELD ID.	0127 01/1 01/1 MW-1	0/94 1/94		10/94 11/94		10/94 11/94
NETHOD						
ANALYTE	<u>ug/1</u>	<u>pq1</u>	ug/l	<u>pql</u>	ug/l	<u>lpq</u>
BPA 602						
Benzene Toluene Chlorobenzene Ethylbenzene Xylenes 1,3 Dichlorobenzene 1,4 Dichlorobenzene 1,2 Dichlorobenzene	2100 890 BQL 950 2700 BQL BQL BQL	13	580 130 BQL 500 2600 BQL BQL BQL	5.0	56 35 BQL 49 220 BQL BQL BQL	5.0
ntbe	23,000	125	810	10	33	10
EDB	BQL	25	BQL	10	BQL	10

<u>soil</u> <u>water</u> parts per million = mg/kg mg/l parts per billion = ug/kg ug/l pql = practical quantitation limit due to matrix effects. bdl = below method detection limit. bql = below quantitation limit. * = exceeds calibration curve >20%.

> 2500 Gate Way Centre Blvd., Suite 300 • Morrisville, NC 27560 Telephone: 919-460-8093 • FAX: 919-460-0167

Environmental Laboratories

QUALITY CONTROL RESULTS

METHOD	RECOVERY	METHOD DETECTION LIMIT
601		
1,2-Dichloropropane	90 %	0.5 ppb
Dibromochloromethane	110 %	
1,4-Dichlorobenzene	85 %	
602		
Benzene	91 %	0.5 ppb
Toluene	94 %	
Chlorobenzene	90 %	
Ethylbenzene	95 %	
Xylenes	96 %	
1,3-Dichlorobenzene	95 %	
1,2-Dichlorobenzene	95 %	
1,4-Dichlorobenzene	96 %	
MTBE	93 %	1.0 ppb
EDB	93 %	1.0 ppb

REVIEWED BY

REVIEWED BY

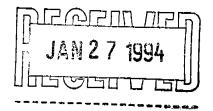
	Grent
Report To:	Brian

GeoChem, Incorporated
 E

Bill To:

2500 Gate Way Centre Blvd., Suite 300 Morrisville, NC 27560 Environmental Laboratories

	48	21130
BUL	Bry SI	le ve
u T s	P.O.	Greens


ord
Recc
dy F
usto
of C
hain
$\overline{\mathbf{O}}$

0117

			LAB ID NO. (for lab use only)	0127	0128	610						DATE TIME	
			for L		0	С.			•	· /		<u>a :</u>	D
аеоснем Project # Э V OI – ОЧ О	10-24-94	VERBAL/FAX/HARDCOPY	REMARKS										RELINQUISHED BY:
EOCHE	DATE DUE	AL/FAX/I	_ <u>~</u>									LINONISHED BY:	TIME
0	DAT	VERB											DATE
ANALYSES												2	RECEMEDBY
ANA											 		
20									 		 		TIME
	- 97	34		7	7	7							DATE
		EB LOC		3	ĸ	m							
			AND LECTED	1:15	در	۲ţ							ISHED BY:
14841			DATE AND TIME COLLECTED	1-10-94	۲ ۲								TIME RELINQUISHED BY:
	TANNING	NY NY	SAMPLE MATRIX	GRAUND WALE.	4.	2					 		DATE TIM
UMBER		$ \rangle \rangle$	TURNAROUND	10		\uparrow						/	
PROJECT SITE NUMBER	SITE NAME TDI ANIN'E'J	COLLECTED BY (Signature)	FIELD T	Murl	MW-2	Nw-3						 REMARKS	

This Chain of Custody is considered a written contract to perform the services requested in the analyses section of this document.

Environmental Laboratories

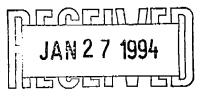
January 24, 1994

Mr. Brian Gray UTTS/E P.O. Box 8148 Greenville, NC 27835

Reference: Dianne's Tanning GCI# 9401-041

Dear Mr. Brian Gray:

This is the analytical report for the above referenced project. On January 10, 1994 we received three groundwater samples for analysis. The analytical and quality control results are presented in separate tables for your convenience. Brief summaries of analytical methods employed are as follows. GeoChem analytical reports contain information based strictly on the analysis requested on the chain of custody (COC) accompanying this report. Non-target compounds are not identified or quantified. Our clients must request such additional documentation in writing.


Semivolatiles EPA 625

This method is used to determine the concentration of semivolatile organic compounds in extracts prepared from waste water and ground water. The components are separated via gas chromatograph and detected using a mass spectrometer. This method can be used to quantify most neutral, acidic, and basic organic compounds that are soluble in methylene chloride.

If there are any technical questions please feel free to call me at 919-460-8093. Thank you for allowing **GEOCHEN** to serve your analytical needs.

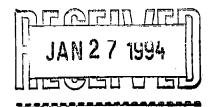
Sincerely, Dean Gokel President

Environmental Laboratories

Geochem (NC #336/SC Project#9401-041	#99008) 1	Site Name Dianne'	 s Tanning				
LAB ID. DATE SAMPLED DATE EXTRACTED FIELD ID.	0130 01/10/94 01/11/94 MW-1	0131 01/10/94 01/11/94 MW-2	0132 01/10/94 01/11/94 MW-3				
NETHOD							
ANALYTE	<u>uq/l pql</u>	<u>uq/l pql</u>	<u>ug/l pgl</u>				
625 Base/Neutral							
1,2,4-Trichlorobenzene Bis2Chloroethyl Ether 1,3-Dichlorobenzene 1,4-Dichlorobenzene Bis2ChloroisopropylEthr Hexachloroethane n-Nitrosodipropylamine Nitrobenzene Isophorone Bis2ChloroethoxyMethane Naphthalene Hexachlorobutadiene Hexachloroyclopentadien 2-Chloronaphthalene Acenaphthylene Dimethylphthalate 2,6-Dinitrotoluene Acenaphthene 2,4-Dinitrotoluene Fluorene 4ChlorophenylPhenylEthe Diethylphthalate n-NitrosodiphenylEthe Hexachlorobenzene	22 BDL BDL BDL BDL BDL BDL BDL BDL BDL BDL	BDL 10 BDL BDL BDL BDL BDL BDL BDL BDL	BDL 10 BDL BDL BDL BDL BDL BDL BDL BDL				

Base Neutrals continued on the following page

<u>soil</u> <u>water</u> parts per million = mg/kg mg/l parts per billion = ug/kg ug/l pql = practical quantitation limit due to matrix effects. bdl = below method detection limit. bql = below quantitation limit.


Environmental Laboratories

Geochem (NC #336/SC Project#9401-041	<i>#</i> 9900	8) 2	Site 1	Name Dianne's Tanning							
LAB ID. DATE SAMPLED DATE EXTRACTED FIELD ID.		10/94 11/94		10/94 11/94	0132 01/1 01/1 MW-3	0/94 1/94					
METHOD											
ANALYTE	<u>ug/1</u>	lpq	<u>ug/1</u>	pql	<u>uq/1</u>	pql					
625 B/N Continued											
Anthracene	BDL	10	BDL	10	BDL	10					
Phenanthrene	BDL		BDL		BDL						
Di-N-Butylphthalate	BDL		BDL		BDL						
Fluoranthene	BDL		BDL		BDL						
Pyrene	BDL		BDL		BDL						
Benzidine	BDL	50	BDL	50	BDL	50					
Indeno(1,2,3-cd)Pyrene	BDL	10	BDL	10	BDL	10					
Butyl Benzyl Phthalate	BDL	20	BDL	20	BDL	20					
Chrysene	BDL	10	BDL	10	BDL	10					
Benzo(a)Anthracene	BDL		BDL		BDL						
3,3'-Dichlorobenzidine	BDL	20	BDL	20	BDL	20					
Bis2EthylhexylPhthalate		10	BDL	10	BDL	10					
Di-N-Octylphthalate	BDL		BDL		BDL						
Benzo(b)Fluoranthene	BDL		BDL		BDL						
Benzo(k)Fluoranthene	BDL		BDL		BDL						
Benzo(a)Pyrene Dibenz(a,h)Anthracene	BDL BDL		BDL BDL		BDL BDL						
	BDL										
Benzo(g,h,i)Perylene	BUL		BDL		BDL						

<u>soil</u> water parts per million = mg/kg mg/l parts per billion = ug/kg ug/l pql = practical quantitation limit due to matrix effects. bdl = below method detection limit. bql = below quantitation limit.

Environmental Laboratories

QUALITY CONTROL RESULTS

METHOD	RECOVERY	METHOD DETECTION LIMIT				
625 Base/Neutrals	<i>.</i>					
1,4-Dichlorobenzene n-Nitroso-di-n-propylamine 1,2,4-Trichlorobenzene Acenaphthene 2,4-Dinitrotoluene Pyrene	33 % 42 % 33 % 48 % 54 % 82 %	10 ppb				

REVIEWED BY

eman INA

REVIEWED BY

Valori G. Peero

	ENU BUL NE27525					LAB ID NO. (for lab use only)	0130	0131	0132						DATE TIME	LI
Bill To:	TTT T	110	аеоснем project # Я 4 01 - 041		VERBAL/FAX/HARDCOPY	REMARKS									· · · ·	TIME RELINQUISHED BY:
orated =	ratories L, Suite 300 60	Record													BELINGUIBH	
em, Incorporated =	Environmental Laboratories 2500 Gate Way Centre Blvd., Suite 300 Morrisville, NC 27560	of Custody Record		1 / / / / / / / / / / / /										 		TIME RECEIVED BY:
GeoCher	<u>Gate Way</u> Morris	Chain of	SB		DE COO	<u>~</u>	1	21	2 5		 					DATE
Ge Ge	Env 2500 (PO# 4842	TANNING	P	DATE AND TIME COLLECTED	0-11/ 100	1 '' / u	" / u							
				, 1 , 1	XX	SAMPLE MATRIX	water	1,	, , ,							DATE TIME
	Curry		NUMBER	5	((Signature)	TURNAROUND IN DAYS	2		->				i		Ø	P
Report To:	Bui		PROJECT SITE NUMBER		COLLECTED BY (Signature)	FIELD SAMPLE ID	Mw-1	MW-Z	NW-3						HEMAHKS	

This Chain of Custody is considered a written contract to perform the services requested in the analyses section of this document.

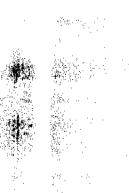
Division of Waste Management Underground Storage Tank Section

May 7, 2001

MEMORANDUM

To: Fay Sweat

From: Rob Krebs, Field Operations Branch


Subject: Incident Closure

The following underground storage tank (UST) pollution incident has successfully met the requirements for closure and has been issued a no further action letter by the UST Section. A copy of the no further action letter is on file in the UST Section's regional office.

	i
Incident #:	10468
IncidentName:	DIANNE'S TANNING SALON
Address:	4299 RAEFORD RD.
City/Town:	FAYETTEVILLE
County:	CUMBE
CloseOut Date:	6/11/96
Region	FAY

