This Geotechnical Data Report is for informational purposes only and is not considered part of the contract. The Contractor shall have no claim for additional compensation or for an extension of time for any reason resulting from actual site conditions differing from those described in this report.

GEOTECHNICAL DATA REPORT

Frontier Gas Pipeline NCDOT R-2915A Near Deep Gap, North Carolina S&ME Project No. 1358-14-070

Prepared For:

MA Engineering Consultants, Inc. 598 East Chatham Street, Suite 137 Cary, North Carolina 27511

8646 West Market Street, Suite 105 Greensboro, North Carolina 27409 NC PE Firm License No. F-0176

January 6, 2015

January 6, 2015

MA Engineering Consultants, Inc. 598 East Chatham Street, Suite 137 Cary, North Carolina 27511

Mr. Kevin C. Zdeb, P.E. Attention:

GEOTECHNICAL DATA REPORT Reference:

Frontier Gas Pipeline NCDOT R-2915A Near Deep Gap, North Carolina S&ME Project No. 1358-14-070

Dear Mr. Zdeb:

S&ME, Inc. (S&ME) has completed the field exploration and laboratory testing for the above referenced project. The purpose was to explore and characterize subsurface conditions for use in the relocation of existing 6 and 10-inch diameter gas transmission lines due to conflicts with a proposed NCDOT roadway construction project (R-2915A) near Deep Gap, North Carolina. Our work was performed in general accordance with S&ME Proposal No. 13-1400635 dated November 5, 2014 and the terms and conditions of the Subcontractor's Agreement between MA Engineering Consultants Inc. and S&ME, Inc. dated November 7, 2014.

S&ME appreciates the opportunity to provide geotechnical exploration and testing services for this project. If you have questions or need additional information in regard to this report, please call us at (336) 288-7180.

Respectfully, S&ME, Inc.

Brian Ladd, P.E.

Senior Engineer

Matt Moler, P.E. Senior Engineer/Project Manager

TABLE OF CONTENTS

1.0	PROJECT INFORMATION	1
2.0	GEOLOGY	1
3.0	EXPLORATION PROCEDURES	2
3.1	Field	2
3.2	LABORATORY	3
4.0	SUBSURFACE CONDITIONS AND RECOMMENDED HDD GEOTECHNICAL PARAMETERS (BORINGS B-	
	3 AND B-4)	4
5.0	IACK AND BORE (BORINGS B-5 AND B-6)	5
5.1	SUBSURFACE CONDITIONS	6
5.2	Horizontal Boring Pits	6
6.0	NEW STATION LOCATION (BORINGS B-1 AND B-2)	7
6.1	Subsurface Conditions	7
6.2	SUBGRADE EVALUATION AND PREPARATION	7
6.3	Structural Fill	8
6.4	Foundation Support	8
6.5	GRAVEL DRIVE AREA	9
7.0	QUALIFICATIONS	9

FIGURES

Figure1	Site Vicinity Plan							
Figure 2	Boring Location Plan (B-1 through B-4)							
Figure 3	Generalized Subsurface Profile (B-1 and B-2)							
Figure 4	Generalized Subsurface Profile (B-3 and B-4)							
Figure 5	Boring Location Plan (B-5 and B-6)							
Figure 6	Generalized Subsurface Profile (B-5 and B-6)							
APPENDICES								

- Appendix A Legend to Soil Classification and Symbols Hand Auger Boring Logs (B-1 and B-2) Boring Logs (B-3 through B-6)
- Appendix B Rock Core Pictures
- Appendix C Summary of Laboratory Test Data Laboratory Test Results (15 pages)

1.0 PROJECT INFORMATION

Project information has been obtained from the following:

- E-mails from Kevin Zdeb, P.E. with MA Engineering Consultants (MAEC) to Matt Moler, P.E. with S&ME on October 29 and 30, 2014.
- Review of provided NCDOT Preliminary Plan Sheets (prepared by Vaughn & Melton) and Microstation design files provided by MAEC.
- Telephone conversations between Kevin Zdeb and Matt Moler on November 4 and December 18, 2014.
- Review of Google Earth images of the site.

MA Engineering Consultants (MAEC) is assisting Frontier Natural Gas, LLC with relocation of existing 6 and 10-inch diameter gas transmission lines due to conflicts with a proposed NCDOT roadway construction project (R-2915A) near Deep Gap, North Carolina. The relocation includes a new station location and two proposed road crossings along the alignment. The crossing of US 221 at the intersection of US 421 will be performed using horizontal directional drilling (HDD) and the crossing of US 221 adjacent to the Belco gas station will be performed using Bore and Jack pipe installation procedures. Figure 1 presents a Site Vicinity Plan of the project.

MAEC requested that S&ME conduct six soil test borings along the proposed road crossings and the new station location, and perform laboratory testing on selected soil samples. The information obtained from these borings was to be used for the preparation of a geotechnical data report for the road crossings and geotechnical design recommendations for the new station. Design of the crossings and station will be performed by others.

2.0 GEOLOGY

According to the *1985 Geologic Map of North Carolina,* the site is located within the Blue Ridge Physiographic Province of North Carolina. The province is typified by northeasterly trending belts of igneous and metamorphic rock with occasional, deeply incised, and broad river valleys, with overlying alluvial materials. Many of the highest land elevations east of the Mississippi River occur within the Blue Ridge province. Typical rock types found include biotite gneiss, metasandstone, quartzite, and schist.

The site is underlain by the Alligator Back Formation and is described as finely laminated to thin layered gneiss. The gneiss is locally massive and contains micaceous granule conglomerate and includes schist, phyllite, and amphibolite. Soils typically encountered within this formation represent the in-place chemical decomposition of parent rock and contain considerable amounts of mica. These soils become progressively coarser with depth, representing progressively less advanced weathering of the parent material.

Based on our experience with Horizontal Directional Drilling (HDD) and the area geology, we have the following comments relative to HDD natural geologic hazards associated with borings B-3 and B-4 at the subject site.

HDD GEOLOGIC HAZARD	COMMENTS
Cohesionless sand, gravel, cobbles, or boulders with little to no fines.	Inconsistent with site geology.
Horizontal zones of gravel, cobbles, or boulders in soil matrix.	Not encountered in borings B-3 or B-4 but consistent with the site geology. Gravel seam encountered in boring B-6 from a depth of 7 to 13.5 feet.
Near vertical zones of gravel, cobbles, or boulders in soil matrix.	Not encountered in borings but consistent with the site geology.
Voids or preferential seepage paths potentially resulting in loss of drilling fluid return.	Inconsistent with site geology.
Very loose sand or very soft silt/clay.	Inconsistent with site geology.
Peat, organic soil.	Inconsistent with site geology.
Material with sufficient potential swell upon exposure to water to reduce borehole diameter.	Inconsistent with site geology.
Continuous strata of hard material requiring rock drilling techniques to penetrate.	Encountered in borings B-3 and B-4 at depths of 13 and 16.5 feet, respectively, and consistent with the site geology.
Artesian groundwater conditions.	Inconsistent with site geology.

3.0 EXPLORATION PROCEDURES

3.1 Field

Six soil test borings (labeled B-1 through B-6) were conducted for the gas transmission line relocation. The locations of these borings are shown on the Boring Location Plans (Figures 2 and 5). The GPS coordinates of the planned boring locations were provided by MAEC. S&ME used GPS equipment to field locate the planned borings in the field. Borings were offset as necessary to provide access for drilling equipment and to avoid conflicts with underground and overhead utilities. Ground surface elevations at the borings locations were interpolated from provided topographic information and should be considered approximate.

Borings B-1 and B-2, which were located within the planned station area, were conducted using hand augering equipment to depths of 5 and 3.5 feet, respectively, below the ground surface. Dynamic Cone Penetration (DCP) testing was performed in general accordance with ASTM STP-399 at varying depths to measure soil consistency. The test consists of driving a 1½-inch diameter, 60° hardened steel conical point in three increments using a 15-pound weight falling 20 inches. The number of hammer blows to

drive the cone each 1³/₄-inch increments is recorded, with the DCP reading taken as the average of the last two values.

Borings B-3 through B-6 were conducted using a track-mounted D-50 drill rig equipped with an autohammer. Hollow stem, continuous flight augers were used to advance the borings to refusal depths of 16 and 16.5 feet at borings B-3 and B-4 and to termination depths of 20 and 25 feet at borings B-5 and B-6. Standard Penetration Tests (SPT) were performed in the borings at 2.5-foot intervals in the top 10 feet, then at 5-foot intervals thereafter, in general accordance with ASTM D1586 to provide an index for estimating strength parameters and relative consistency of subsurface soils. In borings B-3 and B-4, rock coring was performed using an NQ-size core barrel below auger refusal to depths of 30 and 30.5 feet, respectively.

Groundwater measurements were attempted after drilling was completed in each of the test borings. Twenty four hour water level measurements were performed in borings B-3, B-4, and B-6 through temporary PVC pipe installed in the boreholes. Boring B-5 was immediately backfilled after boring completion due to its location within an active drive lane. The drilled borings were tremie grouted up to the ground surface with a cement-bentonite mix. Hand augur borings B-1 and B-2 were backfilled with soil cuttings compacted to the ground surface.

Boring logs containing soil descriptions, SPT N-values, and drilling observations were prepared by a geotechnical professional, and are attached in Appendix A. Stratification lines shown on boring logs are intended to represent approximate depths of changes in soil types. Naturally, transitional changes in soil types are often gradual and cannot be defined at exact depths. Photographs of the retrieved rock cores are provided in Appendix B.

3.2 Laboratory

Samples were returned to our laboratory where a geotechnical staff professional visually examined each soil sample to assess the distribution of grain sizes, plasticity, organic content, moisture condition, color, presence of lenses and seams, and apparent geological origin. A staff geologist visually examined each rock core sample to determine rock type, color, hardness, recovery, Rock Quality Designation (RQD), weathering, and documentation of fractures. The results of the classifications are presented on the individual boring logs. The contact lines represent approximate boundaries between the soil and rock types. The actual boundaries between the soil and rock types in the field may vary in both the horizontal and vertical directions.

Classification tests were performed on selected soil samples obtained during the field exploration. Laboratory testing included:

- Atterberg Limits (ASTM D 4318)
- Grain Size Distribution (#200 wash) (ASTM D 422)
- Moisture Content (ASTM D 2216)

A Deluxe Hardness Pick Set and Mineral Identification Kit manufactured by Mineralab, LLC was used by a staff geologist to estimate the Moh's Hardness Number of the rock core samples. The Moh's Hardness Numbers are presented on the boring logs. For the rock encountered, the Moh's Hardness Number ranged from 1.5 to 7.

Unconfined compressive tests were performed on four selected rock core samples in general accordance with ASTM D7012. Rock core compressive strengths ranged from 1,430 psi to 5,341 psi (average of 3,243 psi).

Results of the laboratory testing are presented in Appendix C. A Summary of Laboratory Test Data is also included in Appendix C.

4.0 SUBSURFACE CONDITIONS AND RECOMMENDED HDD GEOTECHNICAL PARAMETERS (BORINGS B-3 AND B-4)

The tables below summarize relevant subsurface information with respect to gas pipeline subsurface road crossing conditions. Soils with similar characteristics were grouped into strata based on visual soil classification, laboratory classification tests, consistencies inferred from standard penetration resistance values, and geologic origin. The strata contacts and composition may vary between the borings and should be considered approximate.

The tables below present soil descriptions and recommended geotechnical parameters for input into the HDD design software used by MAEC. The strength parameters and unit weights presented are based on local experience with USCS soil types. Shear modulus is based on correlation with soil parameter in NAVFAC DM 7.01. Soil reaction modulus and resilient modulus values are correlations based on soil types and in-situ relative densities.

Figure 4 presents the Generalized Subsurface Profile for the proposed HDD crossing. Imposed on the profile are the interpreted stratigraphy and "soil characteristics" for input into the API 1102 – Gas Pipeline Crossing portion of the HDD design software, and "soil classification" for input into the settlement analysis portion of the software. Note that the soil descriptions given on the profiles were assigned based on the nomenclature of the HDD software and may not be the same as the soil descriptions contained on the boring logs.

STDATA	DESCRIPTION	PERC	ENT OF MA	11808	SPT	
SIKAIA	DESCRIPTION	GRAVEL	SAND	SILT/CLAY	0303	(blows/ft)
I	FILL AND RESIDUALSOILS Predominately Medium-Dense to Dense Silty SAND	0 to 20	60 to 80	10 to 40	SM, SW	8 to 37
la	FILL SOIL Firm Sandy SILT	0	10 to 25	75 to 90	ML	2 to 5
П	PARTIALLY WEATHERED ROCK Sampled as Silty SAND with gravel and mica.	5 to 30	50 to 80	15 to 25	SM	50/1"
ш	BEDROCK: Gneiss. Unconfined Compressive Strengths of 1,430 psi to 5,341 psi.					

Soil Strata Summary

Notes:

- 1. USCS Unified Soil Classification System, visual classification.
- 2. SPT Standard Penetration Test "N" value. Tests performed with an autohammer.
- 3. The information presented above is a generalization of predominant subsurface conditions encountered. The material descriptions, percentages of materials, USCS, and SPT values presented are estimated based on visual classification, laboratory testing, field testing, and experience.

Stratum	Soil Characterization		Friction		Unit \	Neight	Shear	Modulus	Resilient	Soil
	API 1102	Settlement	Angle	Cohesion	Total	Effective	Modulus	of Soil Reaction	Modulus	Friction Coeff.
I	Dense Sands	Dense Sand	30°	0 psf	120 pcf	58 pcf	600 ksf	2.0 ksi	15 ksi	0.36
la	Soft to Medium Silt w/ low plasticity	Soft Firm Clay	20°	100 psf	110 pcf	48 pcf	60 ksf	0.6 ksi	4 ksi	0.24
II	PWR	PWR	40°	0 psf	140 pcf	78 pcf	2,000 ksf	4.0 ksi	6.5 ksi	0.30
Ш	Rock	Rock			155 pcf	93 pcf	Unco	nfined Strer	ngth = 3,200) psi

5.0 JACK AND BORE (BORINGS B-5 AND B-6)

Bore and jack methods are planned for installing the utility below US 221 at the Belco gas station, just north of Church Hill Street. Jack and bore methods generally consist of excavating a pit adjacent to the pipe alignment, horizontally boring and hydraulically pushing sections of pipe or casing along the alignment. After installation of the first section of casing, additional sections of casing are subsequently welded to the previous section of casing and advanced. A receiving pit is constructed at the opposite end of the horizontal bore to receive the casing. Earth removal is generally accomplished by mechanical means such as augers or boring equipment.

The casing is advanced forward using a hydraulic installation system. Horizontal forces induced by the installation are resisted by the pit sidewalls or support system. It is

necessary to provide a relatively uniform distribution of load around the pipe or casing periphery to prevent localized stress concentrations. This is typically accomplished by using a cushion material between the pipe sections and installation system. Where extreme pressures are anticipated due to long distances or where excessive friction forces are anticipated, additional pipe casing thickness may be required.

The pipe or casing section should be designed by a registered structural engineer with regard to the anticipated overburden, hydrostatic, and anticipated installation pressures.

5.1 Subsurface Conditions

Above a depth of about 8 feet below existing grades, horizontal drilling and pipe jacking will generally extend through silty sand. Below this depth PWR, was from about 7 to 18 feet below existing grade in boring B-5 and a gravel layer (77% gravel) was encountered in boring B-6 from about 7 to 13 feet below existing grade. Groundwater was not encountered in borings B-5 or B-6 to the depths explored. The groundwater level typically fluctuates during the year due to seasonal and climatic changes and could be perched just above the PWR in the typically wetter winter months. A graphical depiction of the jack and bore crossing profile is shown in Figure 6.

5.2 Horizontal Boring Pits

Excavations should be sloped or shored in accordance with local, state, and federal regulations, including OSHA excavation safety standards (29 CFR Part 1926). All excavated soils should be placed away from the top edges of the excavation, at a distance equaling or exceeding the depth of the excavation. This information is provided only as a service, and under no circumstance is S&ME to be responsible for construction site safety. The selection and design of the temporary lateral support system should be the responsibility of the general contractor who is solely responsible for site safety. Each excavation should be observed and soils classified by an OSHA-defined competent person.

Where required, lateral support could be provided by sheet piles, soldier piles and wood lagging, or a soil nailed system. The temporary retaining system used to support the excavation faces can be designed to resist "active" lateral earth pressures if some lateral wall movement is acceptable. Additional lateral loads should be applied as necessary to account for surcharge from temporary construction loads and adjacent roadways. A detailed design of the lateral support system should be provided by the contractor and designed by a professional engineer registered in the State of North Carolina.

For the boring pits, the back of the pit should be able to provide adequate resistance against the thrust generated by the jack and bore operation. Some displacement of the rear pit wall will be necessary to develop the passive resistance of the soils. The following lateral earth pressure parameters can be used in design of temporary excavation support of boring pits.

Parameter	Value
Soil Friction Angle (30 ⁰
At-Rest Earth Pressure Coefficient (K _o)	0.5
Active Coefficient Earth Pressure (Ka)	0.33
Passive Earth Pressure Coefficient (K _p)	3.0
Moist Unit Weight of Backfill	120 pcf
Friction Coefficient b/w Foundation and Bearing Soil	0.36

Lateral Earth Pressure Parameters for Boring Pits

Surface water must be directed away from the pit areas and sumps with pumps should be available to drain the pits if necessary. The boring pits should be backfilled immediately after pipe installation is complete and all slopes repaired, as required.

6.0 NEW STATION LOCATION (BORINGS B-1 AND B-2)

6.1 Subsurface Conditions

Hand auger borings B-1 and B-2 were located within an existing horse pasture. These borings encountered 4 to 6 inches of organic laden topsoil at the ground surface. Residual soil existing from the in-place weathering of bedrock was encountered beneath the topsoil extending to boring termination. Residual soils were classified as low plasticity silt, silty sand, and clayey sand with respective USCS designations of ML, SM, and SC. DCP blow counts were 7 and 11 blows per increment (bpi) indicating firm to stiff soil consistencies for silt soils and loose consistencies for silty and sandy clay soils. No groundwater was encountered in the borings to the depths explored. Hand auger refusal was encountered in boring B-2 at a depth of 3.5 feet below the ground surface. Generalized subsurface conditions are provided in Figure 3.

6.2 Subgrade Evaluation and Preparation

The site should be stripped of topsoil containing vegetative and root matter. An average stripping depth of approximately 6 inches is estimated for the new station area. Topsoil may be stockpiled on site and reused in landscaped areas. Topsoil should not be used as structural fill beneath structures or areas to be gravel surfaced.

Exposed subgrade soils should be evaluated by the Geotechnical Engineer by observing proof rolling with a fully loaded tandem-axle dump truck. Areas that are loose or soft, or that are observed to rut, pump, or deflect excessively during the proof rolling process should be repaired. Possible repair measures could include undercutting to stable soils and backfilling with well-compacted, low plasticity materials, discing of in-situ soils to dry to proper moisture content and then re-compacting, placement of geotextile stabilization fabric on unsuitable materials and placement of crushed stone, or some combination of these. The most practical repair measure will be influenced by the depth

of soil instability, soil water content, depth of fill, soil type, and weather conditions. Actual repair measures should be determined in the field at the time of construction.

Site grading will be difficult during periods of extended rainfall that generally occur during the winter months. Exposed subgrade soils will tend to pump and rut under rubber-tired traffic and provide poor support for foundations and pavements. Exposed subgrades should be sloped and sealed at the end of each day to promote runoff and reduce infiltration from rainfall.

6.3 Structural Fill

On-site soils (excluding topsoil) with USCS classifications of ML, SM, and SC are suitable for re-use as structural fill, provided that any debris, organics, and particles greater than 3 inches in diameter are removed prior to placement. Depending on weather conditions and the existing moisture content of on-site soils, water content adjustment of the on-site soils may be necessary prior to compaction. Drying may be accomplished by spreading and discing to maximize exposure to sun and wind during favorable weather conditions.

Off-site fill materials, if required, should consist of a clean and low plasticity material with a maximum particle size no larger than 3 inches, and a maximum dry density of at least 100 pcf as determined by the Standard Proctor Compaction test (ASTM D698). Soils with USCS classifications of SP, SP-SM, SC, SM, and ML typically meet the noted requirements. The contractor should submit samples of proposed imported fill for evaluation by S&ME prior to fill placement.

Structural fill should be placed in maximum 8-inch loose lifts and compacted to a minimum of 95% of its Standard Proctor maximum dry density at a water content within 3% of optimum. The relative compaction should be increased to 98% within the upper 12 inches of the design subgrade elevation.

6.4 Foundation Support

Shallow foundations can be designed for a net allowable bearing pressure of 2,500 psf. Footings should bear a minimum of 18 inches below finished grade for frost protection and protective embedment.

The bottom of footing excavations should be evaluated by the project Geotechnical Engineer or senior soil technician working under the direction of the Geotechnical Engineer using a DCP to gauge the consistency of the subgrade soils. Subgrades that appear unstable or exhibit DCP blow counts less than those reported on the enclosed Hand Auger Boring Logs should be lowered to adequate bearing materials. Foundation overexcavations could be backfilled with aggregate base course (ABC stone) or lean concrete up to design bearing level. The use of washed stone (No. 57) is not recommended because fluctuations in the water levels could allow fines (i.e. silt and clay) to migrate into the stone resulting in a softening/loosening of adjacent bearing soils.

6.5 Gravel Drive Area

Access to the new station location will be provided by a gravel surfaced driveway. The driveway is anticipated to support heavy loads from tractor trailers. To support these loads, the driveway should be covered with a 14-inch thick layer of compacted aggregate base course (NCDOT ABC stone). Alternatively, the thickness of the ABC stone layer can be reduced to 8 inches if it is underlain by a non-woven geotextile that is placed over the subgrade soil. The geotextile helps protect the stone from becoming contaminated by the subgrade soils due to truck traffic loading. Once contaminated, the stone will deteriorate and lose strength with time.

7.0 QUALIFICATIONS

This report has been prepared in accordance with generally accepted geotechnical engineering practice for specific application to this project. The conclusions contained in this report were based on the applicable standards of the engineering profession at the time this report was prepared. No other warranty, express or implied, is made.

The nature and extent of variations between borings may not become evident until construction. If variations appear evident, then it will be necessary to reevaluate the applicability of the information obtained with this exploration and laboratory testing program. Environmental services were beyond the scope of this report.

FIGURES

- Figure 1 Site Vicinity Plan
- Figure 2 Boring Location Plan (B-1 through B-4)
- Figure 3 Generalized Subsurface Profile (B-1 and B-2)
- Figure 4 Generalized Subsurface Profile (B-3 and B-4)
- Figure 5 Boring Location Plan (B-5 and B-6)
- Figure 6 Generalized Subsurface Profile (B-5 and B-6)

APPENDICES

Appendix A

Legend to Soil Classification and Symbols Hand Auger Boring Logs (B-1 and B-2) Boring Logs (B-3 through B-6)

Appendix B

Rock Core Pictures

Appendix C

Summary of Laboratory Test Data Laboratory Test Results (15 pages)

LEGEND TO SOIL CLASSIFICATION AND SYMBOLS

PROJE	COJECT: Frontier Gas Pipeline Deep Gap, North Carolina 1358-14-070						AND AUGER BORING	G LC	DG: B-1				
DATE STARTED: 11/14/14 DA			DATE FINISHED:	11/14/14	1		NOTES: - Soil excavated with a 3" open bucket HA. - Boring terminated at 5'.						
SAMPI		/IETHOD: 3" Open Bucket H/		- Soil backfilled and com - Northing: 914706.0 Eas	pacte ting:	ed into bore 1259729.0	hole.						
WATE		EL: Dry at TOB				1							
Depth (feet)	GRAPHIC LOG	MATERIAL D	ESCRIPTION		:LEVATION (feet)	WATER LEVEL	DYNAMIC CONE PE RESISTAN (blows/1.75	NETR CE in.)	ATION		DCP VALUE		
					ш		10	20	30 60	80			
1 -		Topsoil - 6 inches thick <u>RESIDUAL: CLAYEY SILT (ML)</u> brown, moist, with sand		29	987.00 -	-	•				7		
2 -		<u>SILTY SAND (SM)</u> brown tan, moist, with gravel		29	986.00 -	_							
4 -		CLAYEY SAND (SC) tan, moist		29	984.00 -	-					7		
5	///////////////////////////////////////	Boring terminated at 5 ft		20	983.00 -						11		

PROJECT: Frontier Gas Pipeline Deep Gap, North Carolina 1358-14-070	HAND AUGER BORING LOG: B-2	
DATE STARTED: 11/14/14 DATE FINISHED: 11/1	14/14 NOTES: - Soil excavated with a 3" open bucket HA. - Boring terminated at 5'.	
SAMPLING METHOD: 3" Open Bucket HA PERFORMED BY: D. Kea	- Soil backfilled and compacted into boreh - Northing: 914666.8 Easting: 1259723.0	ole.
The figure of th	NOLEXAJANA CONE PENETRATION RESISTANCE (blows/1.75 in.) 10 20 30 60	DCP VALUE
1 Topsoil - 4 inches thick 1 RESIDUAL: CLAYEY SILT (ML) brown, moist SILTY SAND (SM) 2 tan brown, fine, moist	2987.00 2986.00	7
3 - black fine moist with clay	2985.00	

PROJECT:	POJECT: Frontier Gas Pipeline Deep Gap, North Carolina S&ME Project No. 1358-14-070				E	BORI	NG L	.0G		B-3		
DATE DRIL	_LED: 12/4/14	ELEVATION: 2986.0 ft			NOTES: - Soil excavated with a 3 1/4" HSA to refusal at					al at 16'.		
DRILL RIG	DRILL RIG: Track D-50 BORING DEPTH: 30.0 ft				Water level measurement was attempted. Rock cored with an NQ diamond core bit to 30'.							
DRILLER:	H. Herd	WATER LEVEL: 3.5' A	TD, 3	3' 24 hr			- PVC - Stab	insert ilized v	ed for borehole water level mea	support. surement taken	at 24 hou	rs.
HAMMER TYPE: Autohammer LOGGED BY: D. Keatts/L. Butler -Borehole tremie grouted to the ground surface.						rface.						
SAMPLING	METHOD: Split Spoon, Rock Core						NOR	THING	G: 914488.64	EASTING:	1259926.	.95
DRILLING	METHOD: 3¼" H.S.A., NQ Core			1	1							
DEPTH (feet) GRAPHIC				ELEVATION (feet)	SAMPLE NO.	SAMPLE TYPE	2nd 6in / REC	3rd 6in / ROD ALAC	STANDARD F	PENETRATION TE (blows/ft) / REMARKS 10 20 30	ST DATA	N VALUE
	Topsoil - 4 inches thick FILL: SILTY SAND (SM) loose to medium dense, brow moist, with gravel FILL: SILTY SAND (SM)	/n black, fine,	▼ Į		SS-1 SS-2		2 3	5				8 25
	dense, brown gray, medium t gravel	y, medium to coarse, wet, with		-	SS-3	1	2 20	17			• •	37
	RESIDUUM: SILTY SAND (SI loose, olive gray, fine, moist t	<u>A)</u> to wet, with mica		- 2976.0 - - -	SS-4	٤	3 5	5				10
	GNEISS: light gray and yellow incompetent, very poor rock of weathering, course to mediur	wish orange, soft, quality, severe n grained.		- 2971.0 -	SS-5		2 50	50/1				50/1
	weathered high angle fracture mid-angle fracture from 19.6 Hardness 1.5	es, weathered to 20 feet, Moh's		-	RC-1		38%	8%			-	

NOTES:

1. THIS LOG IS ONLY A PORTION OF A REPORT PREPARED FOR THE NAMED PROJECT AND MUST ONLY BE USED TOGETHER WITH THAT REPORT.

2. BORING, SAMPLING AND PENETRATION TEST DATA IN GENERAL ACCORDANCE WITH ASTM D-1586.

3. STRATIFICATION AND GROUNDWATER DEPTHS ARE NOT EXACT.

4. WATER LEVEL IS AT TIME OF EXPLORATION AND WILL VARY.

Page 1 of 2

PROJE	ROJECT: Frontier Gas Pipeline Deep Gap, North Carolina S&ME Project No. 1358-14-070					BOF	RING L	.OG	B-3				
DATE	DRILL	ED: 12/4/14	ELEVATION: 2986.0 ft					NOTE	S: excava	ated with a 3 1/4" HSA to	refusal a	at 16'.	
DRILL	RIG:	Track D-50	BORING DEPTH: 30.0 ft				- Wate	r level cored	measurement was atter I with an NQ diamond co	mpted. ore bit to	30'.		
DRILL	ER: H	. Herd	WATER LEVEL: 3.5' A	TD, :	3' 24 hr			- PVC - Stabi	inserte lized v	ed for borehole support. water level measuremen	t taken at	24 hou	rs.
HAMM	ER TY	PE: Autohammer	LOGGED BY: D. Keatt	s/L. I	Butler			- Bore	hole tr	emie grouted to the gro	und surfa	ice.	
SAMP	LING	METHOD: Split Spoon, Rock Core						NOR	THINC	EAS	TING: 1 2	259926	.95
DRILL	NG M	ETHOD: 3¼" H.S.A., NQ Core						<u> DI OM O</u>		r			
DEPTH (feet)	H (jeet) BATERIAL DESCRIPTION			WATER LEVEL	ELEVATION (feet)	SAMPLE NO.	SAMPLE TYPE	1st 6in / RUN # / 2nd 6in / REC 3000	3rd 6in / RQD ALAC	STANDARD PENETRAT (blows/fi / REMARK 10	TION TEST t) KS 20 30	DATA 60.80	N VALUE
		GNEISS: light gray, moderate continuous, fair rock quality, s course to medium grained, in horizontal and mid-angle frac 21.4 feet and approximately 2 high angle weathered fracture approximately 23.5 to 24 feet 2.5 GNEISS: yellowish orange to moderately soft to moderately continuous, fair rock quality, i to very slight weathering, cou grained, intersecting horizont vertical fractures from 25 to a feet, Moh's Hardness 2.5 (23 29'), and 3.5 (29' to 30') Auger refusal at 16 ft Boring terminated at 30 ft	ely soft, slight weathering, itersecting itures from 21.1 to 24.5 to 25 feet, e from ; Moh's Hardness light gray, y hard, fairly moderately severe arse to medium al and weathered approximately 27 ' to 27'), 4.5 (27' to		2961.0-	RC-2		<u>2</u> 5 92%	54%				

<u>NOTES:</u>

1. THIS LOG IS ONLY A PORTION OF A REPORT PREPARED FOR THE NAMED PROJECT AND MUST ONLY BE USED TOGETHER WITH THAT REPORT.

2. BORING, SAMPLING AND PENETRATION TEST DATA IN GENERAL ACCORDANCE WITH ASTM D-1586.

3. STRATIFICATION AND GROUNDWATER DEPTHS ARE NOT EXACT.

4. WATER LEVEL IS AT TIME OF EXPLORATION AND WILL VARY.

Page 2 of 2

S&ME BORING LOG 1358-14-070 FRONTIER GAS PIPELINE.GPJ S&ME.GDT 1/6/15

<u>NOTES:</u>

1. THIS LOG IS ONLY A PORTION OF A REPORT PREPARED FOR THE NAMED PROJECT AND MUST ONLY BE USED TOGETHER WITH THAT REPORT.

2. BORING, SAMPLING AND PENETRATION TEST DATA IN GENERAL ACCORDANCE WITH ASTM D-1586.

3. STRATIFICATION AND GROUNDWATER DEPTHS ARE NOT EXACT.

4. WATER LEVEL IS AT TIME OF EXPLORATION AND WILL VARY.

\$S&ME

Page 1 of 2

PROJECT: Frontier Gas Pipeline Deep Gap, North Carolina S&ME Project No. 1358-14-070					BOF	ring	LOG		B-4			
DATE DRILLED: 12/4/14 ELEVATION: 2997.0 ft				NOTES: - Soil excavated with a 3 1/4" HSA to ref					efusal at	16.5'.		
Track D-50	BORING DEPTH: 30.5	ft				- Wa - Ro	ter leve ck corec	I measurement with an NQ d	t was attem iamond cor	pted. e bit to 3	0.5'.	
. Herd	WATER LEVEL: 13.5	ATD,	6' 24 h	r		- PV - Sta	C insert	ed for borehole water level me	e support. asurement	taken at 2	24 hou	irs.
PE: Autohammer	LOGGED BY: D. Keatts	s/L. E	Butler			- Bo	ehole t	remie grouted	to the grou	nd surfac	e.	
METHOD: Split Spoon, Rock Core						NOF	RTHING	G: 914389.38	EAST	ING: 12	60171	.94
ETHOD: 3¼" H.S.A., NQ Core				-		<u> </u>						
MATERIAL DESCRIPTION			ELEVATION (feet)	SAMPLE NO.	SAMPLE TYPE	1st 6in / RUN # / MOTE	3rd 6in / ROD	STANDARD	PENETRATIC (blows/ft) / REMARKS 10	ON TEST D	ATA 60.80	N VALUE
GNEISS: light gray to yellowis moderately soft, fairly continu quality, slight to moderate we medium grained, low angle w at approximately 20.7, 22.0, a Moh's Hardness 5 to 4 GNEISS: light gray and yellow continuous, fair rock quality, s weathering, course to medium low-angle weathered fractures approximately 27 to 28.5 feet 4 to 3 Auger refusal at 16.5 ft Boring terminated at 30.5 ft	sh orange, ous, fair rock athering, course to eathered fractures and 24.6 feet, wish orange, soft, slight to moderate n grained, multiple s from , Moh's Hardness		2972.0-	- RC-2		90 90	% 72% % 54%					
	Frontier Gas Pig Deep Gap, North C S&ME Project No. 1383 ED: 12/4/14 Track D-50 .Herd PE: Autohammer //ETHOD: Split Spoon, Rock Core ETHOD: 31/4" H.S.A., NQ Core GNEISS: light gray to yellowis moderately soft, fairly continu quality, slight to moderate we medium grained, low angle w at approximately 20.7, 22.0, a Moh's Hardness 5 to 4 GNEISS: light gray and yellow continuous, fair rock quality, s weathering, course to medium low-angle weathered fracture: approximately 27 to 28.5 feet 4 to 3 Auger refusal at 16.5 ft Boring terminated at 30.5 ft	Frontier Gas Pipeline Deep Gap, North Carolina S&ME Project No. 1358-14-070 ED: 12/4/14 ELEVATION: 2997.0 ft Track D-50 BORING DEPTH: 30.5 Herd WATER LEVEL: 13.5' / PE: Autohammer LOGGED BY: D. Keatte METHOD: Split Spoon, Rock Core ETHOD: 3/4" H.S.A., NQ Core MATERIAL DESCRIPTION GNEISS: light gray to yellowish orange, moderately soft, fairly continuous, fair rock quality, slight to moderate weathering, course to medium grained, low angle weathered fractures at approximately 20.7, 22.0, and 24.6 feet, Moh's Hardness 5 to 4 GNEISS: light gray and yellowish orange, soft, continuous, fair rock quality, slight to moderate weathering, course to medium grained, multiple low-angle weathered fractures from approximately 27 to 28.5 feet, Moh's Hardness 4 to 3 Auger refusal at 16.5 ft Boring terminated at 30.5 ft	Frontier Gas Pipeline Deep Gap, North Carolina S&ME Project No. 1389-14-070 ED: 12/4/14 ELEVATION: 2997.0 ft Track D-50 BORING DEPTH: 30.5 ft Herd WATER LEVEL: 13.5' ATD, PE: Autohammer LOGGED BY: D. Keatts/L.1 METHOD: Split Spoon, Rock Core ETHOD: 3/4" H.S.A., NQ Core MATERIAL DESCRIPTION GNEISS: light gray to yellowish orange, moderately soft, fairly continuous, fair rock quality, slight to moderate weathering, course to medium grained, low angle weathered fractures at approximately 20.7, 22.0, and 24.6 feet, Moh's Hardness 5 to 4 GNEISS: light gray and yellowish orange, soft, continuous, fair rock quality, slight to moderate weathering, course to medium grained, multiple low-angle weathered fractures from approximately 27 to 28.5 feet, Moh's Hardness 4 to 3 Auger refusal at 16.5 ft Boring terminated at 30.5 ft	Frontier Gas Pipeline Deep Gap, North Carolina S&ME Project No. 1388-14-070 ED: 12/4/14 ELEVATION: 2997.0 ft Track D-50 BORING DEPTH: 30.5 ft Herd WATER LEVEL: 13.5'ATD, 6' 24 h PE: Autohammer LOGGED BY: D. Keatts/L. Butler METHOD: Split Spoon, Rock Core ETHOD: 3%" H.S.A., NQ Core GNEISS: light gray to yellowish orange, moderately soft, fairly continuous, fair rock quality, slight to moderate weathered fractures at approximately 20.7, 22.0, and 24.6 feet, Moh's Hardness 5 to 4 2972.0- GNEISS: light gray and yellowish orange, soft, continuous, fair rock quality, slight to moderate weathering, course to medium grained, multiple low-angle weathered fractures from approximately 27 to 28.5 feet, Moh's Hardness 4 to 3 2972.0- Auger refusal at 16.5 ft Boring terminated at 30.5 ft 2967.0-	Frontier Gas Pipeline Deep Gap, North Carolina S&ME Project No. 1388-14-070 ED: 12/4/14 ELEVATION: 2997.0 ft Track D-50 BORING DEPTH: 30.5 ft Herd WATER LEVEL: 13.5' ATD, 6' 24 hr PE: Autohammer LOGGED BY: D. Keatts/L. Butler MATERIAL DESCRIPTION GNEISS: light gray to yellowish orange, moderately soft, fairly continuous, fair rock quality, slight to moderate weathered fractures at approximately 20.7, 22.0, and 24.6 feet, Moh's Hardness 5 to 4 GNEISS: light gray and yellowish orange, soft, continuous, fair rock quality, slight to moderate weathering, course to medium grained, multiple low-angle weathered fractures from approximately 27 to 28.5 feet, Moh's Hardness 4 to 3 2967.0- Auger refusal at 16.5 ft Boring terminated at 30.5 ft	Frontier Gas Pipeline Deep Gap, North Carolina SAME Project No. 1388-14-070 ED: 12/4/14 ELEVATION: 2997.0 ft Track D-50 BORING DEPTH: 30.5 ft Herd WATER LEVEL: 13.5' ATD, 6' 24 hr PE: Autohammer LOGGED BY: D. Keatts/L. Butler MATERIAL DESCRIPTION MATERIAL DESCRIPTION OUT	Frontier Gas Pipeline Deep Gap, North Carolina SaME Project No. 1384-14400 ED: 12/4/14 ELEVATION: 2997.0 ft NOT Track D-50 BORING DEPTH: 30.5 ft NOT Track D-50 BORING DEPTH: 30.5 ft NOT Track D-50 BORING DEPTH: 30.5 ft NOT Track D-50 NOT Track D-50 DOE 3/2" H.S.A. NG Core WATERIAL DESCRIPTION UPU	BORING LOG BORING LOG S&ME Project No. 1358-14-070 MOTES: 12/4/14 LEVEL 12/4/14 IEVE 12/4/14 IEVE 12/4/14 IEVE 12/4/14 IEVE 12/4/14 IEVE 12/4/14 IEVE 10.5 ft NOTES: INFORMED EXTENSION WATER LEVEL: 13.5° ATD, 6° 24 hr Setilization IEVE 100 Split Spoon, Rock Core INTOR INCOME TOTAL MATERIAL DESCRIPTION TOTAL TOTAL TOTAL MATERIAL DESCRIPTION INTOR INTOR INTORE TORK Quality, slight gray to yellowish orange, moderately soft, fairly continuous, fair rock quality, slight to moderate weathering, course to medium grained, low angle weathered fractures at approximately 20.7, 22.0, and 24.6 feet, Moh's Hardness MATERIAL DESCRIPTION Image: GNEISS: light gray and yellowish orange, soft, continuous, fair rock quality, slight to moderate weathering, course to medium grained, multiple low-angle weathered fractures from approximately 27 to 28.5 feet, Moh's Hardness 4 to 3 2972.0 Auger refusal at 16.5 ft Boring terminated at 30.5 ft	Frontier Gas Pipeline Boer Gap, North Carolina S&ME Project No. 1358-14-070 ED: 12/4/14 ELEVATION: 297.0 ft Track D-50 BORING LEPTH: 30.5 ft Hard WATER LEVEL: 13.5 ATD, 6 24 hr PE: Autohammer LOGGED BY: D. Keatts/L. Butler PE: Autohammer NORTHING: 91439.38 THOD: 3/1" BSoon, Rock Core NORTHING: 91439.38 MATERIAL DESCRIPTION US WATER LEVEL 13.6 ft GNEISS: light gray to yellowish orange, moderately soft, fairly continuous, fair rock quality, slight to moderate weathering, course to medium grained, low angle weathered fractures at approximately 20.7, 22.0, and 24.6 feet, Moh's Hardness 5 to 4 GNEISS: light gray and yellowish orange, moderately soft, fairly continuous, fair rock quality, slight to moderate weathering, course to medium grained, low angle weathered fractures at approximately 20.7, 22.0, and 24.6 feet, Moh's Hardness 5 to 4 Quer refusal at 16.5 ft Boring terminated at 30.5 ft	Errontic Gas Pipeline SAME Project No. 1398-14470 BORING LOG B-4 ED: 12/4/14 ELE VATION: 2997.0 ft *0115: *001 cccred with a 3 1/4*HAA to *000 cccred with a 10 a 1/4*HAA to *000 ccccred with a 1/4*HAA to *000 cccred with a 1/4*HAA to *000 cccred	Frontier Gas Pipeline Deep Gap, North Carolina 38ME Project No. 1338-44070 BORING LOC B-4 Dest 24/14 EL: 12/4/14 EL: 12/4/14 EL: 12/4/14 Intex D-50 BORING LOC Hard Work for the measurement was attempted. Work for the measurement was attempted. Herd Work for the measurement was attempted. Proc. Status was attempted. Proc. Instant of the borbole support Proc. Status was attempted. Herd Hord colspan="2">Work for the measurement taken at a trans. Proc. Status was attempted. MATERIAL DESCRIPTION Was attempted. MATERIAL DESCRIPTION Was attempted. MATERIAL DESCRIPTION BORING LOC BE MATERIAL DESCRIPTION BORING LOC BE CONCOMM CONCOMM CONCOMM CONCOMM CONCOMM CONCOMM CONCOMM <td>Frontier Gas Pipeline Deep Gap, North Carolina SME Project No. 1338-14/70 BORING LOG B-4 ED: 12/4/14 ELEVATION: 2997.0 ft Track D-50 ************************************</td>	Frontier Gas Pipeline Deep Gap, North Carolina SME Project No. 1338-14/70 BORING LOG B-4 ED: 12/4/14 ELEVATION: 2997.0 ft Track D-50 ************************************

NOTES:

1. THIS LOG IS ONLY A PORTION OF A REPORT PREPARED FOR THE NAMED PROJECT AND MUST ONLY BE USED TOGETHER WITH THAT REPORT.

2. BORING, SAMPLING AND PENETRATION TEST DATA IN GENERAL ACCORDANCE WITH ASTM D-1586.

3. STRATIFICATION AND GROUNDWATER DEPTHS ARE NOT EXACT.

4. WATER LEVEL IS AT TIME OF EXPLORATION AND WILL VARY.

Page 2 of 2

PROJECT:	Frontier Gas Pip Deep Gap, North C S&ME Project No. 135	oeline Carolina ⁸⁻¹⁴⁻⁰⁷⁰				BOF	RIN	G L	OG		B-5		
DATE DRILLED:	12/3/14	ELEVATION: 2944.0 ft					N(OTES Soil e	: xcava	ted with a 3 1/4	" HSA to ter	mination at 2	25'.
DRILL RIG: Trac	:k D-50	BORING DEPTH: 25.0	ft				- \ - E	Nater Boreh	level	measurement v emie grouted to	vas attempte the ground	ed. surface	
DRILLER: H. Her	rd	WATER LEVEL: Dry at	TOE	3.			i	mme	diately	/ after drilling c	ompletion.		
HAMMER TYPE:	Autohammer	LOGGED BY: D. Keatts	\$										
SAMPLING METH	HOD: Split spoon						Ν	ORT	HING	6: 924104.08	EASTIN	G: 126323	5.13
DRILLING METH	OD: 3¼" H.S.A.			1	1								<u> </u>
DEPTH (feet) GRAPHIC LOG	MATERIAL DES	CRIPTION	WATER LEVEL	ELEVATION (feet)	SAMPLE NO.	SAMPLE TYPE	1st 6in / RUN # / B	2nd 6in / REC 300	3rd 6in / RQD VIA	STANDARD P	ENETRATION (blows/ft) REMARKS 10 20	TEST DATA 30 6080	N VALUE
G	Gravel Driveway Surface - 2 i	inches thick				V							
	POSSIBLE RESIDUUM: SILT nedium dense, tan brown, fir nica	Y SAND (SM) le, damp, with		-	SS-1		3	7	5				- 12
5	RESIDUUM: SILTY SAND (SN ery dense, gray tan, fine, da	<u>∕I)</u> mp, with mica		- 2939.0-	SS-2		14	45	45			Ň	90
	PARTIALLY WEATHERED RO Iray brown, damp, sampled a nica	DCK (SM) as silty sand with		-	SS-3	×	12	38	50/2				● 50/2
GAS PIPELINE.GPJ S&ME.GPJ 106/15	PARTIALLY WEATHERED RC an gray, damp, sampled as s	DCK (SM) silty sand with mica		- 2934.0 - -	SS-4		15	50/2	-				• 50/2
ME BORING LOG 1398-14-0/0 FKUNILEK	SILTY SAND (SM) ery dense, tan gray, fine, da	mp, with mica		- 2929.0 - - -	SS-5		G	00/2	-				• 50/2
δ					SS-6		8	22	32			H	54

NOTES:

1. THIS LOG IS ONLY A PORTION OF A REPORT PREPARED FOR THE NAMED PROJECT AND MUST ONLY BE USED TOGETHER WITH THAT REPORT.

2. BORING, SAMPLING AND PENETRATION TEST DATA IN GENERAL ACCORDANCE WITH ASTM D-1586.

3. STRATIFICATION AND GROUNDWATER DEPTHS ARE NOT EXACT.

4. WATER LEVEL IS AT TIME OF EXPLORATION AND WILL VARY.

Page 1 of 2

PROJECT:	Frontier Gas Pip Deep Gap, North (S&ME Project No. 135	peline Carolina 8-14-070		BORING LOG B-5						
DATE DRILLI	ED: 12/3/14	ELEVATION: 2944.0 ft					NOTES	S: excava	ated with a 3 1/4" HSA to termination at 25'.	
DRILL RIG:	Track D-50	BORING DEPTH: 25.0	ft				- Wate	r level hole ti	el measurement was attempted. Tremie grouted to the ground surface	
DRILLER: H.	. Herd	WATER LEVEL: Dry at	то	3.			imme	diatel	ly after drilling completion.	
HAMMER TY	PE: Autohammer	LOGGED BY: D. Keatts	s							
SAMPLING N	METHOD: Split spoon						NORT	THING	G: 924104.08 EASTING: 1263235.13	
DRILLING ME	ETHOD: 3¼" H.S.A.								1	
DEPTH (feet) GRAPHIC LOG	HL (teg) MATERIAL DESCRIPTION					ON HAL / CORE DATA STANDARD PENETRATION TE (blows/ft) /REMARKS SSAULA 10 20 3			STANDARD PENETRATION TEST DATA (blows/ft) /REMARKS 10 20 30 6080	
25ME BORINGLOG 1358-14-070 FRONTIER GAS PIPELINE.GPJ S&ME.GDT 1/6/15	SILTY SAND (SM) very dense, tan gray, fine, da <i>(continued)</i> SILTY SAND (SM) very dense, orange brown, m Boring terminated at 25 ft	mp, with mica		2919.0-	SS-7		5 22	38		

<u>NOTES:</u>

1. THIS LOG IS ONLY A PORTION OF A REPORT PREPARED FOR THE NAMED PROJECT AND MUST ONLY BE USED TOGETHER WITH THAT REPORT.

2. BORING, SAMPLING AND PENETRATION TEST DATA IN GENERAL ACCORDANCE WITH ASTM D-1586.

3. STRATIFICATION AND GROUNDWATER DEPTHS ARE NOT EXACT.

4. WATER LEVEL IS AT TIME OF EXPLORATION AND WILL VARY.

Page 2 of 2

1. THIS LOG IS ONLY A PORTION OF A REPORT PREPARED FOR THE NAMED PROJECT AND MUST ONLY BE USED TOGETHER WITH THAT REPORT.

2. BORING, SAMPLING AND PENETRATION TEST DATA IN GENERAL ACCORDANCE WITH ASTM D-1586.

3. STRATIFICATION AND GROUNDWATER DEPTHS ARE NOT EXACT.

4. WATER LEVEL IS AT TIME OF EXPLORATION AND WILL VARY.

Page 1 of 1

Rock Core Pictures Frontier Gas Pipeline Deep Gap, North Carolina Project #: 1358-14-070

Sheet 1 of 2

Rock Core Pictures Frontier Gas Pipeline Deep Gap, North Carolina Project #: 1358-14-070

Sheet 2 of 2

SUMMARY OF LABORATORY TEST DATA Frontier Gas Pipeline NCDOT R-2915A Deep Gap, North Carolina S&ME Project No. 1358-14-070

	SAMPLE	LOCATIO	N	Sample Type	USCS Classification	Atte	Natural terberg Limits Natural Moisture Content Diameter (millimeters) % Silt and Clay % Sand				% Sand		% Gravel	Unconfined Compressive Strength (psi)					
Boring	Sample #	Depth (ft)	Strata			LL	PL	PI	%	D ₁₀₀	D ₆₀	D ₃₀	D ₁₀		Fine	Medium	Coarse		See ongen (por)
	SS-4	8.5 - 10	Ι	SS	SM	NP	NP	NP	26.0										
P 2	SS-5	13.5-14.6	П	SS	SM				11.2	18.00	1.30	0.15		22.0	23.5	20.1	7.5	26.9	
B-3	RC-2	22.2-22.8	Ш	RC															3,672
	RC-3	28-28.7	Ш	RC															5,341
	SS-3	6-7.5	Ia	SS	ML	NP	NP	NP	30.4										
B-4	SS-5	13.5-15	Ι	SS	SM				12.2	19.00	1.30	0.26		14.0	26.0	29.7	9.5	20.8	
D-4	RC-2	22.8-23.3	Ш	RC															1,430
	RC-3	28.4-29	Ш	RC															2,528
	SS-3	6-7.2		SS	SM	NP	NP	NP	10.5										
B-5	SS-5	13.5-14.2		SS	SM				6.4	11.00	0.35	0.17		14.9	52.7	20.0	4.6	7.9	
	SS-6	18.5-20		SS	SM				10.0	1.80	0.27	0.13		21.0	71.1	7.5	0.4	0.0	
	SS-3	6-7.5		SS	SM	NP	NP	NP	5.9										
P 6	SS-4	8.5-10		SS	GP				2.6	38.00	22.20	8.20	0.37	3.5	7.2	6.8	5.0	77.4	
13-0	SS-5	13.5-15		SS	SM	NP	NP	NP	13.4										
	SS-6	18.5-20		SS	SM				10.6	9.50	0.50	0.19		15.0	40.5	28.9	9.4	6.2	

LEGEND
SS - Split Spoon Soil Sample
RC - Rock Core
LL - Liquid Limit
PL - Plastic Limit
PI - Plasticity Index
NP- Non-Plastic

UNCONFINED COMPRESSION (ASTM D7012 Method C)

S&ME, Inc. - Knoxville 1413 Topside Road, Louisville, TN 37777

Project Name: Frontier Gas Pipeline Project Number: 1358-14-070 Report Date: December 22, 2014 Reviewed By: Jason B. Burgess

Sample	Sampla Id	Depth	Dimens	sions, in.	Shape	Area	Unit Weight	Loading Rate	Maximum Load	Strength	Moisture
No.	Sample Id	(ft)	Length	Diameter	(See Key)	(in^2)	(lbs/ft^3)	(psi/sec)	(lbs)	(psi)	(%)
RC-2	B-3	22' 2" - 22' 9"	4.33	1.96	D	3.02	156.5	52	11,090	3,672	0.1
RC-3	B-3	28' - 28' 9"	4.33	1.98	D	3.08	158.4	59	16,450	5,341	0.2
RC-2	B-4	22' 9" - 23' 4"	4.22	1.96	С	3.02	149.6	36	4,320	1,430	0.2
RC-3	B-4	28' 5" - 29'	4.27	1.95	D	2.99	153.9	60	7,560	2,528	0.1

NOTES: Effective (as received) unit weight as determined by RTH 109-93.

Loading rates were selected to target reaching failure between 2 and 15 minutes.

SHAPE KEY

ASTM D4543-08 Standard Practice for Preparing Rock Core as Cylindrical Test Specimens and Verifying Conformance to Dimensional and Shape Tolerance Section 1.2 - "Rock is a complex engineering material that can vary greatly as a function of lithology, stress history, weathering, moisture content and chemistry, and other natural geologic processes. As such, it is not always possible to obtain or prepare rock core specimens that satisfy the desirable tolerances given in this practice. Most commonly, this situation presents itself with weaker, more porous, and poorly cemented rock types and rock types containing significant or weak (or both) structural features. For these and other rock types which are difficult to prepare, all reasonable efforts shall be made to prepare a specimen in accordance with this practice and for the intended test procedure. However, when it has been determined by trial that this is not possible, prepare the rock specimen to the closest tolerances practicable and consider this to be the best effort and report it as such and if allowable or necessary for the intended test, capping the ends of the specimen as discussed in this practice is permitted."

- A Test specimen measurements met the desired shape tolerances of ASTM D4543-08 (side straightness, end flatness & parallelism, and end perpendicularity to axis)
- B Test specimen measurements met the desired shape tolerances of ASTM D4543-08 for end flatness & parallelism, and end perpendicularity to axis. Specimen did not meet the desired tolerance for side

straightness. Specimen prepared to closest tolerances practicable.

- C Test specimen measurements met the desired shape tolerances of ASTM D4543-08 for end flatness & parallelism. Specimen did not meet the desired tolerances for side straightness and end perpendicularity to axis. Specimen prepared to closest tolerances practicable.
- D Test specimen measurements met the desired shape tolerances of ASTM D4543-08 for end flatness. Specimen did not meet the desired tolerances for side straightness, parallelism and end perpendicularity to axis. Specimen prepared to closest tolerances practicable.
- E Test specimen measurements met the desired shape tolerances of ASTM D4543-08 for end flatness and end perpendicularity to axis. Specimen did not meet the desired tolerance for side

straightness and parallelism. Specimen prepared to closest tolerances practicable.

Frontier Gas Pipeline Project #: 1358-14-070 Sheet 1 of 2

Frontier Gas Pipeline Project #: 1358-14-070 Sheet 2 of 2

Form No: TR-D2216-T265-2	
Revision No. 0	Laboration Determination of Weter Content
Revision Date: 02/22/08	Laboratory Determination of water Content

Revision Dule.	02/22/00									
		ASTM .	D 2216		SHTO T 265		Quality A	ssurance		
	S&ME, Ir	nc Greensbo	oro 8646	West Market	St., Suite 10	5 Greensbor	o NC 27409			
Project #:	1358-14	4-070				Report Date:	12-1	7-14		
Project Name	: Frontier	Gas Pipeline				Test Date(s):	12-1	2-14		
Client Name:	MA Eng	gineering Cons	ultants, I	nc.						
Client Addres	ss: 598 Eas	t Chatham Stre	eet, Suite	137 Cary NC						
Sample by:	H. Herd				Sa	mple Date(s):	12/3	-4/14		
Sampling Me	thod:	Hand Auger			15	Drill Rig :		0.10.14		
Method: A (1%) B (0.1%) Balance ID. 5544 Calibration Date: 8-10-1										
Boring No.	Sample No.	Sample Depth	Tare #	Tare Weight	Tare Wt.+ Wet Wt	Tare Wt. + Dry Wt	Water Weight	Percent Moisture		
		ft. or m.		grams	grams	grams	grams	%		
B-3	SS-4	8.5'-10.0'	B-2	7.90	70.46	57.54	12.92	26.0%		
	SS-5	13.5'-14.6'	8	139.72	292.95	277.49	15.46	11.2%		
B-4	SS-3	6.0'-7.5'	3	8.18	73.05	57.92	15.13	30.4%		
	SS-5	13.5'-15.0'	11	126.32	363.79	338.03	25.76	12.2%		
B-5	SS-3	6.0'-7.2'	30	9.38	72.80	66.76	6.04	10.5%		
	SS-5	13.5'-14.2'	13	120.19	332.18	319.40	12.78	6.4%		
	SS-6	18.5'-20.0'	14	295.67	579.57	553.81	25.76	10.0%		
B-6	SS-3	6.0'-7.5'	22	9.31	73.02	69.45	3.57	5.9%		
	SS-4	8.5'-10.0'	16	291.94	493.15	488.07	5.08	2.6%		
	SS-5	13.5'-15.0'	20	9.33	71.98	64.60	7.38	13.4%		
	SS-6	18.5'-20.0'	17A	11.46	242.61	220.45	22.16	10.6%		
M. (/ D t. (t.										

Notes / Deviations / References

Jimmy Thomasson		Nicet 119392	
Technician Name	Signature	Certification Type / No.	Date
David Keatts, PE		Project Engineer	
Technical Responsibility	Signature	Position	Date

Form N	o. TR	-D4318-T89-9	90								0.	
Revisio	on No.	0	T ia	uid I im	it Dlact	ia I imi	t and D	loctic T	ndov		DOZ	VIE
Revisio	n Da	te: 11/20/07	Liq		iii, Plasi	IC LIIII	i, and P	lastic I	ndex			
Anothe	r cod	е	ASTM D 4318		AASHTO	T 89	AAS	<i>HTO T 90</i>		Qua	lity Assurc	ince
		S & MI	E, Inc Gre	ensboro 8	8646 West	t Market	t St. Suite	e 105, Gi	reensbor	o NC 274	09	
Projec	e t #:	1358	8-14-070						Report I	Date:	12-17-	14
Projec	t Naı	me: Fron	tier Gas Pipe	eline					Test Da	te(s)	12-16-	14
Client	Nam	ne: MA	Engineering	Consulta	nts, Inc.							
Client	Add	ress: 598	East Chathai	n Street, S	Suite 137	Cary NC						
Boring	g #:	B-3		Samp	ole #: SS-4	1		Sam	ple Date:	12/3-4/1	4	
Location: NA Offset: NA Elevation: 8.5'-10.0'												
Sampl	Sample Description: Olive Gray Silty SAND (SM)											
<i>Type a</i>	nd Sp	ecification	S&ME	ID #	Cal Date:	Тура	e and Spec	ification	S&	ME ID #	Cal L	Date:
Balance	e (0.0)	JI g)	557	4	8/10/2014	Gro	oving tool			5575	10/11	/2014
LL Apparatus 55/1 4/19/2014 Grooving tool Oven 5470 12/1/2014 Grooving tool												
Pan # Liquid Limit Plastic Limit												
			Tare #:			32	4	5	6			9
Α		Tare V	Veight			15.96						
В		Wet Soil W	Veight + A			25.34						
С		Dry Soil W	Veight + A			22.68						
D		Water Wei	ight (B-C)	#######	#######	2.66				#######	#######	
E		Dry Soil W	eight (C-A)	#######	#######	6.72				#######	#######	
F		% Moisture	(D/E)*100			39.6%						
Ν		# OF D	ROPS			14				Moisture	Contents de	etermined
LL		$LL = \mathbf{F} * \mathbf{I}$	FACTOR							by.	ASTM D 22	216
Ave.		Aver	age						-		#DIV/0!	
\square	70.0	T		_						One Point I	Liquid Limit	T
		L							N 20	Factor	N 26	Factor
									20	0.974	20	1.005
ent	65.0								22	0.985	28	1.014
ont									23	0.99	29	1.018
Le C	60.0	<u> </u>							24	0.995	30	1.022
istu									25	1.000	octio	
Moj		<u> </u>							111	Liquid I	imit ###	山 ####
%	55.0			_						Diastic I	imit ###	### ####
										Plastic It	ndex ###	###
	50.0	<u> </u>							(Froup Svr	nbol SI	M
		10	15 20	25 30	35 40	# of]	Drops	100		Multipoint I	Method [<u></u>
						L	<u> </u>			One-point N	Aethod [
Wet I	Prepa	ration	Dry Prepara	tion	Air Dri	ed 🗹						
Notes /	Devia	tions / Referen	nces: Not	rollable.								

ASTM D 4318: Liquid Limit, Plastic Limit, & Plastic Index of Soils

Jimmy Thomasson		David Keatts, PE	
Technician Name	Date	Technical Responsibility	Date
This report shall r	not be reproduced, except in ful	l, without the written approval of S&ME, Inc.	

Form No: TR-D422-WH-1Ga

Revision No. 0 Revision Date: 07/14/08

Sieve Analysis of Soils

Form No.	TR-L	04318-T89-9	00													
Revision .	No. 0)	1		id I	im	:+ DL	oct	io I im	it or	A D	loctic T	ndov		DOZ	VIE
Revision .	Date.	11/20/07		Liqu	na L	1111	II, F I	ası		n, an		lastic I	liuex			
Another of	code		ASTM D	4318	X	1	AASH	TO	T 89		AAS	HTO T 90		Qua	lity Assura	ince
		S & M	E, Inc (Gree	nsbor	·o 8	646 W	Vest	Marke	t St. S	Suite	105, Gi	reensbor	o NC 274	09	
Project	#:	1358	-14-070									Report Date: 12-17-14				14
Project N	Name	e: Fron	tier Gas	Pipe	line								Test Da	te(s)	12-16-	14
Client N	ame	MA	Enginee	ring (Consu	ltar	nts, Inc	с.								
Client A	ddre	ss: 598	East Cha	than	n Stree	et, S	uite 1	37 (Cary NC							
Boring #	 :	B-4			Sa	mp!	le #: S	SS-3	3			Sam	ple Date:	12/3-4/1	4	
Location	ı:	NA				Of	fset: N	ΝA				E	levation:	6.0'-7.5'		
Sample I	Sample Description:Dark Brown Sandy SILT (ML)															
Type and	Spec	ification	S&	ME L	D #		Cal De	ate:	Тур	e and	Speci	ification	S&	ME ID #	Cal L	Date:
Balance	(0.01	g)		5544	-		8/10/2	$\frac{014}{014}$	Gro	oving	tool			5575	10/11	/2014
LL Apparatus 55/1 4/19/2014 Ofooving tool Oven 5470 12/1/2014 Grooving tool																
Pan # Liquid Limit Plastic Limit																
			Tar	e #:					9	4	L I	5	6			9
А		Tare W	/eight						15.87							
В		Wet Soil W	/eight + A	ł					25.11							
С		Dry Soil W	Veight + A	1					22.42							
D		Water Wei	ght (B-C)	####	###	#####	###	2.69					#######	#######	
Е	Ι	Dry Soil We	eight (C-A	A)	####	###	#####	###	6.55					#######	#######	
F	9	6 Moisture	(D/E)*10	00					41.1%							
Ν		# OF D	ROPS						11					Moisture	Contents de	etermined
LL		$LL = \mathbf{F} * \mathbf{I}$	FACTOR											by.	ASTM D 22	16
Ave.		Aver	age												#DIV/0!	
7	0.0 -		-		_	_								One Point I	Liquid Limit	
													N 20	Factor	N 2C	Factor
	Ŀ												20	0.974	26	1.005
t 65	5.0 +					+					_		21	0.975	27	1.014
Dute	F												23	0.99	29	1.011
e C	_{oo} F												24	0.995	30	1.022
et ur	0.0 F				_	—							25	1.000		
Iois	F												NI	P, Non-Pla	astic	X
N % 55	5.0 🕂				_	—								Liquid L	imit ###	###
	F													Plastic L	imit ###	###
-														Plastic Ir	1dex ###	###
5	0.0 - 10	1	5 2	0	25	30	35 4	D	# .6	Duana		100	(froup Syn	nbol M	
		-		•					# 01	Drops	J		1	Multipoint r	Vietnod [
Wet Pre	nara	tion 🗌	Dry Pro	narat	ion	_	Δir	Dri	ed 🗸					One-point N		
Notes / De	viatio	ns / Referen	ces:	Not	rollabl	<u> </u>										

ASTM D 4318: Liquid Limit, Plastic Limit, & Plastic Index of Soils

Jimmy Thomasson		David Keatts, PE	
Technician Name	Date	Technical Responsibility	Date
This report shall r	not be reproduced, except in ful	l, without the written approval of S&ME, Inc.	

Form No: TR-D422-WH-1Ga

Revision No. 0 Revision Date: 07/14/08

Sieve Analysis of Soils

Form N	o. TR	-D4318-T89-9	90												
Revisio	on No.	0	1	[i an	.: a t :.		t Dlad	atia T in	nit.	and I	Diactia I	ndov			VIE
Revisio	n Da	te: 11/20/07	J	Liqu	na Ln	111	i, Pla	suc Li	mı,	and r	fastic 1	naex			
Anothe	r cod	е	ASTM D	4318	X		AASHT	O T 89		AAS	SHTO T 90		Qua	lity Assura	ince
		S & MI	E, Inc (Gree	nsboro	86	646 We	est Marl	cet S	t. Suite	e 105, G	reensbor	o NC 274	09	
Proje	ct #:	1358	8-14-070									Report I	Date:	12-17-	14
Projec	t Nar	ne: Fron	tier Gas	Pipe	line							Test Da	te(s)	12-16-	14
Client	Nam	e: MA	Engineer	ring	Consult	ant	ts, Inc.								
Client	Add	ress: 598	East Cha	tham	ı Street,	Sı	uite 13'	7 Cary N	IC			-			
Boring	g #:	B-5			Sam	plo	e #: SS	-3			Sam	ple Date:	12/3-4/1	4	
Locati	on:	NA			C	Off	set: NA	4			E	Elevation:	6.0'-7.2'		
Sampl	e Des	scription:	Gray	y Tai	n Silty S	SA	ND (SI	M)							
Type a	nd Sp	ecification	S&I	ME L	D #	0	Cal Date	e: T	ype a	nd Spec	cification	S&	ME ID #	Cal L	Date:
Balanc	e (0.0)1 g)		5544		8	3/10/201	14 G	roovi	ng tool			5575	10/11	/2014
LL Ap	paratu	IS		5470		4	4/19/201	14 G	roovi	ng tool					
Pa	n #			3470		1	[2/1/20]	Lie Lie	nuid L	imit				Plastic Limit	
			Tar	e #:				24		4	5	6			9
Α		Tare V	Veight					13.92	2						
В		Wet Soil W	Veight + A	1				23.00)						
С		Dry Soil W	Veight + A	1				20.5	5						
D		Water Wei	ight (B-C))	######	#	######	# 2.44					#######	#######	
Е		Dry Soil W	eight (C-A	A)	####### ####### 6.64				#######	#######					
F		% Moisture	(D/E)*10	0				36.79	6						
Ν		# OF D	ROPS					14					Moisture	Contents de	etermined
LL		LL = F * I	FACTOR										by.	ASTM D 22	16
Ave.		Aver	age											#DIV/0!	
	70.0	-											One Point I	Liquid Limit	
	1000	<u> </u>			_							N	Factor	N	Factor
									_			20	0.974	26	1.005
ut	65.0	{					++					21	0.979	27	1.009
onte		[23	0.99	29	1.018
e C	<u> </u>											24	0.995	30	1.022
stur	00.0											25	1.000		
Iois												NF	P, Non-Pla	astic	\mathbf{X}
N %	55.0												Liquid L	imit ###	###
													Plastic L	imit ###	###
	50.0								—				Plastic Ir	ndex ###	###
	50.0	1 10 1	15 2	0	25 30		35 40		# D	·	100	(Broup Syr	nbol Sl	M
		L	13 2	U	25 50		55 40	#)I Dro	ops		1	Multipoint N	Aethod [✓ _
Wat	Dromer	ation 🗆	Der De-	norat	ion 🗖		۸÷ D	rind []	1				One-point N	lethod	
Notes /	Device	tions / Referen	Dry Pre	parat Not			AIT D		1						
110103 / .	De riul	ποπο / Λεμετεί		1101	ionaute.										

ASTM D 4318: Liquid Limit, Plastic Limit, & Plastic Index of Soils

Jimmy Thomasson		David Keatts, PE	
Technician Name	Date	Technical Responsibility	Date
This report shall n	ot be reproduced, except in fu	ll, without the written approval of S&ME, Inc.	

Form No: TR-D422-WH-1Ga

Revision No. 0 Revision Date: 07/14/08

Sieve Analysis of Soils

Revision Dute. 0	//14/00					ASTM	1 D 422						Ç	Qualii	ty Ass	urance
	S&MI	E, Inc (Gree	nsboro	8646	west ma	arket St.	Su	ite 10	5 Gr	eensbo	oro l	NC 2'	7409		
Project #:	1358	8-14-070)							Rep	oort Da	ate:		1	2-17-	-14
Project Name:	Fron	tier Gas l	Pipeli	ine						Tes	t Date	(s):		1	2-16-	-14
Client Name:	MA	Engineer	ing C	Consulta	ants						_					
Client Address:	: 598 I	East Chat	tham	Street S	Suite 1	37 Cary	NC									
Sample Id. B	-5				Ту	/pe:	NA	ł			Samp	le D	ate:		12/3	-4/14
Location: N	A				Sam	ple:	SS-	-5			Ele	evati	on:		13.5	-14.2'
Sample Descrip	ption:	Tan	Gray	Silty S	AND	(SM)										
100%	3"	1.5" 1"3	/4''	3/8''	#4	#10	#20)	#40	#60	#100	#2	00			
10070		•••	•							-	•					
90%																
80%																
(%)																_
୍) 70% ଖୁ									N							
iissi 60%																
t D ²										\mathbf{N}						
50%										X						
40%																
30%											\mathbf{h}					
5070											X					
20%												\mathbf{X}				_
10%																
0%	.00			10.00		•	1.00		•			0.10			<u> </u>	0.01
					Mi	llimeters										
Cobbles		< 300	mm (1	2") and	>75 mm	n (3")		Fi	ine Sano	ł		< 0.4	25 mm	n and	> 0.07	5 mm (#20
Gravel		< 75	5 mm a	and > 4.7	'5 mm (‡	#4)			Silt				< 0.0	75 and	d > 0.0	005 mm
Coarse San	d	< 4.7	5 mm	and >2.0	0 mm (‡	#10)			Clay					< 0.0	05 mr	n
Medium Sar	nd	< 2.00	mm a	and > 0.4	25 mm ((#40)		1	Colloids	27				< 0.0	01 mr	n
Maximum P	article S	ize	1/2"				arse Sano	1	4.6	% 			F11	ne Sa	ind	52.7%
	Gra	ivel	/.9%			Med	ium Sand	1	20.0	%			Silt	& CI	lay	14.9%
	iquid Li	mit			~	Pla	stic Limi	t		,			Plasti	c Ind	lex	
Speci	ific Grav	vity	1 (0)	(c =	######	<u>Cu</u> =	= #	·#####	F	1	VI01S	ture	Conte	ent	50 70/
(Coarse Sa	and 4	1.6%	1.5		Med	ium Sand	1	20.0	1% 			F11	ne Sa	ind	52.7%
Descr	iption of	t Sand &	Grav	vel Part	icles:		Roi	und	led	***		1.0	Angu	llar		
Ha	$\frac{1}{\sqrt{D}}$	rable				Soft				W	eathere	ed &	Fria	ble		
Notes / Deviations	/ Keferen	ces:														
David	Keatte	PE							Pr	niect	Engin	eer				
Technica	l Responsi	bility			Signa	ture			<u></u>	Pos	sition					Date
		This repor	t shall	not be rep	oroduced,	, except in	full, without	t the	written	approv	al of S&i	ME, Iı	ıc.			

Form No: TR-D422-WH-1Ga

Revision No. 0 Revision Date: 07/14/08

Sieve Analysis of Soils

<i>Xevision Duie</i> . 0	//14/00				ASTM D	422			Q	uality Ass	urance
	S&M	E, Inc G	reensboro	8646	west marl	ket St. Sı	iite 105	Greensl	ooro NC 27	409	
Project #:	135	8-14-070						Report I	Date:	12-17-	-14
Project Name:	From	ntier Gas Pi	peline					Test Dat	e(s):	12-16-	-14
Client Name:	MA	Engineerin	g Consulta	ants							
Client Address:	: 598	East Chatha	am Street	Suite 1	37 Cary N	IC					
Sample Id. B	-5			Ту	pe:	NA		Sam	ple Date:	12/3	-4/14
Location: N	A			Sam	ole:	SS-6		E	levation:	18.5	-20.0'
Sample Descri	ption:	Tan G	ray Silty S	SAND ((SM)						
	3''	1.5" 1" 3/4	" 3/8"	#4	#10	#20	#40	#60 #100	#200		
100%			• •					• •			
90%							\				
800/											
2 70%											
iis 60%											
Pas											
50%											
Jec 40%											
-											
30%											
20%											
109/											
10 / 0											
0%			10.00			1.00	•		0.10		0.01
100			10.00	Mi	limeters	1.00			0.10		0.01
Cobbles		< 300 m	m (12") and	>75 mm	n (3")	F	ine Sand		< 0.425 mm	and > 0.07	5 mm (#200
Gravel		< 75 n	nm and > 4.7	75 mm (#	ŧ4)		Silt		< 0.07	5 and > 0.0	05 mm
Coarse San	d	< 4.75 1	mm and >2.0	$\frac{00 \text{ mm } (\#}{25}$	±10)		Clay			< 0.005 mr	n
Medium Sar	1d	< 2.00 m	1m and > 0.4	25 mm (#40)	Cond	Colloids		⊂ <	< 0.001 mr	n 71.10/
Maximum P		Size = #	·4		Coars	se Sand	0.4%				/1.1%
т	UI GI	avel 0.0	J%		Dlast	n Sand	1.5%		Sill c		21.0%
L	iquia L	111111 :		н _					Plastic Maiatura C	Index	
Spect		vity	10/	<u>_c =</u>	####### Madiuu	Cu = i	7.50		Moisture C	Sand	71 10/
	oarse S	$\frac{1}{10000000000000000000000000000000000$	+% 11 D	· . 1	Mediu	n Sand	1.5%		Fille		/1.1%
Descr		of Sand & C		icles:	oft 🗖	Round	led	Weatha	Angul rod & Erich	ar \Box	
Fia Notes / Deviations	Referen		L	2				weathe	ieu & riiad		
oles / Deviations	/ Nejerei	nces:									
Dovid	Kontto	DE					Duc	iact Enci	noor		
Technica	l Respons	, <u>r L</u> ibility		Signat	ure	-	<u>F10</u>	Position			Date
		This report s	hall not he rei	produced	excent in full	without the	written au	pproval of S	&ME_Inc.		-

Form N	o. TR	-D4318-T89-9	90												
Revisic	n No	. 0	Т		id I in	.;+ T	Dlagt	io I imi	it and	1 DL	actic T	ndov			VIE
Revisic	n Da	te: 11/20/07	L	iqu	na Lin	11 1 , I	Tasi	IC LIIII	n, and		asuc I	laex			
Anothe	r cod	e	ASTM D 43	818	X	AA	SHTO	T 89		4 <i>ASH</i>	TO T 90		Qua	lity Assura	ince
		S & MI	E, Inc G	ree	nsboro	8646	West	t Marke	t St. Su	iite 1	105, Gi	eensbor	o NC 274	09	
Proje	ct #:	1358	8-14-070									Report I	Date:	12-17-	14
Projec	t Nai	me: Fron	tier Gas Pi	ipe	line							Test Da	te(s)	12-16-	14
Client	Nam	ne: MA	Engineeri	ng (Consulta	nts, I	nc.								
Client	Add	ress: 598	East Chath	nam	ı Street,	Suite	137	Cary NC	1						
Boring	g #:	B-6			Sam	ple #:	SS-3	3			Sam	ple Date:	12/3-4/1	4	
Locati	on:	NA			0	ffset:	NA				E	levation:	6.0'-7.5'		
Sampl	e De	scription:	Brow	n S	ilty SAN	VD (S	5M)								
Type a	nd Sp	ecification	S&M	ΈI	D #	Cal	Date:	Тур	e and Sp	pecifi	cation	S&	ME ID #	Cal L	Date:
Balanc	e (0.	01 g)	5:	544 571		8/10	/2014	Gro	oving to	bol			5575	10/11	/2014
LL Ap	parati	18	5	571 470		4/19	/2014	Gro	oving to	001					
Pa	n #		J,	470		12/1	/2014	Liqui	d Limit	001				Plastic Limit	
			Tare	#:				36	4		5	6			9
А		Tare V	Veight					15.80							
В		Wet Soil W	Veight + A					25.32							
С		Dry Soil W	Veight + A					22.79							
D		Water Wei	ight (B-C)		#######################################				#######	#######					
Е		Dry Soil W	eight (C-A)) ####### ####### 6.99				#######	#######						
F		% Moisture	(D/E)*100					36.2%							
Ν		# OF D	OROPS					12					Moisture	Contents de	etermined
LL		LL = F * I	FACTOR										by.	ASTM D 22	216
Ave.		Aver	age											#DIV/0!	
	70.0	-					_						One Point I	Liquid Limit	
							_					N 20	Factor	N	Factor
							_					20	0.974	26	1.005
ent	65.0	<u> </u>										21	0.985	28	1.014
ont							_					23	0.99	29	1.018
Le C	60.0	-										24	0.995	30	1.022
istu												25	1.000	a di a	
Moj		<u> </u>					1					INI	, NOII-Pla	istic	山
%	55.0						_						Diastic I	imit ###	### ####
							_						Plastic Ir	ndex ###	###
	50.0				+++							C	Froup Syr	nbol S	M
		10	15 20		25 30	35	40	# of	Drops		100	1	Multipoint N	Method [<u></u>
								L	-			(One-point N	Iethod [
Wet 1	Prepa	ration	Dry Prepa	arat	ion 🗌	А	ir Dri	ied 🗸					*		-
Notes /	Devia	tions / R eferer	nces: N	lot :	rollable.										

ASTM D 4318: Liquid Limit, Plastic Limit, & Plastic Index of Soils

Jimmy Thomasson		David Keatts, PE	
Technician Name	Date	Technical Responsibility	Date
This report shall r	not be reproduced, except in fu	ll, without the written approval of S&ME, Inc.	

Form No: TR-D422-WH-1Ga

Revision No. 0 Revision Date: 07/14/08

Sieve Analysis of Soils

Revision Date: 0	//14/08					122			Quality Assurance					
	S & ME I	na Cra	anchana	8646 m	ASIM L	1422 Irot St. Sv		Croos	Quanty Assurance					
Project #:	1358-1/	lic Gre	ensboro	0040 M	vest mar	kei si. si	inte 105	Repor	isbor t Date	0 INC	_ 2/4	12_17_	1/	
Project Name	Frontier	Gas Pine	line					Test I	ate(s).).		12-17-	14	
Client Name:	MA Fng	ineering	Consulta	nts				TCSUL).		12-10-	17	
Client Address	598 Fast	Chathan	1 Street S	Suite 13	7 Cary N	JC		_						
Sample Id B	-6	Chuman	I blieet t	Tvr	ne:	NA		S	mple	Date	<u>م</u> .	12/3	-4/14	
Location: N	A			Samp	le:	<u>SS-4</u>		50	Flev	ation		8.5'-	10.0'	
Sample Descrit	ntion:	Grav W	hite Poor	lv Grad	led Grave	el with Sa	nd (GP)	Liev	anor	1.	0.5	10.0	
	3" 15	· 1'' 3/4''	2/0"	#1	#10	#20	#40	, #60 #	100	#200				
100%		1 3/4	3/8 •	#4	#10	#20	#40	#00 #	•	#200				
90%														
80%		+											_ 1	
(%)														
) /0%														
50%														
Leer														
⁶ 40%			\										_	
30%														
20%														
10%														
0.07									-					
0% 100	.00		10.00	Mill	imotona	1.00			0.1	10			0.01	
				Milli	imeters									
Cobbles		< 300 mm	(12") and 2	>75 mm	(3")	F	ine Sand		<	0.425	mm a	nd > 0.07	5 mm (#200)	
Gravel		< 75 mm	and > 4.7	5 mm (#4	4)		Silt		_	<	0.075	and > 0.0	05 mm	
Coarse San	d	< 4.75 mr	n and >2.0	0 mm (#)	10)		Clay		_		<	0.005 mn	1	
Medium Sar	la Siza	< 2.00 mm	and > 0.4 .	25 mm (#	^{F40)}	Cond	_01101ds				< Eine	Cond	1 7 20/	
Maximum P	Crowal	1.3	V.		Coar	se Sand	5.0% 6.90/)		c	rine		7.2%	
т	Graver	77.49	0		Dlast	m Sand	0.8%)				Clay	3.5%	
L	iquia Limit				Plasti	C Limit			м	Pla	astic I	index		
Speci	life Gravity	5.00	<u>, </u>	$\mathbf{c} = \mathbf{f}$	•##### Madiu	$\mathbf{C}\mathbf{u} = \mathbf{H}$	<u> </u>		IVI	oistu	re Co	Sand	7.00/	
C	Joarse Sand	5.0%) 	.1	Mediu	m Sand	0.8%	<u> </u>		A .	Fine		1.2%	
Descr	1ption of Sa	ind & Gra	avel Parti	icles:	oft 🗖	Round	led		horad	Ai • • E	ngula			
Han Notas / Daviation	References			5				weat	nered	ιαF	Tiadle			
ivoles / Deviations	/ Kejerences:													
David	Keatts, PE						Pro	ject Er	iginee	r				
Technica	l Responsibility			Signatu	ıre	-		Positio	n	-			Date	
	Thi	s report shal	ll not be rep	roduced,	except in ful	written a	proval d	oval of S&ME, Inc.						

Form N	o. TR	-D4318-T89-9	00												
Revisio	n No.	0	т	iau				tia T im	sit a	nd D	loctic T	ndov			VIE
Revisio	n Dai	te: 11/20/07	L	Jiqu	lla Ll		i, Plas		iii, a	na P	lastic I	nuex			
Another	r cod	е	ASTM D 4	4318	X		AASHTO	T 89		AAS	HTO T 90		Qua	lity Assura	ince
		S & MI	E, Inc C	Free	nsboro	86	646 Wes	t Marke	et St.	Suite	e 105, Gi	reensbor	o NC 274	09	
Projec	:t #:	1358	8-14-070									Report I	Date:	12-17-	14
Project	t Nar	ne: Fron	tier Gas I	Pipel	line							Test Da	te(s)	12-16-	14
Client	Nam	e: MA	Engineer	ing (Consult	tan	ts, Inc.								
Client	Add	ress: 598	East Chat	tham	Street	, S1	uite 137	Cary NO	2						
Boring	; #:	B-6			San	npl	e #: SS-	5			Sam	ple Date:	12/3-4/1	4	
Locati	on:	NA			(Off	set: NA				E	levation:	13.5'-15.	0'	
Sample	e Des	scription:	Gray	v Bro	own Sil	ty	SAND (SM)							
Type ar	ıd Sp	ecification	S&A	ME II	D #	(Cal Date:	Typ	e and	l Spec	ification	S&	ME ID #	Cal L	Date:
Balance	e (0.0)1 g)		5544		8	3/10/2014	Gro	oving	g tool			5575	10/11	/2014
LL App	baratu	IS		5571 5770		1	+/19/2014	$\frac{1}{1}$ Gr		g tool					
Par	n #		· · ·	5470		-	12/1/201-	+ Uliqu	id Lim	it				Plastic Limit	
			Tare	e #:				23	Τ	4	5	6			9
А		Tare W	Veight					15.83							
В		Wet Soil W	Veight + A					24.53							
С		Dry Soil W	/eight + A					22.23							
D		Water Wei	ight (B-C)		######	##	#######	# 2.30				#######	#######		
Е		Dry Soil We	eight (C-A	.)	######	##	#######	6.40					#######	#######	
F		% Moisture	(D/E)*10	E)*100 35.9%											
Ν		# OF D	ROPS					14					Moisture	Contents de	etermined
LL		$LL = \mathbf{F} * \mathbf{I}$	FACTOR										by.	ASTM D 22	16
Ave.		Aver	age											#DIV/0!	
	70.0	т											One Point I	Liquid Limit	_
					_							N 20	Factor	N 26	Factor
I												20	0.974	20	1.003
ut	65.0	<u> </u>										21	0.985	27	1.014
Dit e		[23	0.99	29	1.018
e C	<u> </u>											24	0.995	30	1.022
stur	00.0	[_							25	1.000	L	
Moi												NI	P, Non-Pla	astic	X
l %	55.0										_		Liquid L	.1m1t ###	###
													Plastic L	1m1t ###	###
	50.0	<u> </u>										(Plastic Ir	1dex ###	### \/r
	20.0	10 ₁	15 20)	25 30	0	35 40	. # of	Dron		100		Jroup Syr	nbol Sl	<u>vi</u>
								# 01	Diop	5		1	One point N	Aethod [<u>~</u>
Wet P	rena	ation	Dry Pret	narati	ion 🔽]	Air Dr	ied 🔽					one-point N		
Notes / 1	Devia	tions / Referen	<u></u>	Not 1	rollable.										

ASTM D 4318: Liquid Limit, Plastic Limit, & Plastic Index of Soils

Jimmy Thomasson		David Keatts, PE	
Technician Name	Date	Technical Responsibility	Date
This report shall r	not be reproduced, except in ful	l, without the written approval of S&ME, Inc.	

Form No: TR-D422-WH-1Ga

Revision No. 0 Revision Date: 07/14/08

Sieve Analysis of Soils

<i>Revision Date:</i> 0)//14/08				ASTM D	122		Ouality Assurance						
	S&M	E. Inc G	reensboro	8646 w	est marl	ket St. Si	nite 10	5 Gr	eensbo	ro NC 2	27409	y 11331	nunce	
Project #:	135	8-14-070	100155010		cot mari			Rep	oort Da	ite:	12	2-17-1	14	
Project Name:	From	tier Gas Pi	ipeline					Tes	t Date((s):	12	2-16-1	14	
Client Name:	MA	Engineerir	ng Consulta	ints										
Client Address	s: 598	East Chath	am Street S	Suite 137	7 Cary N	IC								
Sample Id. H	3-6			Тур	e:	NA			Sampl	e Date:		12/3-	4/14	
Location: N	NA			Sample	e:	SS-6			Ele	evation:		18.5'-	20.0'	
Sample Descri	iption:	Gray	Brown Silt	y SAND	(SM)									
100%	3"	1.5" 1"3/4	·'' 3/8''	#4	#10	#20	#40	#60	#100	#200		1		
90%				<u> </u>				-						
900/														
8 709/														
)))))))))))))))))))														
Pass 00%							N							
50%														
a 40%								٦						
30%														
20%													_	
10%														
0%				•			•							
10	0.00		10.00	Millin	meters	1.00			().10			0.01	J
Cobbles		< 300 m	um (12") and 2	> 75 mm (3	3")	Ι	Fine San	d		< 0.425 m	m and >	> 0.075	5 mm (#2	00)
Gravel	_	< 75 1	mm and > 4.7	5 mm (#4))		Silt			< 0.	075 and	> 0.00)5 mm	
Coarse Sar	nd	< 4.75	mm and >2.0	0 mm (#10)	0)		Clay				< 0.00	05 mm		
Maximum I	Particle (~ 2.001	111111111111111111111111111111111111	23 11111 (#4	Coars	se Sand	9 40	2/6		F	ine Sa	nd	40.5%	
Muximum	Gr	avel 6	2%		Mediu	m Sand	28.9	%		Sil	t & Cl	av	15.0%	
I	Liquid L	imit	270		Plasti	c Limit	20.9	/0		Plast	tic Ind	ex	12.070	
Spec	cific Gra	vity	C	$\mathbf{C}\mathbf{c} = \#$	#####	Cu = 3	######	ŧ	N	Aoisture	Conte	ent		
	Coarse S	and 9.	4%		Mediu	m Sand	28.9	%		F	ine Sa	nd	40.5%	
Desc	ription c	of Sand & O	Gravel Part	icles:		Roun	ded			Ang	ular			
Ha	ard & Di	urable		So	ft 🛛			W	eathere	ed & Fri	able			
Notes / Deviation	s / Referen	nces:												
David	d Keatts	, PE					Pr	oject	Engine	eer				
Technic	al Respons	ibility		Signatur	е	-		Pos	ition				Date	
		This report s	shall not be rep	oroduced, ex	xcept in full	, without th	e written	approv	al of S&I	ME, Inc.				