

December 21, 2016

Mr. Terry Fox, L.G. North Carolina Department of Transportation Geotechnical Engineering Unit 1589 Mail Service Center Raleigh, North Carolina 27699-1589

Reference: Preliminary Site Assessment Golden of Raeford, LLC Property (Parcel #204) 4537 Raeford Road Fayetteville, Cumberland County, North Carolina State Project: U-4405 WBS Element 39049.1.1 SIES Project No. 2016.0054.NDOT

Dear Mr. Fox:

Solutions-IES, Inc., (SIES) has completed the Preliminary Site Assessment conducted at the abovereferenced property. The work was performed in accordance with the Technical and Cost proposal dated September 26, 2016, and the North Carolina Department of Transportation's (NCDOT's) Notice to Proceed dated September 26, 2016. Activities associated with the assessment consisted of conducting a geophysical investigation, collecting soil samples for analysis, and reviewing applicable North Carolina Department of Environmental Quality (NCDEQ) records. The purpose of this report is to document the field activities, present the laboratory analyses, and provide recommendations regarding the property.

Location and Description

The Golden of Raeford, LLC Property (Parcel #204) is located at 4537 Raeford Road in Fayetteville, Cumberland County, North Carolina. The property is situated on the south side of Raeford Road in the southwest quadrant of the intersection of Raeford Road and Scotland Drive (**Figure 1**). The property consists of an active gas station and convenience store (Raeford Road Sunoco) in the northern part of the property and a used tire retail and installation business (Raeford Road Service Center) on the southern part of the property. Based on a review of on-line UST registry information, three gasoline underground storage tanks (USTs) were installed on the property in 1985.

An asphalt parking area surrounds the building and extends almost to the property boundaries. An attached canopy is located at the front of the gas station building and includes two dispensers on each side of the canopy. A concrete pad covering the existing USTs is located east of the building/canopy (noted as U/G Tank on **Figure 2**). The proposed easement was not marked at the site as of the date of the field work, but NCDOT plan sheets show the proposed easement as potentially impacting the canopy.

The NCDOT requested a Preliminary Site Assessment for the right-of-way and proposed easement because of the presence of the gas station. The scope of work as defined in the Request for Technical and Cost Proposal was to evaluate the site with respect to the presence of known and unknown USTs and assess where contamination exists on the right-of-way/proposed easement. An estimate of the quantity of impacted soil was to be provided, if impacted soils were encountered.

SIES reviewed the on-line NCDEQ Incident Management database and Incident Number 9788 (Jim's Texaco) was assigned to the site. A further review of files regarding the incident from the NCDEQ Fayetteville Regional Office indicated that S&ME, Inc. (S&ME)¹ conducted a soil and groundwater investigation on an adjacent property as part of a real estate transaction. The investigation included soil and groundwater sampling on the Golden of Raeford (the former Jim's Texaco) property. One soil sample contained a detectable diesel fuel concentration, but below the applicable action level. A groundwater sample from an existing on-site well contained several compounds above the 2005 groundwater quality standards. Excerpts of this and other reports are provided in **Appendix A**.

In a report dated March 2006, Advantage Environmental Consultants, LLC², collected three groundwater samples and four soil samples from the Golden of Raeford property and measured for free product in the three existing monitoring wells (reportedly installed in 1992, but no documentation of the work was in the NCDEQ files). According to the conclusions of the report, "liquid phase hydrocarbon (LPH) was found to exist in 2 of the 3 existing monitoring wells at thicknesses of approximately 1.5 inches and 13 inches. The results of the soil and groundwater sampling indicated environmental impact throughout the majority of the site."

On April 24, 2006, Raeford Road Holdings purchased the site. Because the previous owner had ignored Notices of Violation for the contamination at the site, the NCDEQ issued a Notice of Regulatory Requirements (NORR) to the new owner requiring a Limited Site Assessment (LSA)³. As part of the LSA, three additional monitoring wells were installed at the site. The LSA reported that free product was detected at thicknesses of 1.67 and 2.14 feet in two of the site monitoring wells. Individual petroleum compounds were detected in the remaining groundwater samples, some of which were present at concentrations above the Gross Contaminant Levels (GCLs). Based on the presence of free product and exceedance of the GCLs, the site was assigned an intermediate risk classification.

¹ S&ME, Inc., Limited Soil and Groundwater Sampling Services, Proposed Wal-Mart SuperCenter Property, November 22, 2005. ² Advantage Environmental Consultants, LLC, Phase II Environmental Site Assessment, Vacant Raeford Road Sunoco Station, 4537 Raeford Road, March 6, 2006.

³ Advantage Environmental Consultants, LLC, Phase II Limited Site Assessment Prepared in Response to a Leaking Underground Storage Tank Located at Raeford Road Sunoco (Formerly Jim's Texaco), 4537 Raeford Road, Fayetteville, Cumberland County, North Carolina, June 4, 2008.

To remediate the free product, aggressive fluid vapor recovery (AFVR) events were conducted in October 2008, March 2009, October 2009, April 2010, August 2012, and April 2013⁴, with limited success.

On March 27, 2013, the NCDEQ issued a NORR to the site owner to complete a Comprehensive Site Assessment (CSA). Ten soil borings were advanced in the area of the USTs and dispensers as part of the CSA. The analytical results indicated that "detectable concentrations of VOCs and VPH in the soil samples only slightly exceed their respective Soil to Groundwater MSCCs and are well below the Residential or Industrial Commercial MSCCs. Five additional groundwater monitoring wells were installed for the CSA, making a total of 10 shallow monitoring wells and 1 deep monitoring well. The CSA findings indicated that five of the ten wells contained free product and the remaining five wells contained petroleum constituents at concentrations above the 15A NCAC 2L groundwater quality standards. One well contained benzene at a concentration well above the GCL. Groundwater was encountered at depths of approximately 20 to 22 feet below the top of casing.

After reviewing the CSA, the NCDEQ issued a NORR for the responsible party to prepare a Corrective Action Plan (CAP)⁵. The CAP recommended continued AFVR events until such time the free product was eliminated. After free product removal, the CAP recommended reassessing the site to evaluate monitored natural attenuation. No additional documentation was in the files to indicate that corrective action has been implemented. As a convenience to the reader, relevant excerpts from the file documents are presented in **Attachment A** and the file reports (without lab data reports) are added to the end of this report.

SIES also examined the UST registration database to obtain UST ownership information. According to the database, the USTs on the property are operated under Facility Number 00-0-0000025474. The active USTs include three 10,000-gallon gasoline USTs. The owner and operator of the tanks are listed as follows:

Owner Golden of Raeford LLC 383 Thorncliff Drive Raeford, NC 28376 Operator Raeford Road Sunoco 4537 Raeford Road Fayetteville, NC 28304

Geophysical Survey

Prior to SIES' mobilization to the site, Pyramid Environmental & Engineering of Greensboro, NC (Pyramid) conducted a geophysical survey to determine if the known USTs were in the right-of-

⁵ Advantage Environmental Consultants, LLC, Corrective Action Plan, Raeford Road Sunoco, 4537 Raeford Road, Fayetteville, North Carolina, June 1, 2015.

way/proposed easement and if additional USTs were present in that area The geophysical survey consisted of an electromagnetic (EM) survey using a Geonics EM61 time-domain electromagnetic induction meter to locate buried metallic objects, and ground penetrating radar (GPR) using a Geophysical Survey Systems Inc. Utility Scan DF with a dual frequency 300/800 MHz antenna. The instruments were used specifically to locate USTs.

A survey grid was laid out along the right-of-way/proposed easement with the X-axis oriented approximately parallel to Raeford Road and the Y-axis oriented approximately perpendicular to Raeford Road. The grid was positioned to cover the entire right-of-way/proposed easement, as shown on **Figure 2** of the geophysical survey report in **Attachment B**.

The survey lines were spaced five feet apart and EM data were collected continuously along each survey line with a data logger. After collection, the data were reviewed in the field with graphical computer software. Following the EM survey, a GPR survey was conducted to further evaluate any significant metallic anomalies.

Access was available to all areas of the right-of-way/proposed easement. Most of the anomalies detected with the EM survey that were attributed to visual cultural features at the ground surface. THE GPR survey verified concrete reinforcement and found no additional structures. Collectively, the geophysical data did not show evidence of metallic USTs within the right-of-way/proposed easement. Pyramid's detailed report of findings and interpretations is presented in **Attachment B**.

Site Assessment Activities

On October 26, 2016, SIES mobilized to the site to conduct a Geoprobe[®] direct-push investigation to evaluate subsurface soil conditions on the property. As directed by the NCDOT, the Geoprobe[®] borings were terminated at 10 feet below ground surface (ft bgs) unless the location was in the vicinity of a known or suspected UST, which resulted in a boring terminated at 12 ft bgs. Five direct-push borings (204-SB-1 through 204-SB-5) were advanced throughout the right-of-way/proposed easement (**Figure 2**). The soil boring logs are included as **Attachment C**. Borings 204-SB-1 and 204-SB-3 were located to evaluate the subsurface conditions near proposed drop inlets. Borings 204-SB-2 and 204-SB-4 were placed to assess the eastern dispenser island and the existing UST area. Boring 204-SB-5 was located to evaluate the subsurface at the western dispenser island (see photos in **Attachment D**).

Continuous sampling using a Geoprobe[®] resulted in generally good recovery of soil samples from the direct-push borings. Soil samples were collected and contained in four-foot long acetate sleeves inside the direct-push Macro-Core[®] sampler. Each of the sleeves was divided into two-foot long sections for soil

sample screening. Soil from each two-foot interval was placed in a resealable plastic bag and the bag was set aside for volatilization of organic compounds from the soil to the bag headspace. A photoionization detector (PID) probe was inserted into the bag and the reading was recorded.

If the PID concentrations in a boring were consistently low, one sample from the bottom interval was selected for analysis. If the PID concentrations were elevated, samples at the elevated and bottom intervals were selected for analyses. The PID results are summarized in **Table 1**.

The selected soil samples were submitted to an on-site mobile laboratory for analysis of total petroleum hydrocarbons (TPH) diesel range organics (DRO) and gasoline range organics (GRO using ultraviolet fluorescence (UVF) methodology. Each boring was backfilled with bentonite and drill cuttings to the surface after completion.

The lithology encountered by the direct-push samples was generally consistent throughout the site. The ground surface was covered with about 0.5 feet of asphalt or topsoil. Below this surface cover to a depth of about six to eleven feet was a tan fine-grained sand or clayey sand. Underlying the sand was a light brown silty clay. No groundwater or bedrock was noted in any of the borings.

According to the 1985 Geologic Map of North Carolina, the site is within of Coastal Plain Physiographic Province in North Carolina near the contact between the Cretaceous Black Creek and Middendorf Formations. The strata of the Black Creek Formation consist of gray to black clay, thin lenses of fine-grained sand and thick lenses of cross-bedded sand. The lithology may also include glauconite and fossils. In comparison, the Middendorf Formation consists of sand, sandstone, and mudstone that are laterally discontinuous. The soils observed at the site are consistent with the Middendorf Formation as the parent material.

Analytical Results

The laboratory data are summarized in **Table 1** and the complete report is presented in **Attachment E**. Seven soil samples were submitted for analysis (multiple samples were collected from borings 204-SB-2 and 204-SB-5). one sample contained detectable GRO compounds and six contained detectable DRO compounds. Soil sample 204-SB-3-8-10 contained 0.26 milligrams per kilogram (mg/kg) GRO. DRO concentrations in the 5 soil borings ranged from 0.16 to 17.1 mg/kg. The action levels are 50 mg/kg for GRO and 100 mg/kg for DRO⁶. None of the soil samples analyzed for this site contained DRO or GRO concentrations above their respective action levels.

⁶ NCDEQ, Guidelines for North Carolina Action Limits for Total Petroleum Hydrocarbons (TPH), July 26, 2016.

Conclusions and Recommendations

A Preliminary Site Assessment was conducted to evaluate the Golden of Raeford, LLC Property (Parcel #204) located at 4537 Raeford Road in Fayetteville, Cumberland County, North Carolina. Documents within the NCDEQ UST Section files indicate that a release occurred at the site resulting in soil and groundwater contamination and free product. One soil sample collected as part of a CSA contained GRO above the action level. Groundwater samples from site monitoring wells indicated several petroleum compounds present at concentrations above the North Carolina groundwater quality standards.

A geophysical survey conducted at the site indicated no metallic USTs within the right-of-way/proposed easement. Five soil borings were advanced to evaluate the subsurface soil conditions along the right-ofway/proposed easement. None of the analyzed soil samples detected GRO or DRO concentrations above their respective action levels.

Free product and associated soil contamination have been detected throughout the eastern half of the site, including the right-of-way/proposed easement. Borings 204-SB-2, 204-SB-3, and 204-SB-4 were drilled in this location; however, soil sample UVF analysis detected neither GRO nor DRO above the applicable action levels. However, it is possible that some soil contamination exists in the smear zone above the water table (~20 to 22 feet below top of casing) in this location.

The UVF analytical results (Table 1) of the soil samples collected on October 25, 2016 indicate that none of the soil samples contained DRO or GRO concentrations above the action level. Therefore, no estimate of the volume of soil requiring possible remediation was made.

SIES appreciates the opportunity to work with the NCDOT on this project. Because compounds were detected above the method detection limit in the soil samples, SIES recommends that a copy of this report be submitted to the Division of Waste Management, UST Section, in the Fayetteville Regional Office. If you have any questions, please contact us at (919) 873-1060.

Sincerely,

michael W. Brusan

Michael W. Branson, P.G. Project Manager

Attachments

John Palmer, P.G. Senior Hydrogeologist

TABLE 1

SOIL FIELD SCREENING AND ANALYTICAL RESULTS GOLDEN OF RAEFORD LLC PROPERTY (PARCEL #204) FAYETTEVILLE, CUMBERLAND COUNTY, NORTH CAROLINA STATE PROJECT: U-4405 WBS ELEMENT 39049.1.1 SIES PROJECT NO. 2016.0054.NDOT

				ANALYTICAL RESULTS				
SAMPLE ID	DEPTH (ft)	PID READING	SAMPLE ID	_				
_		(ppm)	_	UVF GRO	UVF DRO			
	/	Action Level (mg/k	(g)	50	100			
	0 - 2	0.0						
	2 - 4	0.0						
204-SB-1	4 - 6	0.0						
	6 - 8	0.0						
	8 - 10	18.6	204-SB-1-8-10	<0.58	2.4			
	0 - 2	56.9		LE ID (mg/kg) UVF GRO UVF D 50 100 50 100 -1-8-10 <0.58				
	2 - 4	92.3						
204 60 2	4 - 6	90.4	204-SB-2-4-6	<0.63	17.1			
204-SB-2	6 - 8	57.3						
	8 - 10	80.1						
	10 - 12	8.5	204-SB-2-10-12	<0.56	1.0			
	0 - 2	0.0						
	2 - 4	0.1						
204-SB-3	4 - 6	0.0						
	6 - 8	0.1						
	8 - 10	0.1	204-SB-3-8-10	0.26	0.16			
	0 - 2	0.0						
	2 - 4	0.0						
204-SB-4	4 - 6	0.0						
204-30-4	6 - 8	0.1						
	8 - 10	0.2						
	10 - 12	0.0	204-SB-4-10-12	<0.62	16.1			
	0 - 2	53.9						
	2 - 4	28.1						
204-SB-5	4 - 6	71.6	204-SB-5-4-6	<0.63	<0.63			
	6 - 8	36.1						
	8 - 10	17.6	204-SB-5-8-10	<0.58	6.0			

1) ft - feet

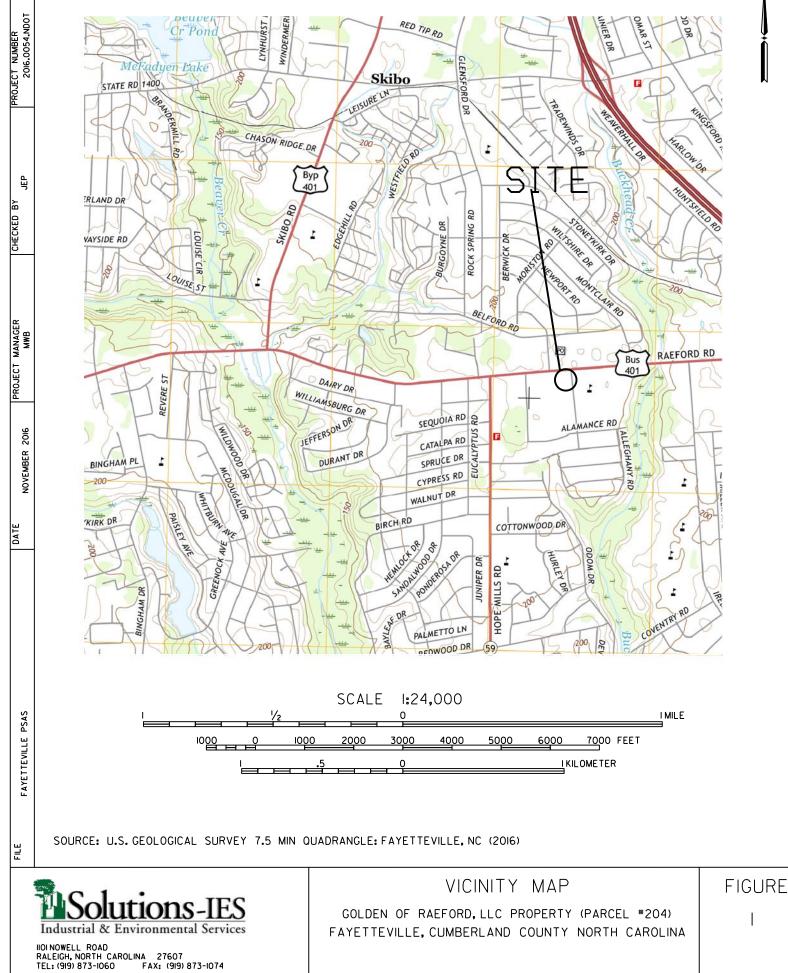
2) ppm - parts per million.

3) PID - photoionization ionization detector

4) mg/kg - milligrams per kilogram.

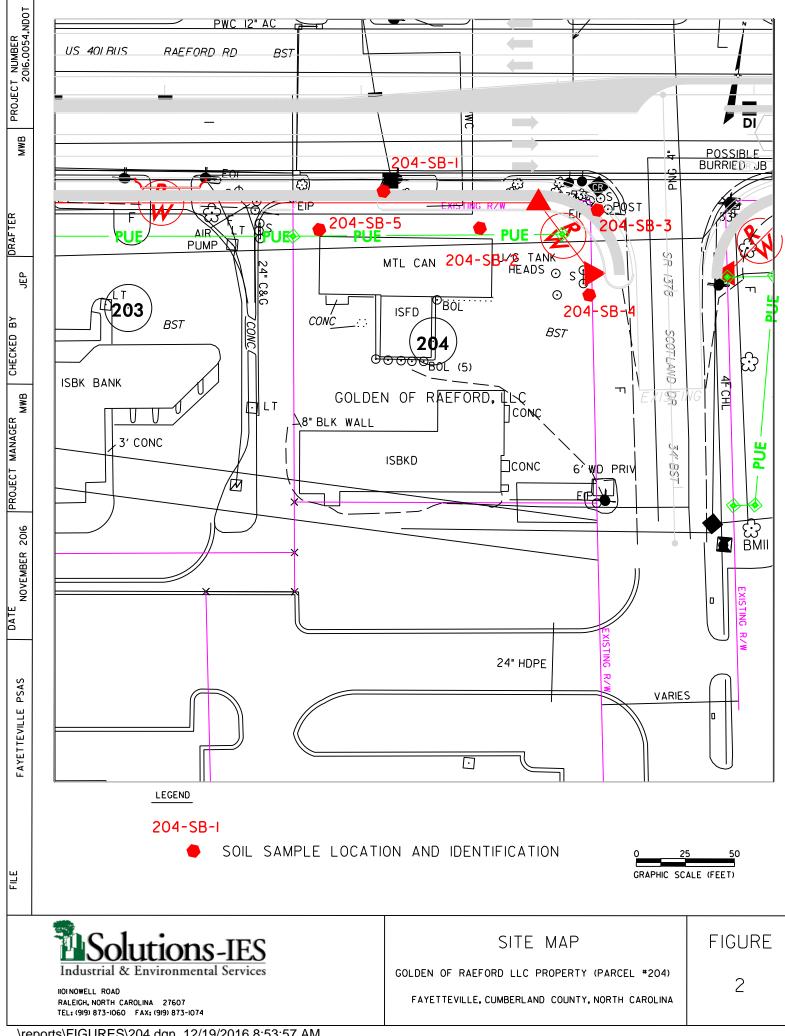
5) UVF DRO - Diesel range organics by UVF.

6) UVF GRO - Gasoline range organics by UVF.


7) Action level based upon NCDEQ memo Guidelines for North Carolina Action Limits for Total Petroleum Hydrocarbons - July 29, 2016.

8) Soil samples were collected on October 26, 2016.

9) **Bold** values are above the detection level.



FIGURES

Ν

...\reports\FIGURES\204 FIG 1.dgn 10/5/2016 10:10:15 AM

...\reports\FIGURES\204.dgn 12/19/2016 8:53:57 AM

ATTACHMENT A

November 22, 2005

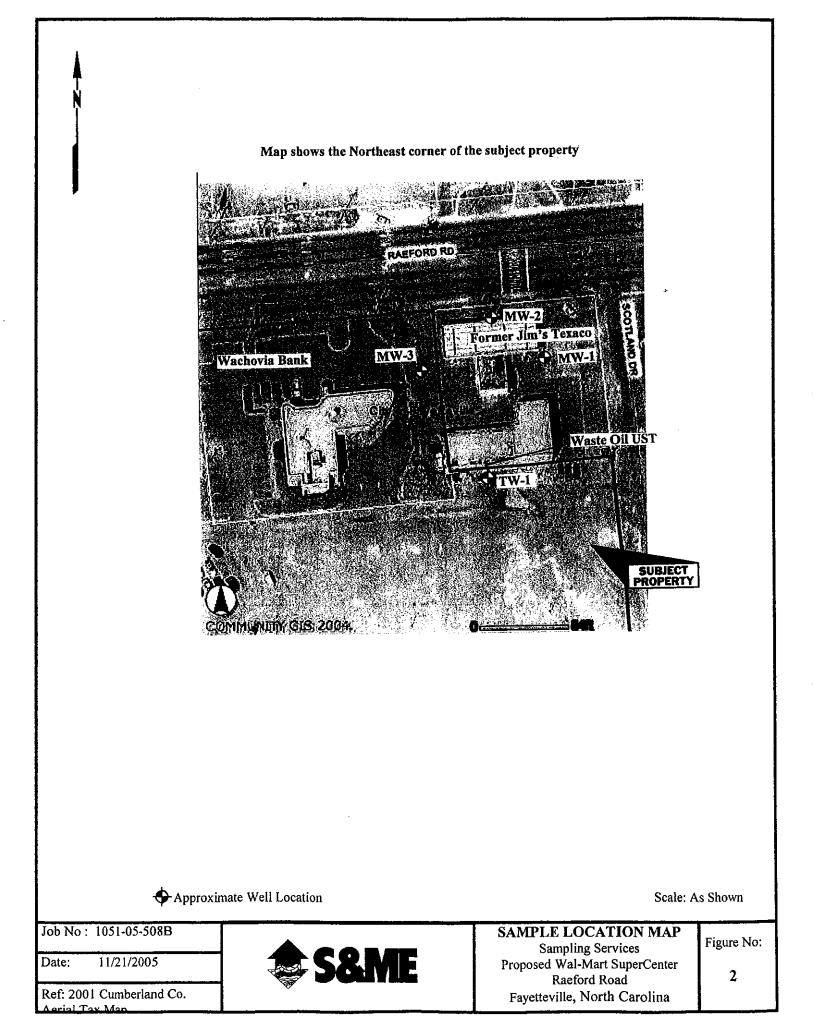
Kimley-Horn and Associates, Inc. 4651 Charlotte Park Drive, Suite 300 Charlotte, North Carolina 28217

ATTENTION: Mr. Eric Riedinger

Reference:

LIMITED SOIL AND GROUNDWATER SAMPLING SERVICES Proposed Wal-Mart SuperCenter Property Raeford Road Fayetteville, North Carolina Job No. 1051-05-508B

Dear Mr. Riedinger:


S&ME, Inc. (S&ME) is pleased to present the findings of our limited soil and groundwater sampling services conducted on the above referenced property in accordance with our Proposal No EPRO-05-10-06 (revised) dated November 4, 2005.

PROJECT INFORMATION

S&ME is currently performing a Phase I Environmental Site Assessment and a Geotechnical Subsurface Exploration, which were authorized by you for the above referenced property (Figure 1). An existing gasoline/convenience store with an automotive garage, which is identified as a Leaking Underground Storage Tank site (Jim's Texaco), adjoins the subject property to the northeast.

Based on our review of files maintained by the North Carolina Department of Environment and Natural Resources, three groundwater monitoring wells (MW-1 through MW-3) were installed to assess groundwater quality at the Jim's Texaco site in the early 1990s. Free product was measured in MW-1 and MW-2, which were installed on the gasoline station's property. High concentrations of petroleum constituents, which exceeded the North Carolina groundwater quality

(910) 323-1091 (910) 323-3499 fax www.smeinc.com

Limited Soil and Groundwater Sampling Services Proposed Wal-Mart SuperCenter, Raeford Road, Fayetteville, N.C. S&ME Job No. 1051-05-508B November 22, 2005

Table 2

Summary of Soil Quality Data Limited Soil and Groundwater Sampling Services

Proposed Wal-Mart SuperCenter Property Raeford Road Fayetteville, North Carolina Job No. 1051-05-508B

<u>Analysis</u> Compound	TW-1 13.5' - 15'	Reportable Concentration
EPA Method 5030 Gasoline Range Organics	BDL	10
EPA Method 3550 Diesel Range Organics	4	10
EPA Method 9071 Oil and Grease	BDL	NA

All quantities expressed in mg/Kg milligrams per kilograms (parts per million) BDL: below method detection limits

NA: Not applicable

Constituents not listed were below the detection limit of the analytical method.

Regulatory standards as set forth in "Guidelines for Assessment and Corrective Action, North Carolina Underground Storage Tank Section"

Analytical results greater than applicable standards are given in **bold** print.

Table 3

Summary of Groundwater Quality Data Limited Soil and Groundwater Sampling Services

Proposed Wal-Mart SuperCenter Property Raeford Road Fayetteville, North Carolina Job No. 1051-05-508B

Compound	TW-1	MW-3 11-8-05	MW-3 9-28-92	2L Regulatory Standards
MTBE Benzene Toluene Ethyl benzene M,P,O-Xylenes Naphthalene 1,4-Dichlorobenzene 1,2-Dichlorobenzene	6,500 14,000 47,000 3,700 36,000 BDL BDL BDL BDL	BDL 160 BDL 82 2,090 BDL BDL BDL BDL	1,382 2,756 10,348 BDL 1,557 58 423 424	200 1 1,000 550 530 21 75 620

All quantities expressed in $\mu g/L$ micrograms per liter (parts per billion)

Analytical results of groundwater samples collected at MW-3 collected in 1992 were obtained from the Preliminary Assessment Report dated October 15, 1992 completed by TTS/Environmental. BDL: below method detection limits

Regulatory standards as set forth in 15A NCAC 2L, "Classifications and Standards Applicable to the Groundwaters of North Carolina" or in guidance documents issued by the NCDENR.

Analytical results greater than applicable standards are given in bold print.

PHASE II ENVIRONMENTAL SITE ASSESSMENT

Vacant Raeford Road Sunoco Station 4537 Raeford Road Fayetteville, North Carolina

> AEC Project No. 06-017 March 6, 2006

> > Prepared for.

Mr. Mervis Samuels BB&T 9658 Baltimore Avenue, Suite 207 College Park, Maryland 20740

On behalf of:

Empire Petroleum Marketing LLC 15729 Crabbs Branch Way Rockville, Maryland 20855

Prepared by:

Advantage Environmental Consultants, LLC Jessup8610 Washington Blvd, Suite 217 Jessup, Maryland 20794 Phone (301) 776-0500 (301) 776-0500 • FAX (301301) 776-1123

4.0 INVESTIGATION ACTIVITY RESULTS

4.1 Soil Sample Analytical Results

The soil analytical results revealed elevated levels of VPH. Specifically, VPH was found in samples SB1 @ 21' and SB4 @ 11'. Samples SB3 @ 16' and SB5 @ 20' were below detection limits (bdl) for VPH. It should be noted that the detection limit is defined as the minimum concentration of the compound that can be reliably quantified by the laboratory performing the analysis per the recognized method. In addition to the VPH exceedances, several VOCs were also detected. The most significant were Benzene, n-butylbenzene, and Naphthalene. Most of the VOC analytes listed below are common petroleum constituents. Soil analytical results are illustrated on Figure 3 in Appendix A.

Table 1: Soil Sample Analytical Results Vacant Raeford Road Sunoco Station 4537 Raeford Road, Fayetteville, NC February 16, 2005

Analyte	SB1 @ 21'	SB3 @ 16'	SB4 @ 11'	SB5 @ 20'	NC DENR Commercial Cleanup Levels		
Benzene	1.37	0.021	28.9	0.005	200		
sec-Butylbenzene	0.655	bdl	97.1	bdi	4,088		
n-Butylbenzene	3.00	bdl	364	bdi	4,088		
Ethylbenzene	9.48	0.012	<u>2</u> 06	0.002	40,000		
Isopropylbenzene	1.61	bdl	293	bdl	40,880		
p-isopropyltoluene	0.331	bdl	40	bdl	not listed		
Methyl tert-Butyl Ether (MTBE)	0.234	0.110	bdl	0.086	4,088		
Naphthalene	5.23	0.016	505	0.008	1,635		
n-Propylbenzene	5.24	0.002	93.6	0.001	4,088		
Toluene	26.9	0.036	351	0.013	82,000		
1,3,5-Trimethylbenzene	9.70	0.009	189	0.003	20,440		
1,2,4-Trimethylbenzene	31.0	0.030	585	0.012	20,440		
Xylenes, Total	52.6	0.066	1,080	0.015	200,000		
C5 - C8 Aliphatic Hydrocarbons, Unadjusted	134	bdl	4,160	bdi	not listed		
C9 – C10 Aromatic Hydrocarbons	136	bdl	1,850	bdl	not listed		
C9 - C12 Aliphatic Hydrocarbons, Unadjusted	392	bdl	4,470	bdl	not listed		
C9 - C12 Aliphatic Hydrocarbons	256	bdl	2,260	bdl	not listed		

All analytes reported in mg/kg

bdl = denotes results below analytical detection level

All analyte levels are compared to the North Carolina Department of Environment and Natural Resource (NC DENR) "Guidelines for Assessment and Corrective Action", Dated July 1, 2001

Copies of the completed laboratory analytical reports and chain-of-custody forms are provided in Appendix C.

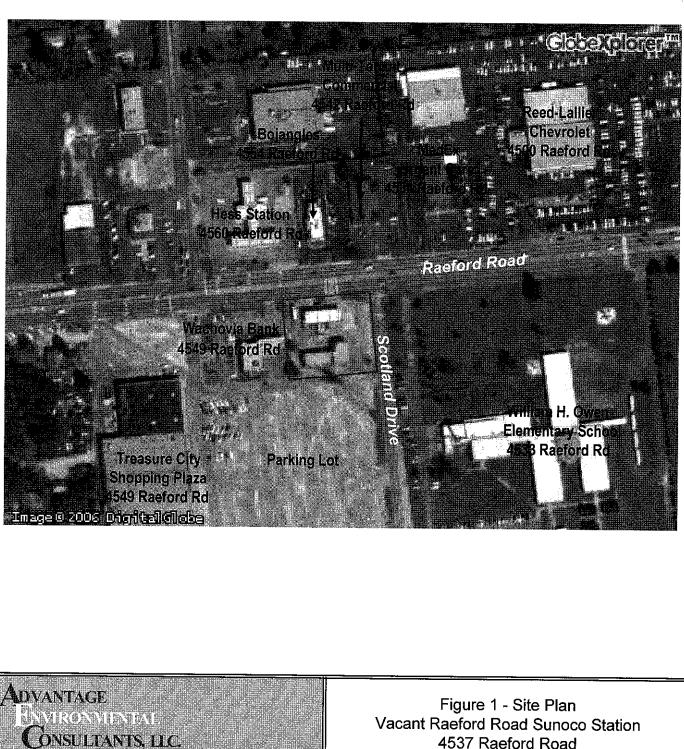
4.2 Groundwater Sample Analytical Results

The groundwater analytical results revealed elevated levels of VPH. Specifically, VPH was found in samples SB1 W, SB3 W, and SB4 W. In addition to the VPH exceedances, several VOCs were also detected. The most significant were Benzene, Toluene, and Xylenes. Most of the VOC analytes listed below are common petroleum constituents. Copies of the completed laboratory analytical reports and chain-of-custody forms are provided in Appendix C.

February 16, 2005										
Analyte	SB1 W	SB3 W	SB4 W	NC DENR Groundwater Quality Standards						
Benzene	14,500	9,050	1,120	1						
sec-Butylbenzene	24	bdl	bdl	70						
Chloroform	7.09	1.16	bdl	0.00019						
1,2-Dibromoethane	15.5	bdl	bdi	0.0004						
Ethylbenzene	2,250	2,970	1,470	29						
2-Hexanone	61	bdi	bdl	280						
Isopropylbenzene	194	91.3	168	70						
p-lsopropyltoluene	11.3	11.0	8.55	not listed						
Methyl tert-Butyl Ether (MTBE)	737	286	3.86	200						
Methylene Chloride	bdi	bdl	10.2	5						
Naphthalene	270	191	213	21						
n-Propylbenzene	413	146	189	70						
Toluene	25,700	27,900	15,500	1,000						
1,1,2-Trichloroethane	bdl	bdl	8.30 *	not listed						
1,3,5-Trimethylbenzene	794	580	349	350						
1,2,4-Trimethylbenzene	2,490	2,190	1,300	350						
Xylenes, Total	11,500	15,600	7,820	530						
C5 - C8 Aliphatic Hydrocarbons, Unadjusted	117,000	47,000	45,700	not listed						
C9 – C10 Aromatic Hydrocarbons	12,700	4,070	5,170	not listed						
C9 - C12 Aliphatic Hydrocarbons, Unadjusted	42,600	20,200	21,300	not listed						
C9 - C12 Aliphatic Hydrocarbons	29,900	16,100	16,100	not listed						

4537 Raeford Road, Fayetteville, NC February 16, 2005

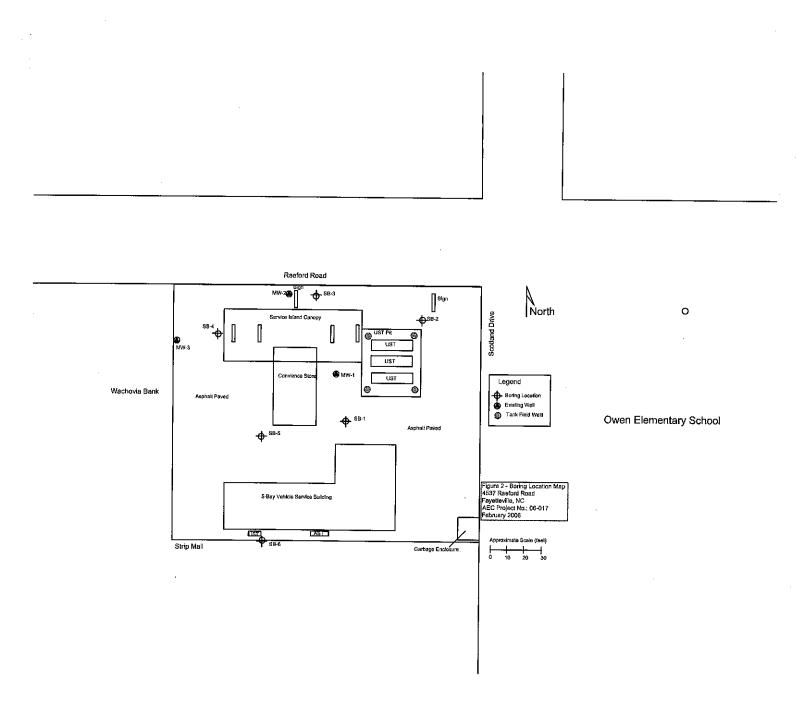
 Table 2: Soil Sample Analytical Results

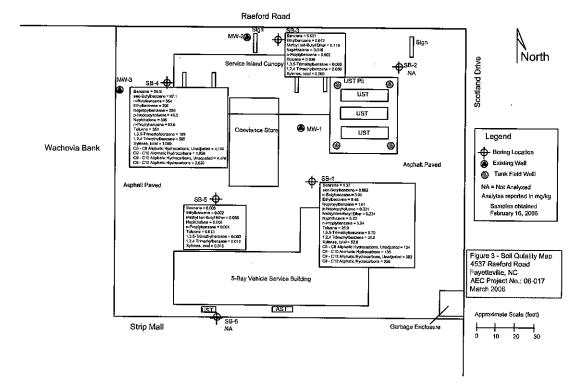

 Vacant Raeford Road Sunoco Station

All analytes in µg/L

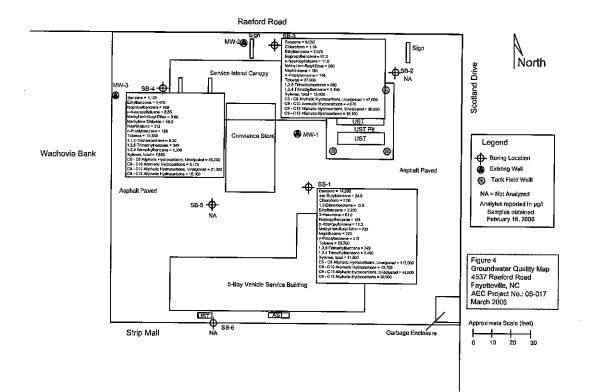
bdl = denotes results below analytical detection level

bold denoted exceeding NC DENR Groundwater Quality Standards

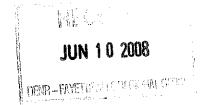

All analyte levels are compared to the North Carolina Department of Environment and Natural Resource (NC DENR) "Guidelines for Assessment and Corrective Action", Dated July 1, 2001



8610 Baltimore Washington Boulevard, Suite 217 Jessup, MD 20794 Phone: 301-776-0500 Fax 301-776-1123


4537 Raeford Road Fayetteville, North Carolina

AEC Project No .:	Report Date:	Drawn By:
06-017	3/6/06	LAK

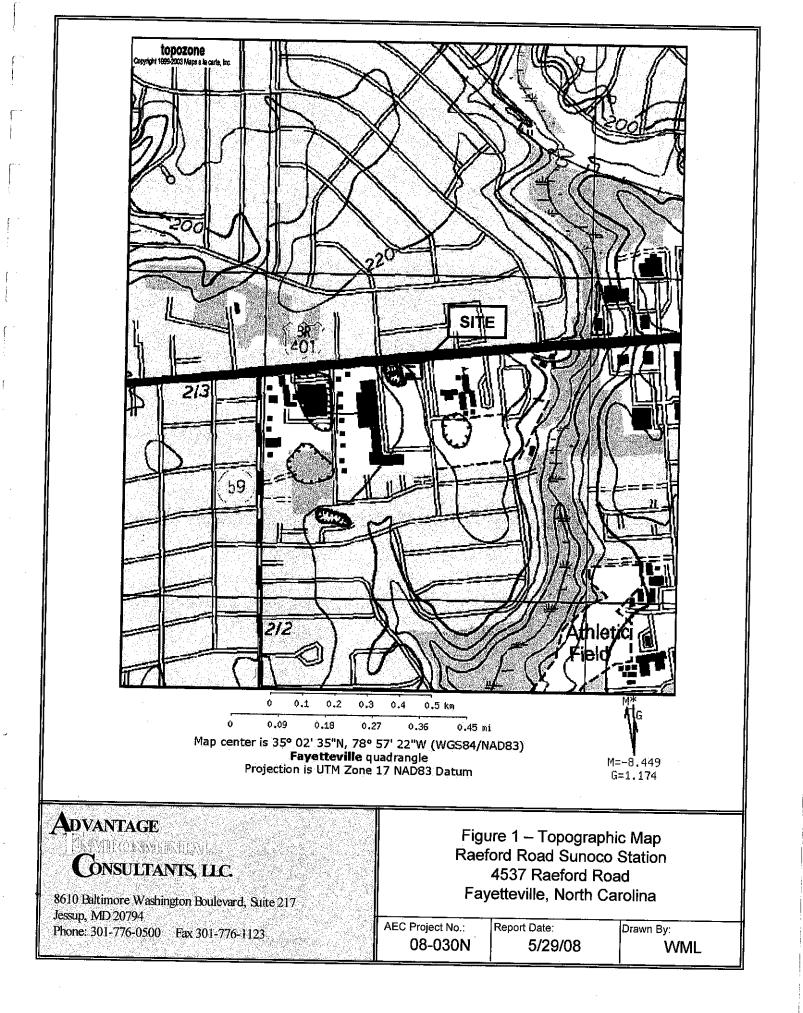


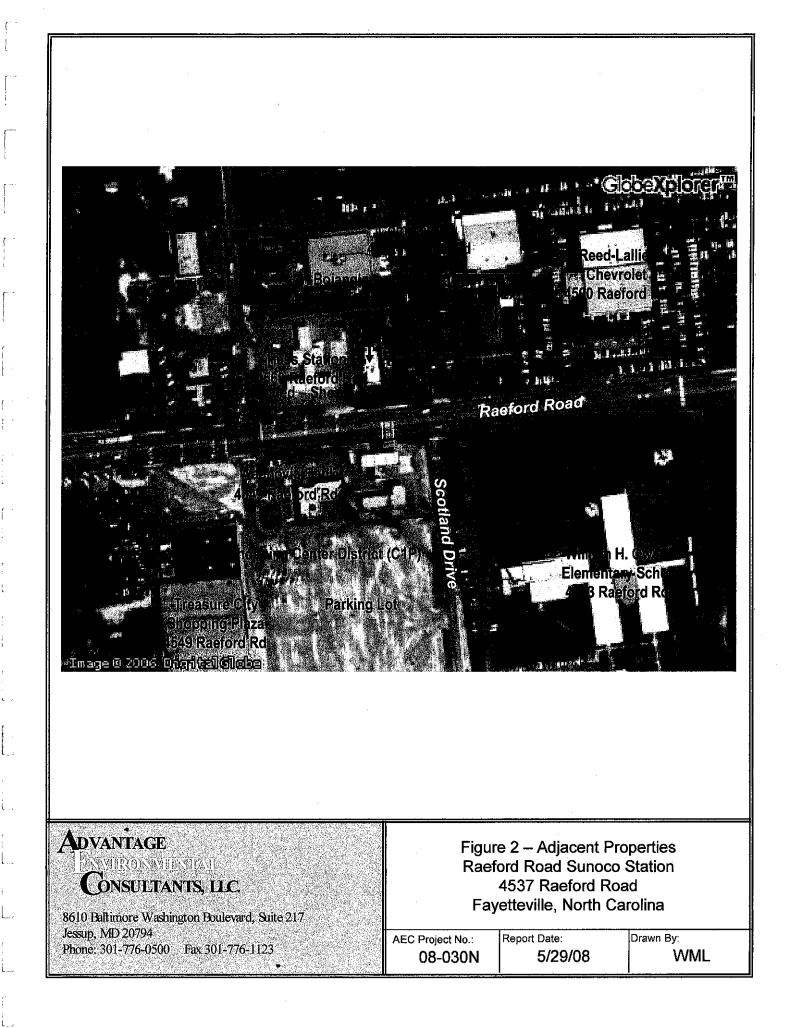
Owen Elementary School

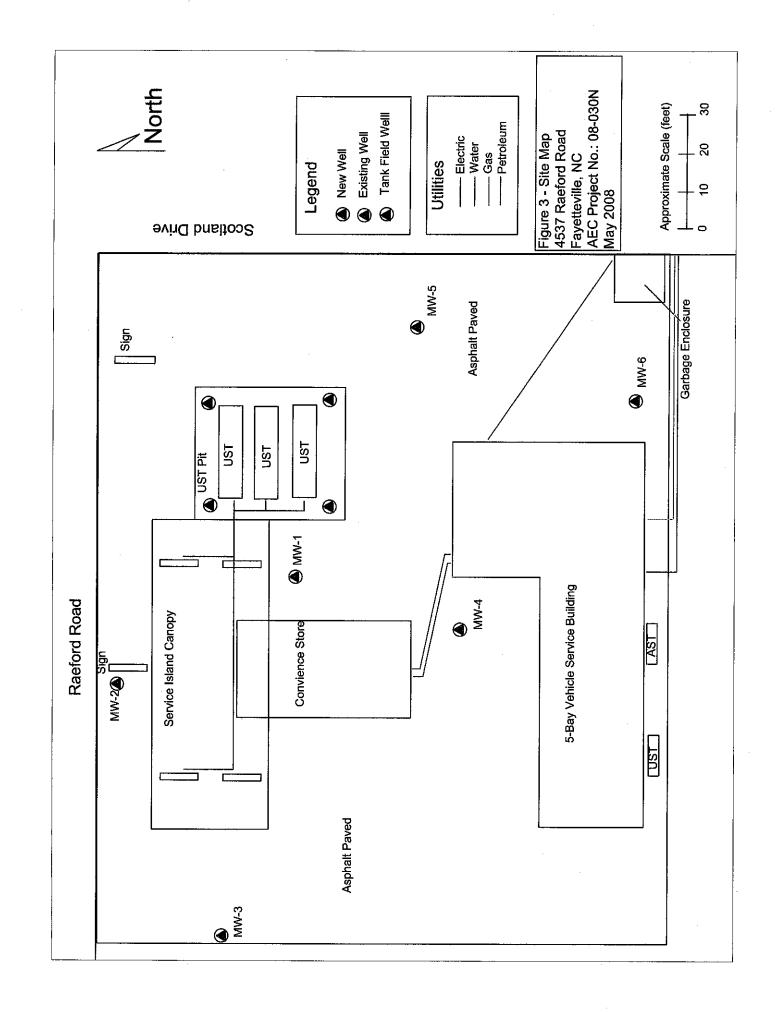
Owen Elementary School

PHASE II LIMITED SITE ASSESSMENT PREPARED IN RESPONSE TO A LEAKING UNDERGROUND STORAGE TANK LOCATED AT: RAEFORD ROAD SUNOCO (FORMER JIM'S TEXACO) 4537 RAEFORD ROAD FAYETTEVILLE, CUMBERLAND COUNTY, NORTH CAROLINA

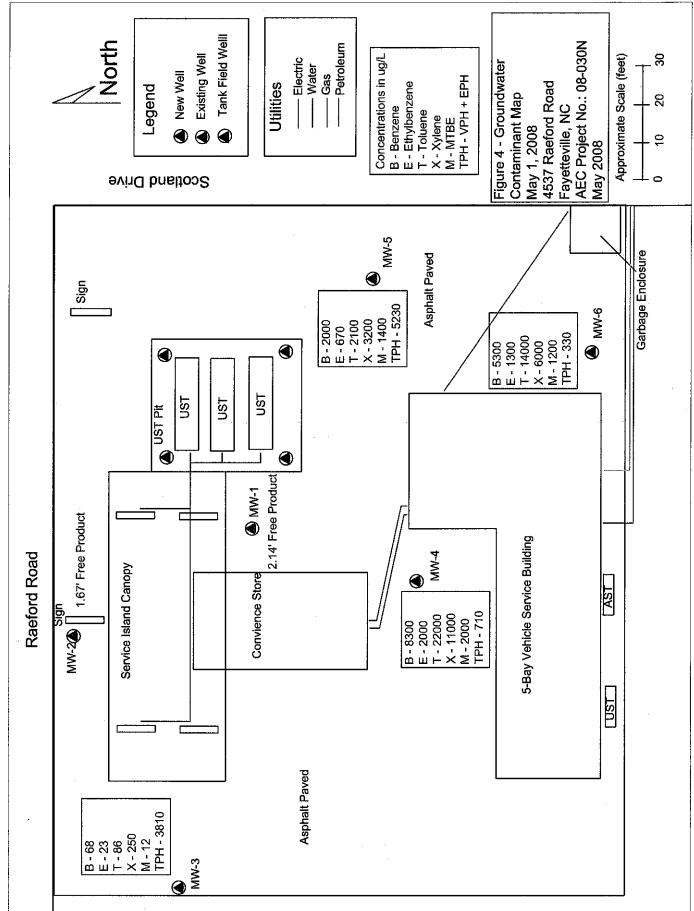
GROUNDWATER INCIDENT NUMBER: 9788 NCDENR-UST SECTION FACILITY ID # 0-025474


June 4, 2008


Responsible Party: Raeford Road Holdings, LLC 15729 Crabbs Branch Way Rockville, Maryland 20855 (301) 921-9200


<u>Current Property Owner:</u> Raeford Road Holdings, LLC 15729 Crabbs Branch Way Rockville, Maryland 20855 (301) 921-9200

<u>Consultant:</u> Advantage Environmental Consultants, LLC 277 Wilson Pike Circle, Suite 201 Brentwood, Tennessee 37027 (615) 376-3022

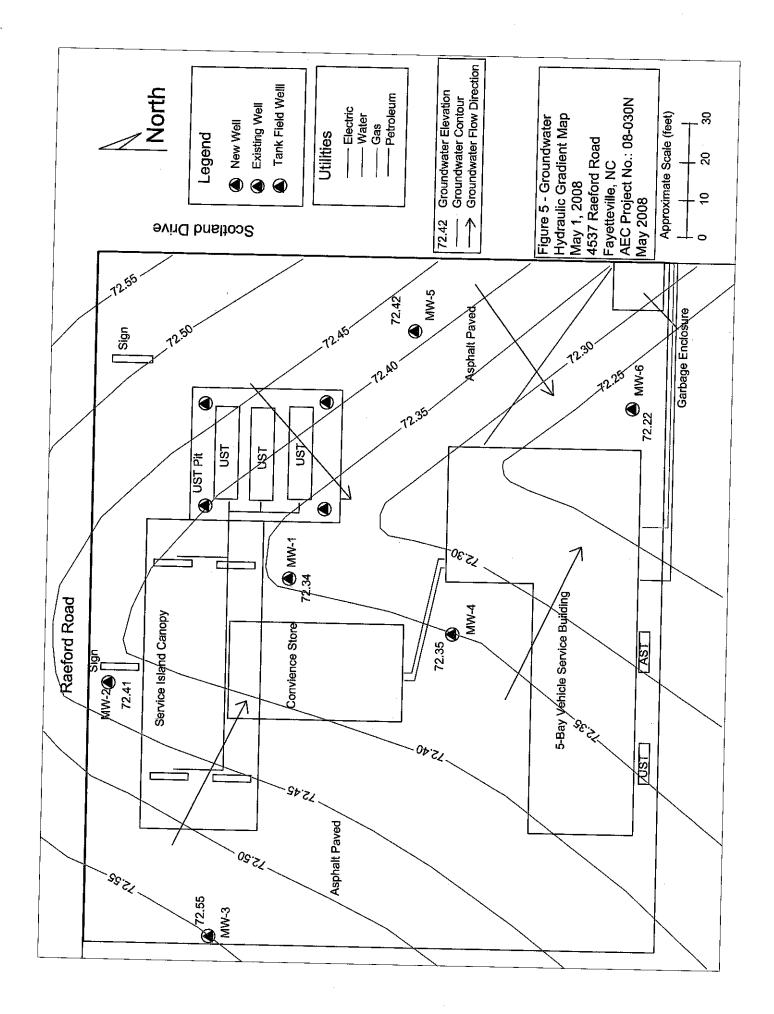

Release Discovery Date: April 27, 1992 Cause of Release: Underground Storage Tanks UST Sizes and Contents: (3) 10,000-gallon gasoline, (1) 150-gallon waste oil Latitude: 35° 02' 35"N, Longitude: 78° 57' 22"W

Ŀ,

ť

ſ

ί


L

L. .

.....

. L__

Ŀ. _

ſ

ſ

SECTION B TABLES/WELL CONSTRUCTION LOGS

Table 1

ſ

ſ

i

ļ

(: (

Statement - L

i i

ĺ

į

/ L...

ł. ...

-

l L

UST Information Raeford Road Sunoco (Former Jim's Texaco) 4537 Raeford Road Fayetteville, Cumberland County, North Carolina 28304

Was release associated with UST	unknown	unknown	unknown	No	unknown	unknown	unknown
Status of UST	In Use	In Use	In Use	Not in Use	Removed 1/87	Removed 1/87	Removed 1/87
Date Tank Installed	1/87	1/87	1/87	unknown	unknown	unknown	unknown
Descriptions of Associated Piping	Double-Wall Fiberglass	Double-Wall Fiberglass	Double-Wall Fiberglass	Steel	Steel	Steel	Steel
Construction Details	Steel	Steel	Steel	Steel	Steel	Steel	Steel
Capacity (gallons)	10,000	10,000	10,000	150	10,000	10,000	10,000
Previous Contents	Gasoline	Gasoline	Gasoline	Waste Oil	Gasoline	Gasoline	Gasoline
Last Contents	Gasoline	Gasoline	Gasoline	Waste Oil	Gasoline	Gasoline	Gasoline
#CT LSO	T-1	T-2	T-3	T-4	Removed Tank 1	Removed Tank 2	Removed Tank 3

EPA Method MADEP-EPH and MADEP-VPH Summary of Analytical Data - Groundwater

Fayetteville, Cumberland County, North Carolina 28304 Raeford Road Sunoco (Former Jim's Texaco) 4537 Raeford Road

				Ţ	1	Т	Т		T	7	
MADEP-EPH MADEP-VPH	C9-C22 Aromatics	FP	FP	1390	360	230	330	210	NA		
MADEP-EPH	C19-C36 Aliphatics	FP	КР	350	QN	QN	QX	42,000	NA		
MADEP-EPH MADEP-VPH	C9-C18 Aliphatics	E	FP	1690	350	5,000	QN	4,200	NA		
MADEP-VPH	C5-C8 Aliphatics	FP	FP	380	QN	Q	ND	420	NA		
	t of Sample	I-WM	MW-2	MW-3	MW-4	MW-5	MW-6				
Analytical Method >	Contaminant of Concern > Date Sa Collected 1 m/dd/yy	5/01/08	5/01/08	5/01/08	5/01/08	5/01/08	5/01/08	rd (ug/l)		FP – Free Product	Results are in ug/l
Analytic		MW-1	MW-2	MW-3	MW-4	MW-5	9-WM	2L Standard (ug/l)	GCL (ug/l)	FP - F	Results

Kesults are in ug/I ND – None Detected

NA – None Available Bold results indicate exceedence of 2L Standards

Table 3

ţ

ļ

ť ł

ſ

:

(; ;

l

i

· · · · · ·

·----

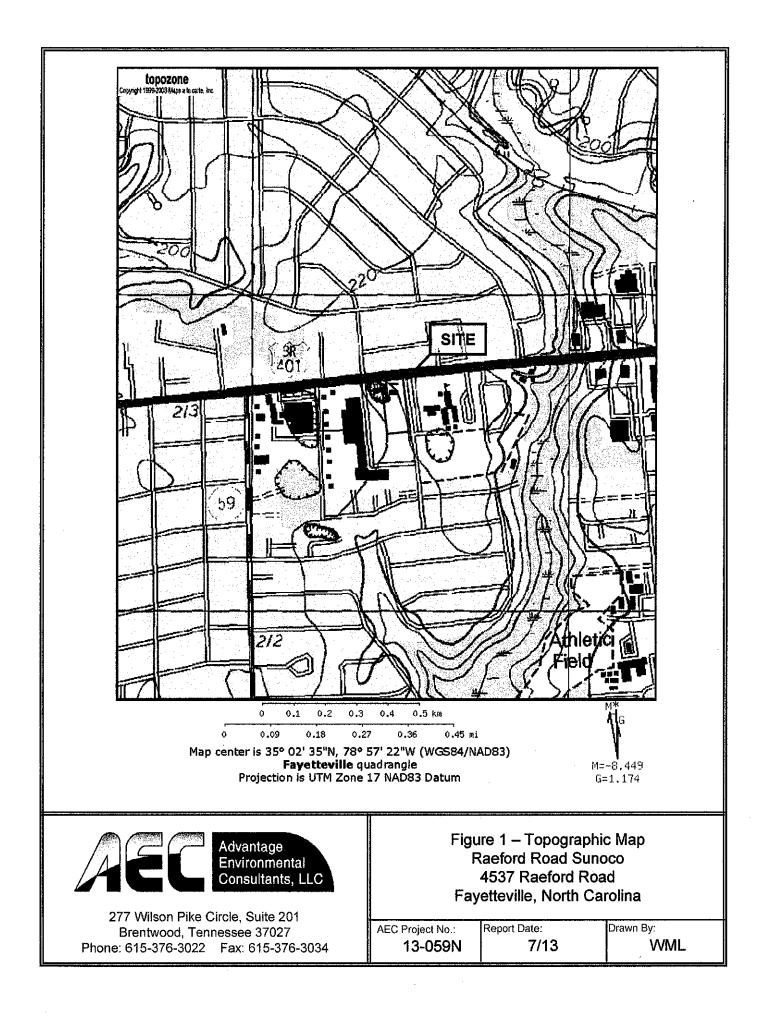
[

ľ L.

ANTI DEVELOPMENT RECEIPTOR

COMPREHENSIVE SITE ASSESSMENT PREPARED IN RESPONSE TO A LEAKING UNDERGROUND STORAGE TANK(S) AT: RAEFORD ROAD SUNOCO (FORMER JIM'S TEXACO) FAYETTEVILLE, CUMBERLAND COUNTY, NORTH CAROLINA

NCDENR-UST SECTION INCIDENT NUMBER: 9788 NCDENR-UST SECTION FACILITY ID# 0-025474

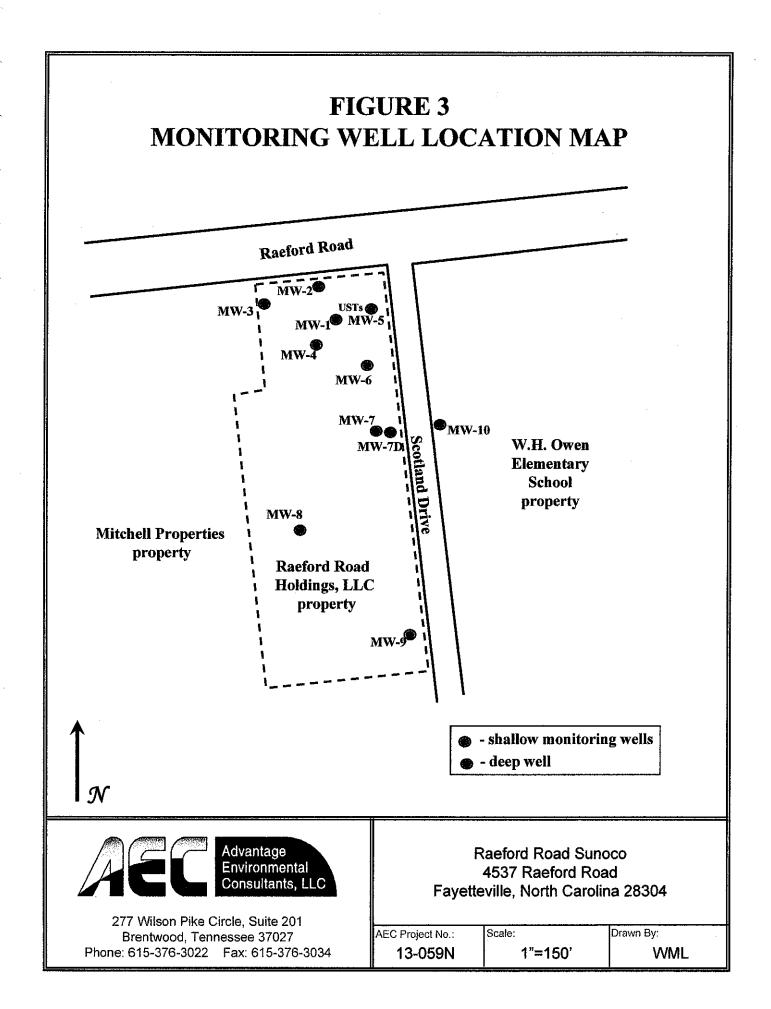

July 19, 2013

Responsible Party: Raeford Road Holdings, LLC 9055 Comprint Court, Suite 200 Gaithersburg, Maryland 20877 (301) 921-9200

Current Property Owner: Raeford Road Holdings, LLC 9055 Comprint Court, Suite 200 Gaithersburg, Maryland 20877 (301) 921-9200

Consultant: Advantage Environmental Consultants, LLC 277 Wilson Pike Circle, Suite 201 Brentwood, Tennessee 37027 (615) 376-3022

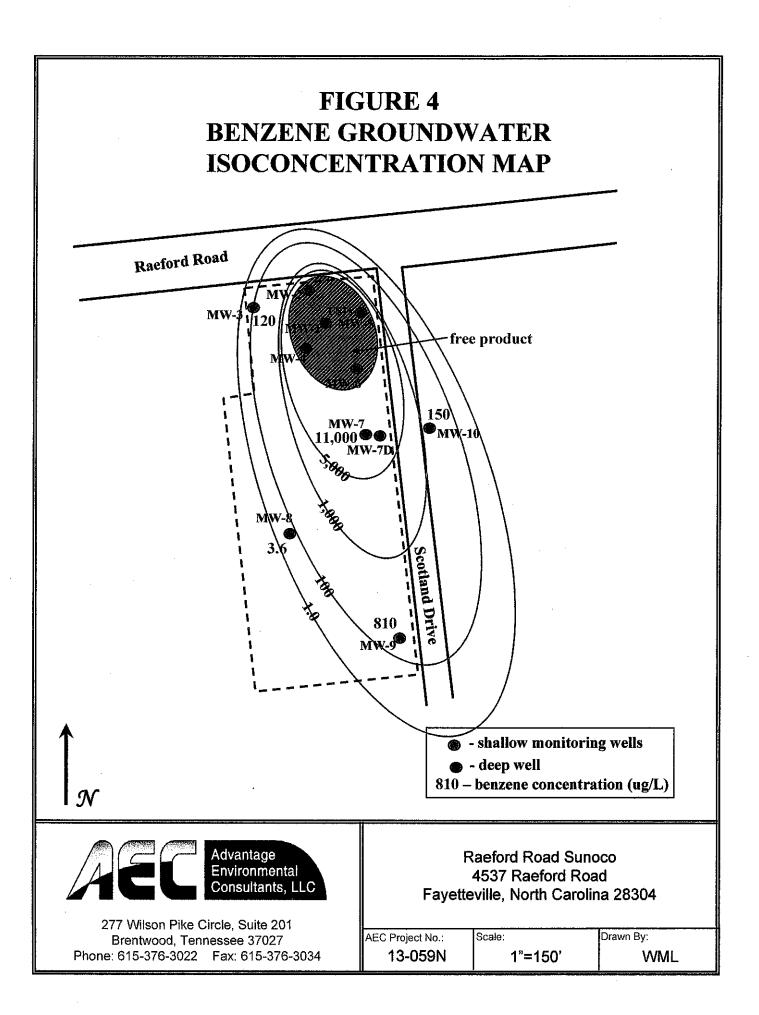
Release Discovery Date: April 27, 1992 Cause of Release: Underground Storage Tanks UST Size and Contents: (3) 10,000-gallon gasoline USTs, & (1) 150-gallon waste oil UST Latitude: N 35° 02' 35", Longitude: W 78° 57' 22"


ł

i.

L

[



İ.

Ĺ

i

L

L.,

Table 3 Summary of Analytical Data – Soil EPA Method 8260 Raeford Road Sunoco 4537 Raeford Road Fayetteville, Cumberland County, North Carolina

Analytic	al Method	> ·	8260	8260	8260	8260	8260	8260	8260	8260	8260	8260	8260	8260	8260	8260	8260
								0200	0200	0200	0200	0200	0200	0200	0200	0200	0200
Sample ID	Contamin Concern Date Collected m/dd/yy	ant of > Sample Depth (ft)	1,2,4-Trimethylbenzene	1,3,5-Trimethylbenzene	Acetone	2-Butanone	4-Isopropyltoluene	Ethylbenzene	Isopropylbenzene	Naphthalene	n-Butylbenzene	n-Propylbenzene	Benzene	sec-Butylbenzene	Toluene	MTBE	Total Xylencs
SB-1	6/04/13	8-10'	7.3	2.2	5.7	ND	ND	ND	ND	1.6	0.51	0.52	ND	ND	ND	ND	2.6
SB-1	6/04/13	18-20	0.053	0.014	0.015	ND	ND	0.047	0.002	0.020	0.0026	0.0074	0.08	ND	0.26	0.068	0.27
SB-2	6/04/13	8-10'	0.014	0.0037	0.028	ND	ND	0.0068	ND	0.0056	0.00072	0.001	0.0092	ND	0.030	0.061	0.037
SB-2	6/04/13	18-20'	0.0081	ND	0.035	0.0085	ND	0.00057	ND	0.0014	ND	ND	0.001	ND	0.0024	0.014	0.0019
SB-3	6/04/13	8-10'	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	0.00038	ND	ND	0.004	ND
SB-3	6/04/13	18-20'	ND	ND	0.020	ND	ND	0.00044	ND	ND	ND	ND	0.00087	ND	0.0014	0.004	0.00081
<u>SB-4</u>	6/04/13	8-10'	ND	ND	0.014	ND	ND	ND	ND	ND	ND	ND ND	0.00044	ND	ND	ND	ND
SB-4	6/04/13	18-20'	0.140	0.040	ND	ND	ND	0.170	ND	ND	ND	ND	0.650	ND	1.7	0.150	0.96
SB-5	6/04/13	8-10'	0.0031	0.001	ND	ND	ND	0.005	ND	ND	ND	0.00064	0.036	ND	0.021	0.0098	0.025
SB-5	6/04/13	18-20'	0.00052	ND	0.016	0.0047	ND	0.00059	ND	ND	ND	ND	0.0033	ND	0.0048	0.013	0.0016
																	0.0010
												·					
	roundwater	MSCC	8.5	8.3	24	16	0.12	4,9	1.7	0.16	4.3	1.7	0.0056	3.3	4.3	0.091	4.6
	ial MSCC		782	782	14000	9385	100	1560	1564	313	626	626	18	626	1200	350	3129
	l/Commerc	ial	20440	20440	360000	245280	4000	40000	40880	8176	16350	16350	164	16350	32000	3100	81760
MSCC		<u>.</u>							· · [- 0000	22000	5100	51700
Results a	re in mo/ko												<u> </u>				

Results are in mg/kg Bold results indicate exceedence of Soil to Groundwater MSCC ND – Not Detected

L

Table 3 (continued) Summary of Analytical Data – Soil MADEP Methods VPH Raeford Road Sunoco 4537 Raeford Road Fayetteville, Cumberland County, North Carolina

Analytical Met	hod >		MADEP	MADEP	MADEP	(y, north C					
			VPH	VPH	VPH						
Sample	Contaminant	of Concern >								-	
ID	Date Collected m/dd/yy	Sample Depth (ft)	28 Aliphatics	C12 Aliphatics	C10 Aromatics						
	-		C5-C8	C9-C12	C9-C10						
SB-1	6/04/13	8-10'	50	404	299						
<u>SB-1</u>	6/04/13	18-20'	0.66	ND	0.483						
<u>SB-2</u>	6/04/13	8-10'	ND	ND	0.274						
SB-2	6/04/13	18-20'	ND	ND	ND						
SB-3	6/04/13	8-10'	ND	ND	ND						
SB-3	6/04/13	18-20'	ND	ND	ND						
SB-4	6/04/13	8-10'	ND	1.47	0.710				-		
SB-4	6/04/13	18-20'	6.81	2.49	1.12						1
SB-5	6/04/13	8-10'	ND	ND	ND			<u> </u>			· · ·
SB-5	6/04/13	18-20'	ND	ND	ND						
Soil to Groundy	water MSCC		68	540	31	·					
Residential MS	-	939	1500	469				1			
Industrial/Com	mercial MSCC	24258	40000	12264			<u> </u>				
Results are in m							· · · · · · · · · · · · · · · · · · ·	·			J

Results are in mg/kg Bold results indicate exceedence of Soil to Groundwater MSCC ND – Not Detected

ι_...

Table 3 Summary of Analytical Data – Soil EPA Method 8260 Raeford Road Sunoco 4537 Raeford Road Fayetteville, Cumberland County, North Carolina

ID	Contamin Concern Date						1					8260	8260	8260	8260	8260	8260
	Date Collected m/dd/yy	> Sample Depth (ft)	1,2,4-Trimethylbenzene	1,3,5-Trimethylbenzene	Acetone	2-Butanone	4-Isopropyltoluene	Ethylbenzene	Isopropylbenzene	Naphthalene	n-Butylbenzene	n-Propylbenzene	Benzene	sec-Buty!benzene	Toluene	MTBE	Total Xylenes
	6/04/13	8-10'	0.0049	0.0021	0.019	ND	ND	0.0049	ND	0.0011	ND	0.0005	0.035	ND	0.014	0.049	0.015
	6/04/13	18-20'	0.016	0.0073	0.087	0.040	ND	0.0071	0.00047	0.028	0.0013	0.0015	0.019	ND	0.059	0.026	0.053
	6/04/13	8-10'	ND	ND	ND	ND	ND	0.001	ND	ND	ND	ND	0.0083	ND	0.0027	0.0071	0.0029
	6/04/13	18-20'	0.0016	0.00049	0.040	ND	ND	0.0014	ND	0.0025	ND	ND	0.0025	ND	0.0058	0.020	0.0069
	6/04/13	8-10'	0.0072	0.0031	0.018	ND	ND	0.0062	0.00092	ND	ND	0.00076	0.011	ND	0.0077	0.022	0.035
	6/04/13	18-20'	0.0091	0.0025	0.023	ND	ND	0.0044	0.00052	0.0014	ND	0.0015	0.0021	ND	0.022	0.0069	0.028
	6/04/13	8-10'	5.1	2.5	0.890	ND	0.220	0.570	0.450	0.350	0.980	1.7	ND	0.410	ND	ND	0.720
	6/04/13	18-20'	0.0014	0.00048	0.058	ND	ND	ND	ND	0.0018	ND	ND	ND	ND	ND	0.0028	0.0008
	6/04/13	8-10'	.00095	0.00036	0.033	0.0052	ND	ND	ND	ND	ND	ND	ND	ND	.00045	ND	0.002
SB-10	6/04/13	18-20'	0.850	0.250	0.760	ND	ND	0.100	ND	0.720	0.088	0.120	ND	ND	0,230	ND	0.660
Soil to Gro	oundwater	•	8.5	8.3	24	16	0.12	4.9	1.7	0.16	4.3	1.7	0.0056	3.3	4.3	0.091	4.6
MSCC Regidentie	AMECO		703	782	14000	0207	100		1711								
Residentia		:-1	782	782	14000	9385	100	1560	1564	313	626	626	18	626	1200	350	3129
Industrial/ MSCC	Commerc	ai	20440	20440	360000	245280	4000	40000	40880	8176	16350	16350	164	16350	32000	3100	81760

Results are in mg/kg

ł

L

L

Bold results indicate exceedence of Soil to Groundwater MSCC

ND - Not Detected

Table 3 (continued) Summary of Analytical Data – Soil MADEP Methods VPH Raeford Road Sunoco 4537 Raeford Road Favetteville, Cumberland County, North Carolina

Analytical Metho			MADEP	MADEP	MADEP	ty, Norui C		T		7	1
I mary troat wroth	<i>A</i>		VPH	VPH							
Sample	Contominant	of Concern >	vrn	Vrn	<u>VPH</u>						
ID											
ID	Date	Sample	8	Aliphatics	ICS						
	Collected	Depth	ţi.	nat	nat						
· · · · ·	m/dd/yy	(ft)	hd	lqil	0				1		
			Aliphatics		A			1			
				C9-C12	C9-C10 Aromatics						
		a tradition to the second s	C5-C8		Q Q			1			
			Ö	ບັ	υ Ο						
SB-6	6/04/13	8-10'	ND	ND	ND		1	······			
SB-6	6/04/13	18-20'	ND	ND	0.312	<u>_</u>		- · ·			
SB-7	6/04/13	8-10'	ND	ND	ND						
SB-7	6/04/13	18-20'	1.85	1.65	1.07						
SB-8	6/04/13	8-10'	ND	ND	ND						
SB-8	6/04/13	18-20'	ND	ND	ND						
SB-9	6/04/13	8-10'	0.912	ND	0.933		· · · - ·				
SB-9	6/04/13	18-20'	ND	ND	ND	<u></u>			<u> </u>		
SB-10	6/04/13	8-10'	ND	ND	ND			1		-	
SB-10	6/04/13	18-20'	4.51	60	35.5						
	Soil to Groundwater MSCC			540	31	• • • • • • • • • • • • • • • • • • • •					
Residential MSC	Residential MSCC				469						
Industrial/Comme	Industrial/Commercial MSCC				12264				·		

ŝ

ŗ L

> Į L

Ł_.

İ.

Results are in mg/kg Bold results indicate exceedence of Soil to Groundwater MSCC

ND - Not Detected

Table 4 Summary of Analytical Data – Groundwater EPA Method 504.1/6200b Raeford Road Sunoco 4537 Raeford Road Fayetteville, Cumberland County, North Carolin

Analytic	al Method	> :	504.1	6200b	6200b	6200b	mberland 6200b	6200b	6200b	6200b	6200b	6200b	6200b	6200Ь	6200b
				02000	02000	02000	02000	02000	02000	02000	02000	02000	02000	02000	02000
Well	Contaminar	it of	1		P	<u> </u>								1	
ID	Concern >	· · ·											ene	sne	
	Date	Sample	ge				υ						ZU	DZG:	l
	Collected	ID	tha				zen		ne	ene			ą	(Ibe	
	m/dd/yy		106		-	ne	en		JZC		ల		l ff	l tj	es
		· .	Dibromoethane	0	LE O	nze	14		Be	<u> </u>	len		ime.	, in the second s	len
			ldiC	cen	lof	lbe	do	щ	ty I	, dd	tha	cine	Ę.	Ē.	X
			,21	Benzene	Chloroform	Ethylbenzene	Isopropyl Benzene	MTBE	n-Butyl Benzene	n-Propyl Benzene	Naphthalene	Toluene	1,3,5-Trimethylbenzene	1,2,4-Trimethylbenzene	Total Xylenes
			-				<u> </u>		-	Ė	z	Ĕ	1,	·	Ĕ
MW-3	6/07/13	MW-3	ND	120	ND	46	5.8	13	4.0	16	13	280	58	150	400
MW-7	6/07/13	MW-7	1.2	11,000	ND	2,400	140	2,600	120	270	460	32,000	510	2,000	14,000
MW-7D	6/07/13	MW-7D	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
<u>MW-8</u> MW-9	6/07/13	MW-8	ND	3.6	3.6	ND	ND	2.6	ND	ND	ND	ND	ND	ND	ND
MW-10	6/07/13 6/07/13	MW-9	ND	810	ND	61	9.1	200	6.9	8.2	39	290	27	89	510
WIW-10	0/07/13	MW-10	ND	150	ND	16	2.0	110	1.4	3.3	9.6	2.2	ND	3.6	15
	·														
								_							
					· · ·										
2L Standa	ard (ng/l)	<u> </u>	0.02	1	70	600	70		50	- 50		<u></u>		100	
GCL (ug/			50	5,000	70,000	84,500	25,000	20 20,000	70	70	6	600	400	400	500
Peculta or		l	50	5,000	10,000	04,000	45,000	20,000	6,900	30,000	6,000	260,000	25,000	28,500	85,500

Results are in ug/l

i

.

Ł.,

Bold results indicate exceedence of 2L Standards Bold and shaded results indicate exceedence of GCL

Table 4 (continued) Summary of Analytical Data – Groundwater EPA Methods 6010c/MADEP-VPH Raeford Road Sunoco 4537 Raeford Road Fayetteville, Cumberland County, North Carolina

Analytic	al Method >				60)10c	MADEP VPH	MADEP VPH	MADEP	
Well ID	Contaminant	of Concern			···			VPH	VPH	
	Date Collected m/dd/yy	Sample ID			Total Lead		C5-C8 Aliphatics	C9-C12 Aliphatics	C9-C10 aromatics	
6/07/13	6/07/13	6/07/13			N	ID	865	628	940	·
6/07/13	6/07/13	6/07/13				79	57,400	16,700	5,800	
6/07/13	6/07/13	6/07/13			1	ID	ND	ND	2.8	
6/07/13	6/07/13	6/07/13	-			ID	6.4	ND	ND	
6/07/13	6/07/13	6/07/13			N	D	1,590	572	330	
6/07/13	6/07/13	6/07/13				ID	246	33.1	43	
	1									
					· · · · · · · · · · · · · · · · · · ·					
2L Standa	rd (ug/l)					5	400	700	200	
GCL (ug/I Results are	l)			_	15,	000	NRS	NRS	NRS	

i

i k

ŝ

Ł

Results are in ug/l Bold results indicate exceedence of 2L Standards Bold and shaded results indicate exceedence of GCL

June 1, 2015

Mr. James W. Brown North Carolina Department of Environment and Natural Resources Fayetteville Regional Office 225 Green Street, Suite 714 Systel Building Fayetteville, North Carolina 23801

Subject: Corrective Action Plan Raeford Road Sunoco 4735 Raeford Road Fayetteville, North Carolina 28304 Case #9788 AEC Project No. 15-020R

Dear Mr. Brown:

Advantage Environmental Consultants, LLC (AEC) has prepared a Corrective Action Plan (CAP) for the above-referenced property. This CAP includes Site observations, investigation information, soil and groundwater testing information, and report preparation. This report includes AEC's findings, conclusions, recommendations, and supporting documentation.

We appreciate the opportunity to be of service to you. If you should have any questions regarding this report, please contact Mr. Andrew Owens at (804) 454-0072.

Sincerely, ADVANTAGE ENVIRONMENTAL CONSULTANTS, LLC

Krista J. Tetrick Staff Scientist

i.

Andrew C. Owens, P.G. Branch Manager

Attachments CC: Mr. Jarrett Minkoff, Raeford Road Holdings, LLC

B. Executive Summary

The subject property (hereinafter is referred to as the "Site") is identified as the Raeford Road Sunoco (former Jim's Texaco) and is located at 4537 Raeford Road, Fayetteville, Cumberland County, North Carolina. (See **Section A, Figure 1** for Site location.) The Site consists of three contiguous parcels of land totaling approximately 2.44 acres. The Site is currently owned by Golden of Raeford, LLC and Anderson Raeford Corner, LLC, and is occupied by Raeford Road Sunoco which operates three petroleum Underground Storage Tanks (USTs) for the retail sale of gasoline and Diamond Autosports, an automobile detailing business, occupies the building on the southern portion of the Site. An out-of-use, 150-gallon waste oil UST is located immediately south of the Diamond Autosports building.

A petroleum release was first discovered during April of 1992 when free product was observed in two monitoring wells. An unknown quantity of gasoline was released from an unknown point in the UST system. A Notice of Regulatory Requirements (NORR) letter was sent to Mr. James Sanderson, owner of Jim's Texaco, on February 17, 1993 directing him to perform initial abatement measures and a comprehensive investigation of the release. These initial abatement measures were apparently not performed.

Phase II Environmental Assessment Activities (February 2006)

AEC collected four soil samples at the Site on February 16, 2006 during a Phase II Environmental Site Assessment (ESA). The soil samples were analyzed for volatile organic compounds (VOCs) by EPA Method 8260 and for volatile petroleum hydrocarbons (VPH) by the MADEP-VPH test. Certain petroleum constituents (VOCs and VPH) were detected in each of the four soil samples at concentrations below the applicable North Carolina Department of the Environment and Natural Resources (NCDENR) Industrial/Commercial Cleanup Levels.

AEC also collected three groundwater samples from temporary wells. The groundwater samples were analyzed for VOCs by EPA Method 8260 and for VPH by the Method for the Determination of volatile petroleum hydrocarbons (MADEP-VPH) test. Certain petroleum constituents (VOCs and VPH) were detected in each of the three groundwater samples at concentrations above the applicable NCDENR Groundwater Quality Standards. The Phase II ESA, completed by AEC and dated March 6, 2006, was submitted to the NCDENR.

Phase II Limited Site Assessment

A Phase II Limited Site Assessment (LSA) was completed and submitted to the NCDENR on June 4, 2008. The LSA revealed the presence of approximately 2.14" and 1.67" of free phase petroleum product in the form of gasoline in monitoring well MW- 1 and MW-2, respectively on May 1, 2008. In response, Aggressive Fluid Vapor Recovery (AFVR) events were completed in October 2008, March 2009, October 2009, April 2010, August 2012, and April 2013.

Groundwater elevations across the Site and surrounding properties have varied between 20 to 23 feet beneath surface grade (bsg), dependent upon seasonal fluctuations. Hydraulic gradient through the area has been determined to flow generally to the southeast. See **Section A, Figure 2** for geologic cross section maps. Groundwater in the monitoring wells installed for completion of the Comprehensive Site Assessment (CSA) stabilized between 20.10 and 22.54 feet beneath surface grade.

Well Survey and Surface Water Body Investigation

AEC completed a walkthrough of all properties located within a 1,000-foot radius of the Site for the Phase II LSA completed on June 4, 2008. AEC completed the well survey by interviewing property owners/tenants in the immediate vicinity of the source area and completing the well surveys. The completed well survey did not identify the presence of water supply wells located within a 1,000-foot radius of the Site.

There are no surface water bodies located within 500 feet of the release area and the source area is not located within a wellhead protection area. The Site is located in the Coastal Plain Physiographic province. However, the Site and some surrounding properties within 1,500 feet obtain their potable water from the City of Fayetteville which obtains water from available surface water sources.

Comprehensive Site Assessment Soil Investigation

Ĺ

Ĺ...

AEC mobilized to the Site on June 4, 2013 for the purpose of conducting field assessment activities necessary to complete assessment of petroleum contamination in the soils of the Site. In conducting this assessment, AEC advanced a series of ten soil borings, SB-1 through SB-10. Soils encountered while completing the soil borings consisted of dry to moist tan-orange-brown clayey to sandy silt to 20 feet below land surface (bls). The soil samples were collected for laboratory analysis at depths of 8 to 10 feet and 18 to 20 feet bls in each soil boring.

Ł

The borings were located in order to surround the suspected contaminant source area (UST and product dispenser locations). The exact locations of these ten soil borings are shown in **Section A, Figure 2.** These samples were submitted to Environmental Conservation Laboratories of Cary, NC (NCDENR-Division of Water Quality (DWQ) certification # 591) for laboratory analysis of VOCs by EPA Methods 8260 and VPH by MADEP-VPH.

The analytical results for EPA Method 8260 revealed the presence of numerous VOCs at detectable levels in each soil sample. Few VOCs in certain soil samples exceeded their Soil to Groundwater Maximum Soil Contaminant Concentrations (MSCCs) as set forth in *The Guidelines*. The constituents and samples exceeding their respective Soil to Groundwater MSCC include benzene in SB-1 at 18-20 feet, SB-2 at 8-10 feet, SB-2 at 18-20 feet, SB-4 at 18-20 feet, SB-5 at 8-10 feet, SB-6 at 8 to 10 feet, SB-6 at 18-20 feet, SB-7 at 8-10 feet, and SB-8 at 8-10 feet; naphthalene in SB-1 at 8-10 feet, SB-9 at 8-10 feet; n-propylbenzene in SB-9 at 8-10 feet; and methyl tertiary-butyl ether (MTBE) in SB-4 at 18-20 feet. It should be noted that none of the detected VOCs exceeded the Residential or Industrial Commercial MSCCs.

The analytical results for the VPH analysis detected the presence of C5-C8 aliphatics, C9-C12 aliphatics or C9-C10 aromatics in samples SB-1 at 8-10 feet and SB-10 at 18-20 feet at concentrations in excess of their Soil to Groundwater MSCCs as set forth in *The Guidelines*. The detected VPH did not exceed the Residential or Industrial Commercial MSCCs. A summary of these soil analytical results is included in **Section B**,**Table 4**.

The detectable concentrations of VOCs and VPH in the soil samples only slightly exceed their respective Soil to Groundwater MSCCs and are well below the Residential or Industrial Commercial MSCCs. The elevated concentrations are largely related to the presence of free phase petroleum product on the groundwater beneath the Site, especially those samples collected at depth (18-20 feet). These soil analytical results do not define the lateral extent of soil contamination to the Soil to Groundwater MSCCs in the northern and southern directions. This is because the most recently obtained soil data shows that petroleum contaminated soils may underlie the North Carolina Department of Transportation (NCDOT) right of ways under the northern adjacent Raeford Road. Further, the areas to the south contain a large amount of buried utilities which will prohibit additional assessment activities in this direction. Based on the slight exceedences of the soil MSCCs, AEC believes the lateral extent of soil contamination above the Soil to Groundwater MSCCs have been adequately defined. Further, the

L

ί.

ί_

remediation/removal of free product beneath the Site will likely reduce concentrations of VOCs and VPH in Site soils.

Comprehensive Site Assessment Groundwater Investigation

AEC mobilized to the Site on June 3-6, 2013 in order to install five additional permanent monitoring wells designated as MW-7, MW-7D, MW-8, MW-9, and MW-10. MW-10 is located on the eastern adjacent W.H. Owen Elementary School property. MW-7D is a deep Type III well. AEC returned to the Site on June 7, 2013 in order to sample the eleven monitoring wells (MW-1 through MW-10 and MW-7D) for completion of the Comprehensive Site Assessment (CSA) dated July 19, 2013. The groundwater samples collected from the monitoring wells were submitted for analysis by EPA Methods 8260, 504.1 1,2-Dibromoethane (EDB), 3030c (total lead), and the MADEP-VPH method. It is important to note that free phase petroleum product was observed in monitoring wells MW-1, MW-2, MW-4, MW-5, and MW-6. Therefore, these five wells were not sampled during the CSA.

Groundwater samples analyzed by EPA Method 8260 revealed the presence of numerous targeted parameters at levels in excess of their maximum allowable limits in groundwater as set forth in 15A NCAC 2L .0202. These exceedances include: benzene in MW-3, MW-7, MW-8, MW-9, and MW-10; ethylbenzene in MW-7; isopropyl benzene in MW-7; n-butylbenzene in MW-7; n-propylbenzene in MW-7; MTBE in MW-7, MW-9, and MW-10; naphthalene in MW-7, MW-9, and MW-10; toluene in MW-7; 1,3,5 Trimethylbenzene in MW-7; 1,2,4 Trimethylbenzene in MW-7; and total xylenes in MW-7 at a concentration exceeding its respective Gross Contaminant Level (GCL) of 5,000 ug/l as set forth in *The Guidelines*.

Groundwater samples analyzed by MADEP-VPH revealed the presence of the targeted parameters at levels in excess of their maximum allowable limits in groundwater as set forth in 15A NCAC 2L .0202. These exceedances include: C5-C8 aliphatic hydrocarbons in MW-3, MW-7, and MW-9; C9-C12 aliphatic hydrocarbons in MW-7; and C9-C10 aromatic hydrocarbons in MW-3, MW-7, and MW-9. EDB was only detected in the sample from MW-7 at a concentration exceeding its maximum allowable concentration in groundwater. Lead was only detected in the sample from MW-7 at a concentration in groundwater.

In summary, data for the groundwater samples obtained from wells MW-3, MW-7, MW-8, MW-9, and MW-10 showed the presence of one or more targeted contaminants at levels above their maximum allowable concentrations in groundwater as defined by

ſ

i

L

ŧ.

15A NCAC 2L .0202. The results for this groundwater sampling event showed that the lateral extent of the groundwater contaminant plume was adequately defined in the horizontal direction to the Gross Contaminant Levels (GCLs) set forth in *The Guidelines*.

Isoconcentration maps for benzene, MTBE, and naphthalene have been prepared and can be found in **Section A, Figure 5. Section B, Table 4** is a summary of the combined analytical results for all of the sampling events.

Upon review of the data obtained by the CSA activities described above, it can be stated that while the horizontal extent of the groundwater contaminant plume has not been defined to the 15A NCAC 2L Standards it has successfully been defined to GCLs, which will be the target groundwater cleanup levels for this incident.

The vertical extent of groundwater contamination was addressed through installation of deep well MW-7D on June 5, 2013. MW-7D was installed immediately adjacent to MW-7 and it is screened from 60 to 70 feet below land surface. Analytical results for a groundwater sample collected from this well on June 7, 2013 indicated the presence of only C9-C10 aromatic hydrocarbons at a concentration of 2.8 ug/l which is well below the 15N NCAC 2L 0202 standard of 200 ug/l, respectively. It is possible that this contaminant was carried down from above. Based on these results, the vertical extent of groundwater contamination appears to be defined.

Contaminants related to the release are expected to continue to migrate with groundwater flow through the Site, to the southeast through the source area. The lateral migration of the plume is directly related to the groundwater flow through the area, the soil matrix through which migration will occur, and to the presence of structures in contact with the groundwater and/or product at the Site. No water supply wells are located within a 1,000-foot radius of the release area. Several contaminant plume maps for individual contaminants of concern are depicted in **Section A**, **Figures 5A**, **5B**, and **5C**. Due to the established direction of contaminated groundwater migration it is not likely that the release will impact the eastern adjacent school or any other environmentally sensitive receptors.

Currently the Site is classified as "intermediate risk" due to the presence of free phase petroleum product and at least one exceedence of the GCLs. While the removal of free phase petroleum product is required, the only way to lower the current risk classification from "intermediate" to "low" and close out the incident is to also eliminate all exceedences of GCLs in the groundwater.

The concentrations to which soil and groundwater must be remediated are outlined in Tables 4 and 5.

The removal of free product and GCL exceedences must be completed in order to eventually lower the classification to "low risk" which may result in the incident being closed out by the NCDENR. To accomplish this goal, AEC recommends quarterly AFVR events until groundwater sampling shows that free product has been removed to the maximum extent practical and groundwater sampling shows contaminant levels below the GCLs set forth in *The Guidelines*. Based on the low levels of petroleum contamination in Site soils, AEC believes the removal of free product will be sufficient to address soil impacts. Following free product removal, AEC believes that an evaluation of the processes of natural attenuation and biodegradation for addressing the residual groundwater contaminants may be considered. If it is determined that this is not a viable option then one or more active groundwater cleanup options, will need to be considered (eg In-Situ Chemical Oxidation (ISCO) or Air Sparging/Soil Vapor Extraction (AS/SVE)). The estimated cost per AFVR event is \$4,400.00.

AEC will review data collected during the AFVR events in order to evaluate the effectiveness of the selected remediation technology.

ATTACHMENT B

GEOPHYSICAL SURVEY

METALLIC UST INVESTIGATION: PARCEL 204 – GOLDEN OF RAEFORD, LLC NCDOT PROJECT U-4405

4537 RAEFORD RD., FAYETTEVILLE, CUMBERLAND COUNTY, NC

NOVEMBER 4, 2016

Report prepared for:

Mike Branson Solutions, IES 1101 Nowell Road Raleigh, North Carolina 27607

Prepared by:

Eric C. Cross, P.G. NC License #2181

Reviewed by

Conovello

Reviewed by: ____

Douglas A. Canavello, P.G. NC License #1066

503 INDUSTRIAL AVENUE, GREENSBORO, NC 27406 P: 336.335.3174 F: 336.691.0648 C257: GEOLOGY C1251: ENGINEERING

Table of Contents

Executive Summary1	
Introduction	
Field Methodology2	
Discussion of Results	
Summary and Conclusions	
Limitations	

Figures

Figure 1 – Parcel 204 Geophysical Survey Boundaries and Site Photographs
Figure 2 – Parcel 204 EM61 Results Contour Map
Figure 3 – Parcel 204 GPR Transect Locations and Select Images

Appendices

Appendix A – GPR Transect Images

LIST OF ACRONYMS

DFDual Frequency EMElectromagnetic GPRGround Penetrating Radar GPSGlobal Positioning System NCDOTNorth Carolina Department of Transportation
GPRGround Penetrating Radar GPSGlobal Positioning System NCDOTNorth Carolina Department of Transportation
GPSGlobal Positioning System NCDOTNorth Carolina Department of Transportation
NCDOTNorth Carolina Department of Transportation
1 1
ROWRight-of-Way
SVESoil Vapor Extraction
USTUnderground Storage Tank

EXECUTIVE SUMMARY

Project Description: Pyramid Environmental conducted a geophysical investigation for Solutions, IES (Solutions) at Parcel 204, located at 4537 Raeford Road, Fayetteville, NC. The survey was part of a North Carolina Department of Transportation (NCDOT) Right-of-Way (ROW) investigation (NCDOT Project U-4405). Solutions directed Pyramid as to the geophysical survey boundaries at the project site, which were designed to extend from the existing edge of pavement to the proposed ROW lines and/or easement lines within the property, whichever distance was greater. Conducted from October 12-17, 2016, the geophysical investigation was performed to determine if unknown, metallic underground storage tanks (USTs) were present beneath the survey area.

Geophysical Results: The majority of the EM anomalies were directly attributed to visible cultural features at the ground surface. EM interference was observed adjacent to the pump island from suspected metal reinforcement. This area was investigated by GPR. The GPR scans verified the presence of reinforcement in the concrete near the pump island, as well as a possible isolate conduit/pipe section. No additional structures were observed. Collectively, the geophysical data <u>did not show any evidence of unknown metallic USTs at Parcel 204</u>.

INTRODUCTION

Pyramid Environmental conducted a geophysical investigation for Solutions, IES (Solutions) at Parcel 204, located at 4537 Raeford Road, Fayetteville, NC. The survey was part of a North Carolina Department of Transportation (NCDOT) Right-of-Way (ROW) investigation (NCDOT Project U-4405). Solutions directed Pyramid as to the geophysical survey boundaries at the project site, which were designed to extend from the existing edge of pavement to the proposed ROW lines and/or easement lines within the property, whichever distance was greater. Conducted from October 12-17, 2016, the geophysical investigation was performed to determine if unknown, metallic underground storage tanks (USTs) were present beneath the survey area.

The site included an active service station with a pump island and canopy surrounded by asphalt and concrete parking space and grass medians. Aerial photographs showing the survey area boundaries and ground-level photographs are shown in **Figure 1**.

FIELD METHODOLOGY

The geophysical investigation consisted of electromagnetic (EM) induction-metal detection and ground penetrating radar (GPR) surveys. Pyramid collected the EM data using a Geonics EM61 metal detector integrated with a Trimble AG-114 GPS antenna. The integrated GPS system allows the location of the instrument to be recorded in real-time during data collection, resulting in an EM data set that is geo-referenced and can be overlain on aerial photographs and CADD drawings. A boundary grid was established around the perimeter of the site with marks every 10 feet to maintain orientation of the instrument throughout the survey and assure complete coverage of the area.

According to the instrument specifications, the EM61 can detect a metal drum down to a maximum depth of approximately 8 feet. Smaller objects (1-foot or less in size) can be detected to a maximum depth of 4 to 5 feet. The EM61 data were digitally collected at approximately 0.8 foot intervals along north-south trending or east-west trending, generally

parallel survey lines spaced five feet apart. The data were downloaded to a computer and reviewed in the field and office using the Geonics NAV61 and Surfer for Windows Version 11.0 software programs.

GPR data were acquired across select EM anomalies on October 17, 2016, using a Geophysical Survey Systems, Inc. (GSSI) UtilityScan DF unit equipped with a dual frequency 300/800 MHz antenna. Data were collected both in reconnaissance fashion as well as along formal transect lines across EM features. The GPR data were viewed in real-time using a vertical scan of 512 samples, at a rate of 48 scans per second. GPR data were viewed down to a maximum depth of approximately 4 feet, based on dielectric constants calculated by the DF unit in the field during the reconnaissance scans. GPR transects across specific anomalies were saved to the hard drive of the DF unit for post-processing and figure generation.

Pyramid's classifications of USTs for the purposes of this report are based directly on the geophysical UST ratings provided by the NCDOT. These ratings are as follows:

Geophysical Surveys for Underground Storage Tanks on NCDOT Projects							
High Confidence	Intermediate Confidence	Low Confidence	No Confidence				
Known UST	Probable UST	Possible UST	Anomaly noted but not				
Active tank - spatial location, orientation, and approximate depth determined by geophysics.	Sufficient geophysical data from both magnetic and radar surveys that is characteristic of a tank. Interpretation may be supported by physical evidence such as fill/vent pipe, metal cover plate, asphal/concrete patch, etc.	Sufficient geophysical data from either magnetic or radar surveys that is characteristic of a tank. Additional data is not sufficient enough to confirm or deny the presence of a UST.	characteristic of a UST. Should be noted in the text and may be called out in the figures at the geophysicist's discretion.				

DISCUSSION OF RESULTS

Discussion of EM Results

A contour plot of the EM61 results obtained across the survey area at the property is presented in **Figure 2**. Each EM anomaly is numbered for reference in the figure. The

following table presents the list of EM anomalies and the cause of the metallic response, if known:

Metallic Anomaly #	Cause of Anomaly	Investigated with GPR
1	Telephone Pole	in the sugarda with or it
2	Storm Drain	
3	Light Pole	
4	Telephone Pole and Sign	
5	Sign	
6	Pump Island and Reinforced Concrete	\bigotimes
7	Reinforced Concrete	\bigotimes
8	Suspected Metal Pipe and Reinforced Concrete	\bigotimes
9	Sign and Air Pump	

LIST OF METALLIC ANOMALIES IDENTIFIED BY EM SURVEY

The majority of the EM anomalies recorded by the survey were directly attributed to visible cultural features such as utility poles, storm drains, signs, and an air pump. Suspected metal-reinforced concrete was present adjacent to the pump island area, resulting in EM interference. This area of reinforced concrete was investigated further by GPR.

Discussion of GPR Results

Figure 3 presents the locations of the formal GPR transects performed at the property, as well as select transect images. A total of 5 GPR transects were performed at the site across the areas near the pump island suspected to contain reinforced concrete. The 5 transects all verified the presence of metal reinforcement in the concrete. Transect 5 also recorded an isolated hyperbolic reflector that suggested the possible presence of a conduit/pipe beneath the reinforcement at that location. No evidence of significant structures beneath the reinforcement such as USTs was observed.

Collectively, the geophysical data <u>did not show any evidence of unknown metallic USTs</u> <u>at Parcel 204</u>.

SUMMARY & CONCLUSIONS

Pyramid's evaluation of the EM61 and GPR data collected at Parcel 204 in Fayetteville, Cumberland County, North Carolina, provides the following summary and conclusions:

- The EM61 and GPR surveys provided reliable results for the detection of metallic USTs within the accessible portions of the geophysical survey area.
- The majority of the EM anomalies were directly attributed to visible cultural features at the ground surface. EM interference was observed adjacent to the pump island because of suspected metal reinforcement. This area was investigated by GPR.
- The GPR scans verified the presence of reinforcement in the concrete near the pump island, as well as a possible isolate conduit/pipe section. No additional structures were observed.
- Collectively, the geophysical data <u>did not show any evidence of unknown metallic</u> <u>USTs at Parcel 204</u>.

LIMITATIONS

Geophysical surveys have been performed and this report was prepared for Solutions, IES in accordance with generally accepted guidelines for EM61 and GPR surveys. It is generally recognized that the results of the EM61 and GPR surveys are non-unique and may not represent actual subsurface conditions. The EM61 and GPR results obtained for this project have not conclusively determined the definitive presence or absence of metallic USTs, but the evidence collected is sufficient to result in the conclusions made in this report. Additionally, it should be understood that areas containing extensive vegetation,

reinforced concrete, or other restrictions to the accessibility of the geophysical instruments could not be fully investigated.

NÎ

SCHOOL SE 470650-470600-470550-470500-470450 2013050 2013100 2013150 2013200 2013250 2013300 2013350 2013400

APPROXIMATE BOUNDARIES OF GEOPHYSICAL SURVEY AREA

NC STATE PLANE, EASTING (NAD83, FEET)

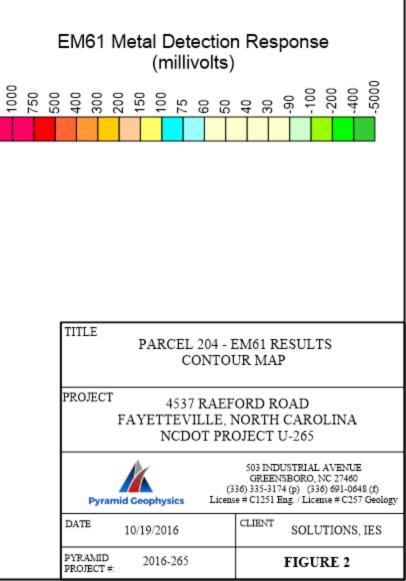
NC STATE PLANE, NOKTHING (NAD83, FEET)

View of Survey Area (Facing Approximately East)

View of Northeast Survey Area (Facing Approximately North)

	PHYSICAL SURVEY SITE PHOTOGRAPHS
FAYETTEVILLE,	FORD ROAD NORTH CAROLINA OJECT U-4405
	503 INDUSTRIAL AVENUE GREENSBORO, NC 27460 36) 335-3174 (p) (336) 691-0648 (f) e # C1251 Eng. / License # C257 Geology
DATE 10/19/16	CLIENT SOLUTIONS, IES
PYRAMID 2016-265 PROJECT #:	FIGURE 1

EM61 METAL DETECTION RESULTS

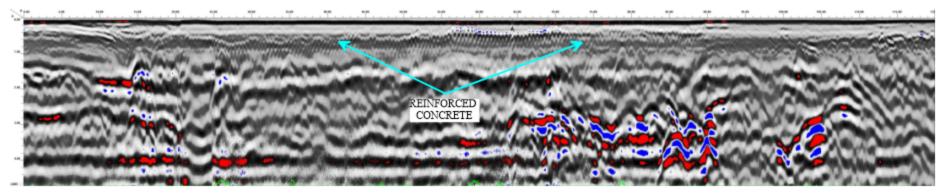

NC STATE PLANE, EASTING (NAD83, FEET)

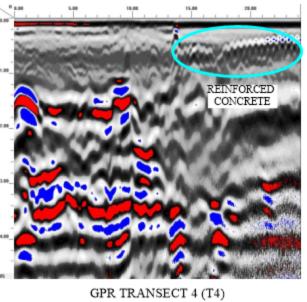
NUMBERS IN BLUE (x) CORRESPOND TO ANOMALY TABLE INCLUDED IN THE REPORT

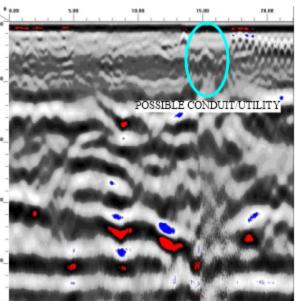
The contour plot shows the differential results of the EM61 instrument in millivolts (mV). The differential results focus on larger metallic objects such as USTs and drums. The EM61 data were collected on October 12, 2016, using a Geonics EM61 instrument. Verification GPR data were collected using a GSSI UtilityScan DF unit with a dual frequency 300/800 MHz antenna on October 17, 2016.

NC STATE PLANE, NORTHING (NAD83, FEET)

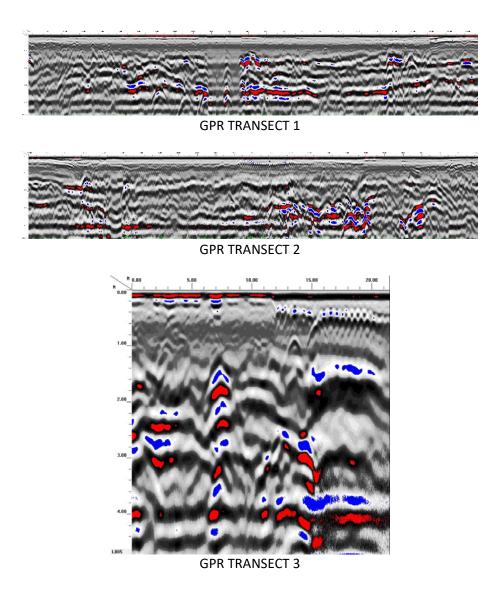
NO EVIDENCE OF UNKNOWN METALLIC USTs OBSERVED

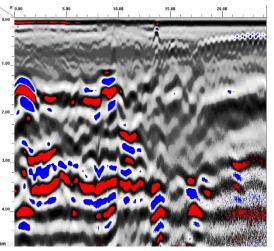



NÎ

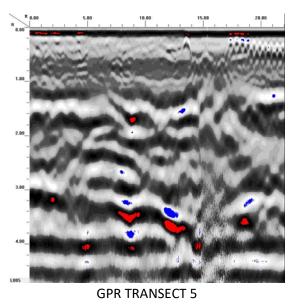

LOCATIONS OF GPR TRANSECTS

NC STATE PLANE, EASTING (NAD83, FEET)

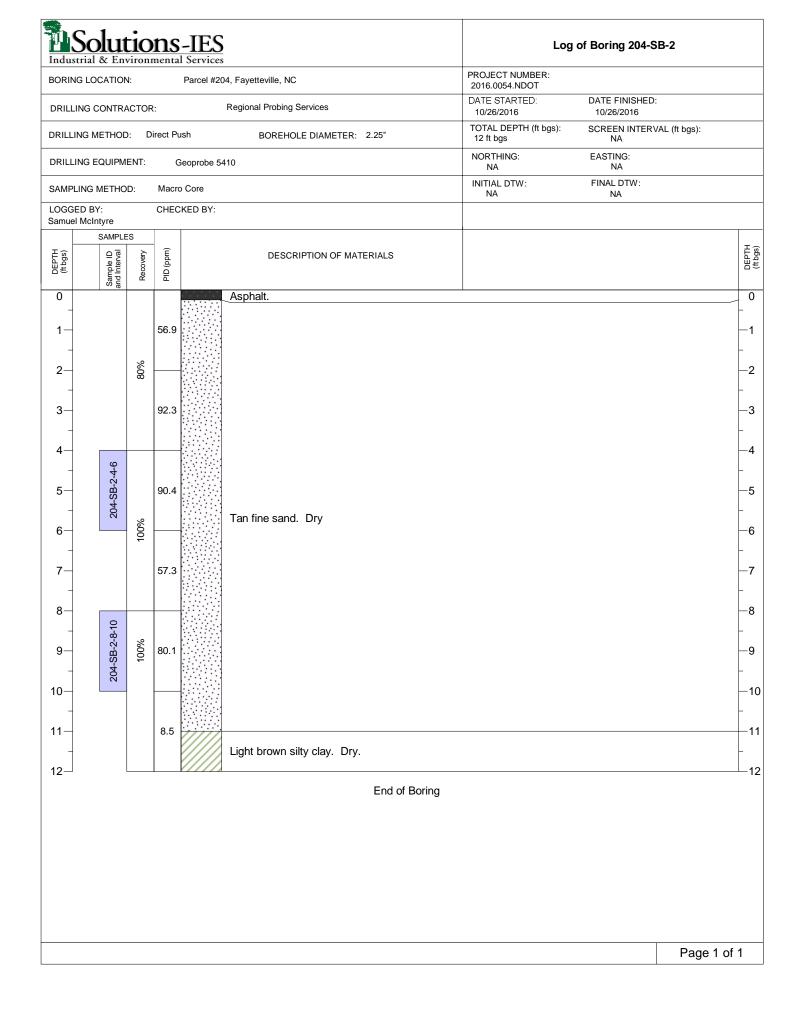




GPR TRANSECT 5 (T5)


TITLE	PARCEL 204 LOCATIONS A	-								
PROJECT	PROJECT 4537 RAEFORD ROAD FAYETTEVILLE, NORTH CAROLINA NCDOT PROJECT U-4405									
Pyran	nid Geophysics Li		GREEN 36) 335-317	USTRIAL AVENUE SBORO, NC 27460 4 (p) (336) 691-0648 (f) ing. / License # C257 Geology						
DATE	10/19/2016		CLIENT	SOLUTIONS, IES						
PYRAMID PROJECT #:	2016-265			FIGURE 3						

Appendix A – GPR Transect Images



GPR TRANSECT 4

ATTACHMENT C

	Solı	iti	10	ns	-IES	5	Log	of Boring 204-SB-1					
Indus	strial & I IG LOCAT	CUAL	ronn	nenta	1 Service	204, Fayetteville, NC	PROJECT NUMBER:						
	ING CON		TOR			Regional Probing Services	2016.0054.NDOT DATE STARTED:	DATE FINISHED:					
	ING METH			rect Pu	ısh	BOREHOLE DIAMETER: 2.25"	10/26/2016 TOTAL DEPTH (ft bgs):	10/26/2016 SCREEN INTERVAL (f	t bgs):				
	ING EQUI				Geoprobe (10 ft bgs NORTHING:	NA EASTING:					
	LING MET				o Core		NA INITIAL DTW:	NA FINAL DTW:					
LOGG	ED BY: I McIntyre			CHEC	KED BY:		NA	NA					
	SAM	IPLES							тœ				
DEPTH (ftbgs)	Sample ID	nd Interval	Recovery	PID (ppm)		DESCRIPTION OF MATERIALS			DEPTH (ft bgs)				
0	0	a							0				
1-				0.0					-1				
-			%						_				
2-			80%						-2				
3—				0.0		Tan clayey fine sand. Dry			-3				
-											-		
4									-4				
5—				0.0			-						
6-			100%						6				
-			÷		7	-	÷	-					-
7-				0.0					-7				
8-						Light brown and red mottled silty clay. Dry			-8				
9-			100%	18.6					- 9				
9-			<u></u>	10.0					-9				
10-	C					End of Boring			10				
									Page 1 of 1				

Indus	Sol	ut ^{z Env}	10	<u>ns</u>	-IES	s S	Log	of Boring 204-SB	-3
	IG LOC					04, Fayetteville, NC	PROJECT NUMBER: 2016.0054.NDOT		
DRILL	ING CO	NTRA	CTOR	:		Regional Probing Services	DATE STARTED: 10/26/2016	DATE FINISHED: 10/26/2016	
DRILLI	ING ME	THOD	: D	irect Pu	ush	BOREHOLE DIAMETER: 2.25"	TOTAL DEPTH (ft bgs): 10 ft bgs	SCREEN INTERVA NA	L (ft bgs):
DRILL	ING EQ	UIPME	ENT:	C	Geoprobe 5	410	NORTHING: NA	EASTING: NA	
SAMPI	LING MI	ETHO	D:	Macro	o Core		INITIAL DTW: NA	FINAL DTW: NA	
	ED BY: I McInty	re		CHEC	KED BY:				
DEPTH (ft bgs)		Sample ID and Interval	Recovery	PID (ppm)		DESCRIPTION OF MATERIALS			DEPTH (ft bgs)
0		ances	ш.	ш.					0
1-				0.0					-1
2-			100%						-2
3-				0.1					-3
4		-	0.1 0.1 0.0 Tan clayey fine sand. Dry 0.0 0.1	4 					
5-				0.0					
6-			100%						—6 _
7-				0.1					-7
8-		10							-8
9—		204-SB-3-8-10	100%	0.1		Light brown and red mottled silty clay. Dry			-9
10-		20							10
						End of Boring			
									Page 1 of 1

				-IES l Service Parcel #2	04, Fayetteville, NC	PROJECT NUMBER: 2016.0054.NDOT		
DRILLING CONTRACTOR: Regional Probing Services						DATE STARTED: 10/26/2016	DATE FINISHED:	
DRILLING METHOD: Direct Push BOREHOLE DIAMETER: 2.25"						TOTAL DEPTH (ft bgs): 12 ft bgs	10/26/2016 SCREEN INTERVAL (ft bgs): NA	
	EQUIPM		G	eoprobe 5		NORTHING:	EASTING:	
	G METHO			o Core		INITIAL DTW:	NA FINAL DTW:	
OGGED	BY:			KED BY:		NA	NA	
amuel Mo	SAMPLE	S						
UEPTH (ft bgs)	Sample ID and Interval	Recovery	PID (ppm)		DESCRIPTION OF MATERIALS			
0	0				Asphalt.			
1—			0.0					
_		%						-
2-		100%						_
3—			0.0					_
4-								-
4								_
5—			0.0		Tan fine sand. Dry			_
6-		100%	%001	_			Ĺ	
-		7						-
7—			0.1					
8—								
		%	0.2					
9—		100%	0.2					_
10-	0							
- 1-	204-SB-4-8-10		0.0					
_	204-SI				Light brown silty clay. Dry.			-
12				/////				
					End of Borin	g		

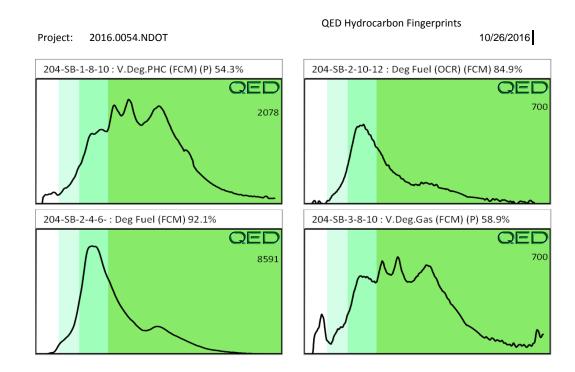
DRILLING METHOD: Direct Push						Log of Boring 204-SB-5 PROJECT NUMBER:				
						2016.0054.NDOT	DATE FINISHED:			
						10/26/2016	10/26/2016			
						TOTAL DEPTH (ft bgs): 12 ft bgs	SCREEN INTERVAL (ft bgs): NA			
DRILLING	G EQUIPM	ENT:	G	eoprobe 5	410	NORTHING: NA	EASTING: NA			
SAMPLIN	G METHO	D:	Macro	Core		INITIAL DTW: NA	FINAL DTW: NA			
LOGGED Samuel Mo			CHEC	KED BY:						
	SAMPLE							-		
DEPTH (ftbgs)	Sample ID and Interval	Recovery	PID (ppm)		DESCRIPTION OF MATERIALS			DEPTH		
0	5				Asphalt.			(
1-			53.9					-1		
_		_						-		
2—		100%						-2		
3-			28.1					-		
3_			20.1					_		
4—										
-	204-SB-5-4-6							-		
5—	04-SB		71.6		Tan fine sand. Dry			-{		
6—	Ñ.	100%						-6		
-		Ļ						-		
7—			36.1					-7		
8-								-8		
_	-8-10							-		
9—	204-SB-5-8-10	100%	17.6					-9		
10-	204									
10—	·				End of Borir	ng				

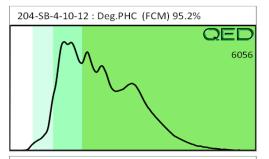
ATTACHMENT D

PHOTO I - VIEW OF SOIL BORING LOOKING NORTHEAST PHOTO 2 - VIEW OF SOIL BORING LOOKING EAST

PHOTO 3 - VIEW OF SOIL BORING LOOKING NORTHEAST PHOTO 4 - VIEW OF SOIL BORING LOOKING SOUTHEAST

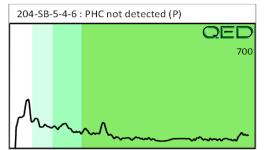



PHOTO 5 - VIEW OF SOIL BORING LOOKING EAST


ATTACHMENT E

Q	ED		6	RAPIC		AL DIAGNOSTICS					J		ROS
Client: Address:	NCDOT Site 204: 4537 Raeford Roa Fayetteville, NC	ıd								Samples	iles taken extracted analysed		10/26/2016 10/26/2016 10/26/2016
Contact:											Operator		Candy Elliott
Project:	2016.0054.NDOT												
Project: Matrix	2016.0054.NDOT	Dilution used	BTEX (C6 - C9)	GRO (C5 - C10)	DRO (C10 - C35)	TPH (C5 - C35)	Total Aromatics (C10-C35)	16 EPA PAHs	BaP		Ratios		U04049 HC Fingerprint Match
-							Aromatics		BaP	% light	Ratios % mid	% heavy	
			- C9)		(C10 - C35)	(C5 - C35)	Aromatics		BaP 0.004	% light			
Matrix	Sample ID	used	- C9)	(C5 - C10)	(C10 - C35) 2.4	(C5 - C35)	Aromatics (C10-C35)	PAHs		Ű	% mid	28.9	HC Fingerprint Match
Matrix	Sample ID 204-SB-1-8-10	used 23.2	- C9) <0.58	(C5 - C10) <0.58	(C10 - C35) 2.4 17.1	(C5 - C35) 2.4	Aromatics (C10-C35)	PAHs 0.09	0.004	0	% mid 71.1	28.9 12.3	HC Fingerprint Match V.Deg.PHC (FCM) (P) 54.3%
Matrix S S	Sample ID 204-SB-1-8-10 204-SB-2-4-6-	used 23.2 25.4	- C9) <0.58 <1.3	(C5 - C10) <0.58 <0.63 <0.56 0.26	(C10 - C35) 2.4 17.1 1 0.16	(C5 - C35) 2.4 17.1 1 0.42	Aromatics (C10-C35) 1.6 7.5	PAHs 0.09 0.37	0.004	0	% mid 71.1 87.7	28.9 12.3 20.8	HC Fingerprint Match V.Deg.PHC (FCM) (P) 54.3% Deg Fuel (FCM) 92.1%
Matrix S S S	Sample ID 204-SB-1-8-10 204-SB-2-4-6- 204-SB-2-10-12 204-SB-3-8-10 204-SB-4-10-12	used 23.2 25.4 22.4	- C9) <0.58 <1.3 <0.56 <0.16 <0.62	(C5 - C10) <0.58 <0.63 <0.56 0.26 <0.62	(C10 - C35) 2.4 17.1 1 0.16 16.1	(C5 - C35) 2.4 17.1 1 0.42 16.1	Aromatics (C10-C35) 1.6 7.5 <0.11 0.15 5.3	PAHs 0.09 0.37 <0.02	0.004 0.007 <0.002	0 0 0	% mid 71.1 87.7 79.2	28.9 12.3 20.8 8.5 20.5	HC Fingerprint Match V.Deg.PHC (FCM) (P) 54.3% Deg Fuel (FCM) 92.1% Deg Fuel (OCR) (FCM) 84.9% V.Deg.Gas (FCM) (P) 58.9% Deg.PHC (FCM) 95.2%
Matrix S S S S	Sample ID 204-SB-1-8-10 204-SB-2-4-6- 204-SB-2-10-12 204-SB-3-8-10	used 23.2 25.4 22.4 6.5	 - C9) <0.58 <1.3 <0.56 <0.16 <0.62 <0.63 	(C5 - C10) <0.58 <0.63 <0.56 0.26 <0.62 <0.63	(C10 - C35) 2.4 17.1 1 0.16 16.1 <0.63	(C5 - C35) 2.4 17.1 1 0.42 16.1 <0.63	Aromatics (C10-C35) 1.6 7.5 <0.11 0.15	PAHs 0.09 0.37 <0.02 <0.005 0.62 <0.02	0.004 0.007 <0.002 <0.001	0 0 0 66.5 0 0	% mid 71.1 87.7 79.2 25	28.9 12.3 20.8 8.5 20.5 100	HC Fingerprint Match V.Deg.PHC (FCM) (P) 54.3% Deg Fuel (FCM) 92.1% Deg Fuel (OCR) (FCM) 84.9% V.Deg.Gas (FCM) (P) 58.9% Deg.PHC (FCM) 95.2% PHC not detected (P)
Matrix S S S S S S	Sample ID 204-SB-1-8-10 204-SB-2-4-6- 204-SB-2-10-12 204-SB-3-8-10 204-SB-4-10-12	used 23.2 25.4 22.4 6.5 24.6	 - C9) <0.58 <1.3 <0.56 <0.16 <0.62 <0.63 	(C5 - C10) <0.58 <0.63 <0.56 0.26 <0.62	(C10 - C35) 2.4 17.1 1 0.16 16.1 <0.63	(C5 - C35) 2.4 17.1 1 0.42 16.1 <0.63	Aromatics (C10-C35) 1.6 7.5 <0.11 0.15 5.3	PAHs 0.09 0.37 <0.02 <0.005 0.62	0.004 0.007 <0.002 <0.001 0.046	0 0 0 66.5 0	% mid 71.1 87.7 79.2 25 79.5	28.9 12.3 20.8 8.5 20.5 100	HC Fingerprint Match V.Deg.PHC (FCM) (P) 54.3% Deg Fuel (FCM) 92.1% Deg Fuel (OCR) (FCM) 84.9% V.Deg.Gas (FCM) (P) 58.9% Deg.PHC (FCM) 95.2%

Fingerprints provide a tentative hydrocarbon identification. The abbreviations are:- FCM = Results calculated using Fundamental Calibration Mode : % = confidence for sample fingerprint match to library


(SBS) or (LBS) = Site Specific or Library Background Subtraction applied to result : (PFM) = Poor Fingerprint Match : (T) = Turbid : (P) = Particulate present

204-SB-5-8-10 : V.Deg.PHC (FCM) 97.9%

File Review Reports Golden of Raeford, LLC Property (Parcel #204) 4537 Raeford Road Fayetteville, Cumberland County, North Carolina State Project: U-4405 WBS Element 39049.1.1

November 22, 2005

Kimley-Horn and Associates, Inc. 4651 Charlotte Park Drive, Suite 300 Charlotte, North Carolina 28217

ATTENTION: Mr. Eric Riedinger

Reference:

LIMITED SOIL AND GROUNDWATER SAMPLING SERVICES Proposed Wal-Mart SuperCenter Property Raeford Road Fayetteville, North Carolina Job No. 1051-05-508B

Dear Mr. Riedinger:

S&ME, Inc. (S&ME) is pleased to present the findings of our limited soil and groundwater sampling services conducted on the above referenced property in accordance with our Proposal No EPRO-05-10-06 (revised) dated November 4, 2005.

PROJECT INFORMATION

S&ME is currently performing a Phase I Environmental Site Assessment and a Geotechnical Subsurface Exploration, which were authorized by you for the above referenced property (Figure 1). An existing gasoline/convenience store with an automotive garage, which is identified as a Leaking Underground Storage Tank site (Jim's Texaco), adjoins the subject property to the northeast.

Based on our review of files maintained by the North Carolina Department of Environment and Natural Resources, three groundwater monitoring wells (MW-1 through MW-3) were installed to assess groundwater quality at the Jim's Texaco site in the early 1990s. Free product was measured in MW-1 and MW-2, which were installed on the gasoline station's property. High concentrations of petroleum constituents, which exceeded the North Carolina groundwater quality

(910) 323-1091 (910) 323-3499 fax www.smeinc.com

standards, were reported in the remaining well (MW-3), which is actually located on the subject property near the existing Wachovia Bank. In 1991, high levels of oil and grease were also detected in a soil sample collected from an underground waste oil tank located behind the garage on the gasoline station's property. The waste oil tank appears to be located near one of the subject property lines. Groundwater at the gasoline station is reported to flow to the northeast away from the subject property.

The following services were provided by S&ME for the purpose of screening the subject site for petroleum impacts stemming from the existing gasoline service station adjoining the property to the northeast.

SUBSURFACE INVESTIGATION

On November 8, 2005, S&ME personnel installed one temporary, two-inch diameter, groundwater monitoring well (TW-1) on the subject property. The temporary well was located on the subject property near the existing underground waste oil tank located behind the adjoining gasoline service station's garage. The well was installed with a drill rig using hollow-stem augering techniques. The approximate location of the well is shown in Figure 2.

A soil boring was extended to approximately 25 feet below the land surface (bls) at TW-1. A PVC standpipe was installed in the borehole to a depth of approximately 24 feet bls with a screened interval between 14 and 24 feet bls.

Soil samples were collected at approximately five-foot depth intervals to a depth of approximately 15 feet bls during the installation of TW-1. The soil samples were visually classified and field scanned with an Organic Vapor Analyzer (OVA) for the presence of volatile organic compounds (VOCs).

The soils encountered at the well location primarily consisted of sand to a depth of approximately 20 feet bls. Medium to coarse sand with some clay was encountered from a depth of approximately 23.5 to 25 feet bls. Groundwater was encountered at TW-1 at a depth of approximately 19 feet bls.

One soil sample was selected from TW-1 at a depth of approximately 13.5 to 15 feet bls. and forwarded to Enco Laboratories in Cary, North Carolina. The soil sample was analyzed for Total Petroleum Hydrocarbons by EPA Methods 5030/3550 plus Oil and Grease by EPA Method 9071.

Upon completion, the well was developed and sampled using a disposable bailer. The groundwater sample was forwarded to Enco Laboratories in Cary, North Carolina and analyzed for volatile organics by EPA Method 8260. After the sampling activities were completed, the well casing was removed and the boring was backfilled with grout.

On November 18, 2005, permission was granted by Mr. Jim Sanderson, owner of the Jim's Texaco site, to sample MW-3, which is located on the subject property. On November 18, 2005, S&ME personnel sampled MW-3. This groundwater sample was also forwarded to Enco Laboratories in Cary, North Carolina and analyzed for volatile organics by EPA Method 8260.

LABORATORY ANALYTICAL RESULTS

Soil Screening

A review of the soil field screening data shows that measurable OVA readings were observed from a depth of approximately 3.5 to 15 feet bls. However, no petroleum odors were noted in the soil samples collected at TW-1. Table 1 summarizes the soil field screening data for the collected soil samples.

Laboratory results for the collected soil sample show that Diesel Range Organics were detected at TW-1 at a concentration of 4 milligrams per kilogram (mg/Kg), which is below the North Carolina Reportable Concentration level of 10 mg/Kg. All other analyzed constituents were below the method detection limits. Table 2 summarizes the laboratory analytical results for the collected soil sample.

Groundwater Quality

Laboratory results show that MTBE, Benzene, Toluene, Ethyl benzene and Xylenes were detected in the groundwater sample collected at TW-1. MTBE was detected at a concentration of 6,500 μ g/L which exceeds the 2L Groundwater Quality Standard of 200 μ g/L. Benzene was detected at a concentration of 14,000 μ g/L which exceeds the 2L Groundwater Quality Standard of 1 μ g/L. Toluene was detected at a concentration of 47,000 μ g/L which exceeds the 2L Groundwater Quality Standard of 1,000 μ g/L. Ethyl benzene was detected at a concentration of 3,700 μ g/L which exceeds the 2L Groundwater Quality Standard of 550 μ g/L. Xylenes were detected at a concentration of 36,000 μ g/L which exceeds the 2L Groundwater Quality Standards of 530 μ g/L.

Laboratory results show that Benzene, Ethyl benzene and Xylenes were detected in the groundwater sample collected at MW-3. Benzene was detected at a concentration of 160 μ g/L which exceeds the 15A NCAC, 2L Groundwater Quality Standard of 1 μ g/L. Xylenes were detected at a concentration of 2,090 μ g/L which exceeds the 2L Groundwater Quality Standards of 530 μ g/L. Ethyl benzene was detected at a concentration of 82 μ g/L which is below the 2L Groundwater Quality Standard of 550 μ g/L.

According to the Preliminary Assessment Report dated October 15, 1992 completed by UTTS/Environmental, petroleum constituents were detected in the groundwater sample collected at MW-3 at significantly higher concentrations than detected in the November 8, 2005 sample. In 1992, Benzene was detected at a concentration of 2,756 μ g/L. Toluene was detected at a concentration of 10,348 μ g/L. Xylenes were detected at a concentration of 1,557 μ g/L. MTBE was

detected at a concentration of 1,382 μ g/L. 1,4-Dichlorobenzene was detected at a concentration of 423 μ g/L. 1,2-Dichlorobenzene was detected at a concentration of 424 μ g/L. Naphthalene was detected at a concentration of 58 μ g/L.

Table 3 summarizes the laboratory analytical results for the collected groundwater samples and the analytical results of the groundwater sample collected at MW-3 in 1992. Copies of the laboratory reports for the soil and groundwater samples collected on November 8, 2005 are included in Appendix I.

CONCLUSION

Diesel Range Organics were detected in the soil sample collected at TW-1 at a concentration of 4 mg/Kg, which is below the North Carolina Reportable Concentration level of 10 mg/Kg. Several petroleum compounds were detected in the groundwater samples collected at TW-1 and MW-3 at concentrations which exceed the 2L Groundwater Quality Standards. Although the concentrations of petroleum compounds detected in the groundwater sample at MW-3 were significantly lower than those detected in 1992, the concentrations of several compounds remain above the 2L Groundwater Quality Standards.

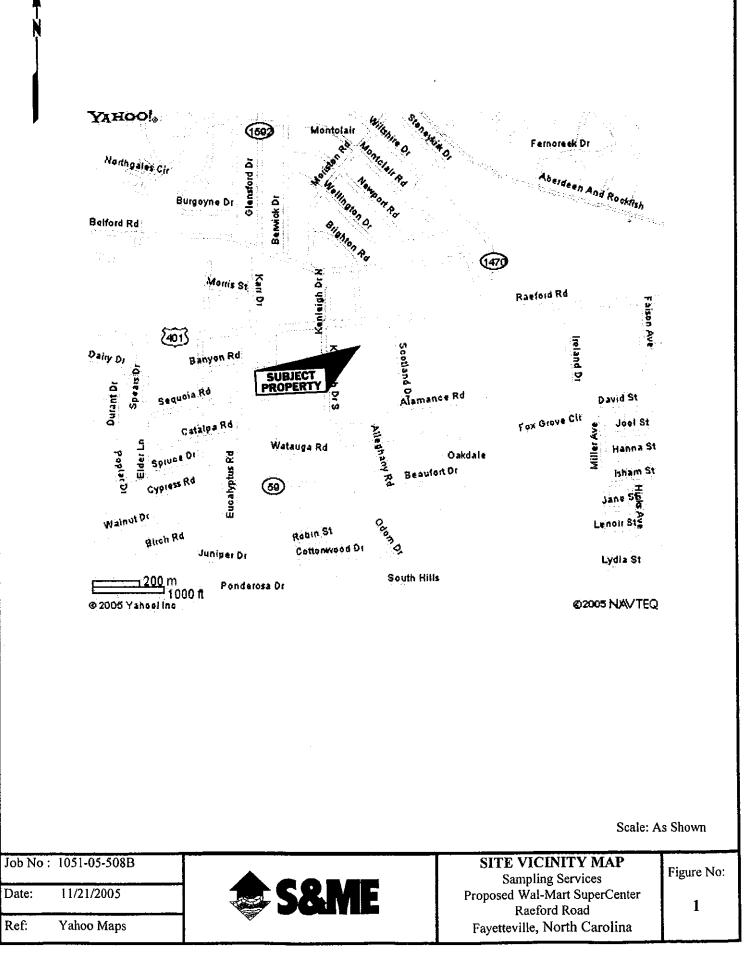
Based on the analytical results, it appears that the Jim's Texaco site has impacted the subject property.

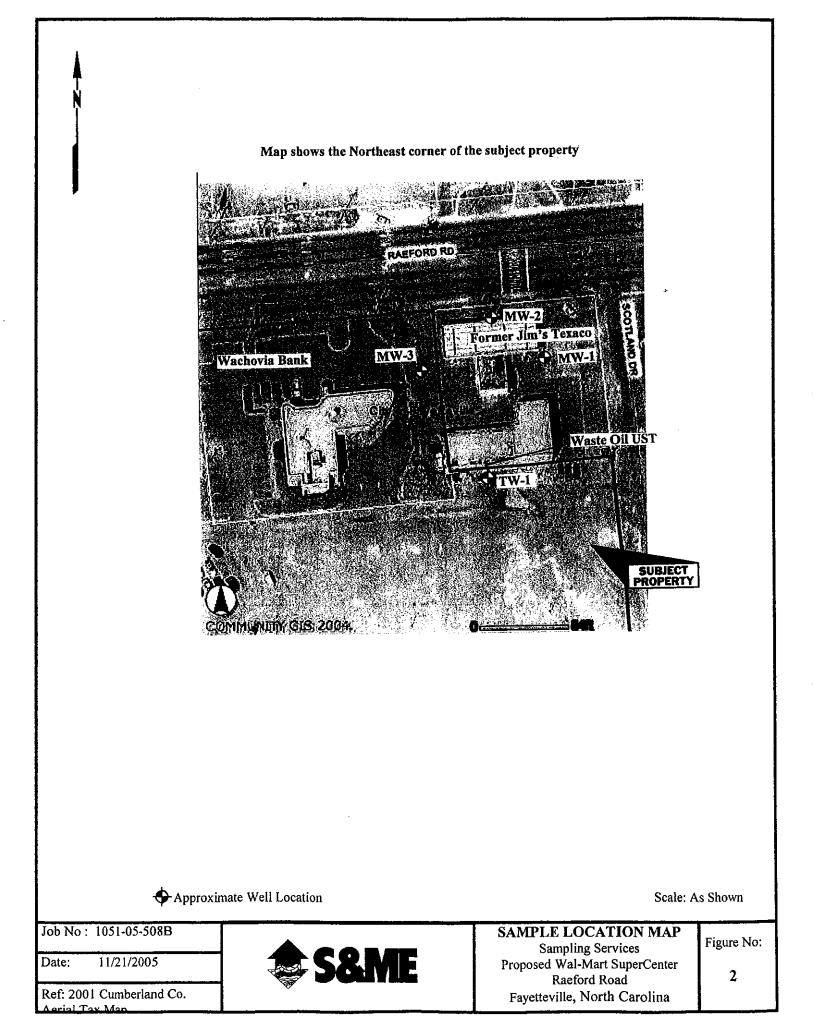
The purpose of this soil and groundwater sampling program was to screen the site for petroleum impacts stemming from the existing gasoline service station adjoining the property to the northeast. No data was collected nor is any representation made regarding areas of the site other than the specific sampling locations or for other contaminants.

This letter report is solely intended for Wal-Mart Stores, Inc. and Kimley-Horn and Associates, Inc. for this project. No other use is authorized by S&ME, Inc.

S&ME appreciates having the opportunity to provide our services to you. Should you have any questions, please do not hesitate to contact us at your convenience.

Very truly yours,


S&ME, INC.


Jamie T. Honeycutt

Jamie T. Honeycutt Environmental Staff Professional

anee Fairclothe

Wayne Watterson, P.E. Senior Engineer

S&ME Job No. 1051-05-508B November 22, 2005

÷

Table 1

OVA Readings Limited Soil and Groundwater Sampling Services

Proposed Wal-Mart SuperCenter Property Raeford Road Fayetteville, North Carolina Job No. 1051-05-508B

Location	Depth (ft.)	OVA Reading (ppm)
TW-1	0 - 3.5 3.5 - 5 8.5 - 10 13.5 - 15	0 2 52 74

Notes: ppm = parts per million ft.: feet

S&ME Job No. 1051-05-508B November 22, 2005

Table 2

Summary of Soil Quality Data Limited Soil and Groundwater Sampling Services

Proposed Wal-Mart SuperCenter Property Raeford Road Fayetteville, North Carolina Job No. 1051-05-508B

<u>Analysis</u> Compound	TW-1 13.5' - 15'	Reportable Concentration
EPA Method 5030 Gasoline Range Organics	BDL	10
EPA Method 3550 Diesel Range Organics	4	10
EPA Method 9071 Oil and Grease	BDL	NA

All quantities expressed in mg/Kg milligrams per kilograms (parts per million) BDL: below method detection limits

NA: Not applicable

Constituents not listed were below the detection limit of the analytical method.

Regulatory standards as set forth in "Guidelines for Assessment and Corrective Action, North Carolina Underground Storage Tank Section"

Analytical results greater than applicable standards are given in **bold** print.

Table 3

Summary of Groundwater Quality Data Limited Soil and Groundwater Sampling Services

Proposed Wal-Mart SuperCenter Property Raeford Road Fayetteville, North Carolina Job No. 1051-05-508B

Compound	TW-1	MW-3 11-8-05	MW-3 9-28-92	2L Regulatory Standards
MTBE Benzene Toluene Ethyl benzene M,P,O-Xylenes Naphthalene 1,4-Dichlorobenzene 1,2-Dichlorobenzene	6,500 14,000 47,000 3,700 36,000 BDL BDL BDL BDL	BDL 160 BDL 82 2,090 BDL BDL BDL BDL	1,382 2,756 10,348 BDL 1,557 58 423 424	200 1 1,000 550 530 21 75 620

All quantities expressed in $\mu g/L$ micrograms per liter (parts per billion)

Analytical results of groundwater samples collected at MW-3 collected in 1992 were obtained from the Preliminary Assessment Report dated October 15, 1992 completed by TTS/Environmental. BDL: below method detection limits

Regulatory standards as set forth in 15A NCAC 2L, "Classifications and Standards Applicable to the Groundwaters of North Carolina" or in guidance documents issued by the NCDENR.

Analytical results greater than applicable standards are given in bold print.

Environmental Conservation Laboratories, Inc. 1015 Passport Way Cary, North Carolina 27513-2042 919 / 677-1669 Fax 919 / 677-9846 www.encolabs.com

DHRS Certification No. E82277

CLIENT : S&ME, Inc. ADDRESS: 409 Chicago Dr. Suite 116 Fayetteville, NC 28306 REPORT # : CRY19035 DATE SUBMITTED: November 9, 2005 DATE REPORTED : November 16, 2005

PAGE 1 OF 11

ATTENTION: Mr. Jamie Honeycutt

SAMPLE IDENTIFICATION

Samples submitted and identified by client as:

REFERENCE: 1051-05-508A

Raeford Rd.

11/08/05

CRY19035-1	:	TW-1	@	14:15
CRY19035-2	:	TW-1	@	15:30
CRY19035-3	:	MW - 3	@	15:00

Unless otherwise noted in an attached project narrative, all samples were received in acceptable condition and processed in accordance with the referenced methods/procedures. This data has been produced in accordance with NELAC Standards (June, 2003). This report shall not be reproduced except in full, without the written approval of the laboratory. Results for these procedures apply only to the samples as submitted.

Note: Analytical values are reported on a dry weight basis.

PROJECT MANAGER

Chuck Smith

PAGE 2 OF 11

RESULTS OF ANALYSIS

.

EPA METHOD 8260 - Volatile organics	<u>TW-1</u>	<u>TW-1</u>		Units
Dichlorodifluoromethane	NR	800 U	D1	ug/L
Chloromethane	NR	400 U	D1	ug/L
Vinyl Chloride	NR	400 U	D1	ug/L
Bromomethane	NR	800 U	D1	ug/L
Chloroethane	NR	800 U	D1	ug/L
Trichlorofluoromethane	NR	400 U	D1	ug/L
1,1-Dichloroethene	NR	400 U	D1	ug/L
Methylene Chloride	NR	2000 U	D1	ug/L
t-1,2-Dichloroethene	NR	400 U	D1	ug/L
Methyl tert-butyl ether	NR	6500	D1	ug/L
1,1-Dichloroethane	NR	400 U	D1	ug/L
c-1, 2-Dichloroethene	NR	400 U	D1	ug/L
Chloroform	NR	400 U	D1	ug/L
1,1,1-Trichloroethane	NR	400 U	D1	ug/L
Carbon tetrachloride	NR	400 U	D1	ug/L
Benzene	NR	14000	D 1	ug/L
1,2-Dichloroethane	NR	400 U	D1	ug/L
Trichloroethene	NR	400 U	D1	ug/L
1,2-Dichloropropane	NR	400 U	D1	ug/L
Bromodichloromethane	NR	400 U	D1	ug/L

NR = Analysis not requested for this sample. U = Compound was analyzed for but not detected to the level shown. D1 = Analyte value determined from a 1:400 dilution.

ENCO LABORATORIES

REPORT # : CRY19035 DATE REPORTED: November 16, 2005 REFERENCE : 1051-05-508A PROJECT NAME : Raeford Rd.

PAGE 3 OF 11

RESULTS OF ANALYSIS

EPA METHOD 8260 (cont.) - VOLATILE ORGANICS	<u>TW-1</u>	<u>TW-1</u>	Units
2-Chloroethyl vinyl ether	NR	2400 U D1	ug/L
c-1,3-Dichloropropene	NR	400 U D1	ug/L
Toluene	NR	47000 D1	ug/L
t-1,3-Dichloropropene	NR	400 U D1	ug/L
1,1,2-Trichloroethane	NR	400 U D1	ug/L
Tetrachloroethene	NR	400 U D1	ug/L
Dibromochloromethane	NR	400 U D1	ug/L
Chlorobenzene	NR	400 U D1	ug/L
Ethylbenzene	NR	3700 D1	ug/L
m-Xylene & p-Xylene	NR	25000 D1	ug/L
o-Xylene	NR	11000 D1	ug/L
	NR	400 U D1	ug/L
Styrene Bromoform	NR	400 U D1	ug/L
1,1,2,2-Tetrachloroethane	NR	400 U D1	ug/L
1,3-Dichlorobenzene	NR	400 U D1	ug/L
1,4-Dichlorobenzene	NR	400 U D1	ug/L
1,2-Dichlorobenzene	NR	400 U D1	ug/L
Naphthalene	NR	800 U D1	ug/L
<u>Surrogate:</u> Dibromofluoromethane D8-Toluene Bromofluorobenzene Date Analyzed		<u>% RECOV</u> 117 103 110 11/16/05 09:06	LIMITS 73-138 77-118 70-130

NR = Analysis not requested for this sample. U = Compound was analyzed for but not detected to the level shown. D1 = Analyte value determined from a 1:400 dilution.

.

ENCO LABORATORIES REPORT # : CRY19035

CRIL9035	
November 16,	2005
1051-05-508A	
Raeford Rd.	
	November 16, 1051-05-508A Raeford Rd.

PAGE 4 OF 11

RESULTS OF ANALYSIS

EPA METHOD 8015 MODIFIED - DIESEL RANGE ORGANICS	<u>TW-1</u>	<u>TW-1</u>	Units
DRO (C10-C24)	4.	NR	mg/Kg
Surrogate: o-Terphenyl Date Prepared Date Analyzed	<u>% RECOV</u> 106 11/09/05 12:30 11/10/05 13:22		LIMITS 34-140

EPA METHOD 8015 MODIFIED - GASOLINE RANGE ORGANICS	<u>TW-1</u>	<u>TW-1</u>	<u>Units</u>
GRO (C6-C10)	4. U D2	NR	mg/Kg
Surrogate: 2,5-Dibromotoluene Date Analyzed	<u>% RECOV</u> 84 11/10/05 14:07		LIMITS 59-168

MISCELLANEOUS	METHOD	<u>TW-1</u>	<u>TW-1</u>	Units
Oil and Grease Date Prepared Date Analyzed	9071B	1.1 U 11/11/05 08:00 11/14/05 13:00	NR	mg/Kg
Percent Solids Date Analyzed	ENCO WETS	72 92.9 11/10/05 09:45	NR	olo

NR = Analysis not requested for this sample. U = Compound was analyzed for but not detected to the level shown. D2 = Analyte value determined from a 1:88 dilution.

PAGE 5 OF 11

RESULTS OF ANALYSIS

EPA METHOD 8260 -VOLATILE ORGANICS MW ~ 3 LAB BLANK Units Dichlorodifluoromethane 80. U D3 2. U ug/L Chloromethane 40. U D3 1. U uq/L Vinyl Chloride 40. U 1. U D3 uq/L Bromomethane 80. U 2. U D3 uq/LChloroethane 80. U 2. U D3 ug/L Trichlorofluoromethane 40. U D3 1. U ug/L 1,1-Dichloroethene 40. U D3 1. U ug/L Methylene Chloride 200 U D3 5. U ug/L t-1,2-Dichloroethene 40. U 1. U D3 ug/L Methyl tert-butyl ether 40. U D3 1. U ug/L 1,1-Dichloroethane 1. U 40. U D3 ug/L c-1,2-Dichloroethene 40. U D3 1. U ug/L Chloroform 40. U D3 1. U uq/L 1,1,1-Trichloroethane 40. U D3 1. U ug/LCarbon tetrachloride 40. U D3 1. U ug/L Benzene 160 1. U D3 ug/L 1,2-Dichloroethane 40. U 1. U D3 ug/L Trichloroethene 40. U D3 1. U uq/L 1,2-Dichloropropane 40. U D3 1. U uq/LBromodichloromethane 1. U 40. U D3 ug/L

U = Compound was analyzed for but not detected to the level shown. D3 = Analyte value determined from a 1:40 dilution.

· PAGE 6 OF 11

RESULTS OF ANALYSIS

EPA METHOD 8260 (cont.) - VOLATILE ORGANICS	<u>MW-3</u>	LAB BLANK	Units
2-Chloroethyl vinyl ether c-1,3-Dichloropropene Toluene t-1,3-Dichloropropene 1,1,2-Trichloroethane Tetrachloroethene Dibromochloromethane Chlorobenzene Ethylbenzene m-Xylene & p-Xylene o-Xylene Styrene Bromoform 1,1,2,2-Tetrachloroethane 1,3-Dichlorobenzene 1,4-Dichlorobenzene 1,2-Dichlorobenzene Naphthalene	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	6. U 1. U 2. U 1. U 1. U 2. U 1. U 2. U 1. U 2. U 1. U 2. U 2. U 1. U 2. U 2. U 1. U 2. U	ug/L ug/L ug/L ug/L ug/L ug/L ug/L ug/L
Surrogate: Dibromofluoromethane D8-Toluene Bromofluorobenzene Date Analyzed	<u>% RECOV</u> 93 100 120 11/15/05 15:05	<u>% RECOV</u> 109 110 116 11/15/05 13:46	LIMITS 73-138 77-118 70-130

U = Compound was analyzed for but not detected to the level shown. D3 = Analyte value determined from a 1:40 dilution.

PAGE 7 OF 11

RESULTS OF ANALYSIS

EPA METHOD 8015 MODIFIED - DIESEL RANGE ORGANICS	<u>MW-3</u>	LAB BLANK	Units
DRO (C10-C24)	NR	3. U	mg/Kg
<u>Surrogate:</u> o-Terphenyl Date Prepared Date Analyzed		<u>% RECOV</u> 100 11/09/05 12:30 11/10/05 09:59	LIMITS 34-140

EPA METHOD 8015 MODIFIED - GASOLINE RANGE ORGANICS	<u>MW - 3</u>	LAB BLANK	Units
GRO (C6-C10)	NR	5. U D4	mg/Kg
<u>Surrogate:</u> 2,5-Dibromotoluene Date Analyzed		<u>% RECOV</u> 93 11/10/05 07:49	LIMITS 59-168

MISCELLANEOUS	METHOD	<u>MW-3</u>	LAB BLANK	Units
Oil and Grease Date Prepared Date Analyzed	9071B	NR	1.0 U 11/11/05 08:00 11/14/05 13:00	mg/Kg

NR = Analysis not requested for this sample. U = Compound was analyzed for but not detected to the level shown. D4 = Analyte value determined from a 1:100 dilution.

PAGE 8 OF 11

RESULTS OF ANALYSIS

EPA METHOD 8260 - VOLATILE ORGANICS	LAB BLANK	² <u>Units</u>
Dichlorodifluoromethane Chloromethane	2. U 1. U	ug/L ug/L
Vinyl Chloride	1. U	ug/L
Bromomethane	2. U	ug/L
Chloroethane	2. U	ug/L
Trichlorofluoromethane	1. U	ug/L
1,1-Dichloroethene	1. U	ug/L
Methylene Chloride	5. U	ug/L
t-1,2-Dichloroethene	1. U	ug/L
Methyl tert-butyl ether	1. U	ug/L
1,1-Dichloroethane	1. U	ug/L
c-1,2-Dichloroethene	1. U	ug/L
Chloroform	1. U	ug/L
1,1,1-Trichloroethane	1. Ŭ	ug/L
Carbon tetrachloride	1. U	ug/L
Benzene	1. U	ug/L
1,2-Dichloroethane	1. U	ug/L
Trichloroethene	1. U	ug/L
1,2-Dichloropropane	1. U	ug/L
Bromodichloromethane	1. U	ug/L

.

U = Compound was analyzed for but not detected to the level shown.

PAGE 9 OF 11

RESULTS OF ANALYSIS

EPA METHOD 8260 (cont.) - VOLATILE ORGANICS	LAB BLANK	بد	Units
2-Chloroethyl vinyl ether	6. U		ug/L
c-1,3-Dichloropropene	1. U		ug/L
Toluene	1. U		ug/L
t-1,3-Dichloropropene	1. U		ug/L
1,1,2-Trichloroethane	1. U		ug/L
Tetrachloroethene	1. U		ug/L
Dibromochloromethane	1. U		ug/L
Chlorobenzene	1. U		ug/L
Ethylbenzene	1. U		ug/L
m-Xylene & p-Xylene	2. U		ug/L
o-Xylene	1. U		ug/L
Styrene	1. U		ug/L
Bromoform	1. U		ug/L
1,1,2,2-Tetrachloroethane	1. U		ug/L
1,3-Dichlorobenzene	1. U		ug/L
1,4-Dichlorobenzene	1. U		ug/L
1,2-Dichlorobenzene	1. U		ug/L
Naphthalene	2. U		ug/L
Surrogate:	% RECOV		LIMITS
Dibromofluoromethane	122		73-138
D8-Toluene	107		77-118
Bromofluorobenzene	121		70-130
Date Analyzed	11/16/05 08:39		

.

•

U = Compound was analyzed for but not detected to the level shown.

-

PAGE 10 OF 11

LABORATORY CERTIFICATIONS

Laboratory Certification: NCDENR:591

All analyses reported with this project were analyzed by the facility indicated unless identified below.

Ļ

PARAMETER

Oil & Grease, SW-846 Method 9071B

LAB CERT #'s NCDENR:442

PAGE 11 OF 11

QUALITY CONTROL DATA

Parameter	% RECOVERY LCS/MS/MSD	LCS LIMITS	MS/MSD LIMITS	RPD MS/MSD	RPD LIMITS
EPA Method 8260 1,1-Dichloroethene Benzene Trichloroethene Toluene Chlorobenzene	92/ 83/ 86 73/ 70/ 75 108/104/104 93/ 94/ 92 96/ 98/ 96	64-139 69-115 74-118 77-117 76-118	36-177 53-150 64-124 40-161 44-128	4 7 <1 2 2	30 23 25 23 22
$\frac{\text{EPA}}{\text{DRO}} \xrightarrow{\text{Method}} \frac{8015}{(C10-C24)} \xrightarrow{\text{MODIFIED}}$	85/ 82/ 83	49-102	14-162	1	31
EPA Method 8015 MODIFIED GRO (C6-C10)	89/98/98	51-115	45-162	<1	24
MISCELLANEOUS Oil and Grease, 9071B	*83/ 71/ 81	90-114	68-120	13	15

* = Recovery outside historical limits.

< = Less Than

MS = Matrix Spike

MSD = Matrix Spike Duplicate LCS = Laboratory Control Standard RPD = Relative Percent Difference

RECEIVED FOR LABORATORY BY, (SIGNATURE) DATE TIME CUSTO	RÉCEIVED BY (SIGNATURE) DATE TIME RELIN	BA (SIGNATURE) // S. US LINE // S. US LAND	MODIACHER HER MODIAL		13			Ē				0	σ	 3,00	11-8-05	1 1.4-05 2115 X TW-1 00	STATION DATE TIME GRAB COMP SAMPLE IDENTIFICATION	SAMPLE	client adoress (city, state, zip) 409 Chicado Dr. Suite 116 Favetteville, NC 28306		Jamiet Hoverbulk	SAMPLER(S) NAME	Raeford Rd. 1051-05-508A			
VYES INO REMARKS	RELINQUISHED BY: (SIGNATURE)		DATE											\$ \$		×	SUF, GRC, WAS	TEW, VIOL VKINO VSOL VAQUA VGE VGE	WATER WATER WATER WATER WOVSEDIN EOUS LIN GRO		solver			ENCO CompQAP No.: 960038G/0	4810 Executive Park Court, Suite 211	ENVIRONMENTAL CONS
				TIME RECEIVED BY: (SIGNATURE) DATE TIME	Howey Cid H	Jer Visinice	2410111	200x	CXC1	wy shich	- Hexane		- Internation	te o 2			日母け	PRESERVATIVE	DRO, PL V&G 90 Coate Due:	71,PERC	-		REQUIRED ANALYSIS PAGE OF	Vol: 960038G/0 CHAIN OF CUSTODY RECORD	55 13	ر من المن المعنى المعنى المعنى المعنى المعنى المعنى المعنى المعنى المعنى المعنى المعنى المعنى المعنى المعنى المع

.,

PHASE II ENVIRONMENTAL SITE ASSESSMENT

Vacant Raeford Road Sunoco Station 4537 Raeford Road Fayetteville, North Carolina

> AEC Project No. 06-017 March 6, 2006

> > Prepared for.

Mr. Mervis Samuels BB&T 9658 Baltimore Avenue, Suite 207 College Park, Maryland 20740

On behalf of:

Empire Petroleum Marketing LLC 15729 Crabbs Branch Way Rockville, Maryland 20855

Prepared by:

Advantage Environmental Consultants, LLC Jessup8610 Washington Blvd, Suite 217 Jessup, Maryland 20794 Phone (301) 776-0500 (301) 776-0500 • FAX (301301) 776-1123 4537 Raeford Road Fayetteville, North Carolina

TABLE OF CONTENTS

EXEC	UTIVE	SUMMARY1
1.0	INTRO 1.1 1.2 1.3	DUCTION 2 Introduction and Purpose 2 Site Location and Description 2 Site Topography and Hydrology 3
2.0	INVES 2.1 2.2 2.3 2.4	STIGATION METHODS 4 Introduction 4 Soil Sampling Methodology 4 Groundwater Sampling Methodology 4 Sample Handling and Analysis 5
3.0	REGI	ONAL AND LOCAL GEOLOGY AND HYDROLOGY
	INVES 4.1 4.2	STIGATION ACTIVITY RESULTS 7 Soil Sample Analytical Results 7 Groundwater Sample Analytical Results 8
5.0	CONC 5.1	Conclusions
APPEN	IDIX A IDIX B	FIGURES BORING LOGS LABORATORY REPORTS AND CHAIN OF CUSTODY DOCUMENTATION
FIGUR		

i

FIGURE 1: SITE VICINITY MAP FIGURE 2: BORING LOCATION MAP FIGURE 3: SOIL QUALITY MAP FIGURE 4: GROUNDWATER QUALITY MAP

EXECUTIVE SUMMARY

Advantage Environmental Consultants, LLC. (AEC) was contracted by BB&T to perform a subsurface investigation at 4537 Raeford Road, in Fayetteville, NC (hereinafter referred to as the "Site"). The subsurface investigation was performed as part of a due diligence study prior to possible acquisition of the Site. A Phase I Environmental Site Assessment was also conducted simultaneously with this Phase II Subsurface Investigation.

AEC installed six soil borings and collected water samples from three of the borings and soil samples from four of the borings. AEC also gauged three existing monitoring wells which were reportedly installed by the owner in 1992.

Liquid phase hydrocarbon (LPH) was found to exist in 2 of the 3 existing monitoring wells at thicknesses of approximately 1.5 inches and 13 inches. The results of the soil and groundwater sampling indicated environmental impact throughout the majority of the site.

According to the North Carolina Department of the Environment and Natural Resources (DENR), an active regulatory case has existed at the site since 1992. According to conversations with the DENR, a Comprehensive Site Assessment was requested from the Site owner. A CSA has reportedly not been completed and remains an outstanding issue. Based on the currently known environmental conditions at the site, the DENR has ranked the site as an intermediate priority.

Significant costs associated with the assessment and clean-up of this site are expected.

Due to the contamination known to exist at the Site, it is likely that UST upgrading, UST removal, or any future development activity will encounter contaminated soil and groundwater that will result in additional project costs. These costs are typically not reimbursed through the UST reimbursement program.

Although the Site is under active enforcement by the DENR, this will not prohibit the Site's current or future use as a gasoline service station. This statement, of course, assumes that the tanks are in compliance with state regulation and any physical non-compliance issues are corrected prior to their operation.

1.0 INTRODUCTION

1.1 Introduction and Purpose

Advantage Environmental Consultants, LLC (AEC) was contracted by BB&T to perform a subsurface investigation at the vacant Raeford Road Sunoco station, located at 4537 Raeford Road, in Fayetteville, NC (hereinafter referred to as the "Site"). The subsurface investigation was performed to determine if the soil and/or groundwater have been impacted by the historical operations on the Site. A Site Vicinity Map showing the approximate location is included as Figure 1 in Appendix A.

Six soil borings were advanced at locations throughout the Site chosen based on their proximity to potential on-site sources of environmental impact.

An AEC Field Geologist logged the geologic conditions and field screened the entire soil core of each boring for volatile organic compounds (VOCs) using a photoionization detector (PID). A total of four soil samples were collected for laboratory analysis based on elevated PID readings or evidence of impact in soil. Groundwater samples were collected at three locations. Three groundwater monitoring wells were observed on the site as well as four tank pit monitoring wells, as noted on Figure 2 in Appendix A. The three monitoring wells were gauged and liquid petroleum hydrocarbons (LPH) were noted in MW-1 and MW-2. Approximately 1.5 inches of LPH was noted in MW-1, 13 inches of LPH was noted in MW-2, and a strong gasoline odor in MW-3. The tank pit monitoring wells were not accessible at the time of this investigation.

Soil samples, when appropriate, were analyzed for Volatile Petroleum Hydrocarbons (VPH) per MADEP VPH: Aliphatics/Aromatics and Volatile Organic Compounds (VOCs) per EPA analytical method 8260.

Groundwater samples collected from the borings were analyzed for: VPH per MADEP VPH: Aliphatics/Aromatics, and VOCs per EPA analytical method 8260.

1.2 Site Location and Description

The Site is an approximate 0.53-acre parcel that is improved with a vacant gasoline filling station and automobile service shop. Improvements at the Site consist of a convenience store, an automobile service shop with five service bays, four gasoline dispenser islands beneath an overhead canopy, and three 10,000-gallon underground storage tanks (USTs) and the related piping system. The on-site convenience store building was constructed in 1986 and comprises a reported total of 1,362 square feet of space. The automobile service shop building was constructed in 1984 and comprises a reported total of 1,890 square feet. Remaining areas of the Site are developed with an asphalt-paved parking lot and landscaping. A Site Map is included as Figure 2 in Appendix A.

1.3 Site Topography and Hydrology

AEC reviewed a copy of the United States Geological Survey (USGS) 7.5 Minute Series, Fayetteville, NC Topographic Quadrangle map dated 1987. According to the map, the elevation of the Site is approximately 200 feet above mean sea level (msl). The area on and around the Site slopes south, towards Buckhead Creek, located approximately 2,700 feet southeast of the Site. The Site is illustrated with two solid black rectangles, indicating the on-site structures. Surrounding areas to the east, west and south are illustrated as commercial properties, while the area north of the Site is shaded red, indicating dense urban development. No surface bodies of water were illustrated on the Site.

2.0 INVESTIGATION METHODS

2.1 Introduction

Six geoprobe borings were advanced for this study. The boring locations were selected based on their proximity to potential on-site sources of environmental impact. Boring locations are shown on Figure 2 in Appendix A.

Soil samples were collected from four of the six borings. The criteria for selecting the soil samples was based on elevated PID readings or evidence of impact in soil. In general, the highest PID readings were observed directly above the water table. Soil samples were collected from SB1 at 21 feet, SB3 at 16 feet, SB4 at 11, and SB5 at 20 feet. Groundwater samples were collected during this investigation from borings SB1, SB3, and SB4.

Each of the soil and groundwater samples collected from the borings was analyzed for VPH per MADEP VPH: Aliphatics/Aromatics and VOCs per EPA analytical method 8260.

2.2 Soil Sampling Methodology

Drilling activities were performed on February 16, 2006. Sample cores were collected continuously using 1.5-inch, inside-diameter, stainless steel macro-core samplers with new acetate liners. Cores were collected in four feet intervals by using a truck-mounted hydraulic press to drive the sampler through the stratum. All sampling equipment was decontaminated in the field using non-phosphate liquinox and distilled water prior to use. AEC contracted Environmental Probing of Clayton, North Carolina to perform the drilling activities. Copies of the boring logs for this investigation are included in Appendix C.

Upon retrieval, each soil sample was screened using a PID. Petroleum hydrocarbon odors were noted in each of the borings. Following the screening, a total of four soil samples, chosen based on elevated PID readings, evidence of impact in soil, or within man-made fill layers, were collected for laboratory analysis. Samples were placed in appropriate laboratory-supplied containers and preserved as necessary. Once collected, the samples were placed on ice in a cooler to await shipment to the laboratory.

2.3 Groundwater Sampling Methodology

Temporary groundwater monitoring wells were installed in borings SB1, SB3, and SB4. Wells were constructed of new one-inch-diameter PVC screen and casing. Each well used 10 feet of slotted screen, and unslotted riser up to grade.

Groundwater samples from the three temporary wells were collected using new dedicated HDPE tubing and a peristaltic pump. The sample from each well was placed in appropriate laboratory supplied containers and preserved as necessary. Once collected, the samples were placed on ice in a cooler to await shipment to the laboratory. Upon completion of the groundwater sampling in each boring, the temporary PVC well was removed from the boring and the holes were backfilled with the drill cuttings.

2.4 Sample Handling and Analysis

Samples were packaged for shipment using strict chain-of-custody procedures. The cooler was packed with individually wrapped sample containers and ice and sealed with laboratory provided custody seals and shipping tape. Samples were shipped to Test America Analytical Testing Corporation of Nashville, Tennessee for analysis.

3.0 REGIONAL AND LOCAL GEOLOGY AND HYDROLOGY

Review of the Generalized Geologic Map of North Carolina (http://gis.enr.state.nc. us/sid/bin/index.plx?client=zGeologic_Maps&site=9AM) indicated that the Site is underlain by a Triassic formation known as the Dan River Group, which consists of mudstone, sandstone and conglomerates. Depth to bedrock is estimated to be more than five feet below ground surface.

Shallow groundwater flow generally follows topography. Based on the drilling of the site groundwater ranges from 16.5 to 21.5 feet below ground surface (bgs) and flow in a direction similar to surface drainage patterns (i.e., to the south). Precise groundwater depths and flow directions can be determined through the installation and survey of groundwater monitoring wells. Based on the review of the soil, geologic, and hydrogeologic information, AEC concludes that the potential of on-site soils for contaminant or leachate migration is moderate.

4.0 INVESTIGATION ACTIVITY RESULTS

4.1 Soil Sample Analytical Results

The soil analytical results revealed elevated levels of VPH. Specifically, VPH was found in samples SB1 @ 21' and SB4 @ 11'. Samples SB3 @ 16' and SB5 @ 20' were below detection limits (bdl) for VPH. It should be noted that the detection limit is defined as the minimum concentration of the compound that can be reliably quantified by the laboratory performing the analysis per the recognized method. In addition to the VPH exceedances, several VOCs were also detected. The most significant were Benzene, n-butylbenzene, and Naphthalene. Most of the VOC analytes listed below are common petroleum constituents. Soil analytical results are illustrated on Figure 3 in Appendix A.

Table 1: Soil Sample Analytical Results Vacant Raeford Road Sunoco Station 4537 Raeford Road, Fayetteville, NC February 16, 2005

Analyte	SB1 @ 21'	SB3 @ 16'	SB4 @ 11'	SB5 @ 20'	NC DENR Commercial Cleanup Levels
Benzene	1.37	0.021	28.9	0.005	200
sec-Butylbenzene	0.655	bdl	97.1	bdi	4,088
n-Butylbenzene	3.00	bdl	364	bdi	4,088
Ethylbenzene	9.48	0.012	<u>2</u> 06	0.002	40,000
Isopropylbenzene	1.61	bdl	293	bdl	40,880
p-isopropyltoluene	0.331	bdl	40	bdl	not listed
Methyl tert-Butyl Ether (MTBE)	0.234	0.110	bdl	0.086	4,088
Naphthalene	5.23	0.016	505	0.008	1,635
n-Propylbenzene	5.24	0.002	93.6	0.001	4,088
Toluene	26.9	0.036	351	0.013	82,000
1,3,5-Trimethylbenzene	9.70	0.009	189	0.003	20,440
1,2,4-Trimethylbenzene	31.0	0.030	585	0.012	20,440
Xylenes, Total	52.6	0.066	1,080	0.015	200,000
C5 - C8 Aliphatic Hydrocarbons, Unadjusted	134	bdl	4,160	bdi	not listed
C9 – C10 Aromatic Hydrocarbons	136	bdl	1,850	bdl	not listed
C9 - C12 Aliphatic Hydrocarbons, Unadjusted	392	bdl	4,470	bdl	not listed
C9 - C12 Aliphatic Hydrocarbons	256	bdl	2,260	bdl	not listed

All analytes reported in mg/kg

bdl = denotes results below analytical detection level

All analyte levels are compared to the North Carolina Department of Environment and Natural Resource (NC DENR) "Guidelines for Assessment and Corrective Action", Dated July 1, 2001

Copies of the completed laboratory analytical reports and chain-of-custody forms are provided in Appendix C.

4.2 Groundwater Sample Analytical Results

The groundwater analytical results revealed elevated levels of VPH. Specifically, VPH was found in samples SB1 W, SB3 W, and SB4 W. In addition to the VPH exceedances, several VOCs were also detected. The most significant were Benzene, Toluene, and Xylenes. Most of the VOC analytes listed below are common petroleum constituents. Copies of the completed laboratory analytical reports and chain-of-custody forms are provided in Appendix C.

February 16, 2005								
Analyte	SB1 W	SB3 W	SB4 W	NC DENR Groundwater Quality Standards				
Benzene	14,500	9,050	1,120	1				
sec-Butylbenzene	24	bdl	bdl	70				
Chloroform	7.09	1.16	bdl	0.00019				
1,2-Dibromoethane	15.5	bdl	bdi	0.0004				
Ethylbenzene	2,250	2,970	1,470	29				
2-Hexanone	61	bdi	bdl	280				
Isopropylbenzene	194	91.3	168	70				
p-lsopropyltoluene	11.3	11.0	8.55	not listed				
Methyl tert-Butyl Ether (MTBE)	737	286	3.86	200				
Methylene Chloride	bdi	bdl	10.2	5				
Naphthalene	270	191	213	21				
n-Propylbenzene	413	146	189	70				
Toluene	25,700	27,900	15,500	1,000				
1,1,2-Trichloroethane	bdl	bdl	8.30 *	not listed				
1,3,5-Trimethylbenzene	794	580	349	350				
1,2,4-Trimethylbenzene	2,490	2,190	1,300	350				
Xylenes, Total	11,500	15,600	7,820	530				
C5 - C8 Aliphatic Hydrocarbons, Unadjusted	117,000	47,000	45,700	not listed				
C9 – C10 Aromatic Hydrocarbons	12,700	4,070	5,170	not listed				
C9 - C12 Aliphatic Hydrocarbons, Unadjusted	42,600	20,200	21,300	not listed				
C9 - C12 Aliphatic Hydrocarbons	29,900	16,100	16,100	not listed				

4537 Raeford Road, Fayetteville, NC February 16, 2005

 Table 2: Soil Sample Analytical Results

 Vacant Raeford Road Sunoco Station

All analytes in µg/L

bdl = denotes results below analytical detection level

bold denoted exceeding NC DENR Groundwater Quality Standards

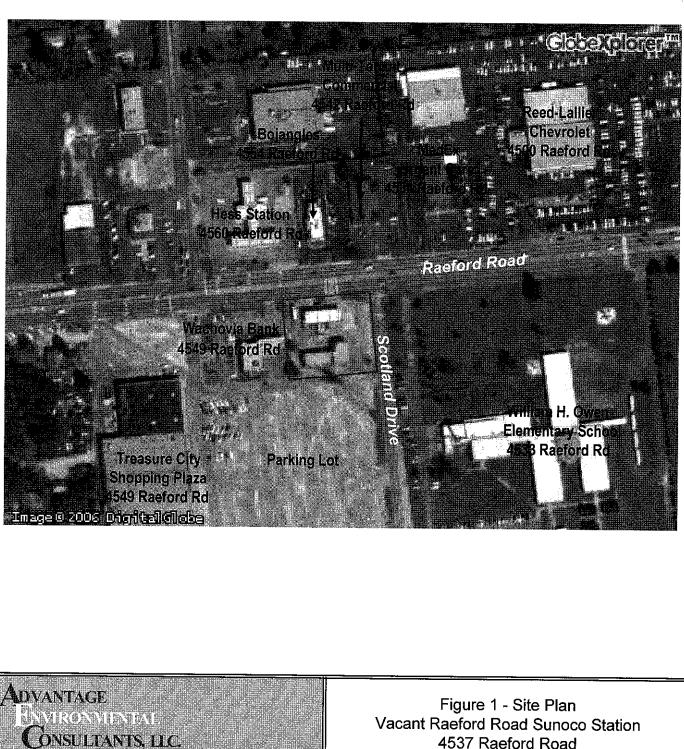
All analyte levels are compared to the North Carolina Department of Environment and Natural Resource (NC DENR) "Guidelines for Assessment and Corrective Action", Dated July 1, 2001

5.0 CONCLUSIONS

5.1 Conclusions

Liquid phase hydrocarbon (LPH) was found to exist in 2 of the 3 existing monitoring wells at thicknesses of approximately 1.5 inches and 13 inches. The results of the soil and groundwater sampling indicated environmental impact throughout the majority of the site.

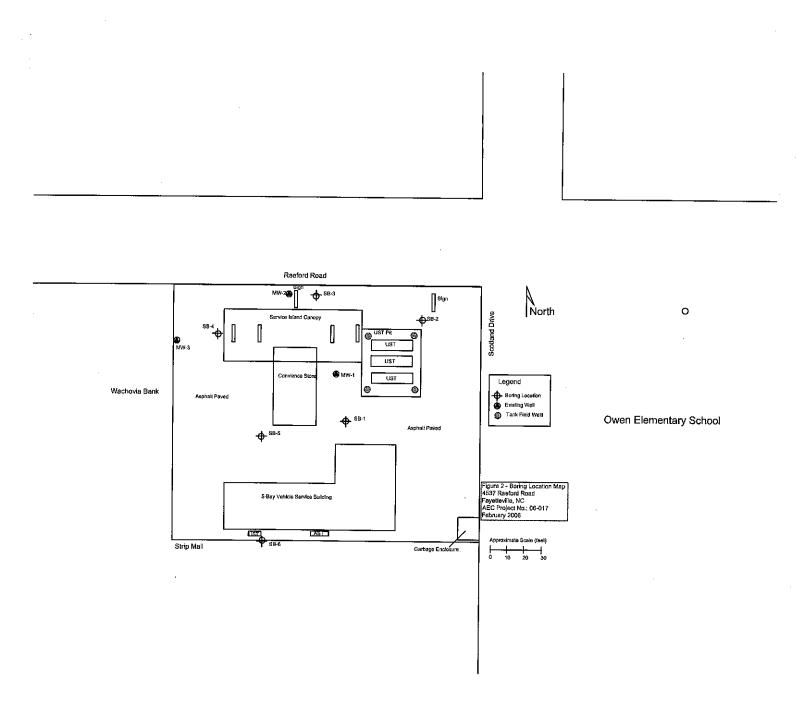
According to the North Carolina Department of the Environment and Natural Resources (DENR), an active regulatory case has existed at the site since 1992. According to conversations with the DENR, a Comprehensive Site Assessment (CSA) was requested from the Site owner. A CSA has reportedly not been completed and remains an outstanding issue. Based on the currently known environmental conditions at the site, the DENR has ranked the site as an intermediate priority.

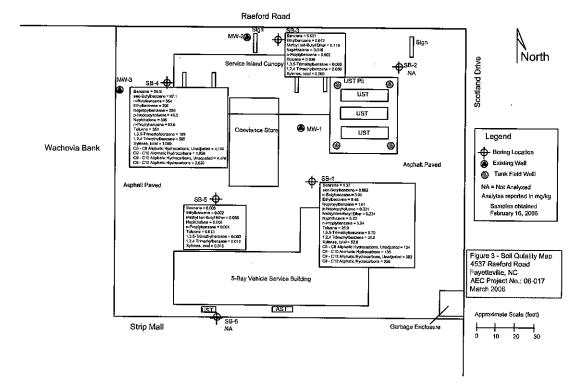

Significant costs associated with the assessment and clean-up of this site are expected.

Due to the contamination known to exist at the Site, it is likely that UST upgrading, UST removal, or any future development activity will encounter contaminated soil and groundwater that will result in additional project costs. These costs are typically not reimbursed through the UST reimbursement program.

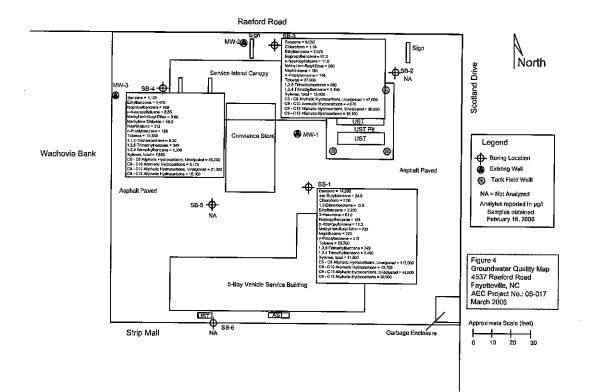
Although the Site is under active enforcement by the DENR, this will not prohibit the Site's current or future use as a gasoline service station. This statement, of course, assumes that the tanks are in compliance with state regulation and any physical non-compliance issues are corrected prior to their operation.

APPENDIX A


FIGURES



8610 Baltimore Washington Boulevard, Suite 217 Jessup, MD 20794 Phone: 301-776-0500 Fax 301-776-1123


4537 Raeford Road Fayetteville, North Carolina

AEC Project No .:	Report Date:	Drawn By:
06-017	3/6/06	LAK

Owen Elementary School

Owen Elementary School

APPENDIX B

BORING LOGS

n: rd Road NC stor: tal Probing ler	Location: Engineer/Geologi John Merletti	int:		Elevation:		Consultants, LLC Job Number: 06-017
rd Road NC stor: tal Probing	Engineer/Geologi John Merletti	iot.		Elevation:		
NC stor: tal Probing	John Merletti	iet.				
tal Probing	John Merletti	iet:				
		131.		Date Begun:		Date Finished:
ler				2/16/2006		2/16/2006
	Weather:		1	ater (Depth/Elev	/ation):	
	Clear, 60⁰		21.5'			
	Drill Method:		Drill Fluid	· ·		
	Geoprobe		none	••		
Soil Classif		Depth of Sample		Groundwater depth	PID Reading (ppm)	Comments?
Asphalt						
Brown sandy clay					6.2	Petroleum odor
Brown/black sandy clay				3	4.0	Petroleum odor
Tan sandy clay					11.4	Petroleum odor
Tan sandy clay					97.0	Petroleum odor
Tan sandy clay					65.0	Petroleum odor
Stained tan clay with trace sand					49.0	Petroleum odor
Stained tan clay with tr	ace sand				199.0	Petroleum odor
Stained tan clay with tr	ace sand					Petroleum odor
Brown/red sand with tr	ace clay				245 (15')	Strong petroleum odor
Brown/red sand with tr	ace clay			~		Strong petroleum odor
	ace clay	21		21.5	4300.0	Strong petroleum odor Sample SB-1 @ 21'
Boring Ends at 22'						
· · · · · · · · · · · · · · · · · · ·						
	<u></u>					
	Asphalt Brown sandy clay Brown/black sandy cla Tan sandy clay Tan sandy clay Tan sandy clay Tan sandy clay Stained tan clay with tr Stained tan clay with tr Stained tan clay with tr Brown/red sand with tr Brown/red sand with tr	Soil Classification Asphalt Brown sandy clay Brown/black sandy clay Tan sandy cla	Soil ClassificationDepth of SampleAsphalt	Soil ClassificationDepth of SampleSampleAsphaltIBrown sandy clayIBrown/black sandy clayITan sandy clay<	Soil ClassificationDepth of SampleSample TypeGroundwater depthAsphaltImage: Sample of Sample o	Soil ClassificationDepth of SampleSample TypeGroundwater depthPID Reading (ppm)AsphaltImage: SampleTypeGroundwater depthPID Reading (ppm)Brown sandy clay6.2Brown/black sandy clay4.0'an sandy clay11.4'an sandy clay97.0'an sandy clay65.0Stained tan clay with trace sand49.0Stained tan clay with trace sand199.0Stained tan clay with trace sand57 (12') (66 (13.5')Brown/red sand with trace clay21Brown/red sand with trace clay21Brown/red sand with trace clay21

Project: 4537 Rael	ford Road	Sheet: pad 1 of 1			Boring Number SB-2	Advantage Environmental	
Site Location: Location: 4537 Raeford Road Fayetteville, NC				Elevation:		Consultants, LLC Job Number: 06-017	
Drill Contra	actor:	Engineer/Geolog	gist:		Date Begun:	. , <u>.</u>	Date Finished:
	ental Probing	John Merletti			2/16/2006		2/16/2006
Drill Rig/D		Weather:			vater (Depth/Elev	/ation):	
Geoprobe Dan Ferrel		Clear, 60º		Not Enco	ountered		
Hole Size:		Drill Method:		Drill Fluid	d:		
2.25"		Geoprobe		none			
Depth (feet)	Soil Classi	fication	Depth of Sample	Sample Type	Groundwater depth	PID Reading (ppm)	Comments?
0 - 0.25	Asphalt						
0.25 - 4	Reddish brown silty cl	ay				0.8	Slight petroleum odor
4 - 7	Reddish brown silty clay					0.7	Slight petroleum odor
7 - 10	Red to tan sandy clay					1.2	Slight petroleum odor
10 - 13	Tan clay with trace sand some black streaking				· · · · · ·	10.2	Petroleum odor
13 - 14.5	Tan clay with trace sand					14.3	Petroleum odor
14.5 - 16	Tan sand with trace clay				-	132.0	Petroleum odor
16 - 20	Tan and red sand with	trace clay				82.3	Petroleum odor
	Boring Ends at 20'						
						· _	
	····						

Project: 4537 Rae	eford Road	ad 1 of 1			Boring Number SB-3	Advantage Environmental Consultants, LLC Job Number: 06-017	
Site Location: L 4537 Raeford Road Fayetteville, NC		Location:	Location:				
Drill Cont	ractor:	Engineer/Geolog	gist:		Date Begun:	<u>.</u>	Date Finished:
	ental Probing	John Merletti			2/16/2006		2/16/2006
Drill Rig/D		Weather:			ater (Depth/Elev	vation):	
Geoprobe Dan Ferre		Clear, 60º		16.5'			
Hole Size		Drill Method:		Drill Fluid	۰ <u>۰</u>	<u>.</u>	
2.25"		Geoprobe		none	4.		
Depth (feet)	Soil Classification		Depth of Sample		Groundwater depth	PID Reading (ppm)	Comments?
0 - 0.25	Asphalt						· · · · · · · · · · · · · · · · · · ·
0.25 - 4	No recovery			·····			
4 - 7	Reddish brown silty clay		<u> </u>			61.0	Slight petroleum odor
7 - 8	Reddish brown silty clay			·		123.0	Slight petroleum odor
8 - 11	Tan sandy clay					107.0	Petroleum odor
11 - 12	Tan sand and clay					98.0	Petroleum odor
12 - 13	Brown sandy clay with black streaking					324.0	Petroleum odor
13 - 14	Tan/red mottled clay					53.0	Petroleum odor
14 - 16	Brown/red sand with t	race clay	16			1136.0	Strong petroleum odor
16 - 18	Pink/white sand				16.5		Sample SB-3 @ 16' Petroleum odor
	Boring Ends at 18'						
							· · · · · · · · · · · · · · · · · · ·
		· · · · · · · · · · · · · · · · · · ·					
					,		
•							
	l						

Project: 4537 Rae	ford Road	Sheet: 1 of 1			Boring Number SB-4	r:	Advantage Environmental Consultants, LLC	
Site Loca	Site Location:			Elevatio			Job Number: 06-017	
	ford Road							
Drill Contr		Engineer/Geol	ogist:		Date Begun:		Date Finished:	
	ental Probing	John Merletti			2/16/2006		2/16/2006	
Drill Rig/D		Weather:		Groundw	ater (Depth/Ele	vation):		
Geoprobe Dan Ferre		Clear, 65°		19'				
Hole Size	•	Drill Method:		Drill Fluid	d:			
2.25"		Geoprobe		none				
Depth (feet)	Soil Class	ification	Depth of Sample	Sample Type	Groundwater depth	PID Reading (ppm)	Comments?	
0 - 0.25	Asphalt							
0.25 - 2	Reddish brown silty s	and				3.1	· · · · · · · · · · · · · · · · · · ·	
2 - 4	Brown/black silty sand					10.2	Slight petroleum odor	
4 - 6.5	Brown Clay					5.2	Slight petroleum odor	
6.5 - 8	Brown/black					5.4	Petroleum odor	
8 - 11	Tan to red clayey sand		11		,	42 (9')	Strong petroleum odor Sample SB-4 @ 11'	
11 - 13	Brown clay with silt				· · · ·	1392 (11')	Petroleum odor	
13 - 16	Tan/brown clay				<u></u>		Petroleum odor	
16 - 19	Tan/brown clay				19	232 (15.5') 2100.0	Strong petroleum odor	
19 - 22	Brown/red sand with t	race clay				2432.0	Strong petroleum odor	
	Boring Ends at 22'							
		<u></u>			·			
						<u> </u>		
		-					······································	
							· · · · · · · · · · · · · · · · · · ·	

.

Project:		Sheet:		Boring Number:		Advantage	
4537 Raef	ford Road	1 of 1			SB-5		Environmental
Site Locati	ion:			Elevation:		Consultants, LLC Job Number:	
4537 Raef		Location:					06-017
Fayetteville							00-017
Drill Contra	actor:	Engineer/Geolog	ist:		Date Begur	ו:	Date Finished:
	ental Probing	John Merletti			2/16/2006		2/16/2006
Drill Rig/Di	riller	Weather:		Groundw	ater (Depth	/Elevation):	
Geoprobe		Clear, 65°		Not Enco	ountered		
Dan Ferrel Hole Size:		Duill Made a d					
2.25"		Drill Method:		Drill Fluid	1:		
Depth	Soil Classi	Geoprobe	Depth of	none	Groundwat	PID	Comments?
(feet)		neation	Sample	Туре	er depth	Reading	Comments?
				.,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,		(ppm)	
0 - 0.25	Asphalt						
0.25 - 2	Brown Clay					3.7	Slight petroleum odor
2 - 4	Ton to brown alow		_				
2 - 4	Tan to brown clay					5.7	Slight petroleum odor
4 - 7	Brown clay with trace sand					5.1	Slight petroleum odor
7 - 10	Reddish tan clay					3.1	Slight petroleum odor
10 - 13	Brown to tan clay			-		4.7	Slight petroleum odor
13 - 16	Reddish brown sand						Petroleum odor
16 - 20	Brown/red sand with ti	ace clay	20			238 (16')	Strong petroleum odor
	Diownined Sand With it	ace day	20				Sample SB-5 @ 20'
	Boring Ends at 20'	. <u> </u>				0200 (20)	
	· · · · ·						
						,	
		<u> </u>					

Project: 4537 Raefe	eford Road 1 of 1				Boring Number SB-6		Advantage Environmental
0.4						Consultants, LLC	
Site Location 4537 Raefo Fayetteville,	ord Road	Location:			Elevation:		Job Number: 06-017
Drill Contra	actor:	Engineer/Geolog	ist:		Date Begun:		Date Finished:
	ntal Probing	John Merletti			2/16/2006		2/16/2006
Drill Rig/Dr	iller	Weather:			ater (Depth/E	levation):	
Geoprobe Dan Ferrel	I	Clear, 65º		Not Enco	ountered		
Hole Size:	I	Drill Method:		Drill Fluid	d:		
2.25"		Geoprobe		none			
Depth (feet)	Soil Classi		Depth of Sample		Groundwate r depth	PID Reading (ppm)	Comments?
0 - 0.5	Grass/topsoil					0.0	No odor
0.5 - 2	Tan sand with clay					0.0	No odor
2 - 4	Reddish/tan clayey sa	nd				0.0	No odor
4 - 5	Reddish/tan clayey sand with some black streaking					0.2	Slight oily odor
5 - 8	Brown clay					0.0	No odor
8 - 9	Brown clay with some black streaking		1			3.9	Slight oily odor
9 - 11	Tan to red mottled clay					0.2	No odor
11 - 14	Tan to red mottled cla	ý				1.7	No odor
14 - 15	Brown/tan sand with s	ilt				970.0	Strong petroleum odor
15 - 20	Brown/tan sand with s	ilt				50.0	Petroleum odor
	Boring ends at 20'						
				-			
						-	

DVANTAGE ENVIRONMENTAL CONSULTANTS, LLC.

June 4, 2008

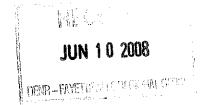
Mr. James Brown North Carolina Department of Environment and Natural Resources UST Section 225 Green Street, Suite 714 Fayetteville, North Carolina 28301 JUN 10 2008 DENR-FAYETTEVILLE REGIONAL OFFICE

Re: Phase II Limited Site Assessment Raeford Road Sunoco (Former Jim's Texaco) 4537 Raeford Road Fayetteville, North Carolina 28304 Groundwater Incident Number: 9788 Facility ID #0-025474

Dear Mr. Brown:

Advantage Environmental Consultants, LLC. (AEC) is pleased to provide this Phase II Limited Site Assessment (LSA) for the former Jim's Texaco/Raeford Road Sunoco Station in Fayetteville, North Carolina. If you have any questions, please feel free to call me at (615) 376-3022.

Sincerely,


Advantage Environmental Consultants, LLC

William M. Liebe, P.G. Senior Project Manager

monto

Michael J. Robertson, P.G. Principal

Cc: Travis Booth - Raeford Road Holdings, LLC

PHASE II LIMITED SITE ASSESSMENT PREPARED IN RESPONSE TO A LEAKING UNDERGROUND STORAGE TANK LOCATED AT: RAEFORD ROAD SUNOCO (FORMER JIM'S TEXACO) 4537 RAEFORD ROAD FAYETTEVILLE, CUMBERLAND COUNTY, NORTH CAROLINA

GROUNDWATER INCIDENT NUMBER: 9788 NCDENR-UST SECTION FACILITY ID # 0-025474

June 4, 2008

Responsible Party: Raeford Road Holdings, LLC 15729 Crabbs Branch Way Rockville, Maryland 20855 (301) 921-9200

<u>Current Property Owner:</u> Raeford Road Holdings, LLC 15729 Crabbs Branch Way Rockville, Maryland 20855 (301) 921-9200

<u>Consultant:</u> Advantage Environmental Consultants, LLC 277 Wilson Pike Circle, Suite 201 Brentwood, Tennessee 37027 (615) 376-3022

Release Discovery Date: April 27, 1992 Cause of Release: Underground Storage Tanks UST Sizes and Contents: (3) 10,000-gallon gasoline, (1) 150-gallon waste oil Latitude: 35° 02' 35"N, Longitude: 78° 57' 22"W

List of Appendices

Section A Figures

- Figure 1 Topographic Map With Site Location
- Adjacent Property Ownership, Receptor Location, and Zoning Map Figure 2
- Figure 3 Site Map with Utilities, UST, Soil Sample, and Monitoring Well Locations
- Figure 4 Groundwater Contaminant Map 5-01-08
- Figure 5 Site Map with Groundwater Hydraulic Gradient 5-01-08

Section B Tables/Well Construction Logs

- Table 1 UST Information/Ownership
- Table 2 Adjacent Property Ownership
- Table 3 Summary of Analytical Data - Groundwater Table 4
- Summary of Monitoring/Supply Well Construction Information

Section C Water Supply Well Information Forms

Section D Laboratory Reports

Site History

The subject property (hereinafter is referred to as the "Site") is identified as the Raeford Road Sunoco (former Jim's Texaco) and is located at 4537 Raeford Road, Fayetteville, Cumberland County, North Carolina. (See Section A, Figure 1 for Site location.) The Site consists of an approximately 0.53 acre parcel of land currently owned by Raeford Road Holdings, LLC, and is occupied by Raeford Road Sunoco which operates three petroleum Underground Storage Tanks (USTs) for the retail sale of gasoline. Diamond Autosports, an automobile detailing business, occupies the building on the southern portion of the Site. A small, out-of-use, waste oil UST is located immediately south of this building.

The Site's existing UST systems were installed during January 1987, and include three 10,000-gallon gasoline tanks. The installation date of the 150-gallon waste oil UST could not be ascertained.

The Site also once contained three 1,000-gallon gasoline USTs that were last owned and operated by Mr. James Sanderson. The installation date of these USTs could not be ascertained but are believed to have been installed in the early 1960s. These three USTs were removed in January 1987 and replaced by the tank systems that are currently being used on the Site.

See Figure 3 for the Site map indicating the UST system locations.

A petroleum release was first discovered during April of 1992 when free product was observed in two A Notice of Regulatory Requirements (NORR) letter was sent to Mr. James Sanderson, owner of Jim's Texaco, on February 17, 1993 directing him to perform initial abatement measures and a comprehensive investigation of the release. This case (Groundwater Incident Number 9788) has been open since that time, and no additional assessment or remediation has occurred at the Site. Mr. Sanderson has received at least four Notices of Violation (NOVs) since 1992 and has also been subject to civil penalties for failure to comply with UST regulations during this time. Therefore, a Limited Site Assessment (LSA) has never been completed and submitted to the North Carolina Department of Environment and Natural Resources (NCDENR).

2

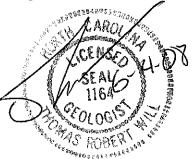
MAL CITY

JUN 1 0 2008

DEDIR-FAYET REVILLE STRENGWAL

Raeford Road Holdings, LLC purchased the Site from Mr. Sanderson on April 24, 2006. In response, NCDENR issued a March 18, 2008 NORR letter to the owner of the UST systems requiring them to comply with the reporting requirements of 15A NCAC 2L .0115(C)(4).

The remaining sections of this report have been compiled to achieve compliance with the requirements of 15A NCAC 2L .0115.


Advantage Environmental Consultants, LLC 277 Wilson Pike Circle, Suite 201 Brentwood, Tennessee 37027

Phase II Limited Site Assessment Report

A. Site Identification

DATE OF REPORT: June 4, 2008 Facility I.D.: 0-025474 UST Inciden Site Name: Raeford Road Sunoco (Former Jim's Texaco)	nt Number (if known): <u>9788</u>				
Site Location: 4537 Raeford Road					
Nearest City/Town: Fayetteville	County: Cumberland				
i calobi oligi i chin <u>i i ayottovino</u>	County <u>. Cumbertanu</u>				
UST Owner: Raeford Road Holdings, LLC					
Address: 15729 Crabbs Branch Way, Rockville, MD 20855	Phone: (301) 921-9200				
UST Operator: Proford Pood Holdings LLC					
UST Operator: Raeford Road Holdings, LLC	D1 (201) 021 0200				
Address: 15729 Crabbs Branch Way, Rockville, MD 20855	Phone: (301) 921-9200				
Property Owner: Raeford Road Holdings, LLC					
Address: 15729 Crabbs Branch Way, Rockville, MD 20855	Phone: (301) 921-9200				
Property Occupants: Sunoco & Diamond Autosport					
Address: 4537 Raeford Road, Fayetteville, NC 28304	Phone: (301) 921-9200				
Consultant/Contractor: Advantage Environmental Consultants					
Address: 277 Wilson Pike Circle, Brentwood, TN 37027	Phone: (615) 376-3022				
Release Information					
Date Discovered: April 27, 1992					
	78° 57' 22''W				
Estimated Quantity of Release: unknown					
Cause of UST Release: underground storage tanks					
Source of Release (e.g., Piping/UST): underground storage tanks/piping?					
Sizes and contents of UST system(s) from which the release occurred): (3) 10,000-gallon gasoline					
UST's?					

I, Thomas R. Will a Licensed Geologist do certify that the information contained in this report is correct and accurate to the best of my knowledge.

(Please Affix Seal and Signature)

B. Risk Characterization

Submit the following questionnaire in its entirety. Answer all questions completely. Attach additional pages as needed to fully explain answers. Base answers/explanations on information known or required to be obtained during the Limited Site Assessment.

NOTE: Source area means point of release from a UST system.

Limited Site Assessment Risk Classification and Land Use Form

Part I - Groundwater/Surface Water/Vapor Impacts

High Risk

- 1. Has the release contaminated any water supply well including any well used for non-drinking purposes?
- 2. Is a water supply well used for drinking water located within 1,000 feet of the source area of the release?
- 3. Is a water supply well not used for drinking water (e.g., irrigation, washing cars, industrial cooling water, filling swimming pools) located within 250 feet of the source area of the release?
- 4. Does groundwater within 500 feet of the source area of the release have the potential for future use (there is no other source of water supply other than the groundwater)?
- 5. Do vapors from the release pose a threat of explosion because of accumulation of the vapors in a confined space or pose any other serious threat to public health, public safety or the environment?

If yes, describe.

6. Are there any other factors that would cause the release to pose an imminent danger to public health, public safety, or the environment?
If yes, describe.

Intermediate Risk

6. Is a surface water body located within 500 feet of the source area of the release?

YES NO

If YES, does the maximum groundwater contaminant concentration exceed the su	urface water
If TES, does the international in 15 A NICAC 2P, 0200 by a factor of 10?	YES NO
quality standards and criteria found in 15A NCAC 2B .0200 by a factor of 10?	

- 7. Is the source area of the release located within an approved or planned wellhead protection area as defined in 42 USC 300h-7(e)?
 If yes, describe.
- 8. Is the release located in the Coastal Plain physiographic region as designated on a map entitled "Geology of North Carolina" published by the Department in 1985?

If YES, is the source area of the release located in an area in which there is recharge to an unconfined or semi-confined deeper aquifer that is being used or may be used as a source of drinking water? If YES, describe. Cape Fear Aquifer

Do the levels of groundwater contamination for any contaminant exceed the gross contamination levels (see Table 9) established by the Department?

<u> Part II - Land Use</u>

i

Property Containing Source Area of Release

The questions below pertain to the property containing the source area of the release.

1. Does the property contain one or more primary or secondary residences (permanent or temporary)?

Describe. No, the property is occupied by a Sunoco gasoline station and Diamond Autosports.

Does the property contain a school, daycare center, hospital, playground, park, recreation area, church, nursing home, or other place of public assembly? \Box YES \boxtimes NO Describe.

2. Does the property contain a commercial (e.g., retail, warehouse, office/business space, etc.) or industrial (e.g., manufacturing, utilities, industrial research and development, chemical/petroleum bulk storage, etc.) enterprise, an inactive commercial or industrial enterprise, or is the land undeveloped? **YES** NO Describe.

Do children visit the property? XEX INO Explain. The property contains a convenience store that children can visit with adults.

Is access to the property reliably restricted consistent with its use (e.g., by fences, security personnel or both)?

3. Do pavement, buildings, or other structures cap the contaminated soil? XYES NO Describe. The area where the contamination is centered is an asphalt paved parking lot, under the in use product dispensers and canopy.

If yes, what mechanisms are in place or can be put into place to ensure that the contaminated soil will remain capped in the foreseeable future?

The contamination will likely remain capped due to the fact that the property contains an active convenient store and the contamination is centered under the in use dispensers and canopy.

- 4. What is the zoning status of the property? <u>The Site is zoned as C1P (shopping center district) by</u> <u>Cumberland County and is occupied by a gasoline station/convenience store and Diamond</u> Autosports.
- 5. Is the use of the property likely to change in the next 20 years? □YES ⊠NO Explain. The property will continue to be used as a gasoline station/convenience store and auto detail/repair shop well into the future.

Property Surrounding Source Area of Release

The questions below pertain to the area within 1,500 feet of the source area of the release (excludes property containing source area of the release):

- 1. What is the distance from the source area of the release to the **nearest** primary or secondary residence (permanent or temporary)? The nearest off-site private residence is located approximately 500 feet north of the release area.
- 2. What is the distance from the source area of the release to the **nearest** school, daycare center, hospital, playground, park, recreation area, church, nursing home or other place of public assembly? <u>The William H. Owen Elementary School is located approximately 250 feet southeast of the release area.</u>
- 3. What is the zoning status of properties in the surrounding area? <u>The surrounding properties within</u> <u>1,500 feet of the Site are zoned by Cumberland County as "C1P" (Shopping Center District) or "R10"</u> (Residential District) See Figure 2.
- 4. Briefly characterize the use and activities of the land in the surrounding area. <u>The surrounding area</u> within 500-feet of the source area is used primarily for commercial purposes with a school to the southeast. Residential areas are located further to the north.

C. Receptor Information

1. Water Supply Wells (Complete and attach Table B-5 and attach map showing well locations)

The Site and immediate surrounding area are located within the City of Fayetteville and are supplied water by the Fayetteville Public Works Commission (PWC). AEC completed the well survey by interviewing property owners/tenants in the immediate vicinity of the source area and completing the well surveys. Completed "Water Supply Well Information" surveys are included in **Section C**.

2. Public Water Supplies

Are public water supplies available within 1,500 feet of the source area of the release? \Box YES \boxtimes NO If yes, where is the location of the nearest public water lines and the source(s) of the public water supply. (indicate on map) Describe.

There are no public water supplies located within 1,500 feet of the source area.

3. Surface Water

Identify all surface water bodies (e.g., ditch, pond, stream, lake, river) within 500-feet of the source area of the release. This information must be shown on the USGS topographic map.

There are no surface water bodies located within 500-feet of the source area. (See Section A, Figure 1.)

4. Wellhead Protection Areas

Identify all planned or approved wellhead protection areas (e.g., ditch, pond, stream, lake, river) within 1,500 feet of the source area of the release. This information must be shown on the USGS topographic map. Wellhead protection areas are defined in 42 USC 300h-7(e).

On May 15, 2008, AEC reviewed the NCDENR-Wellhead Protection Program files for the presence of wellhead protection areas within 1,500-feet of the Site. None were found to be located within 1,500-feet of the source area.

5. Describe Deep Aquifers in the Coastal Plain Physiographic Region

The Site is located within the Coastal Plain Physiographic Region as defined by the Geologic Map Of North Carolina, 1985, published by the *Department of Natural Resources and Community Development, Division of Land Resources, North Carolina Geologic Survey.*

The North Carolina Department of Water Resources, Division of Groundwater publication, "Geology and Ground-water Resources of the Fayetteville Area"¹ describes the Site and nearby areas as being underlain by a surficial sand aquifer which is in turn underlain by the sand and clay strata of the Cretaceous sand aquifer. The surficial sand aquifer is only 10 to 50-feet thick in Cumberland County and water yields are small. Water quality is good in this aquifer.

Resources,

Geology and Groundwater in the Fayetteville Area, North Carolina. North Carolina Department of Water Division of Groundwater, Bull. 2.

As stated above underlying the surficial sand aquifer is the Cretaceous sand and clay aquifers which are associated with the Middendorf formation. Wells tapping this aquifer may yield more than 2 gpm per foot of depth. Where the Cretaceous clay is the chief aquifer, yields of wells are much less. The surficial sand aquifer noted above is also productive, but over much of the county sand of this aquifer is not distinguishable from that of the underlying Cretaceous sand aquifer. The Cretaceous sand aquifer thickness in Cumberland County ranges from approximately 100-feet in the northwestern corner of the county to nearly 350-feet in thickness at the county's southeastern edge.

The Site and some surrounding properties within 1,500-feet obtain their potable water from the City of Fayetteville which obtains water from available surface water sources.

6. Describe Subsurface Structures

There are no subsurface structures located in close proximity to the UST area.

7. Property Owners and Occupants

Section B, Table 2 provides a listing the names and addresses of property owners and occupants within or contiguous to the area containing contamination and all property owners and occupants within or contiguous to the area where the contamination is expected to migrate.

Property ownership information was obtained through the Cumberland County GIS Department. The Site itself is owned by Raeford Road Holdings, LLC (Parcel ID# 0417-30-2524). The Site itself and most of the surrounding properties are zoned as C1P (shopping center district) by Cumberland County. The property northeast of the Site across Raeford Road is owned by Dominic and Michelle Marangi and is occupied by Atlas Chiropractor (Parcel ID# 0417-30-3814). The property north of the Site across Raeford Road is owned by Loyd Properties, LLC and is occupied by Bojangles (Parcel ID# 0417-30-2803). The property northwest of the Site across Raeford Road is owned by Walter Williams and is occupied by Wilco-Hess (Parcel ID# 0417-30-0820). The property west and south of the Site is owned by Mitchell Properties of Florence, Inc. and is occupied by Wachovia Bank and a vacant shopping center (Parcel ID# 0416-29-9999). Finally, the property east and southeast of the Site across Scotland Drive is owned by Cumberland County Board of Education and is occupied by William H. Owen Elementary School (Parcel ID# 0417-30-7111) which is zoned R10 (residential district).

Zoning information for the Site and the surrounding properties was acquired through the Cumberland County GIS website. (See Section A, Figure 2 for adjacent property ownership and zoning information.)

D. Site Geology and Hydrogeology

Describe the soil and geology encountered at the site. Discuss the effects of soil and geological characteristics on the migration and attenuation of contaminants. Include information obtained during assessment activities (e.g., lithologic descriptions made during drilling, probe surveys, tank closure, etc). If a Phase II investigation is required include a discussion of groundwater flow direction and hydraulic gradient (vertical and horizontal).

The Soil Survey of Cumberland County, North Carolina² identifies the soils of the Site as being Urban Land. These soils are classified as areas where more than 80 percent of the surface is covered by asphalt, concrete, buildings, or other impervious surfaces. Soil materials have been disturbed by cutting, filling, or other mechanical disturbances.

The Geologic Map of North Carolina³ describes the Site as being underlain by the Cretaceous-age Middendorf Formation. The Middendorf Formation consists of "sand, sandstone, and mudstaone, gray to pale gray with an orange cast, mottled; clay balls and iron-cemented concretions common, beds laterally discontinuous, cross-bedding common."

AEC conducted three soil borings on April 30, 2008 utilizing 6-inch diameter hollow stem augers. The borings were performed to facilitate the installation of three groundwater monitoring wells. Soils encountered in the borings consisted of dry brown silty sand to depths ranging from 17 to 19 feet below land surface. Below this silty sand the soil changed to orange sand with some silt. The soil started to show signs of moisture at an approximate depth of 25 feet. The three monitoring wells were each installed to a depth of 30 feet.

Data obtained from gauging the three existing monitoring wells and three recently installed monitoring wells on May 1, 2008 was plotted in order to determine the local hydraulic gradient across the Site as presented in **Section A, Figure 5**. Free product was observed in monitoring wells MW-1 and MW-2 at thicknesses of 2.14 feet and 1.67 feet, respectively. Therefore, the groundwater elevation in MW-1 and MW-2 was adjusted for free product. Overall, groundwater hydraulic gradient appears to flow to the south through the Site, with the highest groundwater elevation measured in monitoring well MW-3, while the lowest elevation was observed in monitoring well MW-6. The hydraulic gradient appears to mimic the local topography which is lower to the south.

Advantage Environmental Consultants, LLC 277 Wilson Pike Circle, Suite 201 Brentwood, Tennessee 37027

² Soil Survey Cumberland County North Carolina. United States Department of Agriculture, Soil Conservation Service, in cooperation with the North Carolina Department of Natural Resources and Community Development, North Carolina Agricultural Research Service, North Carolina Agricultural Extension Service, and the Cumberland County Board of Commissioners, November 1970.

³Reference: *Geologic Map of North Carolina*, Department of Natural Resources and Community Development, Division of Land Resources, 1985 edition.

E. Soil Sample Results

E.1 Phase II Environmental Site Assessment (February 16, 2006)

AEC collected four soil samples at the Site on February 16, 2006 during a Phase II Environmental Site Assessment (ESA). The soil samples were analyzed for volatile organic compounds (VOCs) by EPA Method 8260 and for volatile petroleum hydrocarbons (VPH) by the MADEP-VPH test. Certain petroleum constituents (VOCs) and VPH were detected in each of the four soil samples at concentrations below the applicable NCDENR Industrial/Commercial Cleanup Levels. The Phase II ESA, completed by AEC and dated March 6, 2006, has been submitted to the NCDENR.

F. Groundwater Investigation

F.1 Phase II Limited Site Assessment (May 1, 2008)

AEC returned to the Site on May 1, 2008 in order to sample the monitoring wells designated as MW-4, MW-5, and MW-6 that were installed on April 30, 2008. These wells were placed in strategic locations throughout the Site in order to provide the most accurate way to identify the groundwater contamination plume and local groundwater gradient. Monitoring wells MW-4, MW-5, and MW-6 were installed to a depth of 30 feet beneath surface grade, with the 0.0010 slotted PVC well screens placed at a depth of 15 to 30 feet below land surface and completed with solid PVC casing placed from 0 to 15 feet below land surface. All permanent monitoring wells were constructed using 2" diameter PVC slotted screens and solid PVC riser pipe. Section B, Table 4 provides a summary of the monitoring well construction data, while the Well Construction Records for MW-4 through MW-6 are located in the back of Section B.

In addition, AEC sampled existing monitoring well MW-3 on May 1, 2008. Free product was observed in existing monitoring wells MW-1 and MW-2 at thicknesses of 2.14 feet and 1.67 feet, respectively. Therefore, groundwater samples were not obtained from monitoring wells MW-1 and MW-2. The samples collected from these wells were submitted to Shealy Environmental of West Columbia, SC for chemical analysis for VOCs by EPA Method 8260 and VPH by the MADEP-VPH method. The purpose of the sampling event was for completion of this Phase II LSA.

All of the sampling activities described above were completed using new disposable bailers and nitrile sampling gloves. All of the monitoring wells were developed using disposable PVC bailers prior to collecting groundwater samples.

F.2 Phase II Investigation Groundwater Sample Analytical Results (May 1, 2008)

As previously mentioned, groundwater samples were not collected from monitoring wells MW-1 and MW-2 due to the presence of free product. Groundwater samples analyzed by EPA Method 8260 revealed the presence of numerous targeted parameters at levels in excess of their maximum allowable limits in groundwater as set forth in 15A NCAC 2L .0202. These exceedances include: benzene in MW-3, MW-4, MW-5, and MW-6; ethylbenzene in MW-4, MW-5, and MW-6; isopropyl benzene in MW-4; MTBE in MW-4, MW-5, and MW-6; n-propylbenzene in MW-4, MW-5, and MW-6; naphthalene in MW-4, MW-5, and MW-6; toluene in MW-4, MW-5, and MW-6; 1,3,5 trimethylbenzene in MW-4; 1,2,4 trimethylbenzene in MW-4, MW-5, and MW-6; and total xylenes in MW-4, MW-5, and MW-6. Benzene was also found in groundwater samples in MW-4 and MW-6 at concentrations exceeding its respective Gross Contaminant Level (GCL) of 5,000 ug/l as set forth in *The Guidelines*.

Data for the MADEP-VPH analyses showed C5-C8 aliphatic hydrocarbons (380-ug/l) in the groundwater sample collected from MW-3. This level is not in excess of its maximum allowable concentration in groundwater of 420-ug/l as set forth in 15A NCAC 2L .0202. Data for the MADEP-VPH analysis also revealed C9-C18 aliphatic hydrocarbons in groundwater samples collected from MW-3, MW-4, and MW-5; however, only the sample from MW-5 was in excess of the maximum allowable concentration in groundwater of 4,200-ug/l as set forth in 15A NCAC 2L .0202. Data for the MADEP-VPH analyses showed C19-C36 aliphatic hydrocarbons (350-ug/l) in the groundwater sample collected from MW-3. This level is not in excess of its maximum allowable concentration in groundwater of 42,000-ug/l as set forth in 15A NCAC 2L .0202. Data for the MADEP-VPH analyses showed C19-C36 aliphatic hydrocarbons (350-ug/l) in the groundwater sample collected from MW-3. This level is not in excess of its maximum allowable concentration in groundwater of 42,000-ug/l as set forth in 15A NCAC 2L .0202. Finally, data for the MADEP-VPH analysis showed C9-C22 aromatic hydrocarbons in each of the four groundwater samples collected. These levels are in excess of its maximum allowable concentration in groundwater of 210-ug/l as set forth in 15A NCAC 2L .0202.

A Site map showing concentrations of selected groundwater contaminants has been prepared and can be found in **Section A, Figure 4. Section B, Table 3** is a summary of analytical results for this Phase II sampling event. Laboratory reports for this Phase II sampling event is presented in **Section C**.

F.3 Phase II Investigation Free Product Recovery (April 30, 2008)

On April 30, 2008, free product was observed in existing monitoring wells MW-1 and MW-2 at thicknesses of 2.34 feet and 1.98 feet, respectively. AEC hand-bailed approximately seven gallons of groundwater and free product from each of these two wells on April 30, 2008. The total amount of product recovered was approximately 1 gallon from MW-1 and 1.5 gallons from MW-2. The next day (May 1, 2008) free product was observed in existing monitoring wells MW-1 and MW-2 at thicknesses of 2.14 feet and 1.67 feet, respectively.

G. Conclusions and Recommendations

Discuss the risk criteria that apply to the release and identify any other site-specific factors related to the release that may pose a risk to human health and the environment. Also, discuss any site-specific conditions or possible actions that could result in lowering the level of risk posed by the release.

ECE has completed this Phase II LSA in order to comply with NCGS 143-215.84, NCAC 15A, 2L .0106(g) and the NCDENR Underground Storage Tank Section's, "Guidelines for Assessment and Corrective Action", Effective July 1, 2001.

Analytical results for the groundwater samples collected for completion of this Phase II LSA detected several targeted parameters in one or more groundwater samples at concentrations in excess of their maximum allowable levels in groundwater as set forth in the Groundwater Quality Standards of 15A NCAC 2L .0202. Benzene was also found in MW-4 and MW-5 at concentrations that exceed its GCL.

The risk criteria pertaining to the release at the Site include the following: 1) there are no potable water supply wells located within 1,500-feet of the source area; 2) there are no surface water bodies located within 500-feet of the Site; 3) the Site is used for commercial purposes, and is currently in use as a convenience store; 4) the Site is surrounded by only commercial properties; 5) the Site is located in the Coastal Plain Physiographic Province; and 6) free product is present at the Site.

The Site will likely continue to be ranked as "intermediate risk" due to the fact that free product is present at the Site and there are no significant receptors. Due to the presence of free product, AEC recommends that monthly aggressive fluid-vapor recovery (AFVR) events be performed as an abatement measure to withdraw or remove free product and vapors that pose a threat to human health and the environment. Subsequent to multiple monthly AFVR events, AEC recommends that additional groundwater assessment be completed and a Comprehensive Site Assessment (CSA) prepared for review by the NCDENR-RRO.

ŧ.

H. Limitations

This report has been prepared for the exclusive use of Raeford Road Holdings, LLC and/or their designees, successors or assigns. It has been prepared in accordance with generally accepted environmental practices. No other warranty, expressed or implied, is made. AEC's conclusions and recommendations are based on information supplied by others, together with AEC's own site observations. Although AEC cannot be responsible for the accuracy of data supplied by others, AEC has no reason to suspect that any of the information is inaccurate. The observations described herein are based upon conditions readily visible on the site at the time of AEC's visit(s).

AEC cannot assume responsibility for the person(s) in charge of the site, nor otherwise undertake responsibility for reporting to any local, state or federal public agencies any conditions at the site that may present a potential danger to public health, safety or the environment. It is the responsibility of the responsible party to notify the appropriate local, state or federal public agencies as required by law, or otherwise to disclose, in a timely manner, any information that may be necessary to prevent any danger to public health, safety or the environment.

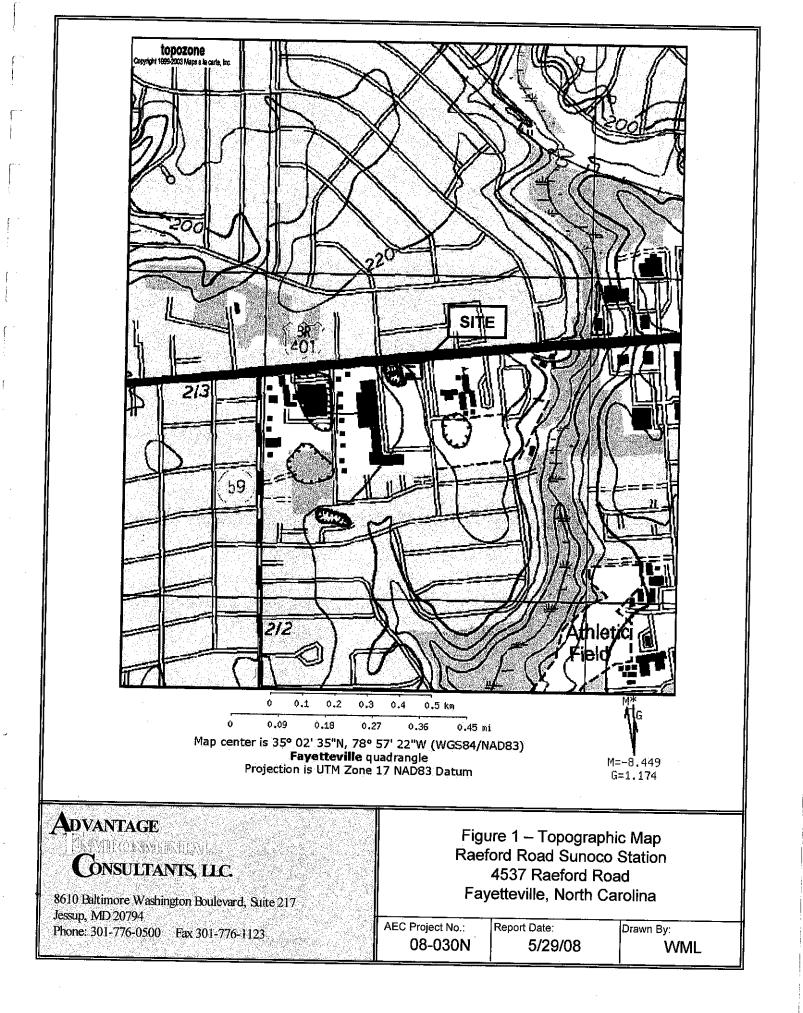
REFERENCES

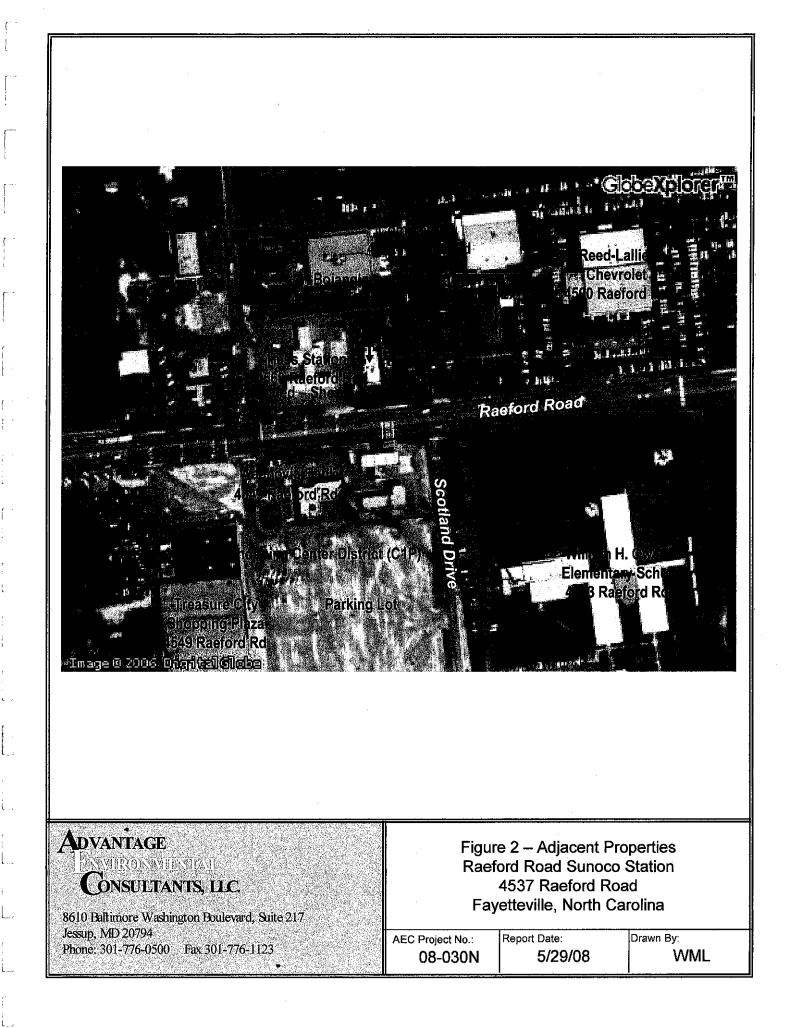
Geologic Map of North Carolina, Department of Natural Resources and Community Development, Division of Land Resources

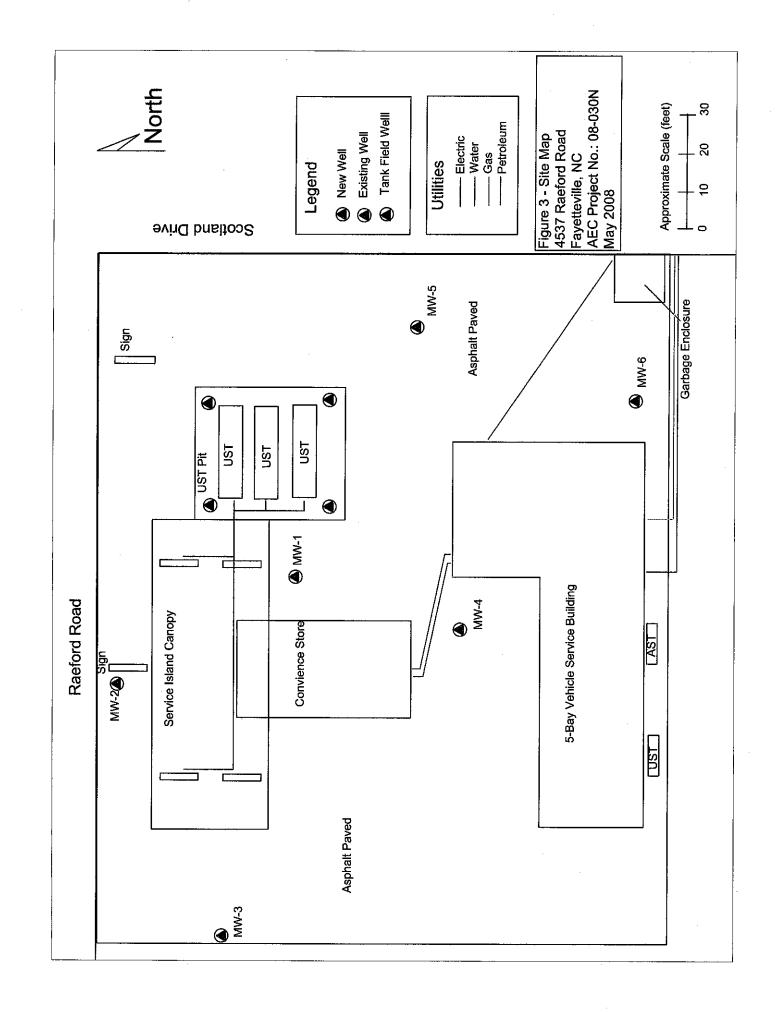
Guidelines For Assessment and Corrective Action. North Carolina Department of Environment and Natural Resources, Underground Storage Tank Section, July 1, 2007.

North Carolina Administrative Code, Title 15, Subchapter 2L, Sections .0100, .0115 and .0200.

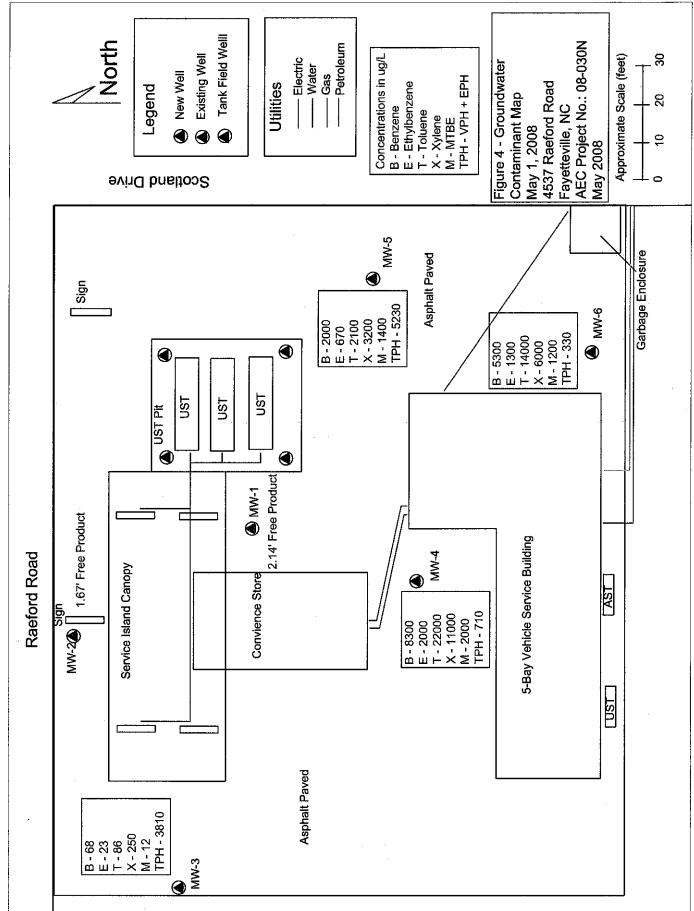
North Carolina Department of Environment and Natural Resources, Division of Waster Management, UST Section.


Soil Survey of Cumberland County, North Carolina. United States Department of Agriculture, Soil Conservation Service.


Cumberland County GIS Website (http://imaps.co.cumberland.nc.us/imaps/)


SECTION A FIGURES

Ì

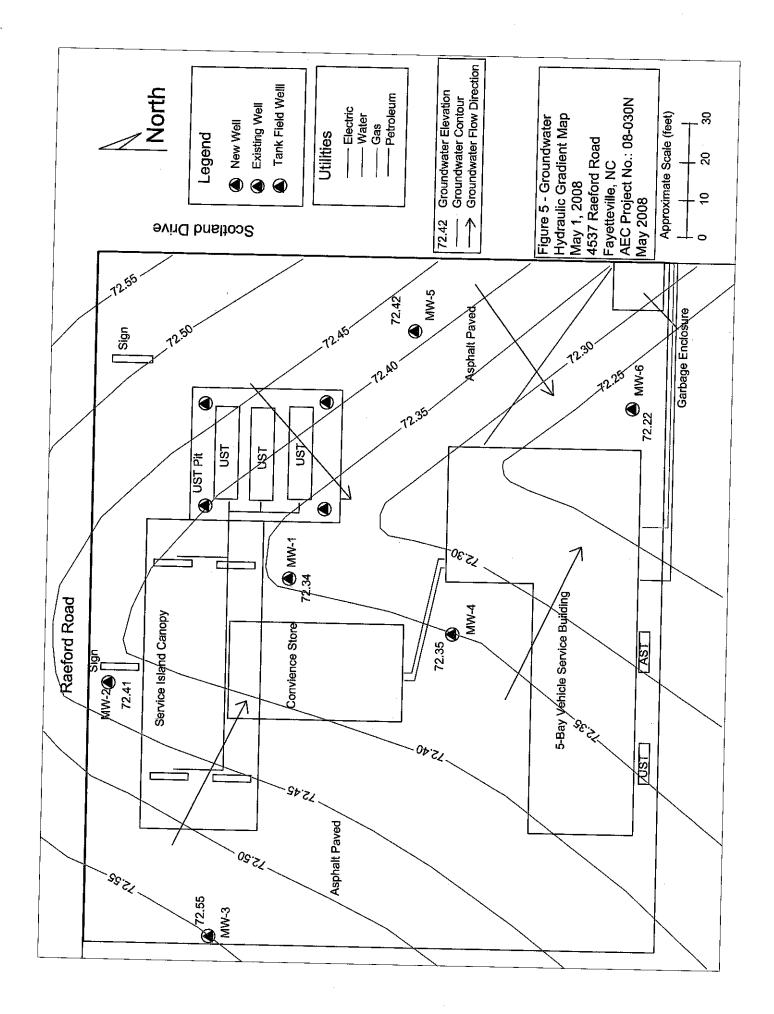

İ

Ŀ,

ť

ſ

ί


L

L. .

.....

. L__

Ŀ. _

ſ

ſ

SECTION B TABLES/WELL CONSTRUCTION LOGS

Table 1

ſ

ſ

i

ļ

(: (

Statement - L

i i

ĺ

į

/ L...

ł. ...

-

l L

UST Information Raeford Road Sunoco (Former Jim's Texaco) 4537 Raeford Road Fayetteville, Cumberland County, North Carolina 28304

Was release associated with UST	unknown	unknown	unknown	No	unknown	unknown	unknown
Statuts of UST	In Use	In Use	In Use	Not in Use	Removed 1/87	Removed 1/87	Removed 1/87
Date Tank Installed	1/87	1/87	1/87	unknown	unknown	unknown	unknown
Descriptions of Associated Piping	Double-Wall Fiberglass	Double-Wall Fiberglass	Double-Wall Fiberglass	Steel	Steel	Steel	Steel
Construction Details	Steel	Steel	Steel	Steel	Steel	Steel	Steel
Capacity (gallons)	10,000	10,000	10,000	150	10,000	10,000	10,000
Previous Contents	Gasoline	Gasoline	Gasoline	Waste Oil	Gasoline	Gasoline	Gasoline
Last Contents	Gasoline	Gasoline	Gasoline	Waste Oil	Gasoline	Gasoline	Gasoline
#ULLSIO	T-1	T-2	T-3	T-4	Removed Tank 1	Removed Tank 2	Removed Tank 3

Table 1 (Continued)

5

ſ

ſ

1

1

[

Ì.

i l

Ł

Site History – UST Owner and Operator Information Raeford Road Sunoco (Former Jim's Texaco) 4537 Raeford Road Fayetteville, Cumberland County, North Carolina 28304

Dates of Ownership	(mm/doty/ to mm/dd/yy) 04/24/06 to present	Dates of Operation (mm/dd/yy to mm/dd/yy)	04/24/06 to present		Telephone Number(301) 921-9200	Dates of Ownership (mm/dd/yy to mm/dd/yy)	11/14/86 to 04/24/06	Dates of Operation (mm/dd/yy to mm/dd/yy)	11/14/86 to 04/24/06		Telephone Number (910) 223-0357
	<u>0</u>				Zip 20855						Zip 28309
Name of Owner	Raeford Road Holdings, LLC	Name of Operator	Racford Road Holdings, LLC	Vav	State MD	Name of Owner	James & Norma Sanderson	Name of Operator	James & Norma Sanderson		State
UST ID Number	0-025474			Street Address 15729 Crabbs Branch Wav	City Rockville	UST ID Number	0-025474		85]	Street Address PO Box 40301	City Fayetteville

Prior ownership could not be readily ascertained. However, the property has operated as a gasoline service station since the early 1960s and Mr. Sanderson has reportedly owned or leased the property since approximately 1970.

Table 2Adjacent Property Ownership InformationRaeford Road Sunoco (Former Jim's Texaco)4537 Raeford RoadFayetteville, Cumberland County, North Carolina 28304

1 CH 11 A

11

ł.

{___

Adjacent property west and south of the Site Adjacent property across Scotland Drive and Adjacent property across Raeford Road and Adjacent property across Raeford Road and Adjacent property across Raeford Road and east and southeast of the Site northwest of the Site northeast of the site north of the Site Location Site Cumberland County Board of Ed Mitchell Properties of Florence Raeford Road Holdings, LLC Dominic & Michelle Marangi 15729 Crabbs Branch Way Jacksonville, NC 28546 Fayetteville, NC 28314 Fayetteville, NC 28302 4140 Ferncreek Drive 207 Crown Point Road Rockville, MD 20855 Greenville, NC 27834 Loyd Properties, LLC Florence, SC 29503 **Property Owners** 99 Village Drive Walter Williams Name/Address PO Box 1418 PO Box 2357 Vacant Shopping Center Fayetteville, NC 28304 Raeford Road Sunoco Property Location 4537 Racford Road Atlas Chiropractor Wachovia Bank & Elementary School William H. Owen (Occupant) Wilco-Hess Bojangles 0417-30-3814 0417-30-2803 0417-30-2524 0417-30-0820 0416-29-9999 NC Parcel # 0417-30-7111

Table 3Summary of Analytical Data – GroundwaterEPA Method 8260Raeford Road Sunoco (Former Jim's Texaco)4537 Raeford RoadFayetteville, Cumberland County, North Carolina 28304

ĺ

1111

ĺ.

8260 11000 87500 6000 ЧЗ 3200 530 dИ 250 Total Xylenes 28500 8260 2100 er Fer 200 600 350 006 9.2,4-Trimethylbenzene 25000 8260 520 150 220 350 88 76 1,3,5-Trimethylbenzene 257500 8260 22000 14000 1000 2100 НP FP 86 anauloT 8260 8500 Ð la z 4.6 冒 ЦJ 2 đН Sec-Butylbenzene 8260 2.9 NA NA ЪР đIJ p-Isopropyltoluene 15500 8260 450 200 250 ЪР ЪР 19 21 **Naphthalene** 300000 8260 EP B 29 280 120 2 70 n-Propyl Benzene 2000008260 2000 1400 1200 200 FP FP 12 MTBE 25000 8260 100 Ð Яł 70 10 <u>63</u> Isopropyl Benzene 84500 8260 2000 670 1300 550 FP FP 53 Ethylbenzene 8260 1.0 Ð Ð 190 Ð d d 70 Chlorofrom 8260 8300 2000 5300 5000 đ đđ 89 Benzene Sample ID **MW-6** MW-3 MW-4 **MW-5** MW-2 MW-1 Contaminant of Analytical Method Concern > Collected m/dd/yy 5/01/08 5/01/08 5/01/08 5/01/08 5/01/08 5/01/08 Date 2L Standard (ug/l) GCL (ug/l) MW-5 MW-3 **MW-6** MW-2 **MW-1 MW-4** Well Q

FP – Free Product

Results are in ug/l

ND -- None Detected

NA - None Available

Bold results indicate exceedence of 2L Standards

Bold and shaded results indicate exceedence of GCL

EPA Method MADEP-EPH and MADEP-VPH Summary of Analytical Data - Groundwater

Fayetteville, Cumberland County, North Carolina 28304 Raeford Road Sunoco (Former Jim's Texaco) 4537 Raeford Road

					1	Τ	Τ	1		T	7	
MADEP-EPH MADEP-VPH	C9-C22 Aromatics	FP	FP	1390	360	230	330		210	NA		
MADEP-EPH	C19-C36 Aliphatics	FP	КР	350	QN	QN	QN		42,000	NA		
MADEP-EPH MADEP-VPH	C9-C18 Aliphatics	E	FP	1690 -	350	5,000	QN		4,200	NA		
MADEP-VPH	c5-C8 Aliphatics	FP	FP	380	QN	Q	ND		420	NA		
	t of Sample D	I-WM	MW-2	MW-3	MW-4	MW-5	MW-6					
Analytical Method >	Contaminant of Concern > Date Sa Collected m m/dd/yy	5/01/08	5/01/08	5/01/08	5/01/08	5/01/08	5/01/08		rd (ug/l)		FP – Free Product	Results are in ug/l
Analytic		MW-1	MW-2	MW-3	MW-4	MW-5	9-MM		2L Standard (ug/l)	GCL (ug/l)	FP - F	Results

Kesults are in ug/I ND – None Detected

NA – None Available Bold results indicate exceedence of 2L Standards

Table 3

ţ

ļ

ť ł

ſ

:

(; ;

l

i

· · · · · ·

·----

[

ľ L.

Table 4Raeford Road Sunoco (Former Jim's Texaco)4537 Raeford RoadFayetteville, Cumberland County, North Carolina 28304

[|

ļ

|

Contraction of the local data

t t t

l

| | |

. |____

í L

Groundwater Elevation Adjusted for Free 05/01/08 Product 72.42 72.22 72.34 72.41 72.55 72.35 Groundwater Elevation 05/01/08 70.78 71.19 72.55 72.35 72.42 72.22 (TOC) 05/01/08 Depth to Water 23.69 20.45 21.91 21.6023.21 20.71 Thickness Product Free 2.14 1.67NA NA ŇÀ NA Elevation Casing Top of 93.00 94.26 94.02 92.92 94.47 94.40 Bottom of Well 3303303330 Screened Interval <u>20-30</u> <u>19-29</u> 15-30 15-30 15-30 20-30 Well Casing Depth 0-300-30 0-30 0-30 0-30 0-30 Installed 9/25/92 9/28/92 4/30/08 4/30/08 4/30/08 9/25/92 Date Well ID MW-2 MW-3 **MW-5 MW-6** MW-1 MW-4

Well Construction Information

Supply Well Information

	7
.	
CO CO	
A N	
Se es	
tar un	
Si OS	l
⊢	l
	┥
E	
al al	I
Sc	l
E Sta	l
N.	
	
ല	l
E SI	l
pt. Ca	l
Πď	ł
Še	
-	l
ച്ച	l
Cal Cal	l
	1
l Cf	
e le	
22	
~	
ell pu	
≥ S	
Jse	
\mathbf{P}	
Ð	
Ninger	
2	
8 8	
Owner/ Idress	
S al l	
A	
*	
<u></u>	
N W	

	L WELL CONSTRUCTION RECORD ad Natural Resources-Division of Water Quality CATION # REC5
1. WELL CONTRACTOR: Leo H. Charbonneau Well Contractor (Individual) Name J + L Dniling Inc. Well Contractor Company Name STREET ADDRESS ID Greg St. FOUR Oaks NC Jip Days STREET ADDRESS ID Greg St. FOUR Oaks NC Jip Days STREET ADDRESS ID Greg St. FOUR Oaks NC Jip Days State State State State State Well USE (Check Applicable Box) Monitoring Municipal/Public [] Industrial/Commercial Agricultural Recovery Injection Irrigation Other (Ist use) Irrigation Other (Ist use) Well LOCATION: City - Ayette UL IStreet Name, Numbers, Community, Subdivision, Lot No., Parcel, Zip Code) TOPOGRAPHIC / LAND SETTING: Stope Valley Flat Ridge Other	ATION #XXQ
MAILING ADDRESS City or Town State Zip Code (11. REMARKS: 100 HEREBY CERTIFY THAT THIS WELL WAS CONSTRUCTED IN ACCORDANCE WITH 15A NCAC 2C, WELL CONSTRUCTION STANDARDS, AND THAT A COPY OF THIS RECORD HAS BEEN PROVIDED THE WELL OWNER. SIGNATURE OF CERTIFIED WELL CONTRACTOR SIGNATURE OF CERTIFIED WELL CONTRACTOR DATE CONTRACTOR PRINTED NAME OF PERSON CONSTRUCTING THE WELL

ſ

į.

Ŀ

ŧ.,

Ł.,

Submit the original to the Division of Water Quality within 30 days. Attn: Information Mgt., 1617 Mail Service Center – Raleigh, NC 27699-1617 Phone No. (919) 733-7015 ext 568.

۰.

Form GW-1b Rev. 7/05

WELL CONTRACTOR CERTIFIC	CATION #
1. WELL CONTRACTOR: Leo H. Charbonneau Well Contractor (Individual) Name J+L Dniling Inc. Well Contractor Company Name STREET ADDRESS 109 Greg 5t. FOUL OaKS NC 27534 City or Town State 219 Code 919989-8856 Area code- Phone number 2. WELL INFORMATION: SITE WELL ID #(if applicable)	d. TOP OF CASING IS FT. Above Land Surface* *Top of casing terminated at/or below land surface may require a variance in accordance with 15A NCAC 2C .0118. e. YIELD (gpm):METHOD OF TEST f. DISINFECTION: TypeAmount g. WATER ZONES (depth): FromToFromTo FromToFromTo
Industrial/Commercial Agricultural Recovery Injection I Irrigation Other (list use) <u>MW 5</u> DATE DRILLED <u>43016%</u> TIME COMPLETED <u>2.000</u> AM PM DY 3. WELL LOCATION: CITY: <u>4 Xetteoul</u> & COUNTY <u>Cumb or had</u> <u>4537</u> <u>CAESEED</u> <u>Pd</u> (Street Name, Numbers, Community, Subdivision, Lot No., Parcel, Zip Code) TOPOGRAPHIC / LAND SETTING:	$\begin{array}{ c c c c c c c c c c c c c c c c c c c$
 □Slope □Valley □Flat □Ridge □ Other	$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$
FACILITY ID #(if applicable) NAME OF FACILITY	
City or Town State Zip Code (IDO HEREBY CERTIFY THAT THIS WELL WAS CONSTRUCTED IN ACCORDANCE WITH 15A NGAC 2C, WELL CONSTRUCTION STANDARDS, AND THAT A COPY OF THIS RECORD HAS BEEN PROVIDED TO THE WELL OWNER. SIGNATURE OF CERTIFIED WELL CONTRACTOR DATE CONTRACTOR OF CERTIFIED WELL CONTRACTOR DATE PRINTED NAME OF PERSON CONSTRUCTING THE WELL

ĺ

ł

[

£

l L...

L

۱ ۱

Ĺ

L

*ا*ل...

ί.,

Submit the original to the Division of Water Quality within 30 days. Attn: Information Mgt., 1617 Mail Service Center – Raleigh, NC 27699-1617 Phone No. (919) 733-7015 ext 568.

.

. . N. .

Form GW-1b Rev. 7/05

WELL CONTRACTOR CERTIFIC	CATION #
1. WELL CONTRACTOR: Leo H. Charbonneau Well Contractor (Individual) Name J_LDDNIng Inc. Well Contractor Company Name STREET ADDRESS 109 Greg 54. FOUL Oaks NC 27524 City or Town State Zip Code 919, 989-8854 Area code- Phone number 2. WELL INFORMATION: SITE WELL ID #(if applicable) STATE WELL ID #(if applicable) DWQ or OTHER PERMIT #(if applicable) DWQ or OTHER PERMIT #(if applicable) WELL USE (Check Applicable Box) Monitoring Municipal/Public [] Industrial/Commercial Agricultural Recovery [] injection [] Irrigation Other [] (iist use) MW 6 DATE DRILLED 30 AM [] PM 8 3. WELL LOCATION: CITY: Ayette OILE county Comberland KAC6600 Ref.	CATION # \therefore X (a b) d. TOP OF CASING IS f b) "Top of casing terminated at/or below land surface may require a variance in accordance with 15A NCAC 2C .0118. e. YIELD (gpm):
(Street Name, Numbers, Community, Subdivision, Lot No., Parcel, Zip Code) TOPOGRAPHIC / LAND SETTING; □Slope □Valley □Flat □Ridge □ Other (check appropriate box) LATITUDE <u>M</u> <u>35°</u> <u>37,358</u> LONGITUDE <u>W</u> <u>578°</u> <u>57,358</u> Latitude/tongitude source: paGPS □Topographic map (location of well must be shown on a USGS topo map and attached to this form if not using GPS)	9. SAND/GRAVEL PACK: Depth Size Material From $14(-D To 30-0 Ft + 2 - 54-0 B)$ From To Ft. 10. DRILLING LOG From To Formation Description 0 - 10-0 Formation Description 572.7
4. FACILITY-is the name of the business where the well is located. FACILITY ID #(if applicable)	10-700 DEANGE Brown
MAILING ADDRESS	11. REMARKS: 100 HEREBY CERTIFY THAT THIS WELL WAS CONSTRUCTED IN ACCORDANCE WITH 16A NCAC 2C, WELL CONSTRUCTION STANDARDS, AND THAT A COPY OF THIS RECORD HAS BEEN PROVIDED TO THE WELL OWNER. SIGNATURE OF CERTIFIED WELL CONTRACTOR DATE
c. WATER LEVEL Below Top of Casing:FT. (Use "+" if Above Top of Casing)	PRINTED NAME OF PERSON CONSTRUCTING THE WELL

İ

ί

ĺ

L

ί.

L

Ł,

[|___

L.

Submit the original to the Division of Water Quality within 30 days. Attn: Information Mgt., 1617 Mail Service Center – Raleigh, NC 27699-1617 Phone No. (919) 733-7015 ext 568.

Form GW-1b Rev. 7/05 「東京

PROJECT :	SHEET				T	BORING NO.	1	ADVANTAGE ENVIRONMENTAL
RAEFORD ROAD SUNOCO		1 OF 1			MW-4		CONSULTANTS, LLC	
SITE LOCATION	LOCATION	1			-	ELEVATION:	1	JOB NO: 08-030N
4537 RAEFORD ROAD FAYETTEVILLE, NC	N:	Ε:						
DRILL CONTRACTOR: J&L DRILLING INC.	ENG/GEO: WILLIAM					DATE BEGUN: DATE FINISH	ED: 4	1/30/08
DRILL RIG: TRUCK-MOUNTED HOLLOW STEM AUGER	WEATHER: SUNNY 50 DEGRE): 23 FEET): NOT ENCOUNTERED
DRILLER: LEO CHARBONNEAU								
HOLE SIZE: 8 INCH	DRILL ME HOLLOW S			DRII	L	FLUID:		
SOIL CLASSIFICATION							-	
SURFACE ELEVATION		DEPTH OF LAB SAMPLE	SAMPLE TYPE	RECOVERY	GROUNDWATER	PID READING (PPM)		
O TO 0.5 FEET - ASPHALT/G	RAVEL				<u> </u>			
0.5 FEET TO 2 FEET - BROWN SAND	N SILTY					0	NO WA	TISK
2 FEET TO 6 FEET - GRAY S SAND	ILTY			GOOD		120		
6 TO 10 FEET - BROWN SILT				8		<u>ਜ</u>		
10 TO 18 FEET - BROWN SIL 18 TO 20 FEET - ORANGE SA SILT						160	ODOR NO WZ	TER
				GOOD		380		
20 TO 30 FEET - ORANGE SA SILT	ND WITH			cood	23 FEET	10,000+		ht odor r at +/- 23 feet
BORING TERMINATED AT 30 F	EET							
SAMPLER TYPE: SS = SPLIT							COPP	

ſ

ł

i.

SAMPLER TYPE: SS = SPLIT SPOON, ST = SHELBY TUBE, R = ROCK CORE, MC = MACRO CORE, O = OTHER

PROJECT:	SHEET				T	BORING NO.		ADVANTAGE
RAEFORD ROAD SUNOCO	1 OF 1				MW-5		ENVIRONMENTAL CONSULTANTS, LLC	
SITE LOCATION	LOCATION	1				ELEVATION:		JOB NO: 08-030N
4537 RAEFORD ROAD FAYETTEVILLE, NC	N:	E:						08-030N
DRILL CONTRACTOR: J&L DRILLING INC.	ENG/GEO: WILLIAM					DATE BEGUN DATE FINIS		
DRILL RIG: TRUCK-MOUNTED HOLLOW STEM AUGER	WEATHER: SUNNY 50 DEGRE							V): 23 FEET V): NOT ENCOUNTERED
DRILLER: LEO CHARBONNEAU								
HOLE SIZE: 8 INCH	DRILL ME HOLLOW S			DRI	LL	FLUID :		
SOIL CLASSIFICATION	, I			.				
SURFACE ELEVATION		DEPTH OF LAB SAMPLE	SAMPLE TYPE	RECOVERY	GROUNDWATER	PID READING (PEM)		
O TO 0.5 FEET - ASPHALT/GF	AVEL					40	NO OI	DOR
0.5 FEET TO 10 FEET - BROW SAND	n Silty					4	NO WZ	ATER
				GOD		140		
10 TO 19 FEET - BROWN SILT	TY SAND					520	NO OI NO W	
19 TO 20 FEET - ORANGE SAN SILT	D WITH					1,5		
·				GOOD		10,000+		
20 TO 30 FEET - ORANGE SAN SILT	ID WITH				TEET	1,640	NO OI WATE	dor r at +/- 23 feet
				GOOD	23			
BORING TERMINATED AT 30 FF	EET							
SAMPLER TYPE: SS = SPLIT		<u></u>	<u> </u>				1	

٢

ŗ

l

į

Í

ן ן

r E

Ŀ.

L.

| | |

ĺ

ĺ., .

i....

SAMPLER TYPE: SS = SPLIT SPOON, ST = SHELBY TUBE, R = ROCK CORE, MC = MACRO CORE, O = OTHER

PROJECT:	SHEET					BORING NO.		ADVANTAGE
RAEFORD ROAD SUNOCO		1 OF	1		MW-6		ENVIRONMENTAL CONSULTANTS, LLC	
SITE LOCATION	LOCATION	7				ELEVATION:		JOB NO:
SITE LOCATION	LOCATION	4				ELEVATION.		08-030N
4537 RAEFORD ROAD FAYETTEVILLE, NC	N :	Ε:						
DRILL CONTRACTOR: J&L DRILLING INC.	ENG/GEO: WILLIAM					DATE BEGUN DATE FINIS	•	•
DRILL RIG: TRUCK-MOUNTED HOLLOW STEM AUGER	WEATHER: SUNNY 50 DEGRE							V): 23 FEET V): NOT ENCOUNTERED
DRILLER: LEO CHARBONNEAU								
HOLE SIZE: 8 INCH	DRILL ME HOLLOW S			DRI	LL	FLUID:		
SOIL CLASSIFICATION	1							
SURFACE ELEVATION		DEPTH OF LAB SAMPLE	SAMPLE TYPE	RECOVERY	GROUNDWATER	PID READING (PPM)		
O TO 0.5 FEET - ASPHALT/GR	AVEL					09		DOR
0.5 FEET TO 10 FEET - BROW SAND	n silty					U U	NO WZ	ATER
				GOOD		120		
10 TO 19 FEET - BROWN SILT	Y SAND							
19 TO 20 FEET - ORANGE SAN SILT	D WITH					400	NO WZ	ATER
				GOOD		260		
20 TO 30 FEET - ORANGE SAN SILT	D WITH				FEET	860	NO OI WATEI	oor r at +/- 23 feet
				GOOD	23 FJ			
BORING TERMINATED AT 30 FE	ET							

÷

SAMPLER TYPE: SS = SPLIT SPOON, ST = SHELBY TUBE, R = ROCK CORE, MC = MACRO CORE, O = OTHER

ί

Ĺ

ŧ.

L

. د__

SECTION C WATER SUPPLY WELL INFORMATION FORMS

Figure 18 Water Supply Well Information Survey

Incident Number: 0-025474 Incident Name: Former Jim's Texaco
Please Provide the Following Information (to the best of your knowledge)
Name and telephone number of person completing the survey Aflas Chinopac Hick Address of property receiving survey 4/42 Kactor Raind City Fayetters lk County Comberland
What is the source of your drinking water? Public Water / Water Supply Well / Stream Intake / Other (please explain below)
Is there a water supply well on this property? Yes No If "No" disregard remaining questions and return survey
Name and address of owner(s) of property with water supply well
How many water supply wells are on your property? What is the well(s) used for? (check all that apply) Drinking, Irrigation, Swimming Pool, Water Livestock, Other (specify), You do not use the Well How many residences are connected to the well (list addresses below)?
How many residences are connected to the wen (list addresses below)?
How deep is the well(s)? Date well was installed?
What is the casing depth of the well(s)? What is the screen interval of the well(s)?
Additional water supply well information:
Please return completed survey to <u>Advantage Environmental Consultants</u> by <u>May 15, 2008</u> using one of the following methods:
1. Fax to (615) 376-3034
2. Mail to Advantage Environmental Consultants 277 Wilson Pike Circle, Suite 201 Brentwood, Tennessee 37027
3. Telephone (615) 376-3022
4. E-mail to bliebe@aec-env.com
If you have any questions, please contact the consultant indicated above or the UST Section Fayetteville, NC Office at (910) 433-3346

į

Ł

Ĺ...

i.

l.

Figure 18 Water Supply Well Information Survey

Incident Number: 0-025474 Incident Name: Former Jim's Texaco
Please Provide the Following Information (to the best of your knowledge)
Name and telephone number of person completing the survey Boj cryster Address of property receiving survey <u>4554</u> <u>Kaeferd</u> <u>Bound</u> City For 2ffemily <u>County</u> <u>Cruster</u> (end)
What is the source of your drinking water? Public Water / Water Supply Well / Stream Intake / Other (please explain below)
Is there a water supply well on this property? Yes / Y
How many water supply wells are on your property? What is the well(s) used for? (check all that apply) Drinking, Irrigation, Swimming Pool, Water Livestock, Other (specify), You do not use the Well How many residences are connected to the well (list addresses below)?
How deep is the well(s)? Date well was installed? What is the casing depth of the well(s)? What is the screen interval of the well(s)?
Additional water supply well information:
Please return completed survey to <u>Advantage Environmental Consultants</u> by <u>May 15, 2008</u> using one of the following methods:
1. Fax to (615) 376-3034
2. Mail to Advantage Environmental Consultants 277 Wilson Pike Circle, Suite 201 Brentwood, Tennessee 37027
3. Telephone (615) 376-3022
4. E-mail to bliebe@aec-env.com
If you have any questions, please contact the consultant indicated above or the UST Section Fayetteville, NC Office at (910) 433-3346

U

ί_

L

ί...

i...

L.

Figure 18 Water Supply Well Information Survey

£

į

ł

Ł.,

ι..

ĺ.

Ĺ.

ì...

: L.,

Incident Number: 0-025474 Incident Name: Former Jim's Texaco
Please Provide the Following Information (to the best of your knowledge)
Name and telephone number of person completing the survey will construct 4 910-483-3000 Address of property receiving survey 4560 Kactor Real City Fly attended County Constant land
What is the source of your drinking water? Public Water? Water Supply Well / Stream Intake / Other (please explain below)
Is there a water supply well on this property? Yes / No. ¹ If "No" disregard remaining questions and return survey Name and address of owner(s) of property with water supply well
How many water supply wells are on your property? What is the well(s) used for? (check all that apply) Drinking, Irrigation, Swimming Pool Water Livestock, Other (specify), You do not use the Well How many residences are connected to the well (list addresses below)?
How deep is the well(s)? Date well was installed? What is the casing depth of the well(s)? What is the screen interval of the well(s)?
Additional water supply well information:
Please return completed survey to <u>Advantage Environmental Consultants</u> by <u>May 15, 2008</u> using one of the following methods:
1. Fax to (615) 376-3034 2. Mail to Advantage Environmental Consultants 277 Wilson Pike Circle, Suite 201 Brentwood, Tennessee 37027
3. Telephone (615) 376-3022 4. E-mail to bliebe@aec-env.com
If you have any questions, please contact the consultant indicated above or the UST Section Fayetteville, NC Office at (910) 433-3346

Figure 18 Water Supply Well Information Survey

Incident Number: 0-025474 Incident Name: Former Jim's Texaco
Please Provide the Following Information (to the best of your knowledge)
Name and telephone number of person completing the survey Wache of Benke Address of property receiving survey 45-47 Racted Road City Fay etters the County Cumberland
What is the source of your drinking water? Public Water /Water Supply Well / Stream Intake / Other (please explain below)
Is there a water supply well on this property? Yes No. If "No" disregard remaining questions and return survey
Name and address of owner(s) of property with water supply well
How many water supply wells are on your property? What is the well(s) used for? (check all that apply) Drinking, Irrigation, Swimming Pool, Water Livestock, Other (specify), You do not use the Well How many residences are connected to the well (list addresses below)?
How deep is the well(s)? Date well was installed? What is the casing depth of the well(s)? What is the screen interval of the well(s)?
Additional water supply well information:
Please return completed survey to <u>Advantage Environmental Consultants</u> by <u>May 15, 2008</u> using one of the following methods:
1. Fax to (615) 376-3034
2. Mail to Advantage Environmental Consultants 277 Wilson Pike Circle, Suite 201 Brentwood, Tennessee 37027
3. Telephone (615) 376-3022
4. E-mail to bliebe@aec-env.com
If you have any questions, please contact the consultant indicated above or the UST Section Fayetteville, NC Office at (910) 433-3346

ί

ł

Ĺ

l...

į.

í...

i {___

Ĺ

ŧ.,

Figure 18 Water Supply Well Information Survey

Incident Numb	per: 0-025474 Incident Name: Former Jim's Texaco
	Please Provide the Following Information (to the best of your knowledge)
Name and telep Address of prop City Forget	Please Provide the Following Information (to the best of your knowledge) Will be Merrick 910-9725-6163 hone number of person completing the survey w. H. Owen Elementary Johov T perty receiving survey 4533 Rae for 2 Rock deville County Cumber land
What is the sour explain below)	rce of your drinking water? Public Water), Water Supply Well / Stream Intake / Other (please
	supply well on this property? Yes No / If "No" disregard remaining questions and return survey
Name and addre	ess of owner(s) of property with water supply well
What is the well Water Liveston	er supply wells are on your property? Il(s) used for? (check all that apply) Drinking, Irrigation, Swimming Pool, ck, Other (specify), You do not use the Well, dences are connected to the well (list addresses below)?
How deep is the What is the cas What is the scru	e well(s)? Date well was installed? ing depth of the well(s)? een interval of the well(s)?
Additional wate	er supply well information:
Please return c following meth	completed survey to <u>Advantage Environmental Consultants</u> by <u>May 15, 2008</u> using one of the nods:
1. Fax to	(615) 376-3034
2. Mail to	Advantage Environmental Consultants 277 Wilson Pike Circle, Suite 201 Brentwood, Tennessee 37027
3. Telephone	(615) 376-3022
4. E-mail to	bliebe@aec-env.com
If you have any at (910) 433-33	y questions, please contact the consultant indicated above or the UST Section Fayetteville, NC Office 346

l

Ù.

L

i....

July 19, 2013

Mr. James Brown North Carolina Department of Environment and Natural Resources UST Section 225 Green Street, Suite 714 Fayetteville, North Carolina 28301

Re: **Comprehensive Site Assessment** Raeford Road Sunoco (Former Jim's Texaco) 4537 Raeford Road Fayetteville, North Carolina 28304 Groundwater Incident Number: 9788 Facility ID #0-025474 JUL 2 3 2013

FAYETTEVILLE REGIONAL OFFICE,

Dear Mr. Brown:

Advantage Environmental Consultants, LLC. (AEC) is pleased to provide this Comprehensive Site Site Assessment (CSA) for the former Jim's Texaco/Raeford Road Sunoco Station in Fayetteville, North Carolina. If you have any questions, please feel free to call me at (615) 376-3022.

Sincerely,

Advantage Environmental Consultants, LLC

William M. Liebe, P.G. Senior Project Manager

mint

Michael J. Robertson, P.G. Principal

Cc: Travis Booth - Raeford Road Holdings, LLC

ANTI DEVELOPMENT RECEIPTOR

COMPREHENSIVE SITE ASSESSMENT PREPARED IN RESPONSE TO A LEAKING UNDERGROUND STORAGE TANK(S) AT: RAEFORD ROAD SUNOCO (FORMER JIM'S TEXACO) FAYETTEVILLE, CUMBERLAND COUNTY, NORTH CAROLINA

NCDENR-UST SECTION INCIDENT NUMBER: 9788 NCDENR-UST SECTION FACILITY ID# 0-025474

July 19, 2013

Responsible Party: Raeford Road Holdings, LLC 9055 Comprint Court, Suite 200 Gaithersburg, Maryland 20877 (301) 921-9200

Current Property Owner: Raeford Road Holdings, LLC 9055 Comprint Court, Suite 200 Gaithersburg, Maryland 20877 (301) 921-9200

<u>Consultant:</u> Advantage Environmental Consultants, LLC 277 Wilson Pike Circle, Suite 201 Brentwood, Tennessee 37027 (615) 376-3022

Release Discovery Date: April 27, 1992 Cause of Release: Underground Storage Tanks UST Size and Contents: (3) 10,000-gallon gasoline USTs, & (1) 150-gallon waste oil UST Latitude: N 35° 02' 35", Longitude: W 78° 57' 22"

Comprehensive Site Assessment Raeford Road Sunoco 4537 Raeford Road, Fayetteville NC

Comprehensive Site Assessment

A SITE INFORMATION

A.1 Site Identification	
DATE OF REPORT: July 19, 2013	
Facility I.D.: 0-025474 UST Incident Number 97	88
Site Name: Raeford Road Sunoco (Former Jim's Texaco)	
Site Location: 4537 Raeford Road	
Nearest City/Town: Fayetteville County: Cumb	erland
Location Method: Topographic Maps	
Latitude: N 35º 02' 35" Longitude: W 78º 57' 22"	
	An and the second second second
A.2 Contact Information	
UST Owner: Raeford Road Holdings, LLC	
Address: 9055 Comprint Court, Gaithersburg, MD 20877 Phone: (301) 921	-9200
1157 Brandow Markins Mard Hard That I the	
UST Operator: Raeford Road Holdings, LLC	
Address: 9055 Comprint Court, Gaithersburg, MD 20877 Phone; (301) 92	1-9200
Design Comments Backet Back Strate Strate	
Property Owner: Raeford Road Holdings, LLC	
Address: 9055 Comprint Court, Gaithersburg, MD 20877 Phone: (301) 92	1-9200
The second second second second second second second second second second second second second second second se	
Property Occupants: Sunoco & Diamond Autosport	
Address: 4537 Raeford Road, Favetteville, NC 28304 Phone: (301) 92	<u>1-9200</u>
and the standard st	
Consultant/Contractor: Advantage Environmental Consultants	
Address: 277 Wilson Pike Circle, Brentwood, TN 37027 Phone: (615) 376	-3022
Analytical Laboratory: Environmental Conservation Laboratories	
Address: 102-A Woodwinds Industrial Court, Carv, NC 27511 Phone: (919) 467	<u>-3090</u>
A.3 Release Information	
Date Discovered: April 27, 1992	

Date Discovered. Alam 27, 1974
Estimated Quantity of Release: unknown
Cause of Release: Underground Storage Tanks
Source of Release (e.g., Piping/UST): UST/Piping?
Sizes and contents of UST system from which the release accurred). (3

Sizes and contents of UST system from which the release occurred): (3) 10.000-gallon gasoline USTs?

I, Thomas R. Will a North Carolina Licensed Geologist do certify that the information contained in this report is correct and accurate to the best of my knowledge.

Advantage Environmental Consultants, I.I.C 277 Wilson Pike Circle, Brentwood TN 37027 Phone: (615) 376-3022 Fax: (615) 376-3034

B EXECUTIVE SUMMARY

The subject property (hereinafter is referred to as the "Site") is identified as the Raeford Road Sunoco (former Jim's Texaco) and is located at 4537 Raeford Road, Fayetteville, Cumberland County, North Carolina. (See Section A, Figure 1 for Site location.) The Site consists of three contiguous parcels of land totaling approximately 2.44 acres. The Site is currently owned by Raeford Road Holdings, LLC, and is occupied by Raeford Road Sunoco which operates three petroleum Underground Storage Tanks (USTs) for the retail sale of gasoline. Diamond Autosports, an automobile detailing business, occupies the building on the southern portion of the Site. A small, out-of-use, waste oil UST is located immediately south of this building.

The Site's existing UST systems were installed during January 1987, and include three 10,000gallon gasoline tanks. The installation date of the 150-gallon waste oil UST could not be ascertained. The Site also once contained three 1,000-gallon gasoline USTs that were last owned and operated by Mr. James Sanderson. The installation date of these USTs could not be ascertained but are believed to have been installed in the early 1960s. These three USTs were removed in January 1987 and replaced by the tank systems that are currently being used on the Site. See Section A, Figure 2 for the Site map indicating the UST system location.

A petroleum release was first discovered during April of 1992 when free product was observed in two monitoring wells. A Notice of Regulatory Requirements (NORR) letter was sent to Mr. James Sanderson, owner of Jim's Texaco, on February 17, 1993 directing him to perform initial abatement measures and a comprehensive investigation of the release. This case (Groundwater Incident Number 9788) has been open since that time, and no additional assessment or remediation has occurred at the Site until 2008. Mr. Sanderson received at least four Notices of Violation (NOVs) since 1992 and has also been subject to civil penalties for failure to comply with UST regulations during this time.

Raeford Road Holdings, LLC purchased the Site from Mr. Sanderson on April 24, 2006. In response, NCDENR issued a March 18, 2008 NORR letter to the owner of the UST systems requiring them to comply with the reporting requirements of 15A NCAC 2L .0115(C)(4). A Phase II Limited Site Assessment (LSA) was then completed and submitted to the NCDENR on June 4, 2008. The LSA revealed the presence of approximately 2.14" and 1.67" of free phase petroleum product in the form of gasoline in monitoring wells MW-1 and MW-2, respectively on May 1, 2008. In response, Aggressive Fluid Vapor Recovery (AFVR) events were completed in October 2008, March 2009, October 2009, April 2010, August 2012, and April 2013.

Advantage Environmental Consultants, LLC 277 Wilson Pike Circle, Brentwood TN 37027 Phone: (615) 376-3022 Fax: (615) 376-3034 Due to the on-going presence of free phase petroleum product, the NCDENR issued a March 27, 2013 NORR letter to Raeford Road Holdings, LLC directing them to comply with the requirements of 15A NCAC 2N .0706, 15A NCAC 2L .0106(c) and 2L .0106(g).

Raeford Road Holdings, LLC responded by contracting with Advantage Environmental Consultants, LLC (AEC) in order to complete this Comprehensive Site Assessment (CSA) report.

B.1 Initial Abatement/Emergency Response Information

A petroleum release was first discovered during April of 1992 when free product was observed in two monitoring wells. A NORR letter was sent to Mr. James Sanderson, owner of Jim's Texaco, on February 17, 1993 directing him to perform initial abatement measures and a comprehensive investigation of the release. These initial abatement measures were apparently not performed.

B.2 Receptor Information

AEC completed a walkthrough of all properties located within a 1,000 foot radius of the Site for the Phase II LSA completed on June 4, 2008. AEC completed the well survey by interviewing property owners/tenants in the immediate vicinity of the source area and completing the well surveys. The completed well survey did not identify the presence of water supply wells located within a 1,000 foot radius of the Site.

There are no surface water bodies located within 500 feet of the release area and the source area is not located within a wellhead protection area. The Site is located in the Coastal Plain Physiographic province. However, the Site and some surrounding properties within 1,500-feet obtain their potable water from the City of Fayetteville which obtains water from available surface water sources.

Advantage Environmental Consultants, LLC 277 Wilson Pike Circle, Brentwood TN 37027 Phone: (615) 376-3022 Fax: (615) 376-3034

B.3 Sampling/Investigation Results

Phase II Environmental Site Assessment Activities (February 2006)

AEC collected four soil samples at the Site on February 16, 2006 during a Phase II Environmental Site Assessment (ESA). The soil samples were analyzed for volatile organic compounds (VOCs) by EPA Method 8260 and for volatile petroleum hydrocarbons (VPH) by the MADEP-VPH test. Certain petroleum constituents (VOCs) and VPH were detected in each of the four soil samples at concentrations below the applicable NCDENR Industrial/Commercial Cleanup Levels.

AEC also collected three groundwater samples from temporary wells. The groundwater samples were analyzed for VOCs by EPA Method 8260 and for VPH by the MADEP-VPH test. Certain petroleum constituents (VOCs) and VPH were detected in each of the three groundwater samples at concentrations above the applicable NCDENR Groundwater Quality Standards. The Phase II ESA, completed by AEC and dated March 6, 2006, was submitted to the NCDENR.

Phase II Limited Site Assessment Activities (April & May 2008)

AEC mobilized to the Site on April 30 and May 1, 2008 for the purpose of conducting field assessment activities necessary to determine a "worse case scenario" for the presence of petroleum contamination in the groundwater on the Site. In conducting this assessment, AEC installed three additional monitoring wells designated as MW-4, MW-5, and MW-6 (monitoring wells MW-1, MW-2, and MW-3 were previously installed in 1992). Free product was observed in existing monitoring wells MW-1 and MW-2 at thicknesses of 2.14 feet and 1.67 feet, respectively. Therefore, groundwater samples were only collected from monitoring wells MW-3, MW-4, MW-5, and MW-6.

The samples collected from these wells were submitted for chemical analysis for VOCs by EPA Method 8260 and VPH by the MADEP-VPH method. Groundwater samples analyzed by EPA Method 8260 revealed the presence of numerous targeted parameters at levels in excess of their maximum allowable limits in groundwater as set forth in 15A NCAC 2L .0202. These exceedances include: benzene in MW-3, MW-4, MW-5, and MW-6; ethylbenzene in MW-4, MW-5, and MW-6; isopropyl benzene in MW-4; MTBE in MW-4, MW-5, and MW-6; n-propylbenzene in MW-4, MW-5, and MW-6; naphthalene in MW-4, MW-5, and MW-6; toluene in MW-4, MW-5, and MW-6; 1,3,5 trimethylbenzene in MW-4; 1,2,4 trimethylbenzene in MW-

4, MW-5, and MW-6; and total xylenes in MW-4, MW-5, and MW-6. Benzene was also found in groundwater samples in MW-4 and MW-6 at concentrations exceeding its respective Gross Contaminant Level (GCL) of 5,000 ug/l as set forth in *The Guidelines*.

Data for the MADEP-VPH analyses showed C5-C8 aliphatic hydrocarbons (380-ug/l) in the groundwater sample collected from MW-3. This level is not in excess of its maximum allowable concentration in groundwater of 420-ug/l as set forth in 15A NCAC 2L .0202. Data for the MADEP-VPH analysis also revealed C9-C18 aliphatic hydrocarbons in groundwater samples collected from MW-3, MW-4, and MW-5; however, only the sample from MW-5 was in excess of the maximum allowable concentration in groundwater of 4,200-ug/l as set forth in 15A NCAC 2L .0202. Data for the MADEP-VPH analyses showed C19-C36 aliphatic hydrocarbons (350-ug/l) in the groundwater sample collected from MW-3. This level is not in excess of its maximum allowable concentration in groundwater of 42,000-ug/l as set forth in 15A NCAC 2L .0202. Finally, data for the MADEP-VPH analysis showed C9-C22 aromatic hydrocarbons in each of the four groundwater samples collected. These levels are in excess of its maximum allowable concentration in groundwater of 210-ug/l as set forth in 15A NCAC 2L .0202.

Due to the presence of free product, AEC recommended that AFVR events be performed as an abatement measure to withdraw or remove free product and vapors that pose a threat to human health and the environment. The Phase II ESA, completed by AEC, was submitted to the NCDENR on June 4, 2008.

Aggressive Fluid Vapor Recovery Events (October 2008 to April 2013)

ł.

Due to the presence of free phase petroleum product at the Site, Aggressive Fluid Vapor Recovery (AFVR) events were completed on October 14, 2008, March 10, 2009, October 14, 2009, April 27, 2010, August 7, 2012, and April 22, 2013. A Summary of Free Product Thickness Measurements in Monitoring Wells is included in Section B, Table 6.

A combined total of 10,519 gallons of water were recovered from MW-1, MW-2, MW-4 and MW-6, during the six AFVR events, approximately 76 gallons of which were determined to be gasoline. Also, AEC calculated that a total of approximately 33.66 gallons of gasoline being removed as VOC emissions during the six AFVR events. Therefore, a total of approximately 109.66 gallons of gasoline were removed as a result of these six AFVR events.

Advantage Environmental Consultants, LLC 277 Wilson Pike Circle, Brentwood TN 37027 Phone: (615) 376-3022 Fax: (615) 376-3034

The first six AFVR events appeared to be fairly effective in removing a significant amount of the remaining free phase petroleum product. However, product thicknesses have rebounded between 2011 and April 2013. At some sites this can be explained by fluctuations in the groundwater table elevations, however based on a review of historical groundwater elevations no more than one foot of variation was noted between the lowest and highest recorded elevations.

Comprehensive Site Assessment Soil Investigation

AEC mobilized to the Site on June 4, 2013 for the purpose of conducting field assessment activities necessary to complete assessment of petroleum contamination in the soils of the Site. In conducting this assessment, AEC advanced a series of ten soil borings, SB-1 through SB-10. Soils encountered while completing the soil borings consisted of dry to moist tan-orange-brown clayey to sandy silt to 20-feet below land surface. The soil samples were collected for laboratory analysis at depths of 8 to 10-feet and 18 to 20-feet below land surface in each soil boring.

The borings were located in order to surround the suspected contaminant source area (UST and product dispenser locations). The exact locations of these ten soil borings are shown in Section **A**, Figure 2. These samples were submitted to Environmental Conservation Laboratories of Cary, NC (NCDENR-DWQ certification # 591) for laboratory analysis of VOCs by EPA Methods 8260 and VPH by MADEP-VPH.

The analytical results for EPA Method 8260 revealed the presence of numerous VOCs at detectable levels in each soil sample. Few VOCs in certain soil samples exceeded their Soil to Groundwater Maximum Soil Contaminant Concentrations (MSCCs) as set forth in *The Guidelines*. The constituents and samples exceeding their respective Soil to Groundwater MSCC include benzene in SB-1 at 18-20 feet, SB-2 at 8-10 feet, SB-2 at 18-20 feet, SB-4 at 18-20 feet, SB-5 at 8-10 feet, SB-6 at 8 to 10 feet, SB-6 at 18-20 feet, SB-7 at 8-10 feet, and SB-8 at 8-10 feet; naphthalene in SB-1 at 8-10 feet; n-propylbenzene in SB-9 at 8-10 feet; and MTBE in SB-4 at 18-20 feet. It should be noted that none of the detected VOCs exceeded the Residential or Industrial Commercial MSCCs.

The analytical results for the VPH analysis detected the presence of C5-C8 aliphatics, C9-C12 aliphatics or C9-C10 aromatics in samples SB-1 at 8-10 feet and SB-10 at 18-20 feet at concentrations in excess of their Soil to Groundwater MSCCs as set forth in *The Guidelines*. The detected VPH did not exceed the Residential or Industrial Commercial MSCCs. A summary

of these soil analytical results is included in **Table 3** in **Section B** while the laboratory report can be found in **Section E**.

The detectable concentrations of VOCs and VPH in the soil samples only slightly exceed their respective Soil to Groundwater MSCCs and are well below the Residential or Industrial Commercial MSCCs. The elevated concentrations are largely related to the presence of free phase petroleum product on the groundwater beneath the Site, especially those samples collected at depth (18-20 feet). These soil analytical results do not define the lateral extent of soil contamination to the Soil to Groundwater MSCCs in the northern and southern directions. This is because the most recently obtained soil data shows that petroleum contaminated soils may underlie the NCDOT right of ways under the northern adjacent Raeford Road. Further, the areas to the south contain a large amount of buried utilities which will prohibit additional assessment activities in this direction. Based on the slight exceedences of the soil MSCCs, AEC believes the lateral extent of soil contamination above the Soil to Groundwater MSCCs have been adequately defined. Further, the remediation/removal of free product beneath the Site will likely reduce concentrations of VOCs and VPH in Site soils.

Comprehensive Site Assessment Groundwater Investigation

AEC mobilized to the Site on June 3-6, 2013 in order to install five additional permanent monitoring wells designated as MW-7, MW-7D, MW-8, MW-9, and MW-10. MW-10 is located on the eastern adjacent W.H. Owen Elementary School property. MW-7D is the deep Type III well. AEC returned to the Site on June 7, 2013 in order to sample the eleven monitoring wells (MW-1 through MW-10 and MW-7D) for completion of this CSA. The groundwater samples collected from the monitoring wells were submitted for analysis by EPA Methods 6200B (volatile organic compounds), 504.1 (EDB), 3030c (total lead), and the MADEP-VPH method. It is important to note that free phase petroleum product was observed in monitoring wells MW-1, MW-2, MW-4, MW-5, and MW-6. Therefore, these five wells were not sampled during the CSA.

Groundwater samples analyzed by EPA Method 8260 revealed the presence of numerous targeted parameters at levels in excess of their maximum allowable limits in groundwater as set forth in 15A NCAC 2L .0202. These exceedances include: benzene in MW-3, MW-7, MW-8, MW-9, and MW-10; ethylbenzene in MW-7; isopropyl benzene in MW-7; n-butylbenzene in MW-7; n-propylbenzene in MW-7; MTBE in MW-7, MW-9, and MW-10; naphthalene in MW-7; 1,3,5 trimethylbenzene in MW-7; 1,2,4

Comprehensive Site Assessment Raeford Road Sunoco 4537 Raeford Road, Fayetteville NC

trimethylbenzene in MW-7; and total xylenes in MW-7 and MW-9. Benzene was also found in the groundwater sample in MW-7 at a concentration exceeding its respective Gross Contaminant Level (GCL) of 5,000 ug/l as set forth in *The Guidelines*.

Groundwater samples analyzed by MADEP-VPH revealed the presence of the targeted parameters at levels in excess of their maximum allowable limits in groundwater as set forth in 15A NCAC 2L .0202. These exceedances include: C5-C8 aliphatic hydrocarbons in MW-3, MW-7, and MW-9; C9-C12 aliphatic hydrocarbons in MW-7; and C9-C10 aromatic hydrocarbons in MW-3, MW-7, and MW-9. EDB was only detected in the sample from MW-7 at a concentration in groundwater. Lead was only detected in the sample from MW-7 at a concentration well below its maximum allowable concentration in groundwater.

In summary, data for the groundwater samples obtained from wells MW-3, MW-7, MW-8, MW-9, and MW-10 showed the presence of one or more targeted contaminants at levels above their maximum allowable concentrations in groundwater as defined by 15A NCAC 2L .0202. The results for this groundwater sampling event showed that the lateral extent of the groundwater contaminant plume was adequately defined in the horizontal direction to the Gross Contaminant Levels (GCls) set forth in *The Guidelines*.

Isoconcentration maps for benzene, MTBE, and naphthalene have been prepared and can be found in Section A, Figures 4 through 6. Section B, Table 4 is a summary of the combined analytical results for all of the sampling events. Laboratory reports for the June 7, 2013 sampling event are presented in Section E.

Upon review of the data obtained by the CSA activities described above, it can be stated that while the horizontal extent of the groundwater contaminant plume has not been defined to the 15A NCAC 2L Standards it has successfully been defined to Gross Contaminant Levels (GCLs) which will be the target groundwater cleanup levels for this incident.

1

The vertical extent of groundwater contamination was addressed through installation of deep well MW-7D on June 5, 2013. MW-7D was installed immediately adjacent to MW-7 and it is screened from 60 to 70 feet below land surface. Analytical results for a groundwater sample collected from this well on June 7, 2013 indicated the presence of only C9-C10 aromatic hydrocarbons at a concentration of 2.8 ug/l which is well below the 15N NCAC 2L 0202 standard of 200 ug/l, respectively. It is possible that this contaminant was carried down from

above. Based on these results, the vertical extent of groundwater contamination appears to be defined.

B.4 Site Specific Conditions Related to Risk Classification

Currently the Site is classified as "intermediate risk" due to the presence of free phase petroleum product and at least one exceedence of the GCLs. While the removal of free phase petroleum product is required, the only way to lower the current risk classification from "intermediate" to "low" and close out the incident is to also eliminate all exceedences of GCLs in the groundwater.

B.5 Conclusions/Recommendations

Chemical contaminants at levels in excess of the Soil to Groundwater MSCCs were detected in soil samples collected in the vicinity of the UST system. Based on the slight exceedences of the soil MSCCs, AEC believes the lateral extent of soil contamination above the Soil to Groundwater MSCCs has been adequately defined. Free phase petroleum product is present in on-Site wells MW-1, MW-2, MW-4, MW-5, and MW-6. In addition, chemical contaminants at levels in excess of the 15A NCAC 2L .0202 Water Quality Standards were detected in the groundwater in on-Site wells MW-3, MW-7, MW-8, and MW-9 and off-Site well MW-10.

AEC believes that consideration should first be given to removing free phase petroleum product from beneath the Site. Because there are no environmentally sensitive receptors in the vicinity of the Site, the removal will help to lower the risk classification to "low risk". The removal of free product will also likely reduce concentrations of VOCs and VPH in Site soils and groundwater as well as eliminate future GCL exceedences. Based on the low levels of petroleum contamination in Site soils, AEC believes the removal of free product will be sufficient to address soil impacts. Following free product removal, AEC believes that an evaluation of the processes of natural attenuation and biodegradation for addressing the groundwater contaminants should be completed in order to address any remaining GCL exceedences. If it is determined that this is not a viable option then one or more active groundwater cleanup options will need to be considered.

The subject release will remain classified as "intermediate risk" due to the continued presence of free phase petroleum product and exceedences of GCLs. The removal of free product and GCL exceedences must be completed in order to eventually lower the classification to "low risk"

Advantage Environmental Consultants, LLC 277 Wilson Pike Circle, Brentwood TN 37027 Phone: (615) 376-3022 Fax: (615) 376-3034

which may result in the incident being closed out by the NCDENR. Therefore, AEC recommends the use of either additional AFVR events or possibly a more aggressive Mobile Multi Phase Extraction (MMPE). AEC recommends that Raeford Road Holdings, LLC submit a copy of this CSA to the NCDENR, Division of Water Quality, Fayetteville Regional Office, to the attention of Mr. James Brown.

Advantage Environmental Consultants, LLC 277 Wilson Pike Circle, Brentwood TN 37027 Phone: (615) 376-3022 Fax: (615) 376-3034

Comprehensive Site Assessment Raeford Road Sunoco 4537 Raeford Road, Fayetteville NC

Table of Contents

f

£

د...

A	SITE INFORMATION	2
A.1	SITE IDENTIFICATION	2
A.2	CONTACT INFORMATION	2
A.3	Release Information	2
В	EXECUTIVE SUMMARY	3
B.1	INITIAL ABATEMENT/EMERGENCY RESPONSE INFORMATION	4
B.2	RECEPTOR INFORMATION	4
B.3	SAMPLING/INVESTIGATION RESULTS	5
B.4	SITE SPECIFIC CONDITIONS RELATED TO RISK CLASSIFICATION	.10
B.5	CONCLUSIONS/RECOMMENDATIONS	
С	SITE HISTORY AND SOURCE CHARACTERIZATION	.14
D	RECEPTOR INFORMATION	.18
D.1	WATER SUPPLY WELLS	.18
D.2	PUBLIC WATER SUPPLIES	.18
D.3	SURFACE WATER	.18
D.4	Wellhead Protection Areas	.18
D.5	DEEP AQUIFERS IN THE COASTAL PLAIN PHYSIOGRAPHIC REGION	.18
D.6	SUBSURFACE STRUCTURES	.19
D.7	LAND USE	
Е	SITE GEOLOGY AND HYDROGEOLOGY	.21
F	SOIL SAMPLE RESULTS	
F.1	PHASE II ENVIRONMENTAL SITE ASSESSMENT ACTIVITIES (FEBRUARY 2006)	.23
F.2	COMPREHENSIVE SITE ASSESSMENT SOIL ACTIVITIES (JUNE 2013)	.23
G	GROUNDWATER SAMPLING ACTIVITIES	25
G.1	LOCATION AND INSTALLATION OF MONITORING WELLS	25
G.2	GROUNDWATER SAMPLING DATES	26
G.3	VERTICAL EXTENT OF GROUNDWATER CONTAMINATION (JUNE 7, 2013)	28
H	FREE PRODUCT INVESTIGATION/RECOVERY	30
I.	HYDROGEOLOGIC INVESTIGATION	31
I.1	HORIZONTAL GROUNDWATER HYDRAULIC GRADIENT	31
I.2	VERTICAL GROUNDWATER HYDRAULIC GRADIENT	31
I.3	AQUIFER TESTING	31
J	DISCUSSION	
J.1	NATURE AND EXTENT OF CONTAMINATION	33
J.2	CONTAMINANT MIGRATION AND POTENTIALLY AFFECTED RECEPTORS.	33
J.3	LOWERING RISK CLASSIFICATION	
J.4	APPLICABLE CLEANUP LEVELS	34
K	CONCLUSIONS AND RECOMMENDATIONS	35
L	REFERENCES	37
LIM	ITATIONS	20

Advantage Environmental Consultants, LLC 277 Wilson Pike Circle, Brentwood TN 37027 Phone: (615) 376-3022 Fax: (615) 376-3034 Comprehensive Site Assessment Raeford Road Sunoco 4537 Raeford Road, Fayetteville NC

List of Appendices

Section A Figures

- Figure 1 U.S.G.S. Topographic Map Site Location Map
- Figure 2Soil Borings and UST System Locations
- Figure 3 Monitoring Well Location Map
- Figure 4Benzene Groundwater Isoconcentration Map
- Figure 5 MTBE Groundwater Isoconcentration Map
- Figure 6 Naphthalene Groundwater Isoconcentration Map
- Figure 7 Soil/groundwater Cross-Section Location Map
- Figure 8 Soil/groundwater Cross-Section A-A'
- Figure 9 Soil/groundwater Cross-Section B-B'
- **Figure 10** Groundwater Hydraulic Gradient Map (June 7, 2013)

Section B Tables

į

- Table 1UST Information
- **Table 2**Adjacent Property Ownership Information
- Table 3Summary of Analytical Data Soil
- **Table 4**Summary of Analytical Data Groundwater
- **Table 5**Summary of Monitoring and Supply Well Construction Data
- Table 6
 Summary of Free Product Thickness Measurements
- Section C Well Construction Records
- Section D Aquifer Slug Test Results

Section E Laboratory Reports

Advantage Environmental Consultants, LLC 277 Wilson Pike Circle, Brentwood TN 37027 Phone: (615) 376-3022 Fax: (615) 376-3034

C SITE HISTORY AND SOURCE CHARACTERIZATION

The subject property (hereinafter is referred to as the "Site") is identified as the Raeford Road Sunoco (former Jim's Texaco) and is located at 4537 Raeford Road, Fayetteville, Cumberland County, North Carolina. (See Section A, Figure 1 for Site location.) The Site consists of three contiguous parcels of land totaling approximately 2.44 acres. The Site is currently owned by Raeford Road Holdings, LLC, and is occupied by Raeford Road Sunoco which operates three petroleum Underground Storage Tanks (USTs) for the retail sale of gasoline. Diamond Autosports, an automobile detailing business, occupies the building on the southern portion of the Site. A small, out-of-use, waste oil UST is located immediately south of this building.

The Site's existing UST systems were installed during January 1987, and include three 10,000gallon gasoline tanks. The installation date of the 150-gallon waste oil UST could not be ascertained. The Site also once contained three 1,000-gallon gasoline USTs that were last owned and operated by Mr. James Sanderson. The installation date of these USTs could not be ascertained but are believed to have been installed in the early 1960s. These three USTs were removed in January 1987 and replaced by the tank systems that are currently being used on the Site. See Section A, Figure 2 for the Site map indicating the UST system location.

A petroleum release was first discovered during April of 1992 when free product was observed in two monitoring wells. A Notice of Regulatory Requirements (NORR) letter was sent to Mr. James Sanderson, owner of Jim's Texaco, on February 17, 1993 directing him to perform initial abatement measures and a comprehensive investigation of the release. This case (Groundwater Incident Number 9788) has been open since that time, and no additional assessment or remediation has occurred at the Site until 2008. Mr. Sanderson received at least four Notices of Violation (NOVs) since 1992 and has also been subject to civil penalties for failure to comply with UST regulations during this time.

Raeford Road Holdings, LLC purchased the Site from Mr. Sanderson on April 24, 2006. In response, NCDENR issued a March 18, 2008 NORR letter to the owner of the UST systems requiring them to comply with the reporting requirements of 15A NCAC 2L .0115(C)(4). A Phase II Limited Site Assessment (LSA) was then completed and submitted to the NCDENR on June 4, 2008. The LSA revealed the presence of approximately 2.14" and 1.67" of free phase petroleum product in the form of gasoline in monitoring wells MW-1 and MW-2, respectively on May 1, 2008. In response, Aggressive Fluid Vapor Recovery (AFVR) events were completed in October 2008, March 2009, October 2009, April 2010, August 2012, and April 2013.

Advantage Environmental Consultants, LLC 277 Wilson Pike Circle, Brentwood TN 37027 Phone: (615) 376-3022 Fax: (615) 376-3034

Due to the on-going presence of free phase petroleum product, the NCDENR issued a March 27, 2013 NORR letter to Raeford Road Holdings, LLC directing them to comply with the requirements of 15A NCAC 2N .0706, 15A NCAC 2L .0106(c) and 2L .0106(g).

Raeford Road Holdings, LLC responded by contracting with Advantage Environmental Consultants, LLC (AEC) in order to complete this Comprehensive Site Assessment (CSA) report.

Assessment Activities Completed to Date

Phase II Environmental Site Assessment Activities (February 2006)

AEC collected four soil samples at the Site on February 16, 2006 during a Phase II Environmental Site Assessment (ESA). The soil samples were analyzed for volatile organic compounds (VOCs) by EPA Method 8260 and for volatile petroleum hydrocarbons (VPH) by the MADEP-VPH test. Certain petroleum constituents (VOCs) and VPH were detected in each of the four soil samples at concentrations below the applicable NCDENR Industrial/Commercial Cleanup Levels.

AEC also collected three groundwater samples from temporary wells. The groundwater samples were analyzed for VOCs by EPA Method 8260 and for VPH by the MADEP-VPH test. Certain petroleum constituents (VOCs) and VPH were detected in each of the three groundwater samples at concentrations above the applicable NCDENR Groundwater Quality Standards. The Phase II ESA, completed by AEC and dated March 6, 2006, was submitted to the NCDENR.

Phase II Limited Site Assessment Activities (April & May 2008)

AEC mobilized to the Site on April 30 and May 1, 2008 for the purpose of conducting field assessment activities necessary to determine a "worse case scenario" for the presence of petroleum contamination in the groundwater on the Site. In conducting this assessment, AEC installed three additional monitoring wells designated as MW-4, MW-5, and MW-6 (monitoring wells MW-1, MW-2, and MW-3 were previously installed in 1992). Free product was observed in existing monitoring wells MW-1 and MW-2 at thicknesses of 2.14 feet and 1.67 feet, respectively. Therefore, groundwater samples were only collected from monitoring wells MW-3, MW-4, MW-5, and MW-6.

Advantage Environmental Consultants, LLC 277 Wilson Pike Circle, Brentwood TN 37027 Phone: (615) 376-3022 Fax: (615) 376-3034

The samples collected from these wells were submitted for chemical analysis for VOCs by EPA Method 8260 and VPH by the MADEP-VPH method. Groundwater samples analyzed by EPA Method 8260 revealed the presence of numerous targeted parameters at levels in excess of their maximum allowable limits in groundwater as set forth in 15A NCAC 2L .0202. These exceedances include: benzene in MW-3, MW-4, MW-5, and MW-6; ethylbenzene in MW-4, MW-5, and MW-6; isopropyl benzene in MW-4; MTBE in MW-4, MW-5, and MW-6; n-propylbenzene in MW-4, MW-5, and MW-6; naphthalene in MW-4, MW-5, and MW-6; toluene in MW-4, MW-5, and MW-6; 1,3,5 trimethylbenzene in MW-4; 1,2,4 trimethylbenzene in MW-4, MW-5, and MW-6; and total xylenes in MW-4, MW-5, and MW-6. Benzene was also found in groundwater samples in MW-4 and MW-6 at concentrations exceeding its respective Gross Contaminant Level (GCL) of 5,000 ug/l as set forth in *The Guidelines*.

Data for the MADEP-VPH analyses showed C5-C8 aliphatic hydrocarbons (380-ug/l) in the groundwater sample collected from MW-3. This level is not in excess of its maximum allowable concentration in groundwater of 420-ug/l as set forth in 15A NCAC 2L .0202. Data for the MADEP-VPH analysis also revealed C9-C18 aliphatic hydrocarbons in groundwater samples collected from MW-3, MW-4, and MW-5; however, only the sample from MW-5 was in excess of the maximum allowable concentration in groundwater of 4,200-ug/l as set forth in 15A NCAC 2L .0202. Data for the MADEP-VPH analyses showed C19-C36 aliphatic hydrocarbons (350-ug/l) in the groundwater sample collected from MW-3. This level is not in excess of its maximum allowable concentration in groundwater of 42,000-ug/l as set forth in 15A NCAC 2L .0202. Finally, data for the MADEP-VPH analysis showed C9-C22 aromatic hydrocarbons in each of the four groundwater samples collected. These levels are in excess of its maximum allowable concentration in groundwater of 210-ug/l as set forth in 15A NCAC 2L .0202.

Due to the presence of free product, AEC recommended that AFVR events be performed as an abatement measure to withdraw or remove free product and vapors that pose a threat to human health and the environment. The Phase II ESA, completed by AEC, was submitted to the NCDENR on June 4, 2008.

Aggressive Fluid Vapor Recovery Events (October 2008 to April 2013)

į

ſ

ί...

Due to the presence of free phase petroleum product at the Site, Aggressive Fluid Vapor Recovery (AFVR) events were completed on October 14, 2008, March 10, 2009, October 14, 2009, April 27, 2010, August 7, 2012, and April 22, 2013. A Summary of Free Product Thickness Measurements in Monitoring Wells is included in Section B, Table 6.

Advantage Environmental Consultants, LLC 277 Wilson Pike Circle, Brentwood TN 37027 Phone: (615) 376-3022 Fax: (615) 376-3034

A combined total of 10,519 gallons of water were recovered from MW-1, MW-2, MW-4 and MW-6, during the six AFVR events, approximately 76 gallons of which were determined to be gasoline. Also, AEC calculated that a total of approximately 33.66 gallons of gasoline being removed as VOC emissions during the six AFVR events. Therefore, a total of approximately 109.66 gallons of gasoline were removed as a result of these six AFVR events.

The first six AFVR events appeared to be fairly effective in removing a significant amount of the remaining free phase petroleum product. However, product thicknesses have rebounded between 2011 and April 2013. At some sites this can be explained by fluctuations in the groundwater table elevations, however based on a review of historical groundwater elevations no more than one foot of variation was noted between the lowest and highest recorded elevations.

Advantage Environmental Consultants, LLC 277 Wilson Pike Circle, Brentwood TN 37027 Phone: (615) 376-3022 Fax: (615) 376-3034

D RECEPTOR INFORMATION

D.1 Water Supply Wells

AEC completed a walkthrough of all properties located within a 1,000 foot radius of the Site for the Phase II LSA completed on June 4, 2008. AEC completed the well survey by interviewing property owners/tenants in the immediate vicinity of the source area and completing the well surveys. The completed well survey did not identify the presence of water supply wells located within a 1,000 foot radius of the Site.

D.2 Public Water Supplies

The Site and immediate surrounding area are located within the City of Fayetteville and are supplied water by the Fayetteville Public Works Commission (PWC).

D.3 Surface Water

There are no surface water bodies located within 500-feet of the source area. (See Section A, Figure 1.)

D.4 Wellhead Protection Areas

On June 26, 2013, ECE reviewed the NCDENR-Wellhead Protection Program files for the presence of wellhead protection areas within 1,500-feet of the Site. None were found to be located within 1,500-feet of the source area.

D.5 Deep Aquifers in the Coastal Plain Physiographic Region

The Site is located within the Coastal Plain Physiographic Region as defined by the Geologic Map Of North Carolina, 1985, published by the Department of Natural Resources and Community Development, Division of Land Resources, North Carolina Geologic Survey.

The North Carolina Department of Water Resources, Division of Groundwater publication, "Geology and Ground-water Resources of the Fayetteville Area"¹ describes the Site and nearby

areas as being underlain by a surficial sand aquifer which is in turn underlain by the sand and clay strata of the Cretaceous sand aquifer. The surficial sand aquifer is only 10 to 50-feet thick in Cumberland County and water yields are small. Water quality is good in this aquifer.

The underlying surficial sand aquifer is the Cretaceous sand and clay aquifers which are associated with the Middendorf formation. Wells tapping this aquifer may yield more than 2 gpm per foot of depth. Where the Cretaceous clay is the chief aquifer, yields of wells are much less. The surficial sand aquifer noted above is also productive, but over much of the County sand of this aquifer is not distinguishable from that of the underlying Cretaceous sand aquifer. The Cretaceous sand aquifer thickness in Cumberland County ranges from approximately 100-feet in the northwestern corner of the county to nearly 350-feet in thickness at the county's southeastern edge.

The Site and some surrounding properties within 1,500-feet obtain their potable water from the City of Fayetteville which obtains water from available surface water sources.

D.6 Subsurface Structures

There are no known subsurface structures located on the Site.

D.7 Land Use

The Site consists of three contiguous parcels of land totaling approximately 2.44 acres. The Site is currently owned by Raeford Road Holdings, LLC, and is occupied by Raeford Road Sunoco which operates three petroleum Underground Storage Tanks (USTs) for the retail sale of gasoline. Diamond Autosports, an automobile detailing business, occupies the building on the southern portion of the Site.

Property ownership information was obtained through the Cumberland County GIS Department. The Site itself is owned by Raeford Road Holdings, LLC (Parcel ID# 0417-30-2524, 0417-30-2320, and 0417-30-2049). The Site itself and most of the surrounding properties are zoned as C1P (shopping center district) by Cumberland County. The property northeast of the Site across Raeford Road is owned by Dominic and Michelle Marangi and is occupied by Atlas Chiropractor (Parcel ID# 0417-30-3814). The property north of the Site across Raeford Road is owned by Loyd Properties, LLC and is occupied by Bojangles (Parcel ID# 0417-30-2803). The

Advantage Environmental Consultants, LLC 277 Wilson Pike Circle, Brentwood TN 37027 Phone: (615) 376-3022 Fax: (615) 376-3034

property northwest of the Site across Raeford Road is owned by Walter Williams and is occupied by Wilco-Hess (Parcel ID# 0417-30-0820). The property west and south of the Site is owned by Mitchell Properties of Florence, Inc. and is occupied by Wachovia Bank and a vacant shopping center (Parcel ID# 0416-29-9999). Finally, the property east and southeast of the Site across Scotland Drive is owned by Cumberland County Board of Education and is occupied by William H. Owen Elementary School (Parcel ID# 0417-30-7111) which is zoned R10 (residential district). See Section B, Table 2 for more detailed information regarding adjacent property owners.

> Advantage Environmental Consultants, LLC 277 Wilson Pike Circle, Brentwood TN 37027 Phone: (615) 376-3022 Fax: (615) 376-3034

E SITE GEOLOGY AND HYDROGEOLOGY

The Site and Cumberland County lie east and south of the "fall zone", which is considered to be the border between the Piedmont and Coastal Plain Physiographic Provinces. East and south of the fall zone the sedimentary rocks which underlie the Coastal Plain thicken to the southeast over an irregular basement of rock consisting largely of slate in Cumberland County. The primary water bearing aquifers in the area include the surficial Middendorf Formation, which is underlain by the Black Creek Formation followed by the Tuscaloosa Formation and finally basement rock composed of slate.

The Soil Survey of Cumberland County, North Carolina identifies the soils of the Site as being Urban Land. These soils are classified as areas where more than 80 percent of the surface is covered by asphalt, concrete, buildings, or other impervious surfaces. Soil materials have been disturbed by cutting, filling, or other mechanical disturbances.

The Geologic Map of North Carolina describes the Site as being underlain by the Cretaceous-age Middendorf Formation. The Middendorf Formation consists of "sand, sandstone, and mudstaone, gray to pale gray with an orange cast, mottled; clay balls and iron-cemented concretions common, beds laterally discontinuous, cross-bedding common."

The thickness of this formation ranges from 1 to 50 feet, with the formation becoming thicker toward the west. Formation thickness in central Cumberland County averages approximately 30 feet. Sand in the Middendorf Formation furnishes more water to wells than any other unit in the Fayetteville area. The permeability of this material is moderate, with well yields of 10 to 50 gpm common.

The underlying Black Creek Formation is described by "Geology and Groundwater in the Fayetteville Area²" as black or dark gray thinly laminated clay and lenses of sand. It contains abundant mica and lignite, as well as iron sulfides. The formation thickens from a feather edge along its western margin to about 200 feet to the east. The average formation thickness in the Fayetteville area is generally less than 40 feet. Because of its wide extent and shallow depth and the presence of sand lenses, the Black Creek Formation is the source of water for a large number of wells in the Fayetteville area. Yields of wells tapping this formation range from 50 gpm in smaller wells to 500 gpm in large diameter wells

² Reference: "Geology and Groundwater in the Fayetteville Area" North Carolina Department of Water Resources, Division of Groundwater. Bull. 2

The Tuscaloosa Formation which underlies the Black Creek Formation is described by "Geology and Groundwater in the Fayetteville Area" as gray to white sand and gravel and lenses of clay. Quartz is the major constituent of the sand and gravel. The sand is coarse, crossbedding is common and clay beds are common. The Tuscaloosa thickens to the southeast and obtains a thickness of about 250 feet south of Cumberland County; however formation thickness in the Fayetteville area is expected to be closer to 150 feet. The Tuscaloosa is capable of yielding large supplies of groundwater, but, it is not widely used as a source of water since overlying formations are also capable of producing an abundant water supply.

Soils encountered while completing the soil borings and monitoring wells for this CSA consisted of dry to moist tan-orange-brown clayey to sandy silt to 22-feet below land surface (bls). From 22 to 38-feet bls the soils consisted of a wet orange-tan-gray silty sand. From 38 to 46 feet bls the soils consisted of a stiff gray clay and from 46 to 57 feet bls the soils consisted of gray sands with clay lenses. Finally, from 57 to 70 feet the soils consisted of gray sand.

Groundwater elevations across the Site and surrounding properties have varied between 20 to 23-feet beneath surface grade, dependent upon seasonal fluctuations. Hydraulic gradient through the area has been determined to flow generally to the southeast. See Section A, Figures 7, 8 and 9 for geologic cross section maps. Groundwater in the monitoring wells installed for completion of this CSA stabilized between 20.10 and 22.54 feet beneath surface grade.

Advantage Environmental Consultants, LLC 277 Wilson Pike Circle, Brentwood TN 37027 Phone: (615) 376-3022 Fax: (615) 376-3034

F SOIL SAMPLE RESULTS

ł., j

Į.

٤_.

F.1 Phase II Environmental Site Assessment Activities (February 2006)

AEC collected four soil samples at the Site on February 16, 2006 during a Phase II ESA. The soil samples were analyzed for VOCs by EPA Method 8260 and for VPH by the MADEP-VPH test. Certain petroleum constituents (VOCs) and VPH were detected in each of the four soil samples at concentrations below the applicable NCDENR Industrial/Commercial Cleanup Levels.

F.2 Comprehensive Site Assessment Soil Activities (June 2013)

AEC mobilized to the Site on June 4, 2013 for the purpose of conducting field assessment activities necessary to complete assessment of petroleum contamination in the soils of the Site. In conducting this assessment, AEC advanced a series of ten soil borings, SB-1 through SB-10. Soils encountered while completing the soil borings consisted of dry to moist tan-orange-brown clayey to sandy silt to 20-feet below land surface. The soil samples were collected for laboratory analysis at depths of 8 to 10-feet and 18 to 20-feet below land surface in each soil boring.

The borings were located in order to surround the suspected contaminant source area (UST and product dispenser locations). The exact locations of these ten soil borings are shown in Section A, Figure 2.

These samples were submitted to Environmental Conservation Laboratories of Cary, NC (NCDENR-DWQ certification # 591) for laboratory analysis of VOCs by EPA Methods 8260 and VPH by MADEP-VPH.

The analytical results for EPA Method 8260 revealed the presence of numerous VOCs at detectable levels in each soil sample. Few VOCs in certain soil samples exceeded their Soil to Groundwater Maximum Soil Contaminant Concentrations (MSCCs) as set forth in *The Guidelines*. The constituents and samples exceeding their respective Soil to Groundwater MSCC include benzene in SB-1 at 18-20 feet, SB-2 at 8-10 feet, SB-2 at 18-20 feet, SB-4 at 18-20 feet, SB-5 at 8-10 feet, SB-6 at 8 to 10 feet, SB-6 at 18-20 feet, SB-7 at 8-10 feet, and SB-8 at 8-10 feet; naphthalene in SB-1 at 8-10 feet, SB-9 at 8-10 feet, and SB-10 at 18-20 feet; 4-isopropyltoluene in SB-9 at 8-10 feet; n-propylbenzene in SB-9 at 8-10 feet; and MTBE in SB-4

Advantage Environmental Consultants, LLC 277 Wilson Pike Circle, Brentwood TN 37027 Phone: (615) 376-3022 Fax: (615) 376-3034

at 18-20 feet. It should be noted that none of the detected VOCs exceeded the Residential or Industrial Commercial MSCCs.

The analytical results for the VPH analysis detected the presence of C5-C8 aliphatics, C9-C12 aliphatics or C9-C10 aromatics in samples SB-1 at 8-10 feet and SB-10 at 18-20 feet at concentrations in excess of their Soil to Groundwater MSCCs as set forth in *The Guidelines*. The detected VPH did not exceed the Residential or Industrial Commercial MSCCs. A summary of these soil analytical results is included in **Table 3** in **Section B** while the laboratory report can be found in **Section E**.

Discussion

Ł. J

The detectable concentrations of VOCs and VPH in the soil samples only slightly exceed their respective Soil to Groundwater MSCCs and are well below the Residential or Industrial Commercial MSCCs. The elevated concentrations are largely related to the presence of free phase petroleum product on the groundwater beneath the Site, especially those samples collected at depth (18-20 feet). These soil analytical results do not define the lateral extent of soil contamination to the Soil to Groundwater MSCCs in the northern and southern directions. This is because the most recently obtained soil data shows that petroleum contaminated soils may underlie the NCDOT right of ways under the northern adjacent Raeford Road. Further, the areas to the south contain a large amount of buried utilities which will prohibit additional assessment activities in this direction. Based on the slight exceedences of the soil MSCCs, AEC believes the lateral extent of soil contamination above the Soil to Groundwater MSCCs have been adequately defined. Further, the remediation/removal of free product beneath the Site will likely reduce concentrations of VOCs and VPH in Site soils.

Advantage Environmental Consultants, LLC 277 Wilson Pike Circle, Brentwood TN 37027 Phone: (615) 376-3022 Fax: (615) 376-3034

G GROUNDWATER SAMPLING ACTIVITIES

G.1 Location and Installation of Monitoring Wells

AEC mobilized to the Site on April 30 and May 1, 2008 for the purpose of conducting field assessment activities necessary to determine a worse case scenario for the maximum concentrations of the petroleum contamination in the groundwater on the Site. In conducting this assessment, AEC installed three additional monitoring wells designated as MW-4, MW-5, and MW-6 (monitoring wells MW-1, MW-2, and MW-3 were previously installed in 1992). Soils encountered in the borings consisted of asphalt and gravel from land surface to 1 foot below land surface. From 1 to 10 feet soils consisted of dry to moist tan-orange-brown clayey to sandy silt to 22-feet bls. From 22 to 30-feet bls the soils consisted of a wet orange-tan-gray silty sand. The borings completed as monitoring wells MW-4, MW-5, and MW-6 were installed to a total depth of 30 feet beneath surface grade with fifteen feet of 0.0010 slotted PVC well screen placed from 15 to 30 feet below land surface.

The third set of monitoring wells was drilled during the week of June 3, 2013 and included the installation of monitoring wells MW-7 through MW-10 for the CSA activities. These wells were placed in strategic locations on the southernmost portions of the Site and neighboring property to the east, across Scotland Drive in order to complete definition of the groundwater contamination plume and local groundwater gradient. Monitoring wells MW-6 through MW-10 were installed to a total depth of 30 feet beneath surface grade with fifteen feet of 0.0010 slotted PVC well screen placed from 15 to 30 feet below land surface and completed with solid PVC casing placed from 0 to 15 feet below land surface.

The vertical assessment of groundwater contamination included the installation of deep monitoring well MW-7D. MW-7D was completed as a Type III well with 4" I.D. outer casing placed from land surface to 42 feet below land surface and 2" I.D. inner casing running from land surface to 60 feet below land surface. Finally, a 10 foot screen section was attached to the inner casing of MW-7D and installed from 60 to 70 feet below land surface. Soils encountered while completing MW-7D included dry to moist tan-orange-brown clayey to sandy silt to 22-feet bls. From 22 to 38-feet bls the soils consisted of a wet orange-tan-gray silty sand. From 38 to 46 feet bls the soils consisted of a stiff gray clay and from 46 to 57 feet bls the soils consisted of gray sands with clay lenses. Finally, from 57 to 70 feet the soils consisted of gray sand.

Advantage Environmental Consultants, LLC 277 Wilson Pike Circle, Brentwood TN 37027 Phone: (615) 376-3022 Fax: (615) 376-3034

Well construction records for all of the monitoring wells installed for completion of this CSA are included in Section C. Section A, Figures 2 and 3 displays all of the permanent monitoring well locations. Finally, Section B, Table 5 is a summary of monitoring well construction data for all wells.

G.2 Groundwater Sampling Dates

٤

Phase II Environmental Site Assessment Activities (February 2006)

AEC collected three groundwater samples from temporary wells during the 2006 Phase II ESA. The groundwater samples were analyzed for VOCs by EPA Method 8260 and for VPH by the MADEP-VPH test. Certain petroleum constituents (VOCs) and VPH were detected in each of the four groundwater samples at concentrations above the applicable NCDENR Groundwater Quality Standards.

Phase II Limited Site Assessment Activities (April & May 2008)

AEC mobilized to the Site on April 30 and May 1, 2008 for the purpose of conducting field assessment activities necessary to determine a "worse case scenario" for the presence of petroleum contamination in the groundwater on the Site. In conducting this assessment, AEC installed three additional monitoring wells designated as MW-4, MW-5, and MW-6 (monitoring wells MW-1, MW-2, and MW-3 were previously installed in 1992). Free product was observed in existing monitoring wells MW-1 and MW-2 at thicknesses of 2.14 feet and 1.67 feet, respectively. Therefore, groundwater samples were only collected from monitoring wells MW-3, MW-4, MW-5, and MW-6.

The samples collected from these wells were submitted for chemical analysis for VOCs by EPA Method 8260 and VPH by the MADEP-VPH method. Groundwater samples analyzed by EPA Method 8260 revealed the presence of numerous targeted parameters at levels in excess of their maximum allowable limits in groundwater as set forth in 15A NCAC 2L .0202. These exceedances include: benzene in MW-3, MW-4, MW-5, and MW-6; ethylbenzene in MW-4, MW-5, and MW-6; isopropyl benzene in MW-4; MTBE in MW-4, MW-5, and MW-6; n-propylbenzene in MW-4, MW-5, and MW-6; naphthalene in MW-4, MW-5, and MW-6; toluene in MW-4, MW-5, and MW-6; 1,3,5 trimethylbenzene in MW-4; 1,2,4 trimethylbenzene in MW-

Advantage Environmental Consultants, LLC 277 Wilson Pike Circle, Brentwood TN 37027 Phone: (615) 376-3022 Fax: (615) 376-3034

4, MW-5, and MW-6; and total xylenes in MW-4, MW-5, and MW-6. Benzene was also found in groundwater samples in MW-4 and MW-6 at concentrations exceeding its respective Gross Contaminant Level (GCL) of 5,000 ug/l as set forth in *The Guidelines*.

Data for the MADEP-VPH analyses showed C5-C8 aliphatic hydrocarbons (380-ug/l) in the groundwater sample collected from MW-3. This level is not in excess of its maximum allowable concentration in groundwater of 420-ug/l as set forth in 15A NCAC 2L .0202. Data for the MADEP-VPH analysis also revealed C9-C18 aliphatic hydrocarbons in groundwater samples collected from MW-3, MW-4, and MW-5; however, only the sample from MW-5 was in excess of the maximum allowable concentration in groundwater of 4,200-ug/l as set forth in 15A NCAC 2L .0202. Data for the MADEP-VPH analyses showed C19-C36 aliphatic hydrocarbons (350-ug/l) in the groundwater sample collected from MW-3. This level is not in excess of its maximum allowable concentration in groundwater of 42,000-ug/l as set forth in 15A NCAC 2L .0202. Finally, data for the MADEP-VPH analysis showed C9-C22 aromatic hydrocarbons in each of the four groundwater samples collected. These levels are in excess of its maximum allowable concentration in groundwater of 210-ug/l as set forth in 15A NCAC 2L .0202.

<u>Comprehensive Site Assessment Groundwater Investigation June 7, 2013 Groundwater</u> <u>Monitoring Event</u>

The next groundwater sampling event occurred during June 2013 after the NCDENR instructed Raeford Road Holdings, LLC to complete this CSA and therefore AEC was subsequently contracted in order to complete this assessment. AEC mobilized to the Site on June 3-6, 2013 in order to install five additional permanent monitoring wells designated as MW-7, MW-7D, MW-8, MW-9, and MW-10. MW-10 is located on the eastern adjacent W.H. Owen Elementary School property. MW-7D is the deep Type III well. AEC returned to the Site on June 7, 2013 in order to sample the eleven monitoring wells (MW-1 through MW-10 and MW-7D) for completion of this CSA. The groundwater samples collected from the monitoring wells were submitted for analysis by EPA Methods 6200B (volatile organic compounds), 504.1 (EDB), 3030c (total lead), and the MADEP-VPH method. It is important to note that free phase petroleum product was observed in monitoring wells MW-1, MW-2, MW-4, MW-5, and MW-6. Therefore, these five wells were not sampled during the CSA.

Groundwater samples analyzed by EPA Method 8260 revealed the presence of numerous targeted parameters at levels in excess of their maximum allowable limits in groundwater as set forth in 15A NCAC 2L .0202. These exceedances include: benzene in MW-3, MW-7, MW-8,

Ł.,.

MW-9, and MW-10; ethylbenzene in MW-7; isopropyl benzene in MW-7; n-butylbenzene in MW-7; n-propylbenzene in MW-7; MTBE in MW-7, MW-9, and MW-10; naphthalene in MW-7, MW-9, and MW-10; toluene in MW-7; 1,3,5 trimethylbenzene in MW-7; 1,2,4 trimethylbenzene in MW-7; and total xylenes in MW-7 and MW-9. Benzene was also found in the groundwater sample in MW-7 at a concentration exceeding its respective Gross Contaminant Level (GCL) of 5,000 ug/l as set forth in *The Guidelines*.

Groundwater samples analyzed by MADEP-VPH revealed the presence of the targeted parameters at levels in excess of their maximum allowable limits in groundwater as set forth in 15A NCAC 2L .0202. These exceedances include: C5-C8 aliphatic hydrocarbons in MW-3, MW-7, and MW-9; C9-C12 aliphatic hydrocarbons in MW-7; and C9-C10 aromatic hydrocarbons in MW-3, MW-7, and MW-9. EDB was only detected in the sample from MW-7 at a concentration in groundwater. Lead was only detected in the sample from MW-7 at a concentration well below its maximum allowable concentration in groundwater.

In summary, data for the groundwater samples obtained from wells MW-3, MW-7, MW-8, MW-9, and MW-10 showed the presence of one or more targeted contaminants at levels above their maximum allowable concentrations in groundwater as defined by 15A NCAC 2L .0202. The results for this groundwater sampling event showed that the lateral extent of the groundwater contaminant plume was not adequately defined in the horizontal directions.

Isoconcentration maps for benzene, MTBE, and naphthalene have been prepared and can be found in Section A, Figures 4 through 6. Section B, Table 4 is a summary of the combined analytical results for all of the sampling events. Laboratory reports for the June 7, 2013 sampling event are presented in Section E.

Upon review of the data obtained by the CSA activities described above, it is evident that the horizontal extent of the groundwater contaminant plume has not been defined to the 15A NCAC 2L Standards. However, the horizontal extent of groundwater contamination has been defined to the GCLs which are the targeted assessment and cleanup standards for this incident.

G.3 Vertical extent of Groundwater Contamination (June 7, 2013)

ł

The vertical extent of groundwater contamination was addressed through installation of deep well MW-7D on June 5, 2013. MW-7D was installed immediately adjacent to MW-7 and it is

screened from 60 to 70 feet below land surface. Analytical results for a groundwater sample collected from this well on June 7, 2013 indicated the presence of only C9-C10 aromatic hydrocarbons at a concentration of 2.8 ug/l which is well below the 15N NCAC 2L 0202 standard of 200 ug/l, respectively. It is possible that this contaminant was carried down from above. Based on these results, the vertical extent of groundwater contamination appears to be defined.

Advantage Environmental Consultants, LLC 277 Wilson Pike Circle, Brentwood TN 37027 Phone: (615) 376-3022 Fax: (615) 376-3034

H FREE PRODUCT INVESTIGATION/RECOVERY

In 1992, free phase petroleum product was observed in existing monitoring wells MW-1 and MW-2 at thicknesses of 0.9 feet and 0.48 feet, respectively. No additional information regarding free product thicknesses between 1992 and 2008 was available. On April 30, 2008, free phase petroleum product was observed in existing monitoring wells MW-1 and MW-2 at thicknesses of 2.14 feet and 1.67 feet, respectively. Due to the presence of free phase petroleum product at the Site, Aggressive Fluid Vapor Recovery (AFVR) events were completed by AEC on October 14, 2008, March 10, 2009, October 14, 2009, April 27, 2010, August 7, 2012, and April 22, 2013.

A combined total of 10,519 gallons of water were recovered from MW-1, MW-2, MW-4 and MW-6, during the six AFVR events, approximately 76 gallons of which were determined to be gasoline. Also, AEC calculated that a total of approximately 33.66 gallons of gasoline being removed as VOC emissions during the six AFVR events. Therefore, a total of approximately 109.66 gallons of gasoline were removed as a result of these six AFVR events.

The first six AFVR events appeared to be fairly effective in removing a significant amount of the remaining free phase petroleum product. However, product thicknesses have rebounded between 2011 and April 2013. At some sites this can be explained by fluctuations in the groundwater table elevations, however based on a review of historical groundwater elevations no more than one foot of variation was noted between the lowest and highest recorded elevations.

During the June 7, 2013 groundwater sampling event performed during this CSA, free product was observed in five of the previously existing monitoring wells. The measured free product thicknesses were 1.7 feet in MW-1, 1.6 feet in MW-2, 1.6 feet in MW-4, 1.2 feet in MW-5, and 0.6 feet in MW-6. A Summary of Free Product Thickness Measurements in Monitoring Wells is included in **Section B, Table 6**.

Advantage Environmental Consultants, LLC 277 Wilson Pike Circle, Brentwood TN 37027 Phone: (615) 376-3022 Fax: (615) 376-3034

I. HYDROGEOLOGIC INVESTIGATION

I.1 Horizontal Groundwater Hydraulic Gradient

Data obtained from the gauging of wells on, and related to, the Site were recorded and are presented on the groundwater hydraulic gradient map presented in **Figure 10**. Overall, groundwater hydraulic gradient has been determined to flow to the southeast. Utilizing current hydraulic gradient data obtained from the Site, AEC has calculated the horizontal gradient to be 0.008 ft/ft (June 7, 2013).

I.2 Vertical Groundwater Hydraulic Gradient

The vertical gradient of groundwater flow was also assessed by measuring the groundwater elevations in well nest MW-7/MW-7D on June 7, 2013. Using these measurements, AEC calculated the vertical hydraulic gradient to be 0.04 ft/ft downward.

I.3 Aquifer Testing

Rising and falling head tests (slug tests) were conducted on monitoring wells MW-7, MW-8, and MW-9 on June 7, 2013. The purpose of the testing was to assess the values of horizontal hydraulic conductivity (K) of the water table aquifer at various locations.

The tests were performed using a 1-inch diameter, 5.5-foot long PVC slug to create an instantaneous change in the water level (head) at each selected well. A Solinist Levelogger Model 3001 pressure transducer was used to measure water level fluctuations during each test. The pressure transducer was attached to a laptop computer in order to download the data in real time. The depth to water from the top of the PVC well casing was measured prior to insertion of the pressure transducer and slug. Water levels were also measured by hand at various times during each test, and at the completion of each test, to verify the electronic data.

Rising and falling head tests were conducted during the field investigation. Falling head tests consisted of rapidly lowering the PVC slug into the well and simultaneously initiating a logarithmic recording interval on the data logger at two second intervals. Rising head tests were conducted by removing the slug and initiating a new logarithmic recording step on the data logger at two second intervals.

Advantage Environmental Consultants, LLC 277 Wilson Pike Circle, Brentwood TN 37027 Phone: (615) 376-3022 Fax: (615) 376-3034

The slug test data were analyzed using the Bouwer and Rice method, which accounts for the effects of partial well penetration and changing aquifer thickness (water table conditions). The surficial aquifer thickness was estimated from boring logs to be approximately fifteen feet thick. A packing porosity of 25 percent for the well filter pack was assumed. The results of the slug test data analyses using the Bouwer and Rice method is summarized on the table below:

WELL	BOUWER AND RICE METHOD	TYPE OF TEST
	CONDUCTIVITY (feet/day)	
MW-7	0.966	Falling Head
MW-7	1.064	Rising Head
MW-8	0.5124	Rising Head
MW-9	2.255	Falling Head
MW-9	1.225	Rising Head

The hydraulic conductivity values for the water table aquifer obtained as a result of this investigation averaged on the order of 1 feet per day (ft/day). The geometric average of the hydraulic conductivity estimate for MW- 7, MW-8, and MW-9 using the Bouwer and Rice method is 1.08 ft/day. These values are consistent with a sandy water table aquifer. Time vs. head curves for the slug tests summarized above are included in **Section D**.

Advantage Environmental Consultants, LLC 277 Wilson Pike Circle, Brentwood TN 37027 Phone: (615) 376-3022 Fax: (615) 376-3034

J DISCUSSION

ĩ...

J.1 Nature and Extent of Contamination

The nature of the contamination at the Site is the presence of petroleum hydrocarbons in the form of gasoline and related chemical additives which are attributed to a release from gasoline UST systems discovered in 1992. The UST system(s) located at the Site released an undetermined amount of gasoline and have contaminated the soils and groundwater of the Site. Free phase petroleum product is present in on-Site wells MW-1, MW-2, MW-4, MW-5, and MW-6. In addition, chemical contaminants at levels in excess of the 15A NCAC 2L .0202 Water Quality Standards were detected in the groundwater in on-Site wells MW-3, MW-7, MW-8, and MW-9 and off-Site well MW-10.

Chemical contaminants at levels in excess of the Soil to Groundwater MSCCs were detected in soil samples collected in the vicinity of the UST system. Based on the slight exceedences of the soil MSCCs, AEC believes the lateral extent of soil contamination above the Soil to Groundwater MSCCs had been adequately defined. Further, the remediation/removal of free product beneath the Site will likely reduce concentrations of VOCs and VPH in Site soils.

It is important to note that the current UST system has undergone periodic leak testing for the USTs and product lines. The USTs were tightness tested approximately 4 months ago and the product lines were leak tested approximately 6 months ago. The USTs and lines all tested tight at that time.

J.2 Contaminant Migration and Potentially Affected Receptors

Contaminants related to the release are expected to continue to migrate with groundwater flow through the Site, to the southeast through the source area. The lateral migration of the plume is directly related to the groundwater flow through the area, the soil matrix through which migration will occur, and to the presence of structures in contact with the groundwater and/or product at the Site. No water supply wells are located within a 1,000 foot radius of the release area. Several contaminant plume maps for individual contaminants of concern are depicted on **Figures 4** through **6** in **Section A**. Due to the established direction of contaminated groundwater migration it is not likely that the release will impact the eastern adjacent school or any other environmentally sensitive receptors.

Advantage Environmental Consultants, LLC 277 Wilson Pike Circle, Brentwood TN 37027 Phone: (615) 376-3022 Fax: (615) 376-3034

33-

J.3 Lowering Risk Classification

Currently the Site is classified as "intermediate risk" due to the presence of free phase petroleum product and one or more exceedences of GCLs. The removal of free phase petroleum product and subsequent lowering of groundwater contaminant levels to below GCLs will result in lowering the current risk classification from "intermediate" to "low" at which time the NCDENR can consider the incident for close out.

J.4 Applicable Cleanup Levels

Until free product is removed, the Site will remain classified as "intermediate risk" and the applicable cleanup level for the petroleum-contaminated soils will be Soil to Groundwater MSCCs as set forth in *The Guidelines*. Further, the cleanup level for petroleum-contaminated groundwater will be the GCLs as set forth in *The Guidelines*. Once free product is removed and no exceedence of any GCLs remain the Site will be classified as "low risk" and the applicable cleanup level for the petroleum-contaminated soils will be either the Residential or Industrial/Commercial MSCCs as set forth in *The Guidelines*. Further, the cleanup level for petroleum-contaminated soils will be the GCLs as set forth in *The Guidelines*. Further, the cleanup level for *The Guidelines* are set forth in *The Guidelines*.

Advantage Environmental Consultants, LLC 277 Wilson Pike Circle, Brentwood TN 37027 Phone: (615) 376-3022 Fax: (615) 376-3034

K CONCLUSIONS AND RECOMMENDATIONS

AEC has completed this Comprehensive Site Assessment in order to comply with N.C.G.S. 143-215.84, NCAC 15A, 2L .0106(c), 15A NCAC 2N .0706 and the NCDENR's "*Guidelines for Assessment and Corrective Action for UST Releases*" prepared by the North Carolina Underground Storage Tank Section effective July 15, 2008, Change 2 Effective October 1, 2012

Chemical contaminants at levels in excess of the Soil to Groundwater MSCCs were detected in soil samples collected in the vicinity of the UST system. Based on the slight exceedences of the soil MSCCs, AEC believes the lateral extent of soil contamination above the Soil to Groundwater MSCCs has been adequately defined. Free phase petroleum product is present in on-Site wells MW-1, MW-2, MW-4, MW-5, and MW-6. In addition, chemical contaminants at levels in excess of their 15A NCACN 2L .0202 standards were detected in the groundwater in on-Site wells MW-3, MW-7, MW-8, and MW-9 and off-Site well MW-10.

Remedial Alternatives

AEC believes that consideration should first be given to removing free phase petroleum product from beneath the Site followed by the lowering of groundwater contaminant levels to below GCLs. Because there are no environmentally sensitive receptors in the vicinity of the Site, the incident can then be reclassified to "low risk" and closed out. Removal of free product will reduce concentrations of VOCs and VPH in Site soils and groundwater. Based on the low levels of petroleum contamination in Site soils, AEC believes the removal of free product will be sufficient to address soil impacts. Following free product removal, AEC believes that an evaluation of the processes of natural attenuation and biodegradation for addressing the residual groundwater contaminants should be completed. If it is determined that this is not a viable option then one or more active groundwater cleanup options will need to be considered.

Recommendations

The subject release will remain classified as "intermediate risk" due to the continued presence of free phase petroleum product and GCL exceedences in groundwater. The removal of free product and elimination of GCL exceedences will drop the classification to "low risk" thereby allowing the incident to be closed out. Therefore, AEC recommends the use of either additional AFVR events or possibly a more aggressive Mobile Multi Phase Extraction (MMPE).

Advantage Environmental Consultants, LLC 277 Wilson Pike Circle, Brentwood TN 37027 Phone: (615) 376-3022 Fax: (615) 376-3034

Finally, AEC recommends that Raeford Road Holdings, LLC submit a copy of this CSA to the NCDENR, Division of Water Quality, Fayetteville Regional Office, to the attention of Mr. James Brown.

Advantage Environmental Consultants, LLC 277 Wilson Pike Circle, Brentwood TN 37027 Phone: (615) 376-3022 Fax: (615) 376-3034

L REFERENCES

Geologic Map of North Carolina, Department of Natural Resources and Community Development, Division of Land Resources, 1985.

"Guidelines for Assessment and Corrective Action for UST Releases" prepared by the North Carolina Underground Storage Tank Section effective July 15, 2008, Change 2 Effective October 1, 2012

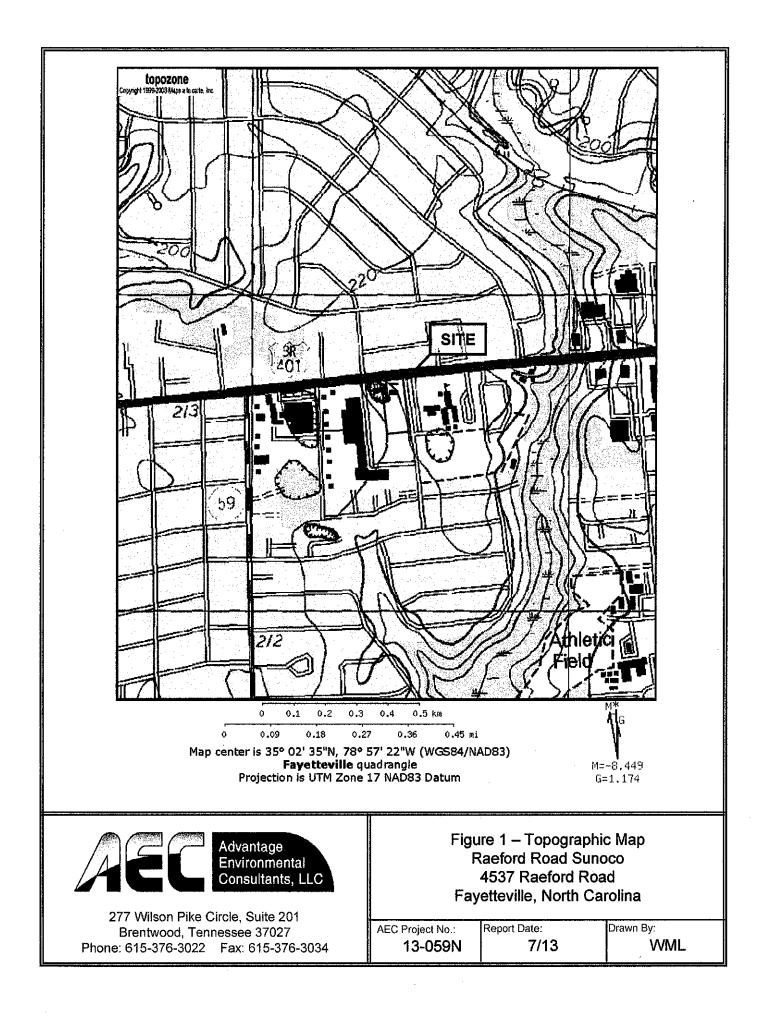
North Carolina Administrative Code, Title 15, Subchapter 2L, Section .0100, 0115 and .0200.

North Carolina Department of Environment and Natural Resources, Division of Waster Management, UST Section.

Cumberland County GIS Website (http://imaps.co.cumberland.nc.us/imaps/)

Advantage Environmental Consultants, LLC 277 Wilson Pike Circle, Brentwood TN 37027 Phone: (615) 376-3022 Fax: (615) 376-3034

LIMITATIONS

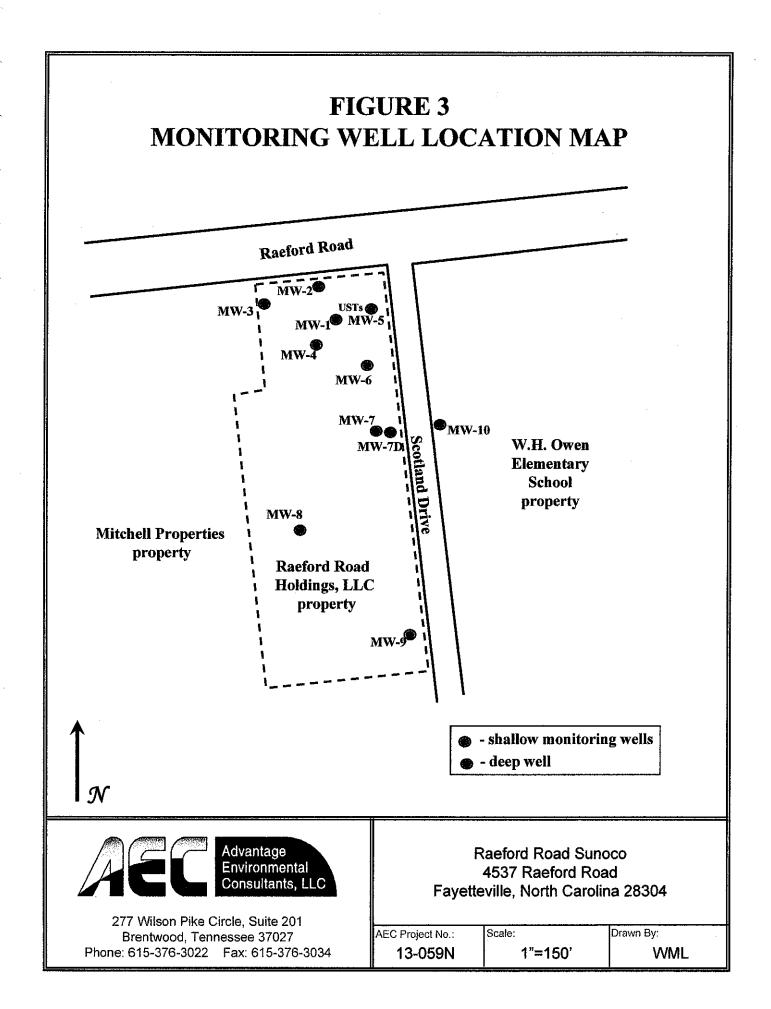

This report has been prepared for the exclusive use of Raeford Road Holdings, LLC and/or their designees, successors or assigns. It has been prepared in accordance with generally accepted environmental practices. No other warranty, expressed or implied, is made. AEC's conclusions and recommendations are based on information supplied by others, together with AEC's own site observations. Although AEC cannot be responsible for the accuracy of data supplied by others, AEC has no reason to suspect that any of the information is inaccurate. The observations described herein are based upon conditions readily visible on the site at the time of AEC's visit(s).

AEC cannot assume responsibility for the person(s) in charge of the site, nor otherwise undertake responsibility for reporting to any local, state or federal public agencies any conditions at the site that may present a potential danger to public health, safety or the environment. It is the responsibility of the responsible party to notify the appropriate local, state or federal public agencies as required by law, or otherwise to disclose, in a timely manner, any information that may be necessary to prevent any danger to public health, safety or the environment.

Advantage Environmental Consultants, LLC 277 Wilson Pike Circle, Brentwood TN 37027 Phone: (615) 376-3022 Fax: (615) 376-3034

SECTION A

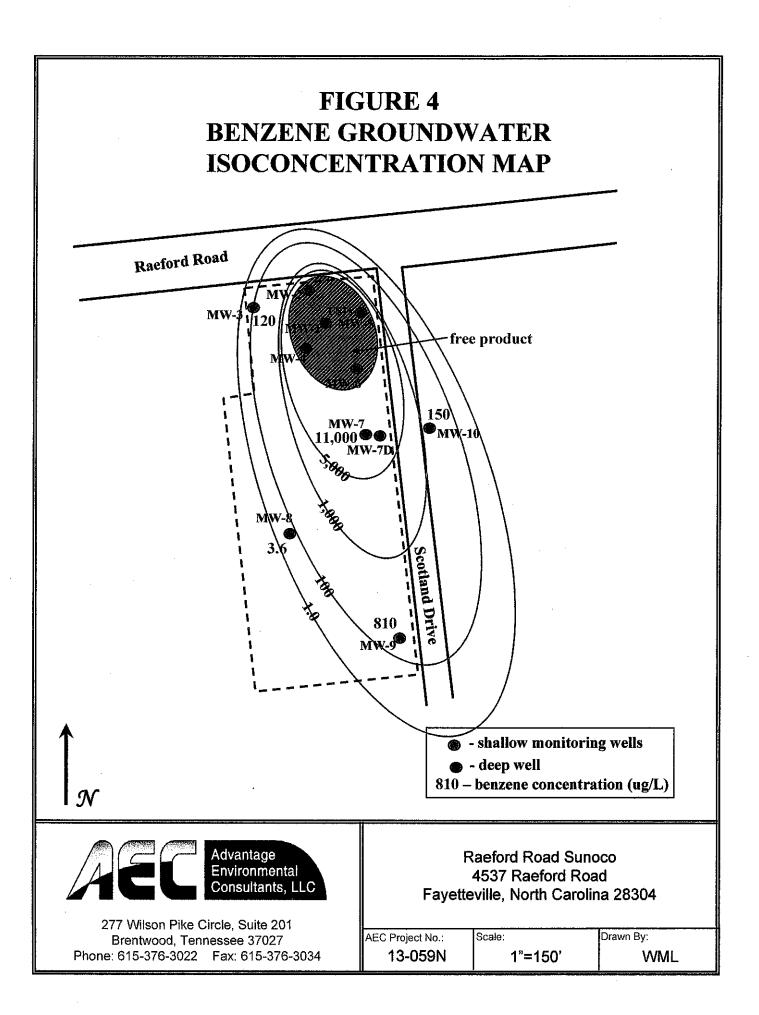
FIGURES


ł

i.

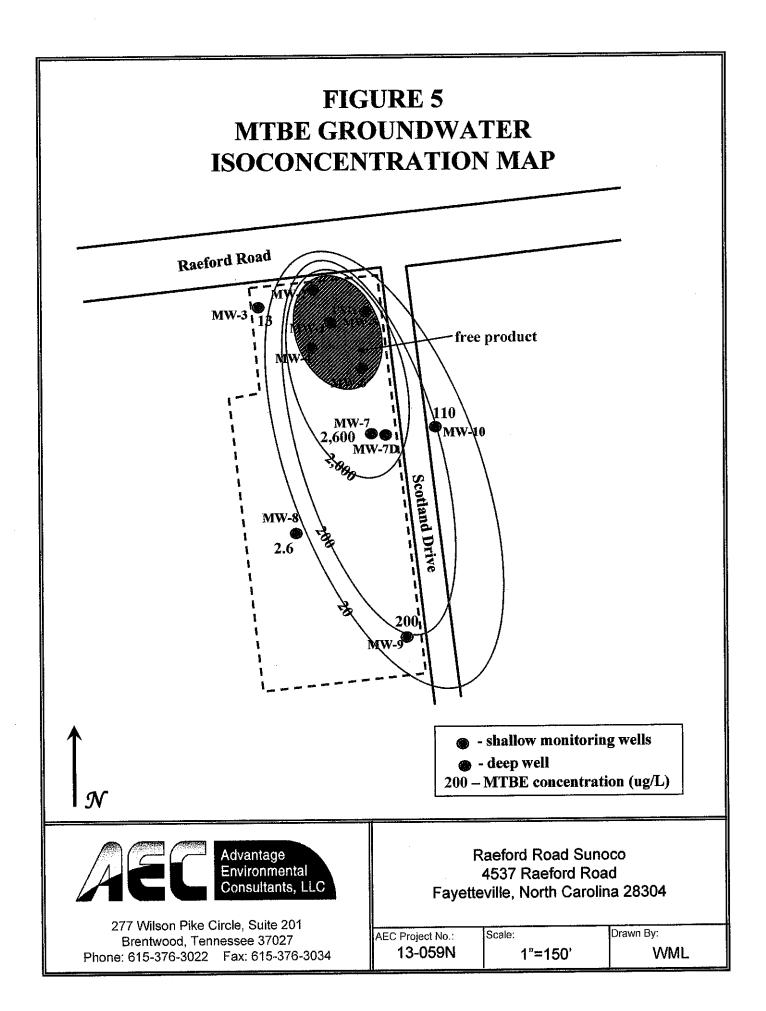
L

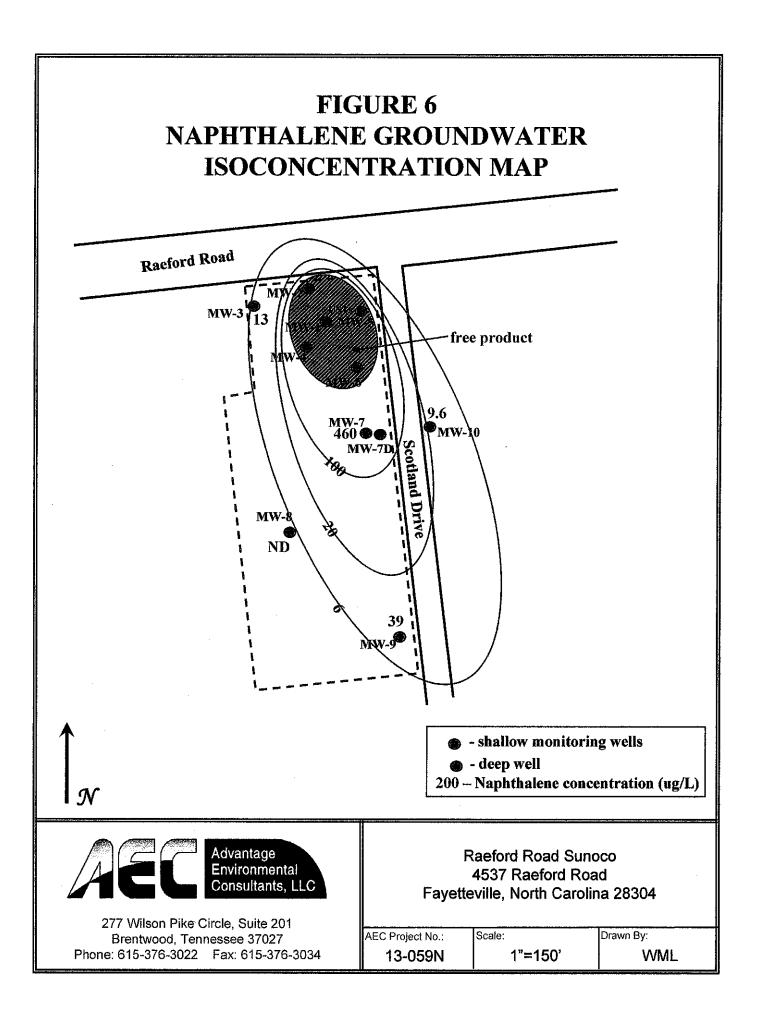
[



L.,

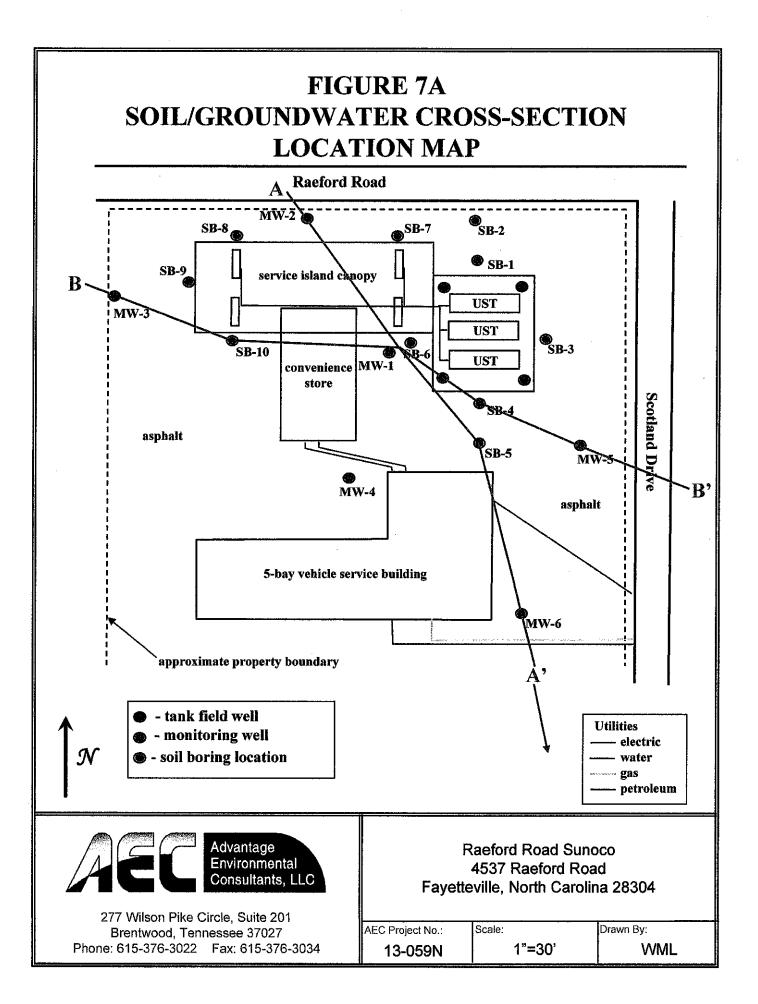
İ.

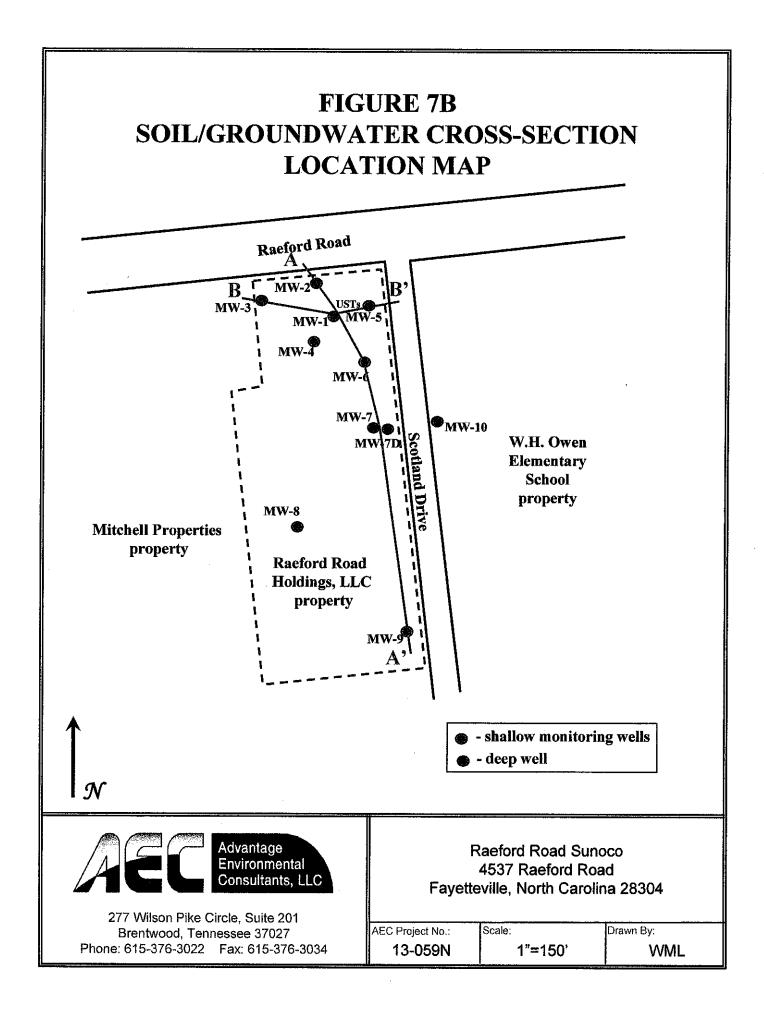

Ĺ

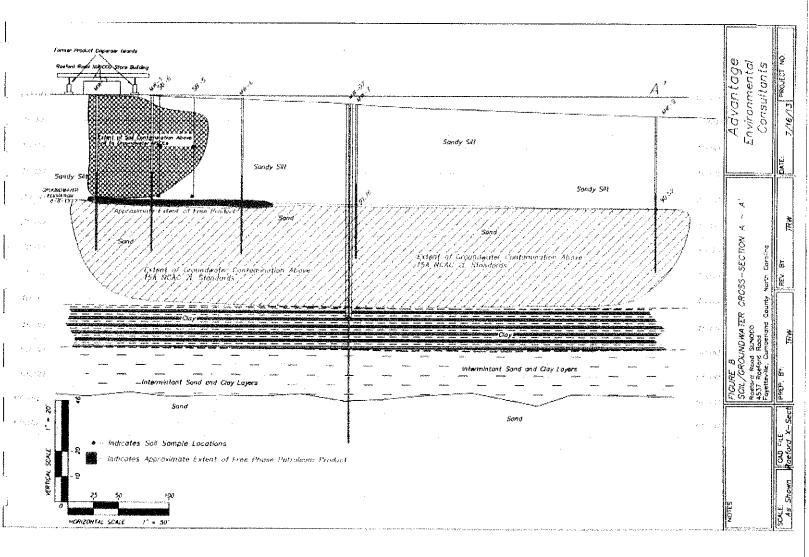

i

L

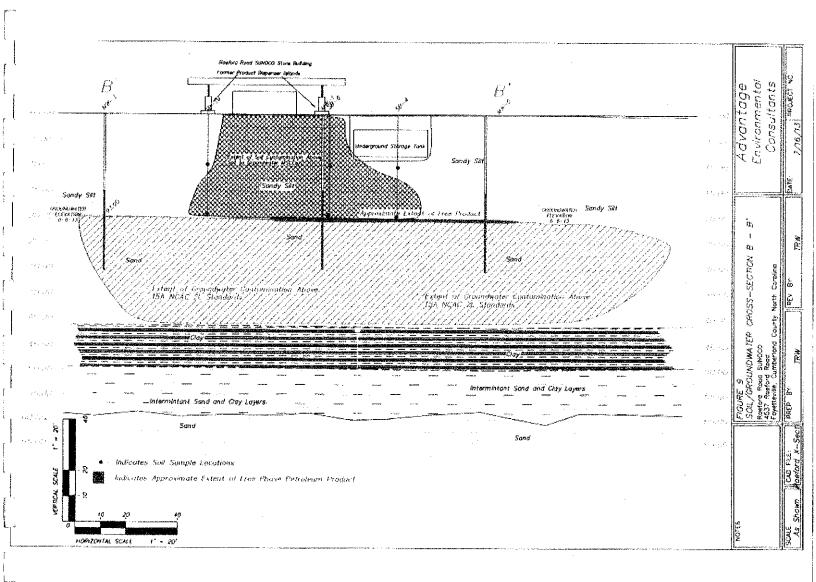
L.,

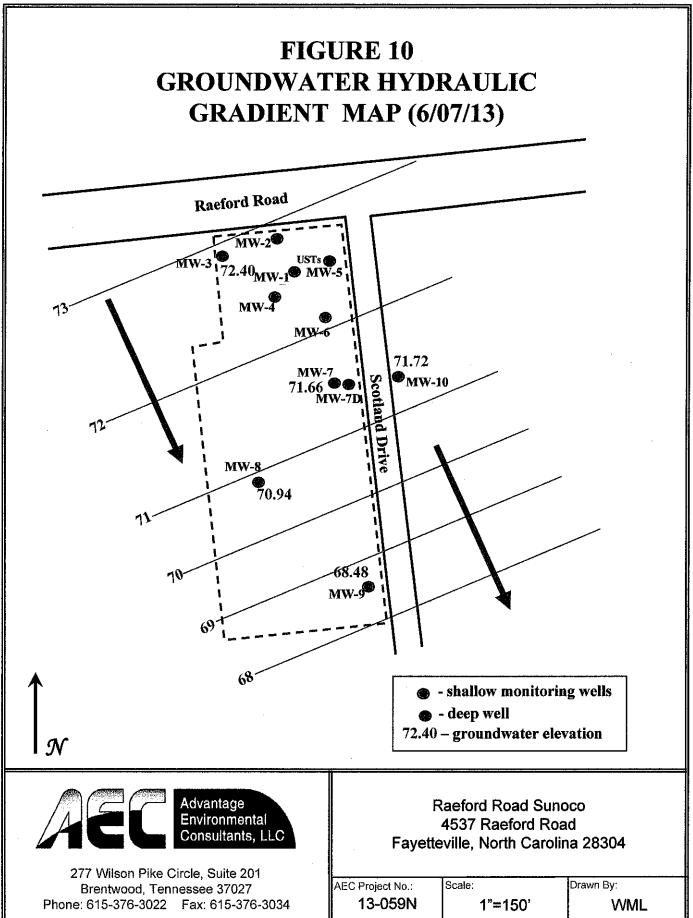



į.


L...

L...


ί.



.

.

SECTION B

TABLES

Table 1

UST Information Raeford Road Sunoco (Former Jim's Texaco) 4537 Raeford Road Fayetteville, Cumberland County, North Carolina 28304

UST ID #	Last	Previous	Capacity	Construction	Descriptions of	Date Tank	Status of	Was release
	Contents	Contents	(gallons)	Details	Associated	Installed	UST	associated with UST
			전에 한 것 같다. 같다. 그 이 것 같		Piping			
T-1	Gasoline	Gasoline	10,000	Steel	Double-Wall	1/87	In Use	unknown
					Fiberglass			
T-2	Gasoline	Gasoline	10,000	Steel	Double-Wall	1/87	In Use	unknown
					Fiberglass			
T-3	Gasoline	Gasoline	10,000	Steel	Double-Wall	1/87	In Use	unknown
			1		Fiberglass			
T-4	Waste Oil	Waste Oil	150	Steel	Steel	unknown	Not in Use	No
Removed	Gasoline	Gasoline	10,000	Steel	Steel	unknown	Removed	unknown
Tank 1			-				1/87	
Removed	Gasoline	Gasoline	10,000	Steel	Steel	unknown	Removed	unknown
Tank 2							1/87	
Removed	Gasoline	Gasoline	10,000	Steel	Steel	unknown	Removed	unknown
Tank 3							1/87	

Table 2Adjacent Property Ownership InformationRaeford Road Sunoco (Former Jim's Texaco)4537 Raeford RoadFayetteville, Cumberland County, North Carolina 28304

NC Parcel #	Property Location	Property Owners	Location
	(Occupant)	Name/Address	
0417-30-2524	Raeford Road Sunoco	Raeford Road Holdings, LLC	Site
0417-30-2320	4537 Raeford Road	9055 Comprint Court, Ste 200	
0417-30-2049	Fayetteville, NC 28304	Gaithersburg, MD 20877	
0417-30-3814	Atlas Chiropractor	Dominic & Michelle Marangi	Adjacent property across Raeford Road and
		99 Village Drive	northeast of the site
		Jacksonville, NC 28546	
0417-30-2803	Bojangles	Loyd Properties, LLC	Adjacent property across Raeford Road and
		4140 Ferncreek Drive	north of the Site
		Fayetteville, NC 28314	
0417-30-0820	Wilco-Hess	Walter Williams	Adjacent property across Raeford Road and
		207 Crown Point Road	northwest of the Site
		Greenville, NC 27834	
0416-29-9999	Wachovia Bank &	Mitchell Properties of Florence	Adjacent property west and south of the Site
	Vacant Shopping Center	PO Box 1418	
		Florence, SC 29503	
0417-30-7111	William H. Owen	Cumberland County Board of Ed	Adjacent property across Scotland Drive and
	Elementary School	PO Box 2357	east and southeast of the Site
		Fayetteville, NC 28302	

Table 3 Summary of Analytical Data – Soil EPA Method 8260 Raeford Road Sunoco 4537 Raeford Road Fayetteville, Cumberland County, North Carolina

Analytic	al Method	> ·	8260	8260	8260	8260	8260	8260	8260	8260	8260	8260	8260	8260	8260	8260	8260
								0200	0200	0200	0200	0200	0200	0200	0200	0200	0200
Sample ID	Contamin Concern Date Collected m/dd/yy	ant of > Sample Depth (ft)	1,2,4-Trimethylbenzene	1,3,5-Trimethylbenzene	Acetone	2-Butanone	4-Isopropyltoluene	Ethylbenzene	Isopropylbenzene	Naphthalene	n-Butylbenzene	n-Propylbenzene	Benzene	sec-Butylbenzene	Toluene	MTBE	Total Xylencs
SB-1	6/04/13	8-10'	7.3	2.2	5.7	ND	ND	ND	ND	1.6	0.51	0.52	ND	ND	ND	ND	2.6
SB-1	6/04/13	18-20	0.053	0.014	0.015	ND	ND	0.047	0.002	0.020	0.0026	0.0074	0.08	ND	0.26	0.068	0.27
SB-2	6/04/13	8-10'	0.014	0.0037	0.028	ND	ND	0.0068	ND	0.0056	0.00072	0.001	0.0092	ND	0.030	0.061	0.037
SB-2	6/04/13	18-20'	0.0081	ND	0.035	0.0085	ND	0.00057	ND	0.0014	ND	ND	0.001	ND	0.0024	0.014	0.0019
SB-3	6/04/13	8-10'	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	0.00038	ND	ND	0.004	ND
SB-3	6/04/13	18-20'	ND	ND	0.020	ND	ND	0.00044	ND	ND	ND	ND	0.00087	ND	0.0014	0.004	0.00081
<u>SB-4</u>	6/04/13	8-10'	ND	ND	0.014	ND	ND	ND	ND	ND	ND	ND ND	0.00044	ND	ND	ND	ND
SB-4	6/04/13	18-20'	0.140	0.040	ND	ND	ND	0.170	ND	ND	ND	ND	0.650	ND	1.7	0.150	0.96
SB-5	6/04/13	8-10'	0.0031	0.001	ND	ND	ND	0.005	ND	ND	ND	0.00064	0.036	ND	0.021	0.0098	0.025
SB-5	6/04/13	18-20'	0.00052	ND	0.016	0.0047	ND	0.00059	ND	ND	ND	ND	0.0033	ND	0.0048	0.013	0.0016
																	0.0010
												·					
	roundwater	MSCC	8.5	8.3	24	16	0.12	4,9	1.7	0.16	4.3	1.7	0.0056	3.3	4.3	0.091	4.6
	ial MSCC		782	782	14000	9385	100	1560	1564	313	626	626	18	626	1200	350	3129
	l/Commerc	ial	20440	20440	360000	245280	4000	40000	40880	8176	16350	16350	164	16350	32000	3100	81760
MSCC		<u>.</u>							· · [- 0000	22000	5100	51700
Results a	re in mo/ko												<u> </u>				

Results are in mg/kg Bold results indicate exceedence of Soil to Groundwater MSCC ND – Not Detected

L

Table 3 (continued) Summary of Analytical Data – Soil MADEP Methods VPH Raeford Road Sunoco 4537 Raeford Road Fayetteville, Cumberland County, North Carolina

Analytical Met	hod >		MADEP	MADEP	MADEP	(y, north C					
			VPH	VPH	VPH						
Sample	Contaminant	of Concern >								-	
ID	Date Collected m/dd/yy	Sample Depth (ft)	28 Aliphatics	C12 Aliphatics	210 Aromatics						
	-		C5-C8	C9-C12	C9-C10						
SB-1	6/04/13	8-10'	50	404	299						
<u>SB-1</u>	6/04/13	18-20'	0.66	ND	0.483						
<u>SB-2</u>	6/04/13	8-10'	ND	ND	0.274						
SB-2	6/04/13	18-20'	ND	ND	ND						
SB-3	6/04/13	8-10'	ND	ND	ND						
SB-3	6/04/13	18-20'	ND	ND	ND						
SB-4	6/04/13	8-10'	ND	1.47	0.710				-		
SB-4	6/04/13	18-20'	6.81	2.49	1.12						1
SB-5	6/04/13	8-10'	ND	ND	ND			<u> </u>			· · ·
SB-5	6/04/13	18-20'	ND	ND	ND						
Soil to Groundy	water MSCC		68	540	31	·					
Residential MS	-		939	1500	469				1		
Industrial/Com	mercial MSCC		24258	40000	12264			<u> </u>			
Results are in m							· · · · · · · · · · · · · · · · · · ·	·			J

Results are in mg/kg Bold results indicate exceedence of Soil to Groundwater MSCC ND – Not Detected

ι_...

Table 3Summary of Analytical Data – SoilEPA Method 8260Raeford Road Sunoco4537 Raeford RoadFayetteville, Cumberland County, North Carolina

ID	Contamin Concern Date						1					8260	8260	8260	8260	8260	8260
	Date Collected m/dd/yy	> Sample Depth (ft)	1,2,4-Trimethylbenzene	1,3,5-Trimethylbenzene	Acetone	2-Butanone	4-Isopropyltoluene	Ethylbenzene	Isopropylbenzene	Naphthalene	n-Butylbenzene	n-Propylbenzene	Benzene	sec-Buty!benzene	Toluene	MTBE	Total Xylenes
	6/04/13	8-10'	0.0049	0.0021	0.019	ND	ND	0.0049	ND	0.0011	ND	0.0005	0.035	ND	0.014	0.049	0.015
	6/04/13	18-20'	0.016	0.0073	0.087	0.040	ND	0.0071	0.00047	0.028	0.0013	0.0015	0.019	ND	0.059	0.026	0.053
	6/04/13	8-10'	ND	ND	ND	ND	ND	0.001	ND	ND	ND	ND	0.0083	ND	0.0027	0.0071	0.0029
	6/04/13	18-20'	0.0016	0.00049	0.040	ND	ND	0.0014	ND	0.0025	ND	ND	0.0025	ND	0.0058	0.020	0.0069
	6/04/13	8-10'	0.0072	0.0031	0.018	ND	ND	0.0062	0.00092	ND	ND	0.00076	0.011	ND	0.0077	0.022	0.035
	6/04/13	18-20'	0.0091	0.0025	0.023	ND	ND	0.0044	0.00052	0.0014	ND	0.0015	0.0021	ND	0.022	0.0069	0.028
	6/04/13	8-10'	5.1	2.5	0.890	ND	0.220	0.570	0.450	0.350	0.980	1.7	ND	0.410	ND	ND	0.720
	6/04/13	18-20'	0.0014	0.00048	0.058	ND	ND	ND	ND	0.0018	ND	ND	ND	ND	ND	0.0028	0.0008
	6/04/13	8-10'	.00095	0.00036	0.033	0.0052	ND	ND	ND	ND	ND	ND	ND	ND	.00045	ND	0.002
SB-10	6/04/13	18-20'	0.850	0.250	0.760	ND	ND	0.100	ND	0.720	0.088	0.120	ND	ND	0,230	ND	0.660
Soil to Gro	oundwater	•	8.5	8.3	24	16	0.12	4.9	1.7	0.16	4.3	1.7	0.0056	3.3	4.3	0.091	4.6
MSCC Regidentie	AMECO		703	782	14000	0207	100		1711								
Residentia		:-1	782	782	14000	9385	100	1560	1564	313	626	626	18	626	1200	350	3129
Industrial/ MSCC	Commerc	al	20440	20440	360000	245280	4000	40000	40880	8176	16350	16350	164	16350	32000	3100	81760

Results are in mg/kg

ł

L

L

Bold results indicate exceedence of Soil to Groundwater MSCC

ND - Not Detected

Table 3 (continued) Summary of Analytical Data – Soil MADEP Methods VPH Raeford Road Sunoco 4537 Raeford Road Favetteville, Cumberland County, North Carolina

Analytical Metho			MADEP	MADEP	MADEP	ty, Norui C		T		7	1
I mary troat wroth	<i>A</i>		VPH	VPH							
Sample	Contominant	of Concern >	vrn	Vrn	<u>VPH</u>						
ID											
ID	Date	Sample	8	Aliphatics	ICS						
	Collected	Depth	ați.	nat	nat						
· · · · ·	m/dd/yy	(ft)	hd	lqil	0				1		
			Aliphatics		A			1			
				C9-C12	C9-C10 Aromatics						
		a tradition to the second second second second second second second second second second second second second s	C5-C8		Q Q			1			
			Ö	ບັ	υ Ο						
SB-6	6/04/13	8-10'	ND	ND	ND		1	······			
SB-6	6/04/13	18-20'	ND	ND	0.312	<u>_</u>		- · ·			
SB-7	6/04/13	8-10'	ND	ND	ND						
SB-7	6/04/13	18-20'	1.85	1.65	1.07						
SB-8	6/04/13	8-10'	ND	ND	ND						
SB-8	6/04/13	18-20'	ND	ND	ND						
SB-9	6/04/13	8-10'	0.912	ND	0.933		· · · - ·				
SB-9	6/04/13	18-20'	ND	ND	ND	<u></u>			<u> </u>		
SB-10	6/04/13	8-10'	ND	ND	ND			1		-	
SB-10	6/04/13	18-20'	4.51	60	35.5						
Soil to Groundwa			68	540	31	• • • • • • • • • • • • • • • • • • • •					
Residential MSC	С		939	1500	469						
Industrial/Comme	ercial MSCC		24258	40000	12264				·		

ŝ

ŗ L

> Į L

Ł_.

İ.

Results are in mg/kg Bold results indicate exceedence of Soil to Groundwater MSCC

ND - Not Detected

Table 4 Summary of Analytical Data – Groundwater EPA Method 504.1/6200b Raeford Road Sunoco 4537 Raeford Road Fayetteville, Cumberland County, North Carolin

Analytic	al Method	> :	504.1	6200b	6200b	6200b	mberland 6200b	6200b	6200b	6200b	6200b	6200b	6200b	6200Ь	6200b
				02000	02000	02000	02000	02000	02000	02000	02000	02000	02000	02000	02000
Well	Contaminar	it of	1		P	<u> </u>								1	
ID	Concern >	· · ·											ene	sne	
	Date	Sample	je je				υ						ZU	DZG:	l I
	Collected	ID	tha				zen		ne	ene			ą	(Ibe	
	m/dd/yy		106		-	ne	en		JZC		ల		l ff	l tj	es
		· .	Dibromoethane	0	LE O	nze	14		Be	<u> </u>	len		ime.	, in the second s	len
			ldiC	cen	lof	lbe	do	щ	ţ	, dd	tha	cine	Ę.	Ē.	X
			,21	Benzene	Chloroform	Ethylbenzene	Isopropyl Benzene	MTBE	n-Butyl Benzene	n-Propyl Benzene	Naphthalene	Toluene	1,3,5-Trimethylbenzene	1,2,4-Trimethylbenzene	Total Xylenes
			-				<u> </u>		-	Ė	z	Ĕ	1,	·	Ĕ
MW-3	6/07/13	MW-3	ND	120	ND	46	5.8	13	4.0	16	13	280	58	150	400
MW-7	6/07/13	MW-7	1.2	11,000	ND	2,400	140	2,600	120	270	460	32,000	510	2,000	14,000
MW-7D	6/07/13	MW-7D	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
<u>MW-8</u> MW-9	6/07/13	MW-8	ND	3.6	3.6	ND	ND	2.6	ND	ND	ND	ND	ND	ND	ND
MW-10	6/07/13 6/07/13	MW-9	ND	810	ND	61	9.1	200	6.9	8.2	39	290	27	89	510
WIW-10	0/07/13	MW-10	ND	150	ND	16	2.0	110	1.4	3.3	9.6	2.2	ND	3.6	15
	·														
								_							
					· · ·										
2L Standa	ard (ng/l)	<u> </u>	0.02	1	70	600	70		50	- 50		<u></u>		100	
GCL (ug/			50	5,000	70,000	84,500	25,000	20 20,000	70	70	6	600	400	400	500
Peculta or		l	50	5,000	10,000	04,000	45,000	20,000	6,900	30,000	6,000	260,000	25,000	28,500	85,500

Results are in ug/l

i

.

Ł.,

Bold results indicate exceedence of 2L Standards Bold and shaded results indicate exceedence of GCL

Table 4 (continued) Summary of Analytical Data – Groundwater EPA Methods 6010c/MADEP-VPH Raeford Road Sunoco 4537 Raeford Road Fayetteville, Cumberland County, North Carolina

Analytic	al Method >				60)10c	MADEP VPH	MADEP VPH	MADEP	
Well ID	Contaminant	of Concern						VPH	VPH	
	Date Collected m/dd/yy	Sample ID			Total Lead		C5-C8 Aliphatics	C9-C12 Aliphatics	C9-C10 aromatics	
6/07/13	6/07/13	6/07/13			N	ID	865	628	940	·
6/07/13	6/07/13	6/07/13				79	57,400	16,700	5,800	
6/07/13	6/07/13	6/07/13			1	ID	ND	ND	2.8	
6/07/13	6/07/13	6/07/13	-			ID	6.4	ND	ND	
6/07/13	6/07/13	6/07/13			N	D	1,590	572	330	
6/07/13	6/07/13	6/07/13				ID	246	33.1	43	
	1									
					· · · · · · · · · · · · · · · · · · ·					
2L Standa	rd (ug/l)					5	400	700	200	
GCL (ug/I Results are	l)			_	15,	000	NRS	NRS	NRS	

i

i k

ŝ

Ł

Results are in ug/l Bold results indicate exceedence of 2L Standards Bold and shaded results indicate exceedence of GCL

 Table 5

 Summary of Monitoring and Supply Well Construction Data

 Raeford Road Sunoco (Former Jim's Texaco)

 4537 Raeford Road

 Fayetteville, Cumberland County, North Carolina 28304

Well Construction Information

Well ID	Date Installed	Well Casing Depth	Screened Interval	Bottom of Well	Top of Casing Elevation	Free Product Thickness	Depth to Water (TOC)	Groundwater Elevation 6/07/13	Groundwater Elevation Adjusted for Free Product
MW-1	9/25/92	0-30	20-30	30	94.47	6/07/13	6/07/13	NR (
MW-2	9/25/92	0-30	20-30	30	94.40	1.6	NM NM	NM NM	NM NM
MW-3	9/28/92	0-29	19-29	29	93.00	NP	20.60	72.40	72.40
MW-4	4/30/08	0-30	15-30	30	94.26	1.6	NM	NM	
MW-5	4/30/08	0-30	15-30	30	94.02	1.2	NM	NM	NM
<u>MW-6</u>	4/30/08	0-30	15-30	30	92.92	0.6	NM	NM	NM
<u>MW-7</u>	6/05/13	0-30	15-30	30	91.76	NP	20.10	71.66	71.66
MW-7D	6/05/13	0-70	60-70	70	91.70	NP	21.80	69.90	69.90
MW-8	6/06/13	0-30	15-30	30	91.74	NP	20.80	70.94	70.94
MW-9	6/06/13	0-30	15-30	30	90.52	NP	22.04	68.48	68.48
MW-10 NP – No fr	6/06/13	0-30	15-30	30	94.26	NP	22.54	71.72	71.72

NP – No free product NM – Not measured (oil/water interface probe not operational)

Supply Well Information

	Well #	Well Owner/ Address	Well Use Well Depth	Type ofDateWell CasingWellInstalledDepth	Well Screen Interval	Distance from Source Area
l						

Table 6

Raeford Road Sunoco (Former Jim's Texaco) Summary of Free Product Thickness Measurements in Monitoring Wells Product Thickness Displayed in Feet

Date	MW-1	MW-2	MW-3	MW-4	MW-5	MW-6
5/1/08	2.14	1.67	NP	NP	NP	NP
10/14/08	0.56	0.66	NP	0.14	NP	0.54
11/7/08	0.19	0.21	NP	0.17	NP	0.23
3/10/09	0.25	0.05	NP	0.40	NP	0.24
7/23/09	0.03	Sheen	NP	0.10	NP	Sheen
10/14/09	NP	0.01	NP	NP	NP	0.20
3/3/10	NP	NP	NP	NP	NP	0.10
4/27/10	NP	0.02	NP	0.01	NP	0.01
6/28/10	NP	NP	NP	NP	NP	NP
12/21/10	NP	NP	NP	NP	NP	NP
7/13/11	NP	0.33	NP	0.38	NP	0.30
8/7/12	2.90	3.00	NP	2.70	NP	1.30
11/30/12	0.93	1.80	NP	0.50	NP	0.75
4/22/13	2.05	2.15	NP	2.25	NP	1.85
6/7/13	1.7	1.6	NP	1.6	1.2	0.6

NP – no product observed

AFVR event performed on October 14, 2008 and report submitted on November 5, 2008 AFVR event performed on March 10, 2009 and report submitted on March 24, 2009 AFVR event performed on October 14, 2009 and report submitted on November 2, 2009 AFVR event performed on April 27, 2010 and report submitted on May 12, 2010 AFVR event performed on August 7, 2012 and report submitted on August 29, 2012 AFVR event performed on April 22, 2013 and report submitted on May 9, 2013

SECTION C

WELL CONSTRUCTION RECORDS

WELL CONSTRUCTION R		For It	iternal (Jse ON	LY:						
This form can be used for single or multiple wel	ls -										
1. Well Contractor Information:			VATE	ZONI	Te .				· · · · · · · · · · · · · · · · · · ·		
James D. Barker		FRO	м	то		DESCRIPT		÷ 81.			<u> </u>
Well Contractor Name		23	ft.	25	ft.						
3106A		15.0	ft.	CARIN	ft.	uulti-cased w	<u>م دالتُ </u>	O LINE	174 ette a	11	
NC Well Contractor Certification Number		FRO	1	10		DIAMETER	<u>ا</u>	THICK	NESS	MATE	
Quantex, Inc.		0	ft.	15	ft.	2	in.	SCI		ļ,	PVC
Company Name		10. 1 FRO	١ <u>٢</u>	TO		UBING (geo DIAMETER		I closed THICK?		МАТЕ	
2. Well Construction Permit #: List all applicable well construction permits (i.e.	County: State, Variance, etc.)		ft.		ft.		in.				
3. Well Use (check well use):			ft.		ft.		in.			-	
Water Supply Well:		17. S	CREE	TO	I	MAMETER	SLOT	SIZE	THICKN	VESS	MATERIAL
EAgricultural	□Municipal/Public	15	ft.	30	R. 2	2 ^{in.}	0.0)10	Sch		PVC
Geothermal (Heating/Cooling Supply)	□Residential Water Supply (single)		ft.		ก.	in.					
Dhdustrial/Commercial	□Residential Water Supply (shared)	18. G	ROUT	10		MATERIAL		FAIDI	ACRAIRN	FAIFTU	OD & AMOUNT
Olreigation Non-Water Supply Well:		0	ťt.	11	l't.	neat cem		Pour	AC EATEN	1 11121 11	OD & AMOUNT
Monitoring	□Rccovery	11	ħ.	13	64	bentonite		Pour			·····
Injection Well:			ft.		ſť.						
□Aquifer Recharge	Groundwater Remediation	19. S.	AND/G		L PACK	(if applicabl	e)	X G Y			1
□Aquiter Storage and Recovery	□Salinity Barrier	<u>FROM</u>	t ft.	<u>то</u> 30	ft.	MATERIAL #2 s			EMPLACI		METHOD
□Aquifer Test	□Stormwater Drainage	10	ft.	30	ft.	#25	anu			Po	JF
Experimental Technology	□Subsidence Control	20. D		GLO		h additional s	sheets 1	fnecess	arvì	· . · ·	e en transferencia
□Geothermal (Closed Loop) □Geothermal (Heating/Cooling Return)	DTracer	FROM	1	TO		DESCRIPTIO	ON (colu	or, hardn	ess, soil/roc		rain size, etc.)
	□Other (explain under #21 Remarks)	- / <u>`</u>	ft.	1	ft.				alt/grav		
4. Date Well(s) Completed: 6/5/13		1 22	ft. ft.	22 30	ft. ft.				Sandy		
5a. Well Location:		- 22	ft.	30	n.			weak	ım san	as	
Raeford Rd. Sunoco	NA	-	ft.	······	lt.						
Facility/Owner Name	Facility ID# (if applicable)		ft.		ft.						
4537 Raeford Road, Faye	tteville 28304		ft.		ťt.						
Physical Address, City, and Zip		21. RJ	EMARI	KS D		영화 송가 한다.				- 11- ²	
Cumberland	NA					·······					· · · · · · · · · · · · · · · · · · ·
County	Parcel Identification No. (PIN)				·						
5b. Latitude and Longitude in degrees/mill (if well field, one lat/long is sufficient)	inutes/seconds or decimal degrees:	22. Ce) tion:	0	N A	1				1
35.042525 78.9	955563		(Alaz	~ 1	S K	7/4			01071	
	w	Signatu	v of Ce	rtified V	Well Cor	utractor	ZNV	~~~~·		6/27/ Date	13
6. Is (are) the well(s): Permanent or	□Temporary	By sign	l ng this	form, 1	hereby	certify that th	ie well(s) was ((were) con	istructeo	l in accordance
7. Is this a repair to an existing well:	Yes or ZNo	copy of	his rec	ord has	been pro	nided to the v	eell owi	u weu c her.	onstructu	on Manu	lards and that a
If this is a repuir, fill out known well construction repair under #21 remarks section or on the back of	information and explain the nature of the f this form.	23. Site	e diagı	am or	additio	onal weil de	tails:				
8. Number of wells constructed: ONE	-	You m	ay use	the ba	ick of t	his page to p	provid	e additi	ional we	ll site c	letails or well
For multiple injection or non-water supply wells C submit one form.	ONLY with the same construction, you can	SUBM				nay also attac ONS	en add	itional į	pages if i	iecessa	ıry.
9. Total well depth below land surface: For multiple wells list all depths if different (examp	30' (ft.) ole- 3@200' and 2@100')	24a. <u>F</u> constru					m wit	hin 30	days of	compl	letion of well
10. Static water level below top of casing: <i>If water level is above casing, use "+"</i>	NA(ft.)			vision	of Wal	er Quality, rvice Cente	Inform r Bal	mation	Process	ing Un	it,
11. Borehole diameter: 8	_ (in.)	24b. <u>F</u> e	<u>er Inje</u>	ction	<u>Wells</u> :	In addition	to ser	nding th	ne form t	o the a	ddress in 24a
12. Well construction method: <u>Auger</u> (i.e. auger, rotary, cable, direct push, etc.)		above, constru	also s	ubmit	а сору	of this for	m with	hin 30	days of	compl	etion of well
FOR WATER SUPPLY WELLS ONLY:		Di	vision	of Wa 1636 I	ter Qua Mail Se	ulity, Under rvice Cente	groun r, Ral	d Injec eigh, N	tion Co C 27699	ntrol P -1636	rogram,
13a. Yield (gpm) M	ethod of test:	24c, <u>Fo</u> the add	r Wat	er Sup s) abov	ply & i	Injection W submit on	ells: 1 e conv	n addit	ion to ser	nding ti within	he form to 30 days of
13b. Disinfection type:	Amount:	complet where e	ion of	well	constru	ction to the	count	ty healt	h depart	iment c	of the county

í

٢

i

í

L

Ĺ.

L

L

(|

WELL CONSTRUCTION F	RECORD	For In	ernal	Use ONI	.Y:					· · · · · · · · · · · · · · · · · · ·			
This form can be used for single or multiple we	lis												
1. Well Contractor Information:		14 W	ATE	R ZONE	S								
James D. Barker		FROM	1	то	ft.	DESCRIPTION							
3106A		23	ft. ft.	25	11. ft.					~~~~~~~~~~~			
NC Well Contractor Certification Number		15.0		CASIN		multi-cased wells)	OPTIN	ED (If one	theabled				
Quantex, Inc.				10	<u> </u>	DIAMETER	THICK	CNESS	MATE				
Company Name	· · · · · · · · · · · · · · · · · · ·	0	ft.	15 CASIN	ft,	2 in. UBING (geothern				PVC			
2. Well Construction Permit #:		FROM		TO		DIAMETER	THICK	NESS	MATE	RIAL			
List all applicable well construction permits (i.e.	. County, State, Variance, etc.)	-	tt.		ft.	in.	ļ						
3. Well Use (check well use):		17.50	fi. REE	L V	ft.	in.							
Water Supply Well:		FROM		то	1	MAMETER SLC	T SIZE	THICK	1 12	MATERIAL			
	□Municipal/Public	15	ft.	40		· · · · · ·	.010	Sch	40	PVC			
□Geothermal (Heating/Cooling Supply) □Industrial/Commercial	□Residential Water Supply (single)	18. CI			ft.	in.				an than a thread			
	□Residential Water Supply (shared)	FROM		то		MATERIAL				OD & AMOUNT			
Non-Water Supply Well:		- 0	fi.	11	ſt.	neat cement	Pour		. <u></u>				
ØMonitoring	DRecovery	11	ft.	13	ft.	bentonite	Pour						
Injection Well:	Groundwater Remediation	10.04	ft.	D'4 MINT	ft.	(if applicable)	L.		. <u></u>				
□Aquifer Storage and Recovery	Solonity Barrier	FROM		TO		MATERIAL		EMPLAC	EMENT	METHOD			
□Aquifer Test	□Stormwater Drainage	13	ſt.	30	ft.	#2 sand			Pol	ur			
CExperimental Technology	Subsidence Control		ft,		ft,								
Geothermal (Closed Loop)	ETracer	20. DR FROM	ILLI	NG LOC TO	i (attae	h additional sheet DESCRIPTION (co	if neces: dor, hardi	sary) iess. soil/rot	sk type, g	Tain size, etc.)			
Geothermal (Heating/Cooling Return)	□Other (explain under #21 Remarks)	0	ft.	1	ft.	DESCRIPTION (color, hardness, soil/rock type, grain size, etc.) Asphalt/gravel							
4. Date Well(s) Completed: 6/6/13	Well 1D#MW-8	1 22	ft. ft.	22 30	ft. ft,	Clayey Sandy/Silt Medium sands							
5a. Well Location:		<u> </u>	ft.	30	ſt.		wear	um san	as				
Raeford Rd. Sunoco	NA		ft.		ft.								
Facility/Owner Name	Facility ID# (if applicable)		ft.		ft.		···						
4537 Raeford Road, Faye	tteville 28304		ft.		ft.				,				
Physical Address, City, and Zip Cumberland		21. RE	MARI	KS	1.400								
	NA	Ì					<u> </u>						
•	Parcel Identification No. (PIN)			<u></u>									
5b. Latitude and Longitude in degrees/m (if well field, one lat/long is sufficient)	inutes/seconds or decimal degrees;	22, Cert	tifical	ion:	n	$\sqrt{1}$							
<u>35.042448</u> _N 78.955240 w		1		Am	, ∛) 151	1		610711	10			
		Signature of Certified Well Contractor Date											
6. Is (are) the well(s): ☐Permanent or	6. Is (are) the well(s): ☑Permanent or □Temporary		By signing this form, 1 hereby certify that the well(s) was (were) constructed in accordance with 15A NCAC 02C .0100 or 15A NCAC 02C .0200 Well Construction Standards and that a										
7. Is this a repair to an existing well:		with 15A copy of th	NCAC is rece	: 02C .0. ord has l	100 or . been pro	15A NCAC 02C .02 wided to the well a:	(0) Well (wher.	Constructio	on Stand	lards and that a			
 if bus is a repair, fill out known well construction repair under #21 remarks section or on the back 6 	If this is a repair, fill out known well construction information and explain the nature of the repair under #21 remarks section or on the back of this form.					nal well details							
8. Number of wells constructed: ONO		You may	y use	the bac	k of t	his page to provi	de addit	ional wel	ll site d	letails or well			
For multiple injection or non-water supply wells ONLY with the same construction, you can		construction details. You may also attach additional pages if necessary. SUBMITTAL INSTUCTIONS											
9. Total well depth below land surface: For multiple wells list all depths if different (example	30 ¹ (ft.)	24a. <u>Fo</u> construc	r All	Wells: the fo	Sub llowing	mit this form w g:	ithin 30	days of	compl	etion of well			
10. Static water level below top of casing: NA [ft.]		Division of Water Quality, Information Processing Unit, 1617 Mail Service Center, Raleigh, NC 27699-1617											
11. Borchole diameter: (in.)		24b. <u>For</u>	Inje	ction V	<u>Vells</u> :	In addition to se	anding th	he form t	o the a	ddress in 24a			
12. Well construction method: Auger (i.e. auger, rotary, cable, direct push, etc.)		construct	ion to	the fol	lowing	*							
FOR WATER SUPPLY WELLS ONLY:		Division of Water Quality, Underground Injection Control Program, 1636 Mail Service Center, Raleigh, NC 27699-1636											
		24c. For Water Supply & Injection Wells: In addition to sending the form to the address(cs) above, also submit one copy of this form within 30 days of											
13b. Disinfection type: Amount:			on of nstruc	well c	onstru	ction to the cou	nty heal	th depart	ment o	of the county			

ì

L

L.,

WELL CONSTRUCTION RECORD This form can be used for single or multiple wells		For Inte	rnal U	se ONI	. <u>У</u> :	<u> </u>					
1, Well Contractor Information:											
James D. Barker		FROM	ATER	ZONE	S	DESCRIPTI	ON I	<u></u>			
Well Contractor Name		23	fl.	25	ft.						
3106A			ft.		ft.						
NC Well Contractor Certification Number					G (for 1	nulti-cased w	ells) ()	Ř LINE	R (if app	licable) MATEI	53 L K
Quantex, Inc.		FROM 0	ft.	<u>то</u> 15	ft.	diameter 2	in.	THICKN SCh		MALEI	PVC
Company Name		-16. 1N		CASIN	G OR T	UBING (geot		l closed	loop)	MATEI	
2. Well Construction Permit #:		FROM	ft,	то	ft.	DIAMETER	in.	THICK!	NEAA	BIATL	<u>(1.11</u> ,
List all applicable well construction permits (i.e. County, State, Variance, etc.)			ft.		ft.		in.				
3. Well Use (check well use):		17. SC						4			
Water Supply Well:		<u>FROM</u> 15	ft.	<u>10</u> 30		AMETER in.	SLOT	010	THICK: Sch		MATERIAL PVC
☐ Agricultural	□Municipal/Public	13	ft.		ft.	2 ^{III.} 0.010 Sch 40					
Geothermal (Heating/Cooling Supply)	CResidential Water Supply (single)	18, GF	lout	i de la companya de la companya de la companya de la companya de la companya de la companya de la companya de l La companya de la companya de la companya de la companya de la companya de la companya de la companya de la comp	 1	. Harris	- 	11	11 A. 11 A. 11 A. 11		
□Industrial/Commercial □Irrigation	□Residential Water Supply (shared)	FROM TO MATERIAL EMPLACEMENT METHOD & AM						OD & AMOUNT			
Non-Water Supply Well:			0 ft. 11 ft. neat cement Pour					· · · · · ·			
⊠Monitoring	ERecovery	11	ſt.	13	ſt.	bentonite		Pour			
Injection Well:			fi.	<u> </u>	ft.						
□Aquifer Recharge	Groundwater Remediation	-19. SA FROM	ND/G	RAVE TO	L PACE	(if applicabl MATERIAL		1.557	EMPLAC	EMENT	METHOD
□Aquifer Storage and Recovery	□Salinity Barrier	13	ft.	30	ſt.	#2 s	and			Ро	Jr
□Aquifer Test	Stormwater Drainage		ſt.		ft.						
	Subsidence Control		ULLI		G (atta	h additional	sheets	if necess	sary)		
Geothermal (Closed Loop)		FROM	ft.	<u>то</u> 1	ft.	DESCRIPTI	ON (co		nalt/gra		rain size, etc.)
Geothermal (Heating/Cooling Return)	□Other (explain under #21 Remarks)	' <u> </u>	ft,		ťt.						
4. Date Well(s) Completed: 6/6/13 Well ID# MW-9			1 ft. Clayey Sandy/Silt 22 ft. 30 ft. Medium sands Medium sands								
5a. Well Location:			ft.	1	ſt.						
Raeford Rd. Sunoco	NA		ťt.	1	ít.						
Facility/Owner Name	Facility ID# (if applicable)		ft.	-	ft.						****
4537 Raeford Road, Fayetteville 28304			ft.		ft.						
Physical Address, City, and Zip		21. REMARKS									
Cumberland	NA										
County	Parcel Identification No. (PIN)										
5b. Latitude and Longitude in degrees/minutes/seconds or decimal degrees: (if well field, one lat/long is sufficient)		22. Ce	rtific	ion:		N K	2	/			
35.041734 _N 78.	955683 w		\subseteq	de	2	$\underline{O}_{\underline{V}}$	<u>_</u> /	An	-	6/27/	13
6. Is (are) the well(s): @Permanent or	r 🛛 Temporary	-	1			mtractor v certify that	the we	ll(s) was	· (were) e	Date onstructe	ed in accordance
 7. Is this a repair to an existing well: □Yes or ≥No If this is a repair, fill out known well construction information and explain the nature of the repair under #21 remarks section or on the back of this form. 8. Number of wells constructed: One 		By signing this form, I hereby certify that the well(s) was (were) constructed in accordance with 15A NCAC 02C .0100 or 15A NCAC 02C .0200 Well Construction Standards and that a copy of this record has been provided to the well owner.									
					-						
		23. Site You m	e dia: av us	gram o se the l	or addii back of	ional well d this page to	prov	: ide add	ítional v	vell site	details or well
		constru	iction	detail	s. You	may also att	ach ac	Iditiona	l pages i	fnecess	ary.
For multiple injection or non-water supply wells UNLY with the same construction, you can submit one form.		SUBMITTAL INSTUCTIONS									
9. Total well depth below land surface: <u>30'</u> (ft.) For multiple wells list all depths if different (example- 3@200' and 2@100')		24a. For All Wells: Submit this form within 30 days of completion of well construction to the following:									
10. Static water level below top of casing: <u>NA</u> (ft.) If water level is above casing, use "+"		Division of Water Quality, Information Processing Unit, 1617 Mail Service Center, Raleigh, NC 27699-1617									
11. Borchole diameter: <u>8</u> (in.)		24b. F	<u>or</u> It	i <u>jectio</u> :	<u>n Wells</u>	: In additic	m to s	sending	the form	n to the	address in 24a
12. Well construction method: Auger		24b. For Injection Wells: In addition to sending the form to the address in 24a above, also submit a copy of this form within 30 days of completion of well construction to the following:									
(i.e. alger, rolary, cable, un eer plash, euc.)		Division of Water Quality, Underground Injection Control Program, 1636 Mail Service Center, Raleigh, NC 27699-1636									
FOR WATER SUPPLY WELLS ONLY:		24c. For Water Supply & Injection Wells: In addition to sending the form to									
13a. Yield (gpm) 1		the address(cs) above, also submit one copy of this form within 30 days of completion of well construction to the county health department of the count									
13b. Disinfection type:	Amount:	where						,	1		*

L

L

i....

{__;

i.J

WELL CONSTRUCTION RECORD This form can be used for single or multiple wells	For Internal Use ONLY:										
1. Well Contractor Information:											
James D. Barker	14-WATER ZONES	· · · ·									
Well Contractor Name	23 ft. 25 ft.										
3106A	ft. ft.										
NC Well Contractor Certification Number	15. OUTER CASING (for multi-cased wells) OR LINER (if applica										
Quantex, Inc.	FROM TO DIAMETER THICKNESS M 0 ft. 15 ft. 2 in. SCh 40	PVC									
Company Name	16. INNER CASING OR TUBING (geothermal closed-loop)	FVC									
2. Well Construction Permit #:	FROM TO DIAMETER THICKNESS M ft. ft. in.	ATERIAL									
List all applicable well construction permits (i.e. County, State, Variance, etc.)	ft. ft. in.										
3. Well Use (check well use):	17. SCREEN										
Water Supply Well:	FROM TO DIAMETER SLOT SIZE THICKNES	8 MATERIAL									
GAgricultural GMunicipal/Public Geothermal (Heating/Cooling Supply) GResidential Water Supply (single)	$\begin{array}{ c c c c c c c c c c c c c c c c c c c$	PVC									
□Geothermal (Heating/Cooling Supply) □Residential Water Supply (single) □Industrial/Commercial □Residential Water Supply (shared	18. GROUT										
	FROM TO MATERIAL EMPLACEMENT M										
Non-Water Supply Well:											
ØMonitoring □Recovery Injection Well:	11 ft. 13 ft. bentonite Pour										
□Aquifer Recharge □Groundwater Remediation											
□ Aquifer Storage and Recovery □Salinity Barrier	FROM TO MATERIAL EMPLACEME	NT METHOD									
□Aquifer Test □Stormwater Drainage		Pour									
Experimental Technology Subsidence Control	ft. ft.										
Geothermal (Closed Loop) Tracer	20. DRILLING LOG (attach additional sheets if necessary) FROM TO DESCRIPTION (color, hardness, soll/rock ry	pe, grain size, etc.)									
□Geothermal (Heating/Cooling Return) □Other (explain under #21 Remarks	0 ft. 1 ft. Asphalt/gravel										
4. Date Well(s) Completed: 6/6/13 Well ID# MW-10		Clayey Sandy/Silt									
5a. Well Location:	22 ft. 30 ft. Medium sands										
Raeford Rd. Sunoco NA											
Facility/Owner Name Facility ID# (if applicable)	ft. ft.										
4537 Raeford Road, Fayetteville 28304											
Physical Address, City, and Zip	ft. ft.	and the second second									
Cumberland NA	24. Conferences of the second second second second										
County Parcel Identification No. (PIN)											
5b. Latitude and Longitude in degrees/minutes/seconds or decimal degrees: (if well field, one lat/long is sufficient)	22. Certification:										
<u>35.040561</u> _N 78.955548 w	Jams D. Blue 61	27/13									
	Signature of Certified Well Contractor Date										
6. Is (are) the well(s): ☑Permanent or □Temporary	By signing this form. I hereby certify that the well(s) was (were) constructed in accordance										
. 7. Is this a repair to an existing well: □Yes or ☎No	with 15A NCAC 02C .0100 or 15A NCAC 02C .0200 Well Construction 5 copy of this record has been provided to the well owner.	itandards and that a									
If this is a repair, fill out known well construction information and explain the nature of the repair under #21 remarks section or on the back of this form.	23. Site diagram or additional well details:										
8. Number of wells constructed: ONE	You may use the back of this page to provide additional well site details or well										
For multiple injection or non-water supply wells ONLY with the same construction, you can submit one form.	construction details. You may also attach additional pages if necessary. SUBMITTAL INSTUCTIONS										
9. Total well depth below land surface:30'(ft.	24a. For All Wells: Submit this form within 30 days of completion of well										
For multiple wells list all depths if different (example- 3@200') and 2@100')	construction to the following:										
10. Static water level below top of casing:	Division of Water Quality, Information Processing Unit, 1617 Mail Service Center, Raleigh, NC 27699-1617										
11. Borchole diameter: <u>8</u> (in.)	24b. For Injection Wells: In addition to sending the form to t	ie address in 24a									
12. Well construction method: Auger	above, also submit a copy of this form within 30 days of co construction to the following:	mpletion of well									
(i.e. auger, rotary, cable, direct push, etc.)	-	al Duo									
FOR WATER SUPPLY WELLS ONLY:	Division of Water Quality, Underground Injection Control Program, 1636 Mail Service Center, Raleigh, NC 27699-1636										
13a. Yield (gpm) Method of test:	24c. For Water Supply & Injection Wells: In addition to sendi the address(es) above, also submit oue copy of this form with	hin 30 days of									
13b. Disinfection type: Amount:	completion of well construction to the county health department of the county where constructed.										

į

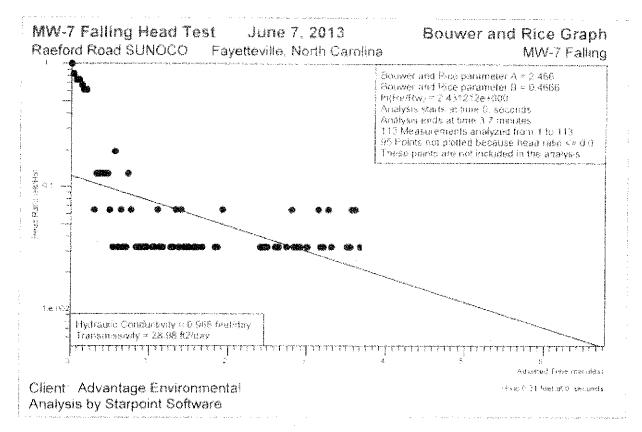
ſ

Ĺ

L

i.

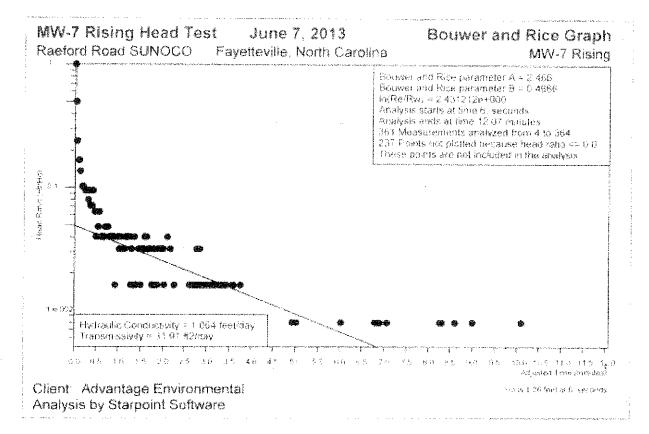
L


Ł

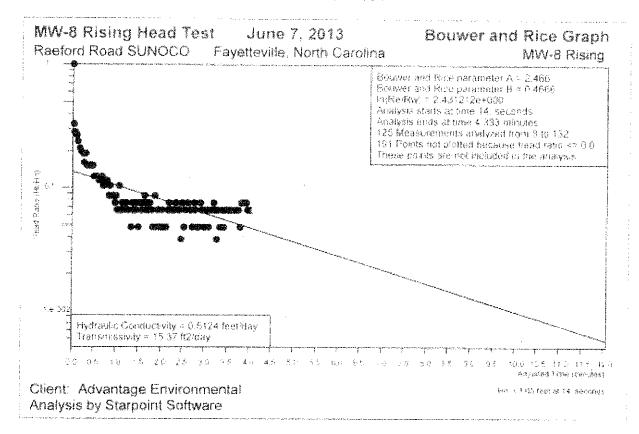
Ĺ

SECTION D

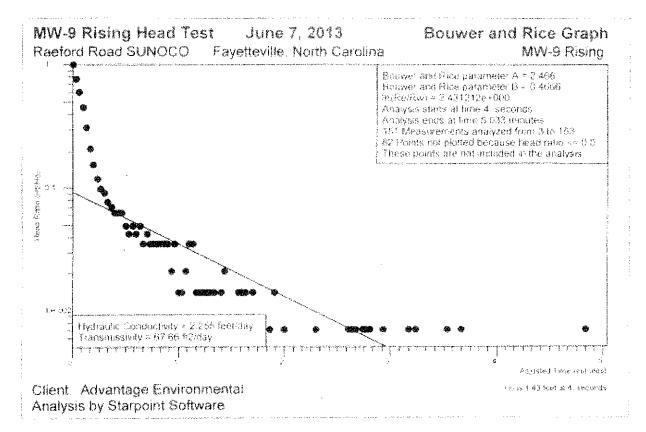
AQUIFER SLUG TEST RESULTS


Raeford Road SUNCCO

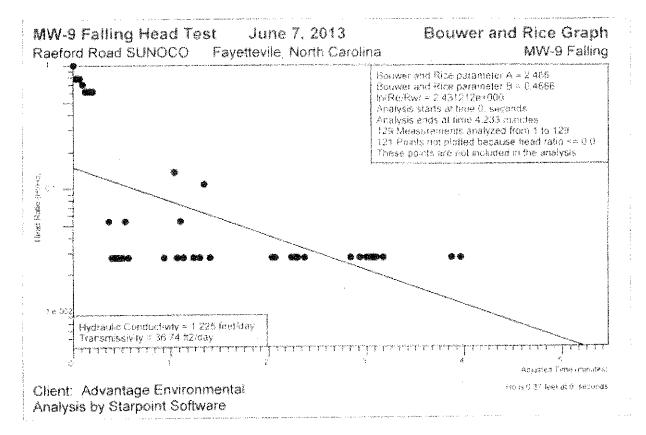
7/8/2013


L.

Reeford Road SUNOCO



7/8/2013


Baeford Road SUNOCO

Raeford Road SUNDCD

Reeford Road SUNDCD

June 1, 2015

Mr. James W. Brown North Carolina Department of Environment and Natural Resources Fayetteville Regional Office 225 Green Street, Suite 714 Systel Building Fayetteville, North Carolina 23801

Subject: Corrective Action Plan Raeford Road Sunoco 4735 Raeford Road Fayetteville, North Carolina 28304 Case #9788 AEC Project No. 15-020R

Dear Mr. Brown:

Advantage Environmental Consultants, LLC (AEC) has prepared a Corrective Action Plan (CAP) for the above-referenced property. This CAP includes Site observations, investigation information, soil and groundwater testing information, and report preparation. This report includes AEC's findings, conclusions, recommendations, and supporting documentation.

We appreciate the opportunity to be of service to you. If you should have any questions regarding this report, please contact Mr. Andrew Owens at (804) 454-0072.

Sincerely, ADVANTAGE ENVIRONMENTAL CONSULTANTS, LLC

Krista J. Tetrick Staff Scientist

i.

Andrew C. Owens, P.G. Branch Manager

Attachments CC: Mr. Jarrett Minkoff, Raeford Road Holdings, LLC F

ĺ

l

Į

L

ί.,

TABLE OF CONTENTS

Α.	Site Information	3
A	1.1 Site Identification	3
A	1.2 Contact Information	3
A	.3 Release Information	3
В.	Executive Summary	5
C.	Site History and Source Characterization	11
D.	Summary of Site Assessment Information	14
E	0.1 Assessment Activities Completed to Date	14
C	0.2 Geology and Hydrology of the Site and Region	17
D	0.3 Horizontal Groundwater Hydraulic Gradient	18
D	0.4 Vertical Groundwater Hydraulic Gradient	19
D	0.5 Aquifer Testing	19
D	0.6 Extent of Contamination	20
D	0.7 Maximum Contaminant Concentration Levels	20
D	.8 Discussion	21
D	.9 Applicable Cleanup Levels	22
D	.10 Contaminant Migration and Potentially Affected Receptors	22
D	.11 Lowering Risk Classification	22
Ε.	Objectives of Corrective Action at the Site	23
F.	Comprehensive Evaluation of Remedial Actions	24
F	.1 Risk Reduction Mechanisms	24
F	.2 Excavation	24
F	.3 Natural Attenuation	24
F	.4 Pump and Treat System	24
F	.5 Aggressive Fluid Vapor Recovery (AFVR)	25
G.	Public Notice	27
Н.	Conclusions and Recommendations	28
I.	References	30
<u>Sec</u>	tion A Figures	

- Figure 1 USGS Topographic Map Site Location Map
- Figure 2 Site Map
- Figure 3 Soil Concentration Maps
- Figure 4 Groundwater Elevation Map
- Figure 5 Groundwater Isoconcentration Maps
- Figure 6 Free Product Thickness Map
- Figure 7 Land Use Map

Section B Tables

- Table 1 Site History
- Table 2
 Public and Private Water Supply Well and Other Receptors
- Table 3
 Field Screening Results (Not Used)
- Table 4Summary of Soil Sampling Results
- Table 5
 Summary of Groundwater and Surface Sampling Results
- Table 6
 Monitoring and Remediation Well Construction Information
- Table 7
 Free Product Recovery Information
- Table 8
 Cumulative Volume of Free Product Recovered from Site
- Table 9
 Current and Historical Groundwater Elevations
- Table 10 Land Use
- Table 11
 Remediation Schedule and Cleanup Progress Milestones
- Table 12
 Cost Estimate for each Evaluated Remedial Option

LIST OF APPENDICES

ĩ

í

- Appendix A Site Specific Health and Safety Plan (HASP)
- Appendix B Copies of Permits (Not Used)
- Appendix C Geologic Logs for borings (Not Used)
- Appendix D Copies of NORR requiring CAP
- Appendix E Cost Estimate Documentation (Not Used)
- Appendix F Specifications for Remedial System Layout
- Appendix G Pilot Test Data and Calculations (Not Used)
- Appendix H List of Local Authorities and Land Owners Notified (Not Used)

A. Site Information

A.1 Site Identification

DATE OF REPORT: June 1, 2015 Facility I.D.: 0-025474_UST Incident Number 9788 Site Risk/Priority Rank_Intermediate Site Name: Raeford Road Sunoco (Former Jim's Texaco) Site Address: 4537 Raeford Road Nearest City/Town: Fayetteville Zip Code 28304 County: Cumberland Location Method: Topographic Maps Description of Geographical Data Point_Northwest Corner of Site property Location Method (GPS, topographical map, other) Topographic Maps Latitude: N 35° 02' 35" Longitude: W 78° 57' 22"

A.2 Contact Information

UST Owner: Raeford Road Holdings, LLC Address: 9055 Comprint Court, Gaithersburg, MD 20877 Phone: (301) 921-9200 UST Operator: Raeford Road Holdings, LLC Address: 9055 Comprint Court, Gaithersburg, MD 20877 Phone: (301) 921-9200 Property Owner: Golden of Raeford, LLC (Parcel ID# 0417-30-2524) Address: 383 Thorncliff Drive, Raeford, NC 23876 Phone: Property Owner: Anderson Raeford Corner, LLC (Parcel ID# 0417-30-2320 and 0417-30-2049) Address: 9101 Glenwood Avenue, Raleigh, NC 27617 Phone: Property Occupants: Sunoco & Diamond Autosport Address: 4537 Raeford Road, Fayetteville, NC 28304 Phone: (301) 921-9200 Consultant/Contractor: Advantage Environmental Consultants Address: 12530 Iron Bridge Road Ste I, Chester VA 23831 Phone: (804) 454-0072 Analytical Laboratory: Environmental Conservation Laboratories Address: 102-A Woodwinds Industrial Court, Cary, NC 27511 Phone: (919) 467-3090 State Certification No. 591

A.3 Release Information

Date Discovered: April 27, 1992 Estimated Quantity of Release: unknown Cause of Release: <u>Underground Storage Tanks</u> Source of Release (e.g., Piping/UST): <u>UST/Piping</u>

Sizes and contents of UST system from which the release occurred): (3) 10,000-gallon gasoline USTs

I, <u>Andrew C. Owens</u>, a North Carolina Licensed Geologist do certify that the information contained in this report is correct and accurate to the best of my knowledge.

Andrew C. Owens, PG North Carolina License Number 2164

Advantage Environmental Consultants, LLC is licensed to practice geology in North Carolina. The certification number of the company is <u>C528</u>.

B. Executive Summary

The subject property (hereinafter is referred to as the "Site") is identified as the Raeford Road Sunoco (former Jim's Texaco) and is located at 4537 Raeford Road, Fayetteville, Cumberland County, North Carolina. (See **Section A, Figure 1** for Site location.) The Site consists of three contiguous parcels of land totaling approximately 2.44 acres. The Site is currently owned by Golden of Raeford, LLC and Anderson Raeford Corner, LLC, and is occupied by Raeford Road Sunoco which operates three petroleum Underground Storage Tanks (USTs) for the retail sale of gasoline and Diamond Autosports, an automobile detailing business, occupies the building on the southern portion of the Site. An out-of-use, 150-gallon waste oil UST is located immediately south of the Diamond Autosports building.

A petroleum release was first discovered during April of 1992 when free product was observed in two monitoring wells. An unknown quantity of gasoline was released from an unknown point in the UST system. A Notice of Regulatory Requirements (NORR) letter was sent to Mr. James Sanderson, owner of Jim's Texaco, on February 17, 1993 directing him to perform initial abatement measures and a comprehensive investigation of the release. These initial abatement measures were apparently not performed.

Phase II Environmental Assessment Activities (February 2006)

AEC collected four soil samples at the Site on February 16, 2006 during a Phase II Environmental Site Assessment (ESA). The soil samples were analyzed for volatile organic compounds (VOCs) by EPA Method 8260 and for volatile petroleum hydrocarbons (VPH) by the MADEP-VPH test. Certain petroleum constituents (VOCs and VPH) were detected in each of the four soil samples at concentrations below the applicable North Carolina Department of the Environment and Natural Resources (NCDENR) Industrial/Commercial Cleanup Levels.

AEC also collected three groundwater samples from temporary wells. The groundwater samples were analyzed for VOCs by EPA Method 8260 and for VPH by the Method for the Determination of volatile petroleum hydrocarbons (MADEP-VPH) test. Certain petroleum constituents (VOCs and VPH) were detected in each of the three groundwater samples at concentrations above the applicable NCDENR Groundwater Quality Standards. The Phase II ESA, completed by AEC and dated March 6, 2006, was submitted to the NCDENR.

Phase II Limited Site Assessment

A Phase II Limited Site Assessment (LSA) was completed and submitted to the NCDENR on June 4, 2008. The LSA revealed the presence of approximately 2.14" and 1.67" of free phase petroleum product in the form of gasoline in monitoring well MW- 1 and MW-2, respectively on May 1, 2008. In response, Aggressive Fluid Vapor Recovery (AFVR) events were completed in October 2008, March 2009, October 2009, April 2010, August 2012, and April 2013.

Groundwater elevations across the Site and surrounding properties have varied between 20 to 23 feet beneath surface grade (bsg), dependent upon seasonal fluctuations. Hydraulic gradient through the area has been determined to flow generally to the southeast. See **Section A, Figure 2** for geologic cross section maps. Groundwater in the monitoring wells installed for completion of the Comprehensive Site Assessment (CSA) stabilized between 20.10 and 22.54 feet beneath surface grade.

Well Survey and Surface Water Body Investigation

AEC completed a walkthrough of all properties located within a 1,000-foot radius of the Site for the Phase II LSA completed on June 4, 2008. AEC completed the well survey by interviewing property owners/tenants in the immediate vicinity of the source area and completing the well surveys. The completed well survey did not identify the presence of water supply wells located within a 1,000-foot radius of the Site.

There are no surface water bodies located within 500 feet of the release area and the source area is not located within a wellhead protection area. The Site is located in the Coastal Plain Physiographic province. However, the Site and some surrounding properties within 1,500 feet obtain their potable water from the City of Fayetteville which obtains water from available surface water sources.

Comprehensive Site Assessment Soil Investigation

Ĺ

Ĺ...

AEC mobilized to the Site on June 4, 2013 for the purpose of conducting field assessment activities necessary to complete assessment of petroleum contamination in the soils of the Site. In conducting this assessment, AEC advanced a series of ten soil borings, SB-1 through SB-10. Soils encountered while completing the soil borings consisted of dry to moist tan-orange-brown clayey to sandy silt to 20 feet below land surface (bls). The soil samples were collected for laboratory analysis at depths of 8 to 10 feet and 18 to 20 feet bls in each soil boring.

Ł

The borings were located in order to surround the suspected contaminant source area (UST and product dispenser locations). The exact locations of these ten soil borings are shown in **Section A, Figure 2.** These samples were submitted to Environmental Conservation Laboratories of Cary, NC (NCDENR-Division of Water Quality (DWQ) certification # 591) for laboratory analysis of VOCs by EPA Methods 8260 and VPH by MADEP-VPH.

The analytical results for EPA Method 8260 revealed the presence of numerous VOCs at detectable levels in each soil sample. Few VOCs in certain soil samples exceeded their Soil to Groundwater Maximum Soil Contaminant Concentrations (MSCCs) as set forth in *The Guidelines*. The constituents and samples exceeding their respective Soil to Groundwater MSCC include benzene in SB-1 at 18-20 feet, SB-2 at 8-10 feet, SB-2 at 18-20 feet, SB-4 at 18-20 feet, SB-5 at 8-10 feet, SB-6 at 8 to 10 feet, SB-6 at 18-20 feet, SB-7 at 8-10 feet, and SB-8 at 8-10 feet; naphthalene in SB-1 at 8-10 feet, SB-9 at 8-10 feet; n-propylbenzene in SB-9 at 8-10 feet; and methyl tertiary-butyl ether (MTBE) in SB-4 at 18-20 feet. It should be noted that none of the detected VOCs exceeded the Residential or Industrial Commercial MSCCs.

The analytical results for the VPH analysis detected the presence of C5-C8 aliphatics, C9-C12 aliphatics or C9-C10 aromatics in samples SB-1 at 8-10 feet and SB-10 at 18-20 feet at concentrations in excess of their Soil to Groundwater MSCCs as set forth in *The Guidelines*. The detected VPH did not exceed the Residential or Industrial Commercial MSCCs. A summary of these soil analytical results is included in **Section B**,**Table 4**.

The detectable concentrations of VOCs and VPH in the soil samples only slightly exceed their respective Soil to Groundwater MSCCs and are well below the Residential or Industrial Commercial MSCCs. The elevated concentrations are largely related to the presence of free phase petroleum product on the groundwater beneath the Site, especially those samples collected at depth (18-20 feet). These soil analytical results do not define the lateral extent of soil contamination to the Soil to Groundwater MSCCs in the northern and southern directions. This is because the most recently obtained soil data shows that petroleum contaminated soils may underlie the North Carolina Department of Transportation (NCDOT) right of ways under the northern adjacent Raeford Road. Further, the areas to the south contain a large amount of buried utilities which will prohibit additional assessment activities in this direction. Based on the slight exceedences of the soil MSCCs, AEC believes the lateral extent of soil contamination above the Soil to Groundwater MSCCs have been adequately defined. Further, the

L

ί.

ί_

remediation/removal of free product beneath the Site will likely reduce concentrations of VOCs and VPH in Site soils.

Comprehensive Site Assessment Groundwater Investigation

AEC mobilized to the Site on June 3-6, 2013 in order to install five additional permanent monitoring wells designated as MW-7, MW-7D, MW-8, MW-9, and MW-10. MW-10 is located on the eastern adjacent W.H. Owen Elementary School property. MW-7D is a deep Type III well. AEC returned to the Site on June 7, 2013 in order to sample the eleven monitoring wells (MW-1 through MW-10 and MW-7D) for completion of the Comprehensive Site Assessment (CSA) dated July 19, 2013. The groundwater samples collected from the monitoring wells were submitted for analysis by EPA Methods 8260, 504.1 1,2-Dibromoethane (EDB), 3030c (total lead), and the MADEP-VPH method. It is important to note that free phase petroleum product was observed in monitoring wells MW-1, MW-2, MW-4, MW-5, and MW-6. Therefore, these five wells were not sampled during the CSA.

Groundwater samples analyzed by EPA Method 8260 revealed the presence of numerous targeted parameters at levels in excess of their maximum allowable limits in groundwater as set forth in 15A NCAC 2L .0202. These exceedances include: benzene in MW-3, MW-7, MW-8, MW-9, and MW-10; ethylbenzene in MW-7; isopropyl benzene in MW-7; n-butylbenzene in MW-7; n-propylbenzene in MW-7; MTBE in MW-7, MW-9, and MW-10; naphthalene in MW-7, MW-9, and MW-10; toluene in MW-7; 1,3,5 Trimethylbenzene in MW-7; 1,2,4 Trimethylbenzene in MW-7; and total xylenes in MW-7 at a concentration exceeding its respective Gross Contaminant Level (GCL) of 5,000 ug/l as set forth in *The Guidelines*.

Groundwater samples analyzed by MADEP-VPH revealed the presence of the targeted parameters at levels in excess of their maximum allowable limits in groundwater as set forth in 15A NCAC 2L .0202. These exceedances include: C5-C8 aliphatic hydrocarbons in MW-3, MW-7, and MW-9; C9-C12 aliphatic hydrocarbons in MW-7; and C9-C10 aromatic hydrocarbons in MW-3, MW-7, and MW-9. EDB was only detected in the sample from MW-7 at a concentration exceeding its maximum allowable concentration in groundwater. Lead was only detected in the sample from MW-7 at a concentration in groundwater.

In summary, data for the groundwater samples obtained from wells MW-3, MW-7, MW-8, MW-9, and MW-10 showed the presence of one or more targeted contaminants at levels above their maximum allowable concentrations in groundwater as defined by

ſ

i

L

È

15A NCAC 2L .0202. The results for this groundwater sampling event showed that the lateral extent of the groundwater contaminant plume was adequately defined in the horizontal direction to the Gross Contaminant Levels (GCLs) set forth in *The Guidelines*.

Isoconcentration maps for benzene, MTBE, and naphthalene have been prepared and can be found in **Section A, Figure 5. Section B, Table 4** is a summary of the combined analytical results for all of the sampling events.

Upon review of the data obtained by the CSA activities described above, it can be stated that while the horizontal extent of the groundwater contaminant plume has not been defined to the 15A NCAC 2L Standards it has successfully been defined to GCLs, which will be the target groundwater cleanup levels for this incident.

The vertical extent of groundwater contamination was addressed through installation of deep well MW-7D on June 5, 2013. MW-7D was installed immediately adjacent to MW-7 and it is screened from 60 to 70 feet below land surface. Analytical results for a groundwater sample collected from this well on June 7, 2013 indicated the presence of only C9-C10 aromatic hydrocarbons at a concentration of 2.8 ug/l which is well below the 15N NCAC 2L 0202 standard of 200 ug/l, respectively. It is possible that this contaminant was carried down from above. Based on these results, the vertical extent of groundwater contamination appears to be defined.

Contaminants related to the release are expected to continue to migrate with groundwater flow through the Site, to the southeast through the source area. The lateral migration of the plume is directly related to the groundwater flow through the area, the soil matrix through which migration will occur, and to the presence of structures in contact with the groundwater and/or product at the Site. No water supply wells are located within a 1,000-foot radius of the release area. Several contaminant plume maps for individual contaminants of concern are depicted in **Section A**, **Figures 5A**, **5B**, and **5C**. Due to the established direction of contaminated groundwater migration it is not likely that the release will impact the eastern adjacent school or any other environmentally sensitive receptors.

Currently the Site is classified as "intermediate risk" due to the presence of free phase petroleum product and at least one exceedence of the GCLs. While the removal of free phase petroleum product is required, the only way to lower the current risk classification from "intermediate" to "low" and close out the incident is to also eliminate all exceedences of GCLs in the groundwater.

The concentrations to which soil and groundwater must be remediated are outlined in Tables 4 and 5.

The removal of free product and GCL exceedences must be completed in order to eventually lower the classification to "low risk" which may result in the incident being closed out by the NCDENR. To accomplish this goal, AEC recommends quarterly AFVR events until groundwater sampling shows that free product has been removed to the maximum extent practical and groundwater sampling shows contaminant levels below the GCLs set forth in *The Guidelines*. Based on the low levels of petroleum contamination in Site soils, AEC believes the removal of free product will be sufficient to address soil impacts. Following free product removal, AEC believes that an evaluation of the processes of natural attenuation and biodegradation for addressing the residual groundwater contaminants may be considered. If it is determined that this is not a viable option then one or more active groundwater cleanup options, will need to be considered (eg In-Situ Chemical Oxidation (ISCO) or Air Sparging/Soil Vapor Extraction (AS/SVE)). The estimated cost per AFVR event is \$4,400.00.

AEC will review data collected during the AFVR events in order to evaluate the effectiveness of the selected remediation technology.

÷.

C. Site History and Source Characterization

The subject property (hereinafter is referred to as the "Site") is identified as the Raeford Road Sunoco (former Jim's Texaco) and is located at 4537 Raeford Road, Fayetteville, Cumberland County, North Carolina. (See **Section A**, **Figure 1** for Site location.) The Site consists of three contiguous parcels of land totaling approximately 2.44 acres. The Site is currently owned by Golden of Raeford, LLC and Anderson Raeford Corner, LLC, and is occupied by Raeford Road Sunoco which operates three petroleum Underground Storage Tanks (USTs) for the retail sale of gasoline and Diamond Autosports, an automobile detailing business, occupies the building on the southern portion of the Site. A small, out-of-use, waste oil UST is located immediately south of the Diamond Autosports building.

The Site's existing UST systems were installed in January 1987, and include three 10,000-gallon gasoline USTs. The installation date of the 150-gallon waste oil UST could not be ascertained. The Site also once contained three 1,000-gallon gasoline USTs that were last owned and operated by Mr. James Sanderson. The installation date of these USTs could not be ascertained but are believed to have been installed in the early 1960s. These three USTs were removed in January 1987 and replaced by the tank systems that are currently being used on the Site. See Section A, Figure 2 for the Site map indicating the UST system location. See Section B, Table 1 for UST information.

A petroleum release was first discovered during April of 1992 when free product was observed in two monitoring wells. A Notice of Regulatory Requirements (NORR) letter was sent to Mr. James Sanderson, owner of Jim's Texaco, on February 17, 1993 directing him to perform initial abatement measures and a comprehensive investigation of the release. This case (Groundwater Incident Number 9788) has been open since that time, and no additional assessment or remediation has occurred at the Site until 2008. Mr. Sanderson received at least four Notices of Violation (NOVs) since 1992 and has also been subject to civil penalties for failure to comply with UST regulations during this time.

Raeford Road Holdings, LLC purchased the Site from Mr. Sanderson on April 24, 2006. In response, North Carolina Department of the Environment and Natural Resources (NCDENR) issued a March 18, 2008 NORR letter to the owner of the UST systems requiring them to comply with the reporting requirements of 15A NCAC 2L .0115(C)(4). A Phase II Limited Site Assessment (LSA) was then completed and submitted to the NCDENR on June 4, 2008. The LSA revealed the presence of approximately 2.14" and 1.67" of free phase petroleum product in the form of gasoline in monitoring wells MW-1 and MW-2, respectively on May 1, 2008. In response, Aggressive Fluid Vapor Recovery (AFVR) events were completed in October 2008, March 2009, October 2009, April 2010, August 2012, and April 2013. The amount of product removed during these AFVR events is detailed in **Section B, Table 8**.

Due to the on-going presence of free phase petroleum product, the NCDENR issued a March 2, 2015 NORR letter to Raeford Road Holdings, LLC directing them to comply with the requirements of 15A NCAC 2N .0707, 15A NCAC 2L .0106(c) and 2L .0106(h).

Raeford Road Holdings, LLC responded by contracting with AEC in order to complete this Corrective Action Plan (CAP) report.

Property ownership information was obtained through the Cumberland County GIS Department. The Site itself is owned by Golden of Raeford, LLC (Parcel ID # 0417-30-2524) and Anderson Raeford Corner, LLC (Parcel ID # 0417-30-2320 and 0417-30-2049). The Site itself and most of the surrounding properties are zoned as C1P (shopping center district) by Cumberland County. The property northeast of the Site across Raeford Road is owned by Dominic and Michelle Marangi and is occupied by Atlas Chiropractor (Parcel ID# 0417-30-3814). The property north of the Site across Raeford Road is owned by Loyd Properties, LLC and is occupied by Bojangles (Parcel ID# 0417-30-2803). The property northwest of the Site across Raeford Road is owned by Walter Williams and is occupied by Wilco-Hess (Parcel ID# 0417-30-0820). The property west and south of the Site is owned by Mitchell Properties of Florence, Inc. and is occupied by a vacant commercial building and a vacant shopping center (Parcel ID# 0416-29-9999). Finally, the property east and southeast of the Site across Scotland Drive is owned by Cumberland County Board of Education and is occupied by William H. Owen Elementary School (Parcel ID# 0417-30-7111) which is zoned R10 (residential district). See Section B, Table 10 for more detailed information regarding adjacent property owners.

Topography at the Site trends to the south toward Buckhead Creek. Buckhead Creek is located approximately 1,500 feet from the Site and is the closest surface water body. There are no surface water bodies located within 500 feet of the source area. (See **Section A, Figure 1**).

AEC observed two buildings at the Site, the convenience store building associated with the gasoline filling station and 5-bay vehicle service building occupied by Diamond Autosports located on the southern portion of the Site.

i.

AEC completed a walkthrough of all properties located within a 1,000 foot radius of the Site for the Phase II LSA completed on June 4, 2008. AEC completed the well survey by interviewing property owners/tenants in the immediate vicinity of the source area and completing the well surveys. The completed well survey did not identify the presence of water supply wells located within a 1,000 foot radius of the Site.

The Site and immediate surrounding area are located within the City of Fayetteville and are supplied water by the Fayetteville Public Works Commission (PWC).

On June 26, 2013, AEC reviewed the NCDENR-Wellhead Protection Program files for the presence of wellhead protection areas within 1,500-feet of the Site. None were found to be located within 1,500-feet of the source area.

Reports previously submitted to the NCDENR include a Phase II Environmental Site Assessment dated March 6, 2006, a Phase II Limited Site Assessment dated June 4, 2008, and a CSA dated July 19, 2013.

The preparation of this CAP was required by a NORR dated March 2, 2015.

D. Summary of Site Assessment Information

D.1 Assessment Activities Completed to Date

Phase II Environmental Site Assessment Activities (February 2006)

AEC collected four soil samples at the Site on February 16, 2006 during a Phase II Environmental Site Assessment (ESA). The soil samples were analyzed for volatile organic compounds (VOCs) by EPA Method 8260 and for volatile petroleum hydrocarbons (VPH) by the MADEP-VPH test. Certain petroleum constituents (VOCs and VPH) were detected in each of the four soil samples at concentrations below the applicable NCDENR Industrial/Commercial Cleanup Levels.

AEC also collected three groundwater samples from temporary wells. The groundwater samples were analyzed for VOCs by EPA Method 8260 and for VPH by the MADEP-VPH test. Certain petroleum constituents (VOCs and VPH) were detected in each of the three groundwater samples at concentrations above the applicable NCDENR Groundwater Quality Standards. The Phase II ESA, completed by AEC and dated March 6, 2006, was submitted to the NCDENR.

Phase II Limited Site Assessment Activities (April & May 2008)

AEC mobilized to the Site on April 30 and May 1, 2008 for the purpose of conducting field assessment activities necessary to determine a "worst case scenario" for the presence of petroleum contamination in the groundwater on the Site. In conducting this assessment, AEC installed three additional monitoring wells designated as MW-4, MW-5, and MW-6 (monitoring wells MW-1, MW-2, and MW-3 were previously installed in 1992). Free product was observed in existing monitoring wells MW-1 and MW-2 at thicknesses of 2.14" and 1.67", respectively. Therefore, groundwater samples were only collected from monitoring wells MW-3, MW-4, MW-5, and MW-6.

The samples collected from these wells were submitted for chemical analysis for VOCs by EPA Method 8260 and VPH by the MADEP-VPH method. Groundwater samples analyzed by EPA Method 8260 revealed the presence of numerous targeted parameters at levels in excess of their maximum allowable limits in groundwater as set forth in 15A NCAC 2L .0202. These exceedances include: benzene in MW-3, MW-4, MW-5, and MW-6; ethylbenzene in MW-4, MW-5, and MW-6; isopropyl benzene in MW-4; MTBE in MW-4, MW-5, and MW-6; n-propylbenzene in MW-4, MW-5, and MW-6;

ر ب

ľ

ί

naphthalene in MW-4, MW-5, and MW-6; toluene in MW-4, MW-5, and MW-6; 1,3,5 trimethylbenzene in MW-4; 1,2,4 trimethylbenzene in MW-4, MW-5, and MW-6; and total xylenes in MW-4, MW-5, and MW-6. Benzene was also found in groundwater samples in MW-4 and MW-6 at concentrations exceeding its respective GCL of 5,000 ug/l as set forth in The Guidelines.

Data for the MADEP-VPH analyses showed C5-C8 aliphatic hydrocarbons (380-ug/l) in the groundwater sample collected from MW-3. This level is not in excess of its maximum allowable concentration in groundwater of 420-ug/l as set forth in 15A NCAC 2L .0202. Data for the MADEP-VPH analysis also revealed C9-C18 aliphatic hvdrocarbons in groundwater samples collected from MW-3, MW-4, and MW-5; however, only the sample from MW-5 was in excess of the maximum allowable concentration in groundwater of 4,200-ug/l as set forth in 15A NCAC 2L .0202. Data for the MADEP-VPH analyses showed C19-C36 aliphatic hydrocarbons (350-ug/l) in the groundwater sample collected from MW-3. This level is not in excess of its maximum allowable concentration in groundwater of 42,000-ug/l as set forth in 15A NCAC 2L Finally, data for the MADEP-VPH analysis showed C9-C22 aromatic .0202. hydrocarbons in each of the four groundwater samples collected. These levels are in excess of its maximum allowable concentration in groundwater of 210-ug/l as set forth in 15A NCAC 2L .0202.

Due to the presence of free product, AEC recommended that AFVR events be performed as an abatement measure to withdraw or remove free product and vapors that may pose a threat to human health and the environment. The Phase II ESA, completed by AEC, was submitted to the NCDENR on June 4, 2008.

Aggressive Fluid Vapor Recovery Events (October 2008 to April 2013)

Due to the presence of free phase petroleum product at the Site, Aggressive Fluid Vapor Recovery (AFVR) events were completed on October 14, 2008, March 10, 2009, October 14, 2009, April 27, 2010, August 7, 2012, and April 22, 2013. A Summary of Free Product Thickness Measurements in Monitoring Wells is included in **Section B**, **Table 8**.

A combined total of 10,519 gallons of water were recovered from MW-1, MW-2, MW-4 and MW-6, during the six AFVR events, approximately 73 gallons of which were determined to be gasoline. Also, AEC calculated that a total of approximately 33.56 gallons of gasoline being removed as VOC emissions during the six AFVR events.

ŀ....

Therefore, a total of approximately 109.66 gallons of gasoline were removed as a result of these six AFVR events.

The first six AFVR events appeared to have been fairly effective in removing a significant amount of the remaining free phase petroleum product. However, product thicknesses rebounded between 2011 and April 2013. At some sites this can be explained by fluctuations in the groundwater table elevations, however based on a review of historical groundwater elevations no more than one foot of variation was noted between the lowest and highest recorded elevations.

Comprehensive Site Assessment Groundwater Investigation June 7, 2013 Groundwater Monitoring Event

The next groundwater sampling event occurred during June 2013 after the NCDENR instructed Raeford Road Holdings, LLC to complete the CSA and therefore AEC was subsequently contracted in order to complete this assessment. AEC mobilized to the Site on June 3-6, 2013 in order to install five additional permanent monitoring wells designated as MW-7, MW-7D, MW-8, MW-9, and MW-10. MW-10 is located on the eastern adjacent W.H. Owen Elementary School property. MW-7D is a deep Type III well. AEC returned to the Site on June 7, 2013 in order to sample the eleven monitoring wells (MW-1 through MW-10 and MW-7D) for completion of the CSA. The groundwater samples collected from the monitoring wells were submitted for analysis by EPA Methods 6200B (volatile organic compounds), 504.1 EDB, 3030c (total lead), and the MADEP-VPH method. It is important to note that free phase petroleum product was observed in monitoring wells MW-1, MW-2, MW-4, MW-5, and MW-6. Therefore, these five wells were not sampled during the CSA.

Groundwater samples analyzed by EPA Method 8260 revealed the presence of numerous targeted parameters at levels in excess of their maximum allowable limits in groundwater as set forth in 15A NCAC 2L .0202. These exceedances include: benzene in MW-3, MW-7, MW-8, MW-9, and MW-10; ethylbenzene in MW-7; isopropyl benzene in MW-7; n-butylbenzene in MW-7; n-propylbenzene in MW-7; MTBE in MW-7, MW-9, and MW-10; naphthalene in MW-7, MW-9, and MW-10; toluene in MW-7; 1,3,5 Trimethylbenzene in MW-7; 1,2,4 Trimethylbenzene in MW-7; and total xylenes in MW-7 at a concentration exceeding its respective Gross Contaminant Level (GCL) of 5,000 ug/l as set forth in *The Guidelines*.

Groundwater samples analyzed by MADEP-VPH revealed the presence of the targeted parameters at levels in excess of their maximum allowable limits in groundwater as set

forth in 15A NCAC 2L .0202. These exceedances include: C5-C8 aliphatic hydrocarbons in MW-3, MW-7, and MW-9; C9-C12 aliphatic hydrocarbons in MW-7; and C9-C10 aromatic hydrocarbons in MW-3, MW-7, and MW-9. EDB was only detected in the sample from MW-7 at a concentration exceeding its maximum allowable concentration in groundwater. Lead was only detected in the sample from MW-7 at a concentration in groundwater.

In summary, data for the groundwater samples obtained from wells MW-3, MW-7, MW-8, MW-9, and MW-10 showed the presence of one or more targeted contaminants at levels above their maximum allowable concentrations in groundwater as defined by 15A NCAC 2L .0202. The results for this groundwater sampling event showed that the lateral extent of the groundwater contaminant plume was not adequately defined in the horizontal directions.

Isoconcentration maps for benzene, MTBE, and naphthalene have been prepared and can be found in **Section A, Figure 5. Section B, Table 5** is a summary of the combined analytical results for all of the sampling events.

Upon review of the data obtained by the CSA activities described above, it is evident that the horizontal extent of the groundwater contaminant plume has not been defined to the 15A NCAC 2L Standards. However, the horizontal extent of groundwater contamination has been defined to the GCLs, which are the targeted assessment and cleanup standards for this incident.

D.2 Geology and Hydrology of the Site and Region

The Geologic Map of North Carolina describes the Site as being underlain by the Cretaceous-age Middendorf Formation. The Middendorf Formation consists of "sand, sandstone, and mudstone, gray to pale gray with an orange cast, mottled; clay balls and iron-cemented concretions common, beds laterally discontinuous, cross-bedding common."

The thickness of this formation ranges from one to 50 feet, with the formation becoming thicker toward the west. Formation thickness in central Cumberland County averages approximately 30 feet. Sand in the Middendorf Formation furnishes more water to wells than any other unit in the Fayetteville area. The permeability of this material is moderate, with well yields of 10 to 50 gallons per minute (gpm) common.

The underlying Black Creek Formation is described by "Geology and Groundwater in the Fayetteville Area¹" as black or dark gray thinly laminated clay and lenses of sand. It contains abundant mica and lignite, as well as iron sulfides. The formation thickens from a feather edge along its western margin to about 200 feet to the east. The average formation thickness in the Fayetteville area is generally less than 40 feet. Because of its wide extent and shallow depth and the presence of sand lenses, the Black Creek Formation is the source of water for a large number of wells in the Fayetteville area. Yields of wells tapping this formation range from 50 gpm in smaller wells to 500 gpm in large diameter wells

The Tuscaloosa Formation which underlies the Black Creek Formation is described by "Geology and Groundwater in the Fayetteville Area" as gray to white sand and gravel and lenses of clay. Quartz is the major constituent of the sand and gravel. The sand is coarse, crossbedding is common and clay beds are common. The Tuscaloosa thickens to the southeast and obtains a thickness of about 250 feet south of Cumberland County; however formation thickness in the Fayetteville area is expected to be closer to 150 feet. The Tuscaloosa is capable of yielding large supplies of groundwater, but, it is not widely used as a source of water since overlying formations are also capable of producing an abundant water supply.

Soils encountered while completing the soil borings and monitoring wells for this CSA consisted of dry to moist tan-orange-brown clayey to sandy silt to 22 feet bls. From 22 to 38 feet bls the soils consisted of a wet orange-tan-gray silty sand. From 38 to 46 feet bls the soils consisted of a stiff gray clay and from 46 to 57 feet bls the soils consisted of gray sands with clay lenses. Finally, from 57 to 70 feet the soils consisted of gray sand.

D.3 Horizontal Groundwater Hydraulic Gradient

Data obtained from the gauging of wells on, and related to, the Site were recorded and are presented on the groundwater hydraulic gradient map presented in **Section A**, **Figure 4**. Overall, groundwater hydraulic gradient has been determined to flow to the southeast. Utilizing current hydraulic gradient data obtained from the Site, AEC has calculated the horizontal gradient to be 0.008 foot per foot (ft/ft) (June 7, 2013).

¹ Reference: "Geology and Groundwater in the Fayetteville Area" North Carolina Department of Water Resources, Division of Groundwater. Bull. 2

D.4 Vertical Groundwater Hydraulic Gradient

The vertical gradient of groundwater flow was also assessed by measuring the groundwater elevations in well nest MW-7/MW-7D on June 7, 2013. Using these measurements, AEC calculated the vertical hydraulic gradient to be 0.04 ft/ft downward.

D.5 Aquifer Testing

٤

t...

Rising and falling head tests (slug tests) were conducted on monitoring wells MW-7, MW-8, and MW-9 on June 7, 2013. The purpose of the testing was to assess the values of horizontal hydraulic conductivity (K) of the water table aquifer at various locations.

The tests were performed using a one-inch diameter, 5.5-foot long PVC slug to create an instantaneous change in the water level (head) at each selected well. A Solinist Levelogger Model 3001 pressure transducer was used to measure water level fluctuations during each test. The pressure transducer was attached to a laptop computer in order to download the data in real time. The depth to water from the top of the PVC well casing was measured prior to insertion of the pressure transducer and slug. Water levels were also measured by hand at various times during each test, and at the completion of each test, to verify the electronic data.

Rising and falling head tests were conducted during the field investigation. Falling head tests consisted of rapidly lowering the PVC slug into the well and simultaneously initiating a logarithmic recording interval on the data logger at two second intervals. Rising head tests were conducted by removing the slug and initiating a new logarithmic recording step on the data logger at two second intervals.

The slug test data were analyzed using the Bouwer and Rice method, which accounts for the effects of partial well penetration and changing aquifer thickness (water table conditions). The surficial aquifer thickness was estimated from boring logs to be approximately fifteen feet thick. A packing porosity of 25 percent for the well filter pack was assumed. The results of the slug test data analyses using the Bouwer and Rice method is summarized on the table below:

WELL	BOUWER AND RICE METHOD CONDUCTIVITY (feet/day)	TYPE OF TEST
MW-7	0.966	Falling Head
MW-7	1.064	Rising Head
MW-8	0.5124	Rising Head
MW-9	2.255	Falling Head
MW-9	1.225	Rising Head

The hydraulic conductivity values for the water table aquifer obtained as a result of this investigation averaged on the order of one foot per day (ft/day). The geometric average of the hydraulic conductivity estimate for MW- 7, MW-8, and MW-9 using the Bouwer and Rice method is 1.08 ft/day. These values are consistent with a sandy water table aquifer.

Contaminants related to the release are expected to continue to migrate with groundwater flow through the Site, to the southeast through the source area. The lateral migration of the plume is directly related to the groundwater flow through the area, the soil matrix through which migration will occur, and to the presence of structures in contact with the groundwater and/or product at the Site. No water supply wells are located within a 1,000-foot radius of the release area. Several contaminant plume maps for individual contaminants of concern are depicted in **Section A, Figure 5**. Due to the established direction of contaminated groundwater migration it is not likely that the release will impact the eastern adjacent school or any other environmentally sensitive receptors.

D.6 Extent of Contamination

According to the CSA, contamination may have migrated from the tank field to as far north as the subsurface beneath Raeford Road and as far east, southeast, and south-southeast to the Scotland Drive and elementary school property east of the Site.

D.7 Maximum Contaminant Concentration Levels

AEC mobilized to the Site on June 4, 2013 for the purpose of conducting field assessment activities necessary to complete assessment of petroleum contamination in the soils of the Site. In conducting this assessment, AEC advanced a series of ten soil borings, SB-1 through SB-10. Soils encountered while completing the soil borings consisted of dry to moist tan-orange-brown clayey to sandy silt to 20-feet below land

surface. The soil samples were collected for laboratory analysis at depths of 8 to 10 feet and 18 to 20 feet below land surface in each soil boring.

The borings were located in order to surround the suspected contaminant source area (UST and product dispenser locations). The exact locations of these ten soil borings are shown in **Section A, Figure 2.**

These samples were submitted to Environmental Conservation Laboratories of Cary, NC (NCDENR-DWQ certification # 591) for laboratory analysis of VOCs by EPA Methods 8260 and VPH by MADEP-VPH.

The analytical results for EPA Method 8260 revealed the presence of numerous VOCs at detectable levels in each soil sample. Few VOCs in certain soil samples exceeded their Soil to Groundwater Maximum Soil Contaminant Concentrations (MSCCs) as set forth in *The Guidelines*. The constituents and samples exceeding their respective Soil to Groundwater MSCC include benzene in SB-1 at 18-20 feet, SB-2 at 8-10 feet, SB-2 at 18-20 feet, SB-4 at 18-20 feet, SB-5 at 8-10 feet, SB-6 at 8 to 10 feet, SB-6 at 18-20 feet, SB-7 at 8-10 feet, and SB-8 at 8-10 feet; naphthalene in SB-1 at 8-10 feet, SB-9 at 8-10 feet, and SB-10 at 18-20 feet; 4-isopropyltoluene in SB-9 at 8-10 feet; n-propylbenzene in SB-9 at 8-10 feet; and MTBE in SB-4 at 18-20 feet. It should be noted that none of the detected VOCs exceeded the Residential or Industrial Commercial MSCCs.

The analytical results for the VPH analysis detected the presence of C5-C8 aliphatics, C9-C12 aliphatics or C9-C10 aromatics in samples SB-1 at 8-10 feet and SB-10 at 18-20 feet at concentrations in excess of their Soil to Groundwater MSCCs as set forth in *The Guidelines*. The detected VPH did not exceed the Residential or Industrial Commercial MSCCs. A summary of these soil analytical results is included in **Section B**, **Table 4**.

D.8 Discussion

I

The detectable concentrations of VOCs and VPH in the soil samples only slightly exceed their respective Soil to Groundwater MSCCs and are well below the Residential or Industrial Commercial MSCCs. The elevated concentrations are largely related to the presence of free phase petroleum product on the groundwater beneath the Site, especially those samples collected at depth (18-20 feet). These soil analytical results do not define the lateral extent of soil contamination to the Soil to Groundwater MSCCs in the northern and southern directions. This is because the most recently obtained soil

data shows that petroleum contaminated soils may underlie the NCDOT right of ways under the northern adjacent Raeford Road. Further, the areas to the south contain a large amount of buried utilities which will prohibit additional assessment activities in this direction. Based on the slight exceedences of the soil MSCCs, AEC believes the lateral extent of soil contamination above the Soil to Groundwater MSCCs have been adequately defined. Further, the remediation/removal of free product beneath the Site will likely reduce concentrations of VOCs and VPH in Site soils.

D.9 Applicable Cleanup Levels

Until free product is removed, the Site will remain classified as "intermediate risk" and the applicable cleanup level for the petroleum-contaminated soils will be Soil to Groundwater MSCCs as set forth in *The Guidelines*. Further, the cleanup level for petroleum-contaminated groundwater will be the GCLs as set forth in *The Guidelines*. Once free product is removed and no exceedence of any GCLs remain the Site will be classified as "low risk" and the applicable cleanup level for the petroleum-contaminated soils will be either the Residential or Industrial/Commercial MSCCs as set forth in *The Guidelines*. Further, the cleanup level for petroleum-contaminated groundwater will be the GCLs for constituents of concern as set forth in *The Guidelines*.

D.10 Contaminant Migration and Potentially Affected Receptors

Contaminants related to the release are expected to continue to migrate with groundwater flow through the Site, to the southeast through the source area. The lateral migration of the plume is directly related to the groundwater flow through the area, the soil matrix through which migration will occur, and to the presence of structures in contact with the groundwater and/or product at the Site. No water supply wells are located within a 1,000-foot radius of the release area. Several contaminant plume maps for individual contaminants of concern are depicted in **Section A, Figure 5**. Due to the established direction of contaminated groundwater migration it is not likely that the release will impact the eastern adjacent school or any other environmentally sensitive receptors.

D.11 Lowering Risk Classification

Currently the Site is classified as "intermediate risk" due to the presence of free phase petroleum product and one or more exceedences of GCLs. The removal of free phase petroleum product and subsequent lowering of groundwater contaminant levels to below GCLs will result in lowering the current risk classification from "intermediate" to "low" at which time the NCDENR can consider the incident for close out.

E. Objectives of Corrective Action at the Site

The North Carolina Department of Environment and Natural Resources (NCDENR) sent a Notice of Regulatory Requirements (NORR) to Raeford Road Holdings, LLC, dated March 2, 2015, requiring the preparation of this Corrective Action Plan (CAP). A copy of the NORR is included in Appendix D.

The purpose of this CAP is to remediate known contaminants at the Site, including the removal of the free product at the Site and bring the contaminant concentrations in the subsurface to at or below the applicable cleanup level for the petroleum-contaminated soils will be Soil to Groundwater MSCCs as set forth in *The Guidelines*.

F. Comprehensive Evaluation of Remedial Actions

F.1 Risk Reduction Mechanisms

This remediation method involves connecting all water supply well users to an alternative water supply source, e.g. public water. As there are no water supply well users within 1,000 feet of the Site, this is not a viable remediation method.

F.2 Excavation

This remediation method involves the removal of all affected soils at the Site. Free product and affected groundwater are on the Site. Excavation would also require the relocation of the utilities on the southern portion of the Site. Additionally, AEC believes that the plume has migrated under the northern and eastern adjacent properties. Based on the presence of free product and contaminated groundwater in the subsurface, and the possible migration of the plume onto adjacent properties, this is not a reasonable remediation method.

F.3 Natural Attenuation

This remediation method involves allowing the contaminants to degrade naturally over time. Because there is currently free product in the subsurface, this process would likely result in plume migration. Based on the presence of free product in the subsurface, this is not a reasonable remediation method.

F.4 Pump and Treat System

This remediation method involves the installation of a continuous pump and continuous treatment system. The monitoring wells to be utilized would be connected via subsurface conduit and hoses to the treatment building. Based on AEC's previous installations of this type of system, it is estimated to cost between \$195,000 to \$215,000. Quarterly Operations and Maintenance (O&M) costs are estimated to cost between \$15,000 to \$20,000 every quarter. While this is an effective treatment option, based on the expense of this remediation method, this is not considered a reasonable remediation method.

ſ

Li

Ĺ.,

F.5 Aggressive Fluid Vapor Recovery (AFVR)

This remediation method involves the use of a vacuum truck to extract free phase petroleum and impacted groundwater from the existing monitoring wells. This method has been successfully utilized in six previous AFVR events.

A combined total of 10,519 gallons of water and product has been recovered from MW-1, MW-2, MW-4 and MW-6, during the six AFVR events, approximately 76 gallons of which were determined by Shamrock Environmental personnel to be gasoline. Also, Advantage Environmental Consultants calculated that a total of approximately 33.66 gallons of gasoline were removed as VOC emissions during the six AFVR events. Therefore, a total of approximately 109.66 gallons of gasoline were removed as a result of these six AFVR events. The total cost for completing all six AFVR events was approximately \$21,500 therefore the total cost to remove the gasoline was on the order of \$195 per gallon.

The first six AFVR events appeared to be effective in removing a significant amount of the free phase petroleum product. However, product thicknesses have rebounded between 2011 and April 2013. At some sites this can be explained by fluctuations in the groundwater table elevations, however based on a review of historical groundwater elevations no more than one foot of variation was noted between the lowest and highest recorded elevations. Once the free product level in the wells is less than 0.01 feet, AFVR events will cease. In the event that free product is detected in the monitoring wells during subsequent gauging events, AFVR events will resume.

For this Site, AFVR events focus on two of the four wells at one time, based on the distance between the monitoring wells. MW-1 and MW-2 have extraction for approximately four hours, followed by extraction on MW-4 and MW-6 for approximately four hours. During the course of each event, Advantage Environmental Consultants measured a series of exhaust parameters including: temperature; air discharge velocity; relative humidity; and OVA measurements at timed intervals in order to estimate the total amount of product recovered and ultimately discharged as exhaust due to the processes of evaporation. The amount of groundwater and product removed during the previous six AFVR events is outlined in **Section B**, **Table 7**.

AEC proposes quarterly AFVR events until less than 0.01 feet of free product is observed for four consecutive quarters and the groundwater at the Site meets the applicable cleanup level for petroleum-contaminated groundwater in the Groundwater GCLs as set forth in *The Guidelines*. AEC anticipates that the removal of the free product at the Site will achieve this goal. Based on the observed rebounding of product

thicknesses in the monitoring wells from 2011 to 2013, the anticipated date of project completion is unknown. Once the free product has been removed, AEC proposes quarterly monitoring for the purpose of tracking the natural attenuation of the dissolved phase hydrocarbons at the Site.

G. Public Notice

Per the NORR, because natural attenuation or a cleanup to alternative standards is not proposed, a public notice is not required as part of this CAP. It should be noted that natural attenuation may be considered once free product has been removed to the maximum extent practical.

H. Conclusions and Recommendations

AEC has completed this Corrective Action Plan in order to comply with N.C.G.S. 143-215.84, NCAC 15A, 2L .0106(c), 15A NCAC 2N .0707, 15A NCAC 2L .0106(h), and the NCDENR's "Guidelines for Assessment and Corrective Action for UST Releases" prepared by the North Carolina Underground Storage Tank Section effective July 15, 2008, Change 2 Effective October 1, 2012

Chemical contaminants at levels in excess of the Soil to Groundwater MSCCs were detected in soil samples collected in the vicinity of the UST system. Based on the slight exceedences of the soil MSCCs, AEC believes the lateral extent of soil contamination above the Soil to Groundwater MSCCs has been adequately defined. Free phase petroleum product is present in on-Site wells MW-1, MW-2, MW-4, MW-5, and MW-6. In addition, chemical contaminants at levels in excess of their 15A NCACN 2L .0202 standards were detected in the groundwater in on-Site wells MW-3, MW-7, MW-8, and MW-9 and off-Site well MW-10.

Remedial Alternatives

AEC believes that consideration should first be given to removing free phase petroleum product from beneath the Site followed by the lowering of groundwater contaminant levels to below GCLs. Because there are no environmentally sensitive receptors in the vicinity of the Site, the incident can then be reclassified to "low risk" and closed out once these goals are acheived. Removal of free product will reduce concentrations of VOCs and VPH in Site soils and groundwater. Based on the low levels of petroleum contamination in Site soils, AEC believes the removal of free product will be sufficient to address soil impacts. Following free product removal, AEC believes that an evaluation of the processes of natural attenuation and biodegradation for addressing the residual groundwater contaminants may be considered. If it is determined that this is not a viable option then one or more active groundwater cleanup options, will need to be considered (eg In-Situ Chemical Oxidation (ISCO) or Air Sparging/Soil Vapor Extraction (AS/SVE)).

Recommendations

Ł

The subject release will remain classified as "intermediate risk" due to the continued presence of free phase petroleum product and GCL exceedences in groundwater. The removal of free product and elimination of GCL exceedences will drop the classification

Ł

1

to "low risk" thereby allowing the incident to be closed out. Therefore, AEC recommends the use of additional AFVR events.

I. References

Advantage Environmental Consultants, LLC, Comprehensive Site Assessment, dated July 19, 2013;

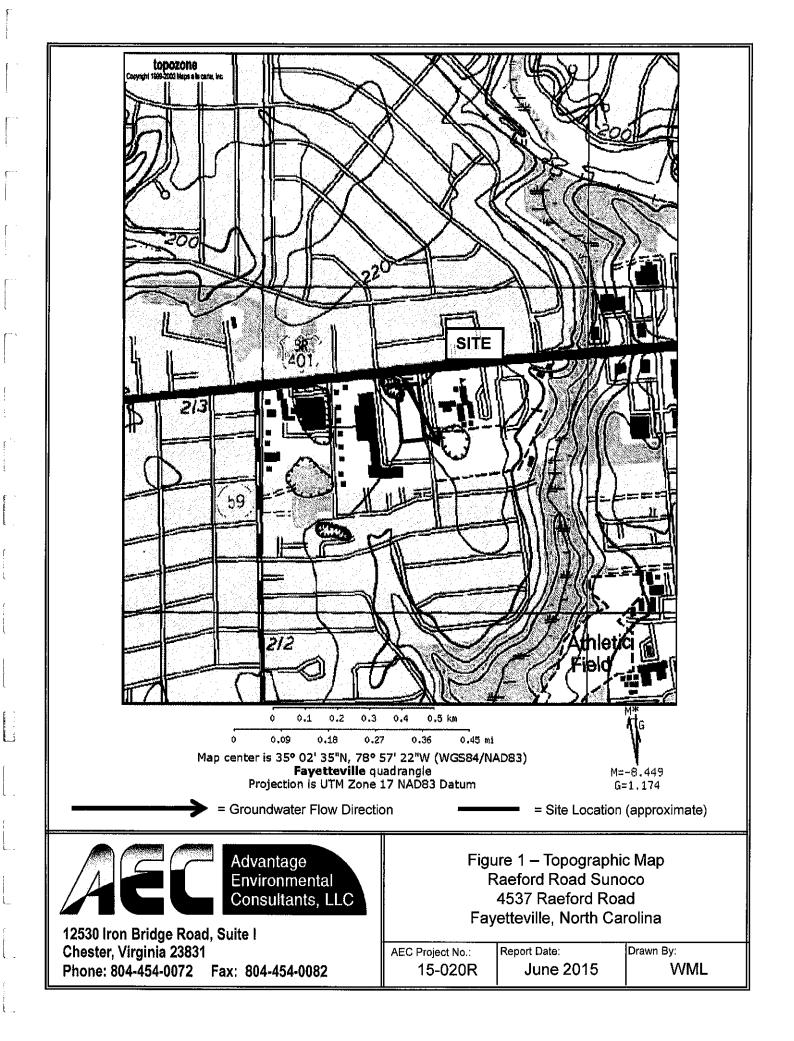
Geologic Map of North Carolina, Department of Natural Resources and Community Development, Division of Land Resources, 1985.

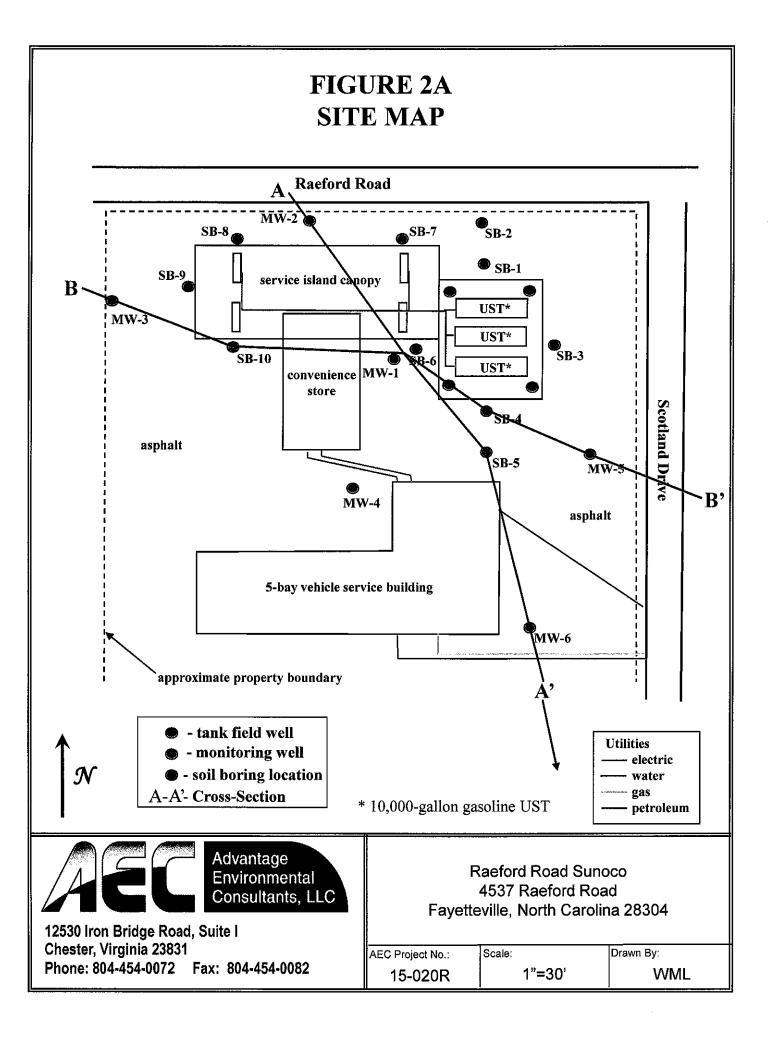
"Guidelines for Assessment and Corrective Action for UST Releases" prepared by the North Carolina Underground Storage Tank Section effective July 15, 2008, Change 2 Effective October 1, 2012

North Carolina Administrative Code, Title 15, Subchapter 2L, Section .0100, 0115 and .0200.

North Carolina Department of Environment and Natural Resources, Division of Waster Management, UST Section.

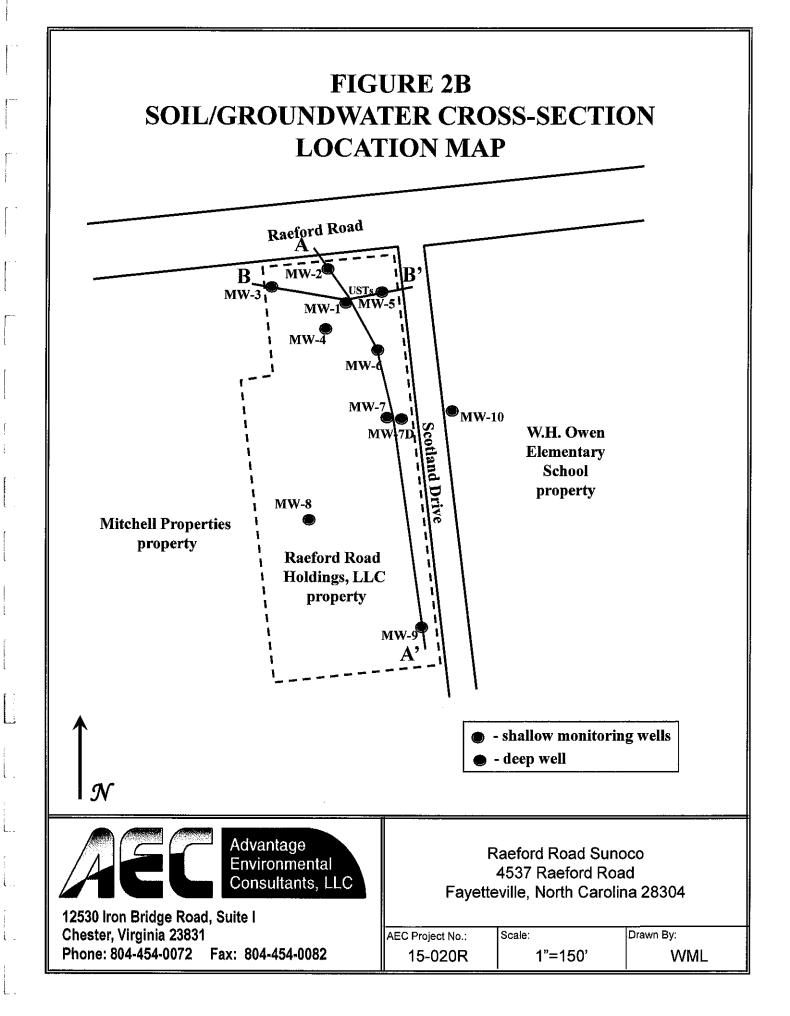
Cumberland County GIS Website (http://imaps.co.cumberland.nc.us/imaps/)

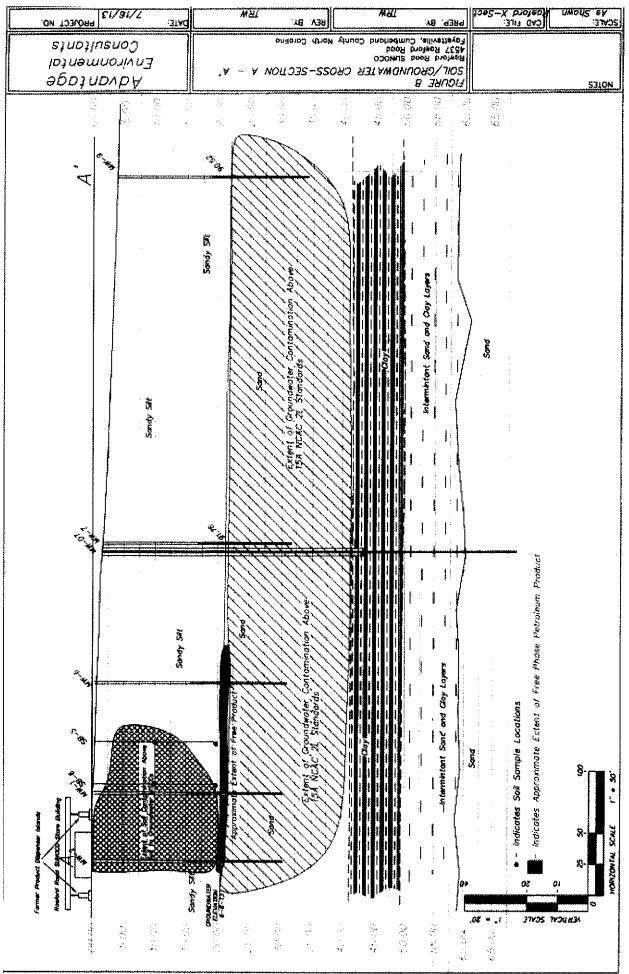

l


Ĺ.

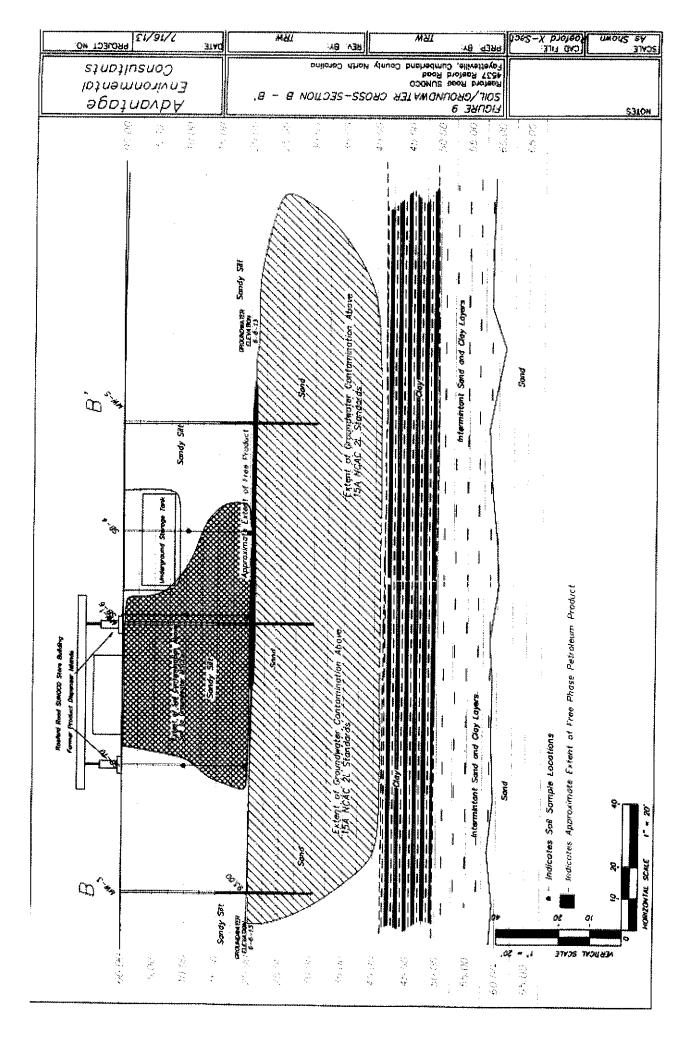
L

SECTION A

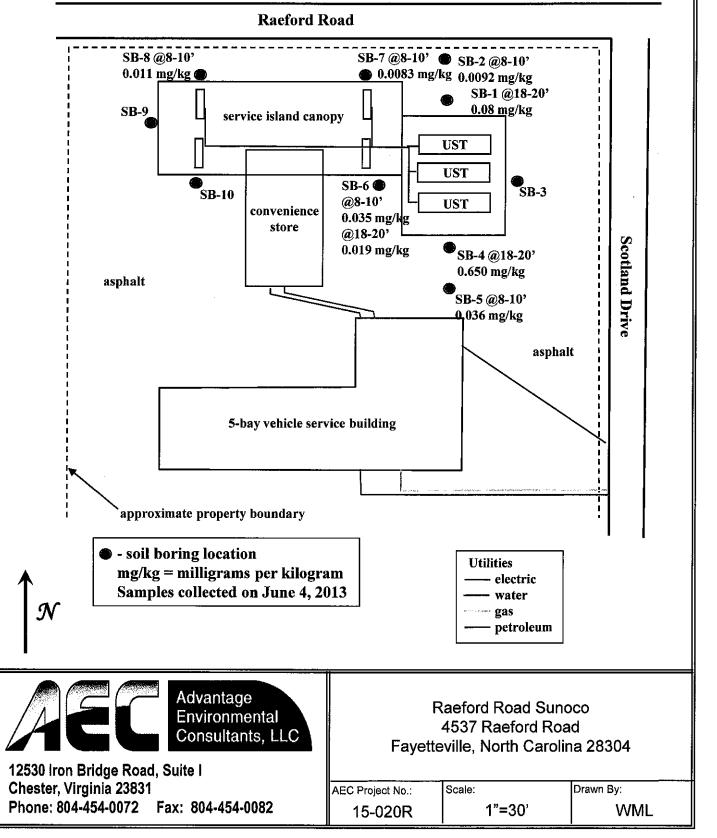

FIGURES



ι..

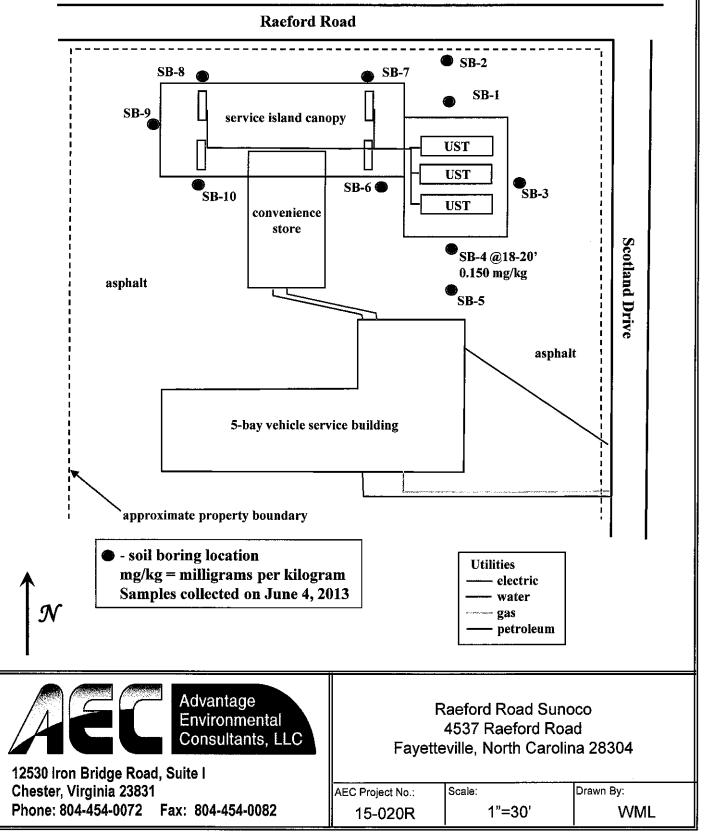

ί.

l


تـــا

L

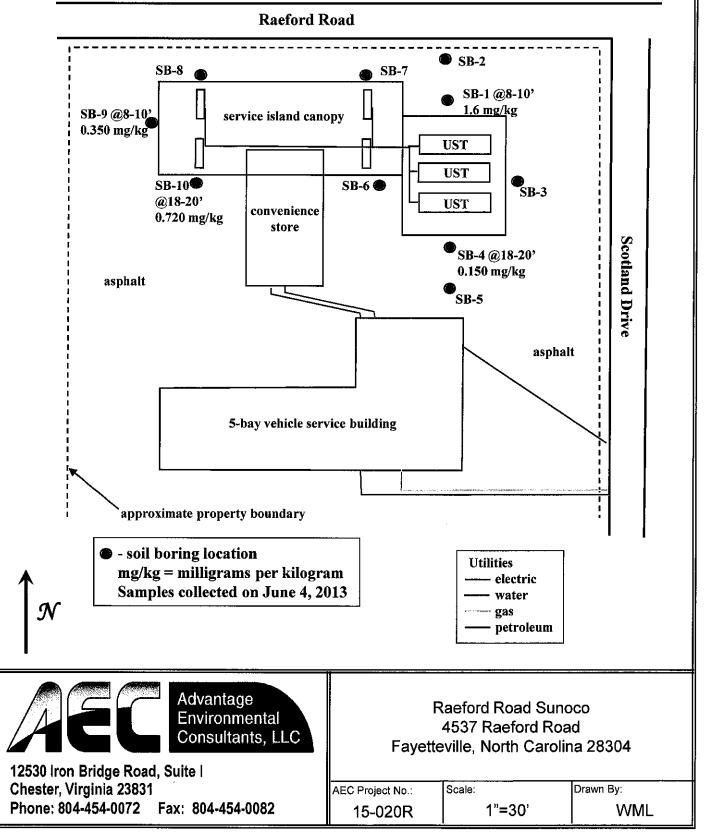
L,



i

L

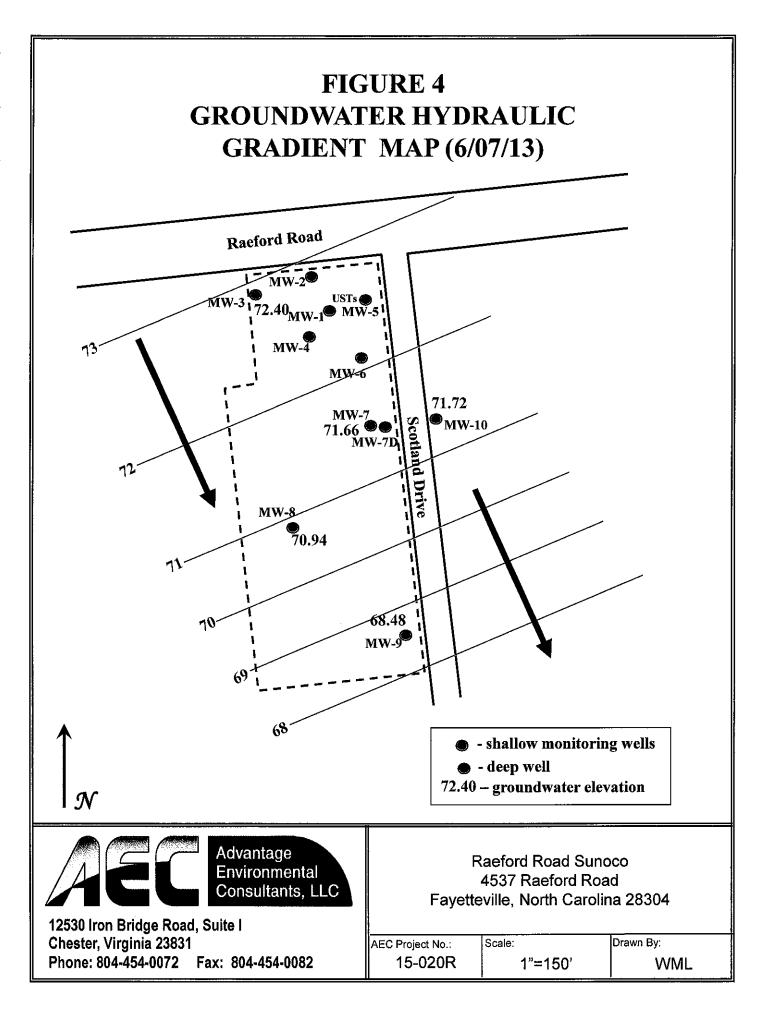
ί

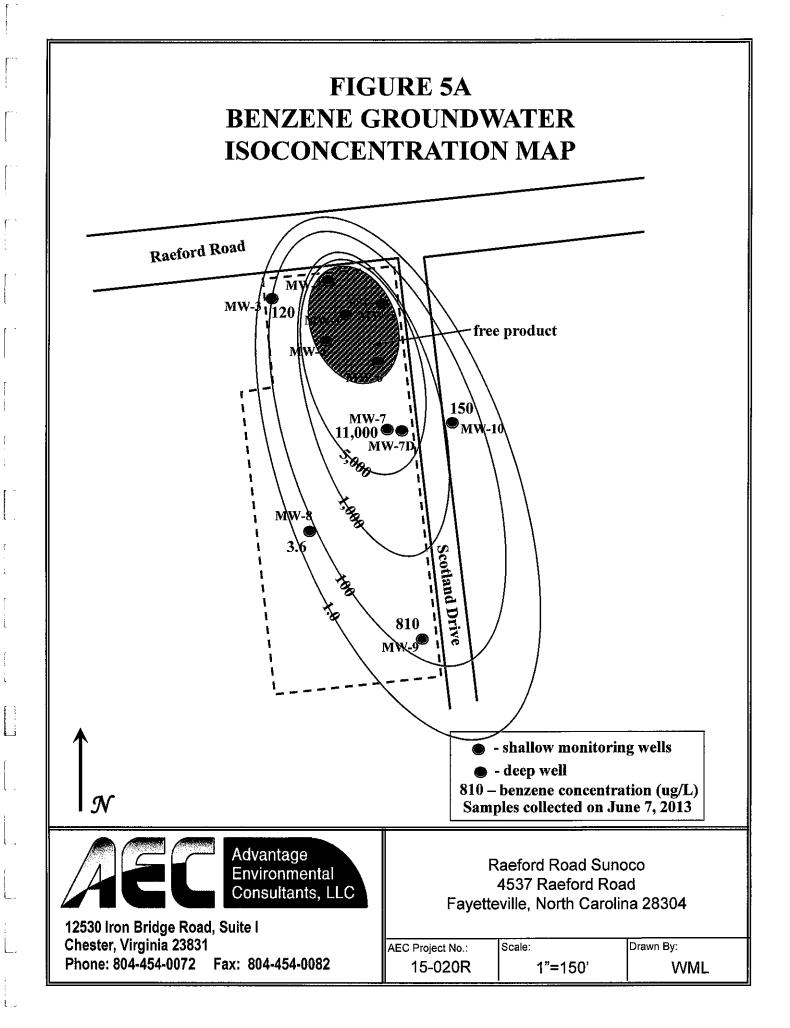


Ĺ.

ì

Ł

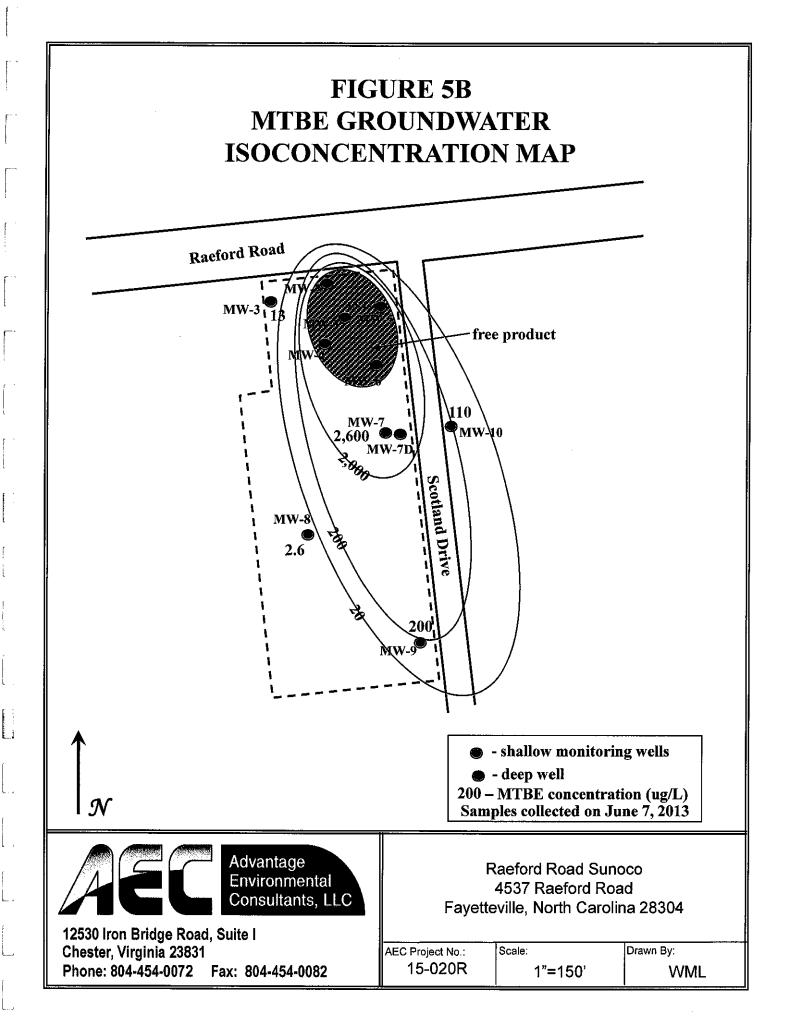


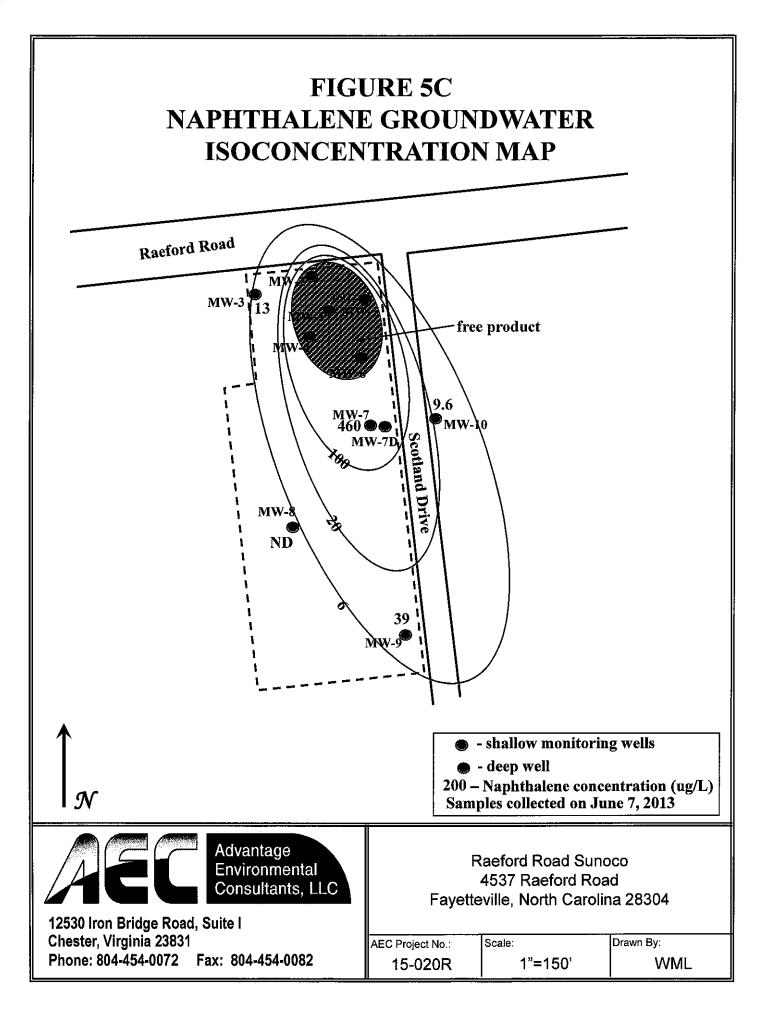


į

į,

l_.

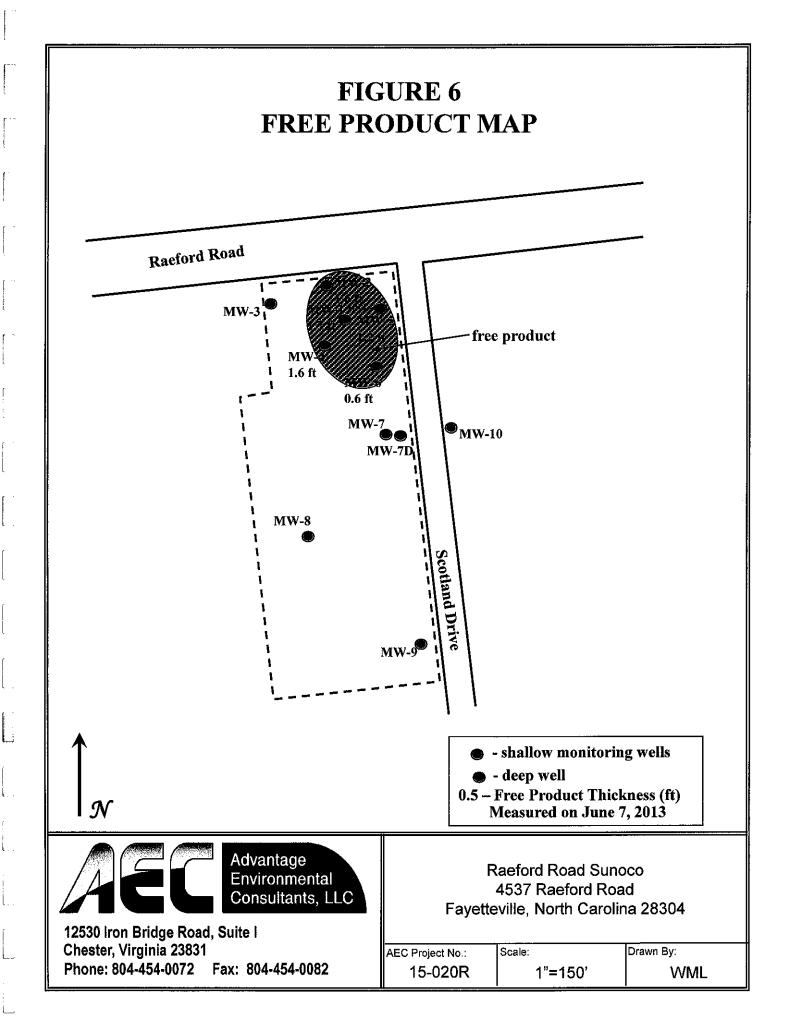




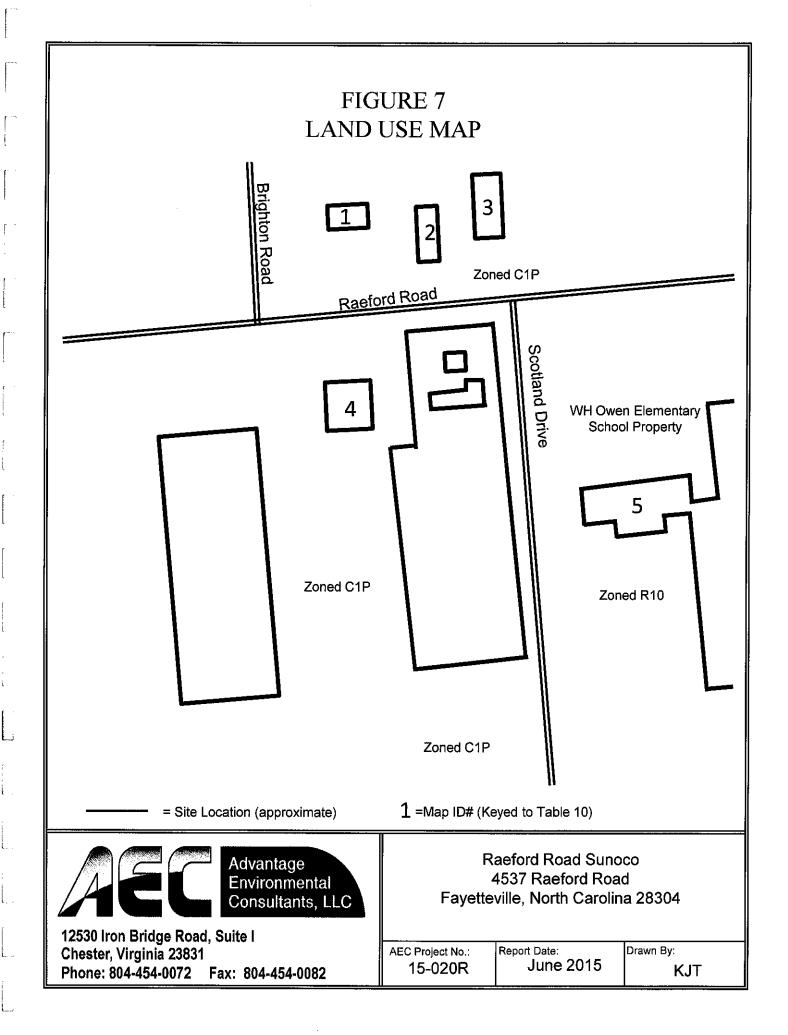
i

L.

L,


ŗ

i


į.

|

L...

l

ŗ.,

e 19

·-- •

e - 14

· · · ·

÷ .

l.

, | |-

ι,

į,

L....

Ĺ

.

SECTION B

TABLES

Table 1: Site History - UST/AST Owner/Operator and Other Responsible Party Information Raeford Road Sunoco 4537 Raeford Road

Fayetteville, Cumberland County, North Carolina

Revision Date: June 1, 2015 Incident Number and Name: 9788 – Raeford Road Sunoco

UST ID Number	9788		Facility ID	Number 0-025474		
Name of Owner	ne of Owner		Dates of Operation (mm/dd/yy to mm/dd/yy)			
Raeford Road Holdings, LLC		April 24, 2006-Present				
Street Address						
9055 Comprint Cour	t, Suite 200					
City		State	Zip	Telephone Number		
Gaithersburg		MD	20877	301-921-9200		
Name of Operator			Dates of C (mm/dd/y	peration y to mm/dd/yy)		
NA			all (1997) Disk binklind Life of 1979, and 199	ie de activitation en la activitation de la construction de la construction de la construction de la construction		
Street Address		n an an an an an an an an an an an an an			na an an an an an an an an an an an an a	
City		State	Zip	Telephone Number		
Incident Number	9788					
Name of Other Responsible Party		Dates of Release(s) (mm/dd/yy to mm/dd/yy)				
NA		April 27, 1992				
Street Address						
City		State	Zip	Telephone Number		
]		

 Table 2: Public and Private Water Supply Well and Other Receptor Information

 Raeford Road Sunoco

ſ

ſ

į

Į ..

l.....

.

Ĺ

4537 Raeford Road Fayetteville, Cumberland County, North Carolina

Public and Private Water Supply Wells

	50
	6
fneibergnwob ro ql	Ì
	8
d)	
Distance from source area of release (ft.)	
	Giley
Distand from source area of release (ft.)	
Distance from source area of release (ft.)	
	2
	2
등 놀 거 않	2014230
Well Screen Interval (<u>x</u> to <u>y</u> ft. BGS)	
	9
	2
그 문 고 않으니?	
C. L. Sisi	N=210
Well Casing Depth (ft. BGS)	
or Well	
AND AND ADD ADD ADD ADD ADD ADD ADD ADD	ļ
n groto in 🗃 🗃 din tradicipio de la c	
S E S	
Well Depth BGS)	
la de la companya de la companya de la companya de la companya de la companya de la companya de la companya de	
Well	
	ł
ar	
s) al d	
Latitude/ Longitude * (decimal degrees)	
Phone Numbe	
S E	
na se ž je sa statu	
4 4	
B	
dress	
Address	
Address	
r Address	
ser Address	
User Address ch)	
ir/ User Address thich)	
ner/ User which)	
wmer/ User Address te which)	
Owner/ User cate which) Address	
ell Owner/ User dicate which) Address	
Mell Owner/ User Address Indicate which)	
Well Owner/ User (indicate which)	
Well Owner/ User (indicate which)	
Well Owner/ User (indicate which)	
Well Owner/ User (indicate which)	
Well Owner/ User (indicate which)	
Well Owner/ User (indicate which)	**
Well Owner/ User (indicate which)	***

Other Receptors

(Other public water supplies, reservoirs, supply lines, surface water bodies, wellhead protection areas, recharge areas for deep aquifers, subsurface structures)

STATE PARTY CONTRACTORS	.
Up or Distance from down-source area of gradient release (ft.)	
ğ n o	
S S 5	
082	
Up or Usage down- gradient	
<u> </u>	
525	
CHARGE AND AN AN AN AND AN AN	
CAREAU CONCIDENT STREET	
Phone Number Us	
a z	[
 Description of the second secon	
Contact	
da tang n <mark>a</mark> thur on i	
	i ľ
Ō	
and a substant of the second second second second second second second second second second second second second	
lde o	
igi Sfi	
e sar	
atitude/ Longitud ny significant oint(s)* Jescribe to left) decimal degrees)	
lal 26	
atitude Ny sign pint(s) <i>lescrib</i> n decima	
S E S O	
	· 1
Latitude/ Longitu any significant point(s)* (decribe to left) (decimal degrees	
	Ì
6	
9	
Locatio	
Loc	
Description	- 1
	Í
60 5	
S	
De	
NT STREETS AND STREETS ST	
tida and the second second second second second second second second second second second second second second	<u> </u>
a constant of the state of the	
2 <u>0</u> 1	¥
Receptor Description Locati	* *

* The location must be sufficiently accurate and precise to allow easy recovery of lost or damaged wells or replication of sampling points. ** Ft BGS = feet below ground surface

*** No public or private water wells or any other receptors are located within 1,500 feet of the Site

Table 3: Field Screening Results*Raeford Road Sunoco4537 Raeford RoadFayetteville, Cumberland County, North Carolina

*No field screenings were performed as part of the preparation of this Corrective Action Plan.

L

Ĺ

ł i

Summary of Analytical Data - Soil Raeford Road Sunoco EPA Method 8260 Table 4

[

1

f ```

F

ſ

[[

l

[| |

Į.,

[Ĺ, J 4537 Raeford Road

Fayetteville, Cumberland County, North Carolina 8260 | 8260 | 8260 | 8260 | 8260 | 8260 | 8260 | 8260 | 8260 | 8260

		Т	Γ	Τ	_	I	-	Γ	ľ	1						Γ]
8260	Total Xylencs	2.6	0.27	0.037	0.0019	Q	0.00081	Ê	0.96	0.025	0.0016			4.6	3129	81760	
8260	MTBE	Ð	0.068	0.061	0.014	0.004	0.004	Q	0.150	0.0098	0.013			160.0	350	3100	
8260	Toluene	Ð	0.26	0.030	0.0024	Ð	0.0014	Ð	1.7	0.021	0.0048			4.3	1200	32000	
8260	əuəznədi yur B-oəs	Q	Ð	Ð	Ð	Ð	Ð	Ð	£	Q	Ð			5.5	626	16350	
8260	Benzene	Ð	0.08	0.0092	0.001	0.00038	0.00087	0.00044	0.650	0.036	0.0033			00000	18	164	
8260	n-Propylbenzene	0.52	0.0074	0.001	QN	Ð	QN	QN	an	0.00064	QN		1	1./	626	16350	
8260 8260 8260 8260 82	n-Butylbenzene	0.51	0.0026	0.00072	QN	ND	Ð	QN	ΩN	QN	QN			4.5	626	16350	
8260	Naphthalene	1.6	0.020	0.0056	0.0014	QN	ON -	QN	QN	ON	DN D		, , ,	0T*N	313	8176	
8260	Isopropylbenzene	Q	0.002	QN	QN	ND	an	ΩN	QN	Q	QN		t	1./	1564	40880	
8260	Ethylbenzene	QN	0.047	0.0068	0.00057	ΟN	0.00044	QN	0.170	0.005	0.00059	-	0	4.7	1560	40000	
	anaulotiyqorqosi-4	Q	Ð	Q	Q	Q	ND	Ð	ĝ	Ð	Ð		610	71.U	100	4000	
8260 826	2-Butanone	QN	QN	QN	0.0085	QN	ND	Q	QN	Ð	0.0047		16	10	9385	245280	
8260	anotaaA	5.7	0.015	0.028	0.035	Q	0.020	0.014	QN	Ð	0.016		10	14	14000	360000	
8260	ənəznədiytiləmirT-2,5,1	2.2	0.014	0.0037	Ð	QN	QN	Q	0.040	0.001	Ð		0 1	0.0	782	20440	
8260	ənəznədlydtəmirT-4,2,1	7.3	0.053	0.014	0.0081	QN	Ð	QN	0.140	0.0031	0.00052		0 5	0.0	782	20440	
	Concern > Sample Depth (ft)	8-10°	18-20'	8-10'	18-20°	8-10'	18-20°	8-10°	18-20'	8-10°	18-20'					cc	
Analytical Method >	Contaminant of Concern Date Samp Collected Dept nu/dd/yy (ft)	6/04/13	6/04/13	6/04/13	6/04/13	6/04/13	6/04/13	6/04/13	6/04/13	6/04/13	6/04/13		Soil to Graindinator MSCC		II MOLC	Industrial/Commercial MSCC	Results are in ma/ba
Analytical	Supte	SB-1	SB-1	SB-2	SB-2	SB-3	SB-3	SB-4	SB-4	SB-5	SB-5		Sail to Gre		Kesidential MDCC	Industrial	Reculte

Nexults are in mgkg Bold results indicate exceedence of Soil to Groundwater MSCC ND - Not Detected

led)	Data – Soil	HdV	noco	oad	Fayetteville, Cumberland County, North Carolina	
Table 4 (continued)	Analytical	MADEP Methods VPH	Raeford Road Sunoco	4537 Raeford Road	erland Coun	
Tabl	Summary of Analytical Data - Soil	MADI	Raefo	4537	ville, Cumbo	
					Fayette	

[

Γ

[

[. [

[

ĺ.,

i L.

Í L.

Ĺ

ĺ | |___

68 540 939 1500 74758 4000	6/04/13 8-10° ND 1.47 0.710 6/04/13 18-20° 6.81 2.49 1.12 6/04/13 8-10° ND ND ND 6/04/13 18-20° ND ND ND 6/04/13 18-20° ND ND ND
939 1500 74758 4000	68 540
	939 1500
	neustral/commercial MSCC 24258 40000 12264

Results are in mg/kg Bold results indicate exceedence of Soil to Groundwater MSCC ND – Not Detected

Table 4Summary of Analytical Data – SoilFPA Method 8260

[

<u>د</u>

the second s

: . .

ĺ.

EPA Method 8260 EPA Method 8260 Raeford Road Sunoco 4537 Raeford Road Fayetteville, Cumberland County, North Carolina

		1	T	1	1	1	r	<u> </u>	-	-	1	 		r—		-
8260	Total Xylenes	0.015	0.053	0.0029	0.0069	0.035	0.028	0.720	0.0008	0.002	0.660		4.6	3129	81760	-
8260	ATBE	0.049	0.026	0.0071	0.020	0.022	0.0069	Ð	0.0028	Ð	Q		0.091	350	3100	
8260	ansuloT	0.014	0.059	0.0027	0.0058	0.0077	0.022	Ð	Ð	.00045	0.230		4.3	1200	32000]
8260	sec-Butylbenzene	Ð	Ð	QN	Q	Ð	Ð	0.410	Ð	Ð	Ð		33	626	16350	
8260	Benzene	0.035	0.019	0.0083	0.0025	0.011	0.0021	QN	QN	QN	Ð		0.0056	18	164	
8260	ansznady loga nemetre	0.0005	0.0015	Ð	Ð	0.00076	0.0015	1.7	Q	Ð	0.120		1.7	626	16350	
8260	antylbenzene	Ð	0.0013	Q	Q	Q	QN	0.980	Q	Ð	0.088		4.3	626	16350	
8260	Naphthalene	0.0011	0.028	QN	0.0025	ND	0.0014	0.350	0.0018	QN	0.720		0.16	313	8176	
8260	Isopropylbenzene	Q	0.00047	DD	ND	0.00092	0.00052	0.450	QN	ND	Q		1.7	1564	40880	
8260	Ethylbenzene	0.0049	0.0071	0.001	0.0014	0.0062	0.0044	0.570	Ð	Q	0.100		4.9	1560	40000	
8260	4-lsopropyttoluene	ND	QN	ND	ND ND	Ð	Q	0.220	Q	Q	Ð		0.12	100	4000	່ ບ
8270	2-Sutanone	QN	0.040	Ð	Ð	QN	Ð	QN	Ð	0.0052	ĝ	,	16	9385	24528 0	er MSCC
8270	Acetone	0.019	0.087	Ð	0.040	0.018	0.023	0.890	0.058	0.033	0.760		24	14000	36000 0	oundwat
8260	ənəznədlythəmirT-2,5,1	0.0021	0.0073	Q	0.00049	0.0031	0.0025	2.5	0.00048	0.00036	0.250		8.3	782	20440	il to Gre
8260	ənəznədlyhəmirT-4,2,1	0.0049	0.016	Ð	0.0016	0.0072	0.0091	5.1	0.0014	-00095	0.850	1	C.X	782	20440	ce of So
	of Concern > Sample Depth (ff)	8-10°	18-20'	8-10'	18-20'	8-10'	18-20'	8-10'	18-20'	8-10'	18-20'				ASCC	Results are in mg/kg Bold results indicate exceedence of Soil to Groundwater ND – Not Detected
Aualytical Method >	Contaminant of Concern Date Sample Collected Depth in/dd/yy (ft)	6/04/13	6/04/13	6/04/13	6/04/13	6/04/13	6/04/13	6/04/13	6/04/13	6/04/13	6/04/13		SOIL IN GROUNDWAIGT MISUL	Kesidential MSCC	Industrial/Commercial MSCC	Results are in mg/kg Bold results indicate ND – Not Detected
Analytic	B	SB-6	SB-6	SB-7	SB-7	SB-8	SB-8	SB-9	SB-9	SB-10	SB-10			Kesident	Industria	Result: Bold re ND – N

Table 4 (continued)Summary of Analytical Data – SoilMADEP Methods VPHRaeford Road Sunoco

Kesults are in mg/kg Bold results indicate exceedence of Soil to Groundwater MSCC ND – Not Detected

4537 Raeford Road

[

ſ

[`

[

F .

[.

ĺ

Ĺ

Results are in ug/l Bold results indicate exceedence of 2L Standards Bold and shaded results indicate exceedence of GCL

7

				T				-	 	 	,	 	-	<u> </u>	-
	6200b	Total Xylenes	400	14,000	Ð	Q	510	15					500	85,500	
	6200b	ənəznədlyttəmirT-4,2,1	150	2,000	Q	Q	68	3.6					400	28,500	
	6200b	anəznədlythəmirT-2,5,1	58	510	QN	Q	27	Ð					400	25,000	
	6200b	ənəuloT	280	32,000	Ð	Q	290	2.2					600	260,00 0	
	6200b	Naphthalene	13	460	Ð	Ð	39	9.6			1		9	6,000	
Carolina	6200b	n-Propyl Benzene	16	270	QN	QN	8.2	3.3					70	30,000	
ty, North	6200b	n-Butyl Benzene	4.0	120	Q	QN	6.9	1.4					70	6,900	
Fayetteville, Cumberland County, North Carolina	6200b	MTBE	13	2,600	QN	2.6	200	110					20	20,000	
Cumberla	6200b	Isopropyl Benzene	5.8	140	Ð	ND	9.1	2.0					70	25,000	
etteville,	6200b	Ethylbenzene	46	2,400	Ð	QN	61	16					600	84,500	
Fay	6200b	Chloroform	Q	Ð	Q	3.6	Q	Ð					70	70,000	
	6200b	Benzene	120	11,000	QN	3.6	810	150					1	5,000	
	504.1	1,2 Dibromoethane	ą	1.2	QN	QN	Q	Q					0.02	50	
	۸	nt of Sample ID	MW-3	7-WM	-MM- DT	MW-8	MW-9	MW- 10				·····			
	Analytical Method	Contaminant of Concern > Date San Collected I m/dd/yy	6/07/13	6/07/13	6/07/13	6/07/13	6/07/13	6/07/13					(l/gu) bre		e in no/
	Analytic		MW-3	7-WM	-MA F	MW-8	6-MW	10 MW-					2L Standard (ug/l)	GCL (ug/	Recults are in no/

Table 5 Summary of Analytical Data – Groundwater EPA Method 504.1/6200b Raeford Road Sunoco 4537 Raeford Road

ſ

ł

the second

ĺ

ſ |

í | |

Ĺ_,

s of GCL	
exceedence	
ts indicate e	
ed results	
id shad∈	
Bold an	

Raeford Road Sunoco 4537 Raeford Road Fayetteville, Cumberland County, North Carolina Table 5 (continued)Summary of Analytical Data – GroundwaterEPA Methods 6010c/MADEP-VPH

{

L.L.L

ļ

Į

ļ

٤...

.

| | |

Ĺ

Odd Odd <th>MADEP MADEP VPH VPH</th> <th>spitemore 012-62</th> <th></th> <th></th> <th></th> <th></th> <th></th> <th>3.1 43</th> <th></th> <th></th> <th></th> <th>700 200</th> <th>NRS NRS</th> <th></th>	MADEP MADEP VPH VPH	spitemore 012-62						3.1 43				700 200	NRS NRS	
od > unaut of Concern te Sample ceed DD Concern 13 6/07/13 6/07/13 13 6/07/13 6/07/13 7/13 14 6/07/13 7/13 7/13 7/13 7/13 6/07/13 7/13 7/13 7/13 7/13 7/13 7/13 7/13		spitedril 4 CD-9D												
Itool Sample arnimant of Concern Bate bate Sample lected ID addyy ID addyy 6/07/13 77/13 6/07/13 77/13 6/07/13 77/13 6/07/13 77/13 6/07/13 77/13 6/07/13 77/13 6/07/13	6010c	Dead IstoT	QN	3.79	QN	QN	QN	DND				15	15,000	
	Analytical Method >					_		6/07/13 6/07/13				21. Standard (ug/f)		Results are in ug/l

Table 6: Monitoring and Remediation Well Construction InformationRaeford Road Sunoco4537 Raeford RoadFayetteville, Cumberland County, North Carolina

See Attached Pages

1 Wall Contractor Information											
1. Well Contractor Information: James D. Barker		14. W	ATEF	UZONE:	9		50155		je do sier	NG AGNARIO	
Well Contractor Name		FROM	fi.	to	ft.	DESCRIPTI	ON	*****			
3106A		23	ft.	25	 ft.					******	***
		15 (9)		CASIN		nulti-cased w	aller 6	ND I INE	D df ann	licablet	
NC Well Contractor Certification Number		FROM	***	TO		DIAMETER	<u></u>	THICK	NESS	MATE	RIAL
Quantex, Inc.		0	ft.	15	ft.	2	in.		n 40		PVC
Company Name		I6. IN FROM		CASINC TO	OR 1	UBING (geot DIAMETER		al closed TIACK		MATE	RIAL
2. Well Construction Permit #:		,	ü.	1	ft.		in.		,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,		
List all applicable well construction permits (i.e.)	County, State, Variance, etc.)		ft.		fit.		in.				·····
3. Well Use (check well use):		17. SC		P.172-3729, P42222							
Water Supply Well:		<u>FROM</u> 15	ft.	<u>то</u> 30		2 in.		<u>i size</u> 010	<u>TRICK</u> Sch		MATERIAL PVC
	🖾 Municipal/Public		n.		n.		0.	010		40	ΓVO
□Geothermal (Heating/Cooling Supply) □Industrial/Commercial	Residential Water Supply (single) TResidential Water Supply (charge)	18.GI				Kondernikoji (*	<u>kana</u>	njadosi d	l Biggnuiki	iter (je chi	
Industrial/Commercial	□Residential Water Supply (shared)	FROM		TO		MATERIAL		EMPL			OD & AMOUN
Non-Water Supply Well:		0	ft.	11	ft.	neat cem	ent	Pour		******	
Monitoring	□Recovery	11	ft.	13	ft.	bentonite		Pour			
injection Well			fi,		ft.						
DAquifer Recharge	CiGroundwater Remediation	19, SA FROM	ND/G	RAVEL TO	PACE	(if applicabl MATERIAL	ឲ្		EMPI AC	ENIENT	METHOD
DAquifer Storage and Recovery	Salinity Barrier	13	ĥ.	30	ñ.	#2 s				Pol	
⊐Aquifer Test	Stormwater Drainage		R.		R.	aini ai aini ai ann an an an an an an an an an an an an	deald are an interesting of		·		
TExperimental Technology	DSubsidence Control	20. DF	naa	NGLOC	i (atlac	h additional s	lucets	if neces	(ary)		
Ceothermal (Closed Loop)	ETracer	FROM	ft.	<u>ro</u> 1	ſł.	DESCRIPTIO	DN (co				rain aize, etc.)
Geothermal (Heating/Cooling Return)	DOther (explain under #21 Remarks)	Ó	ft.		· · · · · · · · · · · · · · · · · · ·		••••••	·····	iall/gra	ale to Ale ale ale ale ale ale ale ale ale ale a	
I. Date Well(s) Completed: 6/5/13	Well ID# MW-7	1 22	n.	22 30	ft.	·	.)		/ Sandy um sar		
5a. Well Location:		<u> </u>	ft.	QU	ľt.			IVIEUI	um sa	ius	
Raeford Rd. Sunoco	NA		ft.		ñt.						
acility/Owner Name	Facility ID# (if applicable)		ft.	Service and the second second	ft.						
4537 Raeford Road, Fayet	teville 28304			ALC AND AND AND AND AND AND AND AND AND AND	ft.		*#. •***** *				
bysical Address, City, and Zip		1505-022-2504	R.	KS			1942 192	N.FILLERING			
Cumberland	NA	21. N.	ылк	60	11-11-11-11-11-11-11-11-11-11-11-11-11-				5.592.001	(5) ((57) <u>(57</u>)	
ounty	Parcel Identification No. (PIN)	·····	<u></u>								· ·
ib. Latitude and Longitude in degrees/mi it well field, one int/long is sufficient)	nutes/seconds or decimal degrees:	22. Cet	tifica	Lion:		<u>к</u> 1)	/				
35.042525 _N 78.9	55563 w	Signam	afe	Alony.		DE	21	.		6/27/ Date	13
i. Is (are) the well(s): @Permanent or	Temporary	By signi	ng thás	e form, 1	hereb)	vertify that it ISA NCAC 0.				matric te	
7. Is this a repair to an existing well: Clus is a repair, fill out known well constructions epsig nuder #21 remarks section or on the back of epsig nuder #21 remarks section or on the back of						wided to the i onal well do					
Number of wells constructed: ONO	i i i i i i i i i i i i i i i i i i i					this page to may also atta					
ybmil one form.	301	SUBM	in the second second second second second second second second second second second second second second second			<u> </u>					
. Total well depth below land surface: for multiple wells list all depths if different (examp	ske- 3@200" mid 2@100")	24a. Fu constru				umit this for 19:	m w	ithin 3() days o	f comp	lction of w
0. Static water level below top of casing: funder level is above casing, use "a "	NA ((ft.)		D			ter Quality, ervice Centr					
1. Borchole diameter: <u>8</u> Autoer	_ (in,)	above,	also i	subistit	a copy	In addition y of this for					
2. Well construction method: <u>Auger</u> i.e. auger, rotary, cable, direct push, etc.)		constru Di				iy: allty, Under	rýrou	ınd Infa	ction C	ontroll	rogram.
and the second second second second second second second second second second second second second second second						ervice Cent					
OR WATER SUPPLY WELLS ONLY:			8 . L.								10 C

Form GW+L.

ŀ

É.

Ł

North Carolina Department of Environment and Natural Resources - Division of Water Quality

WELL CONSTRUCTION R		For Int	emal l	Jse ONL			****				
This form can be used for single or multiple well	S		ennar t								
1. Well Contractor Information:			ATE	ZONE	S ELESS		eeseene een			1	
James D. Barker		FRON		то	ſt.	DESCRIPT					
Well Contractor Name		63		67						******	****
<u>3106A</u>			ft.		ſt.	 •					
NC Well Contractor Certification Number		FROM		TO	tx (for:	DIAMETE	R (THICK	AC (1) APPI NESS	MATE	
Quantex, Inc.		0	ft.	42	ft.	4	in.		n 40		PVC
Company Name		IG. IN FROM		CASIN TO	g or 1	UBING (geo DIAMETEI		il closed THICK		MATE	REAL
2. Well Construction Permit #: List all applicable well construction permits (i.e.	County, State, Variance, etc.)	0	ft.	60	ft, ft,	2	in.		140		PVC
3. Well Use (check well use):		17. 80		\ \			l				
Water Supply Well:	······································	FROM	t ft.	10		DIAMETER D in.	SLOT		THICKN		MATERIAL
^{CI} Agricultural	🖾 Municípal/Public	60		70		2 ^{m.} in.	0.0	010	Sch	40	PVC
□Geothermal (Heating/Cooling Supply)	□Residential Water Supply (single)	214 8 214	ft.		ft.	10. (19.6) (19.6) (19.6)	HELIMACION	0800308480083	 #864453883453888454646464	Noundscores	wideoldi sekatatatati ili odbol oo
□Industrial/Commercial	□Residential Water Supply (shared)	FROM	ROUT I	то	2002030	MATERIA	a) a f a f a f a f a f a f a f a f a f a	EMPL			DD & AMOUNT
□Irrigation Non-Water Supply Well:		0	fi.	42	ft.	neat cerr	nent	trem	mie - Bo	ottom	up
EMonitoring	ElRecovery	0	ft,	56	ft.	neat cerr	ient	trem	mie - bo	ottom	up
Injection Well:		56	ft,	58	ſL.	bentonit	e	pour			
CAquifer Recharge	E)Groundwater Remediation				РАСЬ						
DAquifer Storage and Recovery	DSalinity Barrier	FROM 58	ľt.	<u>70</u> 70	ħ.	MATERIAI #0	sand		EMPLACE		
□Aquifer Test	DStormwater Drainage	30	ft.	10	Fi.	#2	Sanu			Pou	1 (
ClExperimental Technology	CISubsidence Control	200 01	···	NCOLDI		hadditional	cheetes	it neres	and		
⊡Geothermal (Closed Loop)	Traver	FROM	أنسبهسنا	ro		DESCRIPT	ION (cale	or, hardi	ave suil/roc	k type, g	raim afze, ere,).
Geothermol (Heating/Cooling Return)	Other (explain under #21 Remarks)	0	ß.	1	ft.	. :		Aspt	alt/grav	iel.	
4. Bate Well(s) Completed: 6/5/13	Well ID# MW-7D	1	It. ft.	- 22 - 38	TE N.		¢		Sandy, um sand		
Sa. Well Location:		38	ft,	46	ft.			anna a staine an an an an an an an an an an an an an	gray cla		••••••••••••••••••••••••••••••••••••••
Raeford Rd. Sunoco	NA	Summer and the second	ft.	40 57	ft,		A R L L L		C	X	an e Franciscu attain ini
Facility/Owner Name	Facility ID# (if applicable)	46 57	ſĿ	(ana ministration of the second	ŤĹ.	Pine to	ivieoj				ay lenses
4537 Raeford Road, Faye	tteville 28304	- D 7	n.	70	ft			1-11	e sand		
Physical Address, City, and Zip	alani kisi kalalaida inna kinya mutain na suna kusana kala kusa kusa kusa k			นร			Mant, pr (ver eve	- 	RECORD AND AND AND AND AND AND AND AND AND AN	Ni ni ny ni	
Cumberland	NA					talati dikenderi siya	<u>IRIPIAIXIRDZIRI</u>	<u>a dan di dan</u> d			
County	Parcel Identification No. (PIN).				· · · · ·						
Sb. Latitude and Longitude in degrees/m (if well field, one lat/long is sufficient)	inutes/seconds or decimal degrees:	22, Ce	rlifficy	lion:		<u>γ</u>	1	1	(mp) = {		*****************************
35.042526 _N 78.9	955562 w			Alm	×.	O_{1}	$\mathcal{D}l$	l Ármi		6/27/	13
an an an an an an an an an an an an an a		Signatur	e of C	entfied	Vell Co	umetor	and and a second second second second second second second second second second second second second second se	, -		Date	``
6. Is (are) the well(s): @Permanent or		nith 15.	I NC I	C D2C .(1100 m	ISA NCAC (12C 1120	n Rell-	(were) con Constructio	istructor m Stand	l in accordance hards and that a
If this is a repair: III out knows well construction	IYes or ZN0 information and explain the nature of the					ovided to the ional well d	·				
repair under #21 remarks section or on the back of	n nus form.								lionàf we	ll súc a	letails or well
8. Number of wells constructed: ONO						nay also att					
For multiple infection or non-seater supply wells (submit one form.	ONLY with the same construction, you can	SUBM	ETTA	L INS	TUCT	IONS			1		
9. Total well depth below land surface: For multiple wells list all depths if different (exam	70 ¹ (ff.)	24a. E constru					orm wi	thin 3() days of	comp	letion of well
10. Static water level below top of casing: If water level is above casing: are "+"	AIA	• • • •		ivision	of Wa	ter Quality ervice Cen					lt.
the Borehole diameter: 11^{11} – Outer	(in.)	2.4h 17	ni Tus								uldress in 24a
12. Well construction method; Auger(also a	subinit	a copy	y of this fe					etion of well
(i.e. auger, rotory, coble, direct push, etc.)	·····	Di	vision			ality, Unde					'rogram,
FOR WATER SUPPLY WELLS ONLY:		- 	1 AN-			ervice Cent				1.	they there the
13a. Yield (gpm) M	lethod of rest:	the add	li cast e	s) abd [,]	ve, als	Injection V o submit o	ne cop	iy of t	his form	within	30 days of
13b. Distatection type:	Amonnt:	where c			constr	uction to th	ie cour	ну пса	un depar	ument	of the county

Form GW+]

f

r

e-----

- · · ·

.

.

_.__

ί...

٤

North Carolina Department of Environment and Natural Resources - Division of Water Quality

Revised Jan. 2013

	s										
1. Well Contractor Information:			redead								
James D. Barker		FRON		R ZONI TO	Sinter	DESCRIPT		officiently		en en rein	iskerite gal
Well Contractor Name		23	fi.	25	ît.						
<u>3106A</u>			ft.		ſt.						
NC Well Contractor Certification Number		IS. O FROM		CASIN TO	iG (for	niulti-cased - DIAMETE		DR LINE THICK		licable) MATER	tlaL
Quantex, Inc.		0	ľt.	15	ft.	2	in.		า 40	******	PVC
Сотрану Name					G OR T	UBING (geo		al closed	luop)		
2. Well Construction Permit #:		FROM	i ft.		ft.	DIAMETE	к ŧu.	THICK	NESS	MATER	HAL.
List all applicable well construction permits (i.e.	County, State, Variance, etc.)		ít.		ft.		in.				
3. Well Use (check well use):										ب في يكم محمد المحمد المحمد المحمد المحمد المحمد المحمد المحمد المحمد المحمد المحمد المحمد المحمد المحمد المحمد	
Water Supply Well:		FROM 15	ſ fĭ.	<u>то</u> 30		<u>DIAMETER</u> 2 ^{în.}		SIZE	THICK!		MATERIAL PVC
^{CI} Agricultural	DMunicipal/Public	13	ñ.	50	ft.	<u>in.</u>	U.I	010	Sch	+1/	r vu
Geothermal (Heating/Cooling Supply)	Residential Water Supply (single)	18 G		04405700			 			13.11.2001331201	K ISSUE
DIndustrial/Commercial	□Residential Water Supply (shared)	FROM	l	то		MATERIA					D & AMOUNT
Irrigation Non-Water Supply Well:			ft,	11	ft.	neat cerr	nent	Pour			
EMonitoring	ERecovery	11	ft,	13	ft.	bentonite	<u>}</u>	Pour			
Injection Well:			ň,		ſt.			ļ			
DAquifer Recharge	El Groundwater Remediation	19. S./	ND/C	RAYE TO	L PACI	í (if applical MATERIAI	de)		EMPLAC	EADENT A	FTEM
DAquifer Storage and Recovery	DSalinity Batrier	13	fi.	30	fi.		sand		PARTY PARTY	Pou	···
DAquifer Test	□Stormwater Drainage		Ĭt.		п.						· · · · ·
ElExperimental Technology	ClSubsidence Control			NGLO	G Lattak						ALCONTROP .
ElGeothermal (Closed Loop)	6Tmcer	FROM	n.	<u>ro</u> 1	ft.	DESCRIPT	LON (en				uin size. etc.)
ElGeothermal (Heating/Cooling Return)	Other (explain under #21 Remarks)	0	n.		Th:			*****	alt/grav	, an an an an an an an an an an an an an 	
4. Date Well(s) Completed; 6/6/13	Well ID# MW-8	1		22	: " ·				/ Sandy		
5a. Well Location:		22	fi.	30	: ft.			Medi	um san	ds	
Raeford Rd. Sunoco	NA		n.	<u> </u>	řt.	-					
Facility/Owner Name	Tagility ID# (if applicable)		f î.	L	İt.		*****		***		******
4537 Raeford Road, Faye			n.	L	ħ.						
Hysical Address, City, and Zip	асущ <u>с</u> 20004.		Ĩł.		tt,						
	NA	21. RI	MAR	KS			NGB TUT				
County	Parcel Identification No. (PIN)										
		L		1	Antonio 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 1						
5b. Latitude and Longitude in degrees/m if well field, one lat/long is sufficient)	inutes/seconds or decimal degrees:	22. Cei	rtifics	tion:		$\lambda $ γ	1.1	· ·			
35.042448	955240 w			dim	л I	()	$\mathcal{D}L$			6/27/1	2
and and a second second second second second second second second second second second second second second se	39924U W	Signatur	e of C	- The second second second second second second second second second second second second second second second		ntrictor	un an Star St	and and support.		Date	•
5. Is (are) the well(s); Permanent or	□ Temporary		1	· · ·			the wel	lla) inus	(wieżci ro		in accordan
7. Is this a repair to an existing well:	IYes or ZNO	with 15.	I NC I	C 82C .	0100 m	ISA NCAC J	92C - 02	(II) Well-			ards and that
(Hus to a repair, fill out known well construction	Information and explain the nature of the					rovided to the	*				
epair under #21 remarks section or on the backs	af this form.					ional well d this page to			tional w	El site-d	clails or we
8. Number of walls constructed: ONE						nay also att					
For multiply injection or non-sector supply wells (admit one form:	ONLY with the same construction, you can	SUBM	ITT/	LINS	TUCT	IONS.			•		
	30'	·						istidio 34) ihm.a' -	E repaired.	ction of we
9. Total well depth below land surface: For multiple wells list all depths if different (exam		constru					anana - W	aan 3t	а науз О	e compte	withit he we
10. Statle water level below top of casing: Twater level is abave casing, one '**'			r			ter Quality ervice Cen					it,
II. Borchole diameter: 8		24h. Fi	nr In	ection	Wells	in addifio	n tó s	andina 1	he čom	to the av	ddress in 24
			also	submit	a cop	y of this fc					ation of we
The second second second second			to the d	6.11					F		
12. Well construction method: Auger	e-innitiinni inininni mikuompilooponoikumparaana oo aa moonaa ana-	constru	cuon	th file 1	юцаун	15.					
12. Well construction method: <u>AUGEr</u> i.e. auger: roury, cable, direct push. etc.)		an da an an an an an an an an an an an an an	0.5	1 of Wi	ater Qu	ality, Und					rogram,
12. Well construction method: Auger		DI	visio	1 of Wi 1636	ater Qu Mail S	ality, Und ervice Con	ter, Ra	deigh, l	NC 2769	9-1636	
12. Well construction method: <u>AUGEr</u> i.e. auger: roury, cable, direct push. etc.)		Di 24e, <u>Fé</u>	visioi ir Wa	1 of Wi 1636 ter Su	ater Qa Mail S pply &	ality, Und ervice Con Injection 1	ter, Ri Wells:	deigh, l <u>In</u> add	NC 2769	9-1636 mdingiti	

Form GW-1.

ł

0121-11-11-10-10

ſ

L

Ĺ

L

L

North Carolina Department of Environment and Natural Resources - Division of Water Quality

Revised Jan. 2013

WELL CONSTRUCTION R This form can be used for single or multiple well	<u>Is</u>	For Int	ernal (Jse ON	LY:				
1. Well Contractor Information:					<u></u>				
James D. Barker		FROM		ZONI TO	S	DESCRIPT			
Well Contractor Name		23	ft.	25	ſt.	- Marxing	10.1		******
3106A			ft.	İ	ft.				
NC Well Contractor Certification Number		15.0	ITER	CASE	iG (tor	multi-cased v	vells) OR LI	NER (if app)	lcahlo)
Quantex, Inc.		FROM	ft.	<u>то</u> 15	ft.	DIAMETEI 2		CKNESS	MATERIAL
Company Name				1		UBING (geo	1	Ch 40	PVC
		FROM		то		DIAMETEI	र मधा	CKNESS	MATERIAL
2. Well Construction Permit #:	County, State, Variance, etc.)		ft.	ļ	ft.		in.		
3. Well Use (check well use):		**********	ft.	<u> </u>	ft.	2007. Utophic values and in	in.		
Water Supply Well:		17. St FROM		S TO		DIAMETER	SLOT SIZE	THICKN	ESS MATERIAL
	□Municipal/Public	15	ft.	30	ft.	2 ^{in.}	0.010	Sch	40 PVC
□Geothermal (Heating/Cooling Supply)	CResidential Water Supply (single)		ft.		ft.	in.			
Dindustrial/Commercial	□Residential Water Supply (shared)	18.CI			<u>annie</u>				
Ilrrigation		FROM	ft.	<u>то</u> 11	ít.	MATERIAI			METHOD & AMOUNT
von-Water Supply Well:			ft.	11 13					
Monitoring	DRccovery	11	ft.	13	۰۱۱ ۲۱۰	bentonite	Po	μF	
ajection went DAquifer Recharge	Croundwater Remediation	-10-SA	- °	EP A AVE		 K (if applicab			
Aquifer Storage and Recovery	Elenometwater Remeatation	FROM		TO		MATERIAL			AIENT METHOD
DAquifer Test	Distormwaler Drainage	13	ſţ.	30	ft.	#2 :	sand	-	Pour
IExperimental Technology	CISubaldence Control		n.		ļî.		· · _ ·		
Reothermal (Closed Loop)		20. DJ FROM	acia	161.0 ro	G (athu	h additional	sheets if no	essary)	A type, grain size, etc.)
Geothermal (Heating/Cooling Return)	- DOthor (explain under #21 Remarks)	0	n,	1	ft.			phalt/grav	
		1	ff.	22	fi:			ey Sandy	arden waarde alle alle alle alle alle alle alle al
. Date Well(s) Completed: 6/6/13	Well ID# MW-9		ħ.	·	ń.				
a. Well Location:		22	n.	30		<u></u>	IVIE	dium san	US .
Raeford Rd. Sunoco	NA	-	n. f(.		ft.				
acility/Owner Name	Facility ID# (if applicable)								***
4537 Raeford Road, Faye			ft.	1.1.1.1.1.1.1.1.1.1.1.1.1.1.1.1.1.1.1.	ft.				1218.7 almet 1 west the star man of an account of a star of a star of a star of a star of a star of a star of a
bysical Address, City, and Zip		ting contaction	il.	NE KLEIZ IN PAR	Ët.			Advedation of the second second second second second second second second second second second second second se	ARA MANYA MANJALIMI JAWARAN JAWAR AMIN'NI LA LA LUMAN
Sumberland	NA	<u>21, RE</u>	MAR	<u>K8</u>	N I I I I I I I I I I I I I I I I I I I				
	Parcel Identification No. (PIN)								
b. Latitude and Longitude in degrees/m				7					
b. Latitude and Longitude in degrees/m f.well field, me fat/long is sufficient)	unines/seconds or decimal degrees:	22. Cer	tiffeg	tion:		X r	/ /		ана стала стала стала стала стала стала стала стала стала стала стала стала стала стала стала стала стала стала Стала стала стала стала стала стала стала стала стала стала стала стала стала стала стала стала стала стала стал
그는 것 같아요. 것 같은 것 같아. 한 것 같아. 영화는 편이 있는 것 같아.	955683		Ê	ar.	ð,	1) /4	7 la_		6/27/13
	3999000 W	Signatur	e of Ci			minacior 🐂	and the second second second second second second second second second second second second second second second		Date
. Is (are) the well(s): Deermanent or	Temporary		1				he welliss w		writed in accordance
. Is this a repair to an existing well:	DYes or ZNo	with 13.	NC 1	Ė ₿2€° -	0100 nr	INA NEAC D	2C .0200 W.		on Standards and that g
flits is a repair, fill out known well construction	information and explain the nature of the				- J.	rosided to the			
your under #21 remarks section or on the back.	of this form.					ional well d this page to		ditional um	It site details or well
000						may also atta			
. Number of wells constructed: UIIS		çonsuu		2 2 - M 46-1					
or multiple injection or non-water supply wells	ONLY with the same construction, you can				. ,	IONS			
Number of wells constructed: One or multiple information or non-scatter supply wells i about one form.	20	SUBM	TTĂ	L INS	TUCT			70.0	t anannan taita na satta dat
or multiple inforition or non-water supply wells a abmit one form: • Total well depth below land surface:	30 [,] (ft.)	SUBM	TTA r Al	L INS L Well	TUCT 8: Su	bmit this fo	rın within	30 days of	completion of well
or multiple injection or non-water supply wells i donit one form. • Total well depth below land surface: or multiple wells list all depths if different (csan 0. Static water level below top of casing	30' (ft.)	<u>SUBM</u> 24a. <u>F</u> (TTA or <u>Al</u> ction	L INS I Well to the I Ivision	TUCT 8: Su ollowi of Wi	bmit this fo og: oter Quality	, Informat	ion Process	ing Unit.
or multiple injection or non-water supply wells i ibmit one form: • Total well depth below land surface: or multiple wells list all depths if different (exan 0. Static water level below top of casing water level is ubuse casing, one ""	30' (ft.) phe-30:200('and 200:100') , <u>NA</u> (ft.)	SUBM 24a. <u>Fr</u> constru	TTA o <u>r Al</u> ction D	L INS I Well to the 1 Ivision 1617	TUCT s: Su ollowin of Wi Mail S	bmit this fo ng: nter Quality lervice Cent	, Intormat er, Raleigi	ion Process h, NC 2769	ing Unit. 1-617
or multiple injection or non-scater supply wells a about one form: • Total well depth below land surface: _ for multiple wells list all depths if different (coan 0. Static water level below top of casing: water level is above casing: one "=" 1. Burchole diameter:	30' (ft.) phe-30:200" and 200:100") NA (ft.) _(in.)	SUBM 24a. <u>Fo</u> construe 24b. <u>Fo</u>	r Inj	L INS L Well to the 1 lvistor 1617 ection	TUCT s: Su ollowin of Wi Mail S Wells	bmit this fo ng: nter Quality lervice Cent i In additio	, Informat er, Raleigi n to sendin	lou Process h, NC 2769 g the form (ling Unit. F1617 Io the address in 24a
or multiple injection or non-scater supply wells i about one form: Total well depth below land surface: for multiple wells list all depths if different (esca D. Static water level below top of casing; water level is above casing; one "" 1. Borehole diameter: <u>8</u> 2. Well construction method; AUGER	30' (ft.) phe-30:200" and 200:100") NA (ft.) _(in.)	SUBM 24a. <u>Fr</u> construct 24b. <u>Fr</u> above, construct	TTA or Al ction D r Inj also s ction i	L INS L Well to the 1 lvision 1617 ection aubmit o the f	TUCT s: Su oltowin of Wi Mail S <u>Wells</u> a cop oltowin	bmit this fo og: iter Quality lervice Cent : In addition y of this fo ig:	, Informat er, Raleigi n to sendin rm within	lon Process h, NC 2769 g the form 30 days of	ing Unit. -1617 to the address in 24a completion of well
or multiple information or non-scatter supply wells a about one form. • Total well depth below land surface: _ for multiple wells list all depths if different (cool • static water level below top of casing: * water level is above casing: one "=" 1. Borehole diameter: <u>8</u> 2. Well construction method; <u>AUGER</u> .e. auger, rotary, cable, direct push, etc.)	30' (ft.) <u>appe-3002000' and 200700'')</u> <u>NA</u> (ft.) _(in.)	SUBM 24a. <u>Fr</u> construct 24b. <u>Fr</u> above, construct	TTA or Al ction D r Inj also s ction i	L INS L Well to the 1 ivision 1617 ection aubmit o the f	TUCT s: Sta bllowin of Wi Mail S <u>Wells</u> a cop ollowin ater Qi	buit this fo og: hter Quality lervice Cent i In addition y of this fo ig: hality, Unde	, Informat er, Raleig n to sendin m within rground I	loy Process h, NC 2769 g the form 1 30 days of njection Co	ing Linit, 1-1617 Io the address in 24a completion of well ntrol Program,
or multiple inforition or non-scater supply wells a about one form. • Total well depth below land surface: for multiple wells list all depths if different (coord • Static water level below top of casing: water level is above casing: one """ 1. Borehole diameter: <u>8</u> 2. Well construction method: AUGER	30' (ft.) <u>appe-3002000' and 200700'')</u> <u>NA</u> (ft.) _(in.)	SUBM 24a. <u>Fr</u> construct 24h. <u>Fr</u> above, construct Div	TTA or Al ction D r Inj also s ction 1 disto a	L INS bothe 1 ivision 1617 ection abmit o the f 1636	TUCT s: Sta of Wi Mail S <u>Wells</u> a cop olfowin tter Qu Mail S	hmit this fo og: iter Quality lervice Cent : In additio y of this fo ig: uality, Unde iervice Cent	, Informat er, Raleigi n to sendin rm within rground L er, Raleigi	loy Process b, NC 2769 g the form 1 30 days of njection Co b, NC 27695	ing Unit. 9-1617 Io the address in 24a completion of well ntrol Program. 9-1636
or multiple injection or non-scater supply wells a abmit one form: . Total well depth below land surface: for multiple wells list all depths if different (exam- 0. Static water level below top of casing water level is above casing, one "=" 1. Burchole diameter: <u>8</u> 2. Well construction method; <u>AUGER</u> c. auger, rotary, cable, direct push, etc.) OR WATER SUPPLY WELLS ONLY:	30' (ft.) <u>appe-3002000' and 200700'')</u> <u>NA</u> (ft.) _(in.)	SUBM 24s. <u>Fa</u> constrate 24h. <u>Fa</u> above, constrate Div 24c. <u>Fa</u>	TTA or Al or Ini or Ini also s also n also n also n	L INS bothe 1 ivision 1617 ection abmit o the f 1636 ter Su	TUCT s: Su of Wi Mail S <u>Wells</u> a cop olfowin nter Qu Mail S uply &	hmit this fo og: iter Quality lervice Cent : In addition y of this fo ig: nality, Unde ervice Cent Injection V	, Informat er, Raleigi n to sendin rm within rground L er, Raleigi Velly: In a	Iou Process h, NC 2769 g the form 1 30 days of njection Co h, NC 2769 ddition to se	ing Linit, 1-1617 Io the address in 24a completion of well ntrol Program,

Form GW+)

£ ---

ſ

į

l....

ł.,

L

North Carolina Department of Environment and Natural Resources - Division of Water Quality

Revised Jan. 2013

WELL CONSTRUCTION R		For Int	ernal l	Jse ONI	.Y:					
This form can be used for single or multiple well	\$									
1. Well Contractor Information: James D. Barker		14. W	ATE	3 ZONI	S					
Well Contractor Name		FROM	i fi.	TO	ft.	DESCRIPTION				
3106A		23	ft.	25	ſt.					
NC Well Contractor Certification Number		15.0		CASIN		uulti-cased wells)			olicable)	
Quantex, Inc.		FROM	í ft.	TO	ft,	DIAMETER 2 in.	THIC		MATE	****
Company Name		0		15 CASIN		∠ … UBING (geothern		h 40	2. CAN CONS	PVC
2. Well Construction Permit #:		FROM		TO	ft.	DIAMETER in.	THIC		MATE	RIAL
List all applicable well construction permits (i.e.	County, State, Variance, etc.)		ft.	<u> </u>	ft.	in. in.			<u> </u>	
3. Well Use (check well use):		17.8	REE	N	н. 18.				-	
Water Supply Well:		FRON		TO	Ĭ	NAMETER SLO	YT SIZE	THICK		MATERIAL
□Agricultural	[]Municipal/Public	15	n. ft.	30	ft.	2 ^{in.} C in. C	.010	Sch	n 40	PVC
Geothermal (Heating/Cooling Supply)	CResidential Water Supply (single)	18.G		GALES NAS	iciti (1985)		10.000 Million		Hittiinii	
□Industrial/Commercial □Irrigation	□Residential Water Supply (shared)	FROM		TO		MATERIAL				OD & AMOUNT
Non-Water Supply Well:		0	ft.	11	ft.	neat cement	Pou			
2 Monitoring	DRecovery	11	ft.	13	ft.	bentonite	Pou	r 		·····
Injection Well:		-	ft.		·· ft.					:
OAquifer Recharge OAquifer Storage and Recovery	ElGroundwater Remediation	19. Sz 1/ROM		наукі 10	S PAC B	(if applicable) MATERIAL				METHOD
DAquifer Test	DSalmity Barrier	13	ñ.	30	ſĭ.	#2 sand	ł		Po	ur
Experimental Technology	El Subsidence Control		ù.		n.					
□Geothermal (Closed Loop)	El Traver	20 IN FROM		NGLO TO	G fattac	h additional shee DESCRIPTION (C	s if acce olor, hard	ssary) ness suil/ri	ock iver, 1	grafit aize, etc.)
CiGeothermal (Heating/Cooling Return)	DOther (explain under #21 Remarks)	0	ų,	1	Ť.			halt/gra		
4. Date Well(s) Completed: 6/6/13	Well ID# MW-10	1	ſî.	22	fi.		Claye	y Sand	y/Silt	*********
	WEIFELDE	22	ħ.	30	îL.	.:	Med	lium sai	nds	•
Sa. Well Location:	NEA		Ŕ.		ľt.			; . 	· · ·	··· · · · ·
Raeford Rd. Sunoco	NA NA		ft.		Ťt.					
Facility/Owner Name	Facility ID# (if applicable)		ft.		fi.					
4537 Raeford Road, Faye			ft.		ft.					
Physical Address, City, and Zip Cumberland	NA	21. RI	ман	KS	1001000		(All Magin	(Subburg	(figurið) og	nego ngo nga ga sa
County	Parcel Identification No. (PIN)	<u></u>								
Sb. Latitude and Longitude in degrees/m			,, ,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	4			silvin son ossani. S	**************************************		
(if well field, one lat/long is sufficient)	ninieazeevina n. detunu neEreez	22. Ce	rtifies	tion:		N N_	1			
35.040561 _N 78.9	955548 w		č Mari	din.	ž. 1	2.121	har		6/27/	13
		Signatu	e off	entified	Well Co	ntractor			Date	
6. Is (are) the well(s): @Permanent or	□Temporary					certify that the w 15A NCAC 02C 3				
	IVes or ZING					nyided to the well		× 1995 U UC	ana sana	nanas itua nim n
If Bas is a repair: fill out known well construction repair under #21 remarks section or on the back c						onal well detail				
8. Number of wells constructed: One						this page to pro- may also attach a				
For multiple injection of non-soler supply wells (DNLY with the same construction, you can						CADI LILINI (A	ย ไม่ยัญชุ บ	1 1100058	m yo
submit one form.	30'	SUBM	191-1111					÷.	•	
9. Total well depth below land surface: Far multiple wells list all depths ((different) (exam		24a. <u>F</u> constru				bmit this form •	within 3	0 days (of comp	letion of well
그는 승규는 것을 많이 못 같아요. 것 같아요. 것 같아요.	NIA .	- eonan e						un ve tte and	: cuico e a	
10. Static water level below top of casing: If outer level is above casing: ase """	(ft.)		ų			ter Quality, Ini ervice Center, J				
11. Borchole diameter: <u>8</u>	(în.)	246. F	ir: Ini		• •	In addition to			· ·	
		above,	also	suhmit	a cop	of this form	vithin 3	0 days t	of comp	letion of well
12. Well construction method: Auger (i.e. auger, many, coble, direct push, etc.)	In the second second second second second second second second second second second second second second second	constru	ction	to the f	ollowir	ig:				
		DI	visior			ality, Undergro ervice Center, I				
FOR WATER SUPPLY WELLS ONLY:		(1)								
13a. Yield (gpm) M	(etland of test:	zac. Fo	r Wa Iressi	aer Suj 88): abo	ve, als	Injection Wells o submit one c	<u>; in</u> add opy of	nuon tà : this Iorn	sending a withir	ine form to 30 days of
13b. Dislofection type:	Amount:	comple	tion (si well		uction to the co				
		where	onstr	ucted.						

Form GW-1

F '''

ſ

ì

.

L

L...

Ľ

North Carolina Department of Environment and Natural Resources- Division of Water Quality

Revised Jan 2013

Table 7: Free Product Recovery InformationRaeford Road Sunoco4537 Raeford RoadFayetteville, Cumberland County, North Carolina

[

.

1 1

|

| | | |

L

[____

Total Amount of Product Recovered (gallons)					75.9 Gallons		1			12.34 Gallons		
Amount of Liquid Product					56 Gallons					10 Gallons		
Amount of Liquid (Water and Product)		:			2,288 Gallons					2,058 Gallons		
Amount of Vaporized Product					19.9 Gallons					2.34 Galions		
Product Thickness after Recovery (inches)	0	0	0	0	1	0	0	Ō	0		0	0
Product Thickness before Recovery (inches)	0.56	0.66	0.14	0.54	I	0.25	0.05	0.40	0.24		No Product	0.01
Free Product Recovery Method*	AFVR	AFVR	AFVR	AFVR		AFVR	AFVR	AFVR	AFVR		AFVR	AFVR
Product Type (gas, diesel, etc.)	Gasoline	Gasoline	Gasoline	Gasoline	T	Gasoline	Gasoline	Gasoline	Gasoline		Gasoline	Gasoline
Well ID#	MW-1	MW-2	MW-4	MW-6	Total	MW-1	MW-2	MW-4	9-WM	Total	MW-1	MW-2
Date (m/dd/yy)	10/14/08	10/14/08	10/14/08	10/14/08	10/14/08	3/10/09	3/10/09	3/10/09	3/10/09	3/10/09	10/14/09	10/14/09

Table 7: Free Product Recovery Information (Continued)

[

.

[

[

|

[| **L**___

Total Amount of Product Recovered (gallons)			4.94 Gallons					2.69 Gallons					2.26 Gallons	
Amount of Liquid Product														
Amount of Liquid (Water and Product)			1,100 Gallons					2,058 Gallons					1,268 Gallons	
Amount of Vaponized Product			4.94 Gallons					2.69 Gallons					2.26 Gallons	
Product Thickness after Recovery (inches)	0	0		0	0	0	o		0	0	0	0	1	0
Product Thickness before Recovery (inches)	No Product	0.20	I	No Product	0.02	0.01	0.01	1	0.29	0.30	0.27	0.13		2.05
Free Product Recovery Methed*	AFVR	AFVR		AFVR	AFVR	AFVR	AFVR		AFVR	AFVR	AFVR	AFVR		AFVR
Product Type (gas, diesel, etc.)	Gasoline	Gasoline	a	Gasoline	Gasoline	Gasoline	Gasoline	F	Gasoline	Gasoline	Gasoline	Gasoline	ſ	Gasoline
Well D#	MW-4	MW-6	Total	MW-1	MW-2	MW-4	MW-6	Total	MW-1	MW-2	MW-4	MW-6	Total	MW-1
Date (m/dd/yy)	10/14/09	10/14/09	10/14/09	4/27/10	4/27/10	4/27/10	4/27/10	4/27/10	8/7/12	8/7/12	8/7/12	8/7/12	8/7/12	4/22/13

. .___ Table 7: Free Product Recovery Information (Continued)

[_____

: L...

ĺ,

[,

·....

L

Total Amount of Liquid Product Recovered (gallons)				7 Gallons 8.43 Gallons
đ				
				1,747 Gallons
Amount of Vaporized Product				1.43 Gallons
Product Thickness after Recovery (inches)	0	0	0	
Product Thickness before Recovery (inches)	2.15	2.25	1.85	I
Free Product Recovery Method*	AFVR	AFVR	AFVR	
Product Type (gas, diesel, etc.)	Gasoline	Gasoline	Gasoline	•
	MW-2	MW-4	MW-6	Total
Date (m/dďyy)	4/22/13	4/22/13	4/22/13	4/22/13

Table 8: Cumulative Volume of Free Product Recovered from SiteRaeford Road Sunoco4537 Raeford RoadFayetteville, Cumberland County, North Carolina

ſ

ſ

[

[

[...

| | |

| |___

L

Date of Recovery Event Total Vol (m/dd/yy) Current F	Total Volume Recovered from Site During Current Recovery Event (gallons)	Cumulative Total of Volume Recovered to Date from All Recovery Events (gallons)
10/14/08	75.9	75.9
3/10/09	12.34	88.24
10/14/09	4.94	93.18
4/27/10	2.69	95.87
8/7/12	2.26	98.13
4/22/13	8.43	106.56

 Table 9
 Summary of Monitoring and Supply Well Construction Data

[

٢

[

ſ -----

ſ

[

ł ί

ĺ

Albania Visione

. ____

Ŀ

Ĺ

(_____

Raeford Road Sunoco (Former Jim's Texaco) 4537 Raeford Road Fayetteville, Cumberland County, North Carolina 28304

Ē
-2
-
12
F
2
¥
8
<u>і</u>
*
E
E
5
Ä
<u> </u>
υ
_
e
h.,
5

Well ID	Date	Well	Screened	Bottom of	Top of	Free	Depth to	Groundwater	Groundwater Elevation
	Installed	Casing	Interval	Well	Casing	Product	Water	Elevation	Adjusted for Free
		Denth			Flevation	Thickness	TTOC	6/07/13	
						6/07/13	6/07/13	2	
MW-1	9/25/92	0-30	20-30	30	94.47	1.7	MN	MN	NM
MW-2	9/25/92	0-30	20-30	30	94.40	1.6	MN	MN	NM
MW-3	9/28/92	0-29	19-29	29	93.00	Ð	20.60	72.40	72.40
MW-4	4/30/08	0-30	15-30	30	94.26	1.6	MN	MN	NM
MW-5	4/30/08	0-30	15-30	30	94.02	1.2	MN	MN	NM
MW-6	4/30/08	0-30	15-30	30	92.92	0.6	MN	MN	MN
MW-7	6/05/13	0-30	15-30	30	91.76	ďŊ	20.10	71.66	71.66
MW-7D	6/05/13	0-70	60-70	10	91.70	ď	21.80	69.90	69.90
MW-8	6/06/13	0-30	15-30	30	91.74	NP	20.80	70.94	70.94
MW-9	6/06/13	0-30	15-30	30	90.52	din	22.04	68.48	68.48
MW-10	6/06/13	0:-0	15-30	30	94.26	NP	22.54	71.72	71.72
NP – No fi	NP – No free product								

NM – Not measured (oil/water interface probe not operational)

Supply Well Information

fron Area	
tance urce	
Disi So	
J.	
Scree Scree	
Well Inte	
विषा	
Casil epth	
Well D	
C.	
Date stalle	
În:	
:of II	
Type We	
Vell epth	
×Ω	
5	
Well Us	
ACERS MERSONCESS.	
,Ao	
l Own ddress	
Well	
Well #	

Table 10: Land UseRaeford Road Sunoco4537 Raeford Road

[

F

(.

ſ

ĺ

[

[

[| | Fayetteville, Cumberland County, North Carolina

	Date	Land Use Feature	Location	Distance and
	Determined (include zo	(include zoning)	(complete street address if applicable)	Direction from Source Area
1	April 2013	CIP	Adjacent property located across Raeford Road northeast of	Approximately 200
			the Site	feet northwest
			Atlas Chiropractic, 4542 Raeford Road	
2	April 2013	C1P	Adjacent property located across Raeford Road north of the	Approximately 200
			Site	feet north
			Bojangles, 4554 Raeford Road	
m	April 2013	CIP	Adjacent property located across Raeford Road northwest of	Approximately 200
			the Site	feet northeast
			Wilco-Hess, 4560 Raeford Road	
4	April 2013	CIP	Adjacent property located south and west of the Site	Approximately 150
			Wachovia Bank, 4549 Raeford Road	feet west
ß	April 2013	R10	Adjacent property located across Scotland Drive northeast of	Approximately 300
			the Site	feet southeast
			William H. Owen Elementary School, 4533 Raeford Road	

Table 11

Summary of Remediation Schedule and Cleanup Progress Milestones Raeford Road Sunoco (Former Jim's Texaco) 4537 Raeford Road Fayetteville, Cumberland County, North Carolina 28304

Remediation Option	Cleanup Progress Milestone	Schedule
Aggressive Fluid Vapor Recovery	Removal of free product	Unknown
Aggressive Fluid Vapor Recovery	Contaminant levels below the GCLs set forth in <i>The</i> <i>Guidelines</i>	Unknown (to be monitored through quarterly monitoring)

Constant of the second

٤.,

Table 12Cost Estimate for each evaluated Remedial OptionRaeford Road Sunoco (Former Jim's Texaco)4537 Raeford RoadFayetteville, Cumberland County, North Carolina 28304

Remedial Option	Estimated Cost
Risk Reduction Mechanisms	Not a viable remediation option
Excavation	Not a reasonable remediation option
Natural Attenuation	\$0
Pump and Treat System	Approximately \$195,000 to \$215,000 for installation and approximately \$15,000 to \$20,000 per quarter for operations and maintenance
Aggressive Fluid Vapor Recovery	Approximately \$4,400 per event