This electronic collection of documents is provided for the convenience of the user and is Not a Certified Document -

The documents contained herein were originally issued and sealed by the individuals whose names and license numbers appear on each page, on the dates appearing with their signature on that page. This file or an individual page shall not be considered a certified document.

Steven A. Campbell

-5BCE5BA0606342

1/4/2016

	STATE	STATE PROJECT REFERENCE NO	SHEET TOTAL
			NO. SHEETS
	$ \mathbb{N} \cdot \mathbb{C} \cdot $	R-5605	
	STATE PROJ.N	IO. F. A. PROJ. NO.	DESCRIPTION
	43587.1	.1	P.E.
	43587.2	2.1	R/W
	43587.3	8.1	CONST.
STRUCTURES			
oncoreneo			
	END	PROJECT	
	L– POT S	TA 51+72.36	
) ///		
Justicity of	TENDER		
	- TSON	Vu.	
		TLE	•
THIS.			
SOL.		$\rightarrow u_{s}$	
P/I		Y3.	R R
Т. Ср	$\setminus \setminus \bigwedge$		
			Q
			I ₹
	, ,		
	D BRIDGES (D		
− Ι	- SIA 51+23	.96	
BEGI	N BRIDGES (I	DUAL)	
L	- STA 50 + 42	.04	
CTD			
JINU		UNL	
INDEX OF	SHFF7	·27	
		J .	
BRIDGE AT STA.	36+73.00	–L– SHEETS S–1 –	S–25
BRIDGE AT STA.	50+83.00	-L- SHEETS S-26	– S –51
BRIDGE ENG	INEER	Y PLANS	rkepaked by:
	AR_{O}		
States	SIONA		
₹≈×°° SE	AL	SINCE 1978	Mattern & Craig
- 143	09		CONSULTING ENGINEERS • SURVEYORS FIRM LICENSE No. C-1154 12 BROAD STREET
E WGI	NEER		ASHEVILLE, NORTH CAROLINA 28801 (828) 254-2201
	(AN)		FAA (020) 254-4562

#2		
ND	BENT	NO.2
3.8	3-L-	

	PROJEC	CT NO.	F	<u> -560</u>	5
	TRA	ANSYL	_VANI	<u> </u>	UNTY
	STATI	- 	36+73		
	SHEET 2	OF 4			
	DEPA	stat RTMENT	e of north car OF TRAN raleigh	^{olina} NSPORTA	TION
		GENEF For	RAL DRA BRIDG	AWING E ON	
CARO of ESSION	0	DAVI VILLAC VER DA	DSON F Ge coni Avidso	RIVER Nector N rive	R
SEAL 14309	BETW	IEEN U	S 64 A	ND SR	1512
WGINEER C		REVIS	SIONS		SHEET NO
A. CAMPINI	NO. BY:	DATE:	NO. BY:	DATE:	S-2
DocuSigned by: Steven A. Campbell 12/21/2015	1		33 4		SHEETS 51
— 5BCF5BA0606342E					1

								\top			BILL		MA	TERI									P = 5605
	REMOVAL OF EXISTING STRUCTURE	UNCLASSIFIE STRUCTURE EXCAVATION	D REINFORCE CONCRETE DECK SLAB	D GROOVING BRIDGE FLOORS	CLASS A CONCRETE	BRIDGE APPROACH SLABS	REINF. Steel	. 72" PRES CONC GIRD	TRESSED RETE DERS	HP 1 Stee Pile	2 X 53 L S	STEEL PILE POINTS	THREE BAR METAL RAIL	CONCRETE BARRIER RAIL	E RIP RAP CLASS II (2'-0" THICK)	GEOTEXTILI FOR DRAINAGE	E ELASTOMERIC BEARINGS	PDA TESTING	PILE Excavation In-soil	PILE EXCAVATION NOT IN-SOIL	PREDRILLING FOR PILES	ASBESTOS ASSESSMENT	TRANSYLVANIA COUNTY STATION: 36+73.00 -L-
	LUMP SUM	LUMP SUM	SQ.FT.	SQ.FT.	CU.YDS.	LUMP SUM	LBS.	NO.	LIN.FT.	NO.	LIN.FT.	NO.	LIN.FT.	LIN.FT.	TONS	SQ. YDS.	LUMP SUM	EACH	LF	LF	LF	LUMP SUM	
SUPERSTRUCTURE	LUMP SUM		9835	9860		LUMP SUM		10	1198.3				225	240			LUMP SUM						SHEET 3 OF 4
END BENT NO.1		LUMP SUM			57.3		7429			18	360	18			114	127			150	40	50		STATE OF NORTH CAROLINA
END BENT NO.2		LUMP SUM			57.3		7429			18	475	18			82	92							RALEIGH
TOTAL	LUMP SUM	LUMP SUM	9835	9860	114.6	LUMP SUM	14858	10	1198.3	36	835	36	225	240	196	219	LUMP SUM	1	150	40	50	LUMP SUM	GENERAL DRAWING For bridge on
AWN BY : PFC ECKED BY : CMT	DATE DATE	E: 8/15 E: 8/15																Pre Of	epared in the fice of:	Mattern & Consulting engineers FIRM LICEN 12 BF ASHEVILLE, NORTH CA (828) 254-2201 - FAX	Craig SURVEYORS SE No. C-1154 IOAD STREET ROLINA 28801 828) 254-4562	SEAL A CANPOINT A CANPO	DAVIDSON RIVER VILLAGE CONNECTOR OVER DAVIDSON RIVER BETWEEN US 64 AND SR 1512 REVISIONS SHEET NO. NO. BY: DATE: NO. BY: DATE: SHEET NO. S-3 1 3 4 51 2 4 51

NOTES:

ASSUMED LIVE LOAD = HL-93 OR ALTERNATE LOADING.

FOR EROSION CONTROL MEASURES, SEE EROSION CONTROL PLANS.

THIS STRUCTURE HAS BEEN DESIGNED IN ACCORDANCE WITH THE AASHTO LRFD BRIDGE DESIGN SPECIFICATIONS.

THE EXISTING STRUCTURE CONSISTING OF 2 SIMPLE SPANS 1 AT 50'-O" AND 1 AT 50'-0"; 14'-0" CLEAR ROADWAY WIDTH, CONCRETE CORED SLAB ON CONCRETE BENT ON CONCRETE CAPS, AND LOCATED AT THE PROPOSED STRUCTURE SHALL BE REMOVED. THE EXISTING BRIDGE IS CURRENTLY POSTED BELOW THE LEGAL LOAD LIMIT. SHOULD THE STRUCTURAL INTEGRITY OF THE BRIDGE FURTHER DETERIORATE, THE LOAD LIMITATION MAY BE REDUCED AS FOUND NECESSARY DURING THE LIFE OF THE PROJECT.

THE CONTRACTOR MAY BE PERMITTED TO UTILIZE THE EXISTING STRUCTURE TO ACCESS BOTH SIDES OF THE STREAM DURING CONSTRUCTION OF THE EASTBOUND LANE STRUCTURE. THE EXISTING STRUCTURE SHALL BE REMOVED PRIOR TO CONSTRUCTION OF THE WESTBOUND LANE STRUCTURE.

REMOVAL OF THE EXISTING BRIDGE SHALL BE PERFORMED SO AS NOT TO ALLOW DEBRIS TO FALL INTO THE WATER. THE CONTRACTOR SHALL REMOVE THE BRIDGE AND SUBMIT PLANS FOR DEMOLITION IN ACCORDANCE WITH ARTICLE 402-2 OF THE STANDARD SPECIFICATIONS.

THE SUBSTRUCTURE OF THE EXISTING BRIDGE INDICATED ON THE PLANS IS FROM THE BEST INFORMATION AVAILABLE. SINCE THIS INFORMATION IS SHOWN FOR THE CONVENIENCE OF THE CONTRACTOR, THE CONTRACTOR SHALL HAVE NO CLAIM WHATSOEVER AGAINST THE DEPARTMENT OF TRANSPORTATION FOR ANY DELAYS OR ADDITIONAL COSTS INCURRED BASED ON DIFFERENCES BETWEEN THE EXISTING BRIDGE SUBSTRUCTURE SHOWN ON THE PLANS AND THE ACTUAL CONDITIONS AT THE PROJECT SITE.

THE MATERIAL SHOWN IN THE CROSS-HATCHED AREA SHALL BE EXCAVATED FOR A DISTANCE OF 56 FT ± EACH SIDE OF CENTERLINE OF ROADWAY AS DIRECTED BY THE ENGINEER. THIS WORK WILL BE PAID FOR AT THE CONTRACT LUMP SUM PRICE FOR UNCLASSIFIED STRUCTURE EXCAVATION. SEE SECTION 412 OF THE STANDARD SPECIFICATIONS.

FOR SUBMITTAL OF WORKING DRAWINGS, SEE SPECIAL PROVISIONS.

PRESTRESSED CONCRETE DECK PANELS MAY BE USED IN LIEU OF METAL STAY-IN-PLACE FORMS IN ACCORDANCE WITH ARTICLE 420-3 OF THE STANDARD SPECIFICATIONS.

ALL PAVEMENT MARKING WILL BE IN ACCORDANCE WITH THE PAVEMENT MARKING PLANS AND SHALL PROVIDE FOR BICYCLES.

FOR FALSEWORK AND FORMWORK, SEE SPECIAL PROVISIONS.

FOR CRANE SAFETY, SEE SPECIAL PROVISIONS.

FOR OTHER DESIGN DATA AND GENERAL NOTES, SEE SHEET SN.

THIS STRUCTURE HAS BEEN DESIGNED IN ACCORDANCE WITH "HEC 18-EVALUATING SCOUR AT BRIDGES."

FOR GROUT FOR STRUCTURES, SEE SPECIAL PROVISIONS.

THIS BRIDGE IS LOCATED IN SEISMIC ZONE 1.

REMOVABLE FORMS MAY BE USED IN LIEU OF METAL STAY-IN-PLACE FORMS IN ACCORDANCE WITH ARTICLE 420-3 OF THE STANDARD SPECIFICATIONS.

NEEDLE BEAMS WILL NOT BE ALLOWED UNLESS OTHERWISE CALLED FOR ON THE PLANS OR APPROVED BY THE ENGINEER.

THE CLASS AA CONCRETE IN THE BRIDGE DECK SHALL CONTAIN FLY ASH OR GROUND GRANULATED BLAST FURNACE SLAG AT THE SUBSTITUTION RATE SPECIFIED IN ARTICLE 1024-1 AND IN ACCORDANCE WITH ARTICLES 1024-5 AND 1024-6 OF THE STANDARD SPECIFICATIONS. NO PAYMENT WILL BE MADE FOR THIS SUBSTITUTION AS IT IS CONSIDERED INCIDENTAL TO THE COST OF THE REINFORCED CONCRETE DECK SLAB.

FOR PLACING LOAD ON STRUCTURE MEMBERS, SEE SPECIAL PROVISIONS.

FOR ASBESTOS ASSESSMENT FOR BRIDGE DEMOLITION AND RENOVATION ACTIVITIES. SEE SPECIAL PROVISIONS.

FOUNDATION NOTES:

FOR PILES, SEE SECTION 450 OF THE STANDARD SPECIFICATIONS.

PILES AT END BENT NO.1 AND END BENT NO.2 ARE DESIGNED FOR A FACTORED RESISTANCE OF 95 TONS PER PILE.

DRIVE PILES AT END BENT NO.1 AND END BENT NO.2 TO A REQUIRED DRIVING RESISTANCE OF 160 TONS PER PILE.

STEEL H-PILE POINTS ARE REQUIRED FOR ALL STEEL H-PILES AT END BENT NO.1 AND END BENT NO.2.FOR STEEL PILE POINTS, SEE SECTION 450 OF THE STANDARD SPECIFICATIONS.

IT HAS BEEN ESTIMATED THAT A HAMMER WITH AN EQUIVALENT RATED ENERGY IN THE RANGE OF 30 TO 45 FT-KIPS PER BLOW WILL BE REQUIRED TO DRIVE PILES AT END BENT NO.1 (WB CAP AND EB CAP (LT)). THE ESTIMATED ENERGY RANGE DOES NOT RELEASE THE CONTRACTOR FROM PROVIDING DRIVING EQUIPMENT IN ACCORDANCE WITH SUBARTICLE 450-3(D)(2) OF THE STANDARD SPECIFICATIONS.

PILE EXCAVATION IS REQUIRED TO INSTALL PILES AT END BENT NO.1 (WB CAP AND EB CAP (LT)). EXCAVATE HOLES AT PILE LOCATIONS TO ELEVATION 2103.00 (WB CAP AND EB CAP (LT)) AND HAVE AT LEAST 5 FEET OF PENETRATION INTO WEATHERED ROCK OR ROCK. SEE SECTION 450 OF THE STANDARD SPECIFICATIONS.

CONCRETE IS REQUIRED TO FILL HOLES FOR PILE EXCAVATION AT END BENT NO.1 (WB CAP AND EB CAP (LT)).

IF NECESSARY, PREDRILL PILE LOCATIONS AT END BENT NO.1 (EB CAP (RT)). INSTALL PILES AT END BENT NO.1 (EB CAP (RT.)) TO ELEVATION 2107.00 WITH EQUIPMENT THAT WILL RESULT IN A MAXIMUM PREDRILLING DIAMETER OF 12". FOR PREDRILLING PILES, SEE SECTION 450 OF THE STANDARD SPECIFICATIONS.

TESTING PILES WITH THE PDA DURING DRIVING, RESTRIKING, OR REDRIVING MAY BE REQUIRED. THE ENGINEER WILL DETERMINE THE NEED FOR PDA TESTING.FOR PDA TESTING, SEE SECTION 450 OF THE STANDARD SPECIFICATIONS AND FOR PILE DRIVING CRITERIA. SEE PILE DRIVING CRITERIA PROVISION.

OBSERVE A ONE MONTH WAITING PERIOD AFTER CONSTRUCTING THE EMBANKMENT, END BENT AND REINFORCED BRIDGE APPROACH FILL, IF APPLICABLE, BEFORE BEGINNING APPROACH SLAB CONSTRUCTION AT END BENT NOS.1 AND 2. FOR BRIDGE WAITING PERIODS, SEE ROADWAY PLANS AND SPECIAL PROVISIONS.

										STREI	NGTH	I LIM	IIT ST	- A T E				SE	RVICE	III	LIMI	t sta	λΤΕ	
										MOMENT					SHEAR						MOMENT			
LEVEL		VEHICLE	WEIGHT (W) (TONS)	CONTROLLING (#	MINIMUM Rating factors (RF)	TONS = W × RF	LIVE-LOAD Factors (Y _{LL})	DISTRIBUTION FACTORS (DF)	RATING FACTOR	SPAN	GIRDER LOCATION	DISTANCE FROM LEFT END OF SPAN (f+)	DISTRIBUTION FACTORS (DF)	RATING FACTOR	SPAN	GIRDER LOCATION	DISTANCE FROM LEFT END OF SPAN (ft)	LIVE-LOAD Factors (Y _{LL})	DISTRIBUTION FACTORS (DF)	RATING FACTOR	SPAN	GIRDER LOCATION	DISTANCE FROM LEFT END OF SPAN (ft)	COMMENT NUMBER
		HL-93 (INVENTORY)	NZA	$\langle 1 \rangle$	1.33		1.75	0.805	1.36	118.4′	ER	59.2	0.838	1.70	118.4′	I	28.6	0.80	0.805	1.33	118.4′	ER	59.2	
DESIGN		HL-93 (OPERATING)	NZA		1.76		1.35	0.805	1.76	118.4′	ER	59.2	0.838	2.31	118.4′	I	28.6	N⁄A						
RATING		HS-20 (INVENTORY)	36.000	2	1.94	69.750	1.75	0.805	1.97	118.4′	ER	59.2	0.838	2.41	118.4′	I	28.6	0.80	0.805	1.94	118.4′	ER	59.2	
		HS-20 (OPERATING)	36.000		2.56	92.020	1.35	0.805	2.56	118.4′	ER	59.2	0.838	3.13	118.4′	I	28.6	NZA						
		SNSH	13.500		4.68	63.113	1.40	0.805	5.99	118.4′	ER	59.2	0.838	7.41	118.4′	I	28.6	0.80	0.805	4.68	118.4′	ER	59.2	
		SNGARBS2	20.000		3.35	67.000	1.40	0.805	4.28	118.4′	ER	59.2	0.838	5.19	118.4′	I	28.6	0.80	0.805	3.35	118.4′	ER	59.2	
	ICLE	SNAGRIS2	22.000		3.11	68.475	1.40	0.805	3.98	118.4′	ER	59.2	0.838	4.79	118.4′	I	28.6	0.80	0.805	3.11	118.4′	ER	59.2	
		SNCOTTS3	27.250		2.33	63.356	1.40	0.805	2.97	118.4′	ER	59.2	0.838	3.69	118.4′	I	28.6	0.80	0.805	2.33	118.4′	ER	59.2	
	(S	SNAGGRS4	34.925		1.89	65.921	1.40	0.805	2.41	118.4′	ER	59.2	0.838	3.00	118.4′	I	28.6	0.80	0.805	1.89	118.4′	ER	59.2	
	ING	SNS5A	35.550		1.85	65.768	1.40	0.805	2.36	118.4′	ER	59.2	0.838	3.01	118.4′	I	28.6	0.80	0.805	1.85	118.4′	ER	59.2	
		SNS6A	39.950		1.68	66.916	1.40	0.805	2.14	118.4′	ER	59.2	0.838	2.73	118.4′	I	28.6	0.80	0.805	1.68	118.4′	ER	59.2	
LEGAL		SNS7B	42.000		1.60	67.200	1.40	0.805	2.04	118.4′	ER	59.2	0.838	2.66	118.4′	I	28.6	0.80	0.805	1.60	118.4′	ER	59.2	
RATING	ER	TNAGRIT3	33.000		2.04	67.238	1.40	0.805	2.60	118.4′	ER	59.2	0.838	3.27	118.4′	I	28.6	0.80	0.805	2.04	118.4′	ER	59.2	
	RAIL	TNT4A	33.075		2.04	67.390	1.40	0.805	2.61	118.4′	ER	59.2	0.838	3.21	118.4′	I	28.6	0.80	0.805	2.04	118.4′	ER	59.2	
	L - T	TNT6A	41.600		1.65	68.640	1.40	0.805	2.10	118.4′	ER	59.2	0.838	2.79	118.4′	I	28.6	0.80	0.805	1.65	118.4′	ER	59.2	
	SEN ST)	TNT7A	42.000		1.65	69.300	1.40	0.805	2.10	118.4′	ER	59.2	0.838	2.73	118.4′	I	28.6	0.80	0.805	1.65	118.4′	ER	59.2	
	TOR (TT)	TNT7B	42.000		1.68	70.350	1.40	0.805	2.14	118.4′	ER	59.2	0.838	2.61	118.4′	I	28.6	0.80	0.805	1.68	118.4′	ER	59.2	
	TRAC	TNAGRIT4	43.000		1.61	69.338	1.40	0.805	2.06	118.4′	ER	59.2	0.838	2.54	118.4′	I	28.6	0.80	0.805	1.61	118.4′	ER	59.2	
) CK	TNAGT5A	45.000		1.53	68.625	1.40	0.805	1.96	118.4′	ER	59.2	0.838	2.50	118.4′	I	28.6	0.80	0.805	1.53	118.4′	ER	59.2	
	TRL	TNAGT5B	45.000	3	1.53	68.625	1.40	0.805	1.95	118.4′	ER	59.2	0.838	2.41	118.4′	I	28.6	0.80	0.805	1.53	118.4′	ER	59.2	

END BENT 1

_RFR SUMMARY

ASSEMBLED BY :	PF(C DATE :	8/15
CHECKED BY :	CM ⁻	T DATE :	8/15
DRAWN BY : MAA	I∕08	REV. II/I2/08RR	MAA/GM
Checked By : GM/DI	2∕08	REV. I0/I/II	MAA/GM

+

DocuSign Envelope ID: 1DA609DF-BDE5-433B-B928-49D414797B62

+

END BENT 2

LOAD FACTORS:

DESIGN	LIMIT STATE	γ_{DC}	γ_{DW}
LOAD RATING	STRENGTH I	1.25	1.50
FACTORS	SERVICE III	1.00	1.00

NOTES:

COM

MINIMUM RATING FACTORS ARE BASED ON THE STRENGTH I AND SERVICE III LIMIT STATES. ALLOWABLE STRESSES FOR SERVICE III LIMIT STATE ARE AS REQUIRED FOR DESIGN.

		PROJEC <u>TRA</u> Static	CT NO <u>ANSYL</u> dn: <u>3</u>	F VANI 6+73	<u>-560</u> <u>A</u> co 00 -	5 UNTY -L-
		SHEET 4 C)F 4			
	SEAL 14309	DEPA LR CC (NON	STATE RTMENT ST ST ST ST ST ST ST ST ST ST ST ST ST	of north car OF TRAN Raleigh FANDAF JMMA STRES TE G RSTATE	NSPORTA RY F SSED IRDE TRAFI	tion OR RS Fic)
raig	ENGINEER OF		REVIS	IONS		SHEET NO.
VEYORS lo. C-1154) STREET INA 28801 254-4562	DocuSigned by: Steven A. Campbell 12/21/2015	NO. BY: 1 2	DATE: I	NO. ВҮ: З 4	DATE:	TOTAL SHEETS 51
e			S	TD. NO	LRFR1	

+

+

REV.10/1/11

EV. 1/15

EV. 2/15

MAA/GM MAA/TMG

MAA/TMG

CHECKED BY :

DRAWN BY : ELR 11/91

CHECKED BY : GRP 11/91

(SEE TABLE FOR GIRDERS)

		L	PEAD	LUA	D DE			ΝΙΔ	BLF	FUR	GIR	DERS	>								
0.6″Ø LOW RELAXATION										GIRDE	RS 1 #	and 10)								
TWENTIETH POINTS	0	.05	.1	.15	.2	.25	.3	.35	.4	. 45	.5	.55	.6	.65	.7	.75	.8	.85	.9	.95	1
CAMBER (GIRDER ALONE IN PLACE)	0.000	0.046	0.092	0.133	0.167	0.198	0.224	0.247	0.260	0.266	0.272	0.266	0.260	0.247	0.224	0.198	0.167	0.133	0.092	0.046	0.000
* DEFLECTION DUE TO SUPERIMPOSED D.L.	0.000	0.020	0.040	0.058	0.075	0.090	0.103	0.114	0.121	0.124	0.127	0.124	0.121	0.114	0.103	0.090	0.075	0.058	0.040	0.020	0.000
FINAL CAMBER	0	5/16	9/16	13/16	1	1 3/16	1 3/8	11/2	1%6	19/16	15⁄8	1%16	1%6	11/2	1 3⁄8	13/16	1	13/16	9/16	5/16	0
0.6″Ø LOW RELAXATION										GIRDE	RS 2	AND 9)								
TWENTIETH POINTS	0	.05	.1	.15	.2	.25	.3	.35	_4	. 45	.5	.55	.6	.65	.7	.75	.8	.85	.9	.95	1
CAMBER (GIRDER ALONE IN PLACE)	0.000	0.046	0.092	0.133	0.167	0.198	0.224	0.247	0.260	0.266	0.272	0.266	0.260	0.247	0.224	0.198	0.167	0.133	0.092	0.046	0.000
* DEFLECTION DUE TO SUPERIMPOSED D.L.	0.000	0.020	0.040	0.058	0.075	0.090	0.103	0.114	0.121	0.124	0.127	0.124	0.121	0.114	0.103	0.090	0.075	0.058	0.040	0.020	0.000
FINAL CAMBER	0	5/16	9/16	13/16	1	13/16	1 3/8	11/2	1%6	1%6	15/8	1%6	1%16	1 ¹ /2	1 3/8	13/16	1	13/16	9/16	5/16	0
0.6″ØLOW RELAXATION										GIRDE	RS 3	AND 8	}								
TWENTIETH POINTS	0	.05	.1	.15	.2	.25	.3	.35	4	. 45	.5	.55	.6	.65	7	.75	.8	.85	.9	.95	1
CAMBER (GIRDER ALONE IN PLACE)	0.000	0.046	0.092	0.133	0.167	0.198	0.224	0.247	0.260	0.266	0.272	0.266	0.260	0.247	0.224	0.198	0.167	0.133	0.092	0.046	0.000
* DEFLECTION DUE TO SUPERIMPOSED D.L.	0.000	0.021	0.043	0.063	0.081	0.097	0.111	0.123	0.130	0.133	0.137	0.133	0.130	0.123	0.111	0.097	0.081	0.063	0.043	0.021	0.000
FINAL CAMBER	0	5/16	9/16	3/4	15/16	11/8	11/4	1 3/8	17/16	17/16	11/2	17/16	17/16	13⁄8	11/4	11/8	15/16	3/4	9/16	5/16	0
0.6″Ø LOW RELAXATION										GIRDE	RS 4	AND 7	7								
TWENTIETH POINTS	0	.05	.1	.15	.2	.25	.3	.35	. 4	. 45	.5	.55	.6	.65	.7	.75	.8	.85	.9	.95	1
CAMBER (GIRDER ALONE IN PLACE)	0.000	0.046	0.092	0.133	0.167	0.198	0.224	0.247	0.260	0.266	0.272	0.266	0.260	0.247	0.224	0.198	0.167	0.133	0.092	0.046	0.000
* DEFLECTION DUE TO SUPERIMPOSED D.L.	0.000	0.021	0.043	0.063	0.081	0.097	0.111	0.123	0.130	0.133	0.137	0.133	0.130	0.123	0.111	0.097	0.081	0.063	0.043	0.021	0.000
FINAL CAMBER	0	5/16	9/16	3/4	15/16	11/8	11/4	1 3/8	17/16	17/16	11/2	17/16	17/16	13/8	11/4	11/8	15/16	3/4	9/16	5/16	0
					I								\ 、								
U.6 Ø LUW KELAXATION			1	1 -			_	7 -	4	GIRDE	KS 5	AND 6			_	75		0.5			1
		.05		.15	.2	.25	.3	.35	<u>.</u> 4	.45	.5	.55	.6	.65		. (5	.8	.85	.9	.95	
TWENTIETH POINTS		0.046		() < <	0.167	0.198	0.224	0.247	0.260	0.266	0.272	0.266	0.260	0.247	0.224	0.198	0.167	0.133	0.092	0.046	0.000
TWENTIETH POINTS CAMBER (GIRDER ALONE IN PLACE)	0.000	0.046	0.092	0.100				0.007	0 1 7 0						1 () 111						
TWENTIETH POINTS CAMBER (GIRDER ALONE IN PLACE) * DEFLECTION DUE TO SUPERIMPOSED D.L.	0.000	0.046	0.092	0.063	0.081	0.097	0.111	0.123	0.130	0.133	0.137	0.133	0.130	0.123	U.III	0.097	0.081	0.063	0.043	0.021	0.000

\$\$\$\$\$\$\$SYSTIME\$\$\$\$

\$\$\$\$USERNAME\$\$\$

NOTES

ALL PRESTRESSING STRANDS SHALL BE 7-WIRE LOW-RELAXATION GRADE 270 STRANDS AND SHALL CONFORM TO AASHTO M203 EXCEPT FOR SAMPLING REQUIREMENTS WHICH SHALL BE IN ACCORDANCE WITH THE STANDARD SPECIFICATIONS.

ALL REINFORCING STEEL SHALL BE GRADE 60.

EMBEDDED PLATE ``B-1'' SHALL BE GALVANIZED IN ACCORDANCE WITH THE STANDARD SPECIFICATIONS.

ANCHOR STUDS SHALL CONFORM TO AASHTO M169 GRADES 1010 THROUGH 1020 OR APPROVED EQUAL, AND SHALL MEET THE TYPE "B" REQUIREMENTS OF SUBSECTION 7.3 OF THE ANSI/AASHTO/AWS D1.5 BRIDGE WELDING CODE.

AT ENDS OF GIRDERS TO BE EMBEDDED IN CONCRETE DIAPHRAGMS OR END WALLS, PRESTRESSING STRANDS MAY EXTEND A MAXIMUM OF 2" BEYOND THE GIRDER ENDS. OTHERWISE, PRESTRESSING STRANDS SHALL BE CUT FLUSH WITH THE GIRDER ENDS.

THE TRANSFER OF LOAD FROM THE ANCHORAGES TO THE GIRDER SHALL BE DONE WHEN CONCRETE HAS REACHED A COMPRESSIVE STRENGTH OF NOT LESS THAN 6,500 PSI.

DEPENDING ON THE TYPE OF SYSTEM USED TO SUPPORT THE DECK SLAB FORMS, PRESET ANCHORS MAY BE NECESSARY IN THE PRESTRESSED CONCRETE GIRDER.

THE TOP SURFACE OF THE GIRDER, EXCLUDING THE OUTSIDE 4'', SHALL BE RAKED TO A DEPTH OF $\frac{1}{4}$

WHEN DRAPED STRANDS ARE DETAILED, THE LONGITUDINAL LOCATION OF THE HOLD DOWN DEVICES SHALL BE WITHIN 6" OF THE LOCATION SHOWN AND THE CENTER OF GRAVITY OF THE GROUP OF DRAPED STRANDS SHALL BE LOCATED WITHIN $\frac{1}{2}$ " of the theoretical LOCATION SHOWN.

A 2'' \times 2'' CHAMFER IS ALLOWED AT THE INTERSECTION OF THE WEB AND THE BOTTOM FLANGE OF THE 63" AND 72" MODIFIED BULB TEES ONLY.

THE CONTRACTOR HAS THE OPTION TO PROVIDE,AT NO ADDITIONAL COST TO THE DEPARTMENT,2 ADDITIONAL STRANDS AT THE TOP OF THE GIRDER TO FACILITATE TYING OF THE REINFORCING STEEL. THESE STRANDS SHALL BE PULLED TO A LOAD OF 4500 lbs. end of

3'-7"

C //

→ ◄

1<u>7⁄8</u>″ |

<u>1³/₄"</u>

2'-2"

3 SPA.

@ 4"

 $\frac{2^{1}/8^{"}}{1}$

35⁄8″

¥ S7-(TYP_) 3¹/2″

21/4 "

/-³⁄₄″∅X 5″ Anchor studs GIRDER S _____ 4" 8" 4" പ \mathbb{Z}_4 - *Δ* ′′′ [|] $0\frac{3}{4}$ \circ _____

— 🕻 GDR.

_____3 SPA. ______ 2″

STRUCTURAL STEEL NOTES
ALL INTERMEDIATE DIAPHRAGM STEEL AND CONNECTOR PLATES SHALL BE AASHTO M270 GRADE 50 OR APPROVED EQUAL.
TENSION ON THE ASTM A325 BOLTS THROUGH THE ANGLE MEMBER SHALL BE CALIBRATED USING DIRECT TENSION INDICATOR WASHERS IN ACCORDANCE WITH THE STANDARD SPECIFICATIONS.
TENSION ON THE ASTM A449 BOLTS THROUGH THE GIRDER WEB SHALL BE SNUG TIGHTENED FOLLOWED BY AN ADDITIONAL $^{1}\!\!/_{4}$ TURN.
THE PLATES, BENT PLATES, AND ANGLES SHALL BE GALVANIZED OR METALLIZED IN ACCORDANCE WITH THE STANDARD SPECIFICATIONS. FOR THERMAL SPRAYED COATINGS (METALLIZATION), SEE SPECIAL PROVISIONS.
FOR METALLIZATION, APPLY AN 8 MIL THICK 99.99 PERCENT ZINC (W-Zn-1) THERMAL SPRAYED COATING WITH A 0.5 MIL THICK SEAL COAT TO ALL STEEL DIAPHRAGM SURFACES IN ACCORDANCE WITH THE THERMAL SPRAYED COATINGS SPECIAL PROVISION AND SECTION 442 OF THE STANDARD SPECIFICATIONS.
GALVANIZE THE HIGH STRENGTH BOLTS, NUTS, WASHERS AND DIRECT TENSION INDICATORS IN ACCORDANCE WITH THE STANDARD SPECIFICATIONS.
USE AN ASTM F436 HARDENED WASHER WITH STANDARD AND SLOTTED HOLES UNDER EACH BOLT HEAD AND NUT.
FOR BOLTS THROUGH THE GIRDER WEB, PROVIDE SUFFICIENT LENGTH OF THREADS ON ALL BOLTS TO ACCOMMODATE WASHERS AND THE THICKNESS OF CONNECTING MEMBER PLUS AT LEAST $\frac{1}{4}$ PROJECTION BEYOND THE NUT.
INTERMEDIATE DIAPHRAGM ASSEMBLY SHALL COMPLY WITH SECTION 1072 OF THE STANDARD SPECIFICATIONS.
SUBMIT TWO SETS OF WORKING DRAWINGS FOR THE INTERMEDIATE DIAPHRAGM ASSEMBLY FOR REVIEW,COMMENTS AND ACCEPTANCE. AFTER REVIEW,COMMENTS,AND ACCEPTANCE,SUBMIT SEVEN SETS FOR DISTRIBUTION.
IN THE EXTERIOR BAYS,PLACE TEMPORARY STRUTS BETWEEN PRESTRESSED GIRDERS ADJACENT TO THE STEEL DIAPHRAGMS.STRUTS SHALL REMAIN IN PLACE 3 DAYS AFTER CONCRETE IS PLACED.

THE COST OF THE STEEL DIAPHRAGMS AND ASSEMBLIES SHALL BE INCLUDED IN THE UNIT PRICE BID FOR PRESTRESSED CONCRETE GIRDERS.

TABLE

GIRDER TYPE	DIM ``A''	DIM ``B''	DIM ``C''	DIM ``L''
72" BULB TEE	2'-2"	1′-4 ³ ⁄8″	1′-4 ³ ⁄8″	4'-2''

R-5605 PROJECT NO.____ TRANSYLVANIA COUNTY STATION: 36+73.00 -L-

	SEAL 14309		DEPA Pf	RTMENT S INT STEEL FOR MODIF RESTRE	TAN TAN TER ER ESS GIF	NORTH CAR TRAN ALEIGH NDAR MEDI IAPH 3'' & 0 BU ED C RDER	olina NSPORTA D EATE IRAGMS 72'' LB TEE CONCRE S	tion <u>-</u> TE
Craig	- CNGINEER	REVISIONS			SHEET NO. S-9			
SURVEYORS SE No. C-1154 OAD STREET ROLINA 28801	DocuSigned by:	1 1	DI:	DATE:	3	BI:	DATE:	TOTAL
828) 254-4562	Steven A. Campbell 12/21/2015 5BCF5BA0606342E	2						51 (SUT 3)
					JIL	J. INU		

TOP OF CAP

ASSEMBLED BY : CHECKED BY :	PFC CMT	DATE : DATE :	8/15 8/15
DRAWN BY : EEM CHECKED BY : VAP	2/97 2/97	REV.5/1/06 REV.10/1/11 REV.6/13	TLA/GM MAA/GM AAC/MAA

SECTION E-E

TYPICAL SECTION OF ELASTOMERIC BEARINGS

E5 (20 REQ'D) PLAN VIEW OF ELASTOMERIC BEARING

NUIES

ALL SURFACES OF BEARING PLATES SHALL BE SMOOTH AND STRAIGHT.

THE ELASTOMER IN THE STEEL REINFORCED BEARINGS SHALL HAVE A SHEAR MODULUS OF 0.160 KSI, IN ACCORDANCE WITH AASHTO M251.

FOR STEEL REINFORCED ELASTOMERIC BEARINGS, SEE SPECIAL PROVISIONS.

+

NOTES

BAR TYPES							
$\frac{1'-0^{1}/2''}{8^{7}/6''}$							
101/2" 61/2" 21-63/" 53	1'-9 ³ /4" S5		2'-7" S3 "/4" 1'-10" S5 1'-10"	<u>S3</u> <u>S5</u>			
ALL B	AR DI	MENSI	ONS AF	RE OUT TO) OUT		
					— 		
		NEIE (JARKIE Type	IFNCTU	WETCUT		
DAN		JILE					
* S1	230	#5	1	4′-7″	1101		
₩ S2	230	#5	2	7′-0″	1681		
* S3	4	#5	3	4'-2"	18		
∗ S4	4	#5	STR	4'-0"	17		
∗ S5	8	#5	3	3′-5″	29		
* S6	8	#5	STR	3'-3"	28		
₩ B1	88	#5	STR	29'-8"	2725		
* EPOXY	COAT	ED	-,				
KEINF		U SIEE	<u> </u>	5,577	LB2.		
CONCRET	A CON	UKEIE Died i			U. IUS. TN FT		
CUNCKEI	E DARI	VIEK F	VATE	240 L	IN. F .		

WITH AASHTO M111. BOLTS SHALL CONFORM TO THE REQUIREMENTS OF ASTM A307 AND NUTS SHALL CONFORM TO THE REQUIREMENTS OF AASHTO M291. BOLTS, NUTS AND WASHERS SHALL BE GALVANIZED. (AT THE CONTRACTOR'S OPTION, STAINLESS STEEL BOLTS, NUTS AND WASHERS MAY BE USED AS AN ALTERNATE FOR THE $\frac{7}{8}$ " Ø GALVANIZED BOLTS, NUTS AND WASHERS. THEY SHALL CONFORM TO OR EXCEED THE MECHANICAL REQUIREMENTS OF ASTM A307. THE USE OF THIS ALTERNATE SHALL BE APPROVED BY THE ENGINEER.)

THE GUARDRAIL ANCHOR ASSEMBLY IS REQUIRED AT ALL POINTS WHERE APPROACH

GUARDRAIL IS TO BE ATTACHED TO THE END OF BARRIER RAIL.FOR POINTS OF ATTACHMENT, SEE SKETCH.

AFTER INSTALLATION, THE EXPOSED THREAD OF THE BOLT SHALL BE BURRED WITH A SHARP POINTED TOOL.

THE COST OF THE GUARDRAIL ANCHOR ASSEMBLY SHALL BE INCLUDED IN THE UNIT CONTRACT PRICE BID FOR CONCRETE BARRIER RAIL.

THE 1 $\frac{1}{4}$ " \varnothing holes shall be formed or drilled with a core bit. Impact tools WILL NOT BE PERMITTED. ANY CONCRETE DAMAGED BY THIS WORK SHALL BE REPAIRED TO THE SATISFACTION OF THE ENGINEER.

THE C6 X 8.2 RUBRAIL IS TO BE ADHESIVELY ANCHORED TO THE RAIL USING THREE $\frac{3}{4}$ " Ø X 6" BOLTS WITH WASHERS. LEVEL ONE FIELD TESTING IS REQUIRED, AND THE YIELD LOAD OF THE $\frac{3}{4}$ " Ø BOLT IS 12 KIPS. FOR ADHESIVELY ANCHORED ANCHOR BOLTS OR DOWELS, SEE STANDARD SPECIFICATIONS. SEE ROADWAY STANDARD 862.03 FOR DETAILS AND LOCATION OF THE RUBRAIL.

NOTES

THE GUARDRAIL ANCHOR ASSEMBLY SHALL CONSIST OF A $\frac{1}{4}$ " HOLD-DOWN PLATE AND 4 - 7/8" Ø BOLTS WITH NUTS AND WASHERS, RUBRAIL, AND ADHESIVELY ANCHORED BOLTS.

THE HOLD-DOWN PLATE SHALL CONFORM TO AASHTO M270 GRADE 36. AFTER FABRICATION, THE HOLD-DOWN PLATE SHALL BE HOT-DIP GALVANIZED IN ACCORDANCE

SKETCH SHOWING POINTS OF ATTACHMENTS

* DENOTES GUARDRAIL ANCHOR ASSEMBLY

R-5605

PROJECT NO. TRANSYLVANIA COUNTY 36+73 00 -1

STATION:	36 + 13.00	

STATE OF NORTH CAROLINA DEPARTMENT OF TRANSPORTATION RALEIGH

STANDARD GUARDRAIL ANCHORAGE FOR BARRIER RAIL

+

AT THE CONTRACTOR'S OPTION, METAL RAIL MAY BE EITHER ALUMINUM OR GALVANIZED STEEL IN ACCORDANCE WITH THE REQUIREMENTS OF THE GENERAL NOTES AND THE FOLLOWING SPECIFICATIONS FOR THE ALTERNATE MATERIALS; HOWEVER, THE CONTRACTOR WILL BE REQUIRED TO USE THE SAME RAIL MATERIAL ON ALL STRUCTURES ON THE PROJECT FOR WHICH METAL RAIL IS DESIGNATED.

POINT COLD DRIVEN AS PER DRAWING. MATERIAL FOR SHIMS TO BE ASTM B209 ALLOY 6061-T6.

MATERIAL AND GALVANIZING ARE TO CONFORM TO THE FOLLOWING SPECIFICATIONS: POST, POST BASES, RAILS, EXPANSION BARS AND CLAMP BARS : AASHTO M270 GRADE 36 STRUCTURAL STEEL -GALVANIZED TO AASHTO M111. RIVETS: RIVETS SHALL MEET THE REQUIREMENTS OF ASTM A502 FOR GRADE 1 RIVETS. THE CUT ENDS OF GALVANIZED STEEL RAILING, AFTER GRINDING SMOOTH SHALL BE GIVEN TWO COATS OF ZINC RICH PAINT MEETING THE REQUIREMENTS OF FEDERAL SPECIFICATION MIL-P-26915 USAF TYPE 1, OR OF FEDERAL SPECIFICATIONS TT-P-641. SHIMS: SHIMS SHALL MEET THE REQUIREMENTS OF ASTM A570 FOR GRADE 33 OR A611 FOR GRADE C AND SHALL BE GALVANIZED IN ACCORDANCE WITH AASHTO M111. RAIL CAPS: RAIL CAPS SHALL MEET THE REQUIREMENTS OF ASTM A570 FOR GRADE 33 OR A611 FOR GRADE C AND SHALL BE GALVANIZED IN ACCORDANCE WITH AASHTO M111.

RAILING SHALL BE CONTINUOUS FROM END POST TO END POST OF BRIDGE. EACH JOINT IN RAIL LENGTH SHALL BE SPLICED AS DETAILED. PANEL LENGTHS OF RAIL SHALL BE ATTACHED TO A MINIMUM OF THREE POSTS. PLACE ONE JOINT SPLICE JUST BEYOND THE 3RD RAIL POST FROM EACH END, TYPICALLY 14' FROM THE END. PLACE OTHER JOINTS AS NEEDED. FOR END OF RAIL TO CLEAR FACE OF CONCRETE END POST DIMENSION, SEE STANDARD NO. BMR7. CAP SCREWS SHALL BE ASTM F593 ALLOY 305 STAINLESS STEEL. WASHERS FOR RAIL ATTACHMENT SHALL MEET THE REQUIREMENTS OF ASTM F844 EXCEPT THEY SHALL BE MADE FROM ALLOY 304 STAINLESS STEEL. CERTIFIED MILL REPORTS ARE REQUIRED FOR RAILS AND POSTS. SHOP INSPECTION IS NOT REQUIRED. METAL RAIL POSTS SHALL BE SET NORMAL TO CURB GRADE. METHOD OF MEASUREMENT FOR METAL RAILS: FOR LENGTH OF METAL RAILS TO BE PAID FOR, SEE THE STANDARD SPECIFICATIONS.

CURVED RAIL USAGE: WHERE RAILS ARE TO BE USED ON BRIDGES ON HORIZONTAL AND/OR VERTICAL CURVATURE THE CONTRACTOR MAY, AT HIS OPTION, HAVE THE REQUIRED CURVATURE IN THE RAIL FORMED IN THE SHOP OR IN THE FIELD. IN EITHER EVENT, THE RAIL SHALL CONFORM WITHOUT BUCKLING OR KINKING TO THE REQUIRED CURVATURE IN A UNIFORM MANNER ACCEPTABLE TO THE ENGINEER. TO INSURE FUTURE IDENTIFICATION OF THE FABRICATOR, A PERMANENT IDENTIFYING MARK SHALL BE PLACED ON EACH POST. THE METHOD OF MARKING AND LOCATION SHALL BE SUCH THAT IT DOES NOT DETRACT FROM THE APPEARANCE OF THE POST, BUT REMAIN VISIBLE AFTER RAIL PLACEMENT. SHIMS SHALL BE USED AS NECESSARY FOR POST ALIGNMENT. ALLOY 6351-T5 MAY BE SUBSTITUTED FOR ALLOY 6061-T6 WHERE APPLICABLE. MINOR VARIATIONS IN DETAILS OF METAL RAIL WILL BE CONSIDERED. DETAILS OF SUCH VARIATIONS, IF DESIRED, SHALL BE SUBMITTED FOR APPROVAL.

3 - 1'' Ø HOLES —,

 \bigcirc

 $1^{1/4}$

ALUMINUM RAILS

MATERIAL FOR POSTS, BASES AND RAILS, EXPANSION BARS AND CLAMP BARS SHALL BE ASTM B221 ALLOY 6061-T6. MATERIAL FOR RIVETS SHALL BE ASTM B316 ALLOY 6061-T6. RIVETS SHALL BE STANDARD BUTTON HEAD AND CONE

THE BASE OF RAIL POSTS, OR ANY OTHER ALUMINUM SURFACE IN CONTACT WITH CONCRETE SHALL BE THOROUGHLY COATED WITH AN ALUMINUM IMPREGNATED CAULKING COMPOUND OF APPROVED QUALITY.

GALVANIZED STEEL RAILS

GENERAL NOTES

PAY LENGTH = ____225 LIN.FT.

NGTH =225 LIN.FT.		NINH CARO
Prepared in the Office of:	Mattern & Craig consulting engineers • surveyors FIRM LICENSE No. C-1154 12 BROAD STREET ASHEVILLE, NORTH CAROLINA 28801 (828) 254-2201 - FAX (828) 254-4562	SEAL 14309 Docusigned by: Steven A. Campbell 12/21/2015
DRILL & COUNTERBORE FOR 3%" Ø [16 THREAD] CAP SCREW	PROJECT NO. TRANSYL	R-5605 VANIA COUNTY
	STATION:	36+73.00 -L-
$\begin{array}{c c} & & & & \\ & & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & & \\ & & & \\ & & & \\ & & & \\ & & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & & \\ & & & \\ $	DEPARTMENT	OF NORTH CAROLINA OF TRANSPORTATION RALEIGH
	ST	ANDARD
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	3 BAR I	METAL RAIL
\rightarrow Δ N		
	REVISI NO. BY: DATE: M 1 2	EONS SHEET NO. NO. BY: DATE: S-13 3 TOTAL SHEETS 4 51
		STD. NO. BMR5

THE COST OF THE STANDARD CLAMP BARS AND CAP SCREWS USED IN THE METAL RAIL TO END POST CONNECTION SHALL BE INCLUDED IN THE UNIT CONTRACT PRICE BID FOR LINEAR FEET OF 3 BAR METAL RAIL.

THE $\frac{3}{4}$ '' STRUCTURAL CONCRETE INSERT WITH BOLT SHALL BE ASSEMBLED IN THE SHOP.

THE COST OF THE $\frac{3}{4}$ " STRUCTURAL CONCRETE INSERT ASSEMBLY, AND THE $\frac{1}{2}$ " plates complete in place shall be included in the various pay items.

THE CONTRACTOR, AT HIS OPTION, MAY USE AN ADHESIVE BONDING SYSTEM IN LIEU OF THE STRUCTURAL CONCRETE INSERT EMBEDDED IN THE END POST. IF THE ADHESIVE BONDING SYSTEM IS USED, THE $\frac{3}{4}$ " Ø X 15%" BOLT WITH WASHER SHALL BE REPLACED WITH A $\frac{3}{4}$ " Ø X 6 $\frac{1}{2}$ " BOLT AND 2" O.D.WASHER. ALL SPECIFICATIONS THAT APPLY TO THE $\frac{3}{4}$ " Ø X 15%" BOLT SHALL APPLY TO THE $\frac{3}{4}$ " Ø X 6 $\frac{1}{2}$ " BOLT. FIELD TESTING OF THE ADHESIVE BONDING SYSTEM IS NOT REQUIRED.

THE STRUCTURAL CONCRETE INSERT ASSEMBLY SHALL CONSIST OF THE FOLLOWING COMPONENTS:

- SHALL HAVE A MINIMUM LENGTH OF THREADS OF $1^{1}/_{2}$ ".

NOTES

METAL RAIL TO END POST CONNECTION

THE METAL RAIL TO END POST CONNECTION SHALL CONSIST OF THE FOLLOWING COMPONENTS:

A. $\frac{1}{2}$ " plates shall conform to aashto m270 grade 36 and shall be galvanized after fabrication.

B. 3/4" STRUCTURAL CONCRETE INSERT SHALL HAVE A WORKING LOAD SHEAR CAPACITY OF 4800 LBS. THE

C. CAP SCREWS FOR RAIL ATTACHMENT TO ANGLE SHALL CONFORM TO THE REQUIREMENTS OF ASTM F593 ALLOY 305 STAINLESS STEEL. CAP SCREWS TO BE CENTERED IN SLOTS AT 60°F. WASHERS FOR RAIL ATTACHMENT SHALL MEET THE REQUIREMENTS OF ASTM F844 EXCEPT THEY SHALL BE MADE FROM ALLOY 304 STAINLESS STEEL.

NOTES

STRUCTURAL CONCRETE INSERT

A. FERRULES SHALL BE MADE FROM STEEL MEETING THE REQUIREMENTS OF AASHTO M169, GRADE 12L14 AND

B. $1 - \frac{3}{4}$ " Ø X $1\frac{5}{8}$ " BOLT WITH WASHER.BOLT SHALL CONFORM TO THE REQUIREMENTS OF ASTM A307. BOLT AND WASHER SHALL BE GALVANIZED. AT THE CONTRACTORS OPTION, STAINLESS STEEL BOLT AND WASHER MAY BE USED AS AN ALTERNATE FOR THE $\frac{3}{4}$ " Ø X $1\frac{5}{8}$ " GALVANIZED BOLT AND WASHER. THEY SHALL CONFORM TO OR EXCEED THE MECHANICAL REQUIREMENTS OF ASTM A307. THE USE OF THIS ALTERNATE

C. WIRE STRUT SHOWN IN THE CONCRETE INSERT ASSEMBLY DETAIL IS THE MINIMUM ALLOWABLE SIZE AND SHALL HAVE A MINIMUM TENSILE STRENGTH OF 100,000 PSI. AS AN OPTION, A $\frac{7}{16}$ wire strut with A MINIMUM TENSILE STRENGTH OF 90,000 PSI IS ACCEPTABLE.

	R.P.V Contact	N.(TYP.ALL + Points)	CLOSED-END FERRULE
		FERRULE 	APPROX. 4"
	P	LAN ELEV	ATION_
	ST	RUCTURAL_CO	DNCRETE
	*	EACH WELDED ATTACHMEN	NT OF WIRE TO
		FERRULE SHALL DEVELOP STRENGTH OF THE WIRE.	P THE TENSILE
DE FROM AND		PROJECT NO	R-5605
(2)		TRANSYLV,	ANIA_COUNTY
		STATION: 36	+73.00 -L-
		SHEET 3 OF 3	
		STATE OF NO DEPARTMENT OF RAL	RTH CAROLINA TRANSPORTATION LEIGH
		STAN	IDARD
	SEAL	3 bar me	TAL RAIL
Craig	14309	REVISIONS	SHEET NO.
• SURVEYORS INSE No. C-1154 BROAD STREET	DocuSigned by:	NO. BY: DATE: NO.	BY: DATE: S-15 TOTAL SHEETS
X (828) 254-4562	Steven A. Campbell 12/21/2015	2 4	51
		ST[D.NO.BMR7

FIRM LIG

\$\$\$\$USERNAME\$\$\$

NOTES

THE GUARDRAIL ANCHOR ASSEMBLY SHALL CONSIST OF A $\frac{1}{4}$ " hold down plate and 7 - $\frac{7}{8}$ " Ø bolts with nuts and washers.

THE HOLD-DOWN PLATE SHALL CONFORM TO AASHTO M270 GRADE 36. AFTER FABRICATION, THE HOLD-DOWN PLATE SHALL BE HOT-DIP GALVANIZED IN ACCORDANCE WITH AASHTO M111.

BOLTS SHALL CONFORM TO THE REQUIREMENTS OF ASTM A307 AND NUTS SHALL CONFORM TO THE REQUIREMENTS OF AASHTO M291. BOLTS, NUTS AND WASHERS SHALL BE GALVANIZED.AT THE CONTRACTOR'S OPTION, STAINLESS STEEL BOLTS, NUTS AND WASHERS MAY BE USED AS AN ALTERNATE FOR THE $\frac{7}{8}$ " Ø GALVANIZED BOLTS, NUTS AND WASHERS.THEY SHALL CONFORM TO OR EXCEED THE MECHANICAL REQUIREMENTS OF ASTM A307. THE USE OF THIS ALTERNATE SHALL BE APPROVED BY THE ENGINEER.

THE GUARDRAIL ANCHOR ASSEMBLY IS REQUIRED AT ALL POINTS WHERE APPROACH GUARDRAIL IS TO BE ATTACHED TO THE END OF THE PARAPET. FOR POINTS OF ATTACHMENT, SEE SKETCH.

AFTER INSTALLATION, THE EXPOSED THREAD OF THE BOLT SHALL BE BURRED WITH A SHARP POINTED TOOL.

THE COST OF THE GUARDRAIL ANCHOR ASSEMBLIES WITH BOLTS, NUTS AND WASHERS COMPLETE IN PLACE, SHALL BE INCLUDED IN THE VARIOUS PAY ITEMS.

THE VERTICAL REINFORCING BARS MAY BE SHIFTED SLIGHTLY IN THE END POST TO CLEAR ASSEMBLY BOLTS.

THE 1 $\frac{1}{4}$ " Ø HOLES SHALL BE FORMED OR DRILLED WITH A CORE BIT. IMPACT TOOLS WILL NOT BE PERMITTED. ANY CONCRETE DAMAGED BY THIS WORK SHALL BE REPAIRED TO THE SATISFACTION OF THE ENGINEER.

SKETCH SHOWING POINTS OF ATTACHMENT

* LOCATION OF GUARDRAIL ATTACHMENT

R-5605 PROJECT NO. TRANSYLVANIA COUNTY STATION: 36+73.00 -L-

		STATE OF NORTH CAROLINA DEPARTMENT OF TRANSPORTATION RALEIGH STANDARD				
	SEAL 14309	GUARDRAIL ANCHORAGE DETAILS FOR METAL RAILS	E			
Craig	DocuSigned by: Steven A. Campbell 12/21/2015	REVISIONS SHEET	NO. 7			
S • SURVEYORS ENSE No. C-1154 BROAD STREET CAROLINA 28801 AX (828) 254-4562		NO. BY: DATE: NO. BY: DATE: S-1 1 3 3 TOTAL SHEET SHEET S1 2 4 51 S1 S1 S1 S1	L L IS			
	5BCF5BA0606342E	(SHT 4) STD. NO. GRA3				

\$\$\$\$\$\$SYSTIM
\$\$\$\$\$\$\$\$\$\$
\$\$\$USERNAME

SUPERSTRUCTURE REINFORCING STEEL LENGTHS ARE BASED ON THE FOLLOWING MINIMUM SPLICE LENGTHS									
BAR SIZE	SUPERSTE Except A Slabs, P And Barr	RUCTURE Approach Arapet, Ier Rail	APPROAC	PARAPET AND BARRIER					
	EPOXY COATED	UNCOATED	EPOXY COATED	UNCOATED	RAIL				
#Д	2'-0"	1'-9"	2'-0"	1'-9"	2'-9"				
#5	2'-6"	2'-2"	2'-6"	2'-2"	3'-5"				
#6	3'-0"	2'-7"	3'-10"	2'-7"	4'-4''				
#7	5'-3"	3'-6"							
#8	6'-10"	4'-7"							

DocuSign Envelope ID: 1DA609DF-BDE5-433B-B928-49D414797B62

+

+

SEAL

14309

Stever A. Campbell 12/21/2015

DocuSigned by:

-5BCE5BA0606342

YPES		В	ILL	OF	ΜΑΤ	ERIAL	
		BAR	NO.	SIZE	TYPE	LENGTH	WEIGHT
	*	A3 A4	412	#5	STR STR	40'-0"	17201
10″	*	B3	232	#4	STR	32'-0"	4960
	*	B4 B5	48	#5	STR	42'-0"	2105
		B6	216	#5	STR	42'-0"	9469
	*	B7	36	#4	STR	32'-0"	770
	*	D1	144	#4	STR	0'-10"	81
	*	G1	242	#4	STR	6'-2"	997
		H1 H2	112 112	#5 #7	1 STR	12'-6" 10'-0"	1462 2292
<u> </u>		K1	56	#4	STR	24'-0"	898
		К2	16	#4	STR	5′-10″	63
		КЗ	80	#4	STR	7'-5"	397
▲ ▲		K4 K5	16	#4 #⊿	SIR	4'-5" 4'-1"	48
		K5 K6	40	#4	STR	4'-11"	132
23		K7	8	#4	STR	3'-5"	19
		K 8	16	#4	STR	2'-8"	29
		S1	104	#4	2	14'-7"	1014
	*	S3	104	#4	3	11'-9"	817
	*	<u> </u>	80	#4 #4	3	9'-8"	517
N 7			10				110
ARE OUT TO OUT	*	DENOTE	ES EPC)XY CO	ATED F	REINF.STE	EL
	י ר		· / - · ·				
SILL OF MATERIAL—	┤┟	GROC	$V \perp N$	IG BI	$\exists TDC$	GE FLO	ORS
FORCING EPOXY COATED		APPROA	CH SL	ABS		2,900 S	Q.FT.
STEEL STEEL		BRIDGE	DECK			<u>6,960</u> S	Q.FT.
_BS.) (LBS.)	L	IOIAL				9,860 S	Q.FI.
	-						
	-						
	-						
5,329 32,825]						
HE SIDEWALK ON THE NORTH SIDE	-						
OR POUR 6 IS FOR THE SIDEWALK UCTURE.	`						
AND THE END POSTS FOR							
UDED.							
RTION OF THE END BENT WINGS]						
RED WITH THE SUPERSTRUCTURE.							
	P		ст і		F	R - 56()5
	Ι				· · · · · ·		
		IR	$\frac{1}{1}$	YLV	AN.	<u>LA</u> CO	UNTY
	C	т <u>л</u> т т		36	3 + 7	3 00	_ _
	2	IAI					
	[
		DEPAR	TMEN	state of T OF	NORTH CAF	ROLINA SPORTAT	ION
				RAI	_EIGH		
			SUF	PERS	TRUC	TURE	
				$\cap \square$			ΛI
		ΒŢ			IVI A		Ц
C C FESSION		&	PO	UR	SE(JUENC	È

		REVIS	SIO	NS		SHEET NO.							
NO.	BY:	DATE:	NO.	BY:	DATE:	S-18							
ſ			ඔ			TOTAL SHEETS							
\mathbb{Z}			4			51							
	STD. NO. BOM2												

DRAWN BY :	PFC	DATE :8/15
CHECKED BY	:CMT	DATE : <u>8/15</u>

DocuSign Envelope ID: 1DA609DF-BDE5-433B-B928-49D414797B62

+

+

\$\$\$\$USERNAME\$\$\$

+

+

TYPES		ΒI	LL O	F MA	ATERIA					
		FOF	A ON	IE E	ND BE	ENT				
	BAR	NO.	SIZE	TYPE	LENGTH	WEIGHT				
	B1	16	#10	1	48'-10"	3376				
	B2	40	#4	STR	24′-4″	651				
НК. НК.	Β3	24	#4	STR	2'-11"	47				
(4)										
	H1	32	#5	2	12'-6"	418				
	H2	32	#7	STR	10'-0"	655				
I-J LAP										
	S1	84	#4	3	10'-11"	613				
	S2	84	#4	4	3'-8"	206				
	S3	72	#4	5	6'-6"	313				
((5))	V1	120	#4	STR	6'-0"	481				
	V2	68	#5	STR	9'-5"	669				
1'-8"Ø	REINFORCING STEEL (FOR ONE END BENT) 7,429 LBS									
	CLASS A CONCRETE BREAKDOWN (FOR ONE END BENT)									
	POUR #1 CAP,LOWER PART 57.3 C.Y OF WINGS & COLLARS									
ONS ARE OUT TO OUT										
	•									
END BENT No. 2										
HP 12 X 53 STEEL PILES										
NO:18 LIN.FT.= 475	TOTAL	CLAS	SS A C	ONCRE	TE	57.3 C.Y.				
1	I									

\$\$\$USERNAME\$\$\$

NOTES : FOR BERM WIDTH DIMENSIONS, SEE GENERAL DRAWING.

ESTIMATED QUANTITIES												
E @ 6+73.00 -L-	RIP RAP CLASS II (2'-0"THICK)	GEOTEXTILE For drainage										
	TONS	SQUARE YARDS										
BENT 1	114	127										
BENT 2	82	92										

R-5605 PROJECT NO.____ TRANSYLVANIA COUNTY STATION: <u>36+73.00</u> -L-

\$\$\$\$USERNAME\$\$\$\$

STD. NO. BAS5 (SHT 2)

SECTION A-A

DRAWN BY :PEC	DATE : <u>8/15</u>
Checked by :CMT	DATE : <u>8/15</u>

+

+

\$\$\$\$\$\$YSTIME\$\$\$\$ \$\$\$\$\$\$\$\$\$\$\$\$\$\$\$\$ \$\$\$\$USERNAME\$\$\$

BAR TYPES		BIL	L OF	MA	TERIAL	-			
2'-0"	SIDEWALK For one approach slab (4 req'd)								
	BAR	NO.	SIZE	TYPE	LENGTH	WEIGHT			
	₩ B1	5	#4	STR	24'-8"	83			
	* G1	26	#4	STR	5′-0″	87			
	米 U1	10	#4	1	3′-6″	24			
	* EPOXY COATED REINFORCING STEEL LBS. 194								
THENCTONE ARE OUT TO OUT									
IMENSIUNS ARE UUI IU UUI.	<u>ULASS</u>	AA CO	UNCRE I	Ł	C.Y.	5.5			

NOTES

SIDEWALK ON APPROACH SLAB SHALL BE PAID FOR IN BRIDGE APPROACH SLAB PAY ITEM. THE #4 U1 BARS MAY BE PUSHED INTO GREEN CONCRETE AFTER THE APPROACH SLAB HAS BEEN FINISHED.

		PROJEC <u>TRA</u> STATIC	CTNO. ANSYL DN:	<u> </u>	R NI -73	<u>-560</u> <u>A</u> co .00 -	5 UNTY -L-					
STATE OF NORTH CAROLINA DEPARTMENT OF TRANSPORTATI RALEIGH STANDARD												
	SEAL 14309	BRIDGE APPROACH SLAB SIDEWALK DETAILS										
raig	WGINEER WGINEER		REVIS	SIONS			SHEET NO. S-25					
₹VEYORS 10. C-1154) STREET INA 28801 254-4562	Docusigned by: Steven A. Cambell 12/21/2015	<u>1</u>	DATE:	NU. 1 3 4]		DATE:	TOTAL SHEETS 51					
	-5BCF5BA0606342E						1					

		PROJEC <u>TRA</u> STATIC SHEET 2	CTNO. <u>ANSYL</u> DN: of4	F VAN 50+83	<u>R-56C</u> <u>A</u> co 3.00) <u>5</u>)UNTY -L-
	SEAL 14309	DEPA FOR RIV O` BETW	STAT RTMENT GENEF BRID ER VIL VER DA (ORIGI VEN U	OF NORTH CAR OF TRAI RALEIGH GE ON LAGE VIDSO NAL CH S 64 A	olina NSPORTA DAVID CONNE(N RIVE HANNEL ND SR	SON SON CTOR ER) 1512
	A. CAMPILITY	NO. BY:	REVIS DATE:	SIONS NO. BY:	DATE:	SHEET NO. S-27
DE NO. C-1154 DAD STREET ROLINA 28801 328) 254-4562	DocuSigned by: Steven A. Campbell 12/21/2015	1		3 4		total sheets 51

RAWN BY: PFC DATE: 08/15
HECKED BY: CMT DATE: 08/15

LUMP SUM

TOTAL

6622

7555

114.6

LUMP SUM

12

	OF MATERIAL														
IFORCING L	G 54" PRESTRESSED CONCRETE GIRDERS		HP 12 X 53 Steel Piles		STEEL PILE POINTS	THREE CONCRETE BAR BARRIER METAL RAIL RAIL		RIP RAP CLASS II (2'-0" THICK)	GEOTEXTILE FOR DRAINAGE	ELASTOMERIC BEARINGS					
LBS.	NO. LIN.FT.		NO.	LIN.FT.	IN.FT. NO. LI		LIN.FT.	TONS	SQ.YDS.	LUMP SUM					
	10	800.83				145.5	160.5			LUMP SUM					
126			14	350	14			238	264						
126			14	385	14			215	239						
1252	10	800.83	28	735	28	145.5	160.5	453	503	LUMP SUM					

FOUNDATION NOTES:

FOR PILES, SEE SECTION 450 OF THE STANDARD SPECIFICATIONS.

PILES AT END BENT NO.1 AND END BENT NO.2 ARE DESIGNED FOR A FACTORED RESISTANCE OF 90 TONS PER PILE.

DRIVE PILES AT END BENT NO.1 AND END BENT NO.2 TO A REQUIRED DRIVING RESISTANCE OF 150 TONS PER PILE.

STEEL H-PILE POINTS ARE REQUIRED FOR ALL STEEL H-PILES AT END BENT NO.1 AND END BENT NO.2. FOR STEEL PILE POINTS, SEE SECTION 450 OF THE STANDARD SPECIFICATIONS.

TESTING PILES WITH THE PDA DURING DRIVING, RESTRIKING, OR REDRIVING MAY BE REQUIRED. THE ENGINEER WILL DETERMINE THE NEED FOR PDA TESTING. FOR PDA TESTING, SEE SECTION 450 OF THE STANDARD SPECIFICATIONS AND FOR PILE DRIVING CRITERIA, SEE PILE DRIVING CRITERIA PROVISION.

OBSERVE A ONE MONTH WAITING PERIOD AFTER CONSTRUCTING THE EMBANKMENT, END BENT AND REINFORCED BRIDGE APPROACH FILL, IF APPLICABLE, BEFORE BEGINNING APPROACH SLAB CONSTRUCTION AT END BENT NOS. 1 AND 2. FOR BRIDGE WAITING PERIODS, SEE ROADWAY PLANS AND SPECIAL PROVISIONS.

		PROJEC <u>TRA</u> Static	CT NO. ANSYL DN:5	F VANI 50+83	<u>-560</u> <u>A</u> co	5 UNTY -L-				
		SHEET 3	OF 4							
	SEAL 14309	STATE OF NORTH CAROLINA DEPARTMENT OF TRANSPORTATI RALEIGH GENERAL DRAWING FOR BRIDGE ON DAVIDSC RIVER VILLAGE CONNECT(OVER DAVIDSON RIVER (ORIGINAL CHANNEL) BETWEEN US 64 AND SR 1								
aia	ENGINEER .		REVIS	IONS		SHEET NO.				
VEYORS 0. C-1154	A. CAMPUNI	NO. BY:	DATE:	NO. BY:	DATE:	5-28				
STREET NA 28801 254-4562	Docusigned by: Steven A. Campbell 12/21/2015	2		জ 4		SHEETS 51				
	5BCE5BA0606342E									

								STRENGTH I LIMIT STATE									SERVICE III LIMIT STATE					чΤЕ		
										MOMENT					SHEAR						MOMENT			
LEVEL		VEHICLE	WEIGHT (W) (TONS)	CONTROLLING LOAD RATING	MINIMUM RATING FACTORS (RF)	TONS = W × RF	LIVE-LOAD FACTORS (Y _{LL})	DISTRIBUTION FACTORS (DF)	RATING FACTOR	SPAN	GIRDER LOCATION	DISTANCE FROM LEFT END OF SPAN (ft)	DISTRIBUTION FACTORS (DF)	RATING FACTOR	SPAN	GIRDER LOCATION	DISTANCE FROM LEFT END OF SPAN (f+)	LIVE-LOAD Factors (Y _{ll})	DISTRIBUTION FACTORS (DF)	RATING FACTOR	SPAN	GIRDER LOCATION	DISTANCE FROM LEFT END OF SPAN (ft)	COMMENT NUMBER
		HL-93 (INVENTORY)	NZA		1.40		1.75	0.805	1.82	78.7′	ES	39.3	0.838	1.40	78.7′	I	11.2	0.80	0.805	1.69	78.7′	ES	39.3	
DESIGN		HL-93 (OPERATING)	NZA		1.87		1.35	0.805	2.36	78.7′	ES	39.3	0.838	1.87	78.7′	I	11.2	NZA						
RATING		HS-20 (INVENTORY)	36.000	2	1.80	64.800	1.75	0.805	2.42	78.7′	ES	39.3	0.838	1.82	78.7′	I	11.2	0.80	0.805	1.80	78.7′	ES	39.3	
		HS-20 (OPERATING)	36.000		2.36	85.061	1.35	0.805	3.14	78.7′	ES	39.3	0.838	2.36	78.7′	I	11.2	NZA						
		SNSH	13.500		5.15	69.525	1.40	0.805	6.93	78.7′	ES	39.3	0.838	5.44	78.7′	I	11.2	0.80	0.805	5.15	78.7′	ES	39.3	
		SNGARBS2	20.000		3.80	76.000	1.40	0.805	5.12	78.7′	ES	39.3	0.838	3.86	78.7′	I	11.2	0.80	0.805	3.80	78.7′	ES	39.3	
	ICLE	SNAGRIS2	22.000		3.58	78.839	1.40	0.805	4.83	78.7′	ES	39.3	0.838	3.58	78.7′	I	11.2	0.80	0.805	3.59	78.7′	ES	39.3	
		SNCOTTS3	27.250		2.56	69.828	1.40	0.805	3.45	78.7′	ES	39.3	0.838	2.71	78.7′	I	11.2	0.80	0.805	2.56	78.7′	ES	39.3	
	С С С	SNAGGRS4	34.925		2.13	74.216	1.40	0.805	2.87	78.7′	ES	39.3	0.838	2.25	78.7′	I	11.2	0.80	0.805	2.13	78.7′	ES	39.3	
	ING	SNS5A	35.550		2.08	73.766	1.40	0.805	2.81	78.7′	ES	39.3	0.838	2.28	78.7′	I	11.2	0.80	0.805	2.08	78.7′	ES	39.3	
		SNS6A	39.950		1.90	75.905	1.40	0.805	2.57	78.7′	ES	39.3	0.838	2.07	78.7′	I	11.2	0.80	0.805	1.90	78.7′	ES	39.3	
LEGAL		SNS7B	42.000		1.81	76.125	1.40	0.805	2.44	78.7′	ES	39.3	0.838	2.03	78.7′	I	11.2	0.80	0.805	1.81	78.7′	ES	39.3	
RATING	С Ш	TNAGRIT3	33.000		2.33	76.725	1.40	0.805	3.13	78.7′	ES	39.3	0.838	2.47	78.7′	I	11.2	0.80	0.805	2.33	78.7′	ES	39.3	
	ZAIL	TNT4A	33.075		2.33	76.899	1.40	0.805	3.14	78.7′	ES	39.3	0.838	2.40	78.7′	I	11.2	0.80	0.805	2.33	78.7′	ES	39.3	
	1 - 1	TNT6A	41.600		1.90	79.040	1.40	0.805	2.56	78.7′	ES	39.3	0.838	2.16	78.7′	I	11.2	0.80	0.805	1.90	78.7′	ES	39.3	
	ST)	TNT7A	42.000		1.90	79.800	1.40	0.805	2.57	78.7′	ES	39.3	0.838	2.12	78.7′	I	11.2	0.80	0.805	1.90	78.7′	ES	39.3	
	TOR (TT)	TNT7B	42.000		1.96	82.425	1.40	0.805	2.64	78.7′	ES	39.3	0.838	1.99	78.7′	I	11.2	0.80	0.805	1.96	78.7′	ES	39.3	
	TRAC	TNAGRIT4	43.000		1.88	80.625	1.40	0.805	2.53	78.7′	ES	39.3	0.838	1.93	78.7′	I	11.2	0.80	0.805	1.88	78.7′	ES	39.3	
	ICK	TNAGT5A	45.000		1.78	79.875	1.40	0.805	2.38	78.7′	ES	39.3	0.838	1.91	78.7′	I	11.2	0.80	0.805	1.78	78.7′	ES	39.3	
	TRL	TNAGT5B	45.000	$\langle 3 \rangle$	1.75	78.750	1.40	0.805	2,36	78.7′	ES	39.3	0.838	1.83	78.7'	Т	11.2	0.80	0.805	1.75	78.7′	ES	393	

END BENT 1

_RFR SUMMARY

ASSEMBLED BY :	PF(C DATE :	8/15
CHECKED BY :	CM	T DATE :	8/15
DRAWN BY : MAA	I/08	REV. II/I2/08RR	MAA/GM
Checked by : GM/DI	2/08	REV. I0/I/II	MAA/GM

DocuSign Envelope ID: 1DA609DF-BDE5-433B-B928-49D414797B62

+

+

END BENT 2

LOAD FACTORS:

DESIGN	LIMIT STATE	γ_{DC}	γ_{DW}
LOAD RATING	STRENGTH I	1.25	1.50
FACTORS	SERVICE III	1.00	1.00

NOTES:

COM

MINIMUM RATING FACTORS ARE BASED ON THE STRENGTH I AND SERVICE III LIMIT STATES. ALLOWABLE STRESSES FOR SERVICE III LIMIT STATE ARE AS Required for design.

		PROJEC <u>TRA</u> STATIC	CT NO ANSYLVAN DN:50+83 of 4	R-560 IA_co 3.00 -	5 UNTY -L-	
		depa LR	state of north ca RTMENT OF TRA RALEIGH STANDA FR SUMMA PRESTRE	RD RD SSED	tion OR	
SEAL 14309						
URVEYORS	A CANNEL A	NO. BY:	DATE: NO. BY:	DATE:	S-29	
AD STREET DLINA 28801 28) 254-4562	Steven A. Campbell 12/21/2015	1 2	 		SHEETS 51	
	5BCF5BA0606342E		STD. NO	D.LRFR1		

DocuSign Envelope ID: 1DA609DF-BDE5-433B-B928-49D414797B62

+

+

Prepared in the Office of: Mattern & Craig CONSULTING ENGINEERS • SURVEYORS FIRM LICENSE No. C-1154 12 BROAD STREET ASHEVILLE, NORTH CAROLINA 28801 (828) 254-2201 - FAX (828) 254-4562

+

			0.5″ 4	ØL.R	.GRAD	E 270) STR	ANDS
					ULTI STRE	MATE NGTH	APP PRES	LIED TRESS
			0.1	53	41,3	00	30,	980
			REINFO	DRCING	STEEL	_ FOR	ONE C	GIRDER
			BAR	NUMBER	SIZE	TYPE 1	LENGTH	WEIGHT
	EXTERIOR	GDR.	SI S1	75 75	# 4 # 1	<u> </u>	10'-8"	534 534
		GDN.	S2	12	#6	1	10'-8''	192
			S3	4	#4	2	9'-1"	24
			S4	64	#4	3	3′-5″	146
			S5	6	#4	2	8′-5″	34
			★ S7	24	#5	STR	3′-8″	92
			S8	4	#4	2	8'-7"	23
			<u>\$9</u>	2	#3	STR	1'-10"	1
	EXTERIOR	GDR.	S10 \$10	2	#5 #5	2	8'-8"	18
	EXTERIOR	GDR.	S10 S11	5	# <u>\</u>	STR	7'-0"	24
	INTERIOR	GDR.	S11 S11	5	# 4	STR	7'-0"	24
			S13	2	#3	STR	1'-4"	1
			* NC)TE: S7	BARS SHA	ALL BE E	BENT BEF	ORE
				SH1 NOT	BE ALL	HEAT BEN OWED.	NDING SP	HALL
					BAR 1	FYPES		
				ALL BAR	DIMENSIO	NS ARE OL	IT-TO-OUT	
					10″			
			S1					
			= =					
							5″ 55	
				→	(1)		7″ S8	
			4					
							4″ 510	
			्र रूप र	$\sqrt{\frac{1}{253/4''}}$		Г		
				Δ"				
~"Ø			м, - , - , - , - , - , - , - , - , - , -	י ר			2	2
ЛЕD			<u> </u>	V			- ×	0 - ,
E.S					/	·		4
				2/16				↓ ↓
				11		· ·	10	
<				× ►		3)	\sim	S S S S
>				.	1'-6"			\sim \sim
								1
			QUA	ANTITI	es fo	r one	GIRD	ER
					REINFORCI	NG 6,000	PSI 0.5	ó″ØL.R.
				-	STEEL	CONC	RETE <u>s</u>	TRANDS
					LB.	1.0	7	40
			EXTERIOR	GIRDER	1089	16	.5	42
							>FD	۰ <u>۲</u>
			N 11 1 K 41					FNCTU
IION						ווו כ - 1″		-10"
IAPHRAGN	1			ڔ	80'-	1	8007	10
∟ UGH 10.								
							5605	
			ЧКОЛF	LCT N	U			
			TR	ANS	ΥLVA		$\cap \cap \cup$	NITY
								INT I
			STAT	ION:	50+	-83°C	\cup $-[$	
					STATE OF NOR	TH CAROLINA		
			DEF	'ar i Mei	NI OF	I KANSP	υκιάτ]	UN
					JIANL	JAKU		
			1	AAS	SHTO -	ГҮРЕ	$\Box \nabla$	
			PRES	TRESS	SED CO	ONCRE	TE GI	RDER
	A LARO		CON	ITINU	OUS F	OR LI	IVE LO	DAD
	RU' NA Z					_		
	14309						<u>.</u>	
	ENGINEER			R	EVISIONS			SHEET NO.
	A. CAMPUT		NO. BY:	DATE	NO. E	BY: [DATE:	5-32 TOTAL
DocuSigned by:	<u>, 12/21/2</u>	015	 ୭		<u>্</u> থ ্র			SHEETS
<u> Steven A. C</u> 5BCF5BA0606342E	ampbell <u> </u>		(公)		<u> </u> じ ~ ㅜ ~			
					SIL	J.NO.	7166 '	SIII.Z)

0	0.1	0.2	0.3	↓ 0	. 4	0.5	0.6	,O.7
							C GIRDER	
	GI	RDER	DIAGRA	AM F	OR	D.L.	DEFLE	CTION

(SEE TABLE FOR GIRDERS)

DEAD LOAD DE	EFLE(CTIO	Ν ΤΑ	BLE	FOR	GIR	DERS	<u> </u>			-
1∕2″∅ LOW RELAXATION			1		GIRDE	RS 1 A	AND 10)	1	1	_
TENTH POINTS	0	.1	.2	.3	<u>.</u> 4	.5	<u>.</u> 6	.7	.8	.9	0
CAMBER (GIRDER ALONE IN PLACE)	0.000	0.049	0.086	0.111	0.126	0.130	0.126	0.111	0.086	0.049	0.000
* DEFLECTION DUE TO SUPERIMPOSED D.L.	0.000	0.020	0.039	0.053	0.062	0.065	0.062	0.053	0.039	0.020	0.000
FINAL CAMBER	0	5/16	9/16	11/16	3/4	13/16	3⁄4	11/16	9/16	5/16	0
1/2" & LOW RELAXATION		Ι			GIRDE	RS 2	AND S)		1	Ι
TENTH POINTS	0	.1	.2	.3	<u>.</u> 4	.5	.6	7	.8	.9	0
CAMBER (GIRDER ALONE IN PLACE)	0.000	0.049	0.086	0.111	0.126	0.130	0.126	0.111	0.086	0.049	0.000
* DEFLECTION DUE TO SUPERIMPOSED D.L.	0.000	0.022	0.042	0.057	0.067	0.070	0.067	0.057	0.042	0.022	0.000
FINAL CAMBER	0	5⁄16	9/16	5/8	11/16	11/16	11/16	5/8	9/16	5/16	0
"∕2" ∅ LOW RELAXATION		1			GIRDE	RS 3	AND 8	}			1
TENTH POINTS	0	.1	.2	.3	.4	.5	.6	7	.8	.9	0
CAMBER (GIRDER ALONE IN PLACE)	0.000	0.049	0.086	0.111	0.126	0.130	0.126	0.111	0.086	0.049	0.000
* DEFLECTION DUE TO SUPERIMPOSED D.L.	0.000	0.023	0.044	0.060	0.070	0.073	0.070	0.060	0.044	0.023	0.000
FINAL CAMBER	0	5/16	1/2	5⁄8	11/16	11/16	11/16	5⁄8	1/2	5/16	0
								,			
72 Ø LOW RELAXATION		1		7		.KS 4	AND (7	0	0	
IENTH PUINTS			•2	 111	<u>.</u> 4			0 111	••	.9	
CAMBER (GIRDER ALONE IN PLACE)	0.000	0.049	0.000		0.120	0.130	0.126		0.000	0.049	0.000
* DEFLECTION DUE TO SUPERIMPOSED D.L.	0.000	0.023	0.044	0.060	0.070	0.073	0.070	0.060	0.044	0.023	0.000
FINAL CAMBER	0	5/16	1/2	5/8	11/16	11/16	11/16	5/8	1/2	5/16	0
1/2" Ø LOW RELAXATION					GTRDF	RS 5					
TENTH POINTS	0	1	2	. 3				,	.8	.9	0
CAMBER (GTRDER ALONE TN PLACE)		0_049	0.086	<u> </u>	0_126	0_130	0_126	0_111		0_049	
* DEFLECTION DUE TO SUPERIMPOSED DI	0_000	0_019	0.036	0_050	0_058	0_061	0_058	0.050	0_036	0_019	0.000
FINAL CAMBER	0	3/2	5/2	3/4	13/16	13/16	13/16	3/4	5/2	3/2	0
	-		, 0	, ¬		/ 10	/ 10	, ¬	/0	, 0	_

* INCLUDES FUTURE WEARING SURFACE ALL VALUES ARE SHOWN IN FEET (DECIMAL FORM), EXCEPT `` FINAL CAMBER '', WHICH IS GIVEN IN INCHES (FRACTION FORM).

ASSEMBLED BY :	PF(C DATE	8/15
CHECKED BY :	CM ⁻	T DATE	8/15
DRAWN BY : ELR Checked By : GRP	11/91 11/91	REV.10/1/11 REV.1/15 REV.2/15	MAA/GM MAA/TMG MAA/TMG

DocuSign Envelope ID: 1DA609DF-BDE5-433B-B928-49D414797B62

+

+

TABLE

END Of GIRDER	ANCHOR STUDS
ي س	
3,4 " P	4" 8" 4" 1'-4"
11/2" 1'-03/4" 8"	
2'2/4"	↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓
	F -

ALL REINFORCING STEEL SHALL BE GRADE 60.

EMBEDDED PLATE ``B-1'' SHALL BE GALVANIZED IN ACCORDANCE WITH THE STANDARD SPECIFICATIONS.

ANCHOR STUDS SHALL CONFORM TO AASHTO M169 GRADES 1010 THROUGH 1020 OR APPROVED EQUAL, AND SHALL MEET THE TYPE "B" REQUIREMENTS OF SUBSECTION 7.3 OF THE ANSI/AASHTO/AWS D1.5 BRIDGE WELDING CODE.

AT ENDS OF GIRDERS TO BE EMBEDDED IN CONCRETE DIAPHRAGMS OR END WALLS, PRESTRESSING STRANDS MAY EXTEND A MAXIMUM OF 2" BEYOND THE GIRDER ENDS. OTHERWISE, PRESTRESSING STRANDS SHALL BE CUT FLUSH WITH THE GIRDER ENDS.

THE TRANSFER OF LOAD FROM THE ANCHORAGES TO THE GIRDER SHALL BE DONE WHEN CONCRETE HAS REACHED A COMPRESSIVE STRENGTH OF NOT LESS THAN 4,800 PSI.

DEPTH OF $\frac{1}{4}$

OF 4500 lbs.

EMBEDDED PLATE ``B-1'' DETAILS FOR AASHTO TYPE IV GIRDER AND 63" & 72" MODIFIED BULB TEES (2 REQ'D PER GIRDER)

DETAIL ``A" (FOR AASHTO TYPE IV GIRDERS)

NOTES

ALL PRESTRESSING STRANDS SHALL BE 7-WIRE LOW-RELAXATION GRADE 270 STRANDS AND SHALL CONFORM TO AASHTO M203 EXCEPT FOR SAMPLING REQUIREMENTS WHICH SHALL BE IN ACCORDANCE WITH THE STANDARD SPECIFICATIONS.

DEPENDING ON THE TYPE OF SYSTEM USED TO SUPPORT THE DECK SLAB FORMS, PRESET ANCHORS MAY BE NECESSARY IN THE PRESTRESSED CONCRETE GIRDER.

THE TOP SURFACE OF THE GIRDER, EXCLUDING THE OUTSIDE 4'', SHALL BE RAKED TO A

THE CONTRACTOR HAS THE OPTION TO PROVIDE, AT NO ADDITIONAL COST TO THE DEPARTMENT, 2 ADDITIONAL STRANDS AT THE TOP OF THE GIRDER TO FACILITATE TYING OF THE REINFORCING STEEL. THESE STRANDS SHALL BE PULLED TO A LOAD

- ¾″ BEVEL	EDGE

SECTION ``F'' (SEE NOTES)

> PROJECT NO. <u>R-5605</u> TRANSYLVANIA COUNTY STATION: <u>50+83.00</u> -L-

STATE OF NORTH CAROLINA DEPARTMENT OF TRANSPORTATION RALEIGH

STANDARD

PRESTRESSED CONCRETE GIRDER CONTINUOUS FOR LIVE LOAD DETAILS

SEAL 14309 A CARO
DocuSigned by:
Steven A. Campbell 12/21/2015

— 5BCF5BA0606342F

		SHEET NO.					
NO.	BY:	DATE:	NO.	BY:	DATE:	S-33	
1			S			TOTAL SHEETS	
2			4			51	
STD. NO. PCG9 (Sht. 3a)							

STRUCTURAL STEEL NOTES ALL INTERMEDIATE DIAPHRAGM STEEL AND CONNECTOR PLATES SHALL BE AASHTO M270 GRADE 50 OR APPROVED EQUAL. TENSION ON THE ASTM A325 BOLTS THROUGH THE CHANNEL MEMBER SHALL BE CALIBRATED USING DIRECT TENSION INDICATOR WASHERS IN ACCORDANCE WITH THE STANDARD SPECIFICATIONS. TENSION ON THE ASTM A449 BOLTS THROUGH THE GIRDER WEB SHALL BE SNUG TIGHTENED FOLLOWED BY AN ADDITIONAL $\frac{1}{4}$ TURN. THE PLATES, BENT PLATES, CHANNELS, AND ANGLES SHALL BE GALVANIZED OR METALLIZED IN ACCORDANCE WITH THE STANDARD SPECIFICATIONS. FOR THERMAL SPRAYED COATINGS (METALLIZATION), SEE SPECIAL PROVISIONS. FOR METALLIZATION, APPLY AN 8 MIL THICK 99.99 PERCENT ZINC (W-Zn-1) THERMAL SPRAYED COATING WITH A 0.5 MIL THICK SEAL COAT TO ALL STEEL DIAPHRAGM SURFACES IN ACCORDANCE WITH THE THERMAL SPRAYED COATINGS SPECIAL PROVISION AND SECTION 442 OF THE STANDARD SPECIFICATIONS. GALVANIZE THE HIGH STRENGTH BOLTS, NUTS, WASHERS AND DIRECT TENSION INDICATORS IN ACCORDANCE WITH THE STANDARD SPECIFICATIONS. USE AN ASTM F436 HARDENED WASHER WITH STANDARD AND SLOTTED HOLES UNDER EACH BOLT HEAD AND NUT. FOR BOLTS THROUGH THE GIRDER WEB, PROVIDE SUFFICIENT LENGTH OF THREADS ON ALL BOLTS TO ACCOMMODATE WASHERS AND THE THICKNESS OF CONNECTING MEMBER PLUS AT LEAST $\frac{1}{4}$ PROJECTION BEYOND THE NUT. INTERMEDIATE DIAPHRAGM ASSEMBLY SHALL COMPLY WITH SECTION 1072 OF THE STANDARD SPECIFICATIONS. SUBMIT TWO SETS OF WORKING DRAWINGS FOR THE INTERMEDIATE DIAPHRAGM ASSEMBLY FOR REVIEW, COMMENTS AND ACCEPTANCE. AFTER REVIEW, COMMENTS, AND ACCEPTANCE, SUBMIT SEVEN SETS FOR DISTRIBUTION. IN THE EXTERIOR BAYS, PLACE TEMPORARY STRUTS BETWEEN PRESTRESSED GIRDERS ADJACENT TO THE STEEL DIAPHRAGMS. STRUTS SHALL REMAIN IN PLACE 3 DAYS AFTER CONCRETE IS PLACED. THE COST OF THE STEEL DIAPHRAGMS AND ASSEMBLIES SHALL BE INCLUDED IN THE UNIT PRICE BID FOR PRESTRESSED CONCRETE GIRDERS.

GIRDER TYPE	CHANNEL SIZE	DIM ``A''	DIM ``B''	DIM ``L''	
	MC 12 × 31	$\frac{1' 2'}{2'}$	10″	1'-2"	
<u> </u>	MC 18 × 42.7	1/ 5//	1/ 2//	1/ 6//	
				1 0	
IV	MC 18 × 42.7	1'-91/2"	1'-2"	1'-6"	
		•			

R-5605

TRANSYLVANIA COUNTY

TABLE

STATION: <u>50+83.00</u> -L-STATE OF NORTH CAROLINA DEPARTMENT OF TRANSPORTATION RALEIGH STANDARD INTERMEDIATE STEEL DIAPHRAGMS FOR TYPE II, III,& IV PRESTRESSED CONCRETE GIRDERS SEAL 14309 SHEET NC REVISIONS S-34 DATE: DATE: BY: NO. BY: TOTAL SHEETS Steven A. Campbell 12/21/2015 51 STD. NO. PCG10 (SHT 3)

PROJECT NO._

TOP OF CAP

+

ASSEMBLED BY : CHECKED BY :	PFC CMT	DATE : DATE :	8715 8715
DRAWN BY : WJH Checked by : CRK	8/89 8/89	REV. 10/1/11 REV. 6/13 REV. 1/15	MAA/GM AAC/MAA MAA/TMG

E3 (20 REQ'D) PLAN VIEW OF ELASTOMERIC BEARING

		PROJE(CT NO.		R-56	05
MAXIMUM ALLO Service Lo	DWABLE DADS	TR,	<u>ansyl</u>			UNTY
D.L.+L.L. (NO I	MPACT)	STATI	ON:	50+8	\square	
TYPE II TYPE III TYPE IV	<u>-145 k</u> -205 k 225 k	DEPAR	state TMENT O ST.	of north cap F TRAN raleigh ANDAR	^{rolina} ISPORTAI D	ION
	SEAL	ELAS prest	STOME DE RESSED SUPE	RIC TAIL Conc Rstru(BEAR _S ==== cture	ING Irder
Mattern & Craig	E CNGINEER OF ST		REVISI	ONS	DATE	SHEET NO. S-35
CONSULTING ENGINEERS • SURVEYORS FIRM LICENSE No. C-1154 12 BROAD STREET ASHEVILLE, NORTH CAROLINA 28801 (828) 254-2201 - FAX (828) 254-4562	Docusigned by: Steven A. Campbell 12/21/2015	1 2). BY: }	DATE:	TOTAL SHEETS 51
	5BCF5BA0606342E			STD.	NO. EB3	3 (SHT 3)

NOTES

ALL SURFACES OF BEARING PLATES SHALL BE SMOOTH AND STRAIGHT.

THE ELASTOMER IN THE STEEL REINFORCED BEARINGS SHALL HAVE A SHEAR MODULUS OF 0.160 KSI,IN ACCORDANCE WITH AASHTO M251.

FOR STEEL REINFORCED ELASTOMERIC BEARINGS, SEE SPECIAL PROVISIONS.

+

NOTES

		BAR	ΤΥΡ	ES					
$\frac{1'-0^{1/2''}}{8^{7/16''}}$									
۲ ۲ ۳ ۱۵ ^۱ /۵, ۶٬-۶3/, ۲	22 1, - 03/1, S5 1, - 03/1, S5 BAR DI		31/4" 527 27 27 27 2. 27 2. 2. 2. 2. 2. 2. 2. 2. 2. 2.	<u>S5</u>	D OUT				
	BIL	L OF	- MA	TERIAL	_				
FOF	R CONC	RETE	BARRIE	ER RAIL C)NLY				
BAR	NO.	SIZE	IYPE	LENGTH	WEIGHT				
* S1	150	#5	1	4′-7″	718				
★ S2	150	#5	2	7'-0"	1096				
* S3	4	#5	3	4'-2"	18				
米 S4	4	#5	STR	4'-0"	17				
米 S5	8	#5	3	3′-5″	29				
* S6	8	#5	STR	3'-3"	28				
		±	CTD		1000				
* 81	66	#5	SIK	26'-3"	1803				
+ EDAVV	 /								
RETNE	ORCIN	g stff	EL	3.715	LBS.				
CLASS A	A CON	CRETE	_	22 (CU. YDS.				
CONCRET	E BAR	RIER F	RAIL	160.5 L	IN.FT.				

WITH AASHTO M111. BOLTS SHALL CONFORM TO THE REQUIREMENTS OF ASTM A307 AND NUTS SHALL CONFORM TO THE REQUIREMENTS OF AASHTO M291. BOLTS, NUTS AND WASHERS SHALL BE GALVANIZED. (AT THE CONTRACTOR'S OPTION, STAINLESS STEEL BOLTS, NUTS AND WASHERS MAY BE USED AS AN ALTERNATE FOR THE 7/811 Ø GALVANIZED BOLTS, NUTS AND WASHERS. THEY SHALL CONFORM TO OR EXCEED THE MECHANICAL REQUIREMENTS OF ASTM A307. THE USE OF THIS ALTERNATE SHALL BE APPROVED BY THE ENGINEER.)

THE GUARDRAIL ANCHOR ASSEMBLY IS REQUIRED AT ALL POINTS WHERE APPROACH

GUARDRAIL IS TO BE ATTACHED TO THE END OF BARRIER RAIL.FOR POINTS OF ATTACHMENT, SEE SKETCH.

AFTER INSTALLATION, THE EXPOSED THREAD OF THE BOLT SHALL BE BURRED WITH A SHARP POINTED TOOL.

THE COST OF THE GUARDRAIL ANCHOR ASSEMBLY SHALL BE INCLUDED IN THE UNIT CONTRACT PRICE BID FOR CONCRETE BARRIER RAIL.

THE 1 $\frac{1}{4}$ " \varnothing holes shall be formed or drilled with a core bit. Impact tools WILL NOT BE PERMITTED. ANY CONCRETE DAMAGED BY THIS WORK SHALL BE REPAIRED TO THE SATISFACTION OF THE ENGINEER.

THE C6 X 8.2 RUBRAIL IS TO BE ADHESIVELY ANCHORED TO THE RAIL USING THREE $\frac{3}{4}$ " Ø X 6" BOLTS WITH WASHERS. LEVEL ONE FIELD TESTING IS REQUIRED, AND THE YIELD LOAD OF THE $\frac{3}{4}$ " Ø BOLT IS 12 KIPS. FOR ADHESIVELY ANCHORED ANCHOR BOLTS OR DOWELS, SEE STANDARD SPECIFICATIONS. SEE ROADWAY STANDARD 862.03 FOR DETAILS AND LOCATION OF THE RUBRAIL.

NOTES

THE GUARDRAIL ANCHOR ASSEMBLY SHALL CONSIST OF A $\frac{1}{4}$ " HOLD-DOWN PLATE AND 4 - 7/8" Ø BOLTS WITH NUTS AND WASHERS, RUBRAIL, AND ADHESIVELY ANCHORED BOLTS.

THE HOLD-DOWN PLATE SHALL CONFORM TO AASHTO M270 GRADE 36. AFTER FABRICATION, THE HOLD-DOWN PLATE SHALL BE HOT-DIP GALVANIZED IN ACCORDANCE

SKETCH SHOWING POINTS OF ATTACHMENTS

* DENOTES GUARDRAIL ANCHOR ASSEMBLY

R-5605

PROJECT NO. TRANSYLVANIA COUNTY 50+83.00 -L-STATION:_

		STATE OF NORTH CAROLINA DEPARTMENT OF TRANSPORTATION RALEIGH							
		STANDARD							
	SEAL 14309		gua fc	rdra)r b4	IL A R	_ AN Rie	NCHOF R RA	RAGE IL	
g	- CNGINEER OF			REVI	SION	NS		SHEET NO.	
DRS 1154 EET 3801 4562	Docusigned by: Steven A. Campbell 12/21/2015	NO. 1 2	BY:	DATE:	NO. 3 4	BY:	DATE:	TOTAL SHEETS 51	
((SHT	1)	S	TD. NO	D. GRA2) -	

(SHT 1)

+

AT THE CONTRACTOR'S OPTION, METAL RAIL MAY BE EITHER ALUMINUM OR GALVANIZED STEEL IN ACCORDANCE WITH THE REQUIREMENTS OF THE GENERAL NOTES AND THE FOLLOWING SPECIFICATIONS FOR THE ALTERNATE MATERIALS; HOWEVER, THE CONTRACTOR WILL BE REQUIRED TO USE THE SAME RAIL MATERIAL ON ALL STRUCTURES ON THE PROJECT FOR WHICH METAL RAIL IS DESIGNATED.

MATERIAL AND GALVANIZING ARE TO CONFORM TO THE FOLLOWING SPECIFICATIONS: POST, POST BASES, RAILS, EXPANSION BARS AND CLAMP BARS : AASHTO M270 GRADE 36 STRUCTURAL STEEL -RIVETS: RIVETS SHALL MEET THE REQUIREMENTS OF ASTM A502 FOR GRADE 1 RIVETS. THE CUT ENDS OF GALVANIZED STEEL RAILING, AFTER GRINDING SMOOTH SHALL BE GIVEN TWO COATS OF ZINC RICH PAINT MEETING THE REQUIREMENTS OF FEDERAL SPECIFICATION MIL-P-26915 USAF TYPE 1, OR OF FEDERAL SPECIFICATIONS TT-P-641. SHIMS: SHIMS SHALL MEET THE REQUIREMENTS OF ASTM A570 FOR GRADE 33 OR A611 FOR GRADE C AND SHALL BE GALVANIZED IN ACCORDANCE WITH AASHTO M111. RAIL CAPS: RAIL CAPS SHALL MEET THE REQUIREMENTS OF ASTM A570 FOR GRADE 33 OR A611 FOR GRADE C AND SHALL BE GALVANIZED IN ACCORDANCE WITH AASHTO M111.

RAILING SHALL BE CONTINUOUS FROM END POST TO END POST OF BRIDGE. EACH JOINT IN RAIL LENGTH SHALL BE SPLICED AS DETAILED. PANEL LENGTHS OF RAIL SHALL BE ATTACHED TO A MINIMUM OF THREE POSTS. PLACE ONE JOINT SPLICE JUST BEYOND THE 3RD RAIL POST FROM EACH END, TYPICALLY 14' FROM THE END. FOR END OF RAIL TO CLEAR FACE OF CONCRETE END POST DIMENSION, SEE STANDARD NO. BMR7. CAP SCREWS SHALL BE ASTM F593 ALLOY 305 STAINLESS STEEL. WASHERS FOR RAIL ATTACHMENT SHALL MEET THE REQUIREMENTS OF ASTM F844 EXCEPT THEY SHALL BE MADE FROM ALLOY 304 STAINLESS STEEL. CERTIFIED MILL REPORTS ARE REQUIRED FOR RAILS AND POSTS. SHOP INSPECTION IS NOT REQUIRED. METAL RAIL POSTS SHALL BE SET NORMAL TO CURB GRADE. METHOD OF MEASUREMENT FOR METAL RAILS: FOR LENGTH OF METAL RAILS TO BE PAID FOR, SEE THE STANDARD

IN THE FIELD. IN EITHER EVENT, THE RAIL SHALL CONFORM WITHOUT BUCKLING OR KINKING TO THE REQUIRED CURVATURE IN A UNIFORM MANNER ACCEPTABLE TO THE ENGINEER. TO INSURE FUTURE IDENTIFICATION OF THE FABRICATOR, A PERMANENT IDENTIFYING MARK SHALL BE PLACED ON EACH POST. THE METHOD OF MARKING AND LOCATION SHALL BE SUCH THAT IT DOES NOT DETRACT FROM THE APPEARANCE OF THE POST, BUT REMAIN VISIBLE AFTER RAIL PLACEMENT. SHIMS SHALL BE USED AS NECESSARY FOR POST ALIGNMENT. ALLOY 6351-T5 MAY BE SUBSTITUTED FOR ALLOY 6061-T6 WHERE APPLICABLE. MINOR VARIATIONS IN DETAILS OF METAL RAIL WILL BE CONSIDERED. DETAILS OF SUCH VARIATIONS, IF DESIRED, SHALL BE SUBMITTED FOR APPROVAL.

ALUMINUM RAILS

MATERIAL FOR POSTS, BASES AND RAILS, EXPANSION BARS AND CLAMP BARS SHALL BE ASTM B221 ALLOY 6061-T6. MATERIAL FOR RIVETS SHALL BE ASTM B316 ALLOY 6061-T6. RIVETS SHALL BE STANDARD BUTTON HEAD AND CONE

THE BASE OF RAIL POSTS, OR ANY OTHER ALUMINUM SURFACE IN CONTACT WITH CONCRETE SHALL BE THOROUGHLY COATED WITH AN ALUMINUM IMPREGNATED CAULKING COMPOUND OF APPROVED QUALITY.

GALVANIZED STEEL RAILS

GENERAL NOTES

CURVED RAIL USAGE: WHERE RAILS ARE TO BE USED ON BRIDGES ON HORIZONTAL AND/OR VERTICAL CURVATURE THE CONTRACTOR MAY, AT HIS OPTION, HAVE THE REQUIRED CURVATURE IN THE RAIL FORMED IN THE SHOP OR

PAY LENGTH = <u>145.5 lin.ft</u>.

NGTH =145.5 LIN.FT.		H CARO
Prepared in the Office of:	Mattern & Craig ONSULTING ENGINEERS • SURVEYORS FIRM LICENSE No. C-1154 12 BROAD STREET ASHEVILLE, NORTH CAROLINA 28801 (828) 254-2201 - FAX (828) 254-4562	SEAL 14309 Docusigned by: Steven A. Campbell 12/21/2015
DRILL & COUNTERBORE FOR 3%" Ø [16 THREAD] CAP SCREW	PROJECT NO. TRANSYL	R-5605 VANIA COUNTY
	STATION:	50+83.00 -L-
$\begin{array}{c c} & & \\ & &$	state DEPARTMENT	OF NORTH CAROLINA OF TRANSPORTATION RALEIGH
	ST	ANDARD
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	3 BAR I	METAL RAIL
	REVISI NO. BY: DATE: N 1 4 2 4	LONSSHEET NO.NO.BY:DATE:3TOTAL SHEETS 51
		STD. NO. BMR5

^{\$\$\$\$}USERNAME\$\$\$

THE COST OF THE STANDARD CLAMP BARS AND CAP SCREWS USED IN THE METAL RAIL TO END POST CONNECTION SHALL BE INCLUDED IN THE UNIT CONTRACT PRICE BID FOR LINEAR FEET OF 3 BAR METAL RAIL.

THE $\frac{3}{4}$ '' STRUCTURAL CONCRETE INSERT WITH BOLT SHALL BE ASSEMBLED IN THE SHOP.

THE COST OF THE $\frac{3}{4}$ " STRUCTURAL CONCRETE INSERT ASSEMBLY, AND THE $\frac{1}{2}$ " plates complete in place shall be included in the various pay items.

THE CONTRACTOR, AT HIS OPTION, MAY USE AN ADHESIVE BONDING SYSTEM IN LIEU OF THE STRUCTURAL CONCRETE INSERT EMBEDDED IN THE END POST. IF THE ADHESIVE BONDING SYSTEM IS USED, THE $\frac{3}{4}$ " Ø X 15%" BOLT WITH WASHER SHALL BE REPLACED WITH A $\frac{3}{4}$ " Ø X 6 $\frac{1}{2}$ " BOLT AND 2" O.D.WASHER. ALL SPECIFICATIONS THAT APPLY TO THE $\frac{3}{4}$ " Ø X 15%" BOLT SHALL APPLY TO THE $\frac{3}{4}$ " Ø X 6 $\frac{1}{2}$ " BOLT. FIELD TESTING OF THE ADHESIVE BONDING SYSTEM IS NOT REQUIRED.

THE STRUCTURAL CONCRETE INSERT ASSEMBLY SHALL CONSIST OF THE FOLLOWING COMPONENTS:

- SHALL HAVE A MINIMUM LENGTH OF THREADS OF $1^{1}/_{2}$ ".

NOTES

METAL RAIL TO END POST CONNECTION

THE METAL RAIL TO END POST CONNECTION SHALL CONSIST OF THE FOLLOWING COMPONENTS:

A. $\frac{1}{2}$ " plates shall conform to aashto m270 grade 36 and shall be galvanized after fabrication.

B. 3/4" STRUCTURAL CONCRETE INSERT SHALL HAVE A WORKING LOAD SHEAR CAPACITY OF 4800 LBS. THE

C. CAP SCREWS FOR RAIL ATTACHMENT TO ANGLE SHALL CONFORM TO THE REQUIREMENTS OF ASTM F593 ALLOY 305 STAINLESS STEEL. CAP SCREWS TO BE CENTERED IN SLOTS AT 60°F. WASHERS FOR RAIL ATTACHMENT SHALL MEET THE REQUIREMENTS OF ASTM F844 EXCEPT THEY SHALL BE MADE FROM ALLOY 304 STAINLESS STEEL.

NOTES

STRUCTURAL CONCRETE INSERT

A. FERRULES SHALL BE MADE FROM STEEL MEETING THE REQUIREMENTS OF AASHTO M169, GRADE 12L14 AND

B. $1 - \frac{3}{4}$ " Ø X $1\frac{5}{8}$ " BOLT WITH WASHER.BOLT SHALL CONFORM TO THE REQUIREMENTS OF ASTM A307. BOLT AND WASHER SHALL BE GALVANIZED. AT THE CONTRACTORS OPTION, STAINLESS STEEL BOLT AND WASHER MAY BE USED AS AN ALTERNATE FOR THE $\frac{3}{4}$ " Ø X $1\frac{5}{8}$ " GALVANIZED BOLT AND WASHER. THEY SHALL CONFORM TO OR EXCEED THE MECHANICAL REQUIREMENTS OF ASTM A307. THE USE OF THIS ALTERNATE

C. WIRE STRUT SHOWN IN THE CONCRETE INSERT ASSEMBLY DETAIL IS THE MINIMUM ALLOWABLE SIZE AND SHALL HAVE A MINIMUM TENSILE STRENGTH OF 100,000 PSI. AS AN OPTION, A $\frac{7}{16}$ wire strut with A MINIMUM TENSILE STRENGTH OF 90,000 PSI IS ACCEPTABLE.

	R.P.V Contact	N.(TYP.ALL * CLOSED-END POINTS) FERRULE
		FERRULE O.375"Ø WIRE STRUT
	P	LAN <u>ELEVATION</u>
	STE	RUCTURAL CONCRETE
	*	EACH WELDED ATTACHMENT OF WIRE TO FERRULE SHALL DEVELOP THE TENSILE STRENGTH OF THE WIRE.
DE FROM AND		PROJECT NO. R-5605
(2)		TRANSYLVANIA COUNTY
		STATION: 50+83.00 -L-
		SHEET 3 OF 3
		STATE OF NORTH CAROLINA DEPARTMENT OF TRANSPORTATION RALEIGH
		STANDARD
	SEAL	3 BAR METAL RAIL
	ENGINEER CHURCH	REVISIONS SHEET NO. NO. BY: DATE: NO. BY: DATE: S-40
ENSE No. C-1154 BROAD STREET CAROLINA 28801 X (828) 254-4562	- DocuSigned by: 12/21/2015	1 3 TOTAL SHEETS 51
	Literen A (anotell	

NOTES

THE GUARDRAIL ANCHOR ASSEMBLY SHALL CONSIST OF A $\frac{1}{4}$ " hold down plate and 7 - $\frac{7}{8}$ " Ø bolts with nuts and washers.

THE HOLD-DOWN PLATE SHALL CONFORM TO AASHTO M270 GRADE 36. AFTER FABRICATION, THE HOLD-DOWN PLATE SHALL BE HOT-DIP GALVANIZED IN ACCORDANCE WITH AASHTO M111.

BOLTS SHALL CONFORM TO THE REQUIREMENTS OF ASTM A307 AND NUTS SHALL CONFORM TO THE REQUIREMENTS OF AASHTO M291. BOLTS, NUTS AND WASHERS SHALL BE GALVANIZED.AT THE CONTRACTOR'S OPTION, STAINLESS STEEL BOLTS, NUTS AND WASHERS MAY BE USED AS AN ALTERNATE FOR THE $\frac{7}{8}$ " Ø GALVANIZED BOLTS, NUTS AND WASHERS.THEY SHALL CONFORM TO OR EXCEED THE MECHANICAL REQUIREMENTS OF ASTM A307. THE USE OF THIS ALTERNATE SHALL BE APPROVED BY THE ENGINEER.

THE GUARDRAIL ANCHOR ASSEMBLY IS REQUIRED AT ALL POINTS WHERE APPROACH GUARDRAIL IS TO BE ATTACHED TO THE END OF THE PARAPET. FOR POINTS OF ATTACHMENT, SEE SKETCH.

AFTER INSTALLATION, THE EXPOSED THREAD OF THE BOLT SHALL BE BURRED WITH A SHARP POINTED TOOL.

THE COST OF THE GUARDRAIL ANCHOR ASSEMBLIES WITH BOLTS, NUTS AND WASHERS COMPLETE IN PLACE, SHALL BE INCLUDED IN THE VARIOUS PAY ITEMS.

THE VERTICAL REINFORCING BARS MAY BE SHIFTED SLIGHTLY IN THE END POST TO CLEAR ASSEMBLY BOLTS.

THE 1 $\frac{1}{4}$ " Ø HOLES SHALL BE FORMED OR DRILLED WITH A CORE BIT. IMPACT TOOLS WILL NOT BE PERMITTED. ANY CONCRETE DAMAGED BY THIS WORK SHALL BE REPAIRED TO THE SATISFACTION OF THE ENGINEER.

SKETCH SHOWING POINTS OF ATTACHMENT

*LOCATION OF GUARDRAIL ATTACHMENT

R-5605 PROJECT NO. TRANSYLVANIA COUNTY STATION: <u>50+83.00</u> -L-

		STATE OF NORTH CAROLINA DEPARTMENT OF TRANSPORTATION RALEIGH STANDARD					
	SEAL 14309	GUARDRAIL ANCHORAGE DETAILS FOR METAL RAILS					
lattern & Craig	NGINEER CHUNK		REVI	SIONS	DATE	SHEET NO. S-42	
FIRM LICENSE No. C-1154 12 BROAD STREET ASHEVILLE, NORTH CAROLINA 28801 (828) 254-2201 - FAX (828) 254-4562	DocuSigned by: Steven A. Campbell 12/21/2015	1		10. BT: ③ ④		total sheets 51	
	5BCF5BA0606342E	(SHT	4)	STD. NO	D.GRA3		

SUPERSTRUCTURE REINFORCING STEEL LENGTHS ARE BASED ON THE FOLLOWING MINIMUM SPLICE LENGTHS									
BAR SIZE	SUPERSTF Except A SLABS, P AND BARR	RUCTURE Approach Arapet, Ier Rail	APPROAC	h slabs	PARAPET AND BARRIER				
	EPOXY COATED	EPOXY COATED UNCOATED		UNCOATED	RAIL				
#4	2'-0"	1'-9"	2'-0"	1'-9"	2'-9"				
#5	2'-6"	2'-2"	2'-6"	2'-2"	3'-5"				
#6	3'-0"	2'-7"	3′-10″	2'-7"	4'-4''				
#7	5'-3"	3'-6"							
#8	6'-10"	4'-7"							

DocuSign Envelope ID: 1DA609DF-BDE5-433B-B928-49D414797B62

+

+

**QUANTITIES FOR BARRIER RAIL AND THE END POSTS FOR THE METAL RAILS ARE NOT INCLUDED. THE UPPER PORTION OF THE END BENT WINGS Shall be poured with the superstructure.

		_						
YPES			В	ILL	OF	ΜΑΤ	ERIAL	
			BAR	NO.	SIZE	TYPE	LENGTH	WEIGHT
		*	A3	296	#5	STR	40'-0"	12358
			A4	296	#5	STR	40'-0"	12358
	10″	*	B3	174	#4	STR	28'-7"	3323
		*	B4	112	#8	STR	16'-6"	4938
			B5	32	#5	STR	41'-10"	1398
4	<u> </u>		B6	144	#5	STR	41'-10"	6288
		*	B7	24	#4	STR	28'-7"	459
		*	D1	104	#4	STR	0'-10"	58
× Ø								
1,-		*	G1	162	#4	STR	6'-2"	668
			H1	88	#5	1	12'-6"	1149
			H2	88	#6	STR	9'-0"	1191
			K1	40	#4	STR	24'-0"	642
			K2	32	#4	STR	5′-10″	125
			K3	48	#4	STR	7′-4″	236
A			K5	16	#4	STR	5'-1"	55
Î Î			К6	24	#4	STR	5′-10″	94
, ie 16			K8	16	#4	STR	2'-8"	29
-23								
3, -			S1	120	#4	2	11'-10"	949
\downarrow \downarrow		*	S3	120	#4	3	11'-9"	942
↓ ↓		*	S4	96	#4	3	9′-8″	620
5			S5	24	#4	2	13′-6″	217
-								
¥_¥		*		S FPC	YY CO	ЛТЕП Б	RETNE STE	FI
2 7 X			DENOTE			AILUI		
ARE OUT TO	OUT							
		-						
				· · · - · ·				
<u>stll</u> OF	MAIERIAL —		<u>GROC</u>	$V \perp N$	<u>G</u> B	$\prec \Box D($	<u>je flo</u>	URS
	EPOXY COATED		APPROA	CH SI	ABS		2,900 50	Q.FT.
FUKUING TEFI	REINFORCING		RRTNCE					
	STEEL			ULUN				
RS)	(IRS)		IUIAL				(,555 SI	J.HI.

(LBS.) (LBS.) 24,731 23,366

PROJECT NO. <u>R-5605</u> TRANSYLVANIA COUNTY STATION: <u>50+83.00</u> -L-

STATE OF NORTH CAROLINA DEPARTMENT OF TRANSPORTATION RALEIGH

SUPERSTRUCTURE

BILL OF MATERIAL & POUR SEQUENCE

		SHEET NO.							
NO.	BY:	DATE:	NO.	BY:	DATE:	S-43			
1			ß			TOTAL SHEETS			
2			4			51			
	STD. NO. BOM2								

\$\$\$\$USERNAME\$\$\$

DocuSign Envelope ID: 1DA609DF-BDE5-433B-B928-49D414797B62

+

+

STIRRUPS IN CAP MAY BE SHIFTED AS NECESSARY TO CLEAR V1 BARS. FOR PILE SPLICE DETAILS, SEE SHEET 4 OF 4. FOR WING DETAILS, SEE SHEET 3 OF 4. THE TOP OF THE END BENT CAP, EXCEPT THE BEARING AREA, SHALL BE RAKED TO A DEPTH $OF \frac{1}{4''}$.

DRAWN BY :	PFC	DATE : <u>8/15</u>	
CHECKED BY	: <u> </u>	DATE : <u>8/15</u>	

DocuSign Envelope ID: 1DA609DF-BDE5-433B-B928-49D414797B62

+

+

\$\$\$\$USERNAME\$\$\$

TYPES	BILL OF MATERIAL							
		FOF	R ON	IE E	IND BE	ENT		
	BAR	NO.	SIZE	TYPE	LENGTH	WEIGHT		
	B1	16	#10	1	48'-10"	3376		
	B2	40	#4	STR	24′-4″	651		
НК. НК.	Β3	24	#4	STR	2'-11"	47		
(4)								
	H1	32	#5	2	12'-6"	418		
	H2	32	#6	STR	9'-0"	433		
I-J LAP								
	S1	76	#4	3	10′-11″	555		
	S2	76	#4	4	3'-8"	187		
	S3	56	#4	5	6'-6"	244		
((5))	V1	136	#4	STR	6'-0"	546		
	V2	68	#5	STR	9'-5"	669		
1'-8"Ø	REINF (FOR	ORCIN One e	NG STE ND BEN	EL IT)	7	,126 LBS.		
	CLASS	A CO) NCRETI	E BREA	AKDOWN T)			
					. ,			
	POUR	#1 C 0	AP,LOW F WING	/er pa ;s & c	RT Collars	57.3 C.Y.		
ONS ARE OUT TO OUT.								
END BENT No.2								
HP 12 X 53 STEEL PILES								
NO:14 LIN.FT.= 385	TOTAL	CLAS	SS A C	ONCRE	TE	57.3 C.Y.		
1								

		STA	.⊤⊥(ON:	<u>5</u> C)+83		<u> </u>
		[DEPA	stat RTMENT S	_{е оғ} Оғ ТД	NORTH CARG TRAN RALEIGH	DLINA NSPORTA D	TION
	SEAL 14309		= R <u>-</u>	ep R4	ΥF) De	TAIL	S —
a	- CNGINEER			REVIS	SION	٧S		SHEET NO.
J RS 154	A CAMPUNI	NO.	BY:	DATE:	NO.	BY:	DATE:	S-48
ET 801 (DocuSigned by:	1			3			TOTAL SHEETS
562	Steven A. Campbell 12/21/2015	2			倒			51
						STD.	NO. RR1	(Sht 2)

PROJECT NO.____

R-5605

TRANSYLVANIA COUNTY

ESTIMATED QUANTITIES								
E @ 0+83.00 -L-	RIP RAP CLASS II (2'-0"THICK)	GEOTEXTILE For drainage						
	TONS	SQUARE YARDS						
BENT 1	238	264						
BENT 2	215	239						

FOR BERM WIDTH DIMENSIONS, SEE GENERAL DRAWING.

+

)F MATERIAL							
APPROACH SLAB Ind Bent 1 ? req'd)							
Ε	TYPE	LENGTH	WEIGHT				
	STR	37′-10″	658				
	STR	37′-10″	658				
	STR	24'-2"	1917				
	STR	24'-8"	2818				
ΕE	L	LBS.	3,476				
STE	EEL	LBS.	2,575				
		L.I.	41.2				
)F	MA	TERTAL					

ノト	MA	IERIAL	
2 (ЛСН
l			Ζ
-	REQ'	$\left(\right)$	
Ε	TYPE	LENGTH	WEIGHT
	STR	37′-10″	304
	STR	37'-10"	304
	STR	22'-3"	387
	STR	22'-3"	387
	STR	39′-5″	27
	STR	38′-9″	26
	STR	24'-2"	1917
	STR	24'-8"	2818
	STR	7'-3"	8
	STR	12'-3"	13
	STR	10'-0"	11
	STR	9′-8″	11
	STR	11'-5″	12
	STR	9'-2"	10
	STR	8'-11"	10
	STR	8′-7″	9
	STR	12'-7"	14
	STR	5'-11"	7
	STR	3'-9"	4
	STR	4′-0″	5
	STR	7'-3"	11
	STR	12'-3"	19
	STR	10′-0″	16
	STR	9′-8″	15
	STR	11'-5"	18
	STR	9'-2"	14
	STR	8'-11"	14
	STR	8′-7″	13
	STR	12'-7"	19
	STR	5'-11"	9
	STR	3'-9"	6
	STR	4′-0″	7
	STR	5′-4″	6
	STR	5′-4″	9
ΞE		LBS.	3,705
STE	EEL	LBS.	2,755
	_	O 1 <i>i</i>	10.0

	BIL	l of	MA	TERIAL	-				
FOR FASTBOLIND APPROACH									
SLAR AT FND RENT 2									
(1 REA(D))									
BAR	NO.	SIZE	TYPE	LENGTH	WEIGHT				
* A1	20	# 4	SIR	37-10"	506				
A2	20	#4	SIR	37'-10"	506				
* A /	10	#4	SIR	20'-4"	136				
	10	# 4	SIR	20'-4"	136				
* A9	1	#4 #4	SIR) 20'-1'' 77' 11''	24				
AIU	1	··· 4	SIR		23				
↓ R1	68	#5	C T D	211-2"	1716				
	60 60	#G		21'-R"	2521				
+ R29	1	#5	STR	24'-6"	2521				
* R30	1	#5	STR	24'-4"	26				
* B31	1	#5	STR	24'-2"	26				
* B32	1	#5	STR	24'-0"	26				
₩ B33	1	#5	STR	23'-11"	25				
★ B34	1	#5	STR	23'-9"	25				
* B35	1	#5	STR	23'-7"	25				
* B36	1	#5	STR	23'-5"	25				
B37	1	#6	STR	24'-6"	37				
B38	1	#6	STR	24'-4"	37				
B39	1	#6	STR	24'-2"	37				
B40	1	#6	STR	24'-0"	37				
B41	1	#6	STR	23'-11"	36				
B42	1	#6	STR	23'-9"	36				
B43	1	#6	STR	23'-7"	36				
B44	1	#6	STR	23'-5"	36				
* B45	1	#5	STR	3'-10"	5				
B46	1	#6	STR	3'-10"	6				
₩ B47	1	#5	STR	2'-0"	3				
B48	1	#6	SIR	2'-0"	4				
* 849	1	#5	SIR	5'-1"	6				
850	1	#6	SIR	5'-1"	9				
RETNER					ح ح ح				
		, JIEE TEN		LDJ.	J,JOI				
RFTN	FORCT	IEU NG STI	EEL	IRS	2.736				
					_,				
CLASS	AA CC	NCRFT	E	C. Y	41.2				
		· · · ·		0.18					

SHEET 1 OF 3

CARC

STATE OF NORTH CAROLINA DEPARTMENT OF TRANSPORTATION RALEIGH STANDARD

BRIDGE APPROACH SLAB FOR INTEGRAL ABUTMENT

		SHEET NO.						
۷0.	BY:	DATE:	NO.	BY:	DATE:	S-49		
1			S			TOTAL SHEETS		
2			Ś			51		
	STD. NO. BAS5 (SHT 2)							

\$\$\$\$USERNAME\$\$\$

+

DRAWN BY :PFC DATE	8.	8/15
CHECKED BY : CMT DATE	8	8/15

BAR TYPES ———		BILL OF MATERIAL						
2'-0"	F0 SI[FOR ONE APPROACH SLAB SIDEWALK AT END BENT 1 (2 REQ'D)						
	BAR	NO.	SIZE	TYPE	LENGTH	WEIGHT		
	★ B51	5	#4	STR	24'-8"	83		
$\begin{pmatrix} 1 \end{pmatrix}$	* G1	26	#4	STR	5'-0"	87		
	* U1	10	#4	1	3'-6"	24		
	* EPOX REIN	Y COA Forci	ATED Ing st	EEL	LBS.	194		
	CLASS	AA CO	ONCRET	E	C.Y.	3.3		
LMENSIONS ARE OUT TO OUT.								
MATERIAL		BILL OF MATERIAL						
STBOUND _AB SIDEWALK T 2 (1 REQ'D)	APF AT	F(ROA ENI	DRE NCHS DBE	ASTE SLAB NT 2	BOUND SIDEW 2 (1 RE(VALK Q'D)		
STBOUND AB SIDEWALK T 2 (1 REQ'D) Type length weight	APF AT bar	F(PROA ENI NO.	DR E CH S D BE size	ASTE SLAB NT 2 type	BOUND SIDEW 2 (1 REC Length	VALK Q'D) weight		
STBOUND AB SIDEWALK T 2 (1 REQ'D) YPE LENGTH WEIGHT STR 22'-8" 16	APF AT BAR * B57	F (PROA ENI <u>NO.</u> 1	DRE CHS DBE size #4	ASTE SLAB NT 2 TYPE STR	BOUND SIDEW 2 (1 REC LENGTH 23'-3"	VALK Q'D) weight 16		
STBOUND AB SIDEWALK T 2 (1 REQ'D) <u>YPE LENGTH WEIGHT</u> STR 22'-8" 16 STR 23'-5" 16	APF AT BAR * 857 * 858	F (PROA ENI <u>NO.</u> 1 1	DRE CHS DBE SIZE #4 #4	ASTE SLAB NT 2 TYPE STR STR	30UND SIDEW 2 (1 REC LENGTH 23'-3" 23'-7"	VALK Q'D) weight 16 16		
STBOUND AB SIDEWALK T 2 (1 REQ'D) <u>YPE LENGTH WEIGHT</u> STR 22'-8" 16 STR 23'-5" 16 STR 24'-2" 17 STR 25' 0" 17	APF AT BAR * B57 * B58 * B59	F (PROA ENI <u>NO.</u> 1 1 1	DR E CH S D BE SIZE #4 #4 #4	ASTE SLAB NT 2 TYPE STR STR STR	30UND SIDEW 2 (1 RE(LENGTH 23'-3" 23'-7" 23'-11"	VALK Q'D) WEIGHT 16 16 16		
STBOUND AB SIDEWALK T 2 (1 REQ'D) <u>YPE LENGTH WEIGHT</u> STR 22'-8" 16 STR 23'-5" 16 STR 24'-2" 17 STR 25'-0" 17 STR 25'-10" 18	APF AT BAR * B57 * B58 * B59 * B60 * B61	F (PROA ENI <u>NO.</u> 1 1 1 1 1	DR E CH S SIZE #4 #4 #4 #4 #4 #4 #4 #4 #4	ASTE SLAB NT 2 TYPE STR STR STR STR	30UND SIDEW 2 (1 RE(LENGTH 23'-3" 23'-7" 23'-11" 24'-3" 24'-8"	VALK Q'D) WEIGHT 16 16 16 17 17		
STBOUND AB SIDEWALK T 2 (1 REQ'D) <u>TYPE LENGTH WEIGHT</u> STR 22'-8" 16 STR 23'-5" 16 STR 23'-5" 16 STR 24'-2" 17 STR 25'-0" 17 STR 25'-0" 17 STR 25'-0" 91	APF AT BAR * B57 * B58 * B59 * B60 * B61 * G1	F (PROA ENI <u>NO.</u> 1 1 1 1 1 26	DR E CH S D BE SIZE #4 #4 #4 #4 #4 #4	ASTE SLAB NT 2 TYPE STR STR STR STR STR STR	30UND SIDEW 2 (1 REC LENGTH 23'-3" 23'-11" 23'-11" 24'-3" 24'-8"	VALK Q'D) WEIGHT 16 16 16 17 17 17 87		
STBOUND _AB SIDEWALK T 2 (1 REQ'D) <u>YPE LENGTH WEIGHT STR 22'-8" 16 STR 23'-5" 16 STR 23'-5" 16 STR 24'-2" 17 STR 25'-0" 17 STR 25'-10" 18 </u>	APF AT BAR * B57 * B58 * B59 * B60 * B61 * G1 * U1	F (PROA ENI NO. 1 1 1 1 1 26 10	DR E CH S D BE SIZE #4 #4 #4 #4 #4 #4 #4 #4	ASTE SLAB NT 2 TYPE STR STR STR STR STR STR	30UND SIDEW 2 (1 REC LENGTH 23'-3" 23'-11" 24'-3" 24'-3" 24'-8" 5'-0"	VALK Q'D) WEIGHT 16 16 16 16 17 17 87 87		
STBOUND AB SIDEWALK T 2 (1 REQ'D) <u>YPE LENGTH WEIGHT</u> <u>STR 22'-8" 16</u> <u>STR 23'-5" 16</u> <u>STR 24'-2" 17</u> <u>STR 25'-0" 17</u> <u>STR 25'-0" 17</u> <u>STR 25'-10" 18</u> <u>STR 5'-0" 91</u> <u>1 3'-6" 24</u> <u>1 3'-6" 24</u> <u>1 LBS. 199</u>	APF AT BAR * B57 * B58 * B59 * B60 * B61 * G1 * U1 * U1	F (PROA ENI NO. 1 1 1 1 1 1 1 26 10 Y COA FORCI	DR E CH S D BE SIZE #4 #4 #4 #4 #4 #4 #4 #4 #4 #4	ASTE SLAB NT 2 TYPE STR STR STR STR STR 1 EEL	BOUND SIDEW 2 (1 REC LENGTH 23'-3" 23'-11" 24'-3" 24'-8" 5'-0" 3'-6" LBS.	VALK Q'D) WEIGHT 16 16 16 17 17 87 24 24 193		

NOTES

SIDEWALK ON APPROACH SLAB SHALL BE PAID FOR IN BRIDGE APPROACH SLAB PAY ITEM. THE #4 U1 BARS MAY BE PUSHED INTO GREEN CONCRETE AFTER THE APPROACH SLAB HAS BEEN FINISHED. THE #4 "B" BARS FOR THE APPROACH SIDEWALKS ON THE APPROACH SLABS AT END BENT #2 SHALL BE FIELD BENT TO ACHIEVE REQUIRED RADIUS.

		PROJEC <u>TRA</u> STATIC	CT NO. <u>ANSYL</u> DN:	FF VAN1 50+83	R-560 A cc 3.00 -	5 UNTY -L-
		DEPA	rtment STA	te of north car OF TRAI raleigh	^{olina} NSPORTA D	TION
	C ARO PROFESSION SEAL	BF	RIDGE SIDEW	APPRO4 /alk de	ACH SL. Etails	AB
Craio	SEAL 14309		REVI	SIONS		SHEET NO.
SURVEYORS SE No. C-1154	A. CAMPUT	NO. BY:	DATE:	NO. BY:	DATE:	S-51
(0AD STREET ROLINA 28801 (828) 254-4562	DocuSigned by: Steven A. Campbell 12/21/2015	1		33 4.		sheets 51
	5BCF5BA0606342E			1 - 1	1	11

DESIGN DATA:

DocuSign Envelope ID: 1DA609DF-BDE5-433B-B928-49D414797B62

+

+

SPECIFICATIONS	A.A.S.H.T.O. (CURRENT)
LIVE LOAD	SEE PLANS
IMPACT ALLOWANCE	SEE A.A.S.H.T.O.
STRESS IN EXTREME FIBER OF	
STRUCTURAL STEEL - AASHTO M270 GRADE 36 -	20,000 LBS.PER SQ.IN.
- AASHTO M270 GRADE 50W -	27,000 LBS.PER SQ.IN.
- AASHTO M270 GRADE 50 -	27,000 LBS.PER SQ.IN.
REINFORCING STEEL IN TENSION	
GRADE 60	24,000 LBS.PER SQ.IN.
CONCRETE IN COMPRESSION	1,200 LBS.PER SQ.IN.
CONCRETE IN SHEAR	SEE A.A.S.H.T.O.
STRUCTURAL TIMBER - TREATED OR	
UNTREATED - EXTREME FIBER STRESS	1,800 LBS.PER SQ.IN.
COMPRESSION PERPENDICULAR TO GRAIN OF TIMBER	375 LBS.PER SQ.IN.
EQUIVALENT FLUID PRESSURE OF EARTH	30 LBS.PER CU.FT.
	(MINIMUM)

MATERIAL AND WORKMANSHIP:

EXCEPT AS MAY OTHERWISE BE SPECIFIED ON PLANS OR IN THE SPECIAL PROVISIONS, ALL MATERIAL AND WORKMANSHIP SHALL BE IN ACCORDANCE WITH THE 2012 ``STANDARD SPECIFICATIONS FOR ROADS AND STRUCTURES" OF THE N.C. DEPARTMENT OF TRANSPORTATION.

STEEL SHEET PILING FOR PERMANENT OR TEMPORARY APPLICATIONS SHALL BE HOT ROLLED.

CONCRETE:

UNLESS OTHERWISE REQUIRED ON PLANS, CLASS A CONCRETE SHALL BE USED FOR ALL PORTIONS OF ALL STRUCTURES WITH THE EXCEPTION THAT: CLASS AA CONCRETE SHALL BE USED IN BRIDGE SUPERSTRUCTURES, ABUTMENT BACKWALLS, AND APPROACH SLABS; AND CLASS B CONCRETE SHALL BE USED FOR SLOPE PROTECTION AND RIP RAP.

CONCRETE CHAMFERS:

UNLESS OTHERWISE NOTED ON THE PLANS, ALL EXPOSED CORNERS ON STRUCTURES SHALL BE CHAMFERED 3/4" WITH THE FOLLOWING EXCEPTIONS: TOP CORNERS OF CURBS MAY BE ROUNDED TO 1-1/2"RADIUS WHICH IS BUILT INTO CURB FORMS; CORNERS OF TRANSVERSE FLOOR EXPANSION JOINTS SHALL BE ROUNDED WITH A 1/4"FINISHING TOOL UNLESS OTHERWISE REQUIRED ON PLANS; AND CORNERS OF EXPANSION JOINTS IN THE ROADWAY FACES AND TOPS OF CURBS AND SIDEWALKS SHALL BE ROUNDED TO A 1/4" RADIUS WITH A FINISHING STONE OR TOOL UNLESS OTHERWISE REQUIRED ON PLANS.

DOWELS:

DOWELS WHEN INDICATED ON PLANS AS FOR CULVERT EXTENSIONS. SHALL BE EMBEDDED AT LEAST 12" INTO THE OLD CONCRETE AND GROUTED INTO PLACE WITH 1:2 CEMENT MORTAR.

STANDARD NOTES

ALLOWANCE FOR DEAD LOAD DEFLECTION, SETTLEMENT, ETC. IN CASTING SUPERSTRUCTURES:

BRIDGES SHALL BE BUILT ON THE GRADE OR VERTICAL CURVE SHOWN ON PLANS. SLABS, CURBS AND PARAPETS SHALL CONFORM TO THE GRADE OR CURVE. ALL DIMENSIONS WHICH ARE GIVEN IN SECTION AND ARE AFFECTED BY DEAD LOAD DEFLECTIONS ARE DIMENSIONS AT CENTER LINE OF BEARING UNLESS OTHERWISE NOTED ON PLANS. IN SETTING FORMS FOR STEEL BEAM BRIDGES AND PRESTRESSED CONCRETE GIRDER BRIDGES, ADJUSTMENTS SHALL BE MADE DUE TO THE DEAD LOAD DEFLECTIONS FOR THE ELEVATIONS SHOWN. WHERE BLOCKS ARE SHOWN OVER BEAMS FOR BUILDING UP TO THE SLAB, THE VERTICAL DIMENSIONS OF THE BLOCKS SHALL BE ADJUSTED BETWEEN BEARINGS TO COMPENSATE FOR DEAD LOAD DEFLECTIONS, VERTICAL CURVE ORDINATE, AND ACTUAL BEAM CAMBER. WHERE BOTTOM OF SLAB IS IN LINE WITH BOTTOM OF TOP FLANGES, DEPTH OF SLAB BETWEEN BEARINGS SHALL BE ADJUSTED TO COMPENSATE FOR DEAD LOAD DEFLECTION, VERTICAL CURVE ORDINATE, AND ACTUAL BEAM CAMBER.

IN SETTING FALSEWORK AND FORMS FOR REINFORCED CONCRETE SPANS. AN ALLOWANCE SHALL BE MADE FOR DEAD LOAD DEFLECTIONS, SETTLEMENT OF FALSEWORK, AND PERMANENT CAMBER WHICH SHALL BE PROVIDED FOR IN ADDITION TO THE ELEVATIONS SHOWN. AFTER REMOVAL OF THE FALSEWORK, THE FINISHED STRUCTURES SHALL CONFORM TO THE PROFILE AND ELEVATIONS SHOWN ON THE PLANS AND CONSTRUCTION ELEVATIONS FURNISHED BY THE ENGINEER.

DETAILED DRAWINGS FOR FALSEWORK OR FORMS FOR BRIDGE SUPERSTRUCTURE AND ANY STRUCTURE OR PARTS OF A STRUCTURE AS NOTED ON THE PLANS SHALL BE SUBMITTED TO THE ENGINEER FOR APPROVAL BEFORE CONSTRUCTION OF THE FALSEWORK OR FORMS IS STARTED.

REINFORCING STEEL:

ALL REINFORCING STEEL SHALL BE DEFORMED. DIMENSIONS RELATIVE TO PLACEMENT OF REINFORCING ARE TO CENTERS OF BARS UNLESS OTHERWISE INDICATED IN THE PLANS. DIMENSIONS ON BAR DETAILS ARE TO CENTERS OF BARS OR ARE OUT TO OUT AS INDICATED ON PLANS. WIRE BAR SUPPORTS SHALL BE PROVIDED FOR REINFORCING STEEL WHERE INDICATED ON THE PLANS. WHEN BAR SUPPORT PIECES ARE PLACED IN CONTINUOUS

LINES, THEY SHALL BE SO PLACED THAT THE ENDS OF THE SUPPORTING WIRES SHALL BE LAPPED TO LOCK LEGS ON ADJOINING PIECES.

STRUCTURAL STEEL:

AT THE CONTRACTOR'S OPTION, HE MAY SUBSTITUTE 7/8" Ø SHEAR STUDS FOR THE $\frac{3}{4}$ "ø studs specified on the plans. This substitution shall be made at THE RATE OF 3 - 7/8" Ø STUDS FOR 4 - 3/4" Ø STUDS, AND STUD SPACING CHANGES SHALL BE MADE AS NECESSARY TO PROVIDE THE SAME EQUIVALENT NUMBER OF 7/8" Ø STUDS ALONG THE BEAM AS SHOWN FOR 3/4" Ø STUDS BASED ON THE RATIO OF 3 - 7/8" Ø STUDS FOR 4 - 3/4"Ø STUDS. STUDS OF THE LENGTH SPECIFIED ON THE PLANS MUST BE PROVIDED. THE MAXIMUM SPACING SHALL BE 2'-O".

EXCEPT AT THE INTERIOR SUPPORTS OF CONTINUOUS BEAMS WHERE THE COVER PLATE IS IN CONTACT WITH BEARING PLATE, THE CONTRACTOR MAY, AT HIS OPTION, SUBSTITUTE FOR THE COVER PLATES DESIGNATED ON THE PLANS COVER PLATES OF THE EQUIVALENT AREA PROVIDED THESE PLATES ARE AT LEAST 5/16" IN THICKNESS AND DO NOT EXCEED A WIDTH EQUAL TO THE FLANGE WIDTH LESS 2"OR A THICKNESS EQUAL TO 2 TIMES THE FLANGE THICKNESS. THE SIZE OF FILLET WELDS SHALL CONFORM TO THE REQUIREMENTS OF THE CURRENT ANSI/AASHTO/AWS "BRIDGE WELDING CODE". ELECTROSLAG WELDING WILL NOT BE PERMITTED.

WITH THE SOLE EXCEPTION OF EDGES AT SURFACES WHICH BEAR ON OTHER SURFACES, ALL SHARP EDGES AND ENDS OF SHAPES AND PLATES SHALL BE SLIGHTLY ROUNDED BY SUITABLE MEANS TO A RADIUS OF APPROXIMATELY 1/16 INCH OR EQUIVALENT FLAT SURFACE AT A SUITABLE ANGLE PRIOR TO PAINTING, GALVANIZING, OR METALLIZING.

HANDRAILS AND POSTS:

METAL STANDARDS AND FACES OF THE CONCRETE END POSTS FOR THE METAL RAIL SHALL BE SET NORMAL TO THE GRADE OF THE CURB, UNLESS OTHERWISE SHOWN ON PLANS. THE METAL RAIL AND TOPS OF CONCRETE POSTS USED WITH THE ALUMINUM RAIL SHALL BE BUILT PARALLEL TO THE GRADE OF THE CURB. METAL HANDRAILS SHALL BE IN ACCORDANCE WITH THE PLANS. RAILS SHALL BE AS MANUFACTURED FOR BRIDGE RAILING. CASTINGS SHALL BE OF A UNIFORM APPEARANCE. FINS AND OTHER DEFORMATIONS RESULTING FROM CASTING OR OTHERWISE SHALL BE REMOVED IN A MANNER SO THAT A UNIFORM COLORING OF THE COMPLETED CASTING SHALL BE OBTAINED. CASTINGS WITH DISCOLORATIONS OR OF NON-UNIFORM COLORING WILL NOT BE ACCEPTED. CERTIFIED MILL REPORTS ARE REQUIRED FOR METAL RAILS AND POSTS.

SPECIAL NOTES:

GENERALLY, IN CASE OF DISCREPANCY, THIS STANDARD SHEET OF NOTES SHALL GOVERN OVER THE SPECIFICATIONS, BUT THE REMAINDER OF THE PLANS SHALL GOVERN OVER NOTES HEREON, AND SPECIAL PROVISIONS SHALL GOVERN OVER ALL. SEE SPECIFICATIONS ARTICLE 105-4.

