This electronic collection of documents is provided for the convenience of the user and is Not a Certified Document –

The documents contained herein were originally issued and sealed by the individuals whose names and license numbers appear on each page, on the dates appearing with their signature on that page. This file or an individual page shall not be considered a certified document.

0 769

S

R

REFERENCE

SEE SHEET 2A FOR PLAN SHEET LAYOUT AT TIME OF INVESTIGATION

CONTENTS

В

<u>LINE</u> -L- -LI- -YIREV-	<u>STATION</u> 10+00-43+69.04 10+00-15+28.38 10+00-25+46.29	<u>PLAN</u> 4-6 6 4	<u>PROFILE</u> 7-9 10 10
CROSS SE LINE - YIREV-	ECTIONS <u>STATION</u> 10+00-25+46.29	<u>SHEETS</u> 11-18	
APPENDIC <u>Appendix</u> A	ES <u>ITTLE</u> IN-SITU TESTING RESULTS	<u>SHEETS</u> 19-25	

SOIL LABORATORY RESULTS

26-27

STATE OF NORTH CAROLINA

DEPARTMENT OF TRANSPORTATION **DIVISION OF HIGHWAYS** GEOTECHNICAL ENGINEERING UNIT

ROADWAY SUBSURFACE INVESTIGATION

COUNTY JOHNSTON

PROJECT DESCRIPTION NOVO NORDISK ACCESS FROM SR 1905 (GORDON ROAD) TO PROPOSED NOVO NORDISK SITE

INVENTORY

NIA OIEC Ň

2

STATE PROJECT REFERENCE NO. STATE SHEETS NO. 30 N.C R-5769 1

CAUTION NOTICE

THE SUBSURFACE INFORMATION AND THE SUBSURFACE INVESTIGATION ON WHICH IT IS BASED WERE MADE FOR THE PURPOSE OF STUDY. PLANNING AND DESIGN, AND NOT FOR CONSTRUCTION OR PAY PURPOSES. THE VARIOUS FIELD BORING LOGS, ROCK CORES AND SOLI TEST DATA AVAILABLE MAY BE REVIEWED OR INSPECTED IN RALEIGH BY CONTACTING THE N.C. DEPARTMENT OF TRANSPORTATION, GEOTECHNICAL ENGINEERING UNIT AT 1991 707-6860. THE SUBSIFACE PLANS AND REPORTS, FIELD BORING LOGS, ROCK CORES AND SOIL TEST DATA ARE NOT PART OF THE CONTRACT.

CENERAL SOIL AND ROCK STRATA DESCRIPTIONS AND INDICATED BOUNDARIES ARE BASED ON A GEOTECHNICAL INTERPRETATION OF ALL AVAILABLE SUBSUFFACE DATA AND MAY NOT NECESSARILY REFLECT THE ACTUAL SUBSUFFACE CONDITIONS BETWEEN BORINGS OR BETWEEN SAMPLED STRATA WITHIN THE BOREHOLE. THE LABORATORY SAMPLE DATA AND THE IN SITU (IN-PLACE) TEST DATA CAN BE RELIED ON ONLY TO THE DECREE OF RELIBULITY INHERENT IN THE SUBSUFFACE INVESTIGATIONS ARE AS RECORDED AT THE TIME OF THE INVESTIGATION. THES SUBJFACE INVESTIGATIONS ARE AS RECORDED AT THE TIME OF THE INVESTIGATION. THES WATER LEVELS OR SOL MOSTUFE CONDITIONS MAY VARY CONSDERABLY WITH THE ACCOMPING OL CUMUTIC CONDITIONS INCLUDING TEMPERATURES, PRECIPITATION AND WIND, AS WELL AS OTHER NON-CLIMATIC FACTORS.

THE BIDDER OR CONTRACTOR IS CALITORIED THAT DETAILS SHOWN ON THE SUBSURFACE PLANS ARE PRELIMINARY ONLY AND IN MANY CASES THE FINAL DESIGN DETAILS ARE DIFFERENT. FOR BIDDING AND CONSTRUCTION PURPOSES, REFER TO THE CONSTRUCTION PLANS AND DOCUMENTS FOR FINAL DESIGN INFORMATION ON THIS PROJECT. THE DEPARTMENT DOES NOT WARANT OR GUARANTEE THE SUFFICIENCY OR ACCURACY OF THE INVESTIGATION MADE, NOR THE INTERPRETATIONS MADE, OR OPHIONO OF THE DEPARTMENT AS TO THE TYPE OF MATERIALS AND CONSTRUCTIONS TO BE ENCOUNTERED. THE BIDDER OR CONTRACTOR IS CAUTIONED TO MAKE SUCH INDEPENDENT SUBSURFACE INVESTIGATIONS AS HE DEEMS NECESSARY TO SATISFY HIMSELF AS TO CONDITIONS TO BE ENCOUNTERED ON THE PROJECT. THE CONTRACTOR SHALL HAVE NO CLAIM FOR ADDITIONAL COMPENSATION OR FOR AN EXTENSION OF TIME FOR ANY REASON RESULTING FROM THE ACTUAL CONDENSION OR FOR AN THE SITE DIFFERING FROM THOSE INDICATED IN THE SUBSURFACE INFORMATION.

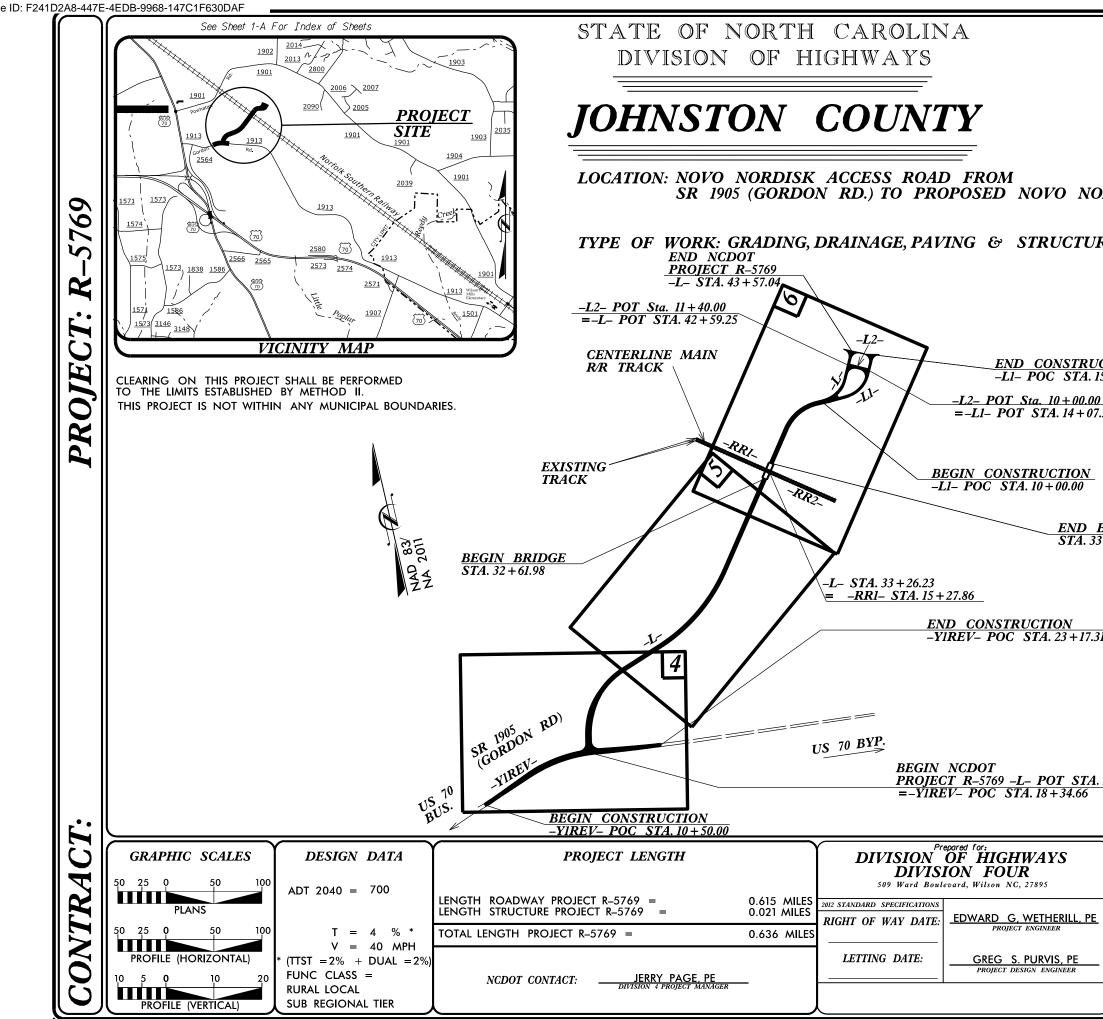
NOTES:

- TES: THE INFORMATION CONTAINED HEREIN IS NOT IMPLIED OR GUARANTEED BY THE N.C. DEPARTMENT OF TRANSPORTATION AS ACCURATE NOR IS IT CONSIDERED PART OF THE PLANS, SPECIFICATIONS OR CONTRACT FOR THE PROJECT. BY HAVING REDUESTED THIS INFORMATION, THE CONTRACTOR SPECIFICALLY WAIVES ANY CLAIMS FOR INCREASED COMPENSATION OR EXTENSION OF TIME BASED ON DIFFERENCES BETWEEN THE CONDITIONS INDICATED HEREIN AND THE ACTUAL CONDITIONS AT THE PROJECT SITE.

PERSONNEL TURNAGE, J. R. EKLUND, M.A. LEE, S. *LEE*, *B*. *C*. ALEXANDER, M. J. INVESTIGATED BY TERRACON CONSULTANTS FIELDS, W.D. DRAWN BY ALEXANDER, M. J. CHECKED BY SUBMITTED BY TERRACON CONSULTANTS JUNE 2016 DATE Docusigned by: Matthew J. Alexander OFBQRAREAPOICE A RO/ OFESSION T SEAL 040231 ALL J. ALL IN 8/22/2016 SIGNATURE DATE DOCUMENT NOT CONSIDERED FINAL UNLESS ALL SIGNATURES COMPLETED

NORTH CAROLINA DEPARTMENT OF TRANSPORTATION DIVISION OF HIGHWAYS GEOTECHNICAL ENGINEERING UNIT SUBSURFACE INVESTIGATION

SOIL AND ROCK LEGEND, TERMS, SYMBOLS, AND ABBREVIATIONS


SOIL DESCRIPTION	GRADATION	ROCK DESCRIPTION
SOIL IS CONSIDERED UNCONSOLIDATED, SEMI-CONSOLIDATED, OR WEATHERED EARTH MATERIALS THAT CAN BE PENETRATED WITH A CONTINUOUS FLIGHT POWER AUGER AND YIELD LESS THAN 100 BLOWS PER FOOT ACCORDING TO THE STANDARD PENETRATION TEST (AASHTO T 206, ASTM 01586). SOIL CLASSIFICATION IS BASED ON THE AASHTO SYSTEM, BASIC DESCRIPTIONS GENERALLY INCLUDE THE FOLLOWING;	WELL GRADED - INDICATES A GOOD REPRESENTATION OF PARTICLE SIZES FROM FINE TO COARSE. UNIFORMLY GRADED - INDICATES THAT SOIL PARTICLES ARE ALL APPROXIMATELY THE SAME SIZE. GAP-GRADED - INDICATES A MIXTURE OF UNIFORM PARTICLE SIZES OF TWO OR MORE SIZES.	HARD ROCK IS NON-COASTAL PLAIN MATERIAL THAT WOULD YIELD SPT REFUSAL IF TESTE ROCK LINE INDICATES THE LEVEL AT WHICH NON-COASTAL PLAIN MATERIAL WOULD VIELD SPT REFUSAL IS PENETRATION BY A SPLIT SPOON SAMPLER EQUAL TO OR LESS THAN 0,I BLOWS IN NON-COASTAL PLAIN MATERIAL, THE TRANSITION BETWEEN SOIL AND ROCK
CONSISTENCY, COLOR, TEXTURE, MOISTURE, AASHTO CLASSIFICATION, AND OTHER PERTINENT FACTORS SUCH AS MINERALOGICAL COMPOSITION, ANGULARITY, STRUCTURE, PLASTICITY, ETC. FOR EXAMPLE,	ANGULARITY OF GRAINS	REPRESENTED BY A ZONE OF WEATHERED ROCK. ROCK MATERIALS ARE TYPICALLY DIVIDED AS FOLLOWS:
VERY STIFF, GRAY, SILTY CLAY, MOIST WITH INTERBEDDED FINE SAND LAYERS, HIGHLY PLASTIC, A-7-6	THE ANGULARITY OR ROUNDNESS OF SOIL GRAINS IS DESIGNATED BY THE TERMS: ANGULAR, SUBANGULAR, SUBROUNDED, OR ROUNDED.	WEATHERED NON-COASTAL PLAIN MATERIAL THAT WOULD YIELD SPT
SOIL LEGEND AND AASHTO CLASSIFICATION	MINERALOGICAL COMPOSITION	ROCK (WR) 100 BLOWS PER FOOT IF TESTED.
GENERAL GRANULAR MATERIALS SILT-CLAY MATERIALS ORGANIC MATERIALS CLASS. (≤ 35% PASSING *200) (> 35% PASSING *200) ORGANIC MATERIALS	MINERAL NAMES SUCH AS QUARTZ, FELDSPAR, MICA, TALC, KAOLIN, ETC.	CRYSTALLINE FINE TO COARSE GRAIN IGNEOUS AND METAMORPHIC RO ROCK (CR) FINE TO COARSE GRAIN IGNEOUS AND METAMORPHIC RO
GROUP A-1 A-3 A-2 A-4 A-5 A-6 A-7 A-1, A-2 A-4, A-5	ARE USED IN DESCRIPTIONS WHEN THEY ARE CONSIDERED OF SIGNIFICANCE.	
CLASS. A:1-9 A-1-6 A-2-4 A-2-5 A-2-6 A-2-7 A-7-6 A-3 A-6, A-7	COMPRESSIBILITY SLIGHTLY COMPRESSIBLE LL < 31	NON-CRYSTALLINE SEDIMENTARY ROCK THAT WOULD YELLD SPT REFUSAL IN ROCK (NCR)
	MODERATELY COMPRESSIBLE LL = 31 - 50 HIGHLY COMPRESSIBLE LL > 50	COASTAL PLAIN COASTAL PLAIN SEDIMENTS CEMENTED INTO ROCK, BUT SEDIMENTARY ROCK SPT REFUSAL. ROCK TYPE INCLUDES LIMESTONE, SANDS
7. PASSING •10 50 MX GRANULAR SILT-	PERCENTAGE OF MATERIAL	(CP) SHELL BEDS, ETC.
40 30 MX 50 MX 51 MN *200 JB MX 25 MX 10 MX 35 MX 35 MX 35 MX 36 MN 36 MN 36 MN 36 MN 36 MN	GRANULAR SILT - CLAY	WEATHERING
MATERIAL PASSING *40 LL 40 MX 41 MN 40 MX 41 MN 40 MX 41 MN 40 MX 41 MN 10 MX 11 MN 10 MX 11 MN 10 MX 11 MN 10 MX 11 MN	ORGANIC MATERIAL SOILS OTHER MATERIAL TRACE OF ORGANIC MATTER 2 - 3% 3 - 5% TRACE 1 - 10% LITTLE ORGANIC MATTER 3 - 5% 5 - 12% LITTLE 10 - 26% MODERATELY ORGANIC 5 - 10% 12 - 26% SOME 20 - 35% HIGHLY ORGANIC 5 - 10% 12 - 26% SOME 20 - 35%	FRESH ROCK FRESH, CRYSTALS BRIGHT, FEW JOINTS MAY SHOW SLIGHT STAINING, ROCK I HAMMER IF CRYSTALLINE. VERY SLIGHT ROCK GENERALLY FRESH, JOINTS STAINED, SOME JOINTS MAY SHOW THIN CLAY CC (V SLI) CRYSTALS ON A BROKEN SPECIMEN FACE SHINE BRIGHTLY. ROCK RINGS UNDER H
PI 6 MX NP 10 MX 10 MX 11 MN 11 MN 10 MX 10 MX 11 MN 11 MN MODERATE OPENAL	GROUND WATER	OF A CRYSTALLINE NATURE.
GROUP INDEX Ø Ø Ø 4 MX 8 MX 12 MX IG MX NO MX AMOUNTS OF ONOHALC SOILS USUAL TYPES STONE FRAGS. FINE SILTY OR CLAYEY SILTY CLAYEY MATTER OF GAVEL AND SAND GRAVEL AND SOILS SOILS SOILS	✓ WATER LEVEL IN BORE HOLE IMMEDIATELY AFTER DRILLING ✓ STATIC WATER LEVEL AFTER 24 HOURS	SLIGHT ROCK GENERALLY FRESH, JOINTS STAINED AND DISCOLORATION EXTENDS INTO RO((SLI.) I INCH. OPEN JOINTS MAY CONTAIN CLAY. IN GRANITOLD ROCKS SOME OCCASIONAL CRYSTALS ARE DULL AND DISCOLORED. CRYSTALLINE ROCKS RING UNDER HAMMER
MATERIALS SANU	∇PW PERCHED WATER, SATURATED ZONE, OR WATER BEARING STRATA	MODERATE SIGNIFICANT PORTIONS OF ROCK SHOW DISCOLORATION AND WEATHERING EFFECTS (MOD.) GRANITOID ROCKS, MOST FELDSPARS ARE DULL AND DISCOLORED, SOME SHOW CLA'
GEN. RATING EXCELLENT TO GOOD FAIR TO POOR POOR UNSUITABLE	Olle Spring or seep	DULL SOUND UNDER HAMMER BLOWS AND SHOWS SIGNIFICANT LOSS OF STRENGTH WITH FRESH ROCK.
PI OF A-7-5 SUBGROUP IS ≤ LL - 30 ;PI OF A-7-6 SUBGROUP IS > LL - 30		MODERATELY ALL ROCK EXCEPT QUARTZ DISCOLORED OR STAINED. IN GRANITOID ROCKS, ALL F
	MISCELLANEOUS SYMBOLS	SEVERE AND DISCOLORED AND A MAJORITY SHOW KAOLINIZATION. ROCK SHOWS SEVERE L((MOD. SEV.) AND CAN BE EXCAVATED WITH A GEOLOGIST'S PICK. ROCK GIVES "CLUNK" SOUND V
PRIMARY SOIL TYPE COMPACTNESS OR CONSISTENCY RANCE OF STANDARD PENETRATION RESISTENCE RANCE OF UNCONFINED COMPRESSIVE STRENGTH (N-VALUE) CENEDALUX VERY LOOSE < 4	ROADWAY EMBANKMENT (RE) 25/825 DIP & DIP DIRECTION WITH SOIL DESCRIPTION OF ROCK STRUCTURES	IF TESTED, WOULD YIELD SPT REFUSAL SEVERE ALL ROCK EXCEPT QUARTZ DISCOLORED OR STAINED, ROCK FABRIC CLEAR AND E ISEV.) REDUCED IN STRENGTH TO STRONG SOIL. IN GRANITOID ROCKS ALL FELDSPARS A
CRANIL AP LOOSE 4 TO 10		TO SOME EXTENT. SOME FRAGMENTS OF STRONG ROCK USUALLY REMAIN. IF TESTED, WOULD YIELD SPT N VALUES > 100 BPF
Onnocent MEDIUM DENSE 10 TO 30 N/A MATERIAL (NON-COHESIVE) DENSE 30 TO 50 VERY DENSE > 50 VERY SOFT < 2	ARTIFICIAL FILL (AF) OTHER THAN ROADWAY EMBANKMENT 	VERY ALL ROCK EXCEPT QUARTZ DISCOLORED OF STAINED. ROCK FABRIC ELEMENTS AR SEVERE BUT MASS IS EFFECTIVELY REDUCED TO SOIL STATUS, WITH ONLY FRAGMENTS OF (V SEV.) REMAINING, SAPROLITE IS AN EXAMPLE OF ROCK WEATHERED TO A DEGREE THAT
GENERALLY SOFT 2 TO 4 0.25 TO 0.5 SILT-CLAY MEDIUM STIFF 4 TO 8 0.5 TO 1.0 MATERIAL STIFF 8 TO 15 1 TO 2	TEST BORING WOMITORING WELL	VESTIGES OF ORIGINAL ROCK FABRIC REMAIN. <u>IF TESTED, WOULD YIELD SPT N V</u> COMPLETE ROCK REDUCED TO SOIL. ROCK FABRIC NOT DISCERNIBLE, ON DISCERNIBLE ONLY SCATTERED CONCENTRATIONS, OUARTZ MAY BE PRESENT AS DIKES OR STRINGERS
(COHESIVE) VERY STIFF 15 TO 30 2 TO 4 HARD > 30 > 4	TTTTT ALLUVIAL SOIL BOUNDARY A PIEZOMETER - SPT N-VALUE	ALSO AN EXAMPLE.
TEXTURE OR GRAIN SIZE	RECOMMENDATION SYMBOLS	ROCK HARDNESS
U.S. STD. SIEVE SIZE 4 10 40 60 200 270		VERY HARD CANNOT BE SCRATCHED BY KNIFE OR SHARP PICK. BREAKING OF HAND SPECIMENS SEVERAL HARD BLOWS OF THE GEOLOGIST'S PICK.
OPENING (MM) 4.76 2.00 0.42 0.25 0.075 0.053 BOULDER COBBLE GRAVEL COARSE FINE SILT CLAY BOULDER COBBLE GRAVEL SAND SAND SAND SAND	SHALLOW UNCLASSIFIED EXCAVATION - UNCLASSIFIED EXCAVATION - UNCLASSIFIED EXCAVATION - UNDERCUT UNDERCUT OF BACKFILL	HARD CAN BE SCRATCHED BY KNIFE OR PICK ONLY WITH DIFFICULTY. HARD HAMMER BL TO DETACH HAND SPECIMEN.
(BLUR.) (COB.) (CR.) (CSE. SD.) (F SD.) (SL.) (CL.) GRAIN MM 305 75 2.0 0.25 0.05 0.005	ABBREVIATIONS AR - AUGER REFUSAL MED MEDIUM VST - VANE SHEAR TEST	MODERATELY CAN BE SCRATCHED BY KNIFE OR PICK. GOUGES OR GROOVES TO 0.25 INCHES DE HARD EXCAVATED BY HARD BLOW OF A GEOLOGIST'S PICK. HAND SPECIMENS CAN BE DE BY MODERATE BLOWS.
SOIL MOISTURE - CORRELATION OF TERMS	BT - BORING TERMINATED MICA MICACEOUS WEA WEATHERED CL CLAY MOD MODERATELY γ' - UNIT WEIGHT CPT - CONE PENETRATION TEST NP - NON PLASTIC γ'_{d} - DRY UNIT WEIGHT	MEDIUM CAN BE GROOVED OR GOUGED 0.05 INCHES DEEP BY FIRM PRESSURE OF KNIFE O HARD CAN BE EXCAVATED IN SMALL CHIPS TO PEICES I INCH MAXIMUM SIZE BY HARD POINT OF A GEOLOGIST'S PICK.
SOIL MOISTURE SCALE (ATTERBERG LIMITS) FIELD MOISTURE DESCRIPTION GUIDE FOR FIELD MOISTURE DESCRIPTION - SATURATED - USUALLY LIQUID: YERY WET, USUALLY	CSE COARSE ORG ORGANIC DMT - DILATOMETER TEST PMT - PRESSUREMETER TEST SAMPLE ABBREVIATIONS DPT - DYNAMIC PENETRATION TEST SAP SAPROLITIC S - BULK e - VOID RATIO SD SAND, SANDY SS - SPLIT SPOON	SOFT CAN BE GROVED OR GOUGED READILY BY KNIFE OR PICK. CAN BE EXCAVATED IN FROM CHIPS TO SEVERAL INCHES IN SIZE BY MODERATE BLOWS OF A PICK POIN PIECES CAN BE BROKEN BY FINGER PRESSURE.
ILL LIQUID LIMIT (SAT.) FROM BELOW THE GROUND WATER TABLE	e - VOID RATIO SD SAND, SANDY SS - SPLIT SPOON F - FINE SL SILT, SILTY ST - SHELBY TUBE FOSS FOSSILIFEROUS SLI SLIGHTLY RS - ROCK FRAC FRACTURED, FRACTURES TCR - TRICONE REFUSAL RT - RECOMPACTED TRIAXIAL	VERY CAN BE CARVED WITH KNIFE. CAN BE EXCAVATED READLY WITH POINT OF PICK. SOFT OR MORE IN THICKNESS CAN BE BROKEN BY FINGER PRESSURE. CAN BE SCRATCH FINGERNALL.
RANGE < - WET - (W) SEMISOLID; REQUIRES DRYING TO (PI) ATTAIN OPTIMUM MOISTURE	FRAGS FRAGMENTS W - MOISTURE CONTENT CBR - CALIFORNIA BEARING	FRACTURE SPACING BEDDING
	HI HIGHLY V - VERY RATIO EQUIPMENT USED ON SUBJECT PROJECT	TERM SPACING TERM VERY WIDE MORE THAN 10 FEET VERY THICKLY BEDDED
OM OPTIMUM MOISTURE - MOIST - (M) SOLID; AT OR NEAR OPTIMUM MOISTURE SL SHRINKAGE LIMIT	DRILL UNITS: ADVANCING TOOLS: HAMMER TYPE: CME-45C CLAY BITS X AUTOMATIC MANUAL	WIDE 3 TO 10 FEET THICKLY BEDDED 1. MODERATELY CLOSE 1 TO 3 FEET THINLY BEDDED 0.1 CLOSE 0.16 TO 1 FOOT VERY THINLY BEDDED 0.6
- DRY - (D) REOUIRES ADDITIONAL WATER TO ATTAIN OPTIMUM MOISTURE		. VERY CLOSE LESS THAN 0.16 FEET THICKLY LAMINATED 0.00 THINLY LAMINATED <
PLASTICITY	СИЛЕ -55 СОЛЕ -55 СО	INDURATION
PLASTICITY INDEX (PI) DRY STRENGTH	CME-550 HARD FACED FINGER BITS -N	FOR SEDIMENTARY ROCKS, INDURATION IS THE HARDENING OF MATERIAL BY CEMENTING, HE
NON PLASTIC 0-5 VERY LOW SLIGHTLY PLASTIC 6-15 SLIGHT	VANE SHEAR TEST V CASING V ADVANCER	FRIABLE RUBBING WITH FINGER FREES NUMEROUS GRAINS; GENTLE BLOW BY HAMMER DISINTEGRATES SAMPLE.
MODERATELY PLASTIC 16-25 MEDIUM HIGHLY PLASTIC 26 OR MORE HIGH	POST HOLE DIGGER	MODERATELY INDURATED GRAINS CAN BE SEPARATED FROM SAMPLE WITH ST BREAKS EASILY WHEN HIT WITH HAMMER.
	X D50 - (TER346)	INDURATED GRAINS ARE DIFFICULT TO SEPARATE WITH STEEL DIFFICULT TO BREAK WITH HAMMER.
DESCRIPTIONS MAY INCLUDE COLOR OR COLOR COMBINATIONS (TAN, RED, YELLOW-BROWN, BLUE-GRAY). MODIFIERS SUCH AS LIGHT, DARK, STREAKED, ETC. ARE USED TO DESCRIBE APPEARANCE.	X D50 - (TER373) X TRICONE 3% STEEL TEETH VANE SHEAR TEST	EXTREMELY INDURATED SHARP HAMMER BLOWS REQUIRED TO BREAK SAMPLE SAMPLE BREAKS ACROSS GRAINS.

PROJECT REFERENCE NO.

2

	TERMS AND DEFINITIONS
D. AN INFERRED SPT REFUSAL.	ALLUVIUM (ALLUV.) - SOILS THAT HAVE BEEN TRANSPORTED BY WATER.
FOOT PER 60 IS OFTEN	ADUIFER - A WATER BEARING FORMATION OR STRATA.
	ARENACEOUS - APPLIED TO ROCKS THAT HAVE BEEN DERIVED FROM SAND OR THAT CONTAIN SAND.
	ARGILLACEOUS - APPLIED TO ALL ROCKS OR SUBSTANCES COMPOSED OF CLAY MINERALS, OR HAVING A NOTABLE PROPORTION OF CLAY IN THEIR COMPOSITION, SUCH AS SHALE, SLATE, ETC.
N VALUES >	ARTESIAN - GROUND WATER THAT IS UNDER SUFFICIENT PRESSURE TO RISE ABOVE THE LEVEL AT
СК ТНАТ	WHICH IT IS ENCOUNTERED, BUT WHICH DOES NOT NECESSARILY RISE TO OR ABOVE THE GROUND
CLUDES GRANITE,	SURFACE.
L PLAIN	CALCAREOUS (CALC.) - SOILS THAT CONTAIN APPRECIABLE AMOUNTS OF CALCIUM CARBONATE.
IF TESTED.	COLLUVIUM - ROCK FRAGMENTS MIXED WITH SOIL DEPOSITED BY GRAVITY ON SLOPE OR AT BOTTOM OF SLOPE.
MAY NOT YIELD TONE, CEMENTED	CORE RECOVERY (REC.) - TOTAL LENGTH OF ALL MATERIAL RECOVERED IN THE CORE BARREL DIVIDED BY TOTAL LENGTH OF CORE RUN AND EXPRESSED AS A PERCENTAGE.
	DIKE - A TABULAR BODY OF IGNEOUS ROCK THAT CUTS ACROSS THE STRUCTURE OF ADJACENT ROCKS OR CUTS MASSIVE ROCK.
RINGS UNDER	<u>DIP</u> - THE ANGLE AT WHICH A STRATUM OR ANY PLANAR FEATURE IS INCLINED FROM THE HORIZONTAL.
DATINGS IF OPEN, AMMER BLOWS IF	DIP DIRECTION (DIP AZIMUTH) - THE DIRECTION OR BEARING OF THE HORIZONTAL TRACE OF THE LINE OF DIP, MEASURED CLOCKWISE FROM NORTH.
CK UP TO	FAULT - A FRACTURE OR FRACTURE ZONE ALONG WHICH THERE HAS BEEN DISPLACEMENT OF THE SIDES RELATIVE TO ONE ANOTHER PARALLEL TO THE FRACTURE.
L FELDSPAR BLOWS.	SIDES RELATIVE TO ONE ANOTHER PARALLEL TO THE FRACTORE.
5. IN	FLOAT - ROCK FRAGMENTS ON SURFACE NEAR THEIR ORIGINAL POSITION AND DISLODGED FROM
Y. ROCK HAS	PARENT MATERIAL.
AS COMPARED	FLOOD PLAIN (FP) - LAND BORDERING A STREAM, BUILT OF SEDIMENTS DEPOSITED BY THE STREAM.
ELDSPARS DULL	FORMATION (FM.) - A MAPPABLE GEOLOGIC UNIT THAT CAN BE RECOGNIZED AND TRACED IN THE
OSS OF STRENGTH	
WHEN STRUCK.	JOINT - FRACTURE IN ROCK ALONG WHICH NO APPRECIABLE MOVEMENT HAS OCCURRED.
VIDENT BUT	<u>LEDGE</u> - A SHELF-LIKE RIDGE OR PROJECTION OF ROCK WHOSE THICKNESS IS SMALL COMPARED TO ITS LATERAL EXTENT.
RE KAOLINIZED	LENS - A BODY OF SOIL OR ROCK THAT THINS OUT IN ONE OR MORE DIRECTIONS.
E DISCERNIBLE	USUALLY INDICATES POOR AERATION AND LACK OF GOOD DRAINAGE.
STRONG ROCK	PERCHED WATER - WATER MAINTAINED ABOVE THE NORMAL GROUND WATER LEVEL BY THE PRESENCE OF AN INTERVENING IMPERVIOUS STRATUM.
ONLY MINOR ALUES < 100 BPF	OF AN INTERVENING IMPERVIOUS STRATUM. RESIDUAL (RES.)SOIL - SOIL FORMED IN PLACE BY THE WEATHERING OF ROCK.
IN SMALL AND	ROCK QUALITY DESIGNATION (RQD) - A MEASURE OF ROCK QUALITY DESCRIBED BY TOTAL LENGTH OF
. SAPROLITE IS	ROCK SECHENTS EQUAL TO OR OREATER THAN 4 INCHES DIVIDED BY THE TOTAL LENGTH OF CORE RUN AND EXPRESSED AS A PERCENTAGE.
5 REQUIRES	$\underline{SAPROLITE}$ - RESIDUAL SOIL THAT RETAINS THE RELIC STRUCTURE OR FABRIC OF THE PARENT ROCK.
LOWS REQUIRED	<u>SILL</u> - AN INTRUSIVE BODY OF IGNEOUS ROCK OF APPROXIMATELY UNIFORM THICKNESS AND RELATIVELY THIN COMPARED WITH ITS LATERAL EXTENT, THAT HAS BEEN EMPLACED PARALLEL TO THE BEDDING OR SCHISTOSITY OF THE INTRUDED ROCKS.
EP CAN BE	SLICKENSIDE - POLISHED AND STRIATED SURFACE THAT RESULTS FROM FRICTION ALONG A FAULT
ETACHED	OR SLIP PLANE.
R PICK POINT. BLOWS OF THE	STANDARD PENETRATION TEST (PENETRATION RESISTANCE)(SPT) - NUMBER OF BLOWS (N OR BPF)OF A 140 LB.HAMMER FALLING 30 INCHES REQUIRED TO PRODUCE A PENETRATION OF 1 FOOT INTO SOIL WITH A 2 INCH OUTSIDE DIAMETER SPLIT SPOON SAMPLER. SPT REFUSAL IS PENETRATION EQUAL TO OR LESS THAN 0.1 FOOT PER 60 BLOWS.
FRAGMENTS T. SMALL, THIN	STRATA CORE RECOVERY (SREC.) - TOTAL LENGTH OF STRATA MATERIAL RECOVERED DIVIDED BY TOTAL LENGTH OF STRATUM AND EXPRESSED AS A PERCENTAGE.
PIECES 1 INCH	STRATA ROCK QUALITY DESIGNATION (SROD) - A MEASURE OF ROCK QUALITY DESCRIBED BY TOTAL LENGTH OF ROCK SEOMENTS WITHIN A STRATUM EQUAL TO OR GREATER THAN 4 INCHES DIVIDED BY THE TOTAL LENGTH OF STRATA AND EXPRESSED AS A PERCENTAGE.
ED READILY BY	TOPSOIL (TS.) - SURFACE SOILS USUALLY CONTAINING ORGANIC MATTER.
THICKNESS	BENCH MARK: SEE NOTES
4 FEET	ELEVATION: N/A FEET
.5 - 4 FEET .6 - 1.5 FEET	
3 - 0.16 FEET 18 - 0.03 FEET	NOTES:
0.008 FEET	FIAD - FILLED IN AFTER DRILLING
	PROJECT WAS DRAFTED USING PROVIDED TIN FILE (FILE: R5769_012616)
AT, PRESSURE, ETC.	
EEL PROBE;	
PROBE:	
NODL:	
	DATE: 8-15-14

	STATE		PROJECT REPERENCE NO.		SHEET NO.	TOTAL SHEETS
	N.C.	I	R-5769		2A	30
		e proj. No.	P. A. PROJ. NO.		DESCRIPT	
	46	448.1.1		+	PE, UTIL. CONS	
					2011	
]
	<u> </u>			12:	23 Jones Fro	anklin Rd.
ORDISK SITE		М	ETHERILL		Raleigh, N. License No	C. 27606 . F-0377
ONDISK SIIE		E	NGINEERING		Bus: 919 Fax: 919	851 8077 851 8107
	TDAVES			NE /~*	DUCTUCE	
URE			NNING/DESIGN - BRID - GIS/GPS - CONSTI			
	<u> </u>		-			
			erracı			
		Con		U	etc	
		2401 1	Sulting Engineers & S BRENTWOOD ROAD, SU IGH, NORTH CAROLINA	ITE 10	ələ 7	
		RALE PHONE NI	IGH, NORTH CAROLINA (919) 873–2211 FAX: (91: V REGISTERED FIRM: F	1 2760 9) 873–9 '–0869	14 555	
		140		5500		
UCTION						
<u>UCTION</u> . 15 + 07.87						
00						
07.33						
<u>I_</u>						
<u> </u>						
BRIDGE						
<u>BRIDGE</u> 33 + 75.48						
7 31						
7.31						
			MINARY PLA]	
		DO NO	T USE FOR CONSTRUCTION	DN	J	
4 10 . 00 00			MPLETE PLA			
<u>A. 10 + 00.00</u>			USE FOR R/W ACQUISIT	TON	J	
,		DOCUME UNLESS A	NT NOT CONSIDERED F LL SIGNATURES COMPI	INAL ETED		
		L			,	
			<u></u>			\equiv
HYDR	AULICS	ENGINEEI	2			
				F NOA	911	
			ALE O		CARA	
PE SIGNATURE	P.E.		- OF BERNARD	\prod	OLIM	
SIGNATURE.		Y DESIGN)	\sum	
		NEER				
-			Cart o	Fra	NSPORT	
	P.E .					
			人			

Date: TIP Number: County: Description:	June 2016 R-5796 Johnston Novo Nordisk Access Road from SR 1905 (Gordon Road) to Proposed Novo Nordisk Site
Subject:	Roadway Geotechnical Report - Inventory

Project Description

The project is located between Clayton and Wilsons Mills near the US 70 corridor in Johnston County, North Carolina. The proposed project consists of the construction of 0.6 miles of two-lane roadway on new location and the widening of an 800 feet long section of existing two-lane roadway to accommodate turn lanes. The new construction begins at SR 1905 (Gordon Road) and continues in a northeast direction through cultivated fields, wetlands, and woods before crossing two Norfolk Southern rail lines and ending at the proposed site of the new Novo Nordisk facility. The proposed access road will cross over the Norfolk Southern rail lines on a single span bridge with MSE walls proposed at the abutments. SR 1905 will be widened to the north to accommodate turn lanes to the proposed access road. The widening and new construction will be fill sections ranging from sliver fills on the existing SR 1905 embankments to 30 feet tall embankments at the bridge over the Norfolk Southern rail lines.

The geotechnical subsurface investigation was performed throughout March and April of 2016. Two Diedrich D-50 rotary drills were utilized to advance the soil test borings. Both of the rotary drill rigs utilized on this project were equipped with recently calibrated automatic Standard Penetration Test (SPT) hammers. A Pagani TG73-200 rig was utilized to push cone (CPT) and flat blade dilatometer (DMT) at the proposed bridge approach embankments. Pore water pressure dissipation tests were performed during selected CPT soundings.

The following alignments were investigated by soil testing and visual reconnaissance:

<u>Alignment</u>	<u>Stations</u>
-L-	10+00 to 43+57.04
-L1-	10+00 to 15+07.87
-Y1REV-	10+50 to 23+17.31

Physiography and Geology

The project is located near the western fringe of the Inner Coastal Plain Physiographic Province. The near surface soils consist of undivided upland coastal plain deposits. The coastal plain deposits are underlain by residual soils and weathered and crystalline rock within the depths of several soil test borings performed at the site. Where encountered in the SPT borings, the top of the residual soils and weathered rock is near Elevation 250 feet. SPT refusal on crystalline rock was encountered between Elevations 232 and 242 feet

near the Norfolk Southern rail lines. The crystalline rock encountered in the soil test borings was mica schist.

The existing elevations along the corridor range from approximately 279 feet to 295 feet. In general, the topography is rolling with gentle slopes. The existing Norfolk Southern rail lines are located near the highest point on the project. An area delineated as wetlands between -L- Stations 22+00 and 29+50 is believed to be a portion of a Carolina Bay.

Soil Properties

-Y1REV-

Roadway embankment soils were encountered in the hand augers performed along the shoulder of existing SR 1905 (-Y1REV-). The roadway embankment soils begin near -Y1REV- Station 14+75 and continue to Station 22+00. The roadway embankment soils consist of high plasticity silty clay (A-7-6) over silty sand (A-2-4), both containing little quartz gravel. The clay layer was approximately 2 feet thick and the sand extended to approximately 6 feet below existing grades where encountered in the hand augers. In the up station direction along -Y1REV-, the roadway embankment tapers from at grade and gets deeper as existing SR 1905 crosses a small jurisdictional stream channeled through a 30 inch RCP culvert at -Y1REV- Station 20+52. The maximum existing embankment height occurs near the existing RCP culvert and is approximately 6 feet. As the alignment continues up station, the roadway embankment soils taper out and meet undivided coastal plain again at -Y1REV- Station 22+00.

Alluvial soils were encountered beneath the roadway embankment on -Y1REV- between Stations 19+11 and 21+67. The alluvial soils encountered directly beneath the roadway embankment were organic sandy clay (A-6). This layer is approximately 1 foot thick and is underlain by a loose clean sand (A-3) to hand auger termination depths of 6.5 feet. The alluvial soils occur in the low lying area on the -Y1REV- alignment as described above and continue north along the jurisdictional stream floodplain toward the -L- alignment.

<u>-L- and -L1-</u>

Alluvial soils are present on the -L- alignment at the surface near the jurisdictional stream that continues south toward SR 1905 (-Y1REV-). These alluvial soils are present near the surface between -L- Stations 15+97 and 16+79. The alluvial soils consist of loose clean sand (A-3).

The coastal plain deposits along the corridor can be generalized into three layers. There are organic soils present within and surrounding the delineated wetlands. Outside of the wetland areas and beneath the organic soils is a relatively stiff crust. Beneath the stiff crust is a very soft layer that extends to the top of residual and weathered rock.

The organic soil layer was encountered at the surface within the delineated wetlands and near their boundaries between approximately -L- Stations 21+25 to 29+50 and 37+00 to 39+50. This layer consists of organic clayey sand (A-2-6) and organic sandy clay (A-6). These soils contain trace to little organics and extend to depths as deep as 9 feet where encountered.

Terracon Consultants, Inc. 2401 Brentwood Road Raleigh, NC 27604 P [919] 873 2211 F [919] 873 9555 terracon.com NC Registered Firm F-0869

PROJECT REFERENCE NO.	SHEET NO.
R-5769	3

The second generalized coastal plain layer was encountered outside of the delineated wetlands and beneath the organic soils described previously. This layer is a medium stiff to hard layer that generally consists of silty clay (A-7-6) and sandy clay (A-6), although some samples from this layer also classify as a medium dense to dense clayey sand (A-2-6 or A-2-7) based on laboratory testing. This layer is notably stiffer / denser than the other coastal plain soils encountered along the project. This layer exhibits the highest SPT blow counts and in-situ moduli based on the CPT and DMT near the Norfolk Southern Railroad between approximately -L- Station 30+50 and 35+50, where the depth to groundwater is the deepest along the project. The layer extends from the surface to depths of up to 20 feet below existing site grades.

The third coastal plain layer exhibited very low SPT blow counts and was encountered once the SPT borings were advanced through the stiff crust layer along the project. The soft / loose layer consisted of wet to saturated high plasticity clay (A-7-6) with highly variable amounts of sand and gravel; saturated clayey sand (A-2-6 and A-2-7) with trace to little gravel; and clean, very loose to loose, sand and gravel (A-3 and A-1-a). The sandy and gravelly soils were typically encountered in the top 20 feet of the layer and the high plasticity clay was encountered below to the interface with the residual and weathered rock. Based on the in-situ testing and deeper SPT borings, the soft / loose layer extends to the top of residual and weathered rock which were encountered at depths ranging from 35 to 50 feet below existing site grades. The clay soils near the bottom of the layer also contained trace to little mica.

Residual soils were encountered in several of the deeper SPT borings advanced near the bridge and retaining wall structures at the Norfolk Southern Railroad. The residual soils were sampled as soft to stiff high plasticity clay (A-7-6) and dense to very dense silty sand (A-2-4) both of which contained trace to little mica.

Rock Properties

Weathered rock and crystalline rock along the project appear to be a micaceous schist based on the materials recovered in the split spoon sampler. Rock coring was not performed for the subsurface investigation along the project. The weathered rock and rock were encountered at depths of 40 to 60 feet below existing site grades. The weathered rock and crystalline rock at the site are not anticipated to have an impact on roadway construction.

Groundwater

The corridor generally drains to the delineated wetland areas which in turn drain to unnamed jurisdictional streams that run out of the corridor. The areas delineated as wetlands along the project were observed to retain water for several days following precipitation. In the suspected Carolina Bay, water depths of up to 3 feet were observed during a site visit to lay out boring locations. However, the site was revisited following a period of dry weather to begin the field investigation and the surface water had infiltrated or drained. Surface water depths of up to 1.5 feet were observed in the delineated wetland areas up station from the bridge over the Norfolk Southern Railroad. Similar to the suspected Carolina Bay, surface water was not observed when the site was revisited after a period of dry weather. Although surface water was not

observed following dry weather, groundwater was encountered during drilling and sampling in and near the delineated wetlands at depths of 0.5 to 1 foot below existing site grades.

Away from the wetland areas, the depth to groundwater ranged from approximately 3 to 10 feet below existing site grades. From the SR 1905 and access road intersection to approximately -L- Station 21+00, groundwater was encountered between 3 and 7.5 feet below existing site grades which corresponds to an elevation of 278 to 280 feet. Between -L- Stations 29+00 and 37+00 groundwater was encountered between 2 and 10 feet below existing site grades. Along this section of the project, the depths to groundwater correspond to an elevation of 284 to 285 feet.

Areas of Special Geotechnical Interest

1. High Plasticity Clay

High plasticity clay was encountered near proposed subgrade or in fill sections at the following locations:

Alignment

-Y1REV-

2. Organic Soils

Soils containing little organic matter were encountered at the following locations:

<u>Alignment</u> -L--L-

3. High Groundwater

Groundwater was encountered at the following locations within 6 feet of proposed grades:

Alignment	
-L-	
-L-	
-L1-	

4. Poor Drainage

The following areas are delineated as wetland and were observed to hold standing surface water for periods during the investigation:

<u>Alignment</u>
-L-
-L-
-L1-

PROJECT REFERENCE NO.	SHEET NO.
R-5769	ЗA

<u>Stations</u> 10+50 to 23+17.31

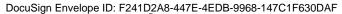
<u>Stations</u> 21+25 to 29+50 37+00 to 39+50

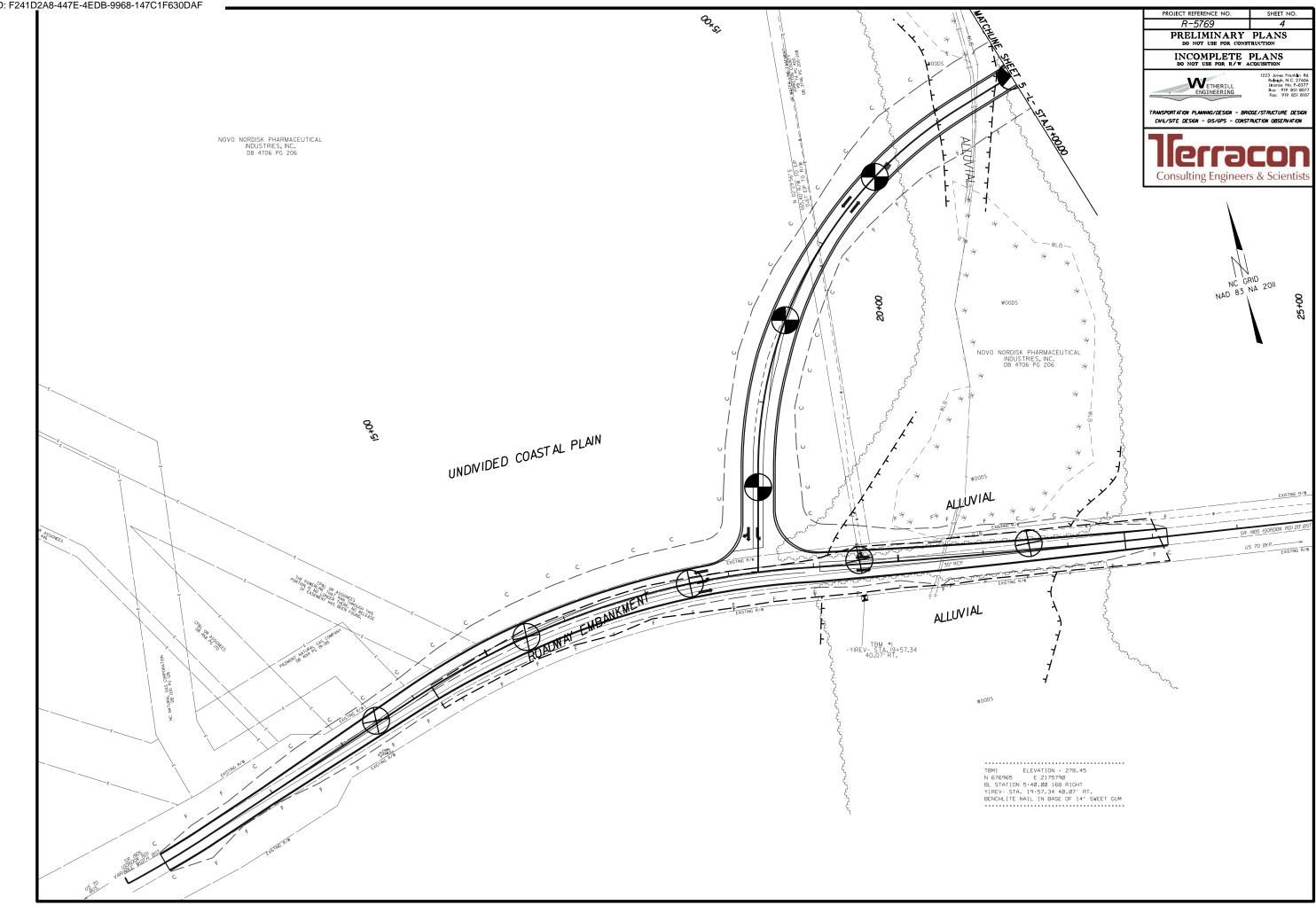
<u>Stations</u> 21+25 to 24+00 41+25 to 43+57.04 10+50 to 15+07.87

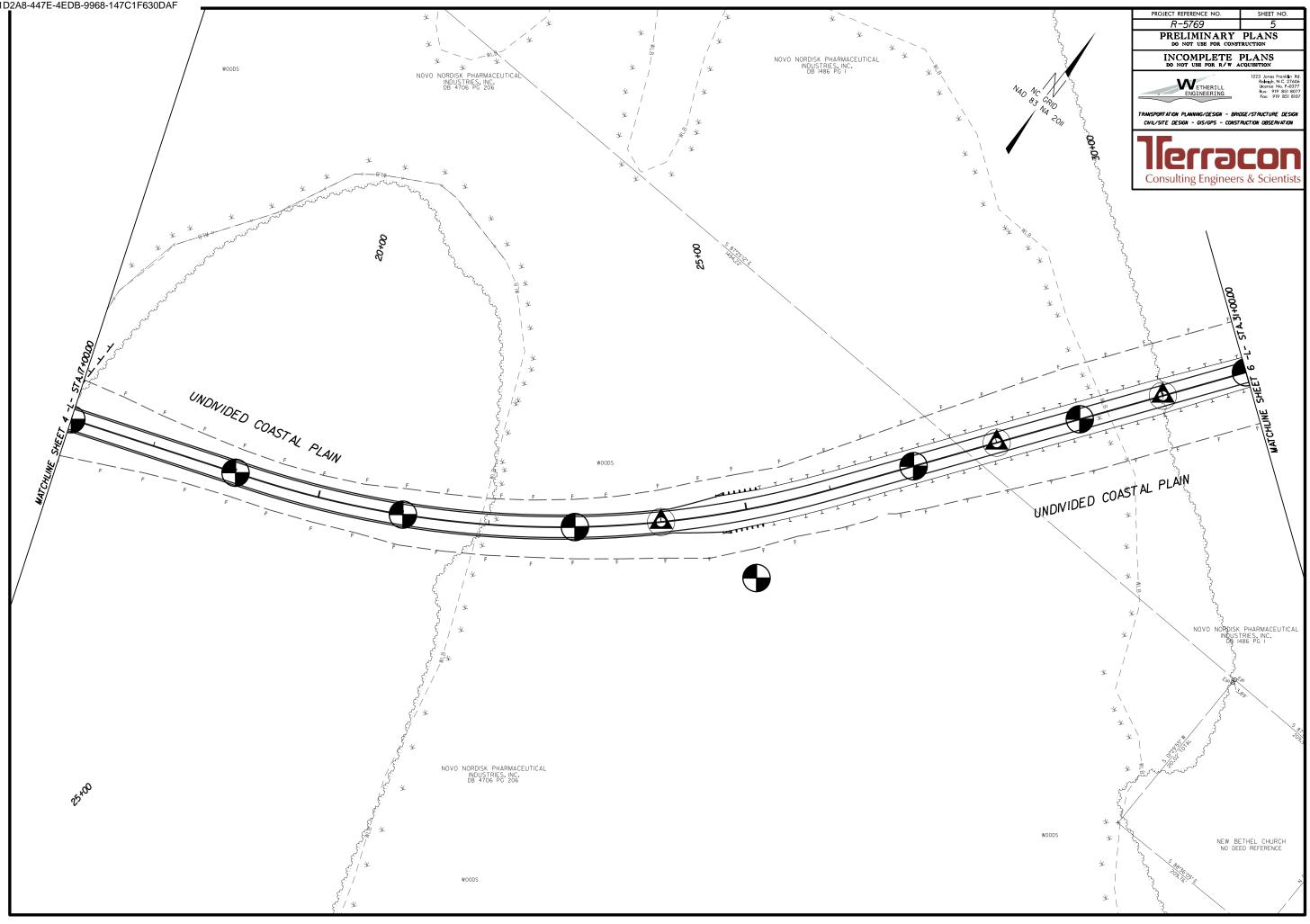
> <u>Stations</u> 21+25 to 29+50 37+56 to 43+57.04 10+00 to 15+07.87

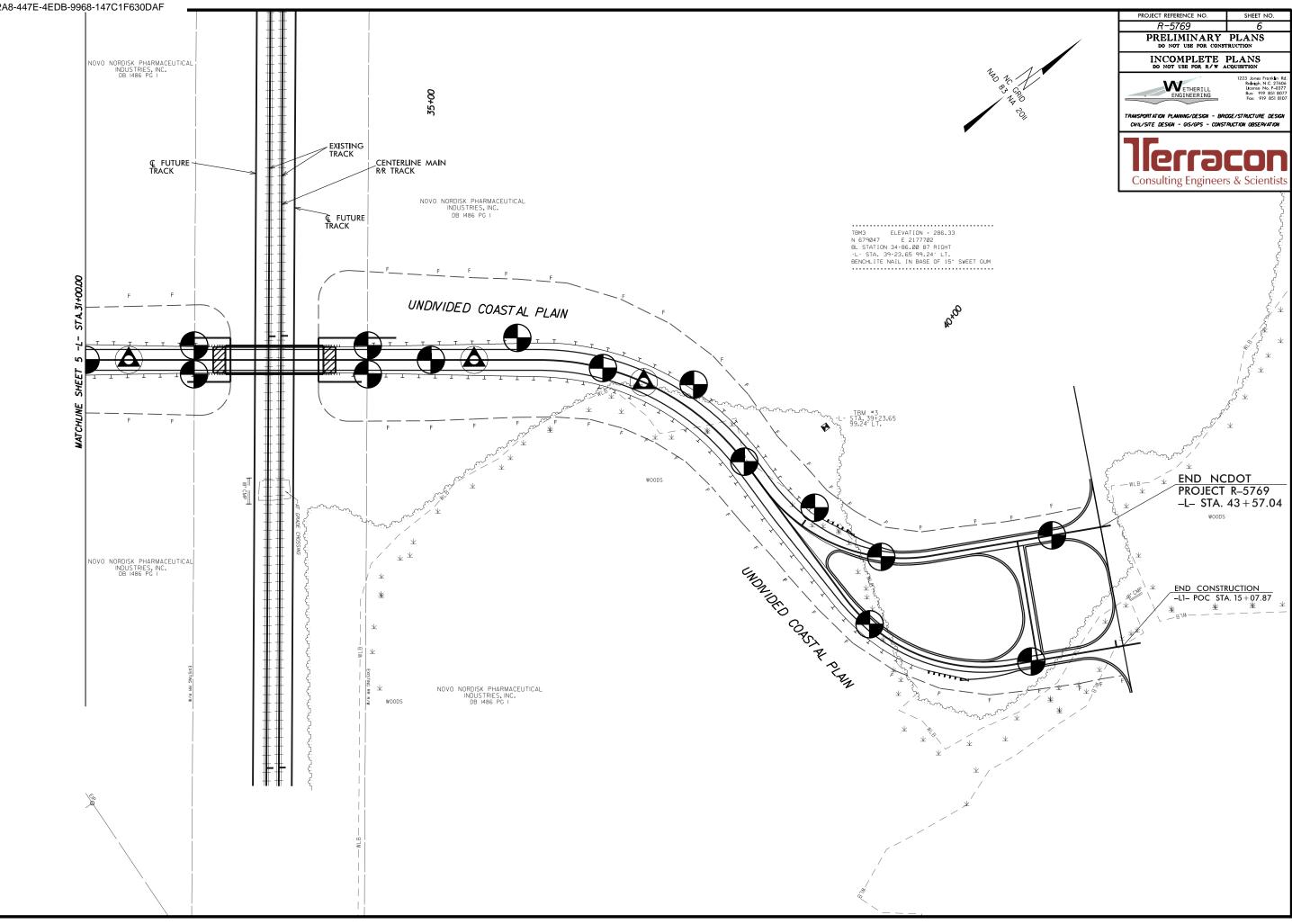
<u>Closing</u>

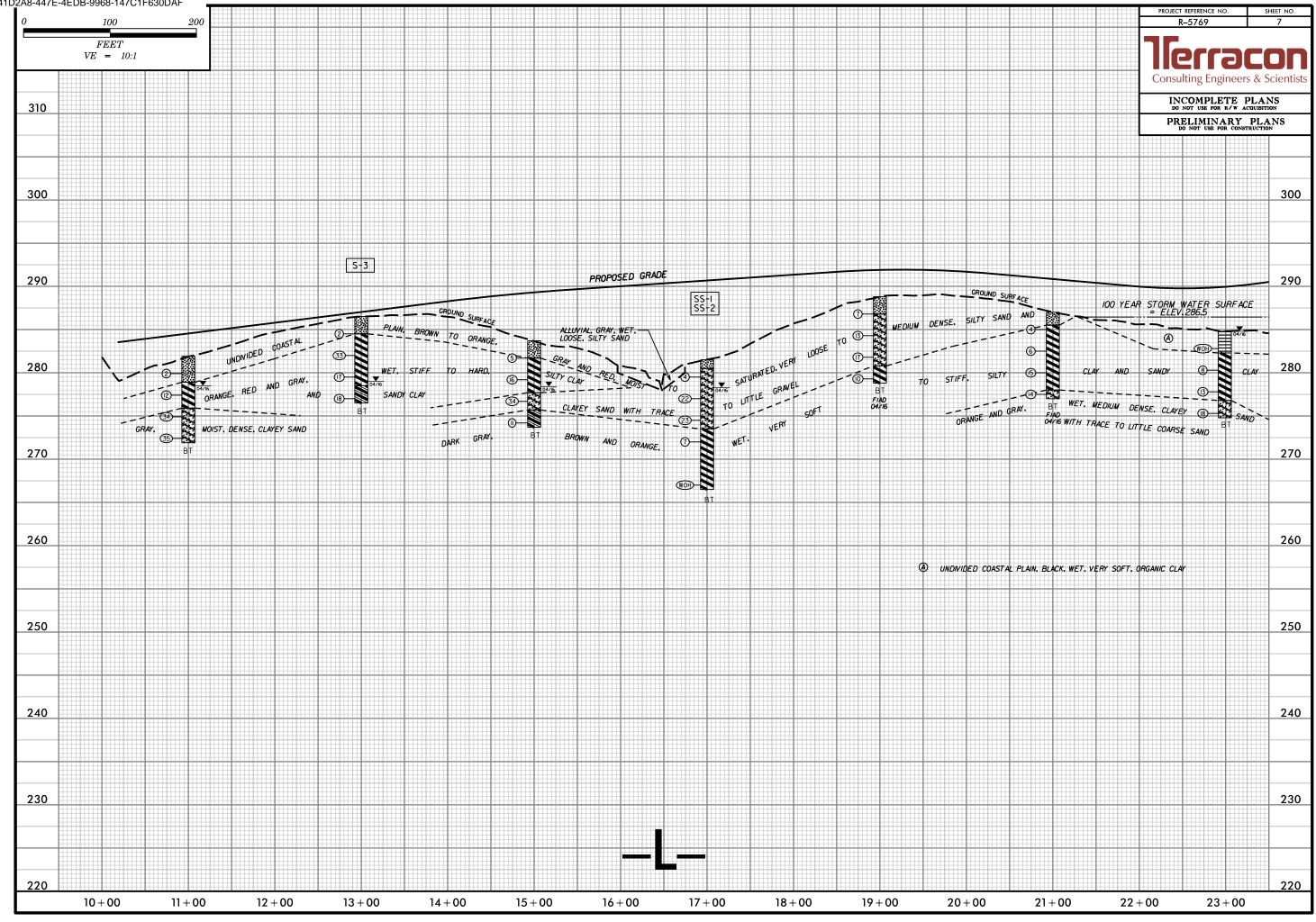
We appreciate the opportunity to be of service to you on this project. If you have any questions concerning this report, or if we may be of further service, please contact us at your convenience.

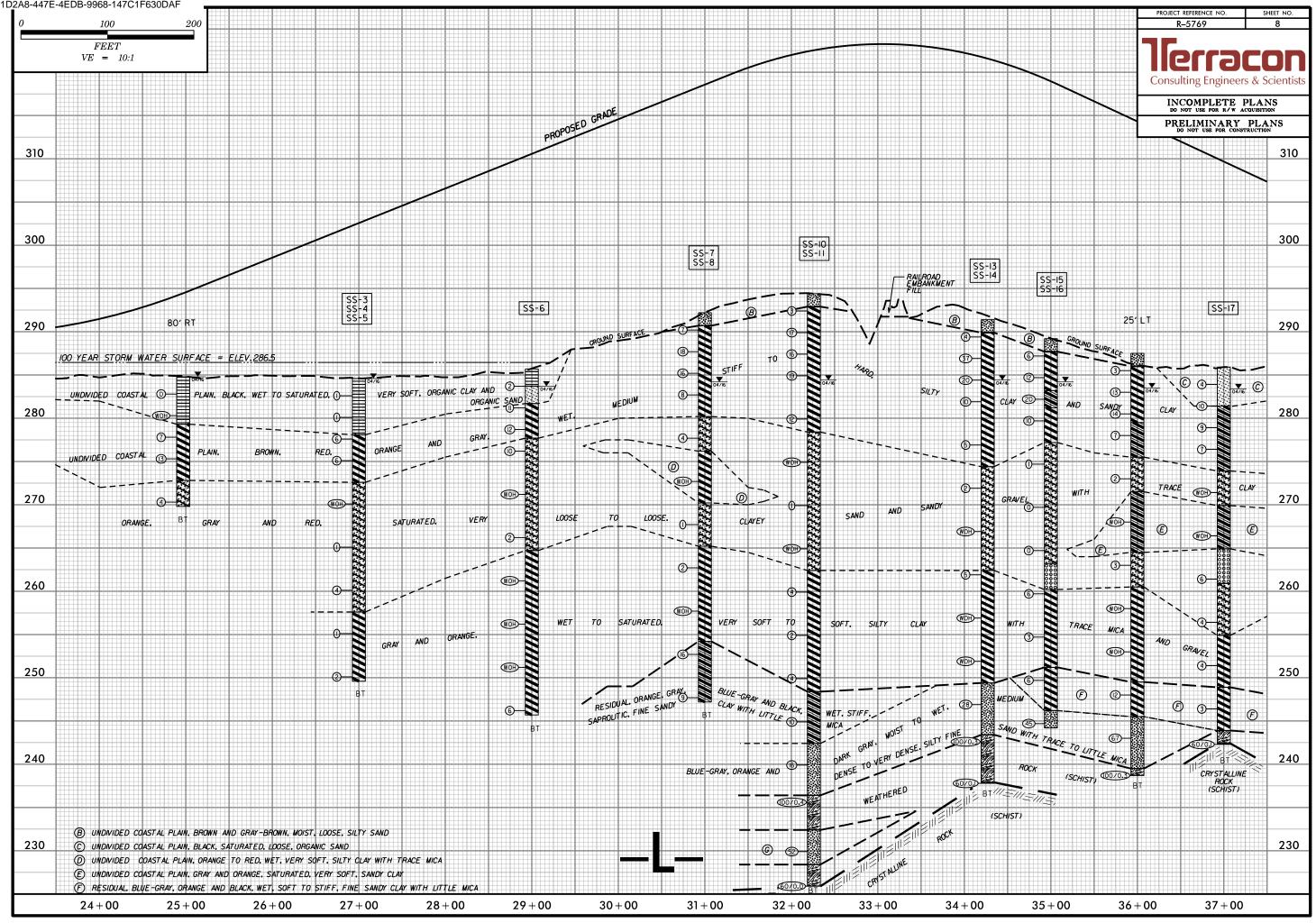

Sincerely, Terracon Consultants, Inc.

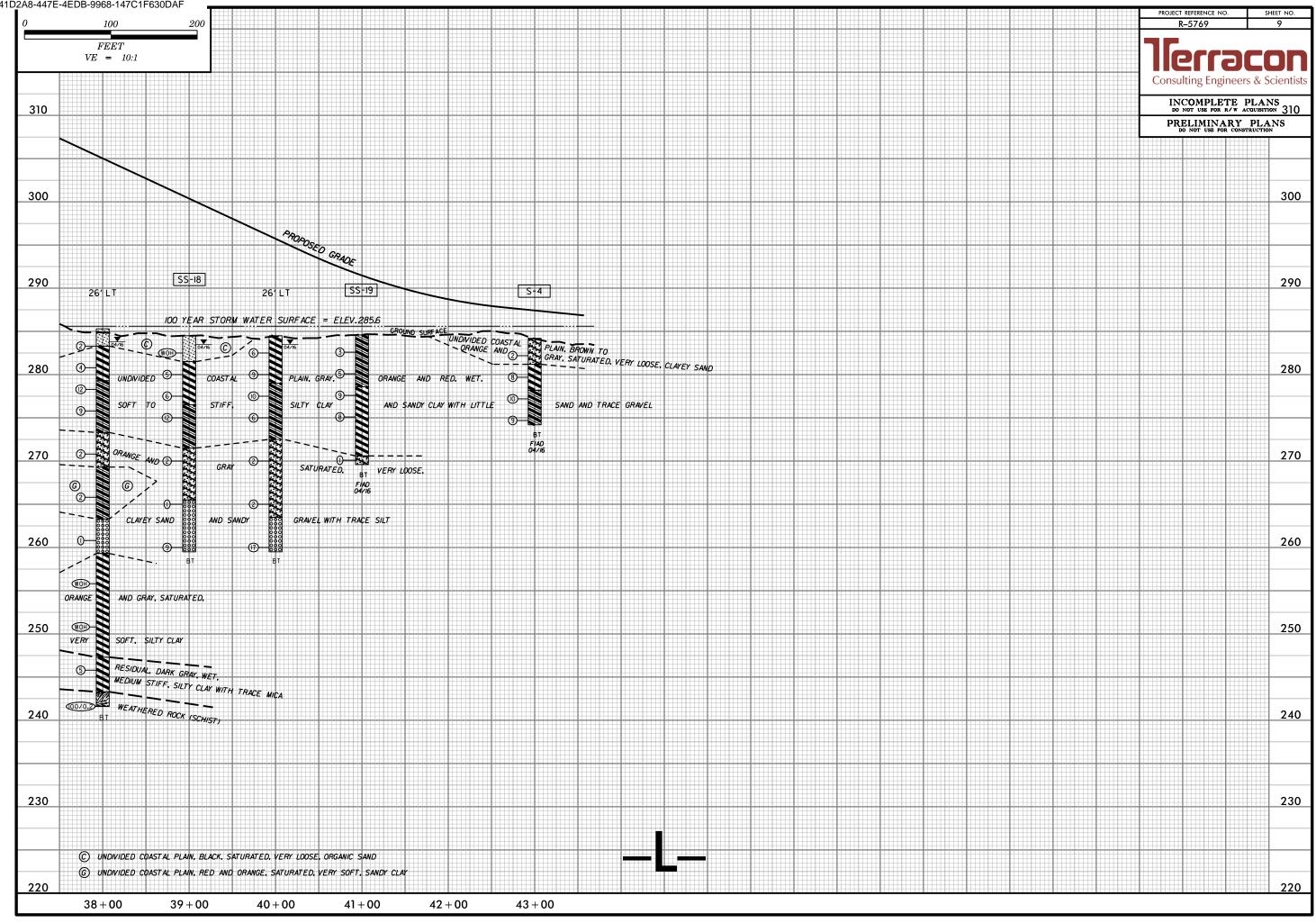

Matthew J. Alexander, PE Project Geotechnical Engineer

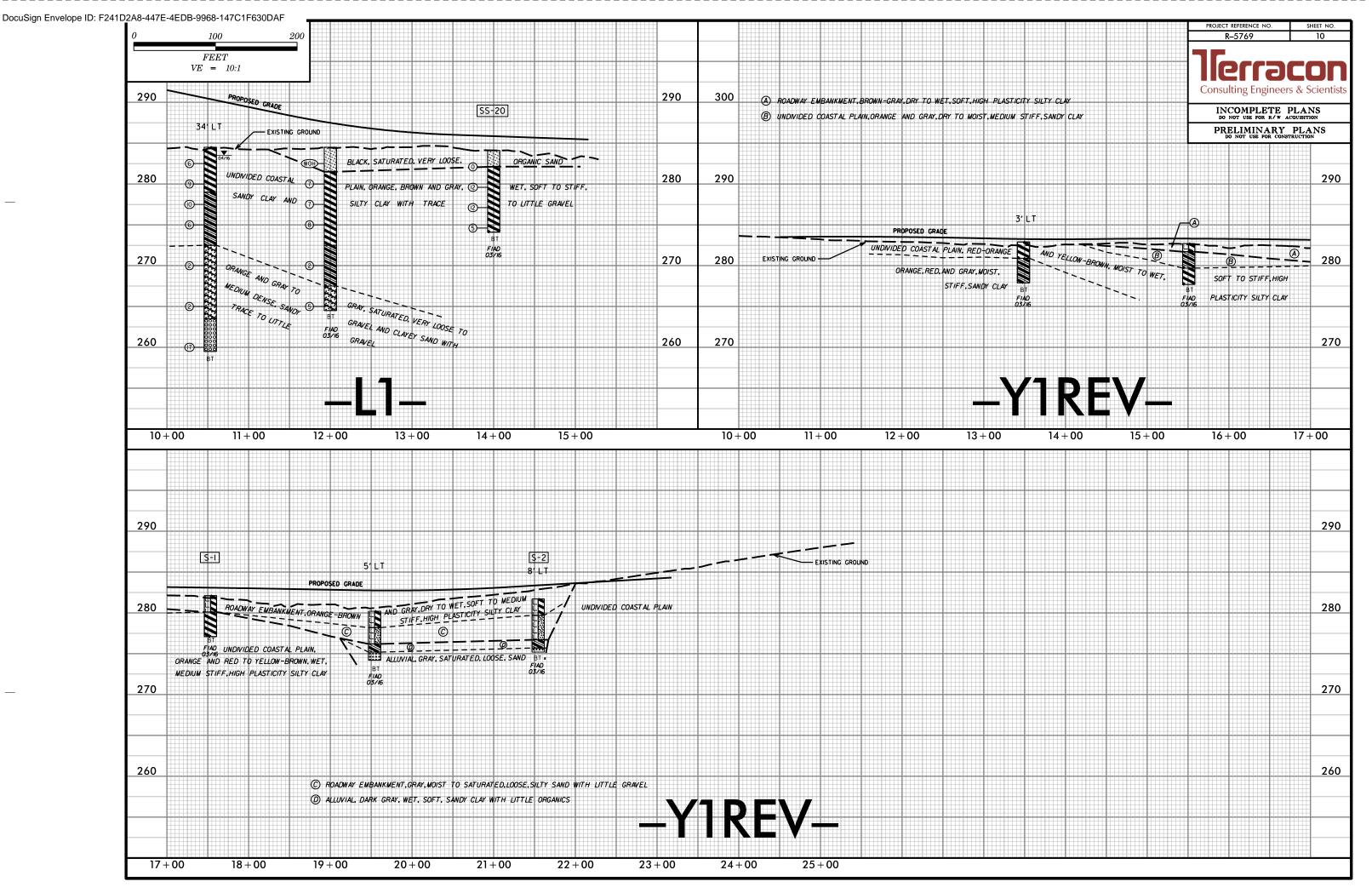

ANDREN NASH

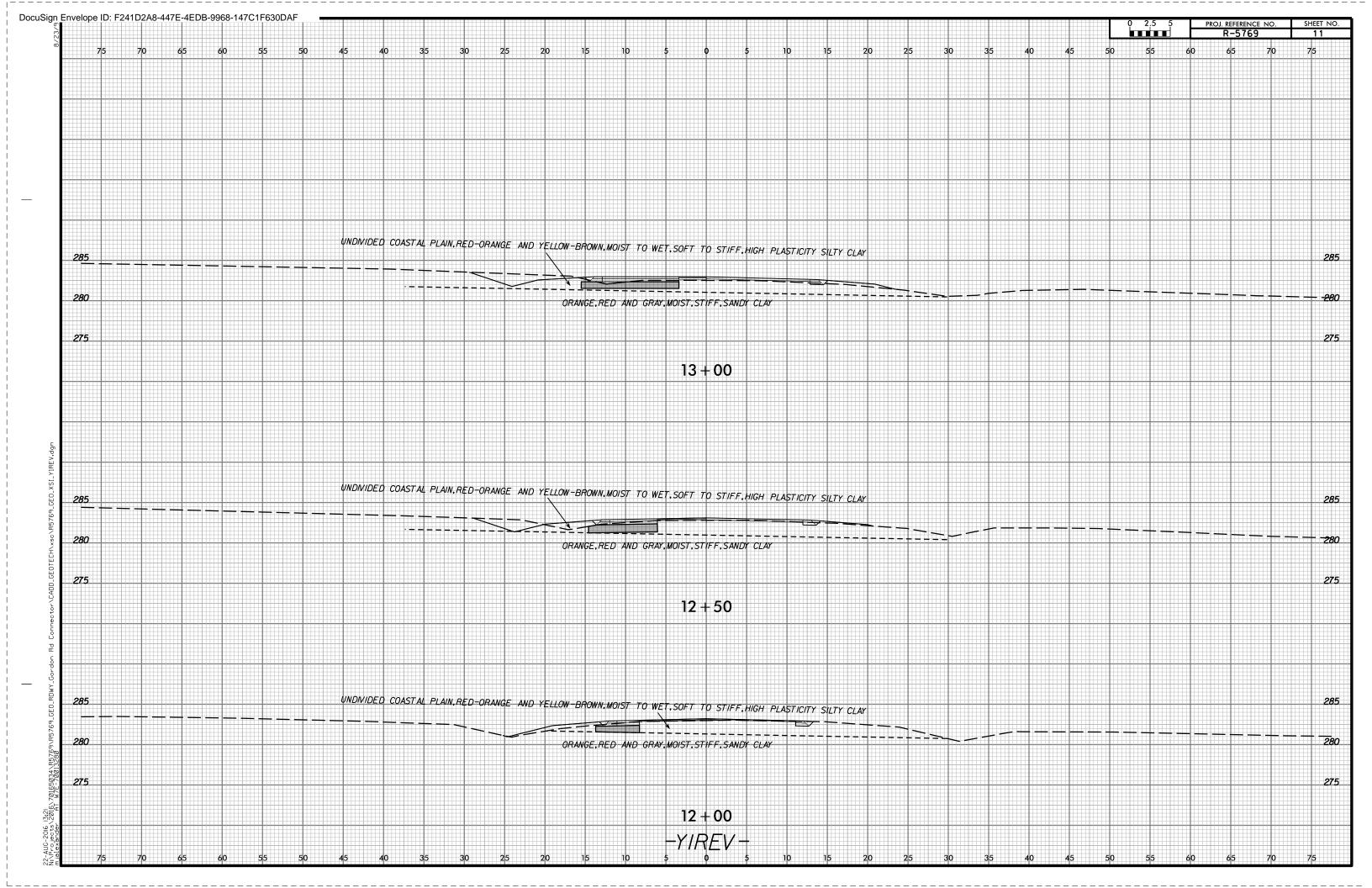

Andrew A. Nash, PE Geotechnical Department Manager

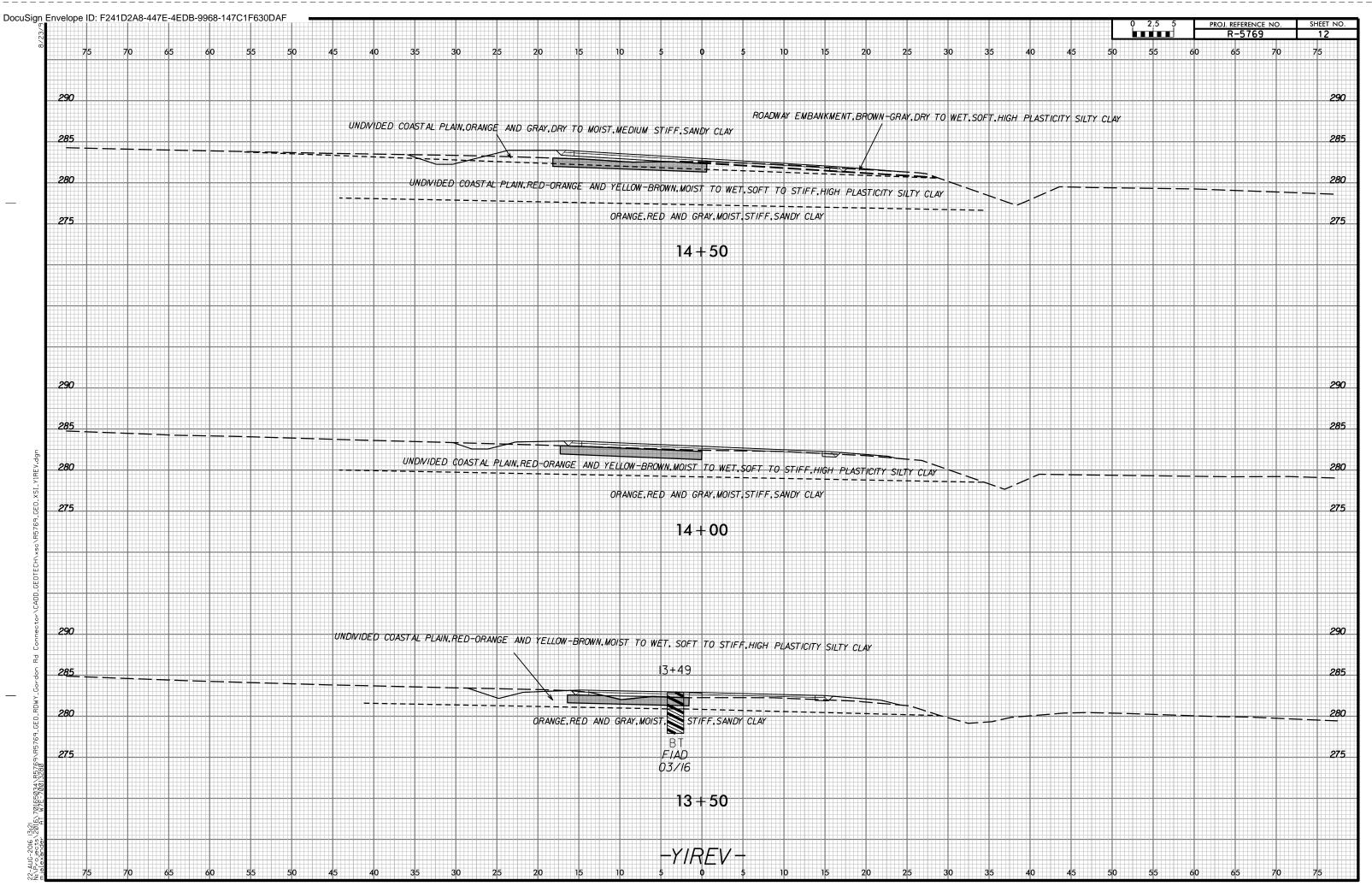

PROJECT REFERENCE NO.	SHEET NO.
R-5769	3B

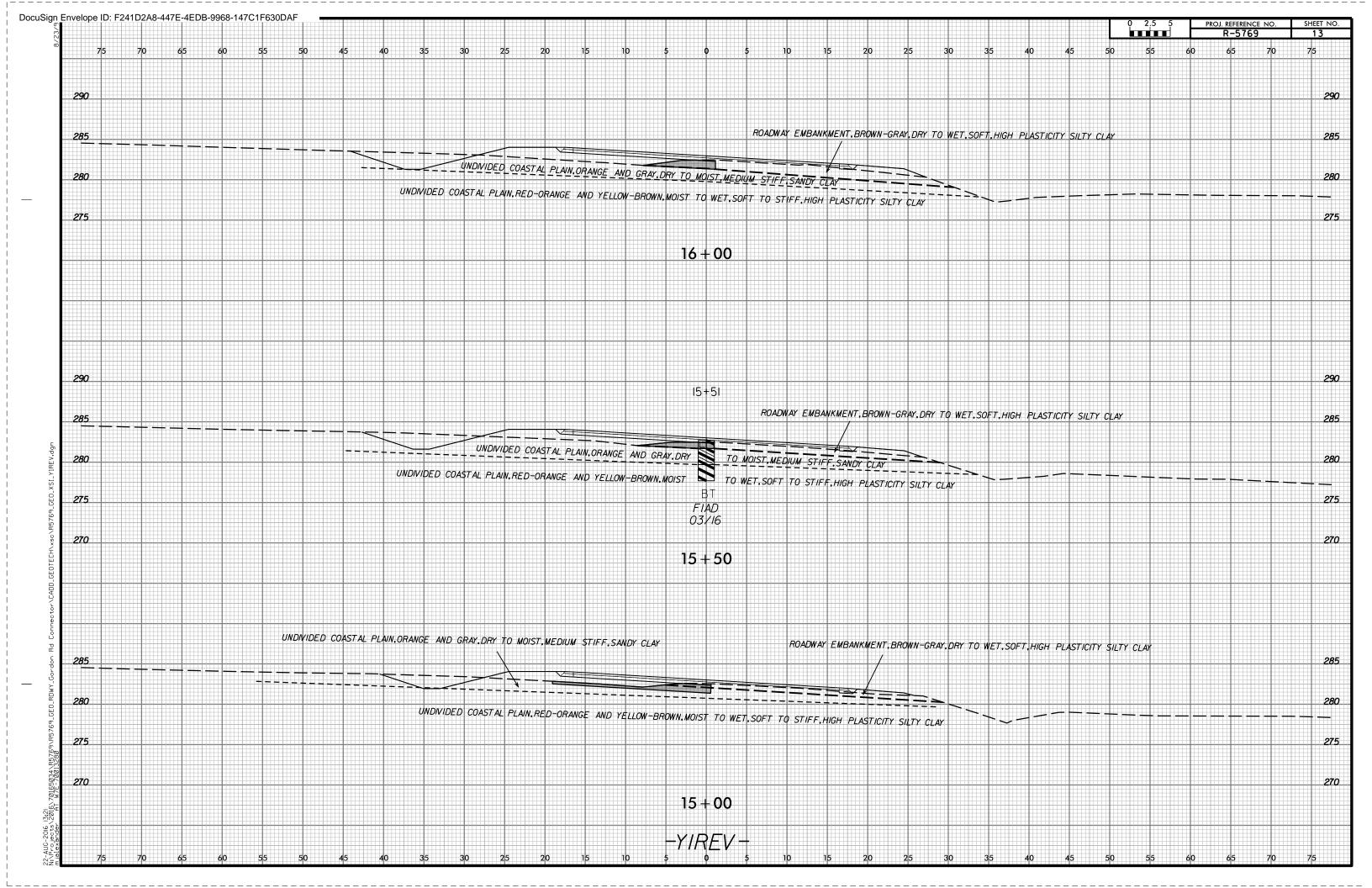


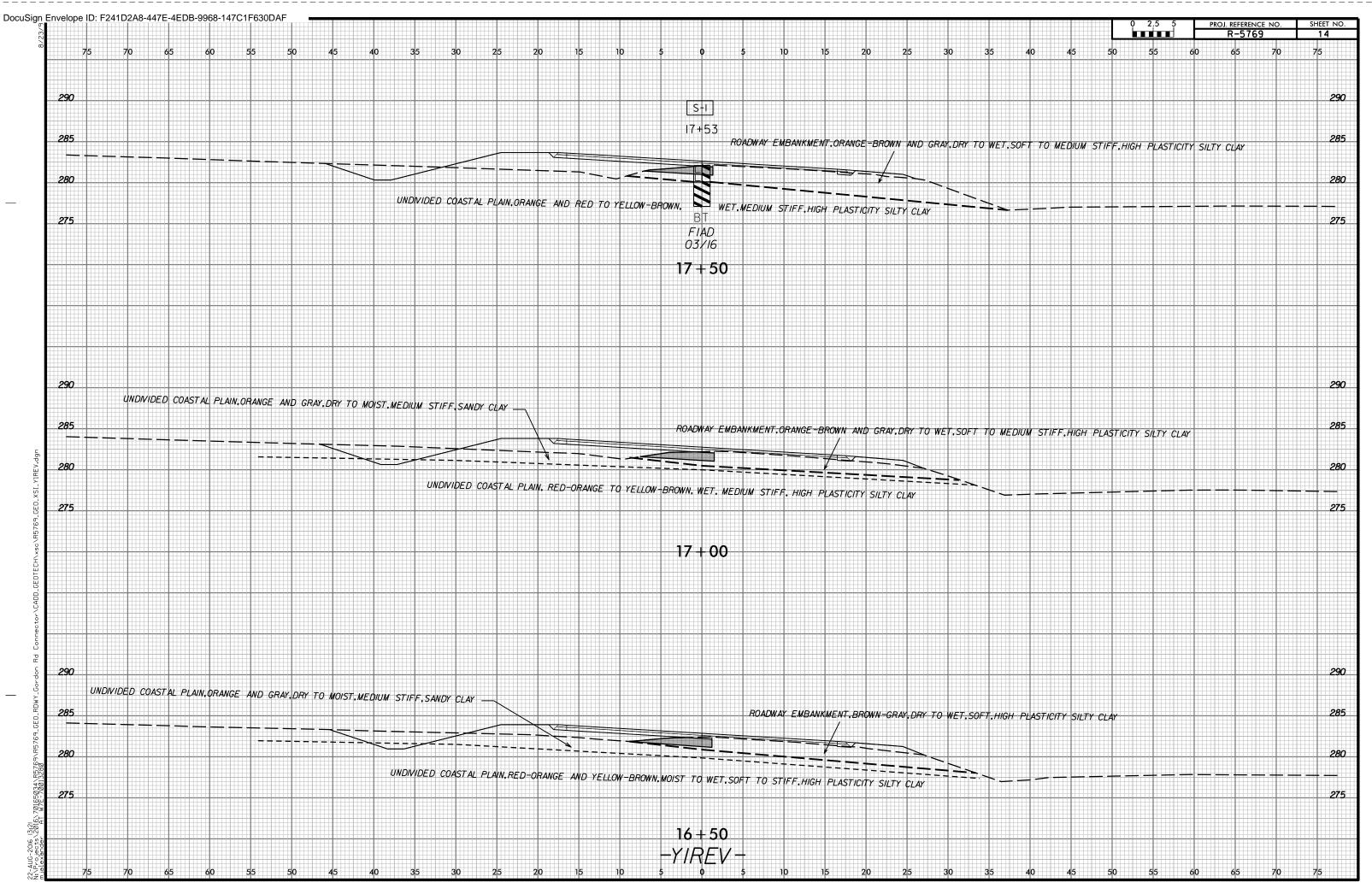


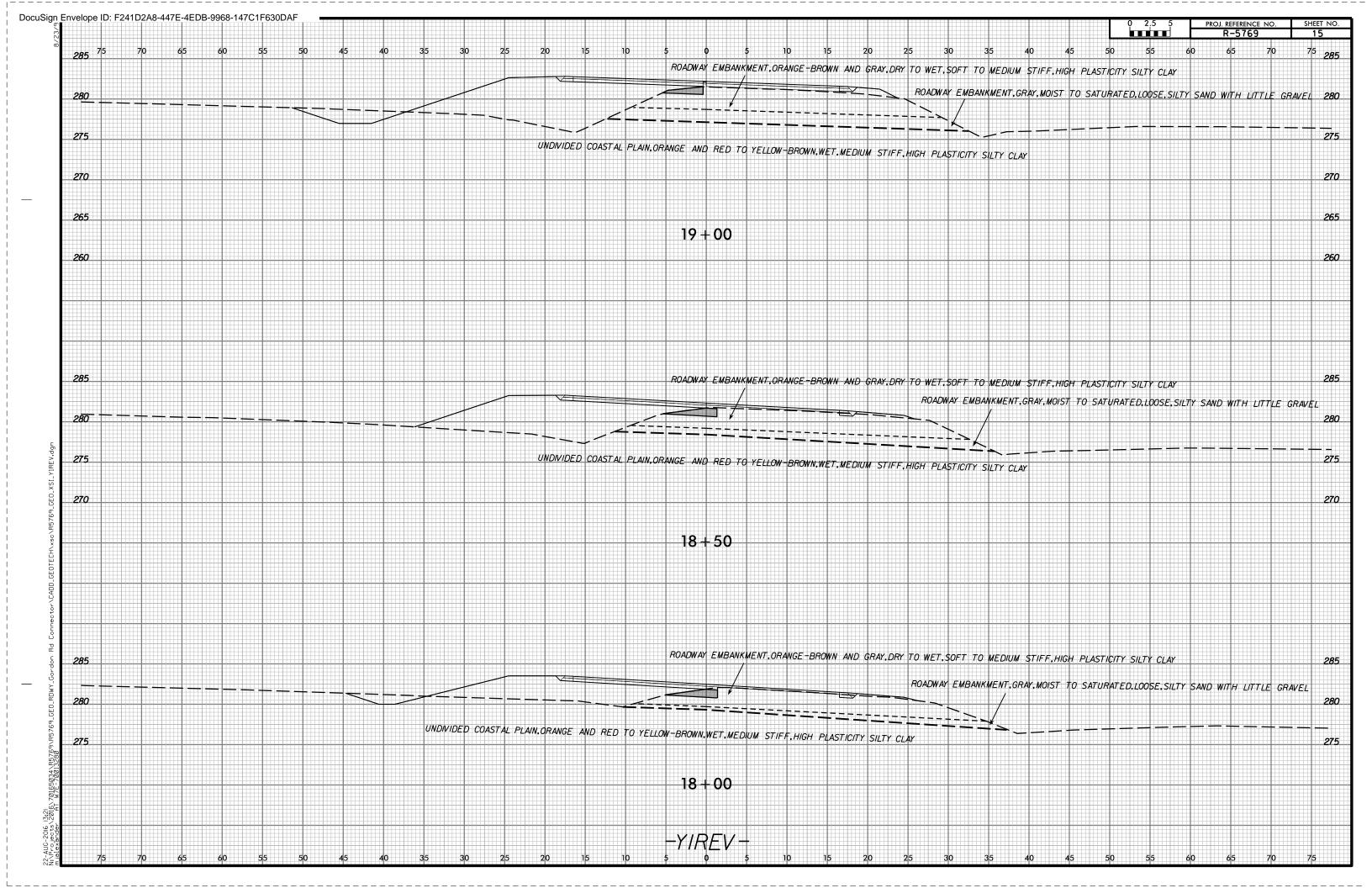


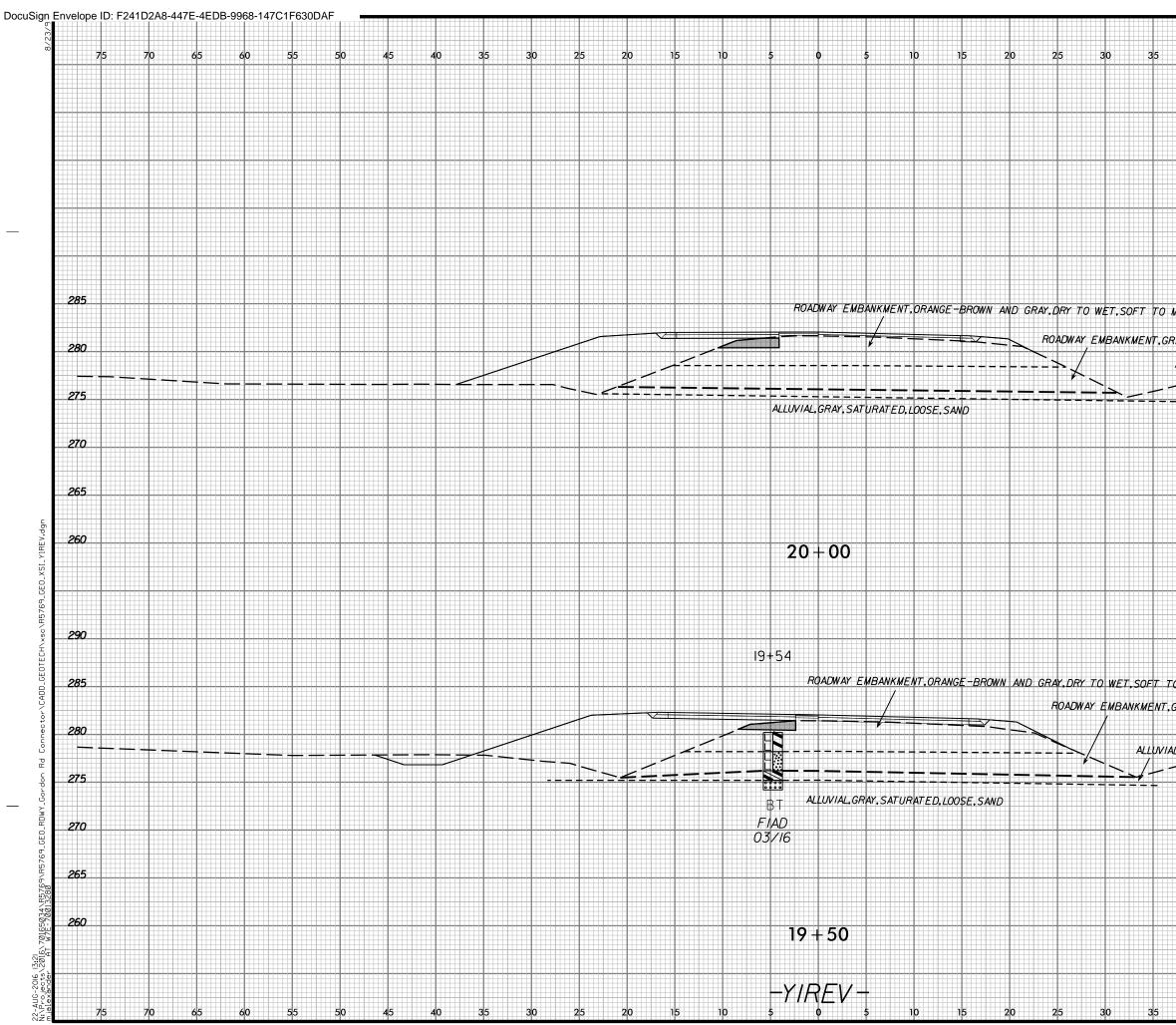


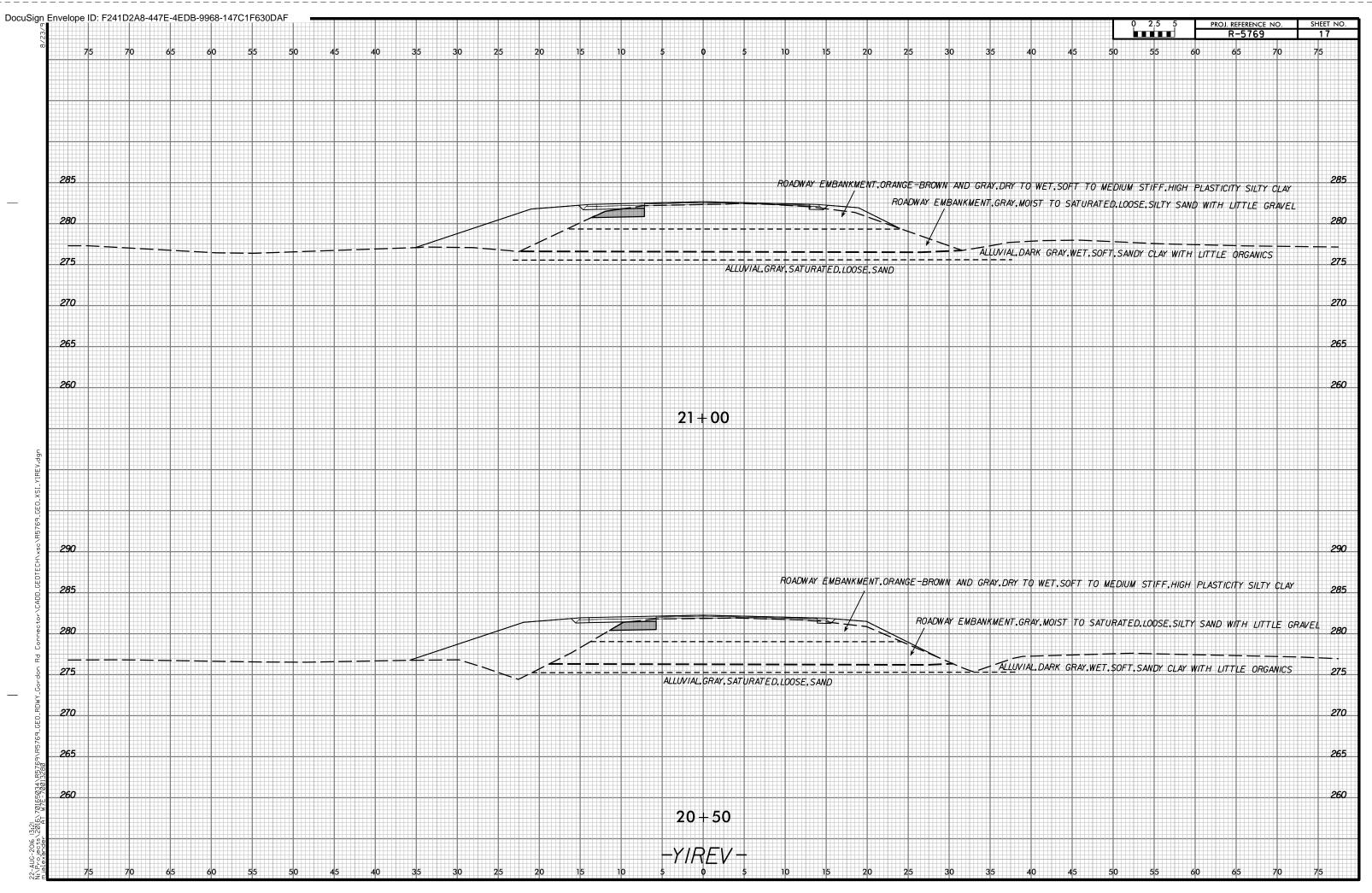


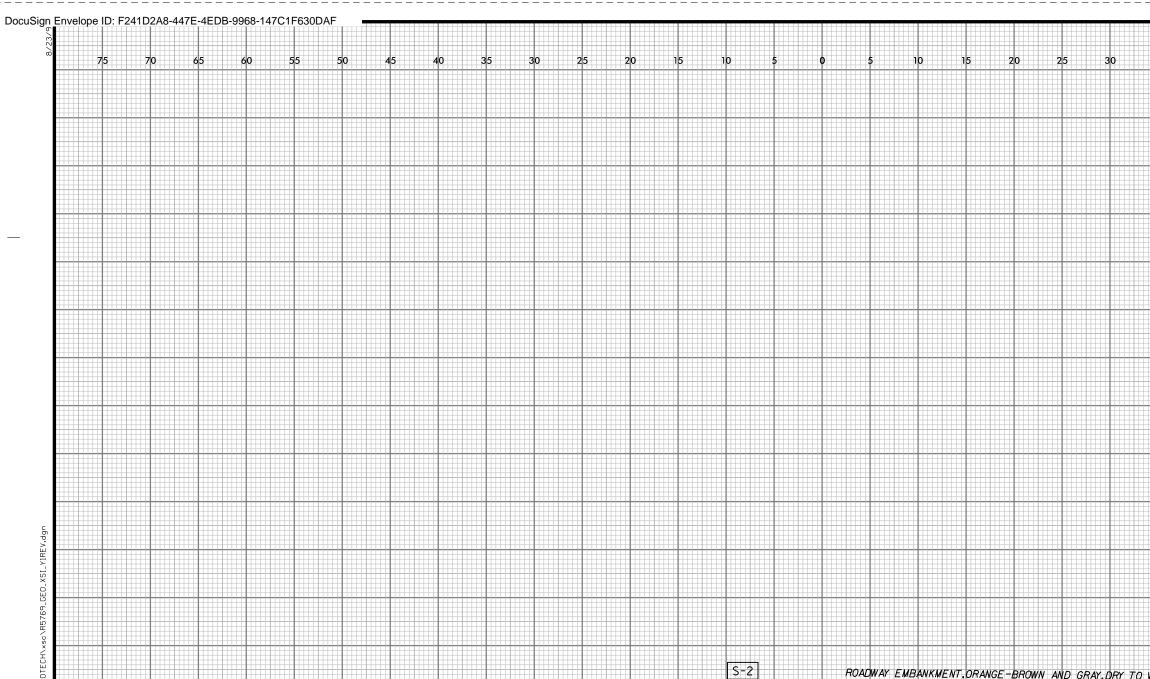


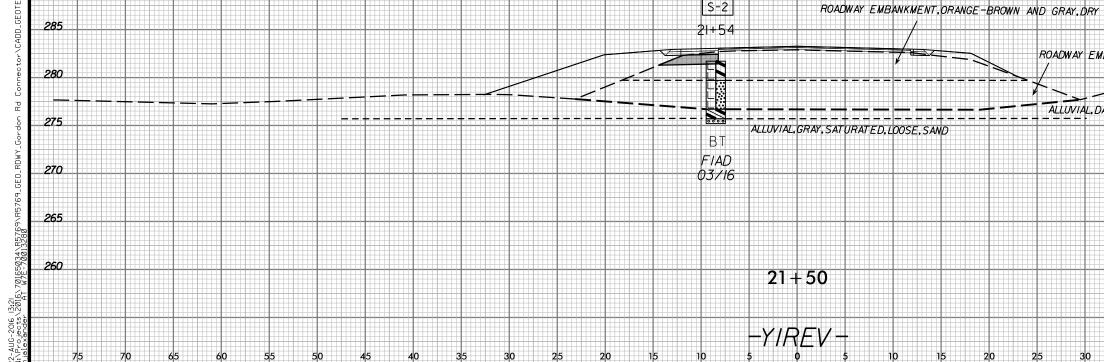


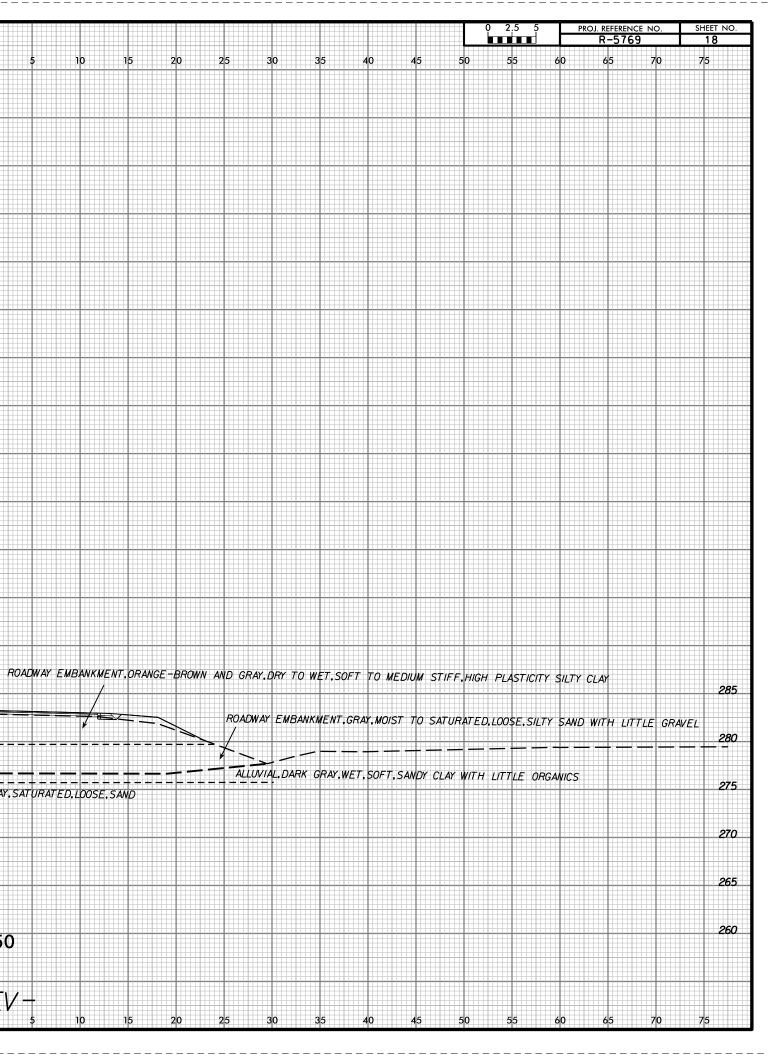




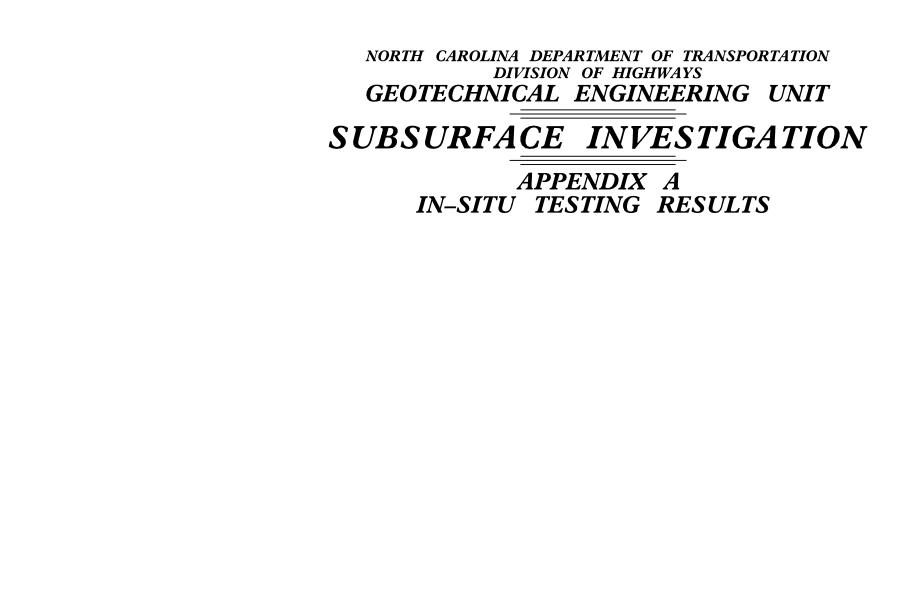








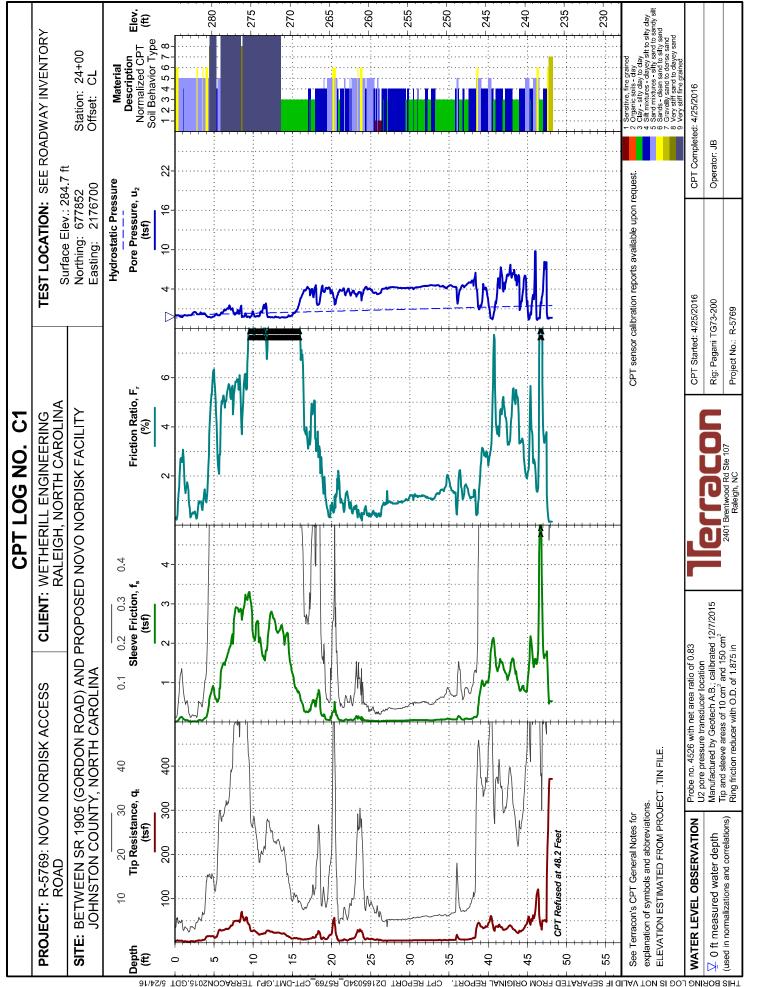
		0 2.5			EFERENCE	NO.	sheet no. 16
40 4	5 5	0 55	60		5	70	75
							285
ÆDIUM STIFF.	HIGH PLA	STICITY SIL	TY CLAY				205
AY.MOIST TO S	SATURATE	D.LOOSE.SIL	TY SANE	WITH I	ITTLE G	RAVEL	900
ALLUVIAL.DARK							280
<i>{</i>							
							275
							270
							265
							260
							290
) MEDIUM STIF	F,HIGH I	PLASTICITY	SILTY CL	AY			285
RAY.MOIST TO	SATURAT	ED,LOOSE,	SILTY SA	ND WITH	LITTLE	GRAVEL	
							280
.DARK GRAY,W	ET.SOFT.	SANDY CLAY	' WITH L	ITTLE O	RGANICS		
							- 275
							270
							265
							260
							260
							260

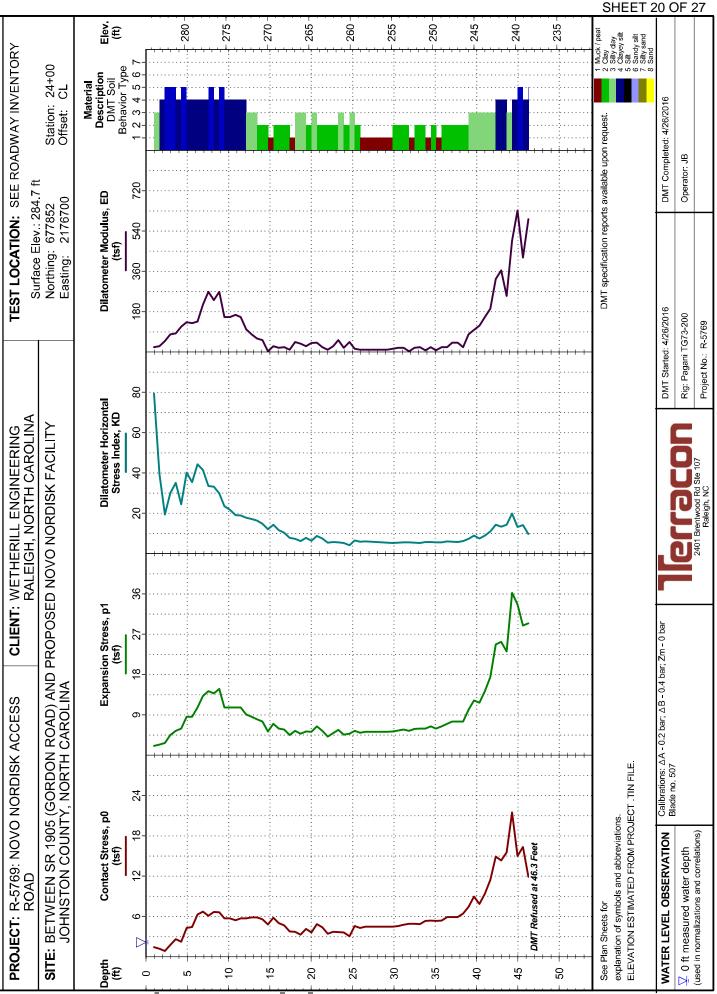


5769

R

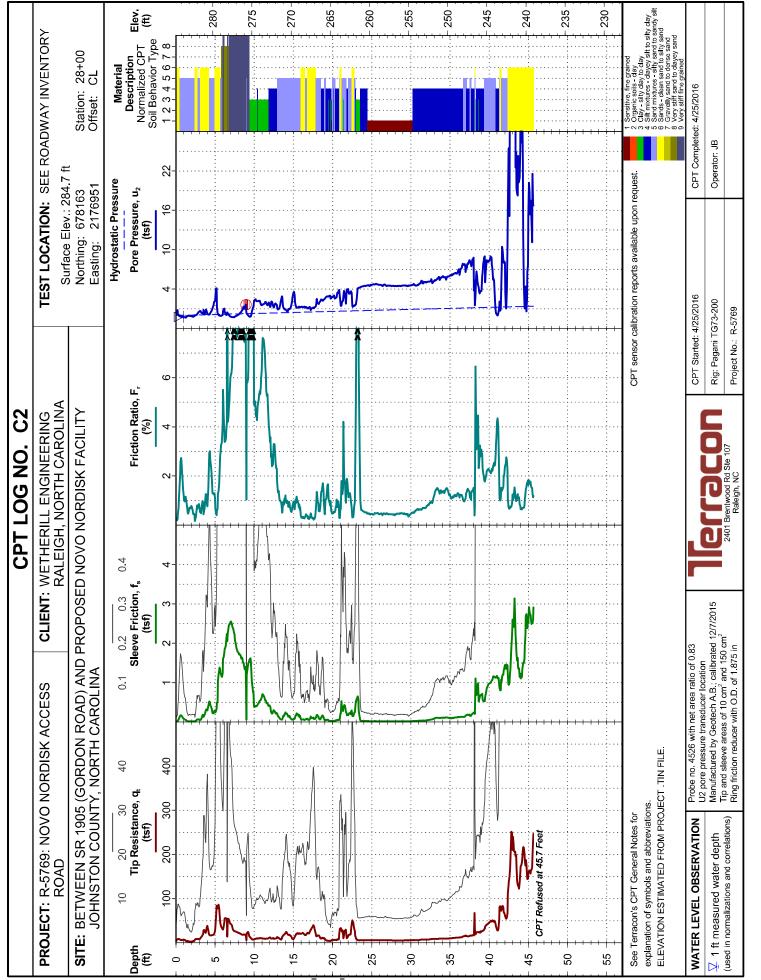
REFERENCE:

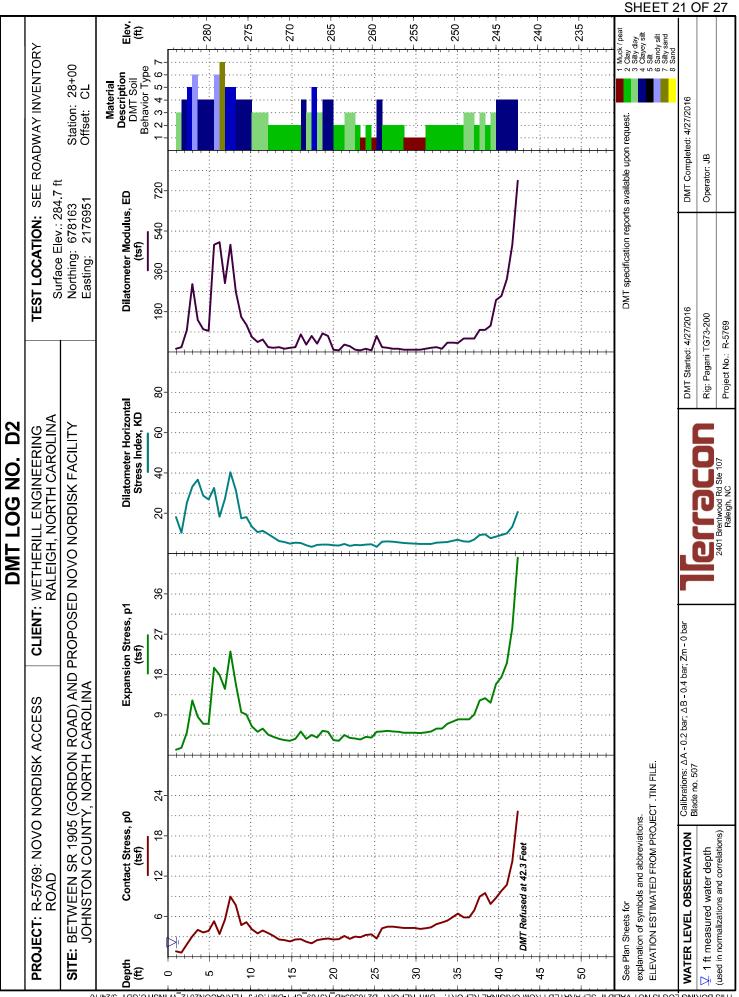




19

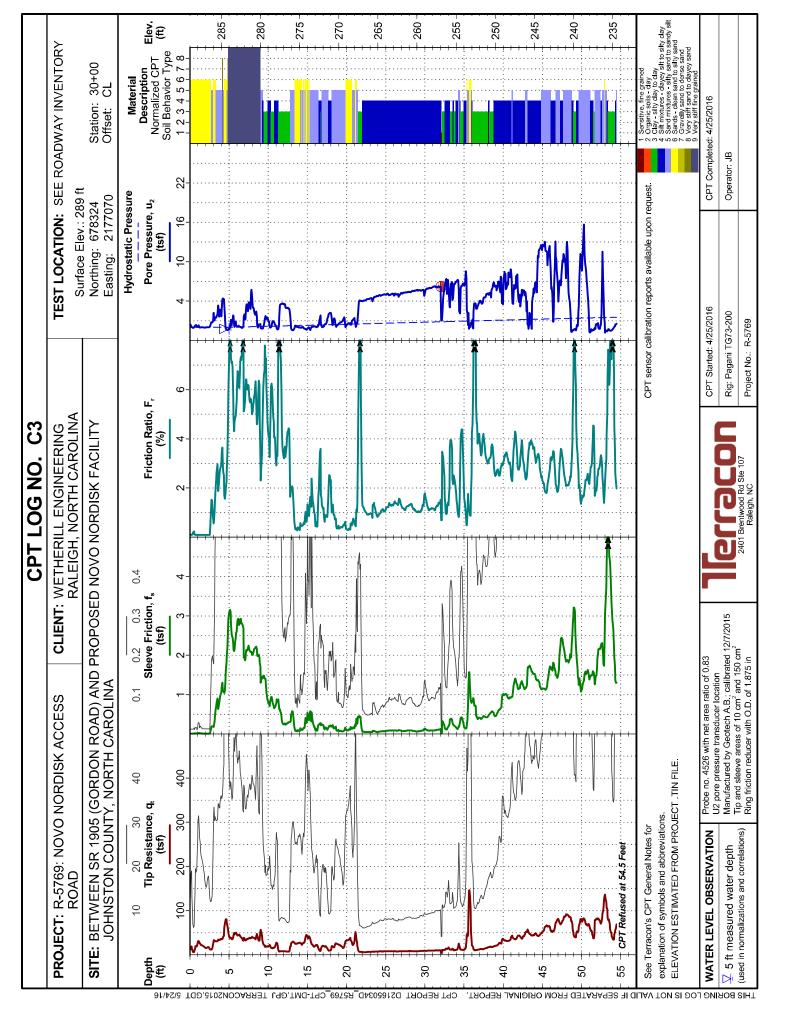
INITIALS

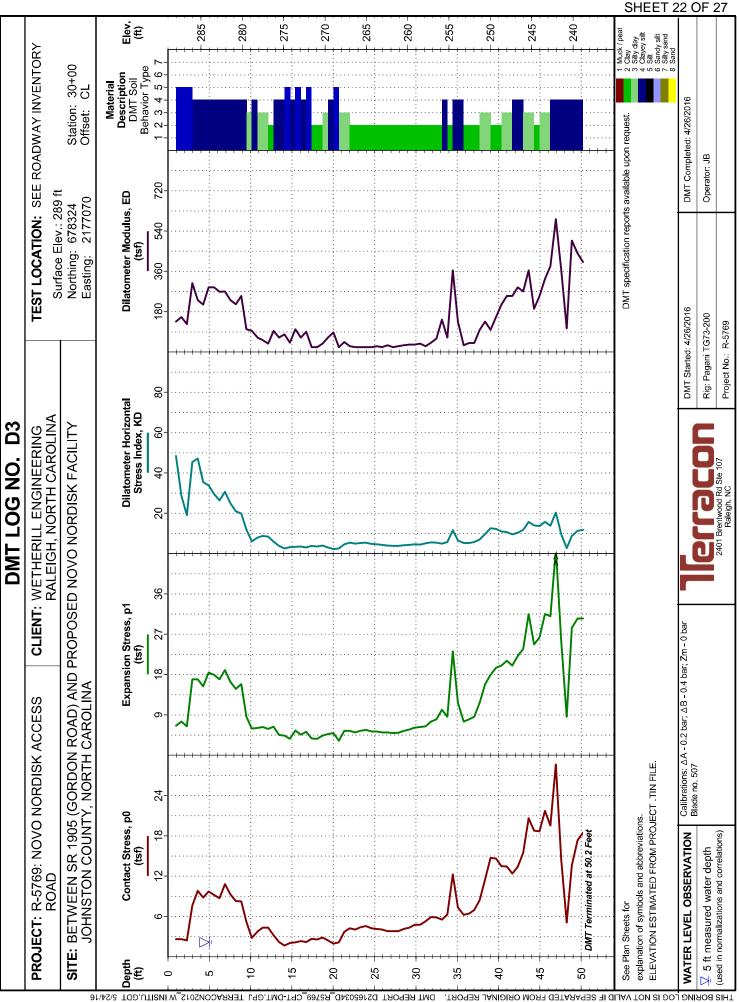


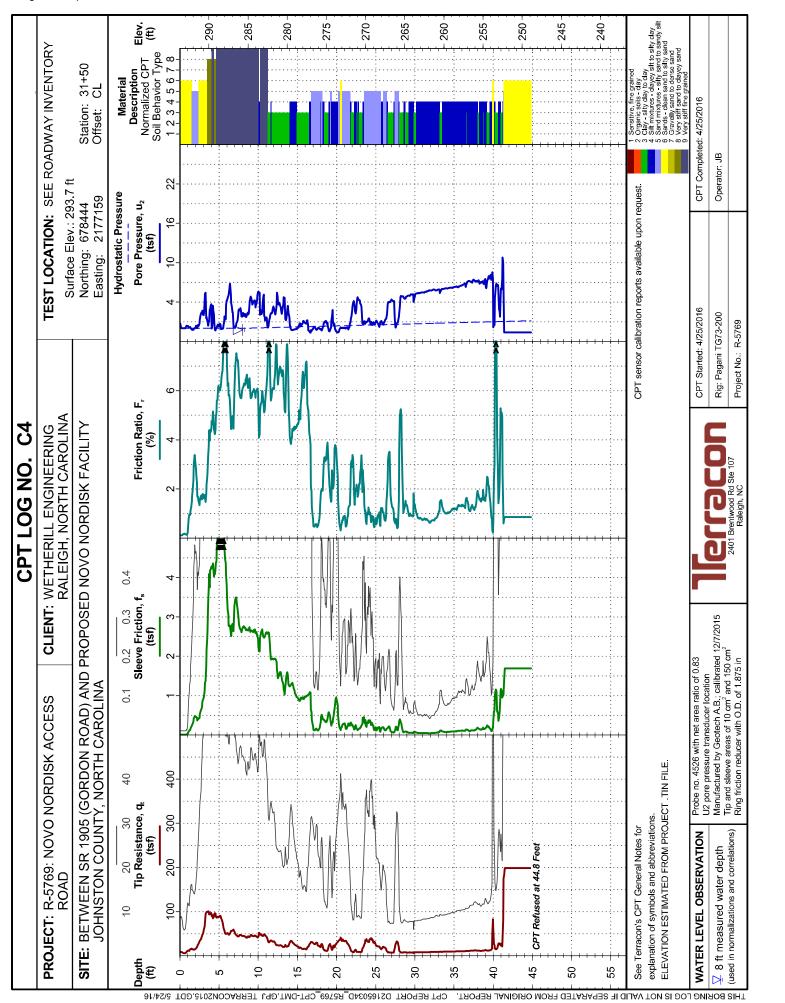


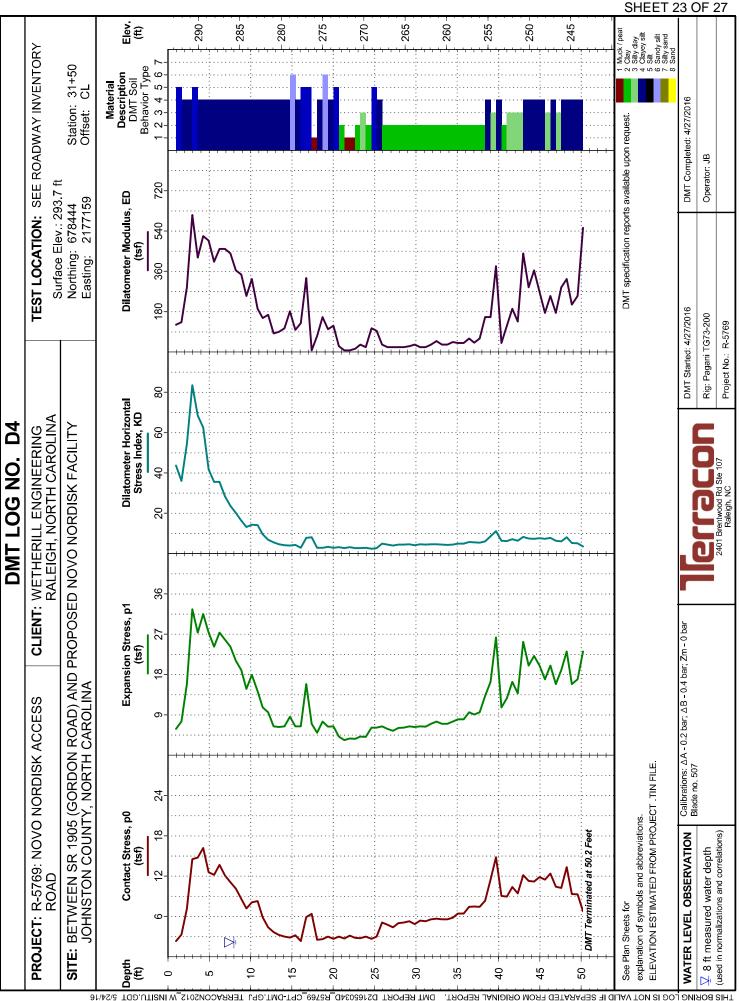
4/16 THIS BORING LOG IS NOT VALID IF SEPARATED FROM ORIGINAL REPORT. CPT REI

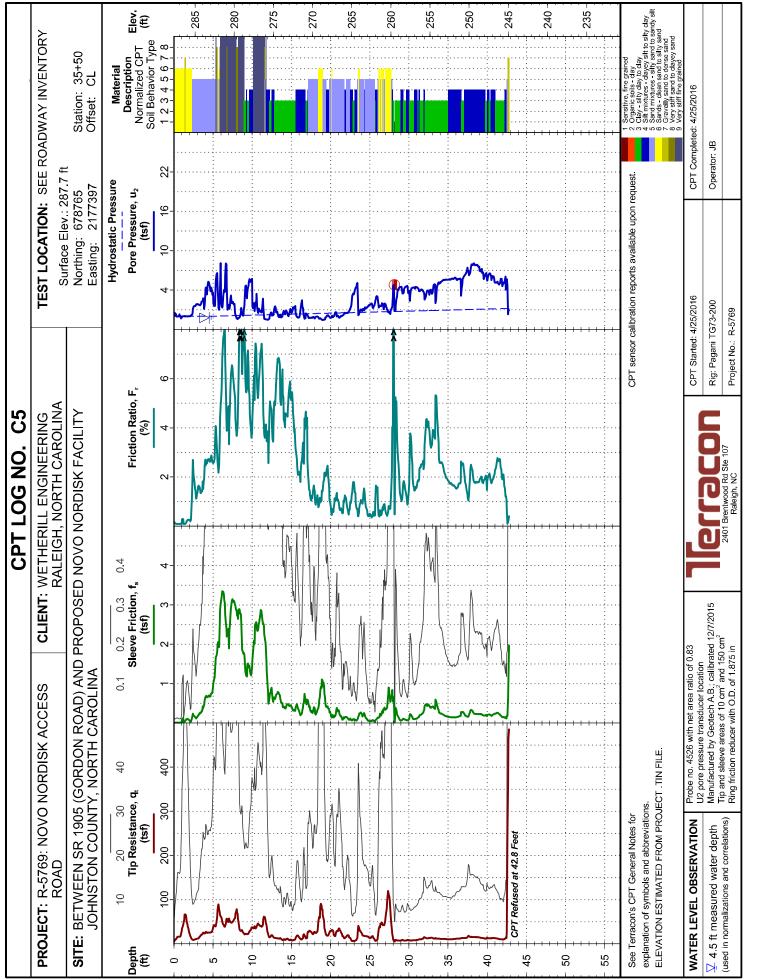
DMT LOG NO. D1

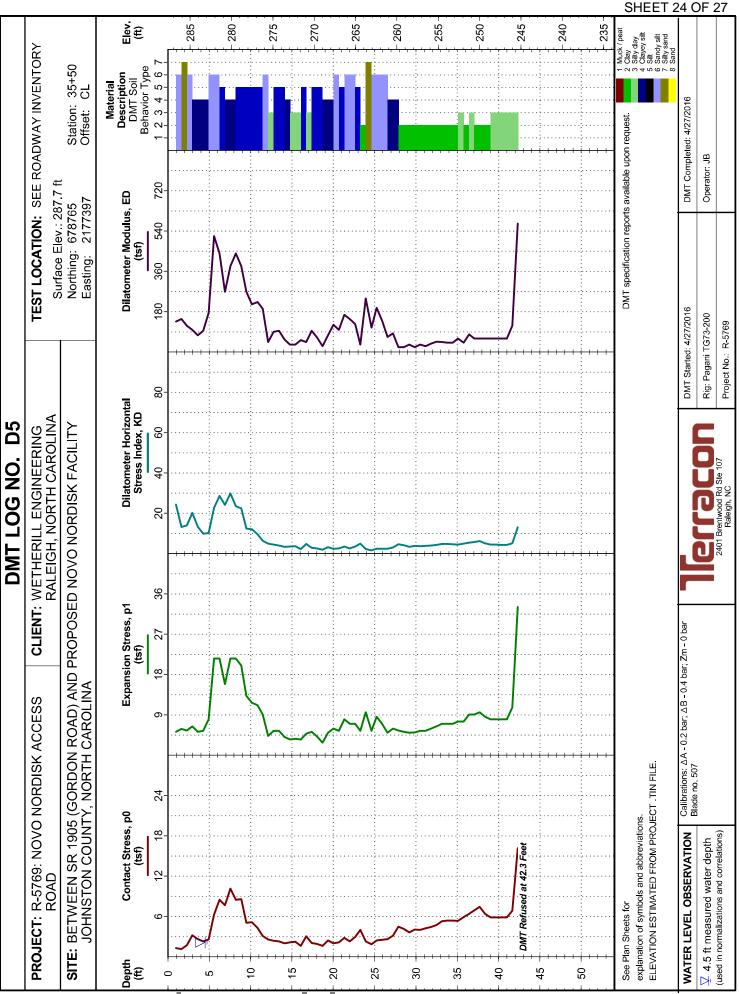

THIS BORING LOG IS NOT VALID IF SEPARATED FROM ORIGINAL REPORT DAT REPORT D2165034D 26769_CPT-DMT.GP1 TERRACON2012_W INSITU.GPT 5/24/16

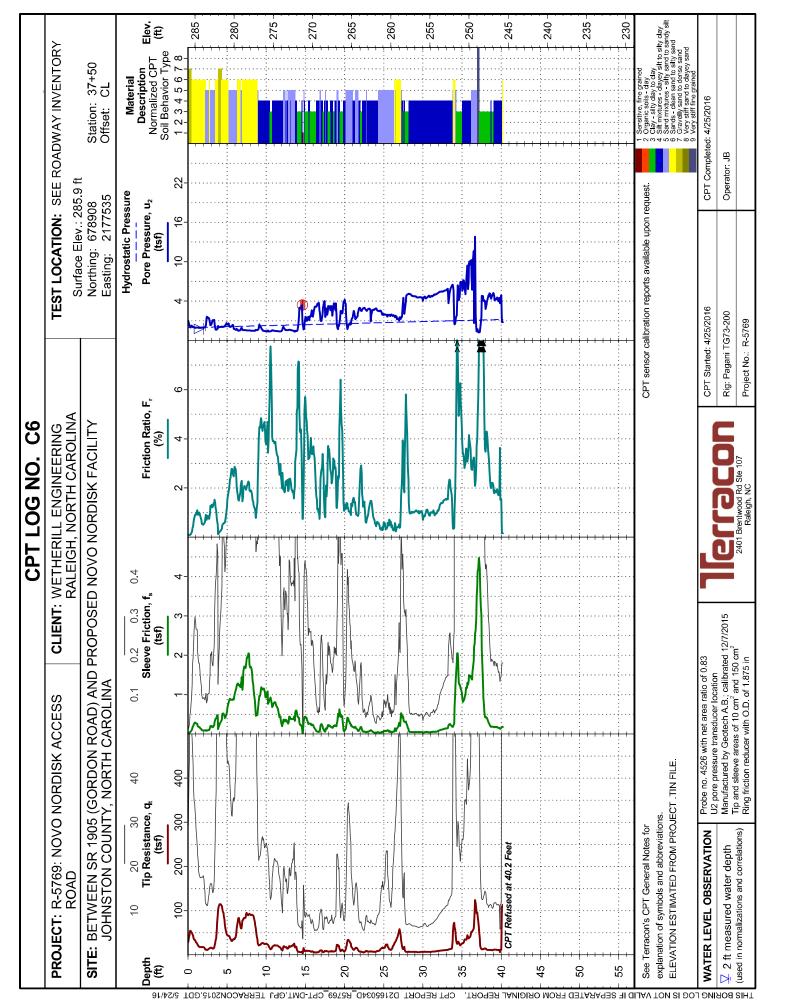


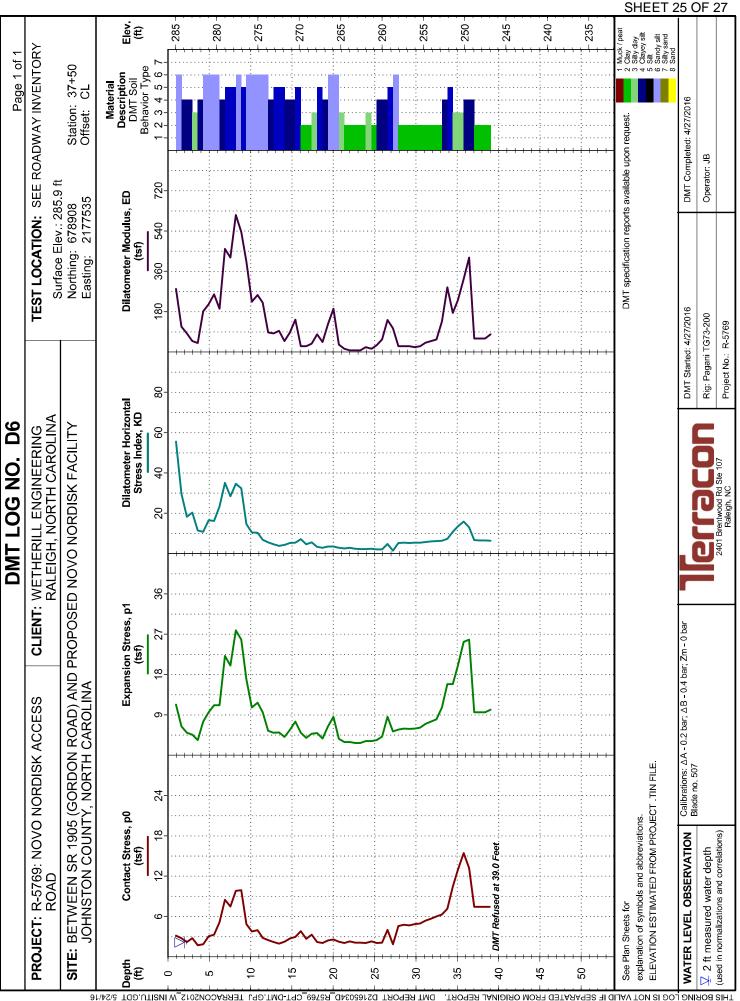



THIS BORING LOG IS NOT VALID IF SEPARATED FROM ORIGINAL REPORT CPT REPORT D2165034D R6769 CPT DMT GPJ TERRACON2015.GDT 5/24/16


THIS BORING LOG IS NOT VALID IF SEPARATED FROM ORIGINAL REPORT DAT REPORT D2165034D R5769 CPT-DMT.GPJ TERRACON2012 W INSITU.GDT 5/24/16







THIS BORING LOG IS NOT VALID IF SEPARATED FROM ORIGINAL REPORT CPT REPORT D2165034D R6769 CPT DMT GPJ TERRACON2015.GDT 5/24/16

THIS BORING LOG IS NOT VALID IF SEPARATED FROM ORIGINAL REPORT DAT REPORT D2165034D R5769 CPT-DMT.GPJ TERRACON2012 WINSITU.GDT 5/24/16

REFERENCE: R-5769

INITIALS

SOIL LABORATORY TESTING SUMMARY

PROJECT NUMBER:

N/A

ID (TIP): R-5769

COUNTY:

DESCRIPTION: NOVO NORDISK ACCESS ROAD FROM SR 1905 (GORDON ROAD) TO PROPOSED NOVO NORDISK FACILITY

Y1REV_1753 Y1REV_2154 L_1300 L_4300 L_1700 L_1700 L_2700 L_2700	S-1 S-2 S-3 S-4	Alignment -Y1REV- -Y1REV- -L-	Station 17+53 21+00	Offset (feet)	Depth Interval (feet)	AASHTO	L.L.											%
Y1REV_2154 L_1300 L_4300 L_1700 L_1700 L_2700 L_2700	S-2 S-3	-Y1REV-				Class.	L .L.	P.I.	Coarse Sand	Fine Sand	Silt	Clay	Retained #4 Sieve	#10	#40	#200	% Moisture	Organic
L_1300 L_4300 L_1700 L_1700 L_2700 L_2700	S-3		21,00	CL	1.0 - 2.0	A-7-6 (7)	43	28	34.9	22.4	5.8	36.9	1	96	74	44	19.6	-
L_4300 L_1700 L_1700 L_2700 L_2700		-L-	21+00	9 LT	1.0 - 2.0	A-7-6 (8)	48	26	23.7	26.1	7.7	42.5	10	83	69	46	17.1	-
L_1700 L_1700 L_2700 L_2700	S-4	—	13+00	CL	1.0 - 6.0	A-7-6 (7)	47	23	35.1	18.9	4.8	41.2	0	98	76	47	-	-
L_1700 L_2700 L_2700		-L-	43+00	CL	1.0 - 6.0	A-2-6 (1)	34	20	48.7	21.0	2.6	27.7	2	94	65	30	-	-
L_2700 L_2700	SS-1	-L-	17+00	CL	3.5 - 5.0	A-2-6 (0)	39	23	53.7	15.3	4.6	26.4	15	73	43	24	10.6	-
L_2700 L_2700	SS-2	-L-	17+00	CL	6.0 - 7.5	A-2-7 (0)	54	36	40.2	19.4	5.2	35.2	35	57	41	24	11.7	-
L_2700	SS-3	-L-	27+00	CL	1.0 - 2.5	A-6 (4)	35	11	21.8	26.7	27.1	24.4	0	99	86	58	34.5	8.0
1 0700	SS-4	-L-	27+00	CL	13.5 - 15.0	A-2-7 (0)	51	33	66.4	7.8	1.6	24.2	10	81	36	22	21.9	-
L_2700	SS-5	-L-	27+00	CL	23.5 - 25.0	A-2-6 (0)	25	14	68.2	13.4	2.0	16.4	43	41	21	8	14.7	-
L_2900	SS-6	-L-	29+00	CL	8.5 - 10.0	A-2-7 (2)	71	50	63.3	8.5	0.9	27.3	1	94	42	27	20.3	-
L_3100	SS-7	-L-	31+00	CL	6.0 - 7.5	A-7-6 (9)	55	36	46.5	12.5	2.5	38.5	0	100	77	42	24.4	-
L_3100	SS-8	-L-	31+00	CL	28.5 - 30.0	A-7-6 (8)	42	19	0.5	58.3	9.8	31.4	0	100	100	55	40.9	-
EB1-A	SS-9	-L-	32+26	17 LT	38.5 - 40.0	A-7-6 (12)	44	18	0.6	47.5	17.6	34.3	0	100	100	68	44.5	-
EB1-B S	SS-10	-L-	32+26	17 RT	8.5 - 10.0	A-7-6 (13)	56	38	29.6	24.7	5.0	40.7	0	100	82	49	22.4	-
	SS-11	-L-	32+26	17 RT	18.5 - 20.0	A-2-7 (2)	62	45	64.9	8.6	0.3	26.2	1	97	52	27	28.4	-
	SS-12	-L-	34+27	17 LT	33.5 - 35.0	A-7-6 (7)	43	21	0.8	61.3	9.8	28.1	0	100	100	49	46.1	-
EB2-B S	SS-13	-L-	34+27	17 RT	6.0 - 7.5	A-7-6 (12)	79	54	54.8	5.9	0.5	38.8	1	96	50	39	20.5	-
EB2-B S	SS-14	-L-	34+27	17 RT	23.5 - 25.0	A-2-7 (1)	51	38	63.8	8.6	2.0	25.6	2	93	43	27	29.8	-
	SS-15	-L-	35+00	CL	23.5 - 25.0	A-2-6 (0)	34	22	51.6	22.2	1.0	25.2	13	81	54	23	25.0	-
L_3500 S	SS-16	-L-	35+00	CL	38.5 - 40.0	A-7-6 (28)	54	38	3.5	34.2	35.2	27.1	2	96	93	76	42.1	-
L_3700 S	SS-17	-L-	37+00	CL	18.5 - 20.0	A-6 (7)	38	26	25.8	32.8	8.6	32.8	2	97	86	45	30.5	-
	SS-18	-L-	39+00	CL	13.5 - 15.0	A-2-7 (0)	72	56	77.8	4.2	0.3	17.7	0	99	31	18	30.6	-
	SS-19	-L-	41+00	CL	1.0 - 2.5	A-6 (3)	33	18	31.6	28.8	6.6	33.0	0	99	87	41	20.4	-
L1_1400 S	SS-20	-L-	14+00	CL	1.0 - 2.0	A-6 (3)	34	20	41.1	21.9	6.5	30.5	2	95	71	37	25.6	-
EB2-A	ST-1	-L-	34+27	17 LT	33.5 - 36.0	A-7-6 (7)	42	17	0.2	57.2	16.4	26.2	0	100	100	55	-	_
															ļ			

ST-1 TESTED BY GEOTECHNICS

JOHNSTON

Stephanie H. Huffman

Certified Lab Technician Signature

114-01-1203 Certification Number

lerracon

Date: July 2016

Memorandum to:	Greg Purvis, PE Project Manager Wetherill Engineering
From:	Matt Alexander, PE Geotechnical Project Engineer Terracon Consultants
TIP Number: County: Description:	R-5769 Johnston Novo Nordisk Access Road from SR 1905 (Gordon Road) to Proposed Novo Nordisk Site
Subject:	Geotechnical Report - Design and Construction Recommendations

Terracon Consultants has completed a subsurface investigation for this project and presents the following recommendations:

I. Slope / Embankment Stability and Settlement

A. Slope Design

All permanent slopes should be constructed at a ratio of 3:1 (H:V) or flatter. Slopes steeper than 3:1 are proposed for sections of the -L- and -L1- alignments. The following sections of embankment side slope were identified as having a predicted slope stability factor of safety less than 1.5 based on our analyses:

<u>Alignment</u>	Stations	<u>Offset</u>
-L-	24+50 to 30+00	Left and Right
-L-	35+50 to 39+38	Right
-L2-	10+00 to 11+15	Right

The end slopes at the approach embankments to the bridge over the Norfolk Southern Railroad at -L- 33+26.23 were also predicted to have a global slope stability factor of safety less than 1.5 parallel to the -L- alignment behind the abutment MSE retaining walls. A PET geotextile reinforced aggregate platform has been designed to increase the global factor of safety at the abutment MSE retaining walls. Slope stability factors of safety predicted for the side slopes and MSE retaining walls at the bridge approach were in excess of 1.5.

Reinforcing the base of the embankments in these problem areas is preferred to undercut due to shallow groundwater or shallow standing water on the surface and because the borrow for the project will need to be imported from off site.

PROJECT REFERENCE NO.	REPORT PAGE		
R-5769	2 OF 7		

B. Geotextile for Embankment Stabilization

Polyester (PET) geotextile for embankment stabilization was used in the limit-equilibrium slope stability analyses to achieve a factor of safety greater than or equal to 1.5 for the roadway embankments. Please refer to the attached Geotextile for Embankment Stabilization Special Provision (GT-2) for details regarding the required properties of the geotextile. The following table outlines the locations for use of geotextile for embankment stabilization:

<u>Alignment</u>	Stations	<u>Offset</u>	<u>Number of</u> <u>Layers</u>
-L-	24+50 to 27+50	Left and Right	1
-L-	27+50 to 30+00	Left and Right	2
-L-	35+50 to 39+38	Right	1
-L1-	10+00 to 11+15	Left and Right	1

We recommend a quantity of 12,700 square yards of Geotextile for Embankment Stabilization be included in the project contract. An additional contingency quantity of 500 square yards of Geotextile for Embankment Stabilization is recommended for use at the discretion of the Engineer.

C. Rock Embankments

Rock embankment should be used at the following locations for embankment that will be constructed in wetlands:

<u>Alignment</u>	Stations		
-L-	20+80 to 29+40		
-L-	35+80 to 43+57		
-L1-	10+00 to 15+15		
-L2-	10+00 to 11+40		

Due to the relatively short rock embankment heights needed to reach an elevation of 1 foot above the 100 year storm water level in the wetlands, we recommend construction follow the Rock Embankments Special Provision (GT-3) attached to this report.

We recommend a quantity of 12,200 tons of Rock Embankment and 3,900 tons of #57 Stone be included in the project contract for construction of the rock embankments in the wetlands. We recommend a quantity of 15,500 square yards of Geotextile for Rock Embankments, Type 2 be included in the project contract for use in conjunction with construction of the rock embankments in the wetlands.

PROJECT REFERENCE NO.	REPORT PAGE		
R-5769	3 OF 7		

D. <u>Reinforced Aggregate Platforms</u>

Reinforced aggregate platforms have been designed to increase global stability at the bridge abutment MSE retaining walls. The reinforced aggregate platforms should be constructed at the following locations:

<u>Alignment</u>	<u>Stations</u>
-L-	31+42 to 32+69
-L-	33+68 to 35+17

We recommend the reinforced aggregate platforms be constructed in accordance with the Reinforced Aggregate Platforms Special Provision (GT-4). We recommend a quantity of 500 tons of Rip Rap, Class A and 800 tons of #57 Stone for Aggregate Platforms be included in the project contract for construction of the reinforced aggregate platforms. We recommend a quantity of 5,500 square yards of Reinforcement Geotextile for Aggregate Platforms be included in the project contract for construction of the reinforced aggregate platforms. We recommend a quantity of 2,200 square yard of Separation Geotextile, Type 2 be included in the project contract for use in conjunction with construction of the reinforced aggregate platforms.

E. Rock Plating

We recommend rock plating for all embankment slopes steeper than 3:1. Rock plating should be used at the following locations:

<u>Alignment</u>	<u>Stations</u>	Offset
-L-	24+50 to 32+68	Left and Right
-L-	33+69 to 39+38	Right
-L2-	10+00 to 11+15	Right

We recommend a quantity of 9,700 square yards of Rock Plating be included in the project contract for use on the slopes described above.

F. Embankment Monitoring

We recommend settlement monitoring at the approach embankments for the bridge over the Norfolk Southern Railroad at -L- Station 33+26.23. The bridge foundations were designed to account for down drag from settlement of the approach embankments. We recommend a quantity of 13 Embankment Settlement Gauges be included in the project contract to monitor settlement at the approaches before releasing them for final grading and paving.

II. Subgrade Stability

A. Aggregate Subgrade

High plasticity coastal plain and roadway embankment soils were encountered on the -Y1REV- alignment. The following locations should be undercut to a depth of 1 foot below proposed subgrade elevation:

PROJECT REFERENCE NO.	REPORT PAGE
R-5769	4 OF 7

<u>Alignment</u>	<u>Stations</u>	<u>Offset</u>
-Y1REV-	10+50 to 22+75	Left

We recommend a quantity of 300 cubic yards of Undercut Excavation be included in the project contract for use at the widening of SR 1905. We recommend a contingency quantity of 200 cubic yards of Undercut Excavation be included in the project contract for use at the discretion of the Engineer.

B. Geotextile for Soil Stabilization

We recommend a quantity of 1,200 square yards of Geotextile for Soil Stabilization be included in the project contract for use in the bottom of the undercut areas described in Section II.A. We recommend a contingency quantity of 200 square yards of Geotextile for Embankment Stabilization be included in the project contract for use at the discretion of the Engineer.

III. Borrow Specifications

A. Disposal of Waste Materials

Unsuitable material derived from undercut or excavations should be wasted off site.

B. Borrow Criteria

Use the Statewide Criteria for Acceptance of Borrow Material as described in Section 1018 of the Standard Specifications.

C. Shrinkage Factor

A shrinkage factor of 25 percent is recommended for calculation of earthwork quantities on this project.

D. Class IV Subgrade Stabilization

We recommend a quantity of 200 tons of Class IV Subgrade Stabilization be included in the project contract for backfilling the shallow undercut described in Section II.A. We recommend a contingency quantity of 200 tons of Class IV Subgrade Stabilization be included in the project contract for use at the discretion of the Engineer to backfill additional undercut excavation.

IV. Miscellaneous

A. Reduction of Unclassified Excavation - Unsuitable

The coastal plain soils derived primarily from ditch cuts along -Y1REV- and the coastal plain soils that will need to be excavated to construct the reinforced aggregate platforms described previously are unsuitable for use as embankment fill. We estimate a quantity of 3,800 cubic yards of material derived from these excavations will need to be wasted off site.

PROJECT REFERENCE NO.	REPORT PAGE		
R-5769	5 OF 7		

B. Construction Procedures

See the attached project special provisions for applicable construction procedures and guidance.

Sincerely,

Matthew J. Alexander, PE Geotechnical Project Engineer Andrew A. Nash, PE Geotechnical Department Manager

Attachments: Summary of Quantities Geotextile for Embankment Stabilization Special Provision (GT-2) Rock Embankments Special Provision (GT-3) Reinforced Aggregate Platform Special Provision (GT-4)

NORTH CAROLINA DEPARTMENT OF TRANSPORTATION GEOTECHNICAL ENGINEERING UNIT

Summary of Quantities

WBS Number:	N/A	County:	Johnston	Project Engineer:	Alexander, M. J.
TIP Number:	R-5769	Field Office:	Terracon	Project Geologist:	
Description:	Novo Nordisk Access Road	d from SR 1905 (Gordon Road) to Proposed Novo	Nordisk Site		

Pay Item Pav Item/ Spec Book Section No. or Report Begin Units / End Alignment **Ouantity** Section **Quantity Adjustment Special Provision (SP) Reference** Station No. Station % 012700000-N **Embankment Settlement Gauges** SP - Embankment Settlement Gauges EA I. F -L-31 + 00.0036+00.0013 Total Quantity of Embankment Settlement Gauges = 13 EA SY 019600000-Е Geotextile for Soil Stabilization 270 - Geotextile for Soil Stabilization II. B -Y1REV-10 + 50.0022 + 75.001,200 019600000-Е Geotextile for Soil Stabilization 270 - Geotextile for Soil Stabilization II. B N/A N/A SY Contingency 200 SY Total Quantity of Geotextile for Soil Stabilization = 1,400 022000000-Е SP - Rock Embankments N/A TON **Rock Embankments** I. C Varies N/A 12,200 Total Quantity of Rock Embankments = 12,200 TON Geotextile for Rock Embankments 0222000000-E **SP** - Rock Embankments L D Varies N/A N/A 15,500 SY **Total Quantity of Geotextile for Rock Embankments** 15,500 SY SY 022300000-Е **Rock Plating** 275 - Rock Plating I. E Varies N/A N/A 9,700 SY **Total Quantity of Rock Plating =** 9.700 Geotextile for Embankment SP - Geotextile for Embankment I. B SY 024100000-E Varies N/A N/A 12,700 Stabilization - Non-Standard Pay Item Stabilization Geotextile for Embankment SP - Geotextile for Embankment 024100000-E I. B SY Contingency N/A N/A 500 Stabilization - Non-Standard Pay Item Stabilization SY **Total Quantity of Geotextile for Embankment Stabilization** 13,200 Reinforcement Geotextile for SP - Reinforced Aggregate Platforms -024100000-Е I. D -L-31 + 42.0035 + 175,500 SY Aggregate Platforms Non-Standard Pay Item Total Quantity of Reinforcement Geotextile for Aggregate Platforms = 5,500 SY SP - Reinforced Aggregate Platforms -Separation Geotextile, Type 2 2,200 L D 31 + 42.00SY 024100000-Е -L-35+17.00Non-Standard Pay Item Total Quantity of Separation Geotextile, Type 2 = SY 2.200 SP - Reinforced Aggregate Platforms -025500000-E #57 Stone for Aggregate Platforms I. D 35 + 17.00800 TONS -L-31 + 42.00Non-Standard Pav Item

NORTH CAROLINA DEPARTMENT OF TRANSPORTATION GEOTECHNICAL ENGINEERING UNIT Summary of Quantities

WBS Number:	N/A	County:	Johnston	Project Engineer:	Alexander, M. J.
TIP Number:	R-5769	Field Office:	Terracon	Project Geologist:	
Description	Novo Nordisk Access Roa	- d from SR 1905 (Gordon Road) to Proposed Novo	Nordisk Site		

Description: Novo Nordisk Access Road from SR 1905 (Gordon Road) to Proposed Novo Nordisk Site

Pay Item No.	Pay Item/ Quantity Adjustment			Alignment	Begin Station	End Station	Quantity	Units / %
	Total Quantity of #57 Stone for Aggregate Platforms =							
025500000-Е	Rip Rap, Class A for Aggregate Platforms	SP - Reinforced Aggregate Platforms - Non-Standard Pay Item	I. D	-L-	31+42.00	35+17.00	500	TONS
		Total Quantit	ty of Rip	Rap, Class A f	for Aggregate	e Platforms =	500	TONS
107700000-Е #57 Stone		SP - Rock Embankments	I. C	Varies	N/A	N/A	3,900	TON
				Tot	al Quantity o	f #57 Stone =	3,900	TON
109950000-Е	Shallow Undercut	505 - Aggregate Subgrade	II. A	-Y1REV-	10 + 50.00	22+75.00	300	CY
109950000-Е	Shallow Undercut	505 - Aggregate Subgrade II.		Contingency	N/A	N/A	200	CY
				Total Quant	ity of Shallov	v Undercut =	500	CY
1099700000-Е	Class IV Subgrade Stabilization	505 - Aggregate Subgrade	III. D	-Y1REV-	10 + 50.00	22+75.00	200	TON
109970000-Е	Class IV Subgrade Stabilization	505 - Aggregate Subgrade	III. D	Contingency	N/A	N/A	200	TON
		Tot	tal Quant	ity of Class IV	V Subgrade St	tabilization =	400	TON

	These Items Only Impact Earthwork Totals								
N/A	Shrinkage Factor	235 - Embankments	III. C	N/A	N/A	N/A	25	%	
N/A	Unclassified Excavation - Unsuitable Waste	225 - Roadway Excavation	IV. A	N/A	N/A	N/A	3,800	CY	

GT-2.1

Johnston County

GEOTEXTILE FOR EMBANKMENT STABILIZATION:

Description

This work consists of furnishing and installing synthetic geotextile for stabilizing embankment in accordance with this provision and as directed by the Engineer. The work shall include maintaining the geotextile in the required configuration until completion and acceptance of overlying work items. The geotextile shall be placed at the locations shown in the plans or as directed by the Engineer.

Materials

The geotextile for embankment stabilization shall be made of high-tenacity polyester in the machine direction with a plain or straight-warp weave pattern and polyester or polypropelene in the cross machine direction or approved equal. The geotextile shall be composed of strong rot-proof synthetic fibers formed into a geotextile of the woven type. The geotextile shall be free of any treatment or coating which might significantly alter its physical properties after installation.

The geotextile shall contain stabilizers and/or inhibitors to make the filaments resistant to deterioration resulting from ultraviolet light or heat exposure. The geotextile shall be a pervious sheet of synthetic fibers oriented into a stable network so that the fibers retain their relative positions with respect to each other. The edges of geotextile shall be finished to prevent the outer yarn from pulling away from the geotextile. The geotextile shall be free of defects or flaws which significantly affect its physical and/or filtering properties. Sheets of geotextile shall be sewn together with a seam that furnishes the required minimum strengths, when sewing is required. No seams are permitted perpendicular to the machine direction, geotextile sheets shall be continuous in the machine direction. Lamination of geotextile sheets to produce the physical requirements of a geotextile layer will not be accepted.

During all periods of shipment and storage, the geotextile shall be wrapped in a heavy duty protective covering to protect the geotextile from direct sunlight ultraviolet rays, mud, dust, dirt, and debris. The geotextile shall not be exposed to temperatures greater than 140° F. After the protective wrapping has been removed, the geotextile shall not be left uncovered under any circumstances for longer than one (1) week.

The geotextile shall meet the following physical requirements:

All values represent minimum average roll values (MARV) as defined by ASTM D4439 for geotextile properties (any roll in a lot, or single day's production, should meet or exceed the minimum values in this table). Machine direction (MD) and cross-machine direction (CD) are as defined by ASTM D4439.

Provide Type 1 Certified Mill Test Report in accordance with Article 106-3 of the *Standard Specifications* with minimum average roll values (MARV) as defined by ASTM D4439 for geotextile properties. For testing geotextiles, a lot is defined as a single day's production. The Engineer reserves the right to inspect or test the geotextiles at any time. If requested by the Engineer, provide a sample of the geotextile for testing.

Use woven polyester geotextiles with properties meeting the following requirements:

(Special)

GT-2.2

ASTM **Requirement (MARV)** Property Test Method Wide Width Tensile Strength @ 5% Strain (MD) D4595 8.000 lb/ft Wide Width Tensile Strength @ Ultimate (MD) D4595 20,000 lb/ft Apparent Opening Size¹ D4751 No. 20 to No. 70 Ultraviolet Stability (retained strength)² D4355 50% Ultimate Seam Strength (MD) D4884 1,000 lb/ft 1 Per AASHTO M92 2 After 250 hours of exposure

Geotextile for Embankment Stabilization

Construction Methods

The geotextile for embankment stabilization shall be placed at the locations shown in the plans or as directed by the Engineer. The location should be cleared and free of obstructions, debris, and pockets. Stumps shall be cut smooth at the ground elevation with the root system left intact. Where geotextile for embankment stabilization is being used in conjunction with rock embankments, the geotextile should be placed on the ground as described above or incorporated into the base of the rock embankment. Where the geotextile for embankment stabilization is being placed within the rock embankment, fill voids and provide a smooth surface for placing the geotextile to prevent damage when installed and covered. At the time of installation the geotextile shall be rejected if it has defects, rips, holes, flaws, deterioration or damage incurred during manufacture, transportation, or storage.

The geotextile for embankment stabilization shall be placed with the machine direction as shown on the plans or as directed by the Engineer. Geotextile shall be laid smooth and free from tension, stress fold, wrinkles or creases without any joint, seam, or overlapping in the machine (roll) direction. All joints in the cross machine direction may be sewn by an approved method or overlapped a minimum of 18 inches. All sewn seams must be placed upward to allow for inspection. All geotextile which is damaged as a result of installation shall be replaced or repaired at the discretion of the Engineer with no additional cost to the Department. Compaction equipment must be operated such that it will not damage the geotextile.

Where piles will penetrate geotextile for embankment stabilization, establish horizontal control for bridge foundation construction and slit the geotextile using a hot knife in the machine direction as detailed in the plans.

Any geotextile which is left uncovered for longer than one week after placement shall be replaced at no additional cost to the Department.

Measurement and Payment

The quantity of geotextile to be paid for will be the number of square yard of *Geotextile for Embankment Stabilization* measured along the surface of the ground, which has been placed and accepted by the engineer. No measurement will be made for overlapping geotextiles or sewing

GT-2.3

seams.

The quantity of geotextile, measured as described above, will be paid for at the contract unit price per square yard for *Geotextile for Embankment Stabilization*. Such price and payment will be full compensation for furnishing, transporting, placing, sewing, testing, and all incidentals necessary to complete the work as described in this provision and the plans.

Payment will be made under:

Pay Item

Geotextile for Embankment Stabilization

GT-3.1

Johnston County

ROCK EMBANKMENTS:

(Special)

Description

Construct rock embankments in accordance with the contract. Rock embankments are required to construct embankments in water and wetlands at locations shown in the plans and as directed.

Materials

Refer to Division 10 of the Standard Specifications.

Item	Section
Geotextile for Rock Embankments, Type 2	1056
Rip Rap Materials	1042
Select Materials	1016

Provide Type 2 geotextile for separation geotextiles. Use Rip Rap Class B, Rip Rap Class A, and Class VI Select Material (standard size No. 57) for rock embankments as shown in the plans. Use Rip Rap Class B for core material and Rip Rap Class A and No. 57 stone to choke off voids near the top of rock embankments. Obtain aggregates from sources participating in the Department's Aggregate QC/QA Program in accordance with Section 1006 of the *Standard Specifications*.

Construction Methods

Construct rock embankments in accordance with the slopes, dimensions and elevations shown in the plans and Section 235 of the *Standard Specifications*. Provide a uniform surface free of obstructions, debris and groups of large rocks that could cause voids in embankments.

Before placing embankment fill material or filtration geotextiles over rock embankments, fill voids in the top of rock embankments with Rip Rap Class A and No. 57 stone. Place and compact Rip Rap Class A first. Then, fill any remaining voids with No. 57 stone so geotextiles are not torn, ripped or otherwise damaged when installed and covered. Compact rip rap and No. 57 stone with tracked equipment or other approved methods. Install Geotextiles for Rock Embankments, Type 2 on top of rip rap and No. 57 stone in accordance with Article 270-3 of the *Standard Specifications* before placing embankment fill material.

Measurement and Payment

Rock Embankments and *No. 57 Stone* will be measured and paid in tons. Select material and rip rap will be measured by weighing material and rip rap in trucks in accordance with Article 106-7 of the *Standard Specifications*. The contract unit prices for *Rock Embankments* and *No. 57 Stone* will be full compensation for providing, hauling, handling, placing, compacting and maintaining select material and rip rap.

Geotextile for Rock Embankments, Type 2 will be measured and paid in square yards. Geotextiles will be measured along the top of rock embankments as the square yards of exposed geotextiles before placing embankment fill material. No measurement will be made for overlapping geotextiles. The contract unit price for *Geotextile for Rock Embankments, Type 2* will be full compensation for providing, transporting and installing geotextiles.

GT-3.2

Payment will be made under:

Pay Item Rock Embankments #57 Stone Geotextile for Rock Embankments, Type 2

Pay Unit Ton Ton Square Yard

REINFORCED AGGREGATE PLATFORMS:

Description

Construct reinforced aggregate platforms in accordance with the contract. Use Rip Rap Class A and Class VI Select Material in conjunction with the reinforcement geotextile for aggregate platforms as shown in the plans and described herein. Use only Class VI Select Material where piles will be driven through the reinforced aggregate platforms as shown in the plans. Reinforced aggregate platforms are required below the MSE walls at the bridge abutments for the bridge on - L- over the Norfolk Southern Railroad.

GT-4.1

Materials

Refer to Division 10 of the Standard Specifications.

Item	Section
Separation Geotextile, Type 2	1056
Rip Rap Materials	1042
Select Materials	1016
Reinforcement Geotextile for Aggregate Platforms	SP

Provide Separation Geotextile, Type 2, for separation geotextiles. Install Separation Geotextile, Type 2 on top of completed platform in accordance with Article 270-3 of the *Standard Specifications* before placing embankment fill material.

Use Rip Rap Class A and Class VI Select Material (standard size No. 57) for reinforced aggregate platforms as shown in the plans. Use Rip Rap Class A to construct platforms and No. 57 stone to fill voids and provide a clean, level surface for placing separation and reinforcing geotextile. Obtain aggregates from sources participating in the Department's Aggregate QC/QA Program in accordance with Section 1006 of the *Standard Specifications*.

Provide Reinforcement Geotextile for Aggregate Platforms made of high-tenacity polyester in the machine direction with a plain or straight-warp weave pattern and polyester or polypropelene in the cross machine direction or approved equal. The Reinforcement Geotextile for Aggregate Platforms shall be composed of strong rot-proof synthetic fibers formed into a geotextile of the woven type. The Reinforcement Geotextile for Aggregate Platforms shall be free of any treatment or coating which might significantly alter its physical properties after installation.

The Reinforcement Geotextile for Aggregate Platforms shall contain stabilizers and/or inhibitors to make the filaments resistant to deterioration resulting from ultraviolet light or heat exposure. The Reinforcement Geotextile for Aggregate Platforms shall be a pervious sheet of synthetic fibers oriented into a stable network so that the fibers retain their relative positions with respect to each other. The edges of geotextile shall be finished to prevent the outer yarn from pulling away from the geotextile. The Reinforcement Geotextile for Aggregate Platforms shall be free of defects or flaws which significantly affect its physical and/or filtering properties. Sheets of Reinforcement Geotextile for Aggregate Platforms shall be seem together with a seam that furnishes the required minimum strengths, when sewing is required. No seams are permitted perpendicular to the machine direction, reinforcement geotextile sheets shall be continuous in the machine direction. Lamination of geotextile sheets to produce the physical requirements of a geotextile layer will not be accepted.

During all periods of shipment and storage, the geotextile shall be wrapped in a heavy duty

(Special)

GT-4.2

protective covering to protect the geotextile from direct sunlight ultraviolet rays, mud, dust, dirt, and debris. The geotextile shall not be exposed to temperatures greater than 140° F. After the protective wrapping has been removed, the geotextile shall not be left uncovered under any circumstances for longer than one (1) week.

The geotextile shall meet the following physical requirements:

All values represent minimum average roll values (MARV) as defined by ASTM D4439 for geotextile properties (any roll in a lot, or single day's production, should meet or exceed the minimum values in this table). Machine direction (MD) and cross-machine direction (CD) are as defined by ASTM D4439.

Provide Type 1 Certified Mill Test Report in accordance with Article 106-3 of the *Standard Specifications* with minimum average roll values (MARV) as defined by ASTM D4439 for geotextile properties. For testing geotextiles, a lot is defined as a single day's production. The Engineer reserves the right to inspect or test the geotextiles at any time. If requested by the Engineer, provide a sample of the geotextile for testing.

Use woven polyester geotextiles with properties meeting the following requirements:

Reinforcement Geotextile for Aggregate Platforms

Property	ASTM Test Method	Requirement (MARV)
Wide Width Tensile Strength @ 5% Strain (MD)	D4595	14,000 lb/ft
Wide Width Tensile Strength @ Ultimate (MD)	D4595	32,000 lb/ft
Apparent Opening Size ¹	D4751	No. 20 to No. 70
Ultraviolet Stability (retained strength) ²	D4355	50%
Ultimate Seam Strength (MD)	D4884	1,600 lb/ft
1 Per AASHTO M92 2 After 250 hours of exposure	1	

Construction Methods

Construct the reinforced aggregate platforms in accordance with the slopes, dimensions and elevations shown in the plans and Section 235 of the *Standard Specifications*. Provide a uniform surface free of obstructions, debris and groups of large rocks that could cause voids in embankments. Where piles will be installed through the reinforced aggregate platforms, place Rip Rap Class A so there will be at least 5 feet between rock and piles. Slit the Reinforcement Geotextile for Aggregate Platforms using a hot knife in the machine direction at the pile locations as shown in the plans. Provide and maintain a minimum of 1 foot of cover over Reinforcement Geotextile for Aggregate Platforms when operating equipment over the reinforced aggregate platform.

Before placing embankment fill material or filtration geotextiles over reinforced aggregate platforms, drive bridge piles then fill voids in the top of reinforced aggregate platforms with No. 57 stone. Fill any voids with No. 57 stone so separation geotextiles are not torn, ripped or

GT-4.3

otherwise damaged when installed and covered. Compact rip rap and No. 57 stone with tracked equipment or other approved methods. Install separation geotextiles on top of rip rap and No. 57 stone in accordance with Article 270-3 of the *Standard Specifications* before placing embankment fill material.

Measurement and Payment

Rip Rap, Class A for Aggregate Platforms and #57 *Stone for Aggregate Platforms* will be measured and paid in tons. Select material and rip rap will be measured by weighing material and rip rap in trucks in accordance with Article 106-7 of the *Standard Specifications*. The contract unit prices for *Rip Rap, Class A for Aggregate Platforms* and #57 *Stone for Aggregate Platforms* will be full compensation for providing, hauling, handling, placing, compacting and maintaining select material and rip rap.

Reinforcement Geotextile for Aggregate Platforms will be measured and paid in square yards. *Reinforcement Geotextile for Aggregate Platforms* will be measured along the surface of the ground after placement and acceptance by the Engineer. No measurement will be made for overlapping geotextiles or sewing seams. The contract unit price for *Reinforcement Geotextile for Aggregate Platforms* will be full compensation for furnishing, transporting, placing, sewing, testing, and all incidentals necessary to complete the work as described in this provision and the plans.

Separation Geotextile, Type 2 will be measured and paid in square yards. Separation Geotextile, Type 2 will be measured as the square yards of exposed geotextiles before placing embankment fill material. No measurement will be made for overlapping geotextiles. The contract unit proce for Separation Geotextile, Type 2 will be full compensation for providing, transporting, and installing geotextiles.

Payment will be made under:

Pay Item

Rip Rap, Class A for Aggregate Platforms #57 Stone for Aggregate Platforms Separation Geotextile, Type 2 Reinforcement Geotextile for Aggregate Platforms

769

S

R

REFERENCE

SEE SHEET 3 FOR PLAN SHEET LAYOUT AT TIME OF INVESTIGATION

CONTENTS

<u>LINE</u>	<u>STATION</u>	CROSS SECTIONS
-L-	3I+50 TO 32+6I.96	4-5
-L-	33+75.50 TO 35+50	5-7
-YIREV-	10+50 TO 23+00	8-15

APPENDICES

<u>APPENDIX</u>	TITLE	<u>SHEETS</u>
А	SOIL LABORATORY RESULTS	17

STATE OF NORTH CAROLINA

DEPARTMENT OF TRANSPORTATION **DIVISION OF HIGHWAYS** GEOTECHNICAL ENGINEERING UNIT

ROADWAY SUBSURFACE INVESTIGATION

COUNTY JOHNSTON

PROJECT DESCRIPTION NOVO NORDISK ACCESS FROM SR 1905 (GORDON ROAD) TO PROPOSED NOVO NORDISK SITE

RECOMMENDATIONS

STATE PROJECT REFERENCE NO. STATE SHEETS NO. 17 N.C R-5769 1

CAUTION NOTICE

THE SUBSURFACE INFORMATION AND THE SUBSURFACE INVESTIGATION ON WHICH IT IS BASED WERE MADE FOR THE PURPOSE OF STUDY, PLANNING AND DESIGN, AND NOT FOR CONSTRUCTION OR PAY PURPOSES. THE VARIOUS FIELD BORING LOGS, ROCK CORES AND SOLI TEST DATA AVAILABLE MAY BE REVIEWED OR INSPECTED IN RALEIGH BY CONTACTING THE N.C. DEPARTMENT OF TRANSPORTATION, GEOTECHNICL ENGINEERING UNIT AT 1991 707-6860. THE SUBSIFACE PLANS AND REPORTS, FIELD BORING LOGS, ROCK CORES AND SOIL TEST DATA ARE NOT PART OF THE CONTRACT.

CENERAL SOIL AND ROCK STRATA DESCRIPTIONS AND INDICATED BOUNDARIES ARE BASED ON A CEDTECHNICAL INTERPRETATION OF ALL AVAILABLE SUBSURFACE DATA AND MAY NOT NECESSARILY REFLECT THE ACTUAL SUBSURFACE CONDITIONS BETWEEN BORINGS OR BETWEEN SAMPLED STRATA WITHIN THE BOREHOLE. THE LABORATORY SAMPLE DATA AND THE IN SITU (IN-PLACE) TEST DATA CAN BE RELIED ON ONLY TO THE DEGREE OF RELIABULITY INHERENT IN THE SUBJERFACE INVESTIGATIONS ARE AS RECORDED AT THE TIME OF THE INVESTIGATION, THES SUBJERFACE INVESTIGATIONS ARE AS RECORDED AT THE TIME OF THE INVESTIGATION, THESE WATER LEVELS OR SOL MOSTURE CONDITIONS MAY VARY CONSIDERABLY WITH THE ACCOMPING TO CLIMATIC CONDITIONS INCLUDING TEMPERATURES, PRECIPITATION AND WIND, AS WELL AS OTHER NON-CLIMATIC FACTORS.

THE BIDDER OR CONTRACTOR IS CAUTIONED THAT DETAILS SHOWN ON THE SUBSURFACE PLANS ARE PRELIMINARY ONLY AND IN MANY CASES THE FINAL DESIGN DETAILS ARE DIFFERENT. FOR BIDDING AND CONSTRUCTION PURPOSES, REFER TO THE CONSTRUCTION PLANS AND DOCUMENTS FOR FINAL DESIGN INFORMATION ON THIS PROJECT. THE DEPARTMENT DOES NOT WARANT OR GUARANTEE THE SUFFICIENCY OR ACCURACY OF THE INVESTIGATION MADE, NOR THE INTERPRETATIONS MADE, OR OPINION OF THE DEPARTMENT AS TO THE TYPE OF MATERIALS AND CONDITIONS TO BE ENCOUNTERED. THE BIDDER OR CONTRACTOR IS CAUTIONED TO MAKE SUCH INDEPENDENT SUBSURFACE INVESTIGATION AS HE DEEMS NECESSARY TO SATISY HIMSELF AS TO CONDITIONS TO BE ENCOUNTERED ON THE PROJECT. THE CONTRACTOR SHALL HAVE NO CLAIM FOR ADDITIONS TO DEENCOUNTERED ON THE PROJECT. THE CONTRACTOR SHALL HAVE NO CLAIM FOR ADDITIONS TO BE INCOUNTERED AT THE SITE DIFFERING FROM THOSE INDICATED IN THE SUBSURFACE INFORMATION.

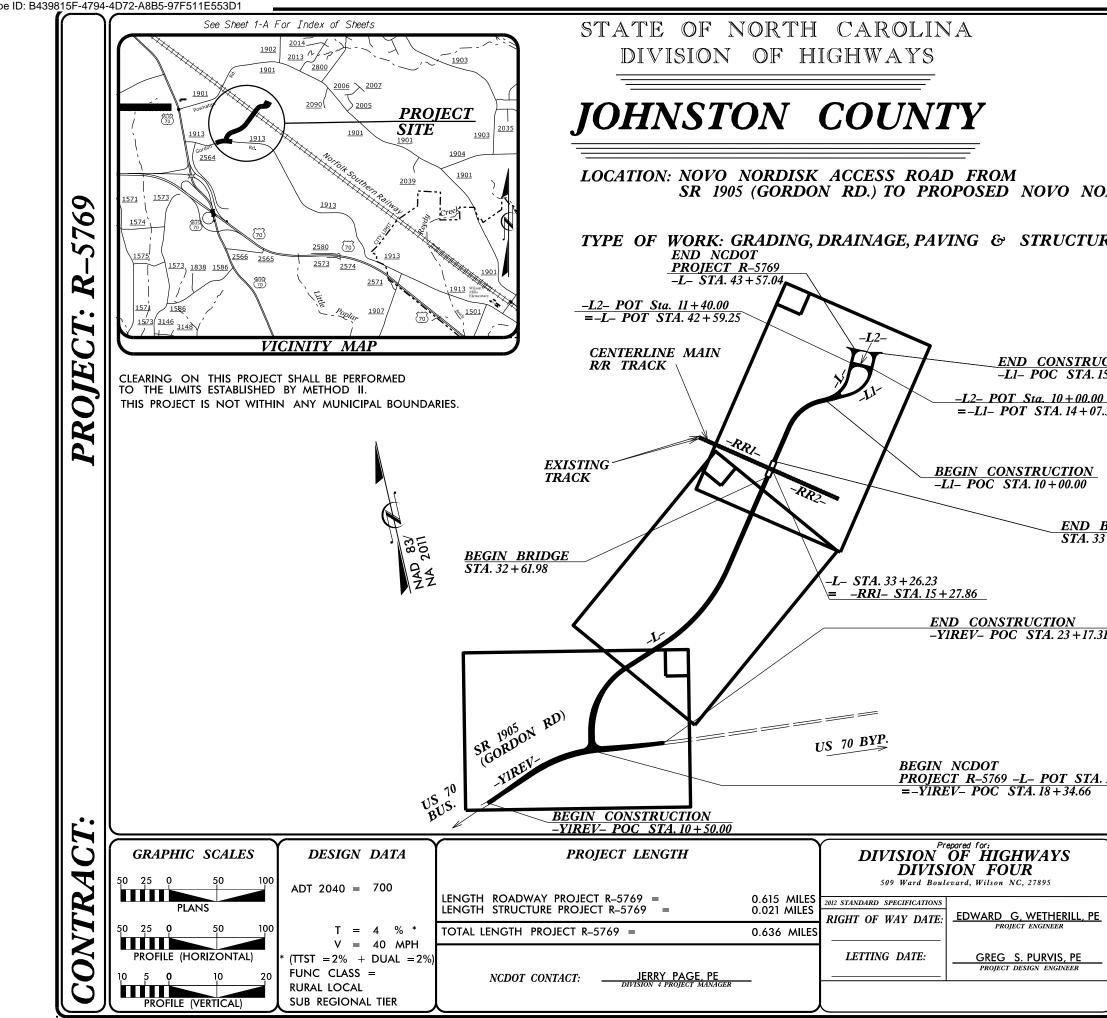
NOTES:

- TES: THE INFORMATION CONTAINED HEREIN IS NOT IMPLIED OR GUARANTEED BY THE N.C. DEPARTMENT OF TRANSPORTATION AS ACCURATE NOR IS IT CONSIDERED PART OF THE PLANS, SPECIFICATIONS OR CONTRACT FOR THE PROJECT. BY HAVING REDUESTED THIS INFORMATION, THE CONTRACTOR SPECIFICALLY WAIVES ANY CLAIMS FOR INCREASED COMPENSATION OR EXTENSION OF TIME BASED ON DIFFERENCES BETWEEN THE CONDITIONS INDICATED HEREIN AND THE ACTUAL CONDITIONS AT THE PROJECT SITE.

PERSONNEL TURNAGE, J. R. EKLUND, M.A. LEE, S. *LEE*, *B*. *C*. ALEXANDER, M. J. INVESTIGATED BY TERRACON CONSULTANTS FIELDS, W.D. DRAWN BY ALEXANDER, M. J. CHECKED BY SUBMITTED BY TERRACON CONSULTANTS JULY 2016 DATE uSigned by: Matthews J. Alexander - and approximation of the second s OFESS/ON T SEAL 040231 ALEN J. ALEN 8/22/2016 SIGNATURE DATE DOCUMENT NOT CONSIDERED FINAL UNLESS ALL SIGNATURES COMPLETED

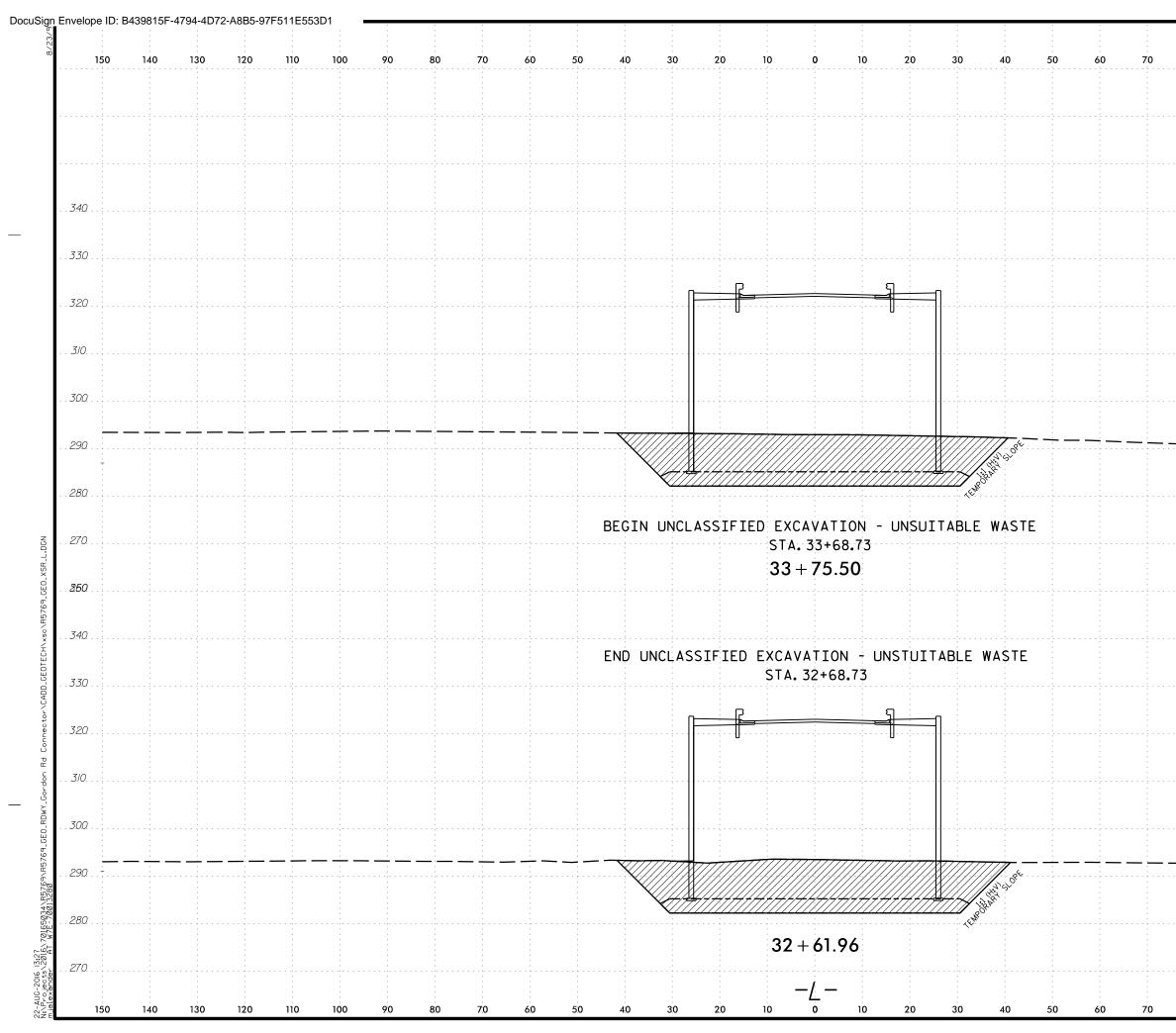
NORTH CAROLINA DEPARTMENT OF TRANSPORTATION DIVISION OF HIGHWAYS GEOTECHNICAL ENGINEERING UNIT SUBSURFACE INVESTIGATION

SOIL AND ROCK LEGEND, TERMS, SYMBOLS, AND ABBREVIATIONS

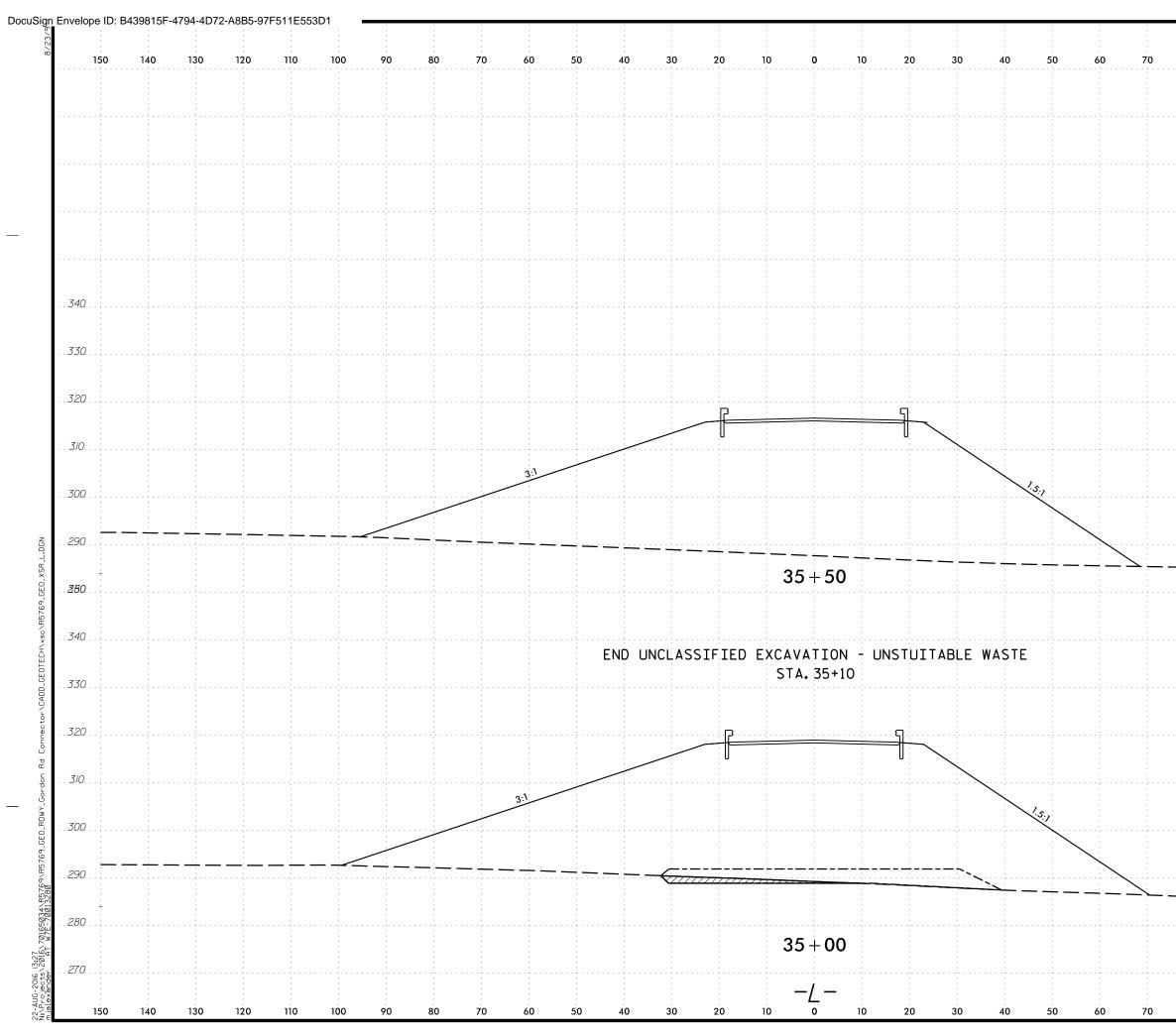

			SOI	L DES		TION				T	G ^r	RADATION					ROCK DES	SCRIPTION
								TH MATERIALS TI HAN 100 BLOWS P		WELL GRADED - INDICAT UNIFORMLY GRADED - IN	TES A GOOD REPRESE	ENTATION OF PARTI			ROCK LINE	INDICATES THE LEVEL	AT WHICH NON-COAS	OULD YIELD SPT REFUSAL IF TESTE STAL PLAIN MATERIAL WOULD YIELD
ACCORDI IS B	NG TO THE ASED ON TH	STANDARD	PENETRATIC SYSTEM. BA	N TEST (ASIC DESC	AASHTO	T 206, A	STM D158	DE THE FOLLOW	ICATION ING:	GAP-GRADED - INDICATE					BLOWS IN N	NON-COASTAL PLAIN M	ATERIAL, THE TRAM	MPLER EQUAL TO OR LESS THAN 0.1 NSITION BETWEEN SOIL AND ROCK
CONSISTE	NCY, COLOR,	TEXTURE,	MOISTURE, A4	ASHTO CL	ASSIFICA	ATION, AND	D OTHER P	PERTINENT FACTO	RS SUCH			RITY OF GRAI				D BY A ZONE OF WEAT RIALS ARE TYPICALLY		S:
	ERY STIFF.G	RAY, SILTY C	LAY, MOIST WIT	H INTERB	EDDED FI	INE SAND	LAYERS, HIG	HLY PLASTIC, A-7-6			TY OR ROUNDNESS OF NGULAR, SUBROUNDED,		ESIGNATED BY	THE TERMS:	WEATHERED			N MATERIAL THAT WOULD YIELD SPT
GENERAL		<u>DIL LE</u> GRANULAR M	GEND AI ATERIALS	NU AA		ULAS AY MATERIA					MINERALOG	GICAL COMPOS	ITION		ROCK (WR)	22	100 BLOWS PER FO	UT IF TESTED. RAIN IGNEOUS AND METAMORPHIC RO
CLASS.	(≤ 35% PASS	NG =200)		(> 35%	PASSING 2	200)	ORGANIC MATER	IALS		MES SUCH AS QUART N DESCRIPTIONS WHE				CRYSTALLIN ROCK (CR)			REFUSAL IF TESTED, ROCK TYPE INC
GROUP CLASS.	A-1 A-1-a A-1-b	A-3 A-2-	A-2 4 A-2-5 A-2-1		A-4 A-!			1, A-2 A-4, A-5 A-3 A-6, A-7		ANE USED IN		PRESSIBILITY	JENED OF 310	VIT ICHNCE.	NON-CRYSTA		FINE TO COARSE G	RAIN METAMORPHIC AND NON-COASTA THAT WOULD YEILD SPT REFUSAL
SYMBOL	000000000000000000000000000000000000000						A-7-6				HTLY COMPRESSIBLE		LL < 31	50	ROCK (NCR)	ATN	ROCK TYPE INCLUD	ES PHYLLITE, SLATE, SANDSTONE, ETC DIMENTS CEMENTED INTO ROCK, BUT
ő % Passing	<u> </u>			4 %.?% ®					-		RATELY COMPRESSIB LY COMPRESSIBLE	3LE	LL = 31 - LL > 50	שכ	COASTAL PL SEDIMENTAR		SPT REFUSAL. ROCK	K TYPE INCLUDES LIMESTONE, SANDS
*10 5	50 MX 30 MX 50 MX	E1 MA						NULAR SILT- CLAY	MUCK, PEAT			AGE OF MATER	RIAL		(CP)		SHELL BEDS, ETC.	IERING
			х 35 мх 35 м	х 35 мх 3	6 MN 36 (MN 36 MN		SOILS		ORGANIC MATERIAL		SILT - CLAY <u>SOILS</u>		MATERIAL	FRESH			S MAY SHOW SLIGHT STAINING. ROCK
MATERIAL PASSING #40										TRACE OF ORGANIC MA LITTLE ORGANIC MATT		3 - 5% 5 - 12%	TRACE LITTLE	1 - 10% 10 - 20%	VERY SLIGHT	HAMMER IF CRYSTALL		SOME JOINTS MAY SHOW THIN CLAY CO
ш	-		X 41 MN 40 M					SOILS WITH LITTLE OR		MODERATELY ORGANIC HIGHLY ORGANIC	5 - 10% > 10%	12 - 20% > 20%	SOME HIGHL Y	20 - 35% 35% AND ABOVE	(V SLI.)	CRYSTALS ON A BROK	EN SPECIMEN FACE S	SHINE BRIGHTLY. ROCK RINGS UNDER HA
PI GROUP INDEX	6 MX Ø	NP 10 M	x 10 MX 11 MM			MX 11 MN MX 16 MX		MODERATE AMOUNTS OF	HIGHLY ORGANIC			OUND WATER			SLIGHT	OF A CRYSTALLINE N		AND DISCOLORATION EXTENDS INTO RO
USUAL TYPES S	TONE FRAGS.		SILTY OR CLAY		SILTY			ORGANIC	SOILS	∇	WATER LEVEL IN	BORE HOLE IMMEDIA	ATELY AFTER	DRILLING	(SLI.)	1 INCH. OPEN JOINTS	MAY CONTAIN CLAY.	IN GRANITOID ROCKS SOME OCCASIONAL
OF MAJOR MATERIALS	GRAVEL, AND SAND		GRAVEL AND SA		SOILS	CLA SOI		MATTER			STATIC WATER LE	EVEL AFTER 24	HOURS		MODERATE			YSTALLINE ROCKS RING UNDER HAMMER COLORATION AND WEATHERING EFFECTS
GEN. RATING		EXCELLENT	10 000				Ff	IR TO POOR		. <u>V</u> PW	PERCHED WATER,	SATURATED ZONE, OF	R WATER BEAR	ING STRATA	(MOD.)	GRANITOID ROCKS, MOS	ST FELDSPARS ARE D	ULL AND DISCOLORED, SOME SHOW CLA HOWS SIGNIFICANT LOSS OF STRENGTH
AS SUBGRADE						r to poor		POOR	UNSUITABLE	- O-M-	SPRING OR SEEP					WITH FRESH ROCK.	AMMEN BLOWS HIND SI	NUWS SIGNIFICHNI LUSS OF SIRENGIA
	F		SUBGROUP IS :					30			MISCELLA	ANEOUS SYMBO			MODERATELY SEVERE			STAINED. IN GRANITOID ROCKS.ALL F
			ACTNESS OF		RANGE (OF STAND	ARD	RANGE OF UN			25 //	(A)5			(MOD. SEV.)	AND CAN BE EXCAVAT	ED WITH A GEOLOGIS	T'S PICK. ROCK GIVES "CLUNK" SOUND V
PRIMARY S	OIL TYPE		NSISTENCY	` PE		(ON RESIS -VALUE)	TENCE	COMPRESSIVE (TONS/F		L ROADWAY EMB	PHINKIPEINI (NE)	⁰²⁵ DIP & DIP DIF → OF ROCK STRU			SEVERE	IF TESTED, WOULD YIE		STAINED, ROCK FABRIC CLEAR AND E
GENERAL	LY		RY LOOSE			< 4						DPT DMT TEST BOR		SLOPE INDICATOR	(SEV.)	REDUCED IN STRENGT	H TO STRONG SOIL. I	N GRANITOID ROCKS ALL FELDSPARS A RONG ROCK USUALLY REMAIN.
GRANULA MATERIA	٩R		LOOSE IUM DENSE		10	TO 10 TO 30		N/A			ILL (AF) OTHER	т (3) (М)		INSTALLATION CONE PENETROMETER		IF TESTED, WOULD YIE		
(NON-CO			DENSE RY DENSE			TO 50 > 50						AUGER BORING		TEST	VERY SEVERE			STAINED. ROCK FABRIC ELEMENTS AR OIL STATUS, WITH ONLY FRAGMENTS OF
			RY SOFT			< 2		< 0.25		- INFERRED SOI	IL BOUNDARY -	- CORE BORING	٠	SOUNDING ROD	(V SEV.)	REMAINING, SAPROLITE	E IS AN EXAMPLE OF	ROCK WEATHERED TO A DEGREE THAT
GENERAL SILT-CL		MED	SOFT			TO 4 TO 8		0.25 TO 0.5 TO		INFERRED ROC	CK LINE	⊤ ◯ MONITORING WI	ELL 🔶	TEST BORING	COMPLETE			NN. <u>IF TESTED, WOULD YIELD SPT N V</u> DISCERNIBLE, OR DISCERNIBLE ONLY
MATERIA (COHESI)		VE	STIFF RY STIFF			TO 15 TO 30		1 TO 2 2 TO		ALLUVIAL SOI			\rightarrow	WITH CORE - SPT N-VALUE				BE PRESENT AS DIKES OR STRINGERS
			HARD			> 30		> 4	-			INSTALLATION	<u> </u>	SIT IN THESE			ROCK HA	ARDNESS
			TEXTU	re or	GRA)	IN SIZ	Έ			<u> </u>		NDATION SYMB			VERY HARD		D BY KNIFE OR SHAR	P PICK. BREAKING OF HAND SPECIMENS
U.S. STD. SIE OPENING (MM			4 4.76	10 2.00	40 0.42	60 0.25	200 0.075	270 0.053			UNCLASSIFIED E	ASTE	ACCEPTA	BLE, BUT NOT TO BE	HARD	SEVERAL HARD BLOWS		S PICK. LY WITH DIFFICULTY. HARD HAMMER BL
BOULDEF		3BLE	GRAVEL		COARSE		FINE	SILT	CLAY	SHALLOW UNDERCUT	UNCLASSIFIED E	EXCAVATION - EGRADABLE ROCK		THE TOP 3 FEET OF MENT OR BACKFILL	THAT	TO DETACH HAND SPE		
(BLDR.)		0B.)	(GR.)		SAND		SAND (F SD.)	(SL.)	(CL.)		ABB	BREVIATIONS			MODERATELY HARD			DUGES OR GROOVES TO 0.25 INCHES DE ST'S PICK. HAND SPECIMENS CAN BE DE
GRAIN MM		75		2.0		0.25		0.05 0.00	5	AR - AUGER REFUSAL	MED	- MEDIUM		VANE SHEAR TEST		BY MODERATE BLOWS.		
SIZE IN.		3								BT - BORING TERMINATED CL CLAY		- MICACEOUS - MODERATELY		WEATHERED NIT WEIGHT	MEDIUM HARD			DEEP BY FIRM PRESSURE OF KNIFE O EICES 1 INCH MAXIMUM SIZE BY HARD
5011	MOISTURE S			- CO						CPT - CONE PENETRATION CSE COARSE		NON PLASTIC - ORGANIC	γ_{d} - c	RY UNIT WEIGHT		POINT OF A GEOLOGIS		
	ERBERG LIN			SCRIPTI		GUIDE	FOR FIEL	D MOISTURE DE	SCRIPTION	DMT - DILATOMETER TES	ST PMT -	- PRESSUREMETER TI		IPLE ABBREVIATIONS	SOF T	FROM CHIPS TO SEVE	RAL INCHES IN SIZE	NIFE OR PICK. CAN BE EXCAVATED IN BY MODERATE BLOWS OF A PICK POIN
				ATURATED) -			; VERY WET, USL		DPT - DYNAMIC PENETRA e - VOID RATIO		- SAPROLITIC SAND, SANDY	S - BI SS - S	JLK SPLIT SPOON	VERY	PIECES CAN BE BROKE		URE. AVATED READILY WITH POINT OF PICK.
		LIMIT		(SAT.)		FROM	BELOW T	HE GROUND WATE	ER TABLE	F - FINE FOSS FOSSILIFEROUS		SILT, SILTY - SLIGHTLY	ST - 5 RS - F	SHELBY TUBE	SOFT	OR MORE IN THICKNES		Y FINGER PRESSURE, CAN BE SCRATCH
PLASTIC RANGE <			- wi	ET - (W)				JIRES DRYING TO	C	FRAC FRACTURED, FRAC	TURES TOR -	- TRICONE REFUSAL	RT - F	RECOMPACTED TRIAXIAL		FINGERNAIL.		BEDDING
(PI) PL		C LIMIT				ATTAI	N OPTIMU	M MOISTURE		FRAGS FRAGMENTS HI HIGHLY	v - vi	MOISTURE CONTENT		CALIFORNIA BEARING RATIO	TERM		SPACING	
			- M	DIST - (N	4)	SOL ID;	AT OR N	EAR OPTIMUM M	DISTURE		UIPMENT USED				VERY WII WIDE		THAN 10 FEET O 10 FEET	VERY THICKLY BEDDED THICKLY BEDDED 1.
OM . SL .										DRILL UNITS:	ADVANCING TOOLS:	:	HAMMER T	_	MODERAT CLOSE	ELY CLOSE 1 T	TO 3 FEET	THINLY BEDDED 0.1 VERY THINLY BEDDED 0.0
			- DF	RY - (D)				TIONAL WATER T	0			US FLIGHT AUGER			VERY CL		HAN 0.16 FEET	THICKLY LAMINATED 0.00
					TOTT			MUISTURE		CME-55	X 8" HOLLOW A		CORE SIZE				INDUR	THINLY LAMINATED <
				PLAS1				DRY STREN		СМЕ-550		FINGER BITS			FOR SEDIME	NTARY ROCKS, INDURAT		ING OF MATERIAL BY CEMENTING, HE
	PLASTIC		<u>P</u>		0-5	<u>(11)</u>		VERY LO	N			DE INSERTS	<u>⊢</u> ∟-∾		FRIA	BLE		FINGER FREES NUMEROUS GRAINS;
MODE	GHTLY PLAS ERATELY PL	ASTIC			6-15 6-25			SLIGHT MEDIUM		VANE SHEAR TEST		W/ ADVANCER	HAND TOO	LS: I HOLE DIGGER				BY HAMMER DISINTEGRATES SAMPLE. SEPARATED FROM SAMPLE WITH ST
HIGH	ILY PLASTI	С			R MORE			HIGH		PORTABLE HOIST	X TRICONE 215	"% · STEEL TEETH) AUGER	MODE	RATELY INDURATED		WHEN HIT WITH HAMMER.
				COL	LOR					X D50 - (TERR346)	X TRICONE 2	"% • TUNGCARB.		NDING ROD	INDUF	RATED		FFICULT TO SEPARATE WITH STEEL BREAK WITH HAMMER.
								LOW-BROWN, BLU			CORE BIT			SHEAR TEST				BLOWS REQUIRED TO BREAK SAMPLE
MO	UIFIERS SU	LH AS LI	BHI, DARK, S	TREAKED	. EIC. AF	RE USED	IU DESC	RIBE APPEARANC	L.	X D50 - (TERR373)	X TRICONE 378	STEEL TEETH	111_		EXTR	EMELY INDURATED		ACROSS GRAINS.

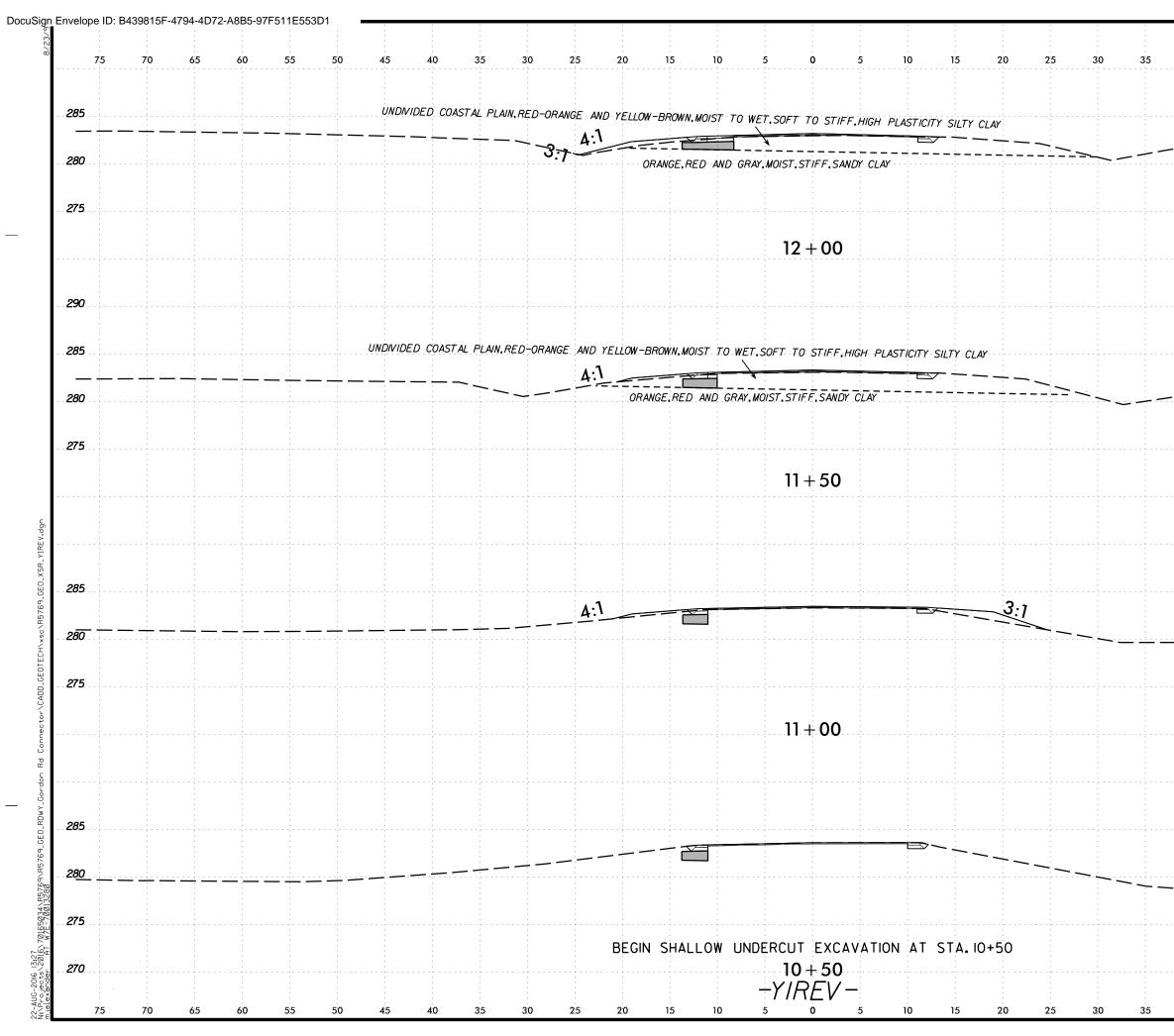
PROJECT REFERENCE NO.

2

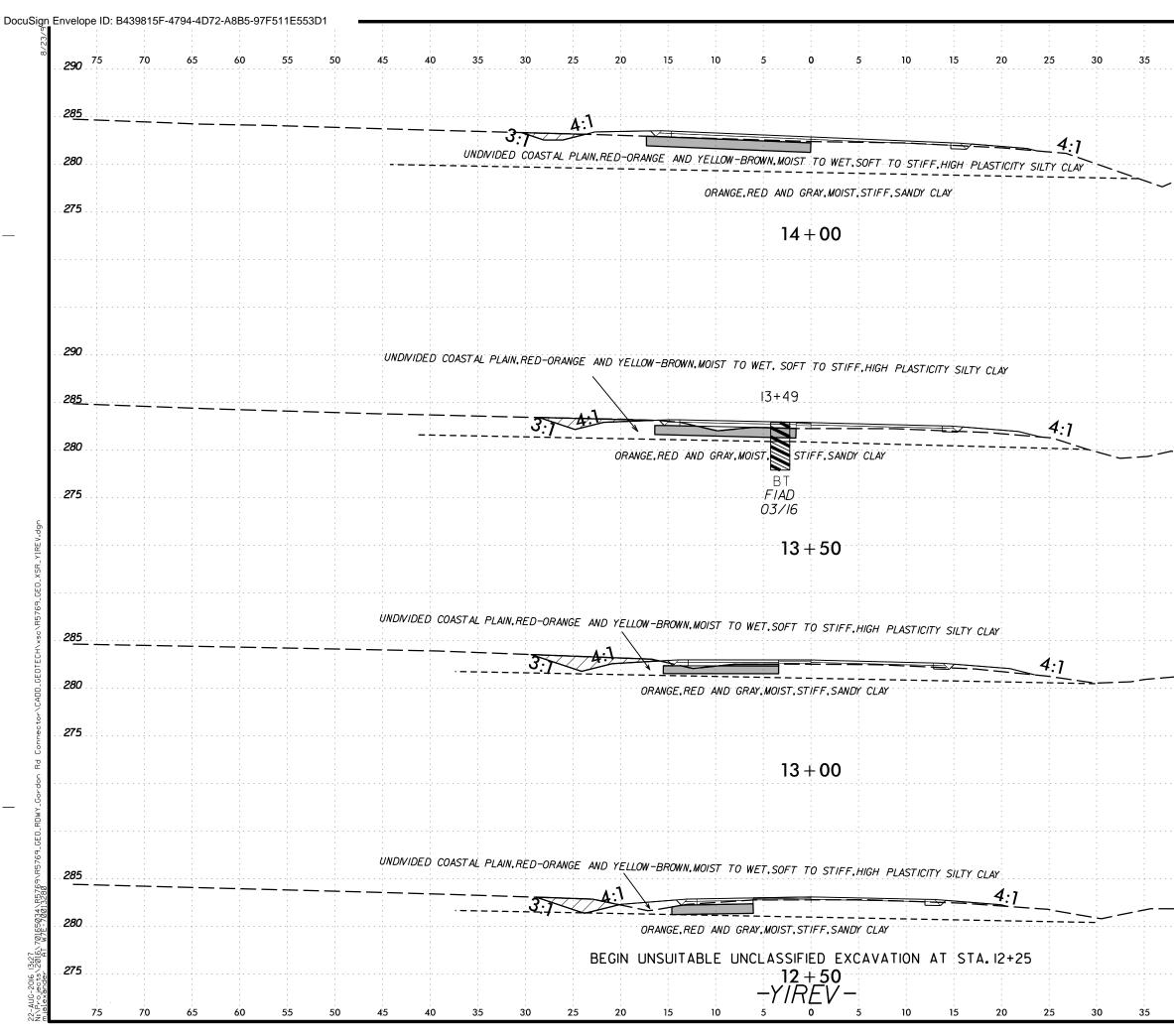

	TERMS AND DEFINITIONS
D. AN INFERRED SPT REFUSAL.	ALLUVIUM (ALLUV.) - SOILS THAT HAVE BEEN TRANSPORTED BY WATER.
FOOT PER 60 IS OFTEN	ADUIFER - A WATER BEARING FORMATION OR STRATA.
	ARENACEOUS - APPLIED TO ROCKS THAT HAVE BEEN DERIVED FROM SAND OR THAT CONTAIN SAND.
	ARGILLACEOUS - APPLIED TO ALL ROCKS OR SUBSTANCES COMPOSED OF CLAY MINERALS, OR HAVING A NOTABLE PROPORTION OF CLAY IN THEIR COMPOSITION, SUCH AS SHALE, SLATE, ETC.
N VALUES >	ARTESIAN - GROUND WATER THAT IS UNDER SUFFICIENT PRESSURE TO RISE ABOVE THE LEVEL AT
СК ТНАТ	WHICH IT IS ENCOUNTERED, BUT WHICH DOES NOT NECESSARILY RISE TO OR ABOVE THE GROUND
CLUDES GRANITE,	SURFACE.
L PLAIN	CALCAREOUS (CALC.) - SOILS THAT CONTAIN APPRECIABLE AMOUNTS OF CALCIUM CARBONATE.
IF TESTED.	COLLUVIUM - ROCK FRAGMENTS MIXED WITH SOIL DEPOSITED BY GRAVITY ON SLOPE OR AT BOTTOM OF SLOPE.
MAY NOT YIELD TONE, CEMENTED	CORE RECOVERY (REC.) - TOTAL LENGTH OF ALL MATERIAL RECOVERED IN THE CORE BARREL DIVIDED BY TOTAL LENGTH OF CORE RUN AND EXPRESSED AS A PERCENTAGE.
	DIKE - A TABULAR BODY OF IGNEOUS ROCK THAT CUTS ACROSS THE STRUCTURE OF ADJACENT ROCKS OR CUTS MASSIVE ROCK.
RINGS UNDER	<u>DIP</u> - THE ANGLE AT WHICH A STRATUM OR ANY PLANAR FEATURE IS INCLINED FROM THE HORIZONTAL.
DATINGS IF OPEN, AMMER BLOWS IF	DIP DIRECTION (DIP AZIMUTH) - THE DIRECTION OR BEARING OF THE HORIZONTAL TRACE OF THE LINE OF DIP, MEASURED CLOCKWISE FROM NORTH.
CK UP TO	FAULT - A FRACTURE OR FRACTURE ZONE ALONG WHICH THERE HAS BEEN DISPLACEMENT OF THE SIDES RELATIVE TO ONE ANOTHER PARALLEL TO THE FRACTURE.
L FELDSPAR BLOWS.	SIDES RELATIVE TO ONE ANOTHER PARALLEL TO THE FRACTORE.
5. IN	FLOAT - ROCK FRAGMENTS ON SURFACE NEAR THEIR ORIGINAL POSITION AND DISLODGED FROM
Y. ROCK HAS	PARENT MATERIAL.
AS COMPARED	FLOOD PLAIN (FP) - LAND BORDERING A STREAM, BUILT OF SEDIMENTS DEPOSITED BY THE STREAM.
ELDSPARS DULL	FORMATION (FM.) - A MAPPABLE GEOLOGIC UNIT THAT CAN BE RECOGNIZED AND TRACED IN THE
OSS OF STRENGTH	
WHEN STRUCK.	JOINT - FRACTURE IN ROCK ALONG WHICH NO APPRECIABLE MOVEMENT HAS OCCURRED.
VIDENT BUT	<u>LEDGE</u> - A SHELF-LIKE RIDGE OR PROJECTION OF ROCK WHOSE THICKNESS IS SMALL COMPARED TO ITS LATERAL EXTENT.
RE KAOLINIZED	LENS - A BODY OF SOIL OR ROCK THAT THINS OUT IN ONE OR MORE DIRECTIONS.
E DISCERNIBLE	USUALLY INDICATES POOR AERATION AND LACK OF GOOD DRAINAGE.
STRONG ROCK	PERCHED WATER - WATER MAINTAINED ABOVE THE NORMAL GROUND WATER LEVEL BY THE PRESENCE OF AN INTERVENING IMPERVIOUS STRATUM.
ONLY MINOR ALUES < 100 BPF	OF AN INTERVENING IMPERVIOUS STRATUM. RESIDUAL (RES.)SOIL - SOIL FORMED IN PLACE BY THE WEATHERING OF ROCK.
IN SMALL AND	ROCK QUALITY DESIGNATION (RQD) - A MEASURE OF ROCK QUALITY DESCRIBED BY TOTAL LENGTH OF
. SAPROLITE IS	ROCK SECHENTS EQUAL TO OR OREATER THAN 4 INCHES DIVIDED BY THE TOTAL LENGTH OF CORE RUN AND EXPRESSED AS A PERCENTAGE.
5 REQUIRES	$\underline{SAPROLITE}$ - RESIDUAL SOIL THAT RETAINS THE RELIC STRUCTURE OR FABRIC OF THE PARENT ROCK.
LOWS REQUIRED	<u>SILL</u> - AN INTRUSIVE BODY OF IGNEOUS ROCK OF APPROXIMATELY UNIFORM THICKNESS AND RELATIVELY THIN COMPARED WITH ITS LATERAL EXTENT, THAT HAS BEEN EMPLACED PARALLEL TO THE BEDDING OR SCHISTOSITY OF THE INTRUDED ROCKS.
EP CAN BE	SLICKENSIDE - POLISHED AND STRIATED SURFACE THAT RESULTS FROM FRICTION ALONG A FAULT
ETACHED	OR SLIP PLANE.
R PICK POINT. BLOWS OF THE	STANDARD PENETRATION TEST (PENETRATION RESISTANCE)(SPT) - NUMBER OF BLOWS (N OR BPF)OF A 140 LB.HAMMER FALLING 30 INCHES REQUIRED TO PRODUCE A PENETRATION OF 1 FOOT INTO SOIL WITH A 2 INCH OUTSIDE DIAMETER SPLIT SPOON SAMPLER. SPT REFUSAL IS PENETRATION EQUAL TO OR LESS THAN 0.1 FOOT PER 60 BLOWS.
FRAGMENTS T. SMALL, THIN	STRATA CORE RECOVERY (SREC.) - TOTAL LENGTH OF STRATA MATERIAL RECOVERED DIVIDED BY TOTAL LENGTH OF STRATUM AND EXPRESSED AS A PERCENTAGE.
PIECES 1 INCH	STRATA ROCK QUALITY DESIGNATION (SROD) - A MEASURE OF ROCK QUALITY DESCRIBED BY TOTAL LENGTH OF ROCK SEOMENTS WITHIN A STRATUM EQUAL TO OR GREATER THAN 4 INCHES DIVIDED BY THE TOTAL LENGTH OF STRATA AND EXPRESSED AS A PERCENTAGE.
ED READILY BY	TOPSOIL (TS.) - SURFACE SOILS USUALLY CONTAINING ORGANIC MATTER.
THICKNESS	BENCH MARK: SEE NOTES
4 FEET	ELEVATION: N/A FEET
.5 - 4 FEET .6 - 1.5 FEET	
3 - 0.16 FEET 18 - 0.03 FEET	NOTES:
0.008 FEET	FIAD - FILLED IN AFTER DRILLING
	PROJECT WAS DRAFTED USING PROVIDED TIN FILE (FILE: R5769_012616)
AT, PRESSURE, ETC.	
EEL PROBE;	
PROBE:	
NODL:	
	DATE: 8-15-14

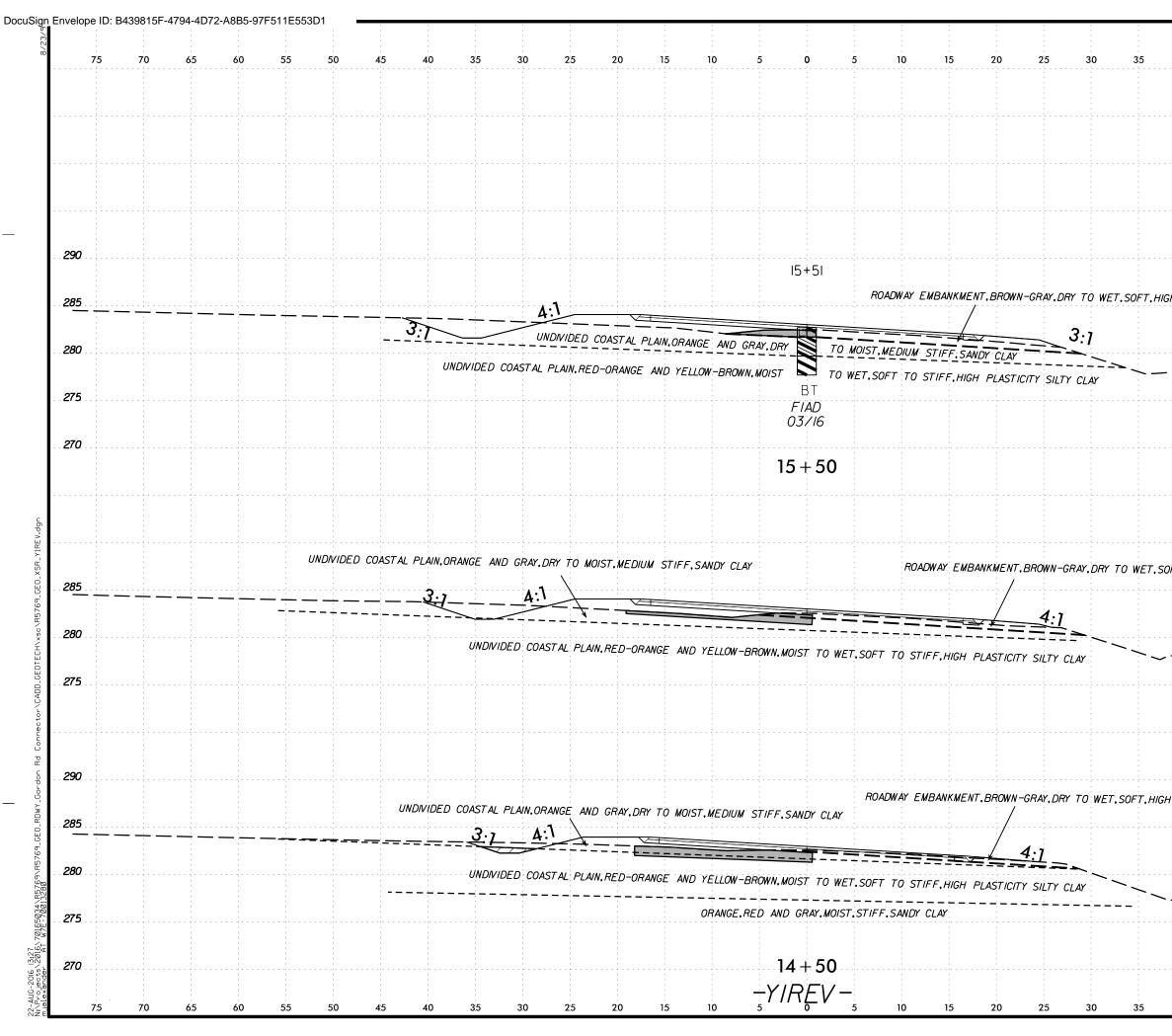
			STATE	STATE	PROJECT REPERENCE NO.		SHEET NO.	TOTAL SHEETS
			N.C.	F	R-5769		3	17
				e proj. No.	P. A. PROJ. NO.		DESCRIPT	
			46	448.1.1			PE, UTIL. CONS	
						_		
				1.4	1	122	23 Jones Fra Raleigh, N.	C. 27606
IOF	RDISK	SITE		E	V ETHERILL NGINEERING		License No Bus: 919 Fax: 919	851 8077
							1 un. 717	
UR	F				NNING/DESIGN - BRI - GIS/GPS - CONST			
				JIL DESIGN	0,370F3 - CUNSI	100110	n UDSERVI	
				P				
			Co	nsultin	g Engineei	rs &	Scie	ntists
<u>UC</u> 15	<u>TION</u> + 07.87							
<u>00</u> 07.3.	3							
L								
BI	<u>RIDGE</u> - 75.48							
33 +	- 75.48							
	_							
7.31								
							_	
					MINARY PL			
							, 1	
<u>A. 1</u>	0+00.00				MPLETE PLA		J	
i						FINAL)	
				UNLESS A	LL SIGNATURES COMP	LEIED	J	
_					<u>~</u>			
Ì	ĺ	HYDR	AULICS	ENGINEEF	° ľ			
						S NOR	1910	
					ATE .	01 404	CARO	
<u>РЕ</u>	NOVATIVE		P.E.		- DEPART	1	LINA A	
_	SIGNATURE:	R		Y DESIGN		7,		
			ENGI	NEER	THE REAL		~ Ja	//
—						OF TRI	NSPOR	
	SIGNATURE	<u> </u>	<i>P.E.</i>		ل ا			

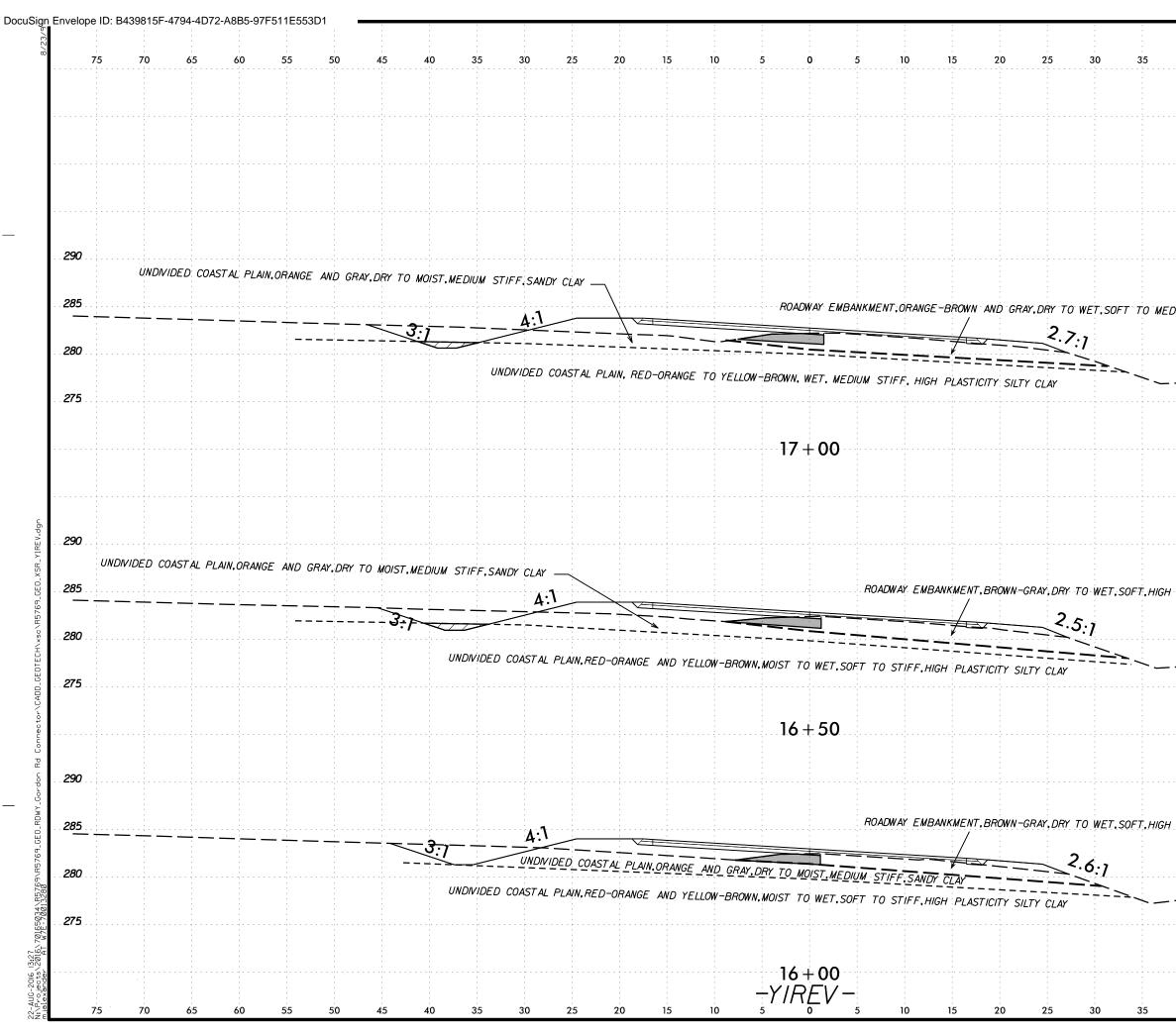

			0 <u>{</u>	5 10	PROJ. RE	FERENCE NO	D. SHEE	t no.
80	90) 10			20 13			.330
								.320
								. 310
								. 5/0
								. 300
								290
								.280
								1. 270
								700
								.320
								. 310
_			·					. 290
							· · · · · · · · · · · ·	
								. 270
								.330
								. 310
								.300
								. 280
								. 270
80	90	0 10	0 11	0 12	20 13	0 14	10 150	

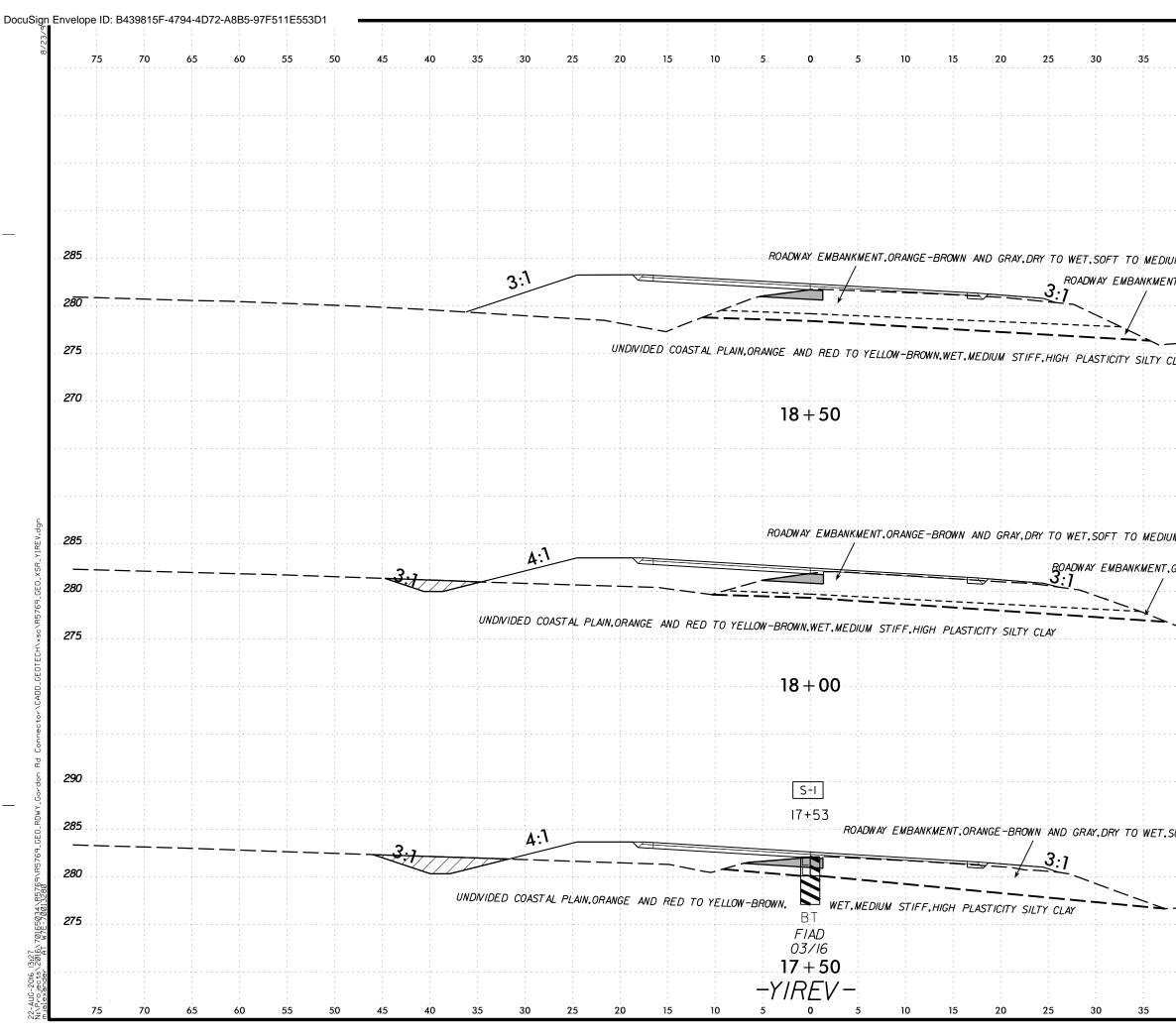

				D PI	ROJ. REFEREN	CE NO.	sheet no. 5
80	90	100	110	120	130	140	150
			· · · · · · · · · · · · · · · · · · ·				
			· · · · · · · · · · · · ·				
			,				
							700
							
			· · · · · · · · · · · · · · · · · · ·				
			· · · · · · · · · · · · · · · · · · ·				
			· · · · · · · · · · · · · · · · · · ·				
							.280
80	00	100	110	100	120	140	150
80	90	100	110	120	130	140	150

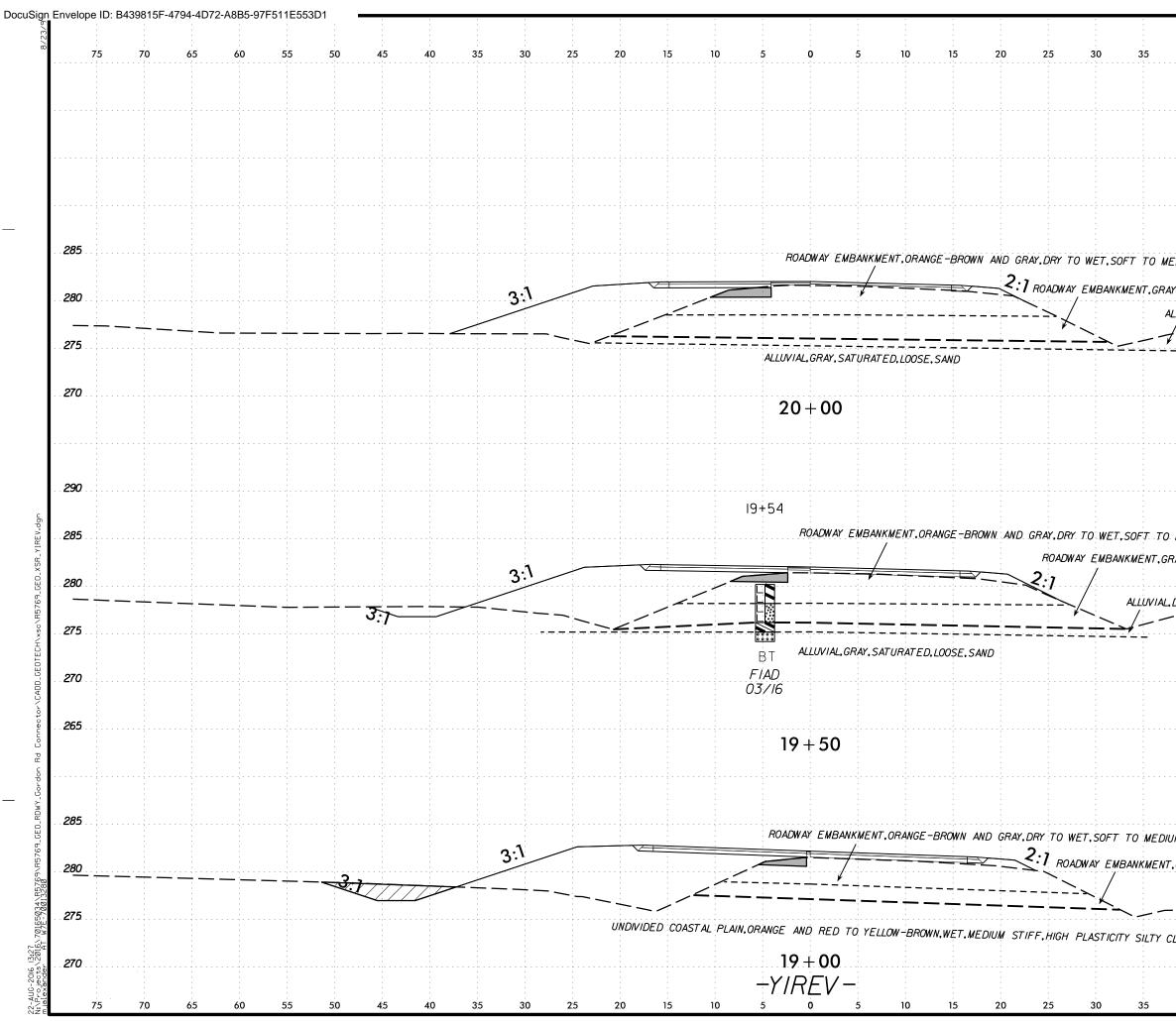
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	60 7
$ \begin{array}{c} 322 \\ 30 \\ 30 \\ 30 \\ 30 \\ 280 \\ 280 \\ 280 \\ 280 \\ 280 \\ 280 \\ 34+50 \\ 34+50 \\ 36 \\ 30 \\ 30 \\ 30 \\ 30 \\ 30 \\ 30 \\ 30 \\ 30$	
$ \begin{array}{c} 369 \\ 360 \\ 360 \\ 360 \\ 360 \\ 260 \\ 260 \\ 361 \\ 260 \\ 362 \\ 362 \\ 362 \\ 363 \\ 360 $	
320 Image: state of the	
320 Image: Constraint of the second of the	
320 Image: Constraint of the second of the	
320 Image: state of the	
320 Image: Constraint of the second of the	
322 332 330 336 250 34+50 320 34+50 320 1 320 1 320 1 320 1 320 1 321 1 322 1 323 1 324 1 325 1 326 1 327 1 328 1 329 1 290 1	
329 360 300 280 280 34+50 270 330 320 34+50 50	
322 39 39 30 300 30 280 34+50 270 34+50 330 34+50 320 1 330 1 320 1 320 1 320 1 320 1 320 1 320 1 320 1 320 1 320 1 320 1 320 1 320 1 320 1 320 1 34+50 1 350 1	
300 290 280 $34+50$ 370 330 320 320 300 320 300 320 30	
300 200 260 $34+50$ $34+50$ 36 36 36 36 36 36 36 36	
280 280 34+50 300 300 290 280 300 290 280 300 290 280 300 290 200 200 200 200 200 200 2	
280. 270. 330. 320. 300. 300. 300. 290. 280. 300. 290. 280. 300. 290. 280. 300.	
280 270 330 320 300 300 290 280	\searrow
270 34+50 330 30 320 Image: Constraint of the second o	
300 290 280	
.300 	
290 280	
280	
280	
280.	
34+00 [∧]	
.270	

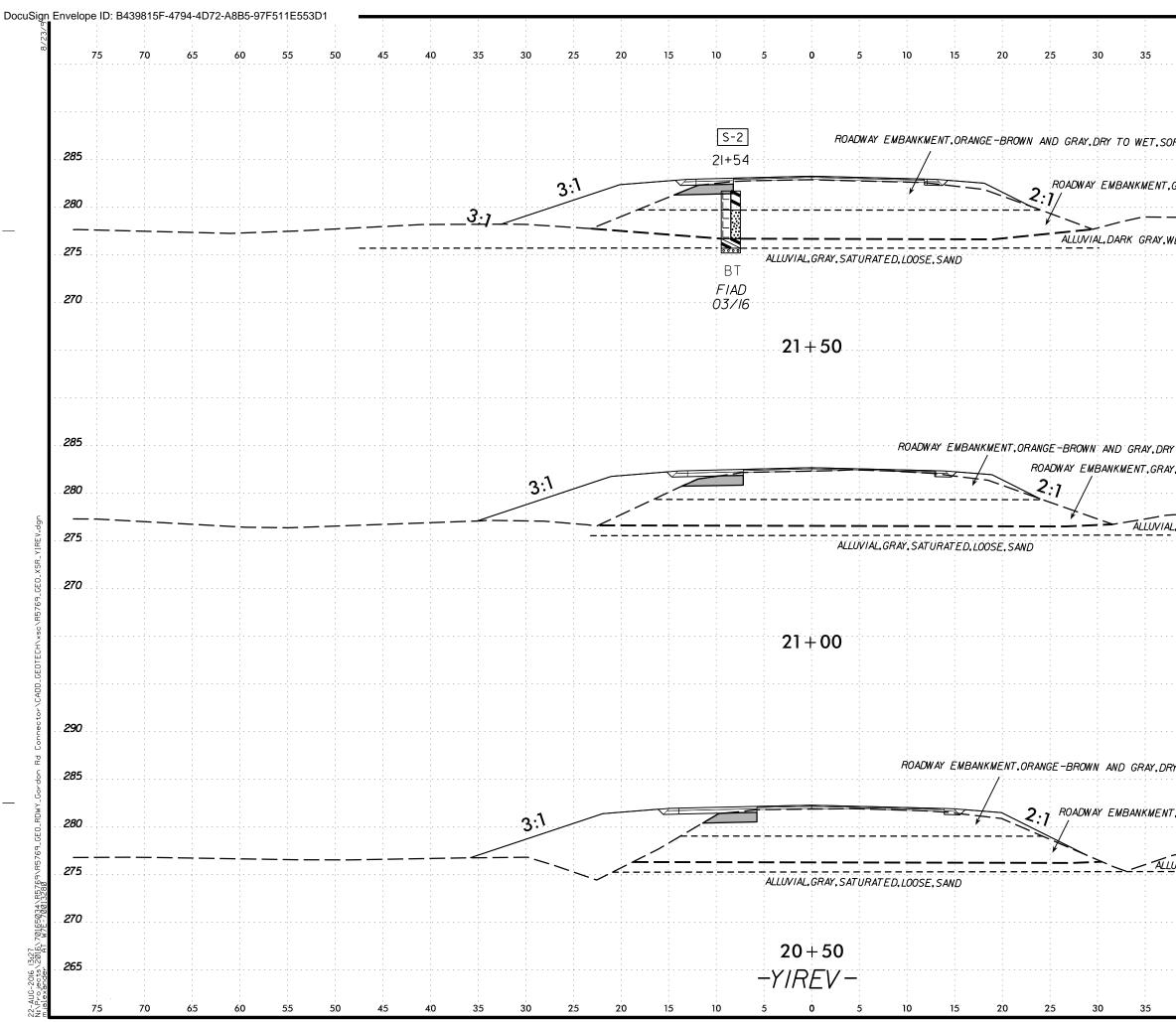

				0 5	5 10	PROJ. RE	FERENCE NC	D. SHEET NO.
7	08	09	20 10				30 14	
	- - - - -							
	• • •							
	• • •							
	- - - -							
	· · · ·							
	6		4					
								.290
				— — .				
	- 							
								.330
	• • •							
.								
7	0 8	0 9	20 10	0 11	10 12	20 13	30 14	0 150

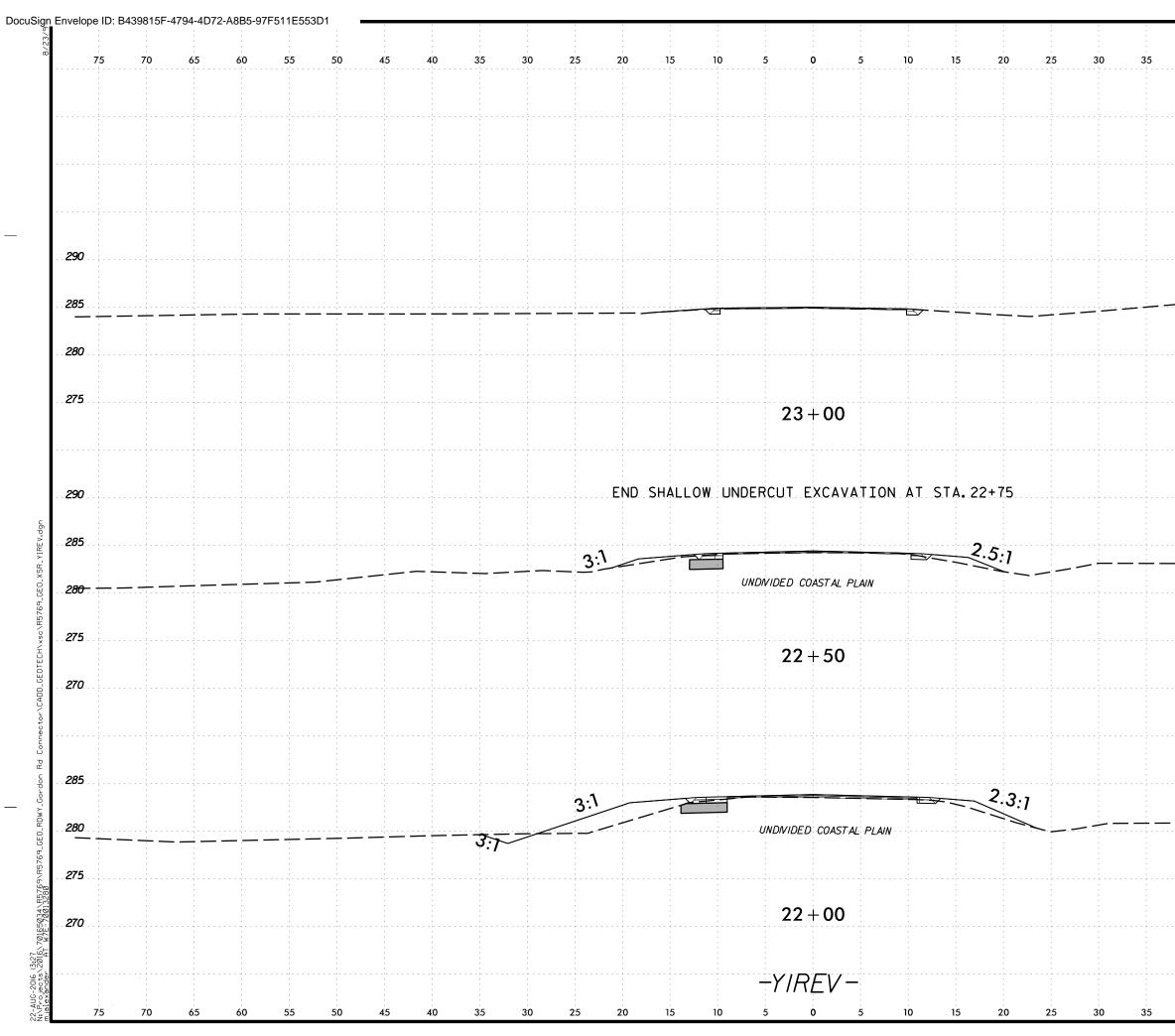

			0 :	5 10	PROJ. RE	FERENCE NO.	SHEET NO. 7
8	i0 9	0 10			20 13		
	· · ·						
	1 1 1 1 1 1						
	- - - -						
	• • •						
	• • • • • • • • • • • • • • • • • • •						
	• • •						
					· · · · · · · · · · ·		.300
	- - - -						
	•						
		- — —					
	- - - -						
	• • • •						
							J20
	• • • •						.300
	- - - -						
			— — ·				
	- - - -						
8	0 9	0 10	0 11	0 12	20 13	30 140	150


			02	.5 5	proj. ri R	EFERENCE NO	D. SHEET	'NO.
4	10 4	55	0 5	5 έ		57		
								005
								285
					·			280
				• • • •				275
	- - 			· · · ·				
	• • • •							290
	• • • •				· · ·			285
								.28 0
								075
	· · · · · · · · · · · · · · · · · · ·			· · · · · · · · · · · · · · · · · · ·	· · · · · · · · · · · · · · · · · · ·			275
	• • • •			•	· · ·			
	· · · ·			· · ·	· · ·			285
<u> </u>		<u> </u>			<u> </u>			280
	· • •							275
	• • • •	· · · · · · · · · · · · · · · · · · ·		• • • •				
				· · ·	- - - -			
	· · · · · · · · · · · · · · · · · · ·			· · · · · · · · · · · · · · · · · · ·				
	- - - -				· 		, , , , ,	285
	- - - - - - - - - -			- - - - -				280
		— — –						_
								275
	- - - - - -			· • • •	· · · · · · · · · · · · · · · · · · ·			270
,	10 4	5 5	0 4	5 6	50 6	57		
4	r,u 4	,J D	<u>,</u>	. 0		.J 7.	J 7,5	


			0 2.:	5 5	proj. re R-	FERENCE NC). SHEET 9	I NO.
4	0 4	5 5	0 55	5 6	0 6	5 7(0 75	.290
								0.05
								.285
_	<u>~-</u> -							.280
				, , , ,				.275
								290
				· · · · · · · · · · · · · · · · · · ·				.290
				, , , ,				.285
_							<u> </u>	.280
								.275
				, , , ,				
				- - - - - - - - - - - - - - - - - - -				.285
		<u> </u>			·			.28 0
								075
								.275
				, , ,	, , ,			
				- - - - - -				
								.285
								.2 80
								.275
4	0 4	5 5	0 55	5 6	0 6	5 7	0 7,5	


			02	.5 5	PROJ. R	EFERENCE N	D. SHE	et no. 0
4	0 4	55	0 5	5		1	0 75	
				•				
GH I	PLASTICIT	Y SILTY C	LAY					285
		— — –				· · ·		280
								270
OFT	нісн рі /	STICITY S		,				
						· · · · · · · · · · · · ·		. 285
				- - - - 				
								<i>280</i>
. –				•				
						· · ·		
				- - - -				
								290
ΗP	LASTICITY	SILTY CL	AY					205
								. 285
	/						- — —	
					· · ·	· · ·		. 275.
					<u>.</u>			270
4	0 4	55	0 5	5	60 6	5 7	0 75	;


	0	2.5 5	PR	OJ. REFEREN R-576	ce no. 9	SHEET NO. 11
40 45	50	55	60	65	70	75
						.290
	ACTION					285
DIUM STIFF,HIGH PL	ASTICIT	r SILI'Y CL	.Αγ			
						- — — <i>2</i> 75
		· · · · · · · · · · · · · · · · · · ·	· · · · · · · · · · · · · · · · · · ·		· · · · · · · · · · · · · · · · · · ·	
						290
PLASTICITY SILTY O	CLAY					285
						220
						275
						290
PLASTICITY SILTY C	CLAY			· · · · .		
-						275
			- - - -		· · · · · · · · · · · · · · · · · · ·	
40 45	50	55	60	65	70	75


			2.5 5	PF	ROJ. REFERENC	ce no. 9	SHEET NO.
40	45	50	55	60	65	70	75
		CTIONTY	CHTY OF M				285
1.1.1			SILTY CLAY ED,LOOSE,S		NDWITH	UTTIF G	
			<u> </u>				
CLAY							
							. 270
JM STIFF,	HIGH PLA	STICITY	SILTY CLAY				.285
GRAY, MOIS	T TO SAT	URATED	,LOOSE,SIL	TY SAND	WITH LIT	TLE GRA	1
			· · · · · · · · · · · · · · · · · · ·		·		
			· · · · · · · · · · · · · · · · · · ·				
			· · · · · · · · · · · · · · · · · · ·				
SOFT TO I	MEDIUM S	TIFF,HIG	H PLASTIC	ITY SILT	Y CLAY		285
							280
							200
	A F	50	57	40	15	70	70
40	45	50	55	60	65	7,0	75

	0 2.5 5	PROJ. REFERE R-57	NCE NO.	sheet no. 13
40 45 50) 55	60 65	70	75
				285
EDIUM STIFF.HIGH PLAS	STICITY SILTY CL	4 <i>Y</i>		
Y,MOIST TO SATURATED	D.LOOSE, SILTY SA	ND WITH LITT	LE GRAVEL	280
LLUVIAL.DARK GRAY.WET	,SOFT,SANDY CL	AY WITH LITTL	E ORGANICS	
/		<u> </u>		
				270
				290
MEDIUM STIFF, HIGH P	ACTIONY CUTY	04.4%		285
RAY, MOIST TO SATURATE				1
TAT MOIST TO SATURAL	_D,LUU3E, SILI T	SAND WITH LIT	ILE GRAVE	L
DARK GRAY,WET,SOFT,S	SANDY CLAY WITH	LITTLE ORGA	NICS	200
	· · · · · · · · · · · · · · · · · · ·			21.5
				270
				265
				205
				285
UM STIFF, HIGH PLASTIC	NTY SILTY CLAY			
.GRAY.MOIST TO SATUR		Y SAND WITH		NEL 280
	, , , , , , , , , , , , , , , , , , ,	I SAND WITH		₩ E L
21 AV				
CLAY				
				. 070
				270

	0 2.5 5			
40 45 5		50 65 70	<u>14</u> 75	
OFT TO MEDIUM STIFF.	HIGH PLASTICITY S	SILTY CLAY	285	
CRAY MOIST TO SATUR	ATED LOOSE CHITY			
UNAL, MUIST TU SATUR.	AI ED,LUUSE,SILI I	SAND WITH LITTLE GRA	VEL 280	
VET.SOFT.SANDY CLAY V	NITH LITTLE ORGA	NICS	275	
			270	
	· · · · · · · · · · · · · · · · · · ·			
		<u>.</u>		
Y TO WET.SOFT TO ME	DIUM STIFF, HIGH	PLASTICITY SILTY CLAY	285	
and the second se	and the second	D WITH LITTLE GRAVEL		
	· · · · · · · · · · · · · · · · · · ·		280	
L,DARK GRAY,WET,SOFT				
	, SANDI CLAI WIIH	LIIILE URGANICS		
	· · · · · · · · · · · · · · · · · · ·	<u> </u>		
		·····		
RY TO WET.SOFT TO ML	EDIUM STIFF.HIGH	PLASTICITY SILTY CLAY	005	
			285	
T.GRAY.MOIST TO SATU	RATED, LOOSE, SILTY	' SAND WITH LITTLE GF	RAVEL 280	
			200	
	SOFT.SANDY CLAY	WITH LITTLE ORGANICS	— — - 275	
	· · · · · · · · · · · · · · · · · · ·		270	
			265	
			200	
		1		

			02.	5 5	PROJ. RE	FERENCE NO	D. SHEE	SHEET NO.		
4	0 4	5 50			0 6					
		· · · · · · · · · · · · · · · · · · ·								
	- - - -									
								.290		
						· ·		. :28 5		
								.280		
								. 275		
								2 90		
								.285		
								_		
								. 280		
	- - - - - - -							. 275		
								1 0		
								. 270		
	- - - - - -									
								. 285		
								.280		
	· · · · · · · · · · · ·							.200		
								.275		
								. 270		
	· • • • • • • • • • • • •							.210		
Å	0 4	5 50	0 5:	5 4	0 6	57	0 75			
4	,- 4		J.	- 0	, - 0,	J 7.	- ,J			

NORTH CAROLINA DEPARTMENT OF TRANSPORTATION DIVISION OF HIGHWAYS GEOTECHNICAL ENGINEERING UNIT SUBSURFACE INVESTIGATION APPENDIX A SOIL LABORATORY RESULTS

REFERENCE: R-5769

PROJECT: N/A

INITIALS

SOIL LABORATORY TESTING SUMMARY

PROJECT NUMBER: N/A ID (TIP): R-5769 COUNTY:

DESCRIPTION: NOVO NORDISK ACCESS ROAD FROM SR 1905 (GORDON ROAD) TO PROPOSED NOVO NORDISK FACILITY

			Station		Depth Interval (feet)	AASHTO Class.	L.L.	P.I.	% by Weight				%	%	Passing (siev	ves)		
	Sample No.			Offset (feet)					Coarse Sand	Fine Sand	Silt	Clay	Retained #4 Sieve	#10	#40	#200	% Moisture	% Organic
Y1REV_1753	S-1	-Y1REV-	17+53	CL	1.0 - 2.0	A-7-6 (7)	43	28	34.9	22.4	5.8	36.9	1	96	74	44	19.6	-
Y1REV_2154	S-2	-Y1REV-	21+00	9 LT	1.0 - 2.0	A-7-6 (8)	48	26	23.7	26.1	7.7	42.5	10	83	69	46	17.1	-
												-						
												-						
												-						
													+		<u> </u>			
												-	+					
													+					

JOHNSTON

Stephanie H. Huffman

Certified Lab Technician Signature

114-01-1203 Certification Number