This electronic collection of documents is provided for the convenience of the user and is Not a Certified Document –

The documents contained herein were originally issued and sealed by the individuals whose names and license numbers appear on each page, on the dates appearing with their signature on that page.

This file or an individual page shall not be considered a certified document.

9
Ö
73
7
1
٠.
E
C
E
2
E
H
Ξ
2

CONTENTS

DESCRIPTION

LEGEND (SOIL & ROCK)

CORE PHOTOGRAPHS

SITE PHOTOGRAPHS

SUPPLEMENTAL LEGEND (GSI)

BORE LOGS & CORE REPORTS ROCK CORE SUMMARY

TITLE SHEET

SITE PLAN PROFILE CROSS SECTIONS

SHEET NO.

2Α

5-7

14

3608 4

STATE OF NORTH CAROLINA

DEPARTMENT OF TRANSPORTATION **DIVISION OF HIGHWAYS**

GEOTECHNICAL ENGINEERING UNIT

OVER I-40 AT -L- STA. 50 + 61

STRUCTURE SUBSURFACE INVESTIGATION

COUNTY WAKE PROJECT DESCRIPTION <u>I-40 AND SR 1002</u> (AVIATION PARKWAY) INTERCHANGE SITE DESCRIPTION REPLACEMENT OF BRIDGE NO. 073 ON AVIATION PARKWAY (SR 1002)

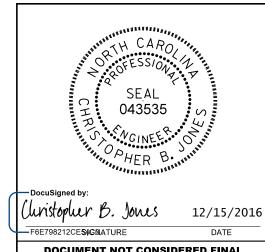
STATE PROJECT REFERENCE NO. I-5506 16

CAUTION NOTICE

THE SUBSURFACE INFORMATION AND THE SUBSURFACE INVESTIGATION ON WHICH IT IS BASED WERE MADE FOR THE PURPOSE OF STUDY, PLANNING AND DESIGN, AND NOT FOR CONSTRUCTION OR PAY PURPOSES. THE VARIOUS FIELD BORING LOGS, ROCK CORES AND SOIL TEST DATA AVAILABLE MAY BE REVIEWED OR INSPECTED IN RALEIGH BY CONTACTING THE N. C. DEPARTMENT OF TRANSPORTATION, GEOTECHNICAL ENGINEERING UNIT AT 1991 707-6850. THE SUBSURFACE PLANS AND REPORTS, FIELD BORING LOGS, ROCK CORES AND SOIL TEST DATA ARE NOT PART OF THE CONTRACT.

CENERAL SOIL AND ROCK STRATA DESCRIPTIONS AND INDICATED BOUNDARIES ARE BASED ON A GEOTECHNICAL INTERPRETATION OF ALL AVAILABLE SUBSURFACE DATA AND MAY NOT NECESSARILY REFLECT THE ACTUAL SUBSURFACE CONDITIONS BETWEEN BORINGS OR BETWEEN SAMPLED STRATA WITHIN THE BOREHOLE. THE LABDRATORY SAMPLE DATA AND THE IN SITU (IM-PLACE) TEST DATA CAN BE RELIED ON ONLY TO THE DEGREE OF RELIABILITY INHERENT IN THE STANDARD TEST METHOD. THE OBSERVED WATER LEVELS OR SOIL MOISTURE CONDITIONS NIDICATED IN THE SUBSURFACE INVESTIGATIONS ARE AS RECORDED AT THE TIME OF THE INVESTIGATION. THESE WATER LEVELS OR SOIL MOISTURE CONDITIONS MAY VARY CONSIDERABLY WITH TIME ACCORDING TO CLIMATIC CONDITIONS INCLUDING TEMPERATURES, PRECIPITATION AND WIND, AS WELL AS OTHER NON-CLIMATIC FACTORS.

THE BIDDER OR CONTRACTOR IS CAUTIONED THAT DETAILS SHOWN ON THE SUBSURFACE PLANS ARE PRELIMINARY ONLY AND IN MANY CASES THE FINAL DESIGN DETAILS ARE DIFFERENT. FOR BIDDING AND CONSTRUCTION PLAYERS, REFER TO THE CONSTRUCTION PLANS AND DOCUMENTS FOR FINAL DESIGN INFORMATION ON THIS PROJECT. THE DEPARTMENT DOES NOT WARRANT OR GUARANTEE THE DESIGN INFORMATION ON THIS PROJECT. THE DEPARTMENT DOES NOT WARRANT OR CHARANTE THE SUFFICIENCY OF A ACCURACY OF THE INVESTIGATION MADE, NOR THE INTERPRETATIONS MADE, OR THOUGHD OF THE DEPARTMENT AS TO THE TYPE OF MATERIALS AND CONDITIONS TO BE ENCOUNTERED. THE BIDDER OR CONTRACTOR IS CAUTIONED TO MAKE SUCH INDEPENDENT SUBSURFACE INVESTIGATIONS AS HE DEEMS NECESSARY TO SATISFY HIMSELF AS TO CONDITIONS TO BE ENCOUNTERED ON THE PROJECT. THE CONTRACTOR SHALL HAVE NO CLAIM FOR ADDITIONAL COMPENSATION OR FOR AN EXTENSION OF TIME FOR ANY REASON RESULTING FROM THE ACTUAL CONDITIONS ENCOUNTERED AT THE SITE DIFFERING FROM THOSE INDICATED IN THE SUBSURFACE INFORMATION.


NOTES:

1. THE INFORMATION CONTAINED HEREIN IS NOT IMPLIED OR GUARANTEED BY THE N. C. DEPARTMENT OF TRANSPORTATION AS ACCURATE NOR IS IT CONSIDERED PART OF THE PLANS, SPECIFICATIONS OR CONTRACT FOR THE PROJECT.

2. BY HAVING REQUESTED THIS INFORMATION, THE CONTRACTOR SPECIFICALLY WAIVES ANY CLAIMS FOR INCREASED COMPENSATION OR EXTENSION OF TIME BASED ON DIFFERENCES BETWEEN THE CONDITIONS INDICATED HEREIN AND THE ACTUAL CONDITIONS AT THE PROJECT SITE.

DATE 10/2016

C. JONES B. THOMPSON B. KEANEY B. HOWEY D. TIGNOR INVESTIGATED BY **F&R, Inc.** DRAWN BY __*CBJ* CHECKED BY **ECH** SUBMITTED BY _HDR ENGINEERING

DOCUMENT NOT CONSIDERED FINAL UNLESS ALL SIGNATURES COMPLETED

PROJECT REFERENCE NO. SHEET NO.

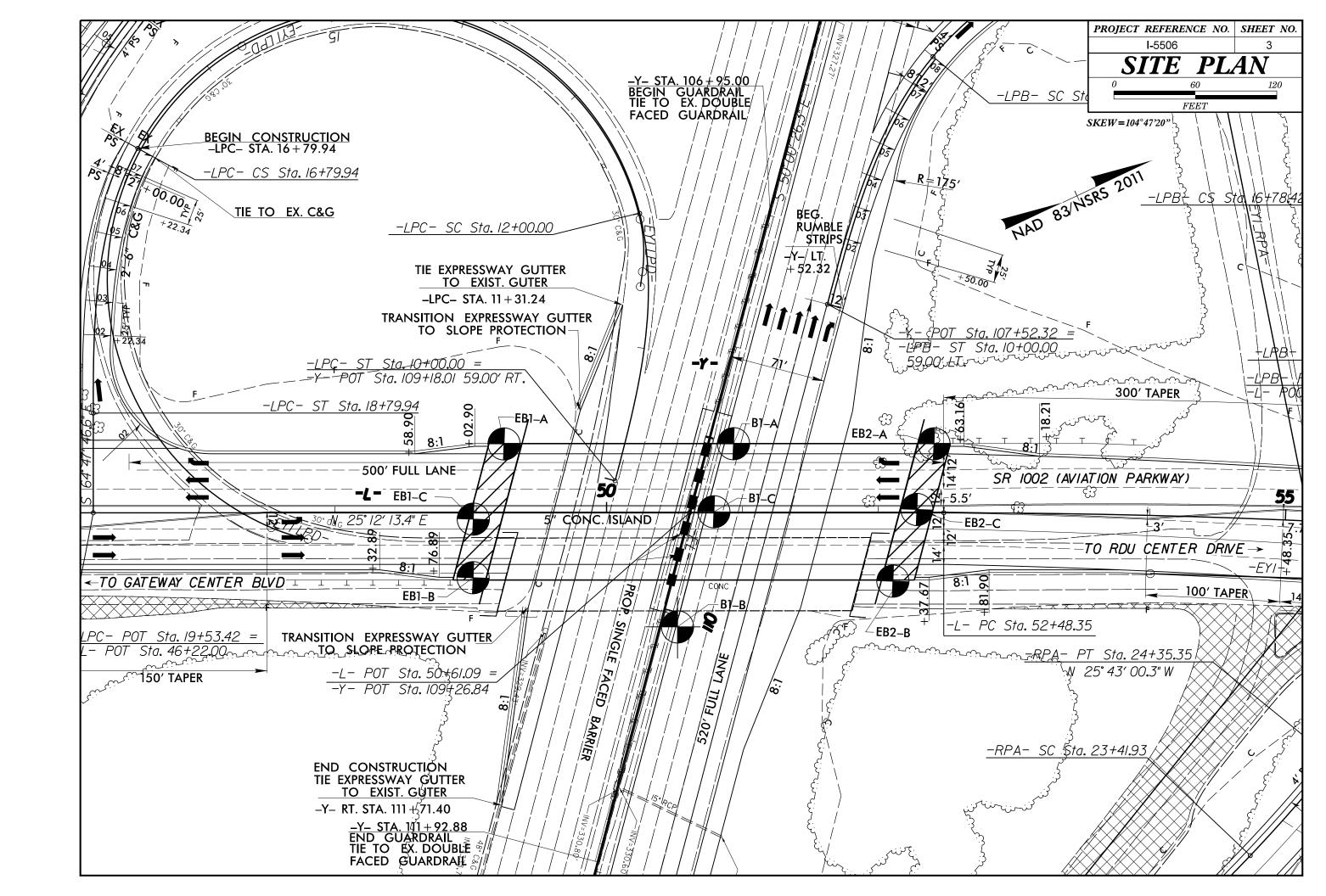
1-5506
2

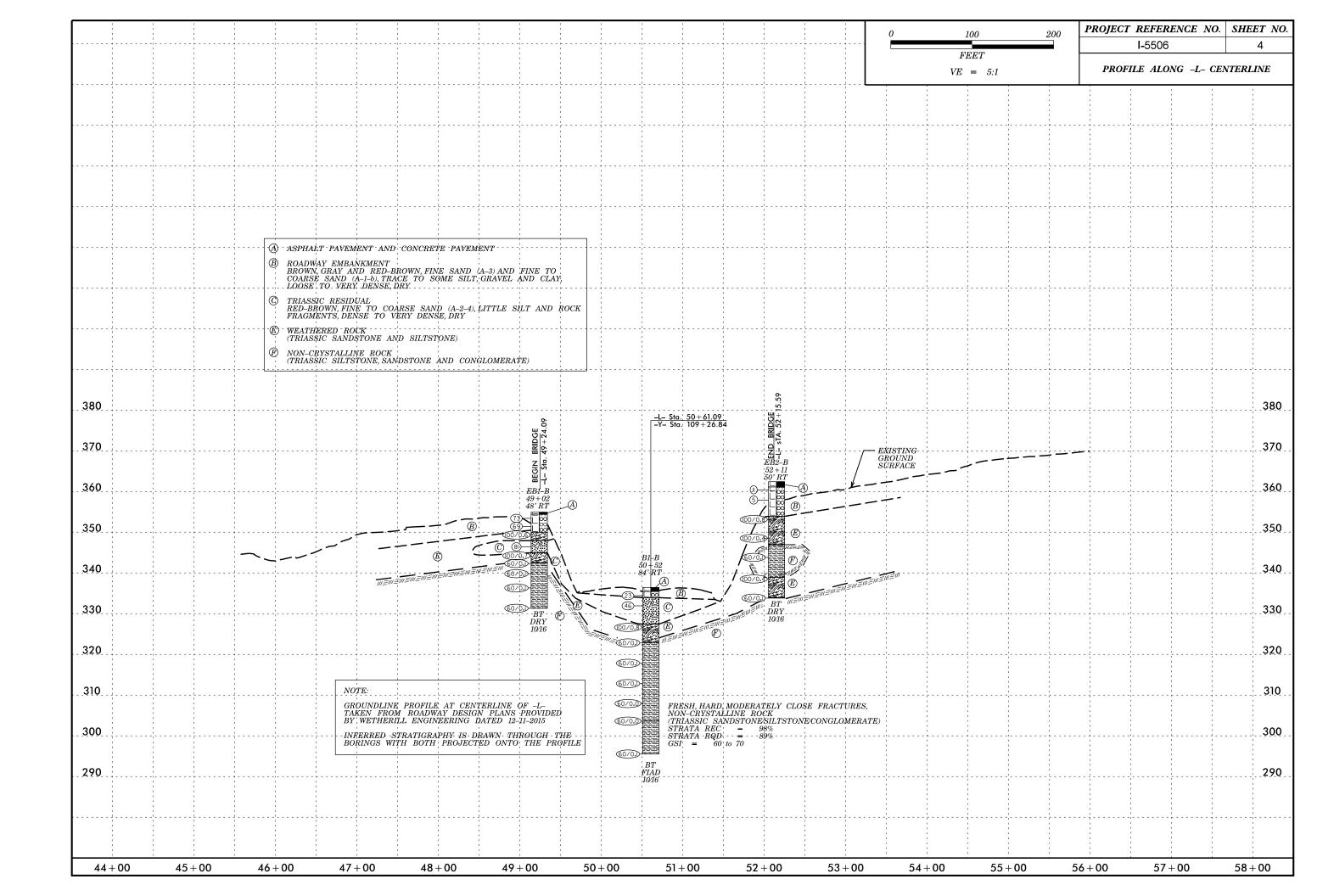
NORTH CAROLINA DEPARTMENT OF TRANSPORTATION DIVISION OF HIGHWAYS GEOTECHNICAL ENGINEERING UNIT

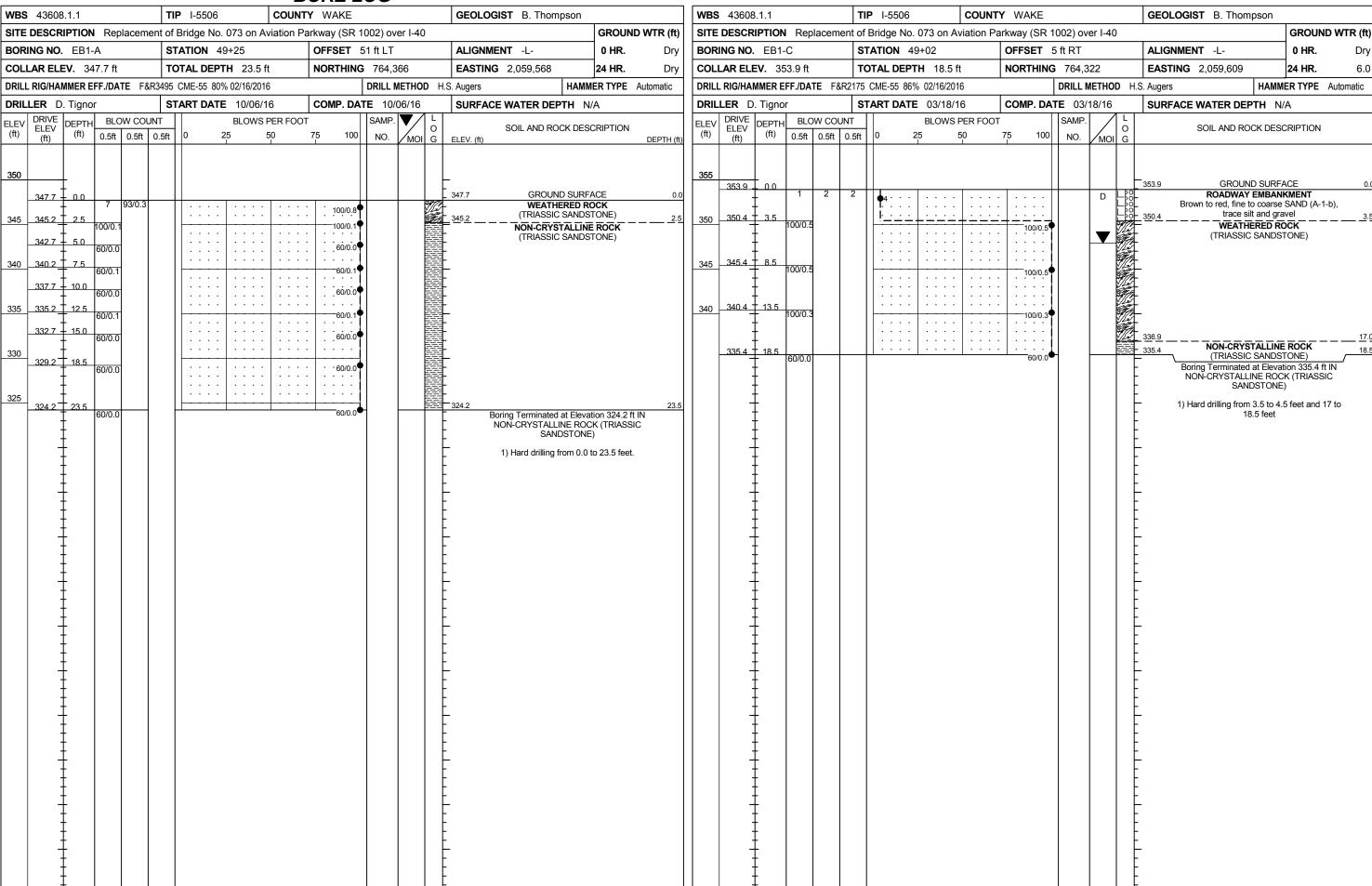
SUBSURFACE INVESTIGATION

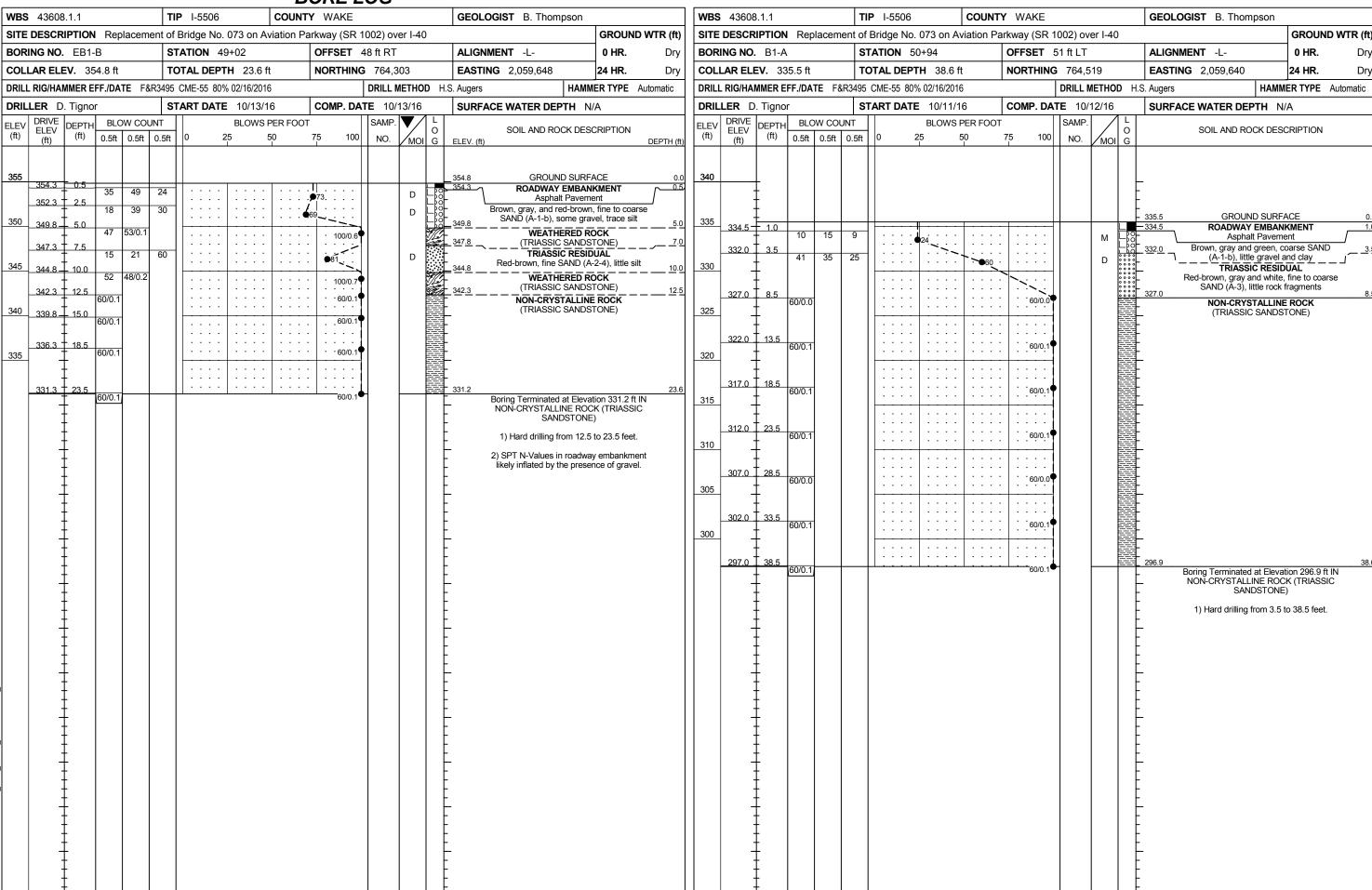
SOIL AND ROCK LEGEND, TERMS, SYMBOLS, AND ABBREVIATIONS

SOIL DESCRIPTION	GRADATION	ROCK DESCRIPTION	TERMS AND DEFINITIONS		
SOIL IS CONSIDERED UNCONSOLIDATED, SEMI-CONSOLIDATED, OR WEATHERED EARTH MATERIALS THAT CAN BE PENETRATED WITH A CONTINUOUS FLIGHT POWER AUGER AND YIELD LESS THAN 100 BLOWS PER FOOT	<u>WELL GRADED</u> - INDICATES A GOOD REPRESENTATION OF PARTICLE SIZES FROM FINE TO COARSE. UNIFORMLY GRADED - INDICATES THAT SOIL PARTICLES ARE ALL APPROXIMATELY THE SAME SIZE.	HARD ROCK IS NON-COASTAL PLAIN MATERIAL THAT WOULD YIELD SPT REFUSAL IF TESTED. AN INFERRED ROCK LINE INDICATES THE LEVEL AT WHICH NON-COASTAL PLAIN MATERIAL WOULD YIELD SPT REFUSAL.	ALLUVIUM (ALLUV.) - SOILS THAT HAVE BEEN TRANSPORTED BY WATER.		
ACCORDING TO THE STANDARD PENETRATION TEST (AASHTO T 206, ASTM D1586). SOIL CLASSIFICATION IS BASED ON THE AASHTO SYSTEM, BASIC DESCRIPTIONS GENERALLY INCLUDE THE FOLLOWING:	GAP-GRADED - INDICATES A MIXTURE OF UNIFORM PARTICLE SIZES OF TWO OR MORE SIZES.	SPT REFUSAL IS PENETRATION BY A SPLIT SPOON SAMPLER EQUAL TO OR LESS THAN 0.1 FOOT PER 60 BLOWS IN NON-COASTAL PLAIN MATERIAL, THE TRANSITION BETWEEN SOIL AND ROCK IS OFTEN	AQUIFER - A WATER BEARING FORMATION OR STRATA.		
CONSISTENCY, COLOR, TEXTURE, MOISTURE, AASHTO CLASSIFICATION, AND OTHER PERTINENT FACTORS SUCH AS MINERALOGICAL COMPOSITION, ANGULARITY, STRUCTURE, PLASTICITY, ETC. FOR EXAMPLE,	ANGULARITY OF GRAINS	REPRESENTED BY A ZONE OF WEATHERED ROCK. ROCK MATERIALS ARE TYPICALLY DIVIDED AS FOLLOWS:	ARENACEOUS - APPLIED TO ROCKS THAT HAVE BEEN DERIVED FROM SAND OR THAT CONTAIN SAND. ARGILLACEOUS - APPLIED TO ALL ROCKS OR SUBSTANCES COMPOSED OF CLAY MINERALS, OR HAVING		
VERY STIFF, GRAY, SILTY CLAY, MOIST WITH INTERBEDDED FINE SAND LAYERS, HIGHLY PLASTIC, A-7-6	THE ANGULARITY OR ROUNDNESS OF SOIL GRAINS IS DESIGNATED BY THE TERMS:	WEATHERED WITCHES NON-COASTAL PLAIN MATERIAL THAT WOULD YIELD SPT N VALUES >	A NOTABLE PROPORTION OF CLAY IN THEIR COMPOSITION, SUCH AS SHALE, SLATE, ETC.		
SOIL LEGEND AND AASHTO CLASSIFICATION	ANGULAR, SUBANGULAR, SUBROUNDED, OR ROUNDED.	ROCK (WR) 100 BLOWS PER FOOT IF TESTED.	ARTESIAN - GROUND WATER THAT IS UNDER SUFFICIENT PRESSURE TO RISE ABOVE THE LEVEL AT		
GENERAL GRANULAR MATERIALS SILT-CLAY MATERIALS CLASS. (≤ 35% PASSING *200) (> 35% PASSING *200) ORGANIC MATERIALS	MINERALOGICAL COMPOSITION MINERAL NAMES SUCH AS QUARTZ, FELDSPAR, MICA, TALC, KAQLIN, ETC.	CRYSTALLINE FINE TO COARSE GRAIN IGNEOUS AND METAMORPHIC ROCK THAT WOULD YIELD SPT REFUSAL IF TESTED, ROCK TYPE INCLUDES GRANITE,	WHICH IT IS ENCOUNTERED, BUT WHICH DOES NOT NECESSARILY RISE TO OR ABOVE THE GROUND SURFACE.		
CLASS. (≤ 35% PASSING =200) (> 35% PASSING =200) CROUP A-1 A-3 A-2 A-4 A-5 A-6 A-7 A-1, A-2 A-4, A-5	ARE USED IN DESCRIPTIONS WHEN THEY ARE CONSIDERED OF SIGNIFICANCE.	GNEISS, GABBRO, SCHIST, ETC.	CALCAREOUS (CALC.) - SOILS THAT CONTAIN APPRECIABLE AMOUNTS OF CALCIUM CARBONATE.		
CLASS. A-1-0 A-1-b A-2-4 A-2-5 A-2-6 A-2-7 A-7-6 A-3 A-6, A-7	COMPRESSIBILITY	NON-CRYSTALLINE FINE TO COARSE GRAIN METAMORPHIC AND NON-COASTAL PLAIN SEDIMENTARY ROCK THAT WOULD YELLD SPT REFUSAL IF TESTED.	COLLUVIUM - ROCK FRAGMENTS MIXED WITH SOIL DEPOSITED BY GRAVITY ON SLOPE OR AT BOTTOM		
SYMBOL 0000 d00000 0000000000000000000000000	SLIGHTLY COMPRESSIBLE LL < 31 MODERATELY COMPRESSIBLE LL = 31 - 50	ROCK (NCR) ROCK TYPE INCLUDES PHYLLITE, SLATE, SANDSTONE, ETC. COASTAL PLAIN COASTAL PLAIN SEDIMENTS CEMENTED INTO ROCK, BUT MAY NOT YIELD	OF SLOPE.		
7. PASSING	HIGHLY COMPRESSIBLE LL > 50	SPT REFUSAL. ROCK TYPE INCLUDES LIMESTONE, SANDSTONE, CEMENTED	CORE RECOVERY (REC.) - TOTAL LENGTH OF ALL MATERIAL RECOVERED IN THE CORE BARREL DIVIDED BY TOTAL LENGTH OF CORE RUN AND EXPRESSED AS A PERCENTAGE.		
10 50 MX GRANULAR CLAY MUCK,	PERCENTAGE OF MATERIAL	CP) SHELL BEDS, ETC. WEATHERING	DIKE - A TABULAR BODY OF IGNEOUS ROCK THAT CUTS ACROSS THE STRUCTURE OF ADJACENT		
*200 15 MX 25 MX 10 MX 35 MX 35 MX 35 MX 35 MX 36 MN 36 MN 36 MN 36 MN 36 MN 36 MN	GRANULAR SILT - CLAY ORGANIC MATERIAL SOILS SOILS OTHER MATERIAL	FRESH ROCK FRESH, CRYSTALS BRIGHT, FEW JOINTS MAY SHOW SLIGHT STAINING, ROCK RINGS UNDER	ROCKS OR CUTS MASSIVE ROCK.		
MATERIAL	TRACE OF ORGANIC MATTER 2 - 3% 3 - 5% TRACE 1 - 10% LITTLE ORGANIC MATTER 3 - 5% 5 - 12% LITTLE 10 - 20%	HAMMER IF CRYSTALLINE.	DIP - THE ANGLE AT WHICH A STRATUM OR ANY PLANAR FEATURE IS INCLINED FROM THE HORIZONTAL.		
PASSING *40	MODERATELY ORGANIC 5 - 10% 12 - 20% SOME 20 - 35%	VERY SLIGHT ROCK GENERALLY FRESH, JOINTS STAINED, SOME JOINTS MAY SHOW THIN CLAY COATINGS IF OPEN, (V SLI.) CRYSTALS ON A BROKEN SPECIMEN FACE SHINE BRIGHTLY. ROCK RINGS UNDER HAMMER BLOWS IF	DIP DIRECTION (DIP AZIMUTH) - THE DIRECTION OR BEARING OF THE HORIZONTAL TRACE OF THE		
PI 6 MX NP 10 MX 10 MX 11 MN 11 MN 10 MX 10 MX 11 MN 11 MN 11 MN MODERATE HIGHLY	HIGHLY ORGANIC > 10% > 20% HIGHLY 35% AND ABOVE	OF A CRYSTALLINE NATURE.	LINE OF DIP, MEASURED CLOCKWISE FROM NORTH.		
GROUP INDEX 0 0 0 4 MX 8 MX 12 MX 16 MX NO MX AMOUNTS OF ORGANIC SOILS	GROUND WATER	SLIGHT ROCK GENERALLY FRESH, JOINTS STAINED AND DISCOLORATION EXTENDS INTO ROCK UP TO (SLI.) 1 INCH. OPEN JOINTS MAY CONTAIN CLAY. IN GRANITOID ROCKS SOME OCCASIONAL FELDSPAR	FAULT - A FRACTURE OR FRACTURE ZONE ALONG WHICH THERE HAS BEEN DISPLACEMENT OF THE SIDES RELATIVE TO ONE ANOTHER PARALLEL TO THE FRACTURE.		
OF MAID COAVEL AND FINE SILTY OR CLAYEY SILTY CLAYEY MATTER	WATER LEVEL IN BORE HOLE IMMEDIATELY AFTER DRILLING	(SLI.) I INCH. OPEN JOINTS MAY CONTAIN CLAY. IN GRANITOID ROCKS SOME OCCASIONAL FELDSPAR CRYSTALS ARE DULL AND DISCOLORED. CRYSTALLINE ROCKS RING UNDER HAMMER BLOWS.	FISSILE - A PROPERTY OF SPLITTING ALONG CLOSELY SPACED PARALLEL PLANES.		
MATERIALS SAND GRAVEL AND SAND SOILS SOILS	STATIC WATER LEVEL AFTER 24 HOURS	MODERATE SIGNIFICANT PORTIONS OF ROCK SHOW DISCOLORATION AND WEATHERING EFFECTS. IN	FLOAT - ROCK FRAGMENTS ON SURFACE NEAR THEIR ORIGINAL POSITION AND DISLODGED FROM		
GEN. RATING EXCELLENT TO GOOD FAIR TO POOR POOR UNSUITABLE	PERCHED WATER, SATURATED ZONE, OR WATER BEARING STRATA	(MOD.) GRANITOID ROCKS, MOST FELDSPARS ARE DULL AND DISCOLORED, SOME SHOW CLAY. ROCK HAS DULL SOUND UNDER HAMMER BLOWS AND SHOWS SIGNIFICANT LOSS OF STRENGTH AS COMPARED	PARENT MATERIAL.		
AS SUBGRADE	SPRING OR SEEP	WITH FRESH ROCK.	FLOOD PLAIN (FP) - LAND BORDERING A STREAM, BUILT OF SEDIMENTS DEPOSITED BY THE STREAM. FORMATION (FM.) - A MAPPABLE GEOLOGIC UNIT THAT CAN BE RECOGNIZED AND TRACED IN THE		
CONSISTENCY OR DENSENESS	MISCELLANEOUS SYMBOLS	MODERATELY ALL ROCK EXCEPT QUARTZ DISCOLORED OR STAINED. IN GRANITOID ROCKS, ALL FELDSPARS DULL SEVERE AND DISCOLORED AND A MAJORITY SHOW KAOLINIZATION. ROCK SHOWS SEVERE LOSS OF STRENGTH	FIELD.		
RANGE OF STANDARD RANGE OF UNCONFINED	III 05/405	(MOD.SEV.) AND CAN BE EXCAVATED WITH A GEOLOGIST'S PICK, ROCK GIVES "CLUNK' SOUND WHEN STRUCK,	JOINT - FRACTURE IN ROCK ALONG WHICH NO APPRECIABLE MOVEMENT HAS OCCURRED.		
PRIMARY SOIL TYPE CONSISTENCY PENETRATION RESISTENCE COMPRESSIVE STRENGTH (N-VALUE) (TONS/FT ²)	ROADWAY EMBANKMENT (RE) 25/825 DIP & DIP DIRECTION WITH SOIL DESCRIPTION OF ROCK STRUCTURES	IF TESTED, WOULD YIELD SPT REFUSAL SEVERE ALL ROCK EXCEPT QUARTZ DISCOLORED OR STAINED, ROCK FABRIC CLEAR AND EVIDENT BUT	LEDGE - A SHELF-LIKE RIDGE OR PROJECTION OF ROCK WHOSE THICKNESS IS SMALL COMPARED TO		
VERY LODGE 4.4	→ SPI → SLODE MINISTER	(SEV.) REDUCED IN STRENGTH TO STRONG SOIL. IN GRANITOID ROCKS ALL FELDSPARS ARE KAOLINIZED	ITS LATERAL EXTENT. LENS - A BODY OF SOIL OR ROCK THAT THINS OUT IN ONE OR MORE DIRECTIONS.		
GENERALLY LOOSE 4 TO 10 GRANULAR MEDIUM DENSE 10 TO 30 N/A	SOIL SYMBOL OPT ONT TEST BORING STUPE INDICATOR INSTALLATION	TO SOME EXTENT. SOME FRAGMENTS OF STRONG ROCK USUALLY REMAIN. IF TESTED, WOULD YIELD SPT N VALUES > 100 BPF	MOTTLED (MOT.) - IRREGULARLY MARKED WITH SPOTS OF DIFFERENT COLORS. MOTTLING IN SOILS		
MATERIAL DENSE 30 TO 50	ARTIFICIAL FILL (AF) OTHER AUGER BORING CONE PENETROMETER THAN ROADWAY EMBANKMENT AUGER BORING TEST	VERY ALL ROCK EXCEPT QUARTZ DISCOLORED OR STAINED, ROCK FABRIC ELEMENTS ARE DISCERNIBLE	USUALLY INDICATES POOR AERATION AND LACK OF GOOD DRAINAGE.		
VERT DENSE 2 200	A COUNDING DOD	SEVERE BUT MASS IS EFFECTIVELY REDUCED TO SOIL STATUS, WITH ONLY FRAGMENTS OF STRONG ROCK (V SEV.) REMAINING, SAPROLITE IS AN EXAMPLE OF ROCK WEATHERED TO A DEGREE THAT ONLY MINOR	PERCHED WATER - WATER MAINTAINED ABOVE THE NORMAL GROUND WATER LEVEL BY THE PRESENCE OF AN INTERVENING IMPERVIOUS STRATUM.		
VERY SOFT < 2 < 0.25 GENERALLY SOFT 2 TO 4 0.25 TO 0.5	- INFERRED SOIL BOUNDARY - CORE BORING SOUNDING ROD	VESTIGES OF ORIGINAL ROCK FABRIC REMAIN. <u>IF TESTED, WOULD YIELD SPT N VALUES < 100 BPF</u>	RESIDUAL (RES.) SOIL - SOIL FORMED IN PLACE BY THE WEATHERING OF ROCK.		
SILT-CLAY MEDIUM STIFF 4 TO 8 0.5 TO 1.0 MATERIAL STIFF 8 TO 15 1 TO 2	MONITORING WELL TEST BORING WITH CORE	COMPLETE ROCK REDUCED TO SOIL, ROCK FABRIC NOT DISCERNIBLE, OR DISCERNIBLE ONLY IN SMALL AND	ROCK QUALITY DESIGNATION (ROD) - A MEASURE OF ROCK QUALITY DESCRIBED BY TOTAL LENGTH OF		
(COHESIVE) VERY STIFF 15 TO 3Ø 2 TO 4	TTTTT ALLUVIAL SOIL BOUNDARY A PIEZOMETER SPT N-VALUE	SCATTERED CONCENTRATIONS, QUARTZ MAY BE PRESENT AS DIKES OR STRINGERS, SAPROLITE IS ALSO AN EXAMPLE.	ROCK SEGMENTS EQUAL TO OR GREATER THAN 4 INCHES DIVIDED BY THE TOTAL LENGTH OF CORE RUN AND EXPRESSED AS A PERCENTAGE.		
HARD > 30 > 4	RECOMMENDATION SYMBOLS	ROCK HARDNESS	SAPROLITE (SAP.) - RESIDUAL SOIL THAT RETAINS THE RELIC STRUCTURE OR FABRIC OF THE PARENT		
TEXTURE OR GRAIN SIZE		VERY HARD CANNOT BE SCRATCHED BY KNIFE OR SHARP PICK, BREAKING OF HAND SPECIMENS REQUIRES	ROCK.		
U.S. STD. SIEVE SIZE 4 10 40 60 200 270 OPENING (MM) 4.76 2.00 0.42 0.25 0.075 0.053	I WY ACCEPTABLE BUT NOT TO BE	SEVERAL HARD BLOWS OF THE GEOLOGIST'S PICK. HARD CAN BE SCRATCHED BY KNIFE OR PICK ONLY WITH DIFFICULTY. HARD HAMMER BLOWS REQUIRED	SILL - AN INTRUSIVE BODY OF IGNEOUS ROCK OF APPROXIMATELY UNIFORM THICKNESS AND RELATIVELY THIN COMPARED WITH ITS LATERAL EXTENT, THAT HAS BEEN EMPLACED PARALLEL TO		
COARSE FINE	SHALLOW UNDERCUT UNCLASSIFIED EXCAVATION - USED IN THE TOP 3 FEET OF EMBANKMENT OR BACKFILL	TO DETACH HAND SPECIMEN.	THE BEDDING OR SCHISTOSITY OF THE INTRUDED ROCKS.		
BOULDER COBBLE GRAYEL SAND SILT CLAY	ABBRE VIATIONS	MODERATELY CAN BE SCRATCHED BY KNIFE OR PICK. GOUGES OR GROOVES TO 0.25 INCHES DEEP CAN BE HARD EXCAVATED BY HARD BLOW OF A GEOLOGIST'S PICK. HAND SPECIMENS CAN BE DETACHED	SLICKENSIDE - POLISHED AND STRIATED SURFACE THAT RESULTS FROM FRICTION ALONG A FAULT OR SLIP PLANE.		
GRAIN MM 305 75 2.0 0.25 0.05 0.005	AR - AUGER REFUSAL MED MEDIUM VST - VANE SHEAR TEST	HARD EXCAVATED BY HARD BLOW OF A GEOLOGIST'S PICK. HAND SPECIMENS CAN BE DETACHED BY MODERATE BLOWS.	STANDARD PENETRATION TEST (PENETRATION RESISTANCE) (SPT) - NUMBER OF BLOWS (N OR BPF) OF		
SIZE IN. 12 3	BT - BORING TERMINATED MICA MICACEOUS WEA WEATHERED	MEDIUM CAN BE GROOVED OR GOUGED 0.05 INCHES DEEP BY FIRM PRESSURE OF KNIFE OR PICK POINT.	A 140 LB. HAMMER FALLING 30 INCHES REQUIRED TO PRODUCE A PENETRATION OF 1 FOOT INTO SOIL WITH A 2 INCH OUTSIDE DIAMETER SPLIT SPOON SAMPLER. SPT REFUSAL IS PENETRATION EQUAL		
SOIL MOISTURE - CORRELATION OF TERMS	CL CLAY MOD MODERATELY 7 - UNIT WEIGHT CPT - CONE PENETRATION TEST NP - NON PLASTIC 7 - DRY UNIT WEIGHT	HARD CAN BE EXCAVATED IN SMALL CHIPS TO PEICES 1 INCH MAXIMUM SIZE BY HARD BLOWS OF THE POINT OF A GEOLOGIST'S PICK.	TO OR LESS THAN 0.1 FOOT PER 60 BLOWS.		
SOIL MOISTURE SCALE FIELD MOISTURE GUIDE FOR FIELD MOISTURE DESCRIPTION	CSE COARSE ORG ORGANIC	SOFT CAN BE GROVED OR GOUGED READILY BY KNIFE OR PICK. CAN BE EXCAVATED IN FRAGMENTS	STRATA CORE RECOVERY (SREC.) - TOTAL LENGTH OF STRATA MATERIAL RECOVERED DIVIDED BY		
(ATTERBERG LIMITS) DESCRIPTION OFFICE PROJECTION	DMT - DILATOMETER TEST PMT - PRESSUREMETER TEST SAMPLE ABBREVIATIONS DPT - DYNAMIC PENETRATION TEST SAP SAPROLITIC S - BULK	FROM CHIPS TO SEVERAL INCHES IN SIZE BY MODERATE BLOWS OF A PICK POINT. SMALL, THIN PIECES CAN BE BROKEN BY FINGER PRESSURE.	TOTAL LENGTH OF STRATUM AND EXPRESSED AS A PERCENTAGE.		
- SATURATED - USUALLY LIQUID; VERY WET, USUALLY (SAT.) FROM BELOW THE GROUND WATER TABLE	e - VOID RATIO SD SAND, SANDY SS - SPLIT SPOON F - FINE SL SILT, SILTY ST - SHELBY TUBE	VERY CAN BE CARVED WITH KNIFE, CAN BE EXCAVATED READILY WITH POINT OF PICK, PIECES 1 INCH	STRAIA ROCK QUALITY DESIGNATION (SROD) - A MEASURE OF ROCK QUALITY DESCRIBED BY TOTAL LENGTH OF ROCK SEGMENTS WITHIN A STRATUM EQUAL TO OR GREATER THAN 4 INCHES DIVIDED BY THE TOTAL LENGTH OF STRATA AND EXPRESSED AS A PERCENTAGE.		
LL LIQUID LIMIT PLASTIC SEMISOLID REQUIDES DOVING TO	FOSS FOSSILIFEROUS SLI SLIGHTLY RS - ROCK	SOFT OR MORE IN THICKNESS CAN BE BROKEN BY FINGER PRESSURE. CAN BE SCRATCHED READILY BY FINGERNAIL.	TOPSOIL (TS.) - SURFACE SOILS USUALLY CONTAINING ORGANIC MATTER.		
RANGE - WET - (W) SEMISOLID; REGUINES BRITING TO	FRAC FRACTURED, FRACTURES TCR - TRICONE REFUSAL RT - RECOMPACTED TRIAXIAL W - MOISTURE CONTENT CBR - CALIFORNIA BEARING	FRACTURE SPACING BEDDING			
(PI) PL PLASTIC LIMITATTAIN OPTIMUM MOISTURE	HI HIGHLY V - VERY RATIO	TERM SPACING TERM THICKNESS	BENCH MARK: L30+00.00 45 LEFT, BM4, NAIL W/TAG IN 18" PINE.		
- MOIST - (M) SOLID; AT OR NEAR OPTIMUM MOISTURE	EQUIPMENT USED ON SUBJECT PROJECT	VERY WIDE MORE THAN 10 FEET VERY THICKLY BEDDED 4 FEET WIDE 3 TO 10 FEET THICKLY BEDDED 1.5 - 4 FEET	ELEVATION: 287.27 FEET		
OM OPTIMUM MOISTURE	DRILL UNITS: ADVANCING TOOLS: HAMMER TYPE:	MODERATELY CLOSE 1 TO 3 FEET THINLY BEDDED 0.16 - 1.5 FEET	NOTES:		
- DRY - (D) REQUIRES ADDITIONAL WATER TO	CME-45C CLAY BITS X AUTOMATIC MANUAL	VERY CLOSE LESS THAN 0.16 FEET THICKLY LAMINATED 0.008 - 0.03 FEET	BORING EBI-C AND GROUND SURFACE ELEVATIONS OBTAINED FROM 15506_is_tin,tin' file dated 9/7/2016.		
ATTAIN OPTIMUM MOISTURE	X CME-55 X 6° CONTINUOUS FLIGHT AUGER CORE SIZE:	THINLY LAMINATED < 0.008 FEET			
	8" HOLLOW AUGERS □-H	INDURATION FOR SEDIMENTARY ROCKS, INDURATION IS THE HARDENING OF MATERIAL BY CEMENTING, HEAT, PRESSURE, ETC.	FIAD- FILLED IMMEDIATELY AFTER DRILLING		
PLASTICITY	CME EEG LIADD FACED FINCED DITC	FOR SCOTTLENIANT ROCKS, INDURATION IS THE HANDENING OF MATERIAL BY CEMENTING, HEAT, PRESSURE, ETC.			
PLASTICITY INDEX (PI) DRY STRENGTH	CME-5500 HARD FACED FINGER BITS X -N Q	RUBBING WITH FINGER FREES NUMEROUS GRAINS;			
PLASTICITY INDEX (PI) DRY STRENGTH NON PLASTIC 0-5 VERY LOW SLIGHTLY PLASTIC 6-15 SLIGHT	VANE SHEAR TEST TUNGCARBIDE INSERTS HAND TOOLS:	RUBBING WITH FINGER FREES NUMEROUS GRAINS: GENTLE BLOW BY HAMMER DISINTEGRATES SAMPLE.			
PLASTICITY INDEX (PI) DRY STRENGTH NON PLASTIC 0-5 VERY LOW	VANE SHEAR TEST TUNG,-CARBIDE INSERTS CASING W/ ADVANCER POST HOLE DIGGER TOLOGY T	FRIABLE GENTLE BLOW BY HAMMER DISINTEGRATES SAMPLE. MODERATELY INDURATED GRAINS CAN BE SEPARATED FROM SAMPLE WITH STEEL PROBE:			
PLASTICITY INDEX (PI) DRY STRENGTH	VANE SHEAR TEST TUNG,-CARBIDE INSERTS CASING W/ ADVANCER PORTABLE HOIST TRICONE STEEL TEETH PORTABLE HOIST TRICONE TRICONE HAND AUGER	FRIABLE GENTLE BLOW BY HAMMER DISINTEGRATES SAMPLE. MODERATELY INDURATED GRAINS CAN BE SEPARATED FROM SAMPLE WITH STEEL PROBE: BREAKS EASILY WHEN HIT WITH HAMMER. GRAINS ARE DISECULT TO SERRANGE WITH STEEL PROBE.			
PLASTICITY INDEX (PI) DRY STRENGTH	VANE SHEAR TEST TUNG,-CARBIDE INSERTS CASING W/ ADVANCER PORTABLE HOIST TRICONE STEEL TEETH TRICONE TUNG,-CARB. CASING W/ ADVANCER POST HOLE DIGGER HAND AUGER SOUNDING ROD	FRIABLE GENTLE BLOW BY HAMMER DISINTEGRATES SAMPLE. MODERATELY INDURATED GRAINS CAN BE SEPARATED FROM SAMPLE WITH STEEL PROBE:			
PLASTICITY INDEX (PI) DRY STRENGTH	VANE SHEAR TEST TUNG,-CARBIDE INSERTS CASING W/ ADVANCER PORTABLE HOIST TRICONE STEEL TEETH PORTABLE HOIST TRICONE TRICONE HAND AUGER	FRIABLE GENTLE BLOW BY HAMMER DISINTEGRATES SAMPLE. MODERATELY INDURATED GRAINS CAN BE SEPARATED FROM SAMPLE WITH STEEL PROBE; BREAKS EASILY WHEN HIT WITH HAMMER. INDURATED GRAINS ARE DIFFICULT TO SEPARATE WITH STEEL PROBE;	DATE: 8-15-1		

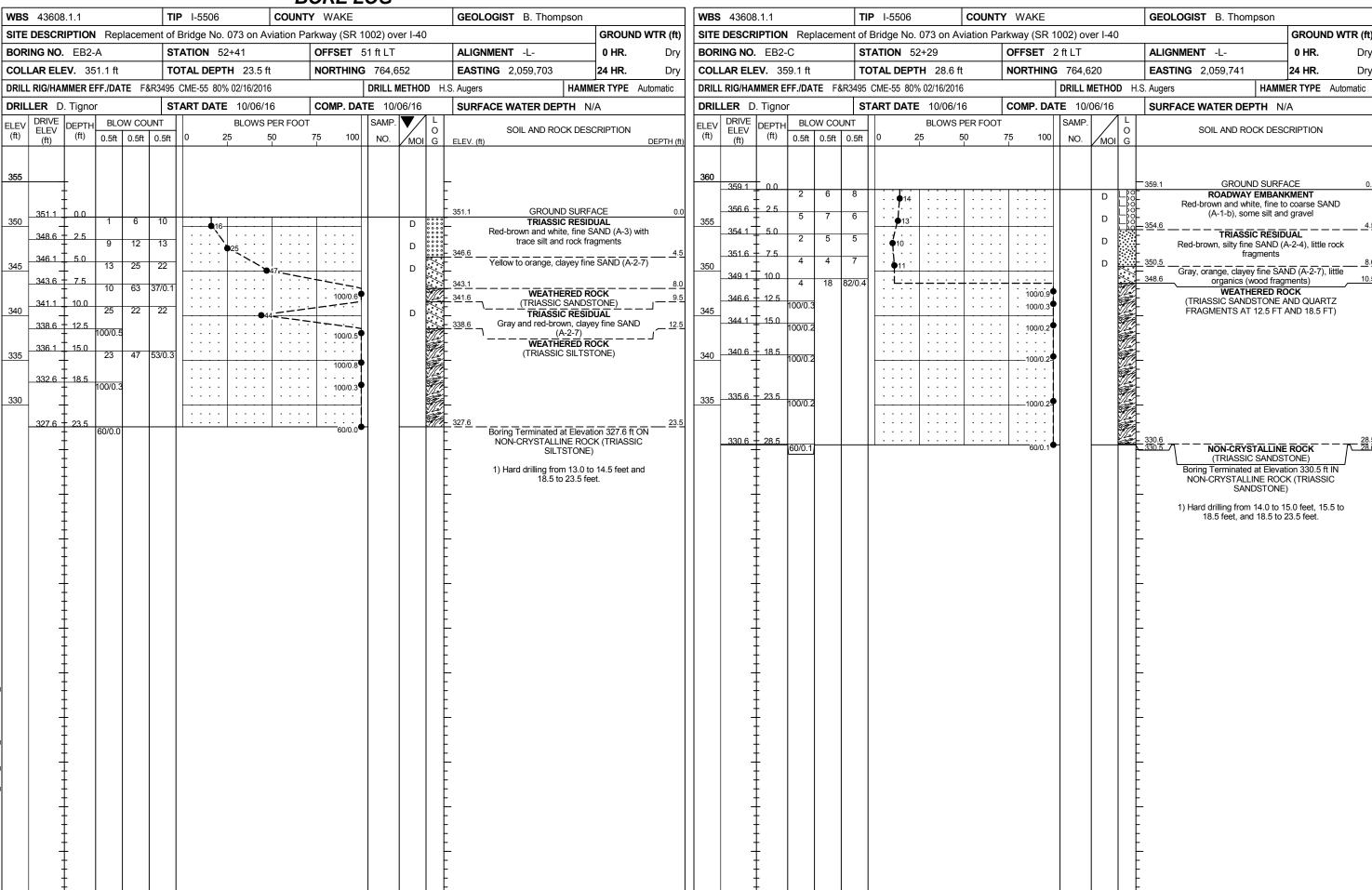

OJECT REFERENCE NO.	SHEET NO.
I-5506	2A


NORTH CAROLINA DEPARTMENT OF TRANSPORTATION DIVISION OF HIGHWAYS GEOTECHNICAL ENGINEERING UNIT


SUBSURFACE INVESTIGATION


SUPPLEMENTAL LEGEND, GEOLOGICAL STRENGTH INDEX (GSI) TABLES

	S	UPPLEME FR	ENTAL LI OM AAS	EGEND, G HTO LRI	EOLOGIC FD BRID	AL STRENGTH INDEX (GSI) TABLES GE DESIGN SPECIFICATIONS
AASHTO LRFD Figure 10.4.6.4-1 — Determination of GSI for Join	ted Rock Mass (Marı	nos and Hoek, 2	2000)			AASHTO LRFD Figure 10.4.6.4-2 — Determination of GSI for Tectonically Deformed Heterogeneous Rock Masses (Marinos and Hoek, 2000)
GEOLOGICAL STRENGTH INDEX (GSI) FOR JOINTED ROCKS (Hoek and Marinos, 2000)	seses	70		8 0 0	a c e s	GSI FOR HETEROGENEOUS ROCK MASSES SUCH AS FLYSCH (Marinos, P and Hoek E., 2000)
From the lithology, structure and surface conditions of the discontinuities, estimate the average value of GSI. Do not try to be too precise. Quoting a range from 33 to 37 is more realistic than stating that GSI = 35. Note that the table does not apply to structurally controlled failures. Where weak planar structural planes are present in an unfavorable orientation with respect to the excavation face, these will dominate the rock mass behaviour. The shear strength of surfaces in rocks that are prone to deterioration as a result of changes in moisture content will be reduced if water is present. When working with rocks in the fair to very poor categories, a shift to the right may be made for wet conditions. Water pressure is dealt with by effective stress analysis.	SURFACE CONDITIONS VERY GOOD Very rough, fresh unweathered surf	600D Rough, slightly weathered, iron stained surfaces	FAIR Smooth, moderately weathered and altered surfaces	POOR Slickensided, highly weathered surf with compact coatings or fillings or angular fragments	VERY POOR Slickensided, highly weathered surf with soft clay coatings or fillings	Erom a describtion of the lithology, structure and surface conditions (barticularly of the pedding planes), choose a pox in the chart. Focate the position in the pox that corresponds to the condition of the discontinuities and estimate the average value of QSI from the contours. Do not attempt to be too precise. Gnoring a range from 33 to 37 is more realistic than giving CONTINUITIES of planes. Where and this controlled failures. Where mildodour of the rock mass. The strength of some toth, and of the post of the post of the post of the planes of the post of the planes of the post of the post of the post of the planes of the post of the planes of the post of the planes of the plan
STRUCTURE	DEC	CREASING SI	URFACE QU	ALITY =	⇒	COMPOSITION AND STRUCTURE
INTACT OR MASSIVE - intact rock specimens or massive in situ rock with few widely spaced discontinuities	90 80 80			N/A	N/A	A. Thick bedded, very blocky sandstone The effect of pelitic coatings on the bedding planes is minimized by the confinement of the rock mass. In shallow tunnels or slopes these bedding planes may cause structurally controlled instability. A. Thick bedded, very blocky sandstone The effect of pelitic coatings on the bedding planes is minimized by the confinement of the rock mass. In shallow tunnels or slopes these bedding planes may cause structurally controlled instability.
BLOCKY - well interlocked undisturbed rock mass consisting of cubical blocks formed by three intersecting discontinuity sets	P ROCK F	70 60				B. Sand- stone with stone and stone with stone and stone and stone with stone sultstone with sand- sultstone sultstone with sand- sultstone sultstone sultstone with sand- sultstone
VERY BLOCKY - interlocked, partially disturbed mass with multi-faceted angular blocks formed by 4 or more joint sets	OCKING	5	50			thin inter- layers of siltstone siltstone amounts State with station or clayery shale with sand- stone layers B C D E 40 And the station of the station
BLOCKY/DISTURBED/SEAMY - folded with angular blocks formed by many intersecting discontinuity sets. Persistence of bedding planes or schistosity	ASING INTERL		40	30		C.D.E. and G - may be more or less folded than illustrated but this does not change the strength. Tectonic deformation, faulting and loss of continuity moves these categories to F and H. F. Tectonically deformed, intensively folded/faulted, sheared clayey shale or siltstone with broken and deformed sandstone layers forming an almost chaotic structure
DISINTEGRATED - poorly inter- locked, heavily broken rock mass with mixture of angular and rounded rock pieces	DECREASING			20		G. Undisturbed silty or clayey shale with or without a few very thin sandstone layers G. Undisturbed silty or clayey shale forming a chaotic structure with pockets of clay. Thin layers of sandstone are transformed
LAMINATED/SHEARED - Lack of blockiness due to close spacing of weak schistosity or shear planes	V N/A	N/A			10	Means deformation after tectonic disturbance DATE: 8-19-1



												<u> </u>				
WBS	43608	3.1.1			TI	P I-550	6		COUNT	/ WA	KE				GEOLOGIST B. Thompson	
SITE	DESCR	IPTION	I Rep	olacer	nent of	Bridge N	lo. 073	on Avi	ation Pa	rkway	(SR 1	002) ov	er I-40)		GROUND WTR (ft)
BOR	ING NO	. B1-C	;		S ⁻	TATION	50+79			OFFS	ET 1	ft LT			ALIGNMENT -L-	0 HR. Dry
COLI	LAR ELI	EV . 33	35.8 ft		т	OTAL DE	PTH 3	8.6 ft		NOR	THING	764,4	85		EASTING 2,059,679	24 HR. FIAD
DRILL	RIG/HA	MMER E	FF./DA	TE F	&R3495	CME-55	80% 02/1	6/2016				DRILL N	IETHO	D H.	S. Augers HAMM	ER TYPE Automatic
DRIL	LER D	. Tigno	r		s	TART DA	TE 10	/11/16	;	COMI	P. DA	Γ E 10/	11/16		SURFACE WATER DEPTH N	
ELEV (ft)	DRIVE ELEV (ft)	DEPTH (ft)		OW CC	UNT	0			ER FOOT	75	100	SAMP.	MOI	L O G	SOIL AND ROCK DESC	
340		- - - -												-	- 335.8 GROUND SURFA	
335	334.8 -	1.0	15	35	23	l	+-:			+::			М		_334.8 ROADWAY EMBAN Asphalt Paveme	ent /
	332.3	3.5	20	40	10	:::		_:	,		: :				Brown and black, fine to c	coarse SAND ,— 3.0
330	_	ŧ	20	12	10		<u>•22</u>				<u></u>		D		330.8 TRIASSIC RESID	JUAL
	-	F													Red-brown and gray, fine SA silt, little rock fragr	ND (A-3), trace / nents
	327.3	8.5	60/0.1	1							60/0.1				NON-CRYSTALLINE (TRIASSIC SANDS	ROCK
325	-	‡								+					- (TRIASSIC SAINDS	IONE)
	322.3	13.5														
320		-	60/0.0								60/0.0					
520	-	‡						-		1					-	
	317.3	18.5	60/0.1	1		::::					 60/0.1					
315	_	t	00/0.1					• •							_	
		ł				: : :				1 : :	::					
	312.3	23.5	60/0.1	1						: :,	60/0.1					
310	_	Ŧ								ļ : :					-	
	307.3	28.5						::		: :						
305			60/0.1	1							60/0.1					
303	-	‡								+::					-	
	302.3	33.5	60/0.1								 60/0.1					
300	_	ŧ	00/0.1							• • '					_	
	-	F														
	297.3	38.5	60/0.1				.	• •			60/0.1	1			297.2 Boring Terminated at Eleva	38.6 tion 297.2 ft IN
	-	‡		1											NOÑ-CRYSTALLINE ROC SANDSTONE	K (TRIASSIC
		‡													1) Hard drilling from 5.0	,
		‡													· -	
	-	‡													 2) SPT N-Values in roadway likely inflated by the present 	
		‡														
		ŧ												L	_	
		ł												 -		
		Ŧ												l F		
	_	‡													-	
		‡														
		‡														
	-	‡													-	
		‡														
	_	t													_	
	-	ł												F		
		Ŧ												F		
	_	Ŧ													-	
		‡														
	:	‡												1		

SHEET 10

GEOTECHNICAL BORING REPORT

BORE LOG	PORT	CORE LOG								
WBS 43608.1.1 TIP I-5506 COUNTY WAKE	GEOLOGIST B. Thompson		TY WAKE GEOLOGIST B. Thompson							
SITE DESCRIPTION Replacement of Bridge No. 073 on Aviation Parkway (SR 1002) over I-40	GROUND WTR (ft)	SITE DESCRIPTION Replacement of Bridge No. 073 on Aviation Page 1	arkway (SR 1002) over I-40 GROUND WTR (ft)							
BORING NO. B1-B STATION 50+52 OFFSET 84 ft RT	ALIGNMENT -L- 0 HR. Dry	BORING NO. B1-B STATION 50+52	OFFSET 84 ft RT ALIGNMENT -L- 0 HR. Dry							
COLLAR ELEV. 336.3 ft TOTAL DEPTH 40.9 ft NORTHING 764,424	EASTING 2,059,744 24 HR. FIAD	COLLAR ELEV. 336.3 ft TOTAL DEPTH 40.9 ft	NORTHING 764,424 EASTING 2,059,744 24 HR. FIAD							
DRILL RIG/HAMMER EFF./DATE F&R3495 CME-55 80% 02/16/2016 DRILL METHOD H.	S. Augers / SPT/CORE HAMMER TYPE Automatic	DRILL RIG/HAMMER EFF./DATE F&R3495 CME-55 80% 02/16/2016	DRILL METHOD SPT/CORE HAMMER TYPE Automatic							
DRILLER D. Tignor START DATE 10/10/16 COMP. DATE 10/10/16	SURFACE WATER DEPTH N/A	DRILLER D. Tignor START DATE 10/10/16	COMP. DATE 10/10/16 SURFACE WATER DEPTH N/A							
ELEV DRIVE BLOW COUNT BLOWS PER FOOT SAMP. V L	SOIL AND ROCK DESCRIPTION	CORE SIZE NQ3 TOTAL RUN 8.0 ft								
(ft) (ft) (ft) 0.5ft 0.5ft 0.5ft 0 25 50 75 100 NO. MOI G	ELEV. (ft) DEPTH (ft)	$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	L DESCRIPTION AND REMARKS							
340		303.5	Begin Coring @ 32.8 ft							
		303.5 + 32.8 3.0 N=60/0.0 (3.0) (2.6) (7.1) (7.8) (7.1)	303.5 Red-brown and gray, fresh, hard, moderately close fractures (TRIASSIC 32.8 SANDSTONE/SILTSTONE/CONGLOMERATE) GSI = 60 to 70							
335 335.3 1.0	336.3 GROUND SURFACE 0.0 335.3 ROADWAY EMBANKMENT 1.0	300 300.5 + 35.8	RS-1: Qu = 6.684 psi (SANDSTONE)							
10 15 8 •23.—— 1 D	Asphalt Pavement 2.5 Brown, coarse SAND (A-1-b), some gravel,	02:20/1.0 02:31/1.0 02:32/1.0 02:22/1.0	RS-2: Qu = 5,990 psi (SILTSTONE)							
332.8 + 3.5	little clay	295.5 + 40.8 02:30/1.0	295.4 40.9 Boring Terminated at Elevation 295.4 ft IN NON-CRYSTALLINE ROCK							
330 +	TRIASSIC RESIDUAL Red-brown, silty fine to coarse SAND		(TRIASSIC SILTSTONE)							
327.8 + 8.5	(A-2-4), little rock fragments		1) Hard drilling from 2.5 to 3.5 feet and 4.5 to 32.8 feet.							
325	WEATHERED ROCK (TRIASSIC SANDSTONE)									
325 20 9 91/0.3										
	NON-CRYSTALLINE ROCK (TRIASSIC SANDSTONE/SILTSTONE)									
320	- (TANGOIG O A ABOTONEJOILTOTONE)									
317.8 18.5 60/0.1										
315										
312.8 + 23.5										
↓ 60/0.1 · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · ·										
310 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	_									
307.8 + 28.5										
305										
303.5 + 32.8	32.8 Red-brown and gray, fresh, hard, moderately									
	close fractures (TRIASSIC SANDSTONE/SILTSTONE/CONGLOMERATE)									
	GSI = 60 to 70 Strata REC = 98%									
	Strata RQD= 89%									
295.5 + 40.8	295.4 40.9 Boring Terminated at Elevation 295.4 ft IN		F							
	NON-CRYSTALLINE ROCK (TRIASSIC SILTSTONE)		<u> </u>							
	1) Hard drilling from 2.5 to 3.5 feet and 4.5 to		[-							
	32.8 feet.		E							
-			-							
	-		F							
			[
			[-							
	-		[
			E							
	· -		E							
	-									
			I Ł							
	· -									

			BORE L	UG		
WBS 43608.1.1		TIP 1-5506	COUNTY WAKE		GEOLOGIST B. Thompson	
SITE DESCRIPTION	N Replacemen	nt of Bridge No. 073 on Avia	ition Parkway (SR 10	002) over I-40		GROUND WTR (ft)
BORING NO. EB2	!-B	STATION 52+11	OFFSET 5	0 ft RT	ALIGNMENT -L-	0 HR . Dry
COLLAR ELEV. 3	62.3 ft	TOTAL DEPTH 28.6 ft	NORTHING	764,582	EASTING 2,059,782	24 HR . Dry
ORILL RIG/HAMMER I	EFF./DATE F&R3	3495 CME-55 80% 02/16/2016		DRILL METHOD H.S	S. Augers HAMM	ER TYPE Automatic
DRILLER D. Tigno	or	START DATE 10/13/16	COMP. DAT	E 10/13/16	SURFACE WATER DEPTH NA	/A
ELEV DRIVE ELEV (ft) (ft)	BLOW COUN	<u> </u>		SAMP. L O O MOI G	SOIL AND ROCK DESC	
365					- ODGUND GUDE	105
361.3 7 1.0	3 4	7		D [:::	362.3 GROUND SURFA 361.0 ROADWAY EMBAN 0.3 foot of Asphalt Pavement Concrete Pavem	KMENT 1.3 t and 1.0 foot of
358.8 + 3.5	3 2	3			Red-brown and yellow, fine trace silt and gra	SAND (A-3),
353.8 - 8.5	28 72/0.3		100/0.8		353.8 WEATHERED RO (TRIASSIC SANDS)	
348.8 - 13.5	100/0.4				-	45
343.8 - 18.5	60/0.1		60/0.1		NON-CRYSTALLINE (TRIASSIC SILTST	
338.8 + 23.5	00/0.1				338.8	23
35	100/0.4		100/0.4		WEATHERED RO (TRIASSIC SILTST	OCK
333.8 + 28.5	60/0.1		60/0.1		333.8 333.7 NON-CRYSTALLINE (TRIASSIC SILTST Boring Terminated at Elevai	ONE)
					NON-CRYSTALLINE ROC SILTSTONE)	K (TRIASSIC
1 ‡					1) Hard drilling from 15.5 -	to 23.5 feet.
1 1						
+ +					•	
‡						
‡						
1 1						

SHEET 13

LABORATORY SUMMARY SHEET FOR ROCK CORE SAMPLES

 PROJECT NO.:
 43608.1.1

 TIP NO.:
 I-5506

 COUNTY:
 Wake

DESCRIPTION: Replacement of Bridge No. 073 on Aviation Parkway (SR 1002) Over I-40

Sample #	Boring #	Alignment	Station	Offset	Depth (ft)	Rock Type	Geologic Map Unit	Run RQD	Length (in)	Diameter (in)	Unit Weight (pcf)	Unconfined Compressive Strength (psi)	Young's Modulus, E (ksf)	GSI
RS-1	B1-B	-L-	50+52	84' RT	34.4-34.7	Triassic Sandstone	TRc	87%	3.89	1.77	160.4	6,684	831	60-70
RS-2	B1-B	-L-	50+52	84' RT	38.4-38.7	Triassic Siltstone	TRc	90%	3.76	1.77	163.8	5,990	883	60-70

CORE PHOTOGRAPHS: B1-B

Photo 1: Looking Southeast towards End Bent 1 and Bent 1

Photo 3: Looking East towards Bent 1

Photo 2: Looking South along SR1002

Photo 4: Looking Northeast towards End Bent 2

