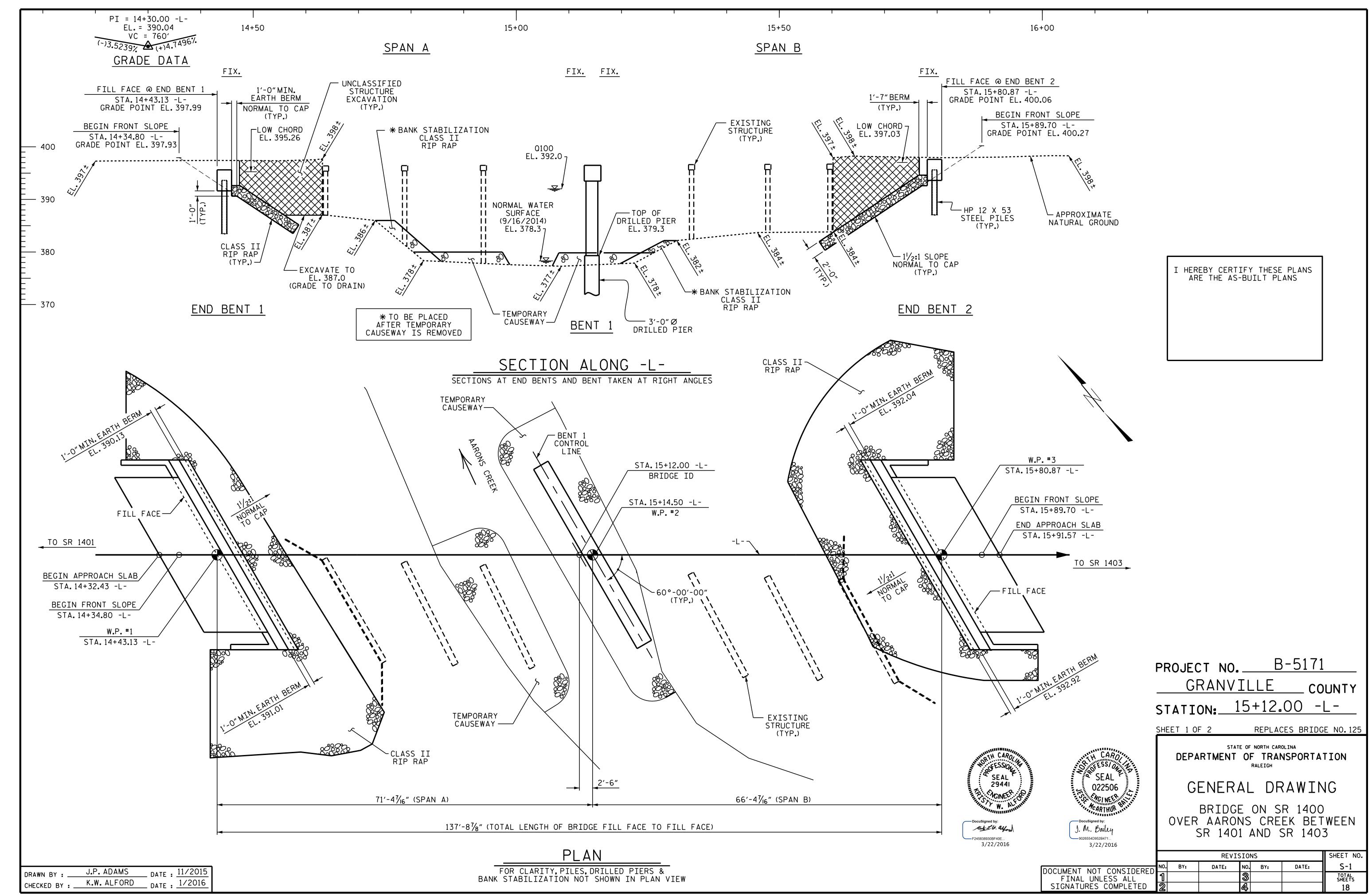
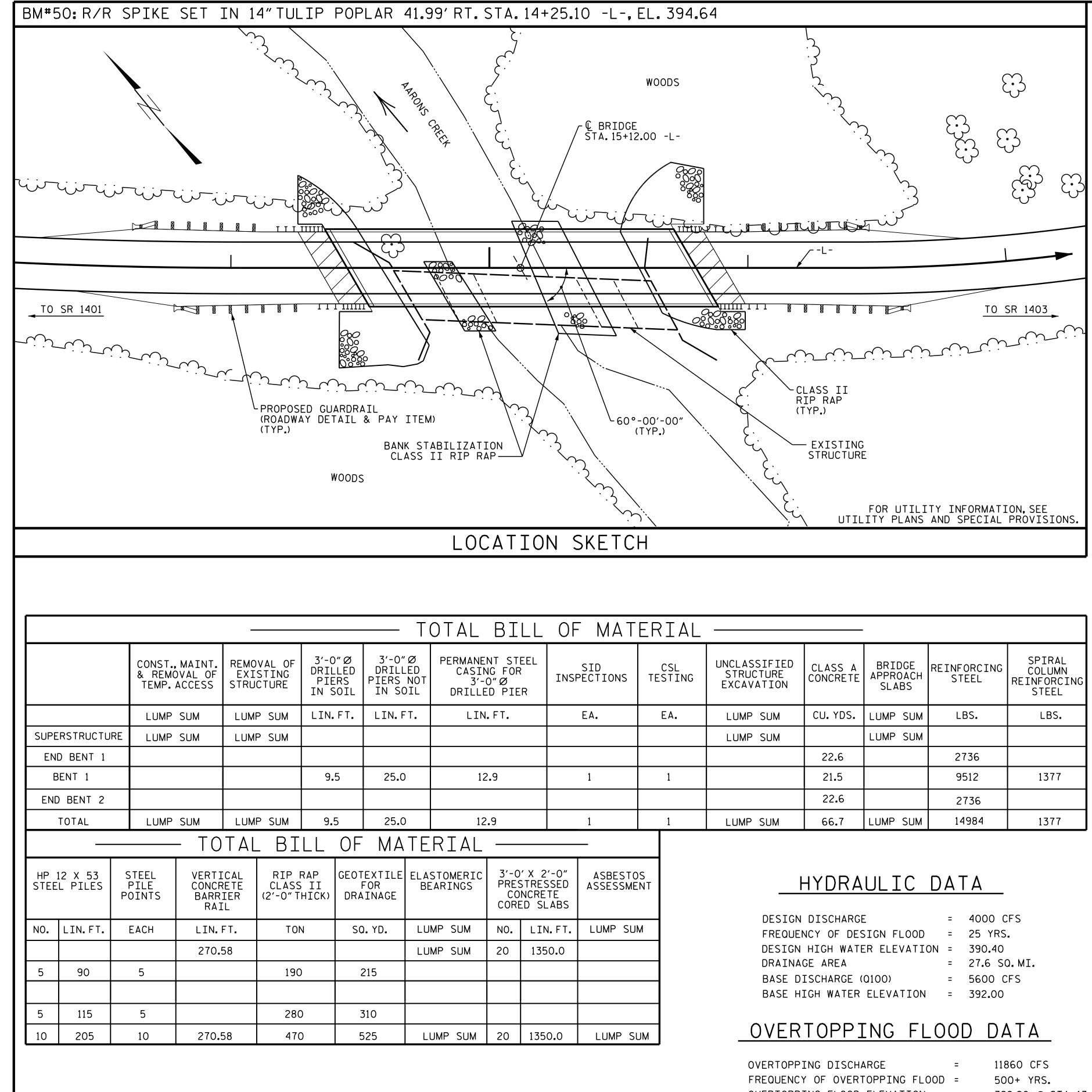

This electronic collection of documents is provided for the convenience of the user and is Not a Certified Document -


The documents contained herein were originally issued and sealed by the individuals whose names and license numbers appear on each page, on the dates appearing with their signature on that page. This file or an individual page shall not be considered a certified document.


STATE	STA 1	TE PROJECT REFERENCE NO.	SHI N	сет О.	TOTAL SHEETS					
N.C.	B-5171									
STATE	PROJ. NO.	F. A. PROJ. NO.	DE	SCRIPT	10N					
423	29.1.1	BRSTP-1400(6)		P. E	•					
4232	29.2.1	BRSTP-1400(6)	R/W	R/W & UTIL.						
4232	29.3.1	С	ON	ST.						

•		
	Å	
1		

Prepared in the O	
DIVISION OF STRUCTURES MANAG 1000 BIRCH RIE RALEIGH, N.C.	GEMENT UNIT DGE DR.
DARD SPECIFICATIONS	
E: MAY 17, 2016	J. M. BAILEY, P.E. PROJECT ENGINEER
	K.W. ALFORD, P.E. PROJECT DESIGN ENGINEER

+

DRAWN BY :	J.P. ADAMS	DATE : 11/2015
		DATE : 1/2016

+

+

ERIAL					
CSL TESTING	UNCLASSIFIED STRUCTURE EXCAVATION	CLASS A CONCRETE	BRIDGE APPROACH SLABS	REINFORCING STEEL	SPIRAL COLUMN REINFORCING STEEL
EA.	LUMP SUM	CU. YDS.	LUMP SUM	LBS.	LBS.
	LUMP SUM		LUMP SUM		
		22.6		2736	
1		21.5		9512	1377
		22.6		2736	
1	LUMP SUM	66.7	LUMP SUM	14984	1377

OVERTOPPING FLOOD ELEVATION =

398.20 @ STA.13+75.00 -L-

ASSUMED LIVE LOAD = HL-93 OR ALTERNATE THIS BRIDGE HAS BEEN DESIGNED IN ACCOP THE AASHTO LRFD BRIDGE DESIGN SPECIFICATIONS.

THIS BRIDGE IS LOCATED IN SEISMIC ZON FOR OTHER DESIGN DATA AND GENERAL NOT

SHEET SN. FOR SUBMITTAL OF WORKING DRAWINGS. SEE

PROVISIONS.

FOR FALSEWORK AND FORMWORK, SEE SPECIAL FOR CRANE SAFETY, SEE SPECIAL PROVISION

FOR GROUT FOR STRUCTURES, SEE SPECIAL

AT THE CONTRACTOR'S OPTION, AND UPON R THE CAUSEWAY. THE CLASS II RIP RAP USE CAUSEWAY MAY BE PLACED AS RIP RAP SLO PROTECTION OR BANK STABILIZATION. SEE PROVISIONS FOR CONSTRUCTION, MAINTENAM REMOVAL OF TEMPORARY ACCESS AT STATIC 15+12.00 -L-.

INASMUCH AS THE PAINT SYSTEM ON THE E STRUCTURAL STEEL CONTAINS LEAD, THE CON ATTENTION IS DIRECTED TO ARTICLE 107-STANDARD SPECIFICATIONS. ANY COSTS RES FROM COMPLIANCE WITH APPLICABLE STATE REGULATIONS PERTAINING TO HANDLING OF CONTAINING LEAD BASED PAINT SHALL BE IN THE BID PRICE FOR "REMOVAL OF EXIS" STRUCTURE AT STATION 15+12.00 -L-."

THE MATERIAL SHOWN IN THE CROSS-HATCH SHEET S-1 SHALL BE EXCAVATED FOR A DIS FT EACH SIDE OF CENTERLINE ROADWAY AS THE ENGINEER. THIS WORK WILL BE PAID F CONTRACT LUMP SUM PRICE FOR UNCLASSIF EXCAVATION. SEE SECTION 412 OF THE STA SPECIFICATIONS.

THE EXISTING STRUCTURE CONSISTING OF (2 @ 15', 1 @ 40', 1 @ 14', 1 @ 16') OF STEEL WITH A CLEAR ROADWAY WIDTH OF 19.2 FEE A TIMBER DECK WITH ASPHALT WEARING SL TIMBER CAP AND PILES AT THE END BENTS POST AND CONCRETE SILLS AT THE INTERI LOCATED AT THE PROPOSED SITE SHALL BE EXISTING BRIDGE IS PRESENTLY POSTED F SHOULD THE STRUCTURAL INTEGRITY OF THE DETERIORATE DURING CONSTRUCTION OF TH BRIDGE, A LOAD LIMIT MAY BE POSTED AND REDUCED AS FOUND NECESSARY DURING THE PROJECT.FOR REMOVAL OF EXISTING STRUC SPECIAL PROVISION.

THE SUBSTRUCTURE OF THE EXISTING BRID ON THE PLANS IS FROM THE BEST INFORMA AVAILABLE. SINCE THIS INFORMATION IS THE CONVENIENCE OF THE CONTRACTOR, THE SHALL HAVE NO CLAIM WHATSOEVER AGAINS DEPARTMENT OF TRANSPORTATION FOR ANY ADDITIONAL COST INCURRED BASED ON DIF BETWEEN THE EXISTING BRIDGE SUBSTRUCT ON THE PLANS AND THE ACTUAL CONDITION PROJECT SITE.

REMOVAL OF THE EXISTING BRIDGE SHALL IN A MANNER THAT PREVENTS DEBRIS FROM INTO THE WATER. THE CONTRACTOR SHALL S DEMOLITION PLANS FOR REVIEW AND REMOV BRIDGE IN ACCORDANCE WITH ARTICLE 402 STANDARD SPECIFICATIONS.

THE EXISTING CONCRETE SILL SHALL BE RE COMPLETELY.

NOT	ES					
E LOADING. DRDANCE WITH	THIS STRU WITH ``HEC BRIDGES.''				N ACCORDA	ANCE
	ASPHALT W QUANTITY				D IN ROA	YAWC
NE 1. TES, SEE	FOR PILES SECTION 4					
E SPECIAL	PILES AT RESISTANC				OR A FACT	ORED
AL PROVISIONS.	PILES AT RESISTANC				OR A FACT	ORED
DNS.	DRIVE PIL RESISTANC				JIRED DRI	VING
PROVISIONS. REMOVAL OF	DRIVE PIL RESISTANC				UIRED DR	IVING
ED IN THE OPE SPECIAL NCE AND ON	STEEL H-PI H-PILES A PILE POIN SPECIFICA	T END BEN ITS, SEE SE	NT 1 AND	END BENT	2. FOR STI	
EXISTING)NTRACTOR'S -1 OF THE	FOR DRILL PROVISION SPECIFICA	IS AND SE				
SULTING E OR FEDERAL F MATERIALS INCLUDED		RESISTAN DITIONS	CE OF 410	TONS PE	R PIER.CH	
TING HED AREA OF STANCE OF 26	PERMANENT PIERS AT BELOW ELE FROM THE	BENT 1. DO	NOT EX 75.0 WITH	TEND PERM	IANENT CAS	SINGS
S DIRECTED BY FOR AT THE FIED STRUCTURE ANDARD	INSTALL D ELEVATION REQUIRED	I NO HIGH	ER THAN 3			ŧΕ
5 SPANS I-BEAMS ET AND HAVING	THE SCOUR ELEVATION USED TO N THE LIFE	I 373.0.SC MONITOR P	OUR CRIT OSSIBLE	ICAL ELEV	ATIONS A	
URFACE ON S AND TIMBER IOR BENTS AND E REMOVED.THE FOR LOAD LIMIT.	SID INSPE	E ENGINEE CTIONS,F	R WILL D OR SID I	ETERMINE NSPECTION	THE NEED NS, SEE SE(FOR
HE BRIDGE HE PROPOSED ID MAY BE E LIFE OF THE CTURE, SEE	CSL TUBES REQUIRED DETERMINE TESTING,S SPECIFICA	FOR DRIL	LED PIERS	5. THE ENG TESTING	INEER WIL .FOR CSL	
GE INDICATED	DO NOT US AT BENT 1		CONSTRU	CTION FOF	R DRILLED	PIERS
SHOWN FOR CONTRACTOR ST THE	FOR ASBES AND RENOV					
DELAYS OR FFERENCES TURE SHOWN NS AT THE	AT THE CO BENT AND PLACE OF SHALL COO	NTRACTOR BENT CAP THE CAST- RDINATE	'S OPTION S MAY BE ·IN-PLACE WITH THE	N, PRESTES SUBSTITU CAPS. TH RESIDENT	SED CONCR JTED IN T E CONTRAC ENGINEER	RETE END HE CTOR
BE PERFORMED M FALLING SUBMIT VE THE 2-2 OF THE	RECEIVE R STRUCTURE ADDITIONA ADDITIONA	S MANAGE AL MATERI	MENT UNI ALS NEEDI	T. THE RE ED WILL E	DESIGN AN BE AT NO	ID ANY
EMOVED	ĺ	PROJE	CT NO.	<u> </u>	8-5171	
			RANV			UNTY
		STATI	ON: <u>1</u>	5+12.	00 -1	
	1	SHEET 2 C)F 2			
		DEPA			OLINA NSPORTA	TION
AND SEA	NO NA	G	ENER	AL DF	RAWIN	IG
SEA 294 TP: STY W.					R 1400	
DocuSigned by:					EK BET SR 1403	
F245838930BF40E 3/22/201		NO. BY:	REVIS	SIONS	DATE:	SHEET NO. S-2
DOCUMENT NOT FINAL UNLE SIGNATURES C	SS ALL	1	to 0	3 4		TOTAL SHEETS 18

		LOAD AN	U RES	2721	ANCE	- FAU	, IUR	RAI	TNG						RES	IKES	SED							
										STRE	NGIH	I LIN	III S	AIE				SE	RVICE		LIMI	I SIA	ΙĿ	
										MOMENT					SHEAR						MOMENT			
LEVEL		VEHICLE	WEIGHT (W) (TONS)	CONTROLLING LOAD RATING	MINIMUM RATING FACTORS (RF)	TONS = W X RF	LIVELOAD FACTORS	DISTRIBUTION FACTORS (DF)	RATING FACTOR	SPAN	GIRDER LOCATION	DISTANCE FROM LEFT END OF SPAN (f†)	DISTRIBUTION FACTORS (DF)	RATING FACTOR	SPAN	GIRDER LOCATION	DISTANCE FROM LEFT END OF SPAN (f†)	LIVELOAD FACTORS	DISTRIBUTION FACTORS (DF)	RATING FACTOR	SPAN	GIRDER LOCATION	DISTANCE FROM LEFT END OF SPAN (f†)	COMMENT NUMBER
		HL-93(Inv)	NZA	1	1.06		1.75	0.248	1.14	70′	EL	34.423	0.655	1.06	70'	EL	6.885	0.80	0.248	1.11	70′	EL	34.423	
DESIGN		HL-93(0pr)	N/A		1.374		1.35	0.248	1.48	70′	EL	34.423	0.655	1.37	70′	EL	6.885	N/A						
LOAD RATING		HS-20(Inv)	36.000	2	1.32	47 . 508	1.75	0.248	1.48	70′	EL	34.423	0.655	1.32	70′	EL	6.885	0.80	0.248	1.44	70′	EL	34.423	
		HS-20(0pr)	36.000		1.711	61.585	1.35	0.248	1.91	70′	EL	34.423	0.655	1.71	70′	EL	6.885	N/A						
		SNSH	13.500		3.204	43 . 258	1.4	0.248	4.12	70′	EL	34.423	0.655	3.9	70′	EL	6.885	0.80	0.248	3.20	70′	EL	34.423	
		SNGARBS2	20.000		2.403	48.063	1.4	0.248	3.09	70′	EL	34.423	0.655	2.78	70′	EL	6.885	0.80	0.248	2.40	70′	EL	34.423	
		SNAGRIS2	22.000		2.282	50 . 21	1.4	0.248	2.94	70′	EL	34.423	0.655	2.58	70′	EL	6.885	0.80	0.248	2.28	70′	EL	34.423	
		SNCOTTS3	27.250		1.595	43.463	1.4	0.248	2.05	70′	EL	34.423	0.655	1.95	70′	EL	6.885	0.80	0.248	1.59	70′	EL	34.423	
	S	SNAGGRS4	34.925		1.339	46.755	1.4	0.248	1.72	70′	EL	34.423	0.655	1.62	70′	EL	6.885	0.80	0.248	1.34	70′	EL	34.423	
		SNS5A	35.550		1.309	46.526	1.4	0.248	1.68	70′	EL	34.423	0.655	1.65	70′	EL	6.885	0.80	0.248	1.31	70′	EL	34.423	
		SNS6A	39.950		1.203	48.069	1.4	0.248	1.55	70′	EL	34.423	0.655	1.5	70′	EL	6.885	0.80	0.248	1.20	70′	EL	34.423	
LEGAL		SNS7B	42.000		1.146	48.129	1.4	0.248	1.47	70′	EL	34.423	0.655	1.48	70′	EL	6.885	0.80	0.248	1.15	70′	EL	34.423	
LOAD RATING		TNAGRIT3	33.000		1.468	48.444	1.4	0.248	1.89	70′	EL	34.423	0.655	1.79	70′	EL	6.885	0.80	0.248	1.47	70′	EL	34.423	
NATINO		TNT4A	33.075		1.475	48.79	1.4	0.248	1.9	70′	EL	34.423	0.655	1.74	70′	EL	6.885	0.80	0.248	1.48	70'	EL	34.423	
	ST	ΤΝΤ6Α	41.600		1.208	50 . 272	1.4	0.248	1.55	70′	EL	34.423	0.655	1.58	70′	EL	6.885	0.80	0.248	1.21	70'	EL	34.423	
		TNT7A	42.000		1.216	51.061	1.4	0.248	1.56	70'	EL	34.423	0.655	1.55	70'	EL	6.885	0.80	0.248	1.22	70'	EL	34.423	
		TNT7B	42.000		1.261	52 . 955	1.4	0.248	1.62	70'	EL	34.423	0.655	1.44	70'	EL	6.885	0.80	0.248	1.26	70'	EL	34.423	
		TNAGRIT4	43.000		1.197	51.476	1.4	0.248	1.54	70′	EL	34.423	0.655	1.4	70'	EL	6.885	0.80	0.248	1.20	70'	EL	34.423	
		TNAGT5A	45.000		1.128	50.745	1.4	0.248	1.45	70'	EL	34.423	0.655	1.39	70′	EL	6.885	0.80	0.248	1.13	70'	EL	34.423	
		TNAGT5B	45.000	3	1.113	50 . 088	1.4	0.248	1.43	70'	EL	34.423	0.655	1.33	70′	EL	6.885	0.80	0.248	1.11	70'	EL	34.423	

 $\begin{pmatrix} 1 \\ 2 \end{pmatrix}$ $\langle 3 \rangle$

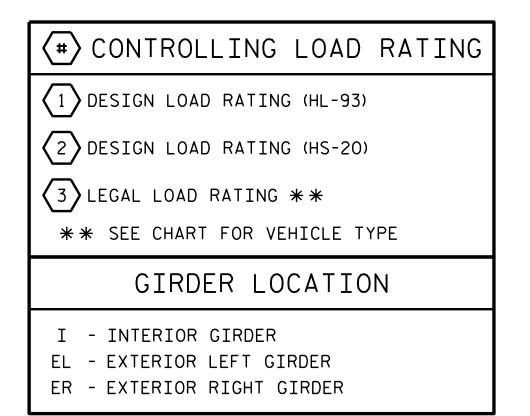
LRFR SUMMARY

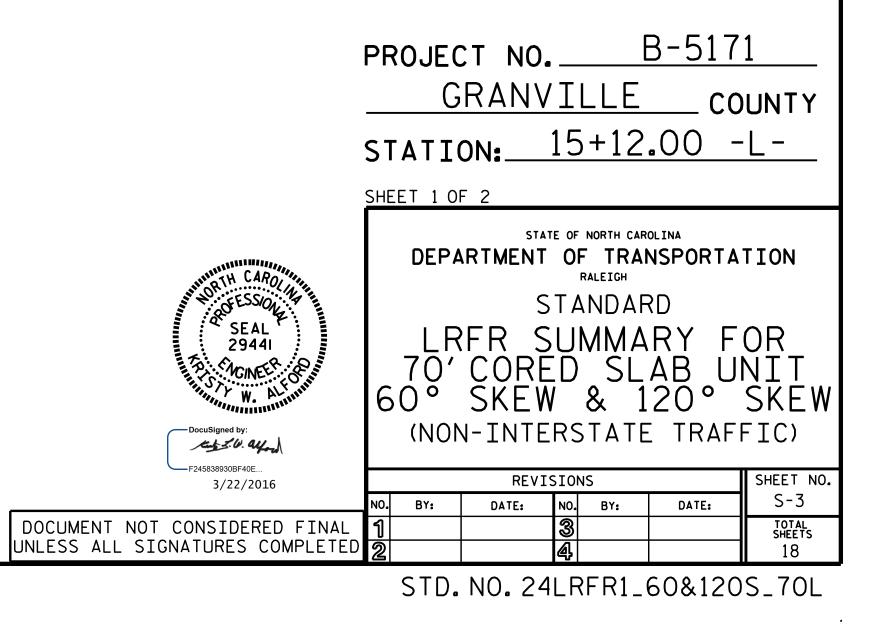
FOR SPAN A

ASSEMBLED BY : CHECKED BY :	A. SORSENGINH JP ADAMS	DATE : DATE :	2/2015 11/2015
DRAWN BY : CVC CHECKED BY : DNS	6∕10 6∕10		

+

+


22-MAR-2016 08:08 R:\Structures\Plans\Superstructure\B5171_SD_LRFR.dgn jpadams


LOAD FACTORS:

DESIGN	LIMIT STATE	γ_{DC}	γ_{DW}
LOAD RATING	STRENGTH I	1.25	1.50
FACTORS	SERVICE III	1.00	1.00

NOTES:

MINIMUM RATING FACTORS ARE BASED ON THE STRENGTH I AND SERVICE III LIMIT STATES. ALLOWABLE STRESSES FOR SERVICE III LIMIT STATE ARE AS REQUIRED FOR DESIGN.

				STSI	ANCE	<u>-</u> FA(CTOR	RAT	ING	(LRF	D) SI	UMMA	RY F	ORF	PRES	TRES	SSED	CON	CRETI	E GI	RDEF	RS		
										STRE	ENGTH	I LIN	AIT ST	ΓΑΤΕ				SE	RVICE	III	LIMI	r sta	TE	
										MOMENT					SHEAR						MOMENT			
LEVEL		VEHICLE	WEIGHT (W) (TONS)	CONTROLLING LOAD RATING	MINIMUM RATING FACTORS (RF)	TONS = W X RF	LIVELOAD FACTORS	DISTRIBUTION FACTORS (DF)	RATING FACTOR	SPAN	GIRDER LOCATION	DISTANCE FROM LEFT END OF SPAN (f†)	DISTRIBUTION FACTORS (DF)	RATING FACTOR	SPAN	GIRDER LOCATION	DISTANCE FROM LEFT END OF SPAN (f†)	LIVELOAD FACTORS	DISTRIBUTION FACTORS (DF)	RATING FACTOR	SPAN	GIRDER LOCATION	DISTANCE FROM LEFT END OF SPAN (f†)	COMMENT NUMBER
		HL-93(Inv)	N⁄A	1	1.013		1.75	0.248	1.16	65′	EL	31.923	0.652	1.01	65′	EL	6.385	0.80	0.248	1.12	65′	EL	31.923	
DESIGN		HL-93(0pr)	N⁄A		1.313		1.35	0.248	1.5	65′	EL	31.923	0.652	1.31	65′	EL	6.385	N/A						
LOAD RATING		HS-20(Inv)	36.000	2	1.246	44.865	1.75	0.248	1.48	65′	EL	31.923	0.652	1.25	65′	EL	6.385	0.80	0.248	1.44	65′	EL	31.923	
		HS-20(0pr)	36.000		1.616	58.159	1.35	0.248	1.92	65′	EL	31.923	0.652	1.62	65′	EL	6.385	N/A						
		SNSH	13.500		3.163	42.696	1.4	0.248	4.07	65′	EL	31.923	0.652	3.64	65′	EL	6.385	0.80	0.248	3.16	65′	EL	31.923	
		SNGARBS2	20.000		2.395	47.893	1.4	0.248	3.08	65′	EL	31.923	0.652	2.61	65′	EL	6.385	0.80	0.248	2.39	65′	EL	31.923	
		SNAGRIS2	22.000		2.284	50 . 247	1.4	0.248	2.94	65′	EL	31.923	0.652	2.43	65′	EL	6.385	0.80	0.248	2.28	65′	EL	31.923	
	> -	SNCOTTS3	27.250		1.575	42.917	1.4	0.248	2.03	65′	EL	31.923	0.652	1.82	65′	EL	6.385	0.80	0.248	1.57	65′	EL	31.923	
	Ś	SNAGGRS4	34.925		1.331	46.469	1.4	0.248	1.71	65′	EL	31.923	0.652	1.53	65′	EL	6.385	0.80	0.248	1.33	65′	EL	31.923	
		SNS5A	35.550		1.3	46.22	1.4	0.248	1.67	65′	EL	31.923	0.652	1.55	65′	EL	6.385	0.80	0.248	1.30	65′	EL	31.923	
		SNS6A	39.950		1.199	47.899	1.4	0.248	1.54	65′	EL	31.923	0 . 652	1.42	65′	EL	6.385	0.80	0.248	1.20	65′	EL	31.923	
LEGAL		SNS7B	42.000		1.142	47.965	1.4	0.248	1.47	65′	EL	31.923	0.652	1.4	65′	EL	6.385	0.80	0.248	1.14	65′	EL	31.923	
LOAD RATING	Ļ	TNAGRIT3	33.000		1.464	48.309	1.4	0.248	1.89	65′	EL	31.923	0.652	1.69	65′	EL	6.385	0.80	0.248	1.46	65′	EL	31.923	
		TNT4A	33.075		1.472	48.688	1.4	0.248	1.9	65′	EL	31.923	0.652	1.64	65′	EL	6.385	0.80	0.248	1.47	65′	EL	31.923	
	TST	TNT6A	41.600		1.209	50 . 315	1.4	0.248	1.56	65′	EL	31.923	0.652	1.51	65′	EL	6.385	0.80	0.248	1.21	65′	EL	31.923	
		TNT7A	42.000		1.219	51.186	1.4	0.248	1.57	65′	EL	31.923	0.652	1.46	65′	EL	6.385	0.80	0.248	1.22	65′	EL	31.923	
	- -	TNT7B	42.000		1.269	53.286	1.4	0.248	1.63	65′	EL	31.923	0.652	1.37	65′	EL	6.385	0.80	0.248	1.27	65′	EL	31.923	
	F	TNAGRIT4	43.000		1.201	51.645	1.4	0.248	1.55	65′	EL	31.923	0.652	1.32	65′	EL	6.385	0.80	0.248	1.20	65′	EL	31.923	
	┝	TNAGT5A TNAGT5B	45 . 000		1.13 1.114	50 . 836 50 . 113	1.4	0.248 0.248	1.45 1.43	65′ 65′	EL EL	31 . 923 31 . 923	0.652 0.652	1.32 1.25	65′ 65′	EL EL	6.385 6.385	0.80 0.80	0.248 0.248	1.13 1.11	65' 65'	EL EL	31.923 31.923	

 $\langle 1 \rangle$ $\langle 2 \rangle$ $\langle 3 \rangle$

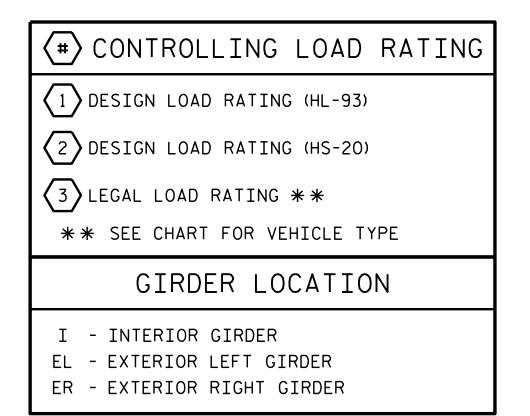
LRFR SUMMARY

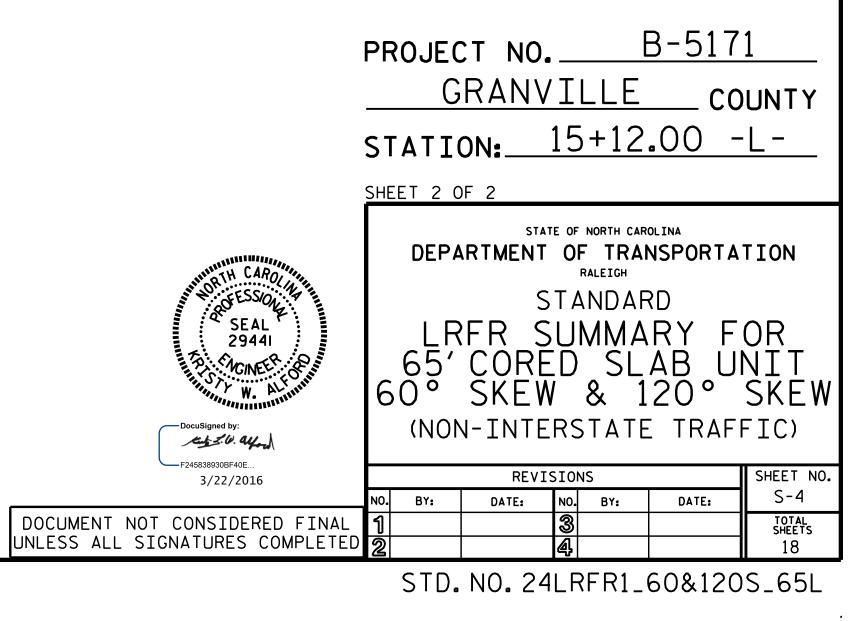
FOR SPAN B

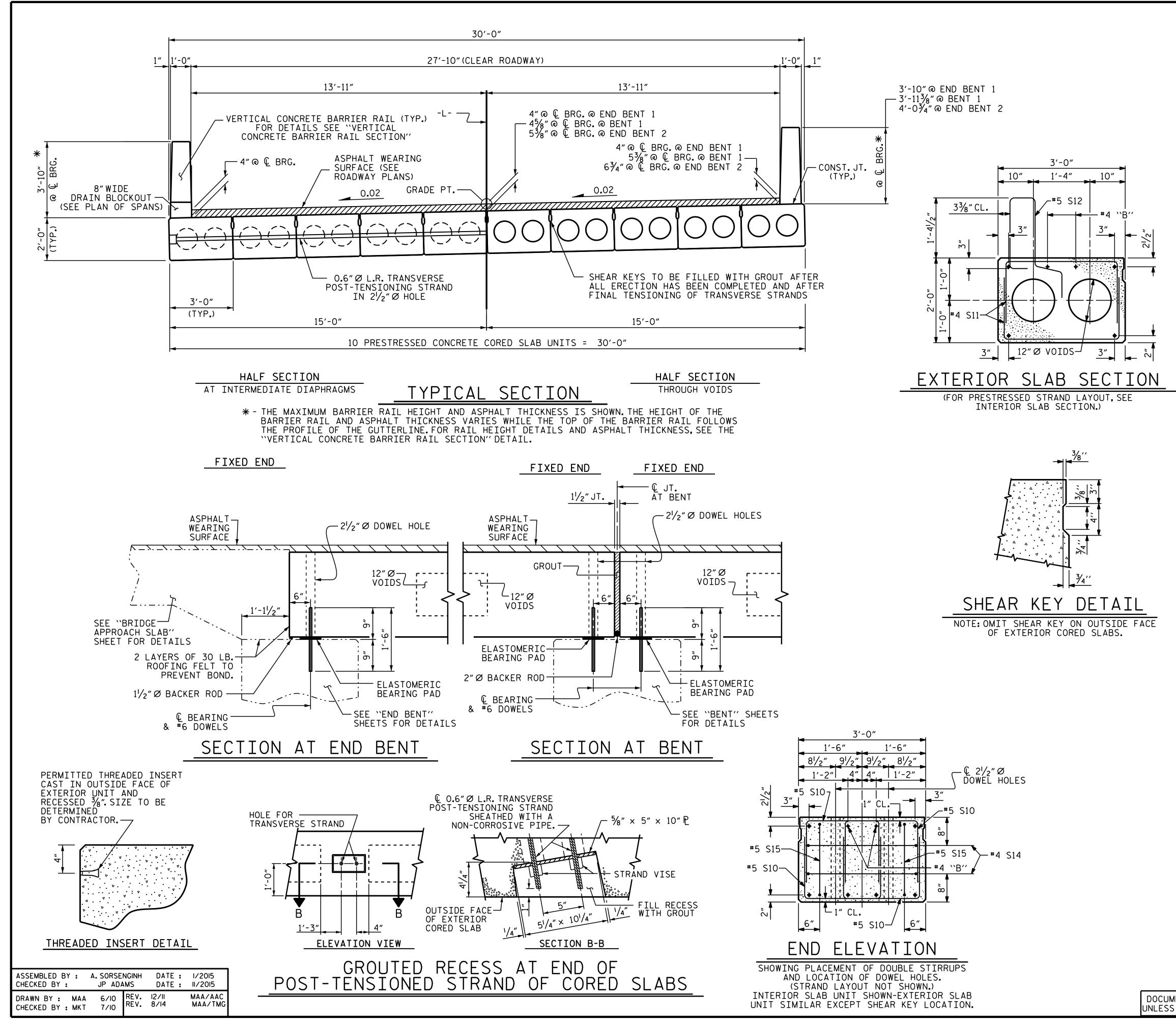
ASSEMBLED BY : CHECKED BY :	A. SORSENGINH JP ADAMS	H DATE : DATE :	2/2015 11/2015
DRAWN BY : CVC CHECKED BY : DNS	6/10 6/10		

+

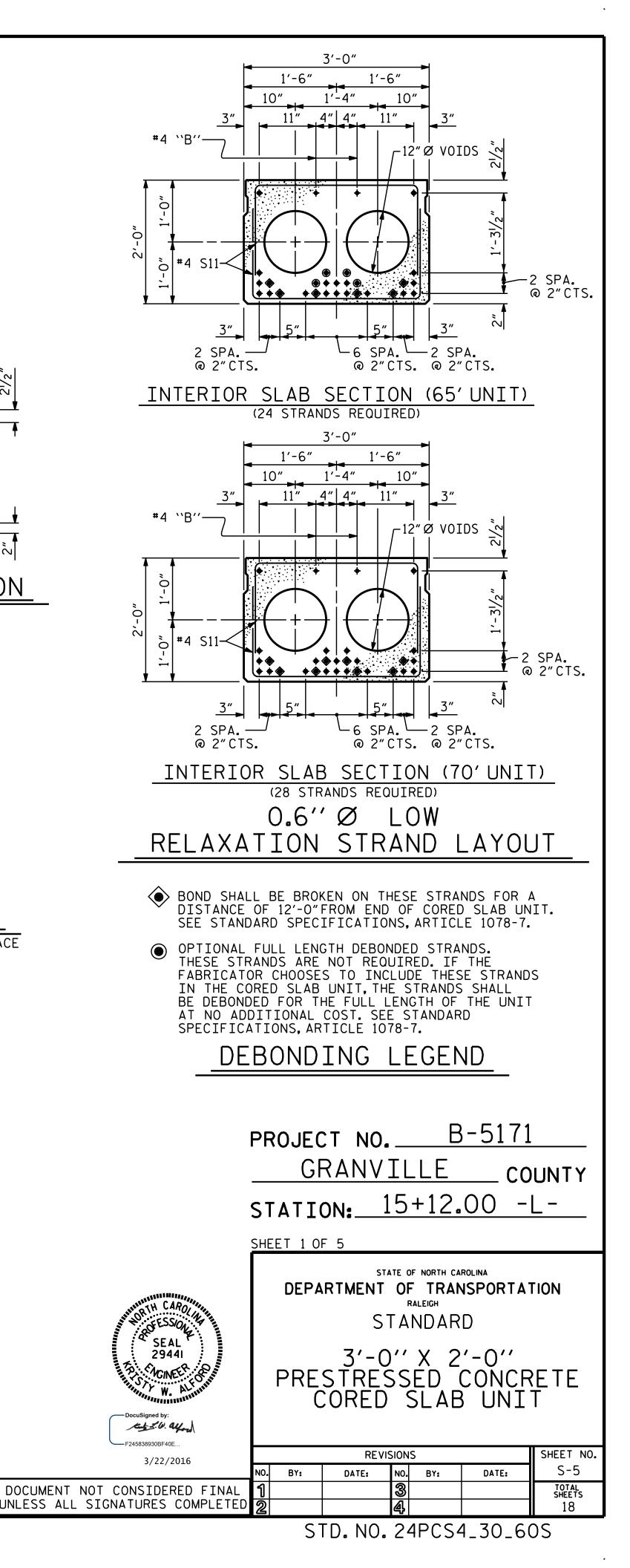
+

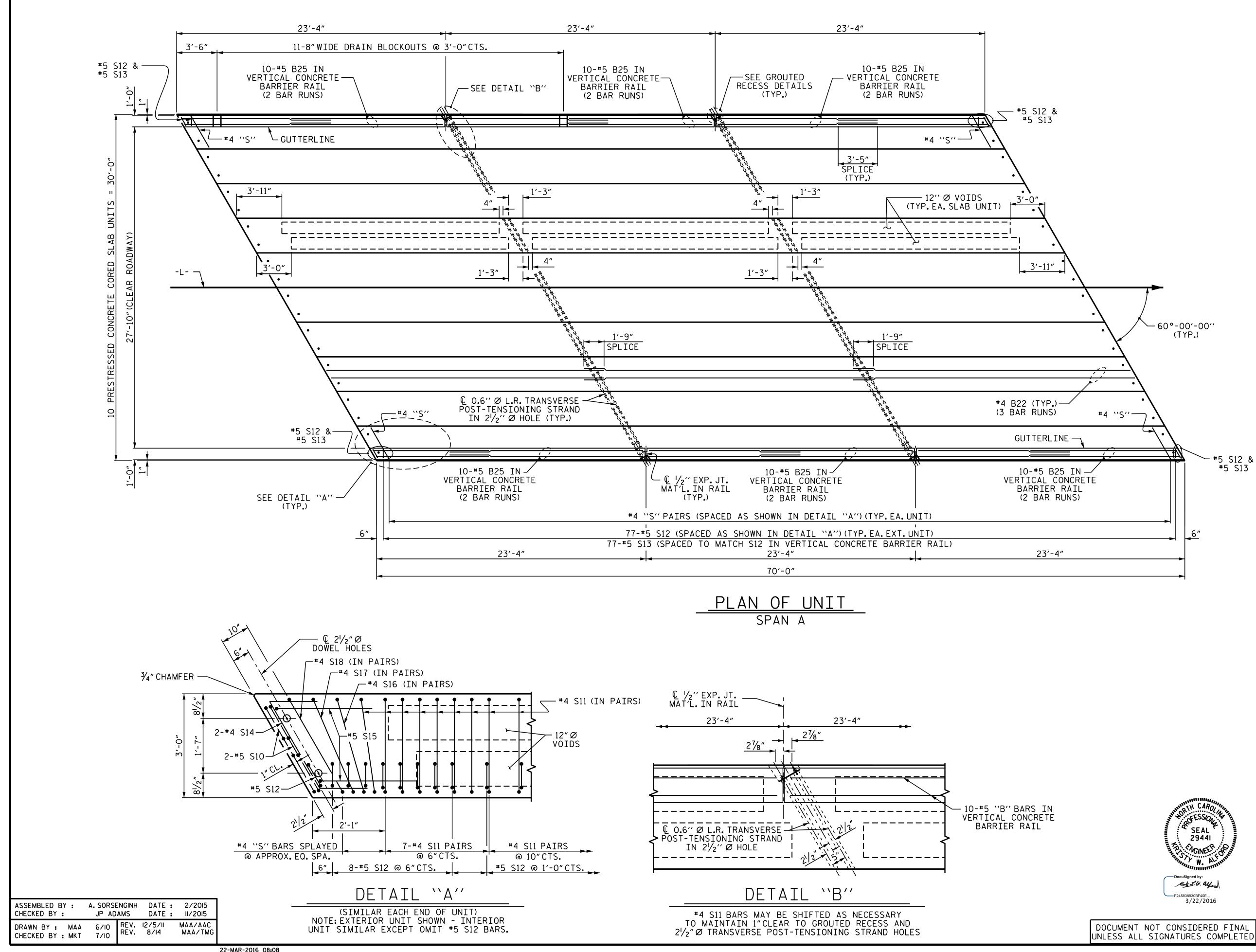

22-MAR-2016 08:08 R:\Structures\Plans\Superstructure\B5171_SD_LRFR.dgn jpadams


LOAD FACTORS:

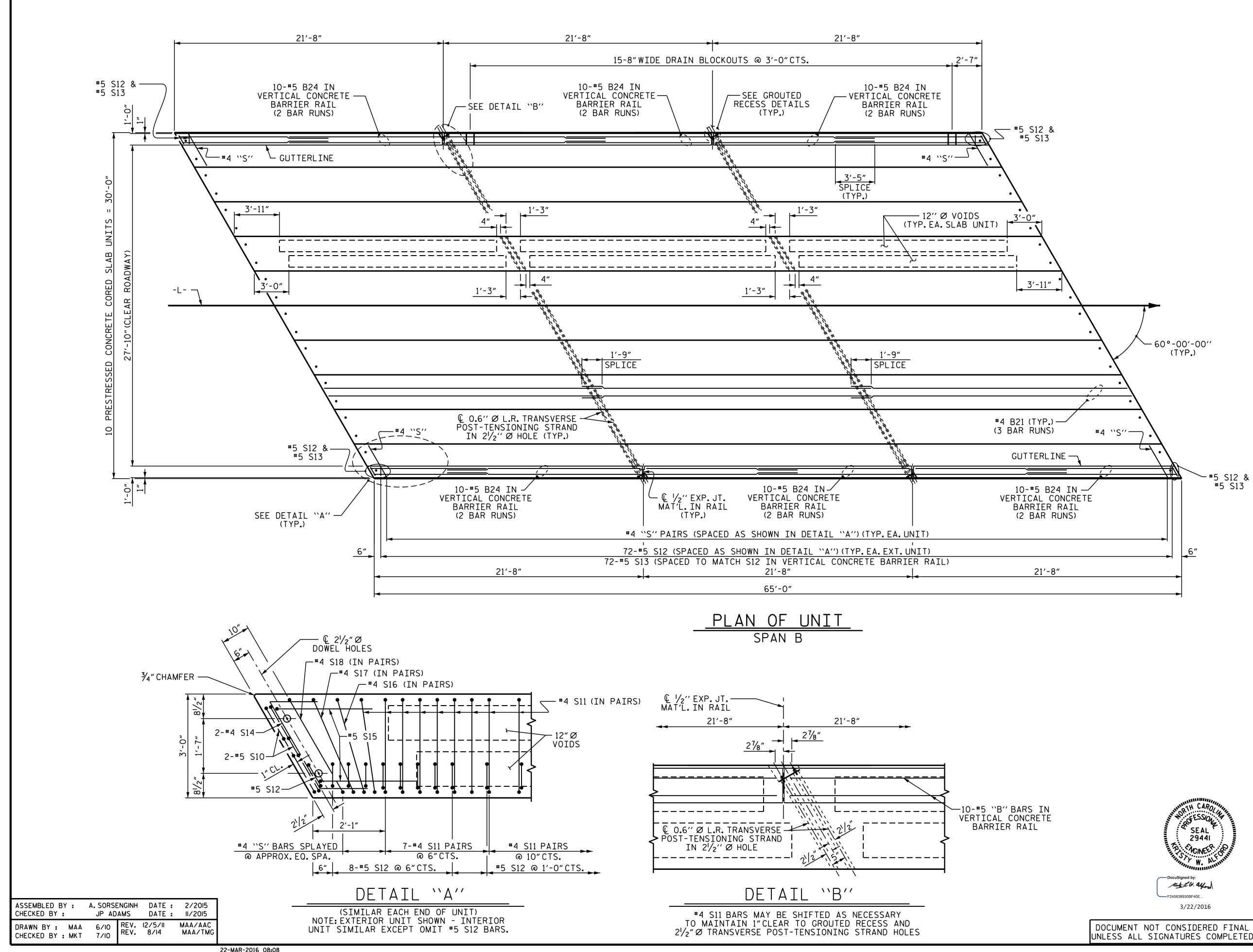

DESIGN	LIMIT STATE	γ_{DC}	$\gamma_{\rm DW}$
LOAD RATING	STRENGTH I	1.25	1.50
FACTORS	SERVICE III	1.00	1.00

NOTES:


MINIMUM RATING FACTORS ARE BASED ON THE STRENGTH I AND SERVICE III LIMIT STATES. ALLOWABLE STRESSES FOR SERVICE III LIMIT STATE ARE AS REQUIRED FOR DESIGN.



22-MAR-2016 08:08 R:\Structures\Plans\Superstructure\B5171_SD_CS.dgn ipadams

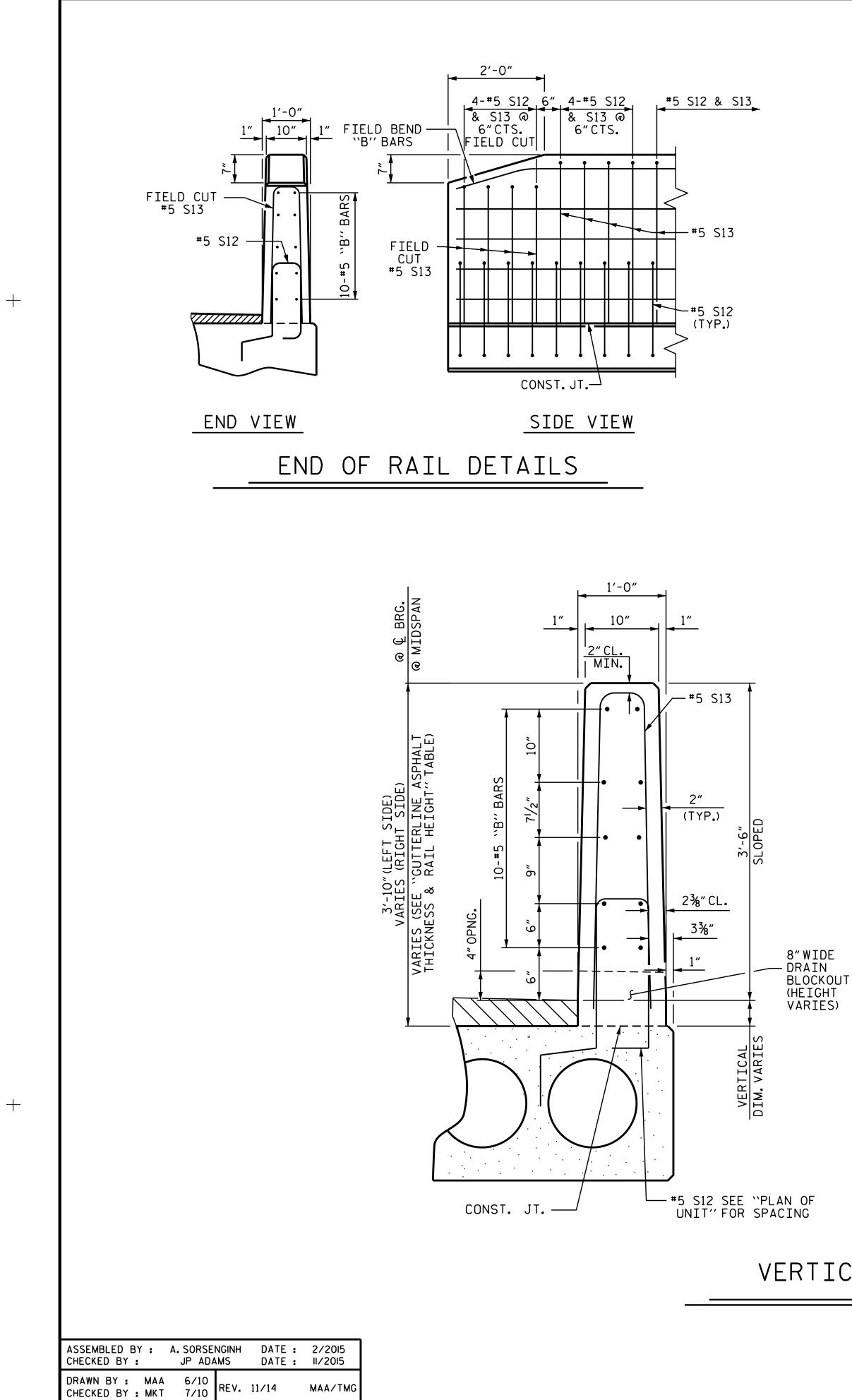

22-MAR-2016 08:08 R:\Structures\Plans\Superstructure\B5171_SD_CS.dgn jpadams

+

+

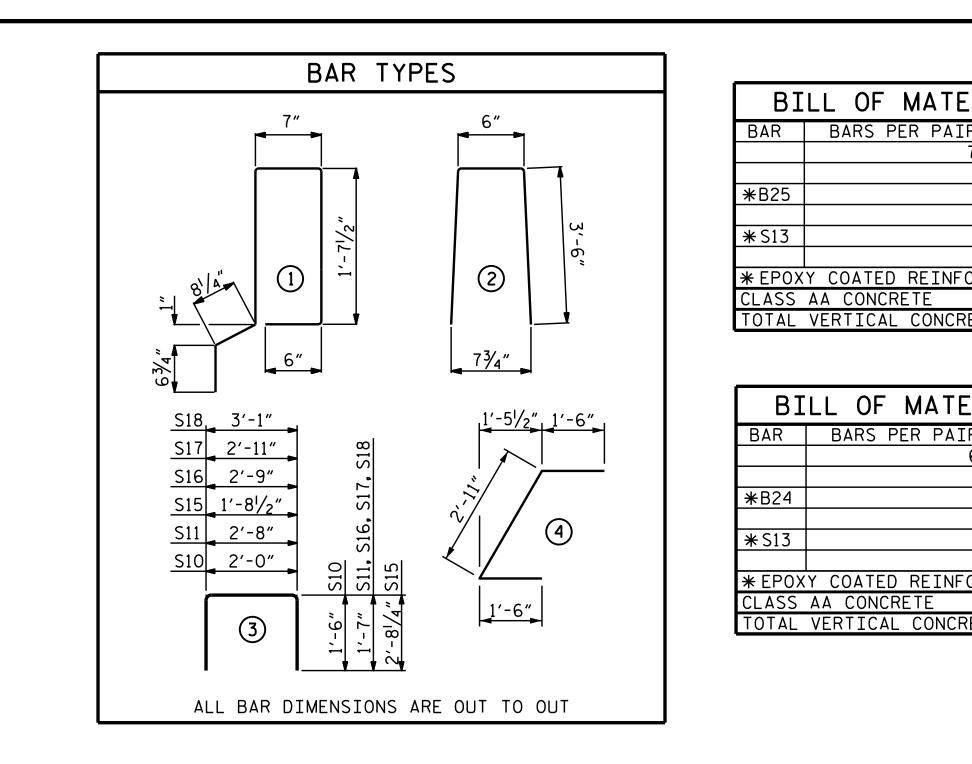
		RANV on:1			UNTY
DocuSigned by: F245838930BF40E	Р	LAN 10″ C 60	OF TRAI RALEIGH	NSPORTA D'UNI ROAD EW	Τ WAY
3/22/2016			SIONS		SHEET NO. S-6
NOT CONSIDERED FINAL SIGNATURES COMPLETED	NO. BY: 1 2	DATE:	NO. ВҮ: З 4	DATE:	TOTAL SHEETS 18

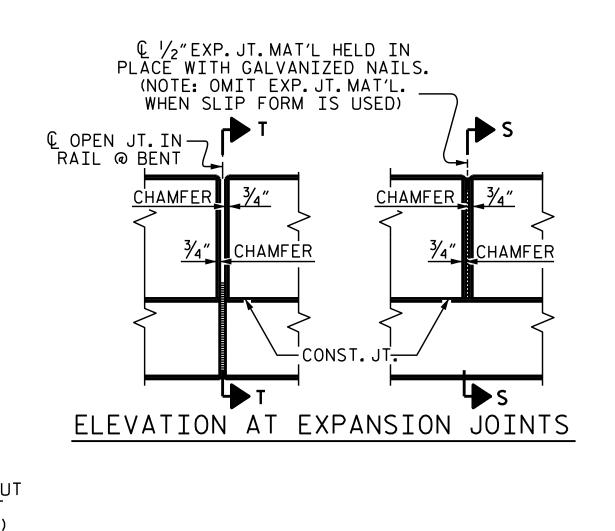
STD. NO. 24PCS_30_60S_70L

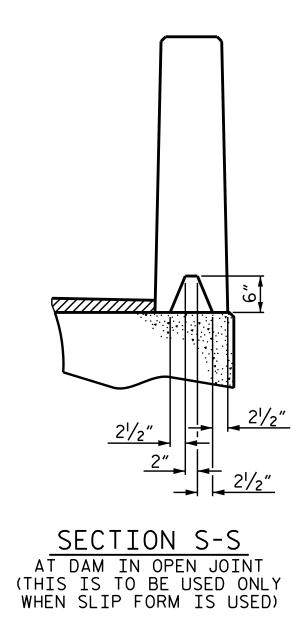

22-MAR-2016 08:08 R:\Structures\Plans\Superstructure\B5171_SD_CS.dgn jpadams

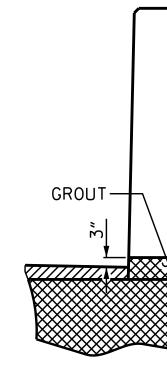
+

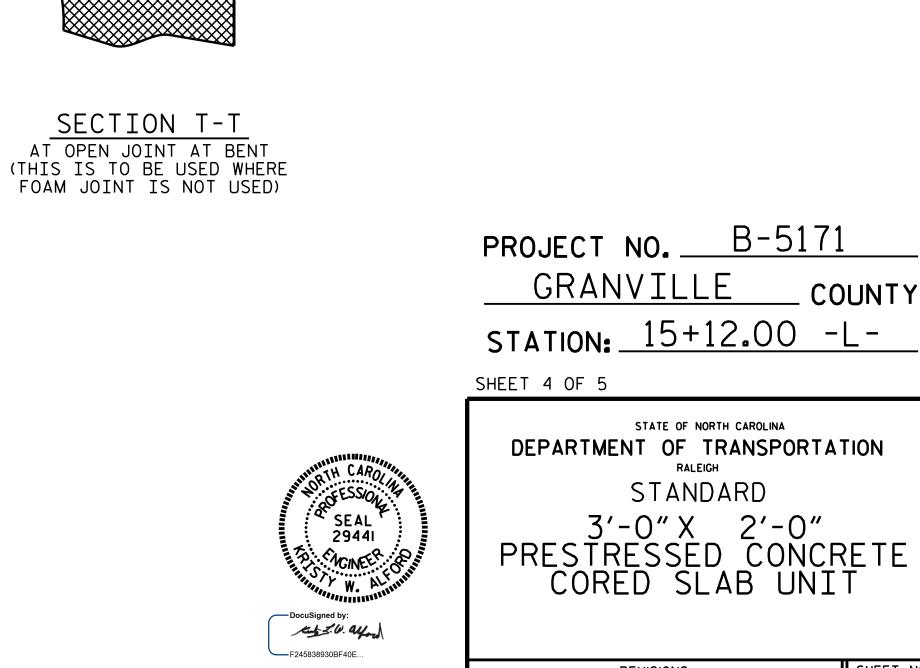
+

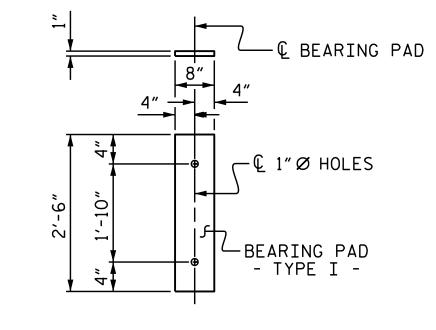

	PROJECT NO. <u>B-5171</u> <u>GRANVILLE</u> COUNTY STATION: <u>15+12.00</u> -L- SHEET 3 OF 5						
DocuSigned by: F245838930BF40E	STATE OF NORTH CAROLINA DEPARTMENT OF TRANSPORTATION RALEIGH PLAN OF 65' UNIT 27'-10" CLEAR ROADWAY 60° SKEW SPAN B					T	
3/22/2016			SION			SHEET NO. S-7	
NOT CONSIDERED FINAL	NO. BY:	DATE:	_NO. 3	BY:	DATE:	TOTAL	
L SIGNATURES COMPLETED	2		4			sheets 18	


STD. NO. 24PCS_30_60S_65L




22-MAR-2016 08:08 R:\Structures\Plans\Superstructure\B5171_SD_CS.dgn jpadams


MAA/TMG


VERTICAL CONCRETE BARRIER RAIL DETAILS

ERIAL FOR VERTICAL CONCRETE BARRIER RAI	-
R OF EXTERIOR UNITS TOTAL NO STZE TYPE LENCTH WE	
IN OF EXTENSION UNITS TOTAL NO. SIZE THE LENGTH WE	IGHT
70' UNIT	
120 120 * 5 STR 13'-8"	1711
158 158 * 5 2 7'-6"	1236
ORCING STEEL LBS.	2947
CU.YDS.	18.2
RETE BARRIER RAIL LN.FT. 14	0.29

ERIAL FOR VERTI	CAL CONC	RETE	BARR	IER R	AIL
IR OF EXTERIOR UNITS	TOTAL NO.	SIZE	TYPE	LENGTH	WEIGHT
65' UNIT					
120	120	# 5	STR	12'-10"	1606
148	148	# 5	2	7′-6″	1158
ORCING STEEL			LBS.		2764
			CU.YDS.		17.2
RETE BARRIER RAIL			LN.FT.		130.29

F245838930BF40E 3/22/2016			REVI	SION	S		SHEET NO.
	N0.	BY:	DATE:	N0.	BY:	DATE:	S-8
NT NOT CONSIDERED FINAL	1			3			TOTAL SHEETS
ALL SIGNATURES COMPLETED	2			4			18
		STD	.NO.24	4P	CS3_	30_60&	120S

_ COUNTY

ELASTOMERIC BEARING DETAILS

ELASTOMER IN ALL BEARINGS SHALL BE 60 DUROMETER HARDNESS.

PSI

4800

5500

BILL OF MATERIAL FOR ONE								
70' CORED SLAB UNIT								
EXTERIOR UNIT INTERIOR UNIT								
BAR	NUMBER	SIZE	TYPE	LENGTH	WEIGHT	LENGTH	WEIGHT	
B22	6	#4	STR	24'-6"	98	24'-6"	98	
S10	8	# 5	3	5′-0″	42	5′-0″	42	
S11	170	#4	3	5'-10"	662	5′-10″	662	
* S12	79	# 5	1	5′-7″	460			
S14	4	#4	4	5'-11″	16	5'-11″	16	
S15	4	# 5	3	7'-1"	30	7'-1"	30	
S16	4	#4	3	5'-11″	16	5'-11″	16	
S17	4	#4	3	6'-1″	16	6'-1"	16	
S18	4	#4	3	6′-3″	17	6′-3″	17	
REINFO	DRCING S	STEEL	LBS	5.	897		897	
	Y COATE							
	IFORCINC		LBS		460			
7000 F	P.S.I.CO	NCRETE	CU. YDS		12.0		12.0	
0.6″Ø	L.R. STR	ANDS	Nc).	28		28	

DEAD LOAD DEFLECTION AN	ND CAMBER
	3'-0" × 2'-0"
65' CORED SLAB UNIT	0.6″ØL.R. STRAND
CAMBER (SLAB ALONE IN PLACE)	1 7∕8″ ∳
DEFLECTION DUE TO SUPERIMPOSED DEAD LOAD	¾″ ♦
FINAL CAMBER	1 ¹ ∕8″ ♦

CONCRETE RELEASE STRENGTH

UNIT

65' UNITS

70' UNITS

****** INCLUDES FUTURE WEARING SURFACE

DEAD LOAD DEFLECTION A	ND CAMBER
	3'-0" × 2'-0"
70' CORED SLAB UNIT	0.6″ØL.R. STRAND
CAMBER (SLAB ALONE IN PLACE)	2 ¹ /4″ 🕴
DEFLECTION DUE TO SUPERIMPOSED DEAD LOAD	¹⁵ ∕16″ ↓
FINAL CAMBER	15∕i6″ ∔

****** INCLUDES FUTURE WEARING SURFACE

ASSEMBLED BY :	A. SORSENGINE	DATE :	2/2015
CHECKED BY :	JP ADAMS	DATE :	11/2015
DRAWN BY : MAA CHECKED BY : MKT	6/10 7/10 REV	. 11/14	MAA/TMG

BILL OF MATERIAL FOR ONE 65' CORED SLAB UNIT								
EXTERIOR UNIT INTERIOR UNIT								
BAR	NUMBER	SIZE	TYPE	LENGTH	WEIGHT	LENGTH	WEIGHT	
B21	6	#4	STR	22'-10"	92	22'-10"	92	
S10	8	# 5	3	5'-0″	42	5′-0″	42	
S11	158	#4	3	5′-10″	616	5'-10"	616	
* S12	74	# 5	1	5′-7″	431			
S14	4	#4	4	5'-11″	16	5'-11″	16	
S15	4	# 5	3	7'-1"	30	7'-1"	30	
S16	4	#4	3	5′-11″	16	5'-11″	16	
S17	4	#4	3	6'-1"	16	6'-1"	16	
S18	4	#4	3	6′-3″	17	6′-3″	17	
REINFC	DRCING S	STEEL	LBS	5.	845		845	
* EPOXY COATED REINFORCING STEEL LBS. 431								
6000 F	P.S.I.CO	NCRETE	CU. YDS		11.2		11.2	
0.6″Ø	L.R. STR	ANDS	Nc).	24		24	
					_	1		

22-MAR-2016 08:08 R:\Structures\Plans\Superstructure\B5171_SD_CS.dgn ipadams

GRADE 270 STRANDS					
	0.6″ØL.R.				
AREA (SQUARE INCHES)	0.217				
ULTIMATE STRENGTH (LBS.PER STRAND)	58,600				
APPLIED PRESTRESS (LBS.PER STRAND)	43,950				

GUTTERLINE	ASPHALT	THICKNESS	& RAIL HE]	GHT
		LAY THICKNESS)-SPAN	RAIL H @ MID	HEIGHT SPAN
	LEFT SIDE	RIGHT SIDE	LEFT SIDE	RIGHT SIDE
SPAN A	1 ¹⁵ ⁄16″	25⁄8″	3'-7 ¹⁵ / ₁₆ "	3′-85⁄8″
SPAN B	2 ³ ⁄16″	4 ¹ /4″	3′-8 <u>¾</u> 6″	3'-10 /4"

CORED	SLABS	S REQ	UIRED
	NUMBER	LENGTH	TOTAL LENGTH
70' UNIT			
EXTERIOR C.S.	2	70'-0″	140'-0"
INTERIOR C.S.	8	70'-0″	560'-0"
TOTAL	10		700'-0"

CORED	SLABS	S REQ	UIRED
	NUMBER	LENGTH	TOTAL LENGTH
65' UNIT			
EXTERIOR C.S.	2	65′-0″	130'-0"
INTERIOR C.S.	8	65′-0″	520'-0"
TOTAL	10		650′-0″

ALL	PRES
AND	SHA
SHAL	L B

ALL REINFORCING STEEL CAST WITH THE CORED SLAB SECTIONS SHALL BE GRADE 60 AND SHALL BE INCLUDED IN THE UNIT PRICE BID FOR PRESTRESSED CONCRETE CORED SLABS.

RECESSES FOR TRANSVERSE STRANDS SHALL BE GROUTED AFTER THE TENSIONING OF THE STRANDS.

THE 21/2" Ø DOWEL HOLES AT FIXED ENDS OF SLAB SECTIONS SHALL BE FILLED WITH NON-SHRINK GROUT.

THE BACKER RODS SHALL CONFORM TO THE REQUIREMENTS OF TYPE M BOND BREAKER. SEE SECTION 1028 OF THE STANDARD SPECIFICATIONS.

WHEN CORED SLABS ARE CAST, AN INTERNAL HOLD-DOWN SYSTEM SHALL BE EMPLOYED TO PREVENT VOIDS FROM RISING OR MOVING SIDEWAYS. AT LEAST SIX WEEKS PRIOR TO CASTING CORED SLABS, THE CONTRACTOR SHALL SUBMIT TO THE ENGINEER FOR REVIEW AND COMMENT, DETAILED DRAWINGS OF THE PROPOSED HOLD-DOWN SYSTEM. IN ADDITION TO STRUCTURAL DETAILS, LOCATION AND SPACING OF THE HOLD-DOWNS SHALL BE INDICATED.

THE TRANSFER OF LOAD FROM THE ANCHORAGES TO THE CORED SLAB UNIT SHALL BE DONE WHEN THE CONCRETE HAS REACHED A COMPRESSIVE STRENGTH OF NOT LESS THAN THE REQUIRED STRENGTH SHOWN IN THE ``CONCRETE RELEASE STRENGTH' TABLE.

COATED.

PRESTRESSING STRANDS SHALL BE CUT FLUSH WITH THE CORED SLAB UNIT ENDS.

GROOVED CONTRACTION JOINTS, $\frac{1}{2}$ " IN DEPTH, SHALL BE TOOLED IN ALL EXPOSED FACES OF THE BARRIER RAIL AND IN ACCORDANCE WITH ARTICLE 825-10(B) OF THE STANDARD SPECIFICATIONS. A CONTRACTION JOINT SHALL BE LOCATED AT EACH THIRD POINT BETWEEN BARRIER RAIL EXPANSION JOINTS. ONLY ONE CONTRACTION JOINT IS REQUIRED AT MIDPOINT OF BARRIER RAIL SEGMENTS LESS THAN 20 FEET IN LENGTH AND NO CONTRACTION JOINTS ARE REQUIRED FOR THOSE SEGMENTS LESS THAN 10 FEET IN LENGTH.

FLAME CUTTING OF THE TRANSVERSE POST-TENSIONING STRAND IS NOT ALLOWED.

MAINTAIN A SYMMETRIC TENSION FORCE BETWEEN EACH PAIR OF TRANSVERSE POST TENSIONING STRANDS IN THE DIAPHRAGM.

THE #4 S11 STIRRUPS MAY BE SHIFTED AS NECESSARY TO MAINTAIN 1"CLEAR TO THE GROUTED RECESS.

THE PERMITTED THREADED INSERTS IN THE EXTERIOR UNITS SHALL BE SIZED BY THE CONTRACTOR, SPACED AT 4'-O"CENTERS AND GALVANIZED IN ACCORDANCE WITH SECTION 1076 OF THE STANDARD SPECIFICATIONS. STAINLESS STEEL THREADED INSERTS MAY BE USED AS AN ALTERNATE.

THE PERMITTED THREADED INSERTS SHALL BE GROUTED BY THE CONTRACTOR IMMEDIATELY FOLLOWING REMOVAL OF THE FALSEWORK.

THE COST OF THE PERMITTED THREADED INSERTS SHALL BE INCLUDED IN THE PRICE BID FOR THE PRECAST UNITS.

THE DRAIN OPENING AT THE GUTTERLINE SHALL BE 4" × 8". THE HEIGHT OF THE BLOCKOUT IN THE VERTICAL CONCRETE BARRIER RAIL SHALL EXTEND FROM THE TOP OF THE CORED SLAB UNIT TO THE TOP OF THE DRAIN OPENING.

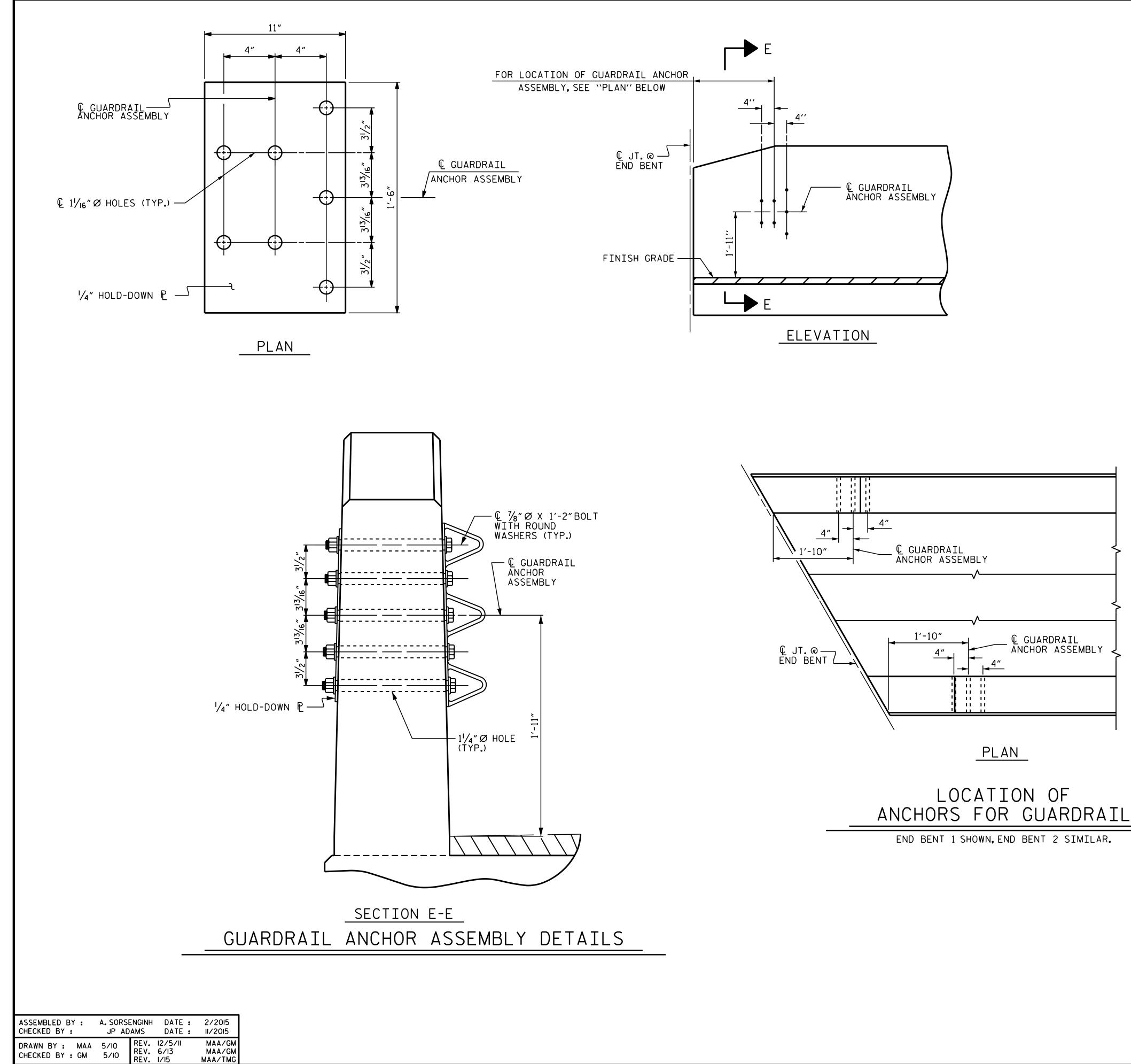
APPLY EPOXY PROTECTIVE COATING TO THE EXTERIOR FACE OF THE EXTERIOR CORED SLAB UNITS THAT REQUIRE DRAINS IN THE BARRIER RAIL.

NOTES

STRESSING STRANDS SHALL BE 7-WIRE LOW RELAXATION GRADE 270 STRANDS ALL CONFORM TO AASHTO M203 EXCEPT FOR SAMPLING REQUIREMENTS WHICH E IN ACCORDANCE WITH THE STANDARD SPECIFICATIONS.

-

ALL REINFORCING STEEL IN VERTICAL CONCRETE BARRIER RAILS SHALL BE EPOXY


APPLY EPOXY PROTECTIVE COATING TO CORED SLAB UNIT ENDS.

FOR GROUT FOR STRUCTURES, SEE SPECIAL PROVISIONS.

THE PERMITTED THREADED INSERTS ARE DETAILED AS AN OPTION FOR THE CONTRACTOR TO ATTACH FALSEWORK AND FORMWORK DURING CONSTRUCTION.

	GF	CT NO. RANVIL ION: 15	LE		UNTY L –	
DocuSigned by: F245838930BF40E	STATE OF NORTH CAROLINA DEPARTMENT OF TRANSPORTATION RALEIGH 3'-0"X 2'-0" PRESTRESSED CONCRETE CORED SLAB UNIT					
3/22/2016		REVISION	S		SHEET NO.	
· ·	NO. BY:	DATE: NO.	BY:	DATE:	S-9	
NT NOT CONSIDERED FINAL ALL SIGNATURES COMPLETED	1	<u></u>			total sheets 18	
	STD	.NO.24P	CS3_3	30_60&	120S	

B-5171

22-MAR-2016 08:08 R:\Structures\Plans\Superstructure\B5171_SD_GR.dgn jpadams

+

+

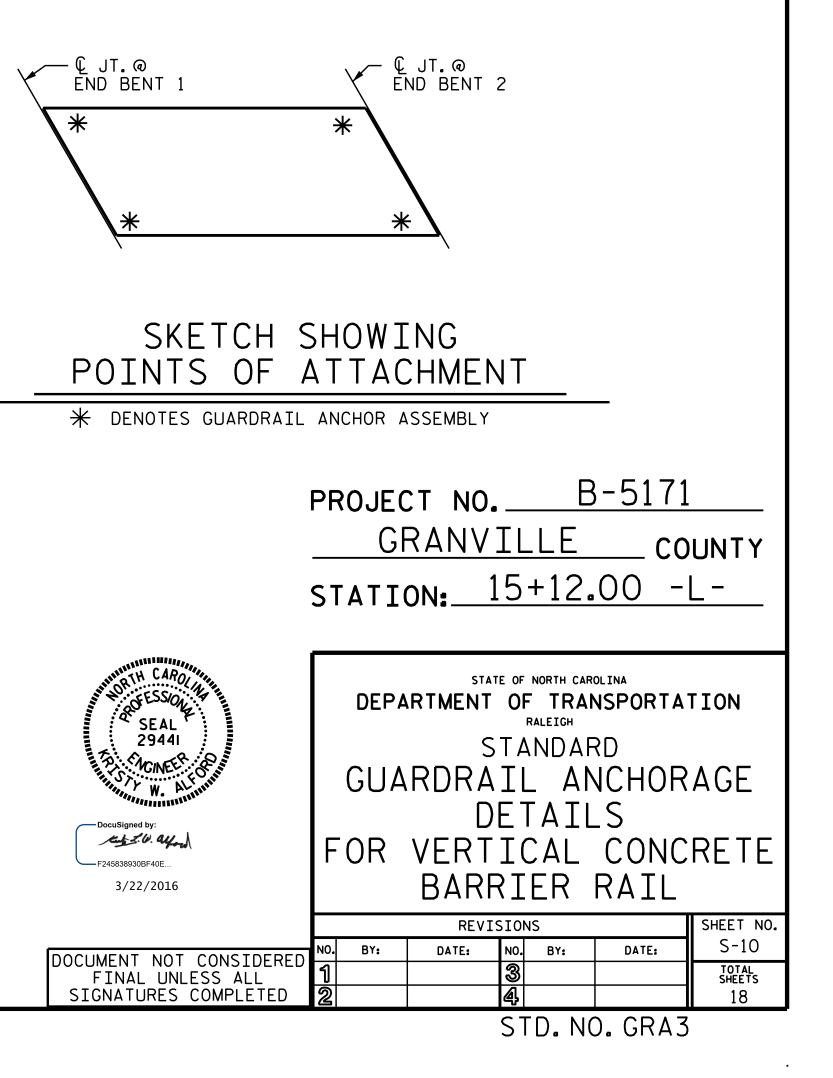
WITH AASHTO M111. THE ENGINEER.) ATTACHMENT, SEE SKETCH.

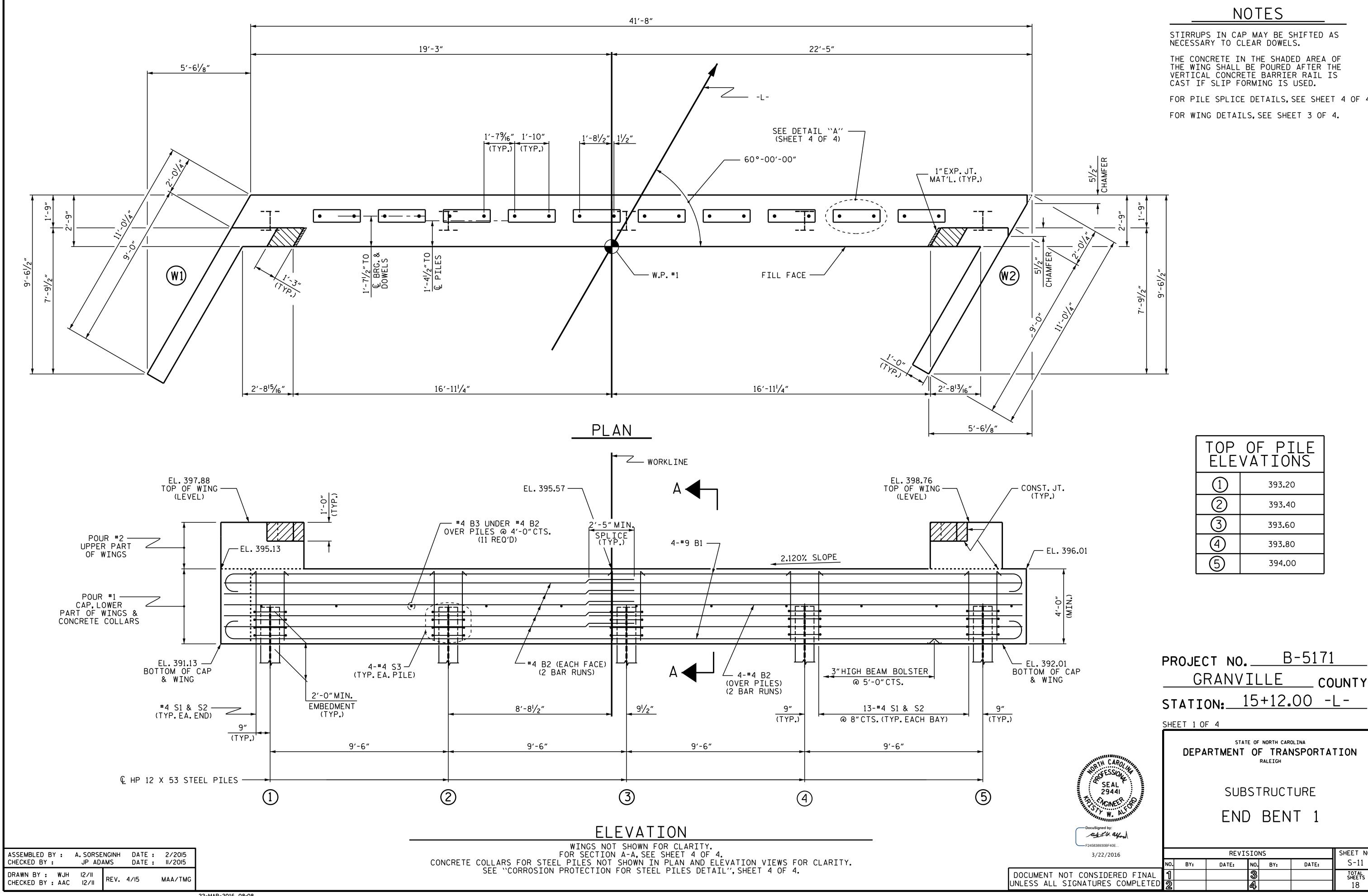
AFTER INSTALLATION, THE EXPOSED THREAD OF THE BOLT SHALL BE BURRED WITH A SHARP POINTED TOOL.

THE COST OF THE GUARDRAIL ANCHOR ASSEMBLY SHALL BE INCLUDED IN THE UNIT CONTRACT PRICE BID FOR VERTICAL CONCRETE BARRIER RAIL.

THE VERTICAL REINFORCING BARS MAY BE SHIFTED SLIGHTLY IN THE VERTICAL CONCRETE BARRIER RAIL TO CLEAR ASSEMBLY BOLTS.

THE 1 1/4" Ø HOLES SHALL BE FORMED OR DRILLED WITH A CORE BIT. IMPACT TOOLS WILL NOT BE PERMITTED. ANY CONCRETE DAMAGED BY THIS WORK SHALL BE REPAIRED TO THE SATISFACTION OF THE ENGINEER.


NOTES


THE GUARDRAIL ANCHOR ASSEMBLY SHALL CONSIST OF A 1/4'' HOLD DOWN PLATE AND 7 - 1/8'' Ø BOLTS WITH NUTS AND WASHERS.

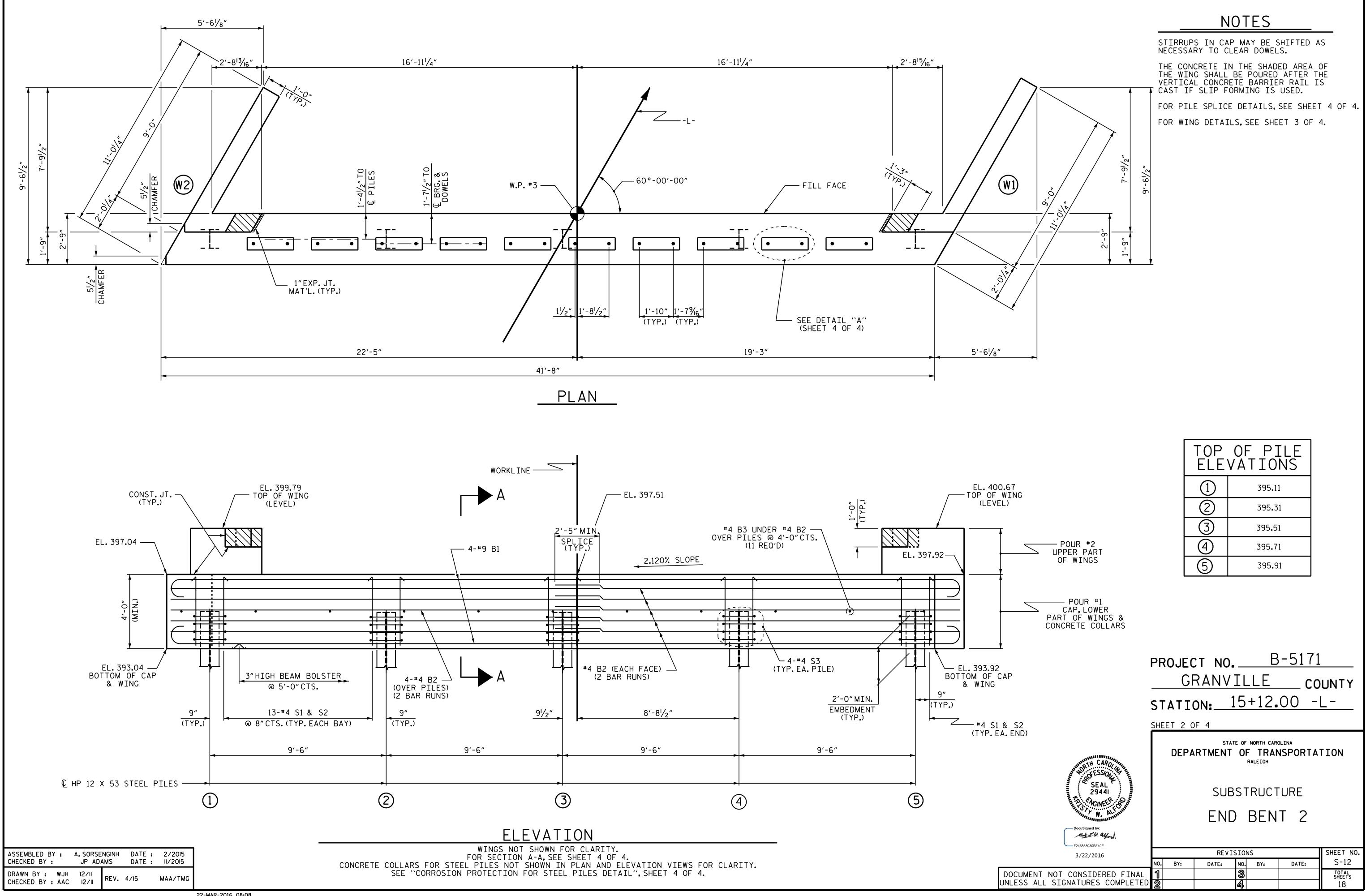
THE HOLD-DOWN PLATE SHALL CONFORM TO AASHTO M270 GRADE 36.AFTER FABRICATION, THE HOLD-DOWN PLATE SHALL BE HOT-DIP GALVANIZED IN ACCORDANCE

BOLTS SHALL CONFORM TO THE REQUIREMENTS OF ASTM A307 AND NUTS SHALL CONFORM TO THE REQUIREMENTS OF AASHTO M291. BOLTS, NUTS AND WASHERS SHALL BE GALVANIZED. (AT THE CONTRACTOR'S OPTION, STAINLESS STEEL BOLTS, NUTS AND WASHERS MAY BE USED AS AN ALTERNATE FOR THE $\frac{7}{8}$ " Ø GALVANIZED BOLTS, NUTS AND WASHERS. THEY SHALL CONFORM TO OR EXCEED THE MECHANICAL REQUIREMENTS OF ASTM A307. THE USE OF THIS ALTERNATE SHALL BE APPROVED BY

THE GUARDRAIL ANCHOR ASSEMBLY IS REQUIRED AT ALL POINTS WHERE APPROACH GUARDRAIL IS TO BE ATTACHED TO THE END OF BARRIER RAIL.FOR POINTS OF

22-MAR-2016 08:08 R:\Structures\Plans\Substructure\B5171_SD_E*.dgn jpadams

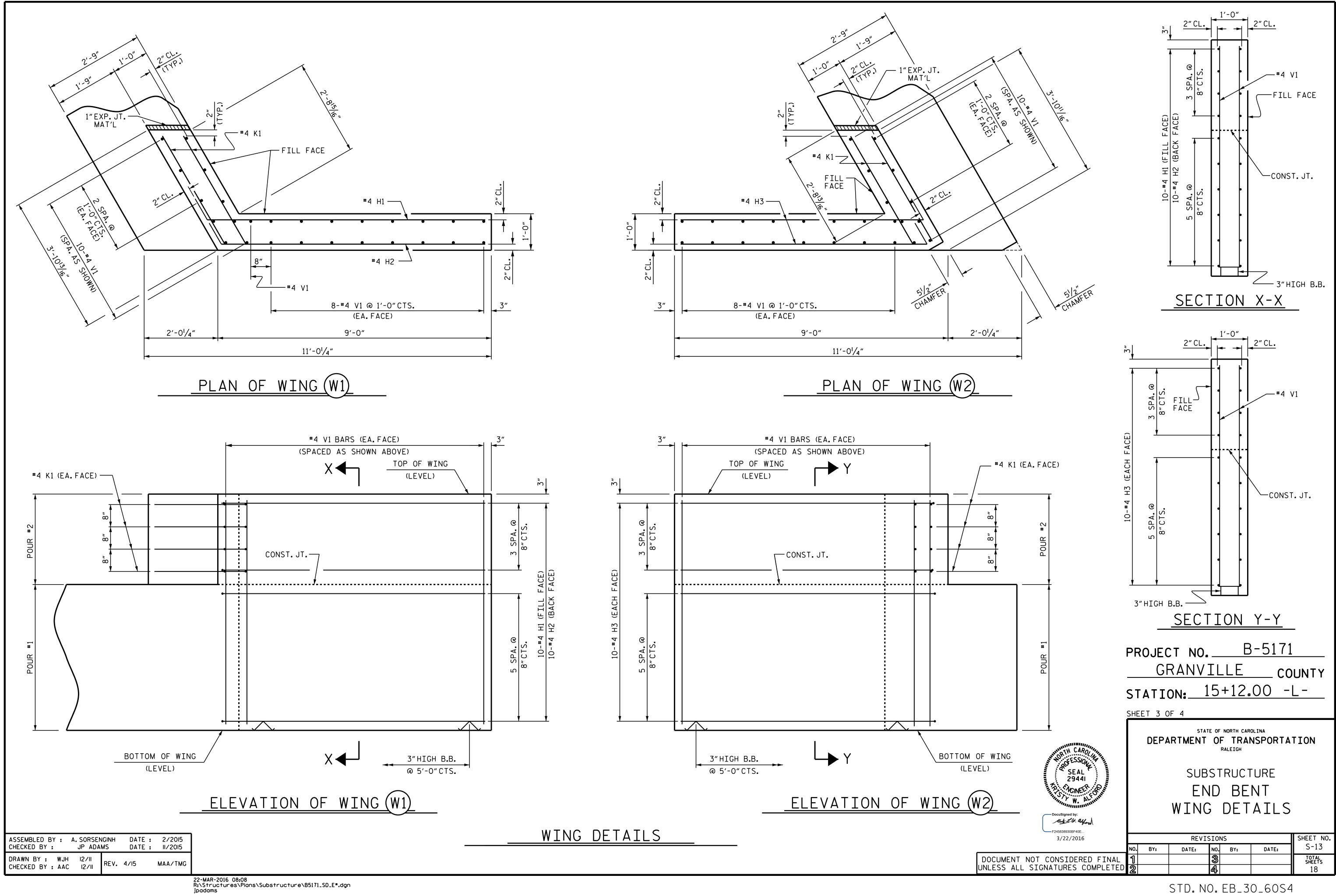
+

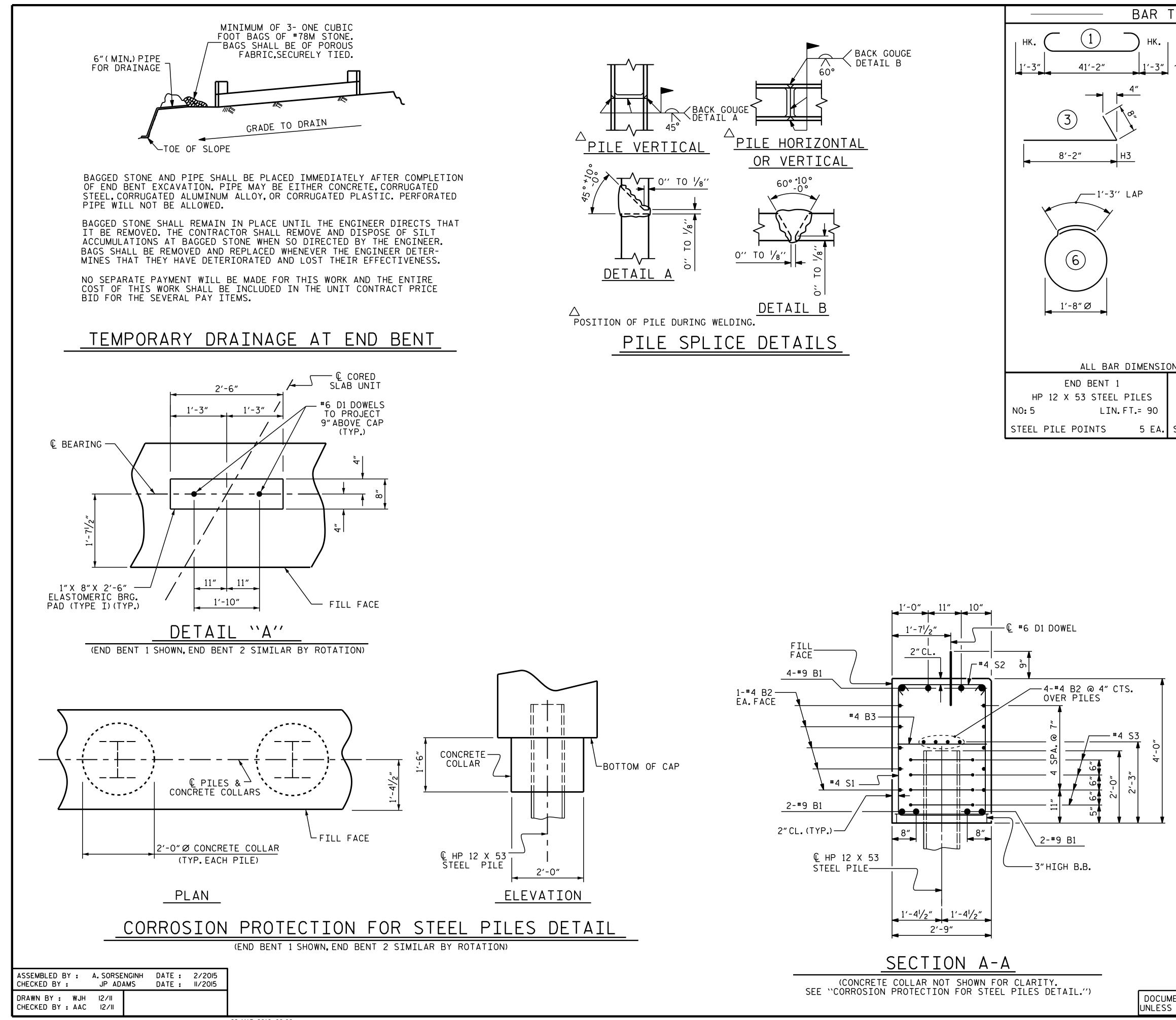

+

FOR PILE SPLICE DETAILS, SEE SHEET 4 OF 4.

ST. FYP,	JT.	

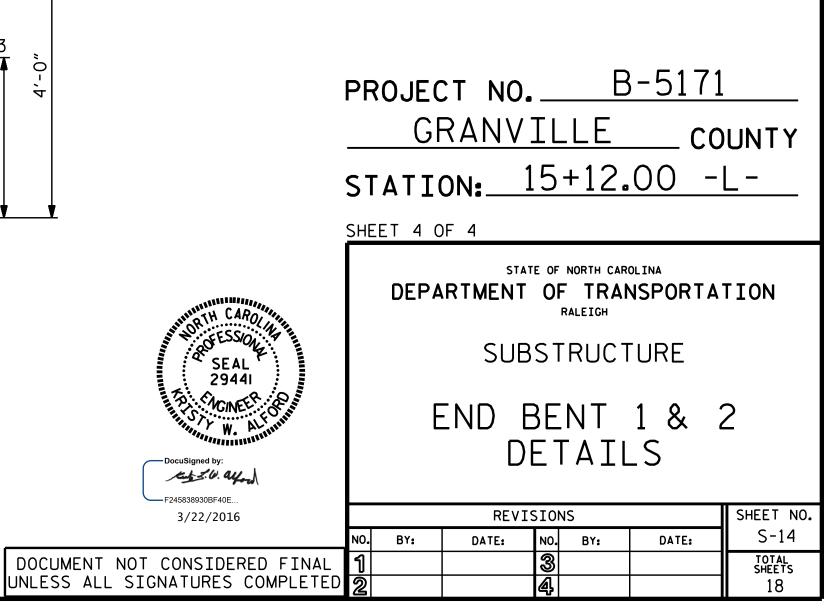
F245838930BF40E							
3/22/2016		REVISIONS			SHEET NO.		
	NO.	BY:	DATE:	N0.	BY:	DATE:	S-11
ENT NOT CONSIDERED FINAL	1			3			TOTAL SHEETS
ALL SIGNATURES COMPLETED	2			4			18

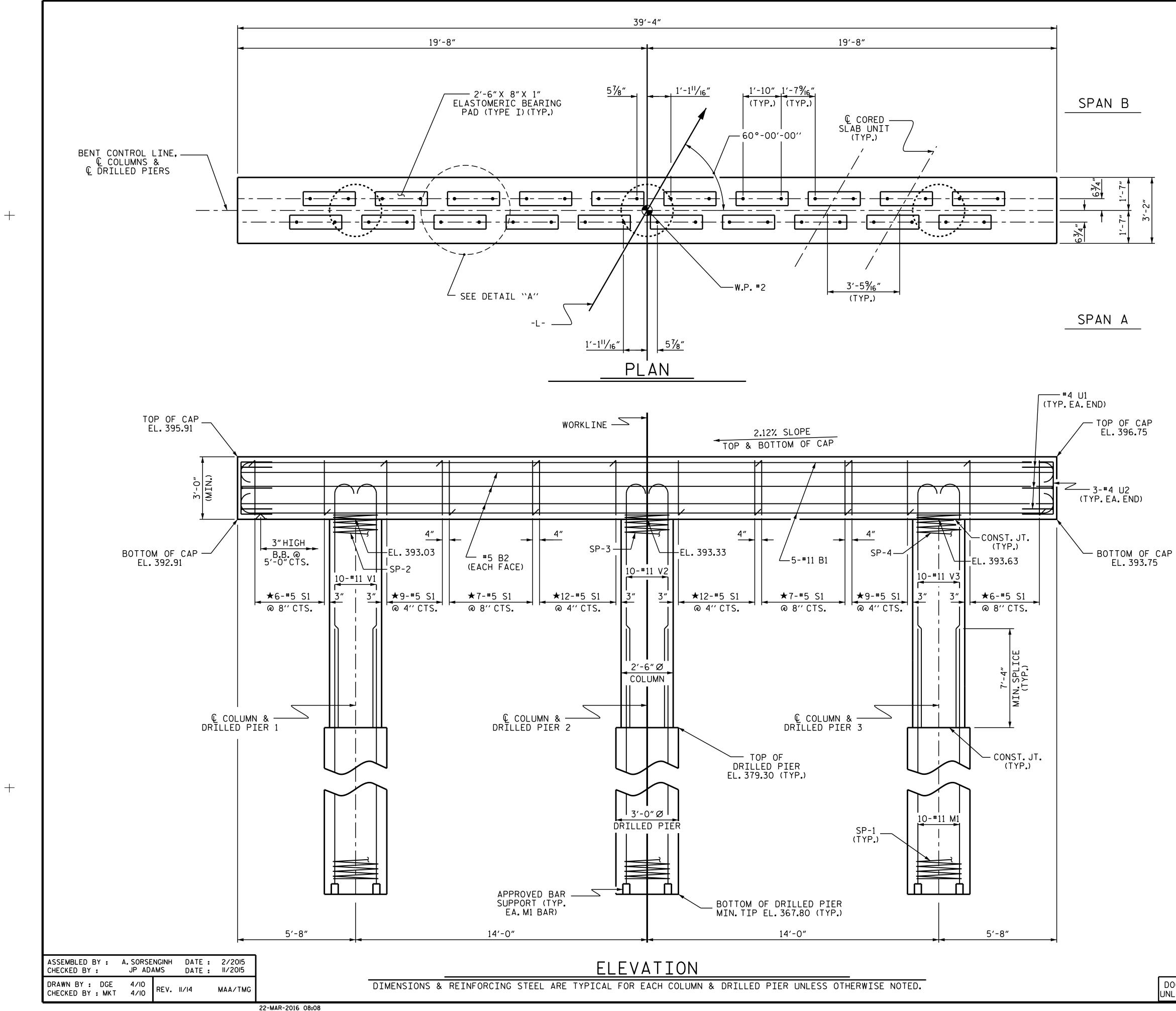

STD. NO. EB_30_60S4


22-MAR-2016 08:08 R:\Structures\Plans\Substructure\B5171_SD_E*.dgn jpadams

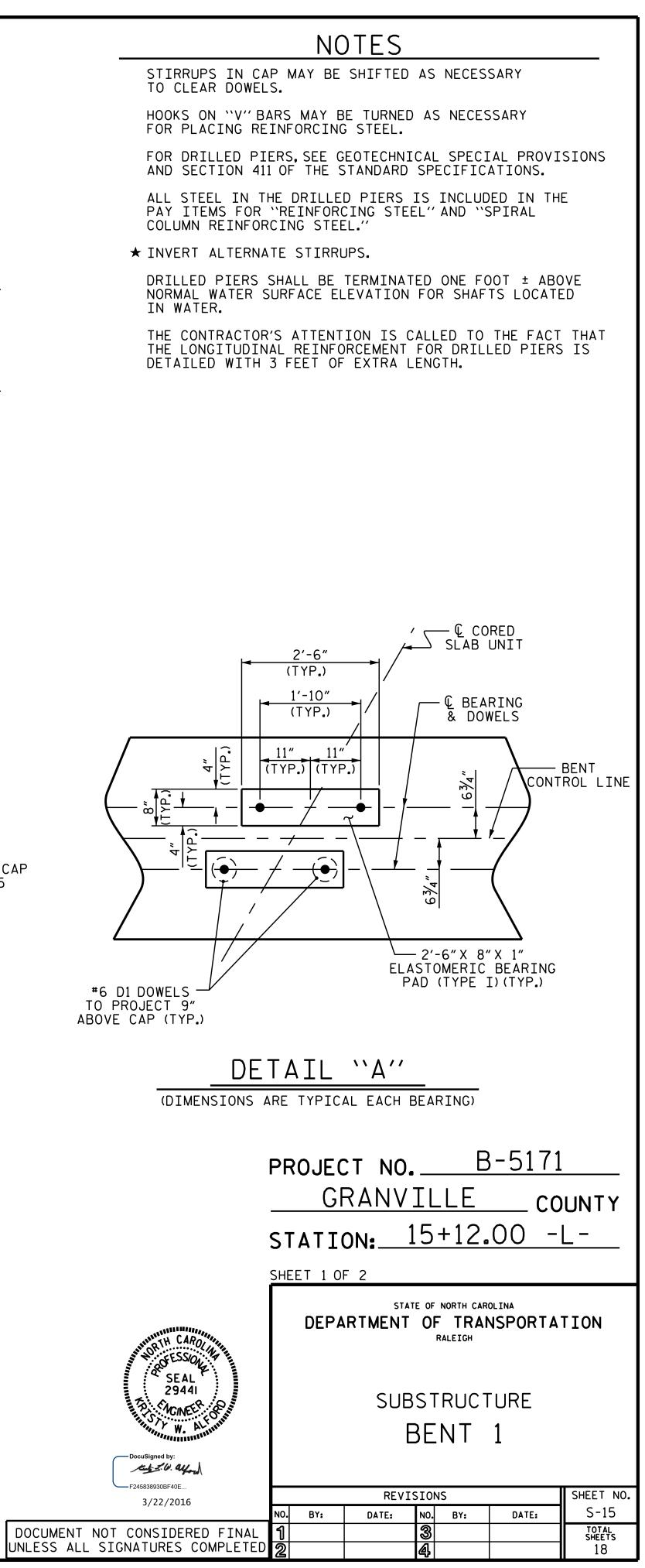
+

STD.NO.EB_30_60S4

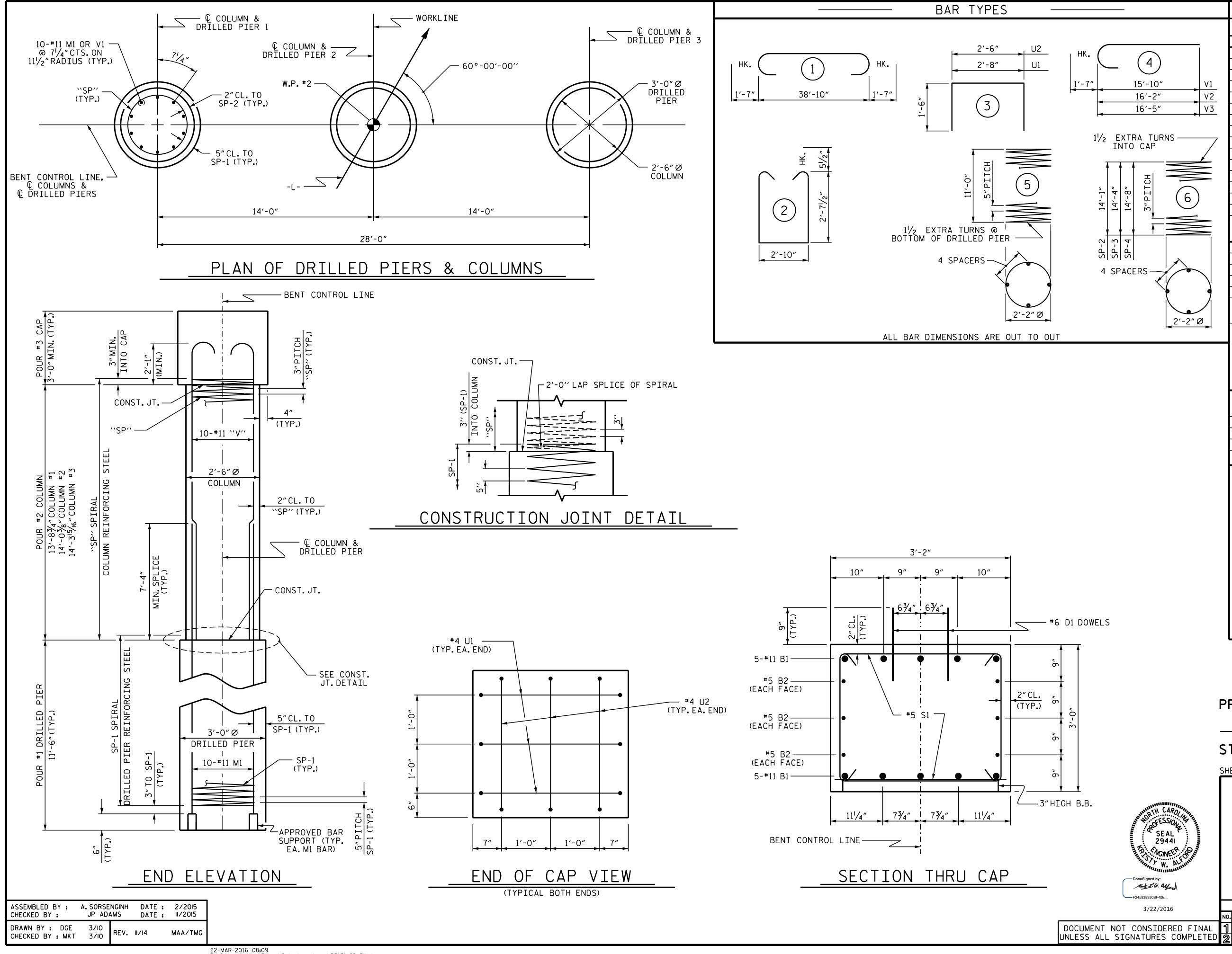

+



22-MAR-2016 08:08 R:\Structures\Plans\Substructure\B5171_SD_E*.dgn jpadams


+

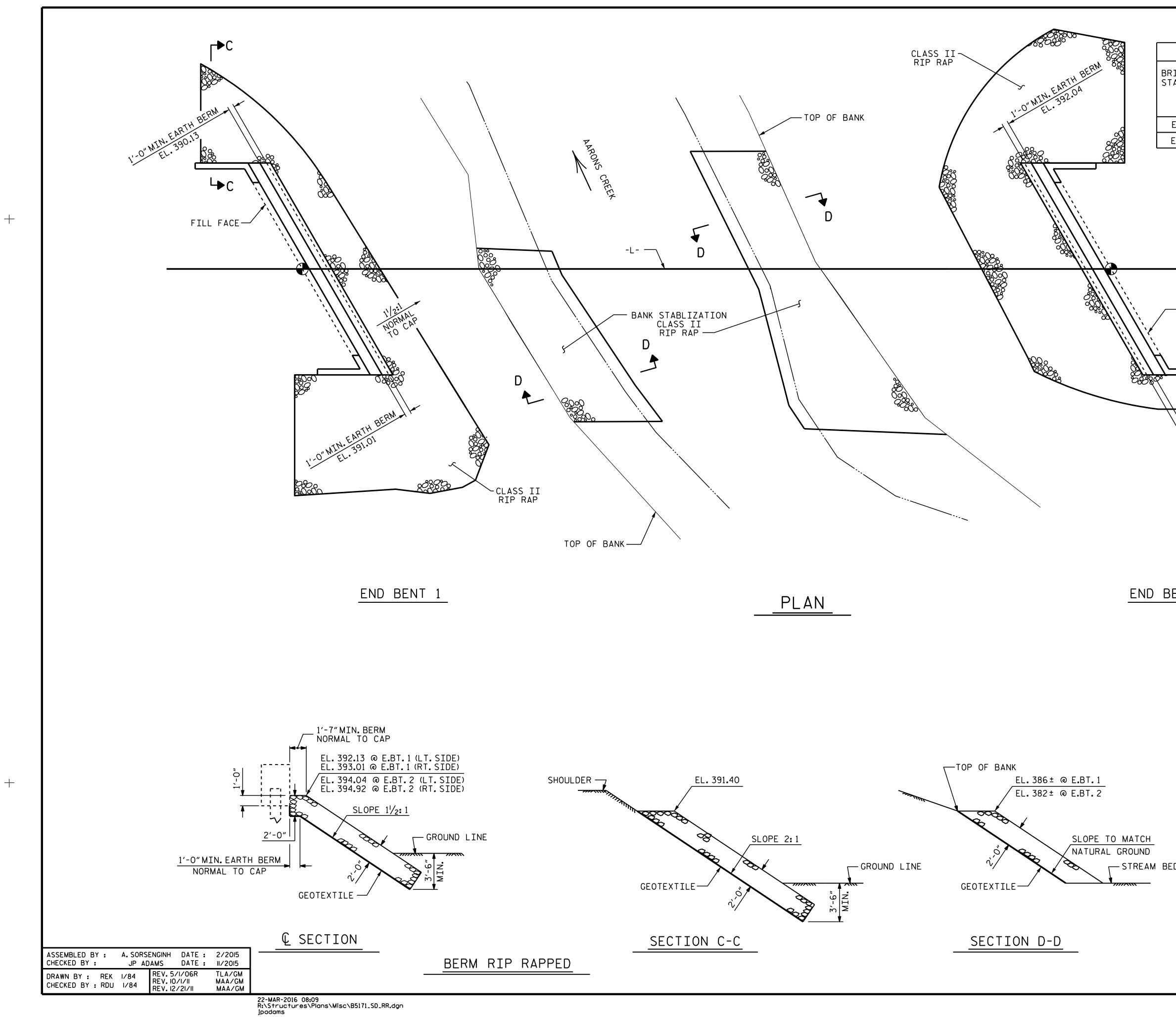
TYPES ———		ΒI	LL O	F MA	ATERIA	L
4″		FOF	R ON	IE E	ND BE	INT
	BAR	NO.	SIZE	TYPE	LENGTH	WEIGHT
$\langle \rangle $ (2)	B1	8	#9	1	43′-8″	1188
	B2	28	#4	STR	21'-11"	410
	B3	11	#4	STR	2'-5″	18
9'-1" H1						
8'-8" H2	D1	20	#6	STR	1'-6"	45
	H1	10	#4	2	9'-9"	65
HK 41/2 ⁴	H2	10	#4	2	9'-4"	62
$\vdash \land \land$	Н3	20	#4	3	8'-10"	118
	К1	16	#4	STR	3'-3"	35
		10	- 4		5-5	55
<u>"2/1/-"</u>	S1	54	#4	4	10′-5″	376
	S2	54	#4	5	3'-2"	114
	S3	20	#4	6	6'-6"	87
⊻						
2'-5″	V1	53	#4	STR	6'-2″	218
4 ¹ / ₂ " 2'-5" 4 ¹ / ₂ "		FORCI ONE E	NG STE END BEI		2	2736 LBS.
^{нк.} (5) ^{нк.}			ONCRETI			
	POUR		AP,LOW F WINC		RT COLLARS	20.2 C.Y.
INS ARE OUT TO OUT.	POUR		PPER P INGS	ART C	F	2.4 C.Y.
END BENT 2		v	1103			
HP 12 X 53 STEEL PILES						
NO: 5 LIN. FT.= 115						
STEEL PILE POINTS 5 EA.	ΤΟΤΑΙ	_ CLAS	SS A C	ONCRE	TE	22.6 C.Y.



22-MAR-2016 08:08 R:\Structures\Plans\Substructure\B5171_SD_B***.**dgn jpadams

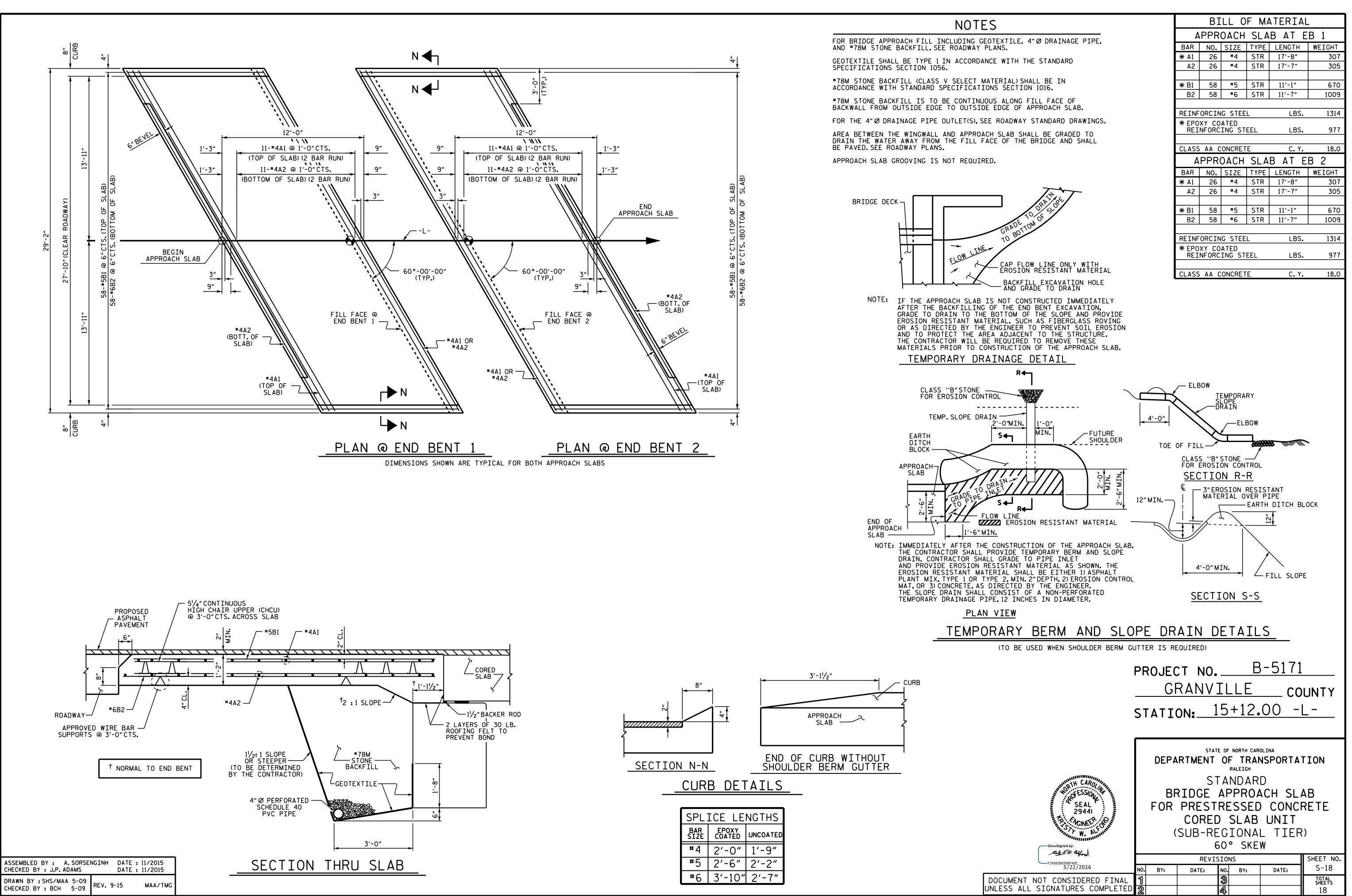
STD.NO.DP_BT_30_60S_<50'

22-MAR-2016 08:09 R:\Structures\Plans\Substructure\B5171_SD_B#.dgn jpadams


+

+

	1	RT	LL (TERIAL	
	-					-
			OR		BENT	
	BAR	NO.	SIZE	TYPE	LENGTH	WEIGHT
$\cdot \left(\begin{array}{c} 4 \end{array} \right)$	B1 B2	10 6	#11 #5	1 STR	42'-0" 39'-0"	2231 244
	02	0	5	511	55 0	277
7" 15'-10" V1	D1	40	#6	STR	1'-6"	90
16'-2" V2						
16′-5″ ∨3	M1	30	#11	STR	21'-7"	3440
	<u> </u>	<u> </u>	+ -		0/ 0//	670
1 ¹ / ₂ EXTRA TURNS	S1	68	# 5	2	9'-0"	638
INTO CAP	U1	6	#4	3	5′-8″	23
	U2	6	#4	3	5'-6"	22
E E						
	V1	10	#11	4	17'-5"	925
9 14'-1" 14'-4" 3" PI1 3" PI1	V2 V3	10 10	#11 #11	4	17'-9" 18'-0"	943 956
			NG STE		10 0	330
		ONE B			ç	512 LBS.
SP - 2 SP - 3 SP - 4						
	SP-1	3	*	5	186′-5″	583
4 SPACERS	SP-2	1	**	6	387'-6"	259
<ľ J	SP-3 SP-4	<u>1</u> 1	***	<u>6</u> 6	<u> </u>	263 272
Г. 7		_		· · · · ·		
		AL COL ONE BE		ETNFOR(CING STEEL 1	377 LBS.
2'-2"Ø					FORCING S	
	SH	IALL BI	E W31 (OR D-31	COLD DRA	WN
					DEFORME	_
					NFORCING O COLD DR	
					DEFORME	
	 			חאורסרדי	E BREAKDON	WNI
		ULAS		R ONE E		NY IN
	POUR	#2 (CC	DLUMNS	;)		7.7 C.Y.
	POUR	#3 (CA	AP)			13.8 C.Y.
		<u> </u>	<u> </u>	0110777	_	01 5 5
	ΤΟΤΑΙ	_ CLAS	S A C	ONCRETE		21.5 C.Y.
				LED PI		
				ONE B	ENT)	
				NCRETE PIERS)		9.0 C.Y.
	3'-0"	Ø DRII	LED P	IER NO	T IN SOIL	
		a		TCO		LIN.FT.
	3'-0"	Ø DRII	LED P	IER IN		1 T.1
					9.5	LIN.FT.
	PERMA	ANENT	STEEL	CASIN	G FOR	
			LED P			LIN.FT.
WELS	CSL T				156 0	LIN.FT.
		0023			1.0.0	с <u>т</u> іле і је
				г)1 71	
F	PROJE	CT	NO		8-5171	
				LLE		UNTY
-					00	
Ç	STATI	ON:	<u> 15</u>	<u>s+12</u>	.00 -	L –
	SHEET 2	UF 2				
				DF NORTH CA		T T A A A
	DEP	artm	ENT C	OF TRA RALEIGH	NSPORTA	ITON
NIN RIN CANOL MA						
SEAL			.	T = -	- ,	
SEAL 29441 TA: NONEE			SUBS	TRUC	IURE	
HILLS / WOINER OF ME			R	ENT	1	
We We ANNING			טנ	_ N	T	
DocuSigned by:						
F245838930BF40E						
3/22/2016	NO D'				0.475	SHEET NO. S-16
AENT NOT CONSTDERED ETNAL	NO. BY:	DA	TE: NO		DATE:	TOTAL


STD.NO.DP_BT_30_60S_<50'

total sheets 18

ESTIM	ATED QUANTITI	ES
DGE @ .15+12.00 -L-	RIP RAP CLASS II (2'-0" THICK)	GEOTEXTILE FOR DRAINAGE
	TONS	SQUARE YARDS
ND BENT 1	190	215
ND BENT 2	QUANTITIES INCLUDE	310 E BANK STABILIZATION)
FILL FACE		
∁⋖┐		
88 80 1'-0" MIN. EARTH BERM 1'-0" MIN. EARTH BERM		
C◀-1		
NT 2		
	PROJECT NO.	B-5171
	<u> </u>	LLE COUNTY
	STATION: 1	<u>5+12.00 -L-</u>
ATTENTION CAROLINA		OF NORTH CAROLINA OF TRANSPORTATION RALEIGH
SE AL 29441 The Stand Provide Alternative W. Alternative W. Alternative W. Alternative W. Alternative W. Alternative M. Altern	ST ——RIP RA	ANDARD
DocuSigned by:		
Kat I. W. alford		
	REVIS	IONS SHEET N NO. BY: DATE: S-17

STD. NO. RR1 (Sht 1)

22-MAR-2016 08:09 R:\Structures\Plans\Misc\B5171_SD_AS.dgn

DESIGN DATA:

SPECIFICATIONS	A.A.S.H.T.O. (CURRENT)
LIVE LOAD	SEE PLANS
IMPACT ALLOWANCE	SEE A.A.S.H.T.O.
STRESS IN EXTREME FIBER OF	
STRUCTURAL STEEL - AASHTO M270 GRADE 36 -	20,000 LBS.PER SQ.IN.
- AASHTO M270 GRADE 50W -	27,000 LBS.PER SQ.IN.
- AASHTO M270 GRADE 50 -	27,000 LBS.PER SQ.IN.
REINFORCING STEEL IN TENSION	
GRADE 60	24,000 LBS.PER SQ.IN.
CONCRETE IN COMPRESSION	1,200 LBS.PER SQ.IN.
CONCRETE IN SHEAR	SEE A.A.S.H.T.O.
STRUCTURAL TIMBER - TREATED OR	
UNTREATED - EXTREME FIBER STRESS	1,800 LBS.PER SQ.IN.
COMPRESSION PERPENDICULAR TO GRAIN OF TIMBER	375 LBS.PER SQ.IN.
EQUIVALENT FLUID PRESSURE OF EARTH	30 LBS.PER CU.FT.
	(MINIMUM)

MATERIAL AND WORKMANSHIP:

EXCEPT AS MAY OTHERWISE BE SPECIFIED ON PLANS OR IN THE SPECIAL PROVISIONS, ALL MATERIAL AND WORKMANSHIP SHALL BE IN ACCORDANCE WITH THE 2012 "STANDARD SPECIFICATIONS FOR ROADS AND STRUCTURES" OF THE N. C. DEPARTMENT OF TRANSPORTATION.

STEEL SHEET PILING FOR PERMANENT OR TEMPORARY APPLICATIONS SHALL BE HOT ROLLED.

CONCRETE:

UNLESS OTHERWISE REQUIRED ON PLANS, CLASS A CONCRETE SHALL BE USED FOR ALL PORTIONS OF ALL STRUCTURES WITH THE EXCEPTION THAT: CLASS AA CONCRETE SHALL BE USED IN BRIDGE SUPERSTRUCTURES, ABUTMENT BACKWALLS, AND APPROACH SLABS; AND CLASS B CONCRETE SHALL BE USED FOR SLOPE PROTECTION AND RIP RAP.

CONCRETE CHAMFERS:

UNLESS OTHERWISE NOTED ON THE PLANS, ALL EXPOSED CORNERS ON STRUCTURES SHALL BE CHAMFERED 3/4" WITH THE FOLLOWING EXCEPTIONS: TOP CORNERS OF CURBS MAY BE ROUNDED TO 1-1/2" RADIUS WHICH IS BUILT INTO CURB FORMS: CORNERS OF TRANSVERSE FLOOR EXPANSION JOINTS SHALL BE ROUNDED WITH A 1/4"FINISHING TOOL UNLESS OTHERWISE REQUIRED ON PLANS; AND CORNERS OF EXPANSION JOINTS IN THE ROADWAY FACES AND TOPS OF CURBS AND SIDEWALKS SHALL BE ROUNDED TO A 1/4" RADIUS WITH A FINISHING STONE OR TOOL UNLESS OTHERWISE REQUIRED ON PLANS.

DOWELS:

+

DOWELS WHEN INDICATED ON PLANS AS FOR CULVERT EXTENSIONS, SHALL BE EMBEDDED AT LEAST 12" INTO THE OLD CONCRETE AND GROUTED INTO PLACE WITH 1:2 CEMENT MORTAR.

STANDARD NOTES

ALLOWANCE FOR DEAD LOAD DEFLECTION, SETTLEMENT, ETC. IN CASTING SUPERSTRUCTURES:

BRIDGES SHALL BE BUILT ON THE GRADE OR VERTICAL CURVE SHOWN ON PLANS. SLABS, CURBS AND PARAPETS SHALL CONFORM TO THE GRADE OR CURVE. ALL DIMENSIONS WHICH ARE GIVEN IN SECTION AND ARE AFFECTED BY DEAD LOAD DEFLECTIONS ARE DIMENSIONS AT CENTER LINE OF BEARING UNLESS OTHERWISE NOTED ON PLANS. IN SETTING FORMS FOR STEEL BEAM BRIDGES AND PRESTRESSED CONCRETE GIRDER BRIDGES, ADJUSTMENTS SHALL BE MADE DUE TO THE DEAD LOAD DEFLECTIONS FOR THE ELEVATIONS SHOWN. WHERE BLOCKS ARE SHOWN OVER BEAMS FOR BUILDING UP TO THE SLAB, THE VERTICAL DIMENSIONS OF THE BLOCKS SHALL BE ADJUSTED BETWEEN BEARINGS TO COMPENSATE FOR DEAD LOAD DEFLECTIONS, VERTICAL CURVE ORDINATE, AND ACTUAL BEAM CAMBER. WHERE BOTTOM OF SLAB IS IN LINE WITH BOTTOM OF TOP FLANGES, DEPTH OF SLAB BETWEEN BEARINGS SHALL BE ADJUSTED TO COMPENSATE FOR DEAD LOAD DEFLECTION, VERTICAL CURVE ORDINATE, AND ACTUAL BEAM CAMBER.

IN SETTING FALSEWORK AND FORMS FOR REINFORCED CONCRETE SPANS, AN ALLOWANCE SHALL BE MADE FOR DEAD LOAD DEFLECTIONS, SETTLEMENT OF FALSEWORK, AND PERMANENT CAMBER WHICH SHALL BE PROVIDED FOR IN ADDITION TO THE ELEVATIONS SHOWN. AFTER REMOVAL OF THE FALSEWORK, THE FINISHED STRUCTURES SHALL CONFORM TO THE PROFILE AND ELEVATIONS SHOWN ON THE PLANS AND CONSTRUCTION ELEVATIONS FURNISHED BY THE ENGINEER.

DETAILED DRAWINGS FOR FALSEWORK OR FORMS FOR BRIDGE SUPERSTRUCTURE AND ANY STRUCTURE OR PARTS OF A STRUCTURE AS NOTED ON THE PLANS SHALL BE SUBMITTED TO THE ENGINEER FOR APPROVAL BEFORE CONSTRUCTION OF THE FALSEWORK OR FORMS IS STARTED.

REINFORCING STEEL:

ALL REINFORCING STEEL SHALL BE DEFORMED. DIMENSIONS RELATIVE TO PLACEMENT OF REINFORCING ARE TO CENTERS OF BARS UNLESS OTHERWISE INDICATED IN THE PLANS. DIMENSIONS ON BAR DETAILS ARE TO CENTERS OF BARS OR ARE OUT TO OUT AS INDICATED ON PLANS.

WIRE BAR SUPPORTS SHALL BE PROVIDED FOR REINFORCING STEEL WHERE INDICATED ON THE PLANS. WHEN BAR SUPPORT PIECES ARE PLACED IN CONTINUOUS LINES, THEY SHALL BE SO PLACED THAT THE ENDS OF THE SUPPORTING WIRES SHALL BE LAPPED TO LOCK LEGS ON ADJOINING PIECES.

STRUCTURAL STEEL:

AT THE CONTRACTOR'S OPTION, HE MAY SUBSTITUTE 7/8" Ø SHEAR STUDS FOR THE $\frac{3}{4}$ " Ø STUDS SPECIFIED ON THE PLANS. THIS SUBSTITUTION SHALL BE MADE AT THE RATE OF 3 - 7/8" Ø STUDS FOR 4 - 3/4" Ø STUDS, AND STUD SPACING CHANGES SHALL BE MADE AS NECESSARY TO PROVIDE THE SAME EQUIVALENT NUMBER OF 7/8" Ø STUDS ALONG THE BEAM AS SHOWN FOR 3/4" Ø STUDS BASED ON THE RATIO OF 3 - 7/8" Ø STUDS FOR 4 - 3/4" Ø STUDS. STUDS OF THE LENGTH SPECIFIED ON THE PLANS MUST BE PROVIDED. THE MAXIMUM SPACING SHALL BE 2'-O".

EXCEPT AT THE INTERIOR SUPPORTS OF CONTINUOUS BEAMS WHERE THE COVER PLATE IS IN CONTACT WITH BEARING PLATE, THE CONTRACTOR MAY, AT HIS OPTION, SUBSTITUTE FOR THE COVER PLATES DESIGNATED ON THE PLANS COVER PLATES OF THE EQUIVALENT AREA PROVIDED THESE PLATES ARE AT LEAST 5/16" IN THICKNESS AND DO NOT EXCEED A WIDTH EQUAL TO THE FLANGE WIDTH LESS 2"OR A THICKNESS EQUAL TO 2 TIMES THE FLANGE THICKNESS. THE SIZE OF FILLET WELDS SHALL CONFORM TO THE REQUIREMENTS OF THE CURRENT ANSI/AASHTO/AWS "BRIDGE WELDING CODE". ELECTROSLAG WELDING WILL NOT BE PERMITTED. WITH THE SOLE EXCEPTION OF EDGES AT SURFACES WHICH BEAR ON OTHER SURFACES.ALL SHARP EDGES AND ENDS OF SHAPES AND PLATES SHALL BE SLIGHTLY ROUNDED BY SUITABLE MEANS TO A RADIUS OF APPROXIMATELY 1/16 INCH OR

EQUIVALENT FLAT SURFACE AT A SUITABLE ANGLE PRIOR TO PAINTING, GALVANIZING, OR METALLIZING.

HANDRAILS AND POSTS:

METAL STANDARDS AND FACES OF THE CONCRETE END POSTS FOR THE METAL RAIL SHALL BE SET NORMAL TO THE GRADE OF THE CURB. UNLESS OTHERWISE SHOWN ON PLANS. THE METAL RAIL AND TOPS OF CONCRETE POSTS USED WITH THE ALUMINUM RAIL SHALL BE BUILT PARALLEL TO THE GRADE OF THE CURB. METAL HANDRAILS SHALL BE IN ACCORDANCE WITH THE PLANS. RAILS SHALL BE AS MANUFACTURED FOR BRIDGE RAILING. CASTINGS SHALL BE OF A UNIFORM APPEARANCE. FINS AND OTHER DEFORMATIONS RESULTING FROM CASTING OR OTHERWISE SHALL BE REMOVED IN A MANNER SO THAT A UNIFORM COLORING OF THE COMPLETED CASTING SHALL BE OBTAINED. CASTINGS WITH DISCOLORATIONS OR OF NON-UNIFORM COLORING WILL NOT BE ACCEPTED. CERTIFIED MILL REPORTS ARE REQUIRED FOR METAL RAILS AND POSTS.

SPECIAL NOTES:

GENERALLY, IN CASE OF DISCREPANCY, THIS STANDARD SHEET OF NOTES SHALL GOVERN OVER THE SPECIFICATIONS, BUT THE REMAINDER OF THE PLANS SHALL GOVERN OVER NOTES HEREON, AND SPECIAL PROVISIONS SHALL GOVERN OVER ALL. SEE SPECIFICATIONS ARTICLE 105-4.

ENGLISH JANUARY, 1990

STD. NO. SN