Preliminary Site Assessment

420 Line Avenue

Parcel #17 Station, William Ernest
Parcel #18 Cox, Philip Ray
Parcel #19 Cox, Liam

Hardee & Cox Welding, Inc.

Greenville, Pitt County, North Carolina

State Project No. U-3315

WBS Element: 35781.1.2

February 22, 2013

Terracon Project No. 70127335

Prepared for:

North Carolina Department of Transportation (NCDOT)

Geotechnical Engineering Unit

Prepared by:

Terracon Consultants, Inc.
Raleigh, North Carolina

Offices Nationwide Employee-Owned Established in 1965 terracon.com

Environmental

Construction Materials

Facilities

TABLE OF CONTENTS

Page No.

1.0	INTRODUCTION	1
	0.4 5	
1.1	Site Description	
1.2	Site History	1
1.3	Scope of Work	1
1.4	Standard of Care	2
1.5	Additional Scope Limitations	2
1.6	Reliance	2
2.0	FIELD ACTIVITIES	2
2.1	Geophysical Survey	3
2.2	Soil Sampling	٥ع
2.3	Groundwater Sampling	
2.4	Subsurface Conditions	4
3.0	LABORATORY ANALYTICAL PROGRAM	5
4.0	DATA EVALUATION	5
5.0	CONCLUSIONS	7

TABLES

- Table 1 Soil Sampling Analytical Results Summary (DRO/GRO)
- Table 2 Soil Sampling Analytical Results Summary (VOCs/SVOCs)
- Table 3 Soil Sampling Analytical Results Summary (EPH/VPH)
- Table 4 Groundwater Sampling Analytical Results Summary

FIGURES

Exhibit 1 – Site Vicinity Map (Topographic Map)

Exhibit 2 and 3 – Site Diagram with Soil Boring Locations and Analytical Data (Parcel 17, 18, and 19)

APPENDICES

Appendix A: Boring Logs

Appendix B: Geophysical Survey Reports

Appendix C: Laboratory Analytical Reports and Chain of Custody

February 22, 2013

North Carolina Department of Transportation Attention: Mr. Gordon Box, LG Geotechnical Engineering Unit 1589 Mail Service Center Raleigh, NC 27699

Re:

Preliminary Site Assessment (PSA)

Parcel 17, Station, William Ernest

Parcel 18, Cox, Philip Ray

Parcel 19, Cox, Liam

Hardee & Cox Welding, Inc.

420 Line Avenue

Greenville, Pitt County, North Carolina

Terracon Project No. 70127335

WBS Element: 35781.1.2

Dear Mr. Box:

Terracon Consultants, Inc. (Terracon) is pleased to submit a Preliminary Site Assessment (PSA) report for the above referenced site. This assessment was performed in accordance with our Proposal for Preliminary Site Assessment (Terracon Proposal No. P70127314) dated August 7, 2012. This report includes the findings of the investigation, and provides our conclusions and recommendations.

Terracon appreciates the opportunity to provide these services to the NCDOT. If you have any questions concerning this report or need additional information, please contact us at 919-873-2211.

Sincerely,

Terracon Consultants, Inc.

Prepared by:

Thomas A. Perdue, El

Environmental Scientist

Reviewed by:

Christopher L. Corbitt, PG Authorized Project Reviewer

Environmental Department Manager

PRELIMINARY SITE ASSESSMENT PARCEL 17, STATION, WILLIAM ERNEST PARCEL 18, COX, PHILIP RAY PARCEL 19, COX, LIAM HARDEE & COX WELDING, INC. 420 LINE AVENUE GREENVILLE, PITT COUNTY, NORTH CAROLINA

1.0 INTRODUCTION

1.1 Site Description

Site Name	Parcel 17, Station, William Ernest Parcel 18, Cox, Philip Ray Parcel 19, Cox, Liam					
Site Location/Address	420 Line Avenue, Greenville, North Carolina					
General Site Description	Parcels #17, #18, and #19 are occupied by Hardee & Cox Welding, Inc. in the eastern portion of the site. On-site structures include a commercial building with offices and a welding workshop, and two metal storage structures.					

1.2 Site History

According to information provided by the NCDOT and collected by Terracon, there are no known release (LUST) incidents associated with the three parcels.

Parcel 19 reportedly operated three underground storage tanks (USTs) in the northeast corner of the parcel. According to Ms. Janette Cox, site owner, the USTs were removed during the widening of Farmville Boulevard in 1988 and no LUST incidents have been reported. Ms. Cox indicated that the only current operations at the facility consist of welding, and that additional aboveground storage tanks (ASTs) or USTs are not known at the site.

Parcels 17 and 18 are currently vacant parcels maintained as cleared land inside a fenced compound associated with the Hardee & Cox Welding shop located on Parcel 19.

1.3 Scope of Work

Terracon has prepared the following Preliminary Site Assessment (PSA) scope of work in accordance with the NCDOT's Request for Technical and Cost Proposal dated June 19, 2012 and Terracon's Proposal for Preliminary Site Assessment (Proposal No. P70127314) dated August 7, 2012. The scope of work included a geophysical investigation for each parcel, the collection of 18 soil samples, and three groundwater samples for laboratory analysis and preparation of a report documenting our environmental investigation activities.

1.4 Standard of Care

Terracon's services were performed in a manner consistent with generally accepted practices of the profession undertaken in similar studies in the same geographical area during the same time period. Terracon makes no warranties, either expressed or implied, regarding the findings, conclusions or recommendations. Please note that Terracon does not warrant the work of laboratories, regulatory agencies or other third parties supplying information used in the preparation of the report. These PSA services were performed in accordance with the scope of work authorized by you and were not conducted in accordance with ASTM E1903-97.

1.5 Additional Scope Limitations

Findings, conclusions and recommendations resulting from these services are based upon information derived from the on-site activities and other services performed under this scope of work; such information is subject to change over time. Certain indicators of the presence of hazardous substances, petroleum products, or other constituents may have been latent, inaccessible, unobservable, undetectable or not present during these services; thus, we cannot represent that the site is free of hazardous substances, toxic materials, petroleum products, or other latent conditions beyond those identified during this PSA. Subsurface conditions may vary from those encountered at specific borings or wells or during other surveys, tests, assessments, investigations or exploratory services; the data, interpretations, findings, and our recommendations are based solely upon data obtained at the time and within the scope of these services.

1.6 Reliance

This report has been prepared for the exclusive use of North Carolina Department of Transportation (NCDOT). Authorization for use or reliance by any other party (except a governmental entity having jurisdiction over the site) is prohibited without the expressed written authorization of the client and Terracon.

2.0 FIELD ACTIVITIES

The following PSA activities are presented in the order that they were conducted in the field on November 19, 20, 28, and 29, 2012. Exhibit 1 presents the general boundaries and topography of the site on portions of the USGS topographic quadrangle map of Greenville SW, North Carolina dated 1998. Exhibits 1, 2, and 3 are site layout plans that depict the approximate locations of the site features and soil boring locations.

2.1 Geophysical Survey

On November 19 and 20, Schnabel Engineering conducted a geophysical investigation at the site in an effort to determine if unknown, metallic underground storage tanks (USTs) were present beneath the proposed right-of-way (ROW) area. The geophysical investigation included an electromagnetic (EM) induction survey using a Geonics EM-61 MK2 metal detection instrument and a ground penetrating radar (GPR) survey using a Geophysical Survey Systems SIR 3000 equipped with a 400 MHz antenna.

The geophysical investigation identified a possible metallic UST under the concrete on the western edge of the on-site structure of Parcel 19 within the proposed Right-of-Way; however, the information was not provided to Terracon prior to Terracon's on-site investigations. Two borings were installed within approximately 40 feet of the possible metallic UST. A copy of the geophysical reports is included in Appendix B.

2.2 Soil Sampling

Based on the findings of the geophysical investigation, Terracon provided oversight of the advancement of one soil boring (S-7) in the central portion of Parcel 17, one soil boring (S-8) in the central portion of Parcel 18, and 16 soil borings throughout Parcel 19. Three borings on Parcel 19 (S-12, S-15, and S-18) were advanced in the northeast portion of the parcel near the reported location of the reported previous USTs, one boring (S-9) was advanced at the doors of the two metal storage containers in the western portion of the parcel, one boring (S-6) was advanced in the vicinity of the proposed catch basin, and 11 borings (S-1 through S-5, S-10, S-11, S-13, S-14, S-16, and S-17) were advanced around the perimeter of the on-site structure. The borings were completed by Bridger Drilling Enterprises, Inc., a North Carolina licensed driller using a Geoprobe® rig.

Soil samples were collected in 5-foot, disposable, acetate sleeves to document soil lithology, color, moisture content, and sensory evidence of impairment. The soil samples were placed in resealable plastic bags for a sufficient amount of time to allow volatilization of organic compounds from the soils. The soil samples were then screened using a field-portable photoionization detector (PID) and flame ionization detector (FID) by inserting the probe tip into the headspace of each bag. The PID/FID readings and soil sample depths for the borings on Parcels 17, 18, and 19 are included on Table 1. PID/FID readings and soil sample depths for Parcels 17, 18, and 19 are also included on individual boring logs in Appendix A.

Soil borings on all three parcels were advanced to depths ranging from approximately 10 to 15 feet below ground surface (bgs). Soils obtained from the acetate sleeves were separated into two and half foot intervals.

The soil samples were collected and placed in laboratory prepared glassware and packed in ice within a cooler. The sample cooler and completed chain-of-custody forms were relinquished to SGS North American Inc. in Wilmington, North Carolina.

2.3 Groundwater Sampling

Following soil sampling activities, soil boring S-7 on Parcel 17 was advanced to approximately 15 feet bgs and converted to a temporary groundwater sampling well (GW-1). Boring S-7 was located in the apparent down-gradient portion of Parcels 17, 18, and 19. Soil boring S-13 on Parcel 19 was advanced to approximately 15 feet bgs and converted to a temporary groundwater sampling well (GW-2). Boring S-13 was located in the apparent down-gradient position of the former automotive repair facility on the eastern adjacent property. Soil boring S-16 was advanced to approximately 15 feet bgs and converted to a temporary groundwater sampling well (GW-3). Boring S-16 was located in the vicinity of the reported location of the reported historical USTs in the northeast portion of Parcel 19. The temporary well locations are depicted on Exhibit 2.

The temporary monitoring wells were constructed using the following materials:

- 1-inch diameter, 0.010-inch machine slotted PVC well screen with a threaded bottom cap; and,
- 1-inch diameter, threaded, flush-joint PVC riser pipe to surface.

The depth to groundwater was measured in the temporary wells at approximately 8.4 feet bgs (Parcel 17) and 8 feet and 13.8 feet bgs (Parcel 19). Prior to sampling, the monitoring wells were purged with a peristaltic pump until turbidity decreased. A water sample was collected from each temporary well and placed into laboratory supplied, pre-preserved sample containers. The ice-packed sample container and chain of custody documentation were picked up by a courier for delivery to the laboratory.

2.4 Subsurface Conditions

The soil samples from ground surface to a depth of approximately 15 feet included clay and sandy clay. Petroleum odors and elevated PID readings were noted in the samples collected from soil borings S-15 and S-18 on Parcel 19. Soil samples from the interval exhibiting the highest PID readings or most obvious evidence of contamination in each boring were submitted for laboratory analysis.

3.0 LABORATORY ANALYSES

Soil samples were submitted for laboratory analysis of Total Petroleum Hydrocarbons (TPH) Diesel Range Organics (DRO) by EPA Method 3546 and TPH Gasoline Range Organics (GRO) by EPA Method 5035. Soil samples were also collected for analysis of North Carolina Department of Environment and Natural Resources (NCDENR) risk-based parameters including volatile organic compounds (VOCs) by EPA Method 8260 and semi-volatile organic compounds (SVOCs) by EPA Method 8270, MADEP VPH, and MADEP EPH pending analytical results of the DRO/GRO samples. The groundwater samples were submitted for laboratory analysis of VOCs by EPA Method 8260 and SVOCs by EPA Method 8270 in GW-1 and GW-2 and due to slow flow rate, only VOCs in GW-3. Samples were submitted to SGS North American Inc. in Wilmington, North Carolina for analysis. Please refer to Appendix C for the laboratory analytical reports.

4.0 DATA EVALUATION

4.1 Soil Sample Analytical Results and Interpretation

Gasoline Range Organics (GRO) were detected above the laboratory method detection limits but below the NCDENR UST Action Level (10 mg/kg) in sample S-15 at a concentration of 8.47 milligrams per kilogram (mg/kg).

Diesel Range Organics (DRO) were also detected in sample S-7 (8.25 mg/kg), sample S-8 (6.98 mg/kg), and sample S-12 (7.5 mg/kg) at concentrations below the NCDENR UST Action Level (10 mg/kg). DRO was detected in sample S-9 (20.6 mg/kg), S-15 (83.3 mg/kg), and sample S-18 (26.5 mg/kg) at concentrations above the NCDENR UST Action Level (10 mg/kg).

Based on the DRO/GRO analytical results, soil samples S-9, S-15, and S-16 were submitted for analysis of the NCDENR risk-based parameters.

Risk-based analyses for sample S-9 did not report SVOC or VOC concentrations above their respective NCDENR Soil-to-Groundwater MSCCs.

Risk-based analyses for sample S-15 reported 1,2,4-trimethylbenzene (0.0518 mg/kg), 1,3,5-trimethylbenzene (0.0246 mg/kg), naphthalene (0.0098 mg/kg), total xylenes (0.0174 mg/kg), n-propylbenzene (0.00729 mg/kg), o-xylenes (0.00129 mg/kg), and 2-methylnapthalene (1.04 mg/kg) above their respective laboratory method reporting limits, but below their respective NCDENR Soil-to-Groundwater MSCCs.

Risk-based analyses for sample S-16 reported 1,2,4-trimethylbenzene (0.0248 mg/kg), 1,3,5-trimethylbenzene (0.294 mg/kg), 4-isopropyltoluene (0.00933 mg/kg), naphthalene (0.00736 mg/kg), total xylenes (0.0681 mg/kg), and o-xylenes (0.0681 mg/kg) above their respective laboratory method reporting limits, but below their respective NCDENR Soil-to-Groundwater MSCCs.

Laboratory analytical results did not report C5-C8 Aliphatics, C9-C-18 Aliphatics, C19-C36 Aliphatics, and C9-C22 Aromatics in S-9, S-15, or S-16 above their respective NCDENR Soil-to-Groundwater MSCCs.

A summary of the soil sampling analytical results are included in Tables 1, 2, 3, and 4 as an attachment to this report.

4.2 Groundwater Analytical Results and Interpretation

Laboratory analytical results for groundwater sample GW-1 from the northwest corner of Parcel #19 (soil boring S-15) reported n-butylbenzene at 11.9 micrograms per liter (ug/L), ethylbenzene at 146 ug/L, isopropylbenzene at 24.6 ug/L, naphthalene at 199 ug/L, and n-propylbenzene at 76.6 ug/L. Naphthalene and n-propylbenzene were reported at concentrations that exceed their respective NCAC 2L Groundwater Quality Standards of 6 ug/L and 70 ug/L.

Laboratory analytical results for groundwater sample GW-2 from the down-gradient position of Parcel #17, #18, and #19 (soil boring S-7) reported methyl tert-butyl ether (MTBE) at 2.89 ug/L, and naphthalene at 1.77 ug/L. Constituents detected in GW-2 were not detected above their respective NCAC 2L Groundwater Quality Standards.

Laboratory analytical results for groundwater sample GW-3 from the down-gradient position of the former eastern adjacent automotive repair facility (soil boring S-13) reported toluene at 5.74 ug/L, below its NCAC 2L Groundwater Quality Standard. Due to well recharge rate, SVOCs were not submitted for GW-3.

A summary table of the groundwater sampling analytical results is included as an attachment to this report.

5.0 CONCLUSIONS

The findings of this investigation are discussed below.

- The geophysical investigation identified a possible metallic UST under the concrete on the western edge of the on-site structure of Parcel 19 within the proposed Right-of-Way; however, the information was not provided to Terracon prior to Terracon's on-site investigations. Two borings were installed within approximately 40 feet of the possible metallic UST (S-3 and S-5). TPH-GRO and TPH-DRO were not detected in either sample.
- Eighteen soil borings were advanced to depths ranging from approximately 5 to 15 feet bgs.
- Diesel Range Organics were also detected in sample S-9 (20.6 mg/kg), S-15 (83.3 mg/kg), and S-16 (26.5 mg/kg) at concentrations above the NCDENR UST Action Level (10 mg/kg) and the samples were submitted for NCDENR Risk-based analyses.
- NCDENR Risk-based analyses did not report soil contaminant concentrations above their respective NCDENR Soil-to-Groundwater MSCCs.
- Three groundwater samples were collected at the site and submitted for laboratory analysis. GW-1 was submitted for analysis of VOCs and SVOCs from soil boring S-15. Naphthalene (199 ug/L) and n-propylbenzene (76.6 ug/L) were reported in GW-1 above their respective NCAC 2L Groundwater Quality Standard of 6 ug/L and 70 ug/L. GW-2 was submitted for analysis of VOCs and SVOCs from soil boring S-7 with no reported constituents above NCAC 2L standards. GW-3 was submitted for analysis of VOCs from soil boring S-13 with no reported constituents above NCAC 2L standards.
- Groundwater was reported between 8.4 feet and 13.8 feet at the site.
- The extent of soil contamination appears to be localized at Parcel #19. The actual amount of impacted soil can only be determined after excavation or by advancing additional borings at the site to further delineate the extent of contamination.
- Based on information provided by NCDOT, Terracon estimates a total of 40 yd³ of contaminated soil be used for estimating quantities to be removed from Parcel 19 during construction. This is based on the following assumptions:

Roadway Excavation

Area near Samples S-15 and S-18: From Sta. 31+97 to 32+39 cross-section area of

11.2 ft²

• Area near Sample S-19: From Sta. 29+28 to 28+73 cross-section area of 10.5 ft²

$$10.5 \text{ ft}^2 \text{ x } 45 \text{ ft} = 473 \text{ ft}^3 \text{ or } 18 \text{ yd}^3$$

Utility and Drainage Excavation

• Not anticipated for Parcels 17, 18, and 19.

TABLES

Table 1 – Soil Sampling Analytical Results Summary (DRO/GRO)
Table 2 – Soil Sampling Analytical Results Summary (VOCs/SVOCs)

Table 3 – Soil Sampling Analytical Results Summary (EPH/VPH)

Table 4 – Groundwater Sampling Analytical Results Summary

Table 1
Soil Sampling Analytical Results Summary (GRO/DRO)
Parcel #17, #18, and #19
Greenville, Pitt County, North Carolina

			Sample ID	S-1	S-2	S-3	S-4	S-5	S-6	S-7	S-8	S-9
	7.5-10.0 FT	7.5-10.0 FT	2.5-5.0 FT	2.5-5.0 FT	2.5-5.0 FT	0-2.5 FT	0-2.5 FT	0-2.5 FT	5.0-7.5 FT			
Method	Parameter	Units	NCDENR Action Level	Value	Value	Value	Value	Value	Value	Value	Value	Value
SW-846 8015C	TPH-GRO	mg/kg	10	ND	ND	ND	ND	ND	ND	ND	ND	ND
SW-846 8015C	TPH-DRO	mg/kg	10	ND	ND	ND	ND	ND	ND	8.25	6.98	20.6

			Sample ID	S-10	S-11	S-12	S-13	S-14	S-15	S-16	S-17	S-18
	5.0-7.5 FT	0-2.5 FT	5.0-7.5 FT	2.5-5.0 FT	2.5-5.0 FT	5.0-7.5 FT	2.5-5.0 FT	0-2.5 FT	5.0-7.5 FT			
Method	Parameter	Units	NCDENR Action Level	Value	Value	Value	Value	Value	Value	Value	Value	Value
SW-846 8015C	TPH-GRO	mg/kg	10	ND	ND	ND	ND	ND	8.47	ND	Not	ND
SW-846 8015C	TPH-DRO	mg/kg	10	ND	ND	7.5	ND	ND	83.3	ND	submitted	26.5

TPH-GRO = Total petroleum hydrocarbons - gasoline range organics TPH-DRO = Total petroleum hydrocarbons - diesel range organics mg/kg = Milligrams per kilograms

ND = Non-detect

Table 2 Soil Sampling Analytical Results Summary (VOCs/SVOCs) Parcel #17, #18, and #19 Greenville, Pitt County, North Carolina

				Sample ID	S	-9	S-	15	S-	16
			Depth	5.0-7	7.5 FT	5.0-7.5 FT		5.0-7.5 FT		
Method	Parameter	Soil Cleanup Levels		MSCCs Soil-to-Water Maximum Contaminant Concentration	Value	Qual	Value	Qual	Value	Qual
	1,2,4-Trimethylbenzene	ug/kg	20,440,000	8,500	ND		51.8		24.8	
	1,3,5-Trimethylbenzene	ug/kg	20,440,000	8,500	ND		24.6		294	Е
	4-Isopropyltoluene	ug/kg	4,000,000	120	ND		ND		9.33	
8260B	Naphthalene	ug/kg	8,176,000	160	ND		9.8		7.36	
	Xylenes (total)	ug/kg	81,760,000	4,600	ND		17.4		68.1	
	n-Propylbenzene	ug/kg	16,350,000	1,700	ND		7.29		ND	
	o-Xylenes	ug/kg	81,760,000	4,600	ND		12.9		68.1	
8270	2-Methylnaphthalene	ug/kg	1,635,000	3,600	ND		1,040		ND	

ug/kg = Micrograms per kilograms

ND = Non-detect

MSCCs = Maximum Soil Contaminant Concentrations

E = Amount detected is greater than the upper calibration limits

Table 3 Soil Sampling Analytical Results Summary (VPH/EPH) Parcel #17, #18, and #19 Greenville, Pitt County, North Carolina

			Sample Designa		S-9 5.0-7.5 FT 11/28/2012		S-15 5.0-7.5 FT 11/29/2012	S-16 5.0-7.5 FT 11/29/2012		
Hydrocarbon Fraction Ranges	Analytical Hydrocarbo		Industrial / Commercial MSCC (mg/kg)	Soil to Groundwater MSCC (mg/kg)	Lab Results Conc.	Final VPH and/or EPH Conc.	Lab Results Conc.	Final VPH and/or EPH Conc.	Lab Results Conc.	Final VPH and/or EPH Conc.
C5-C8 Aliphatics	C5-C8 Aliphatics V	PH 939	24528	68	< 4.63	<4.63	< 3.99	<3.99	< 4.27	<4.27
C9-C18 Aliphatics	C9-C12 Aliphatics V C9-C18 Aliphatics E	1500	40000	540	< 4.63 14.2	<18.83	16.8 48.1	64.9	4.66 24.9	29.56
C19-C36 Aliphatics	C19-C36 Aliphatics E	PH 31000	810000	Considered Immobile	< 8.06	<8.06	< 7.33	<7.33	< 8.35	<8.35
C9-C22 Aromatics	C9-C10 Aromatics V C11-C22 Aromatics E	460	12264	31	< 4.63 < 15.6	<20.23	9.2 20	29.2	< 4.27 < 16.2	<20.47

Notes:

ft = feet

ug/L = micrograms per liter

Where no detectable concentration was measured, the method detection limit was used for the final calculation

EPH = Extractable Petroleum Hydrocarbons

VPH = Volatile Petroleum Hydrocarbons

Table 4 Groundwater Sampling Analytical Results Summary Parcel #17, #18, and #19 Greenville, Pitt County, North Carolina

		Sample ID	GW-1	GW-2	GW-3	
		8.4 FT	10.1 FT	13.8 FT		
Method	Parameter	Units	NCAC 2L Groundwater Quality Standard	Value	Value	Value
	n-Butylbenzene	ug/l	70	11.9	ND	ND
	Ethylbenzene	ug/l	600	146	ND	ND
	Isopropylbenzene	ug/l	70	24.6	ND	ND
8260B	Methyl tert-butyl ether (MTBE)	ug/l	20	ND	2.89	ND
	Naphthalene	ug/l	6	199	1.77	ND
	n-Propylbenzene	ug/l	70	76.6	ND	ND
	Toluene	ug/l	600	ND	ND	5.74

Notes:

Sample GW collected on November 29, 2012

NE = Not established

units = ug/L - sample analyte compound concentrations measured in micrograms per liter

=Greater than or equal to the NCAC 2L Groundwater Quality Standard

FIGURES

Exhibit 1 – Site Vicinity Map (Topographic Map)
Exhibit 2 – Site Diagram with Soil Boring Locations and
Analytical Data (Parcel 17, 18, and 19)

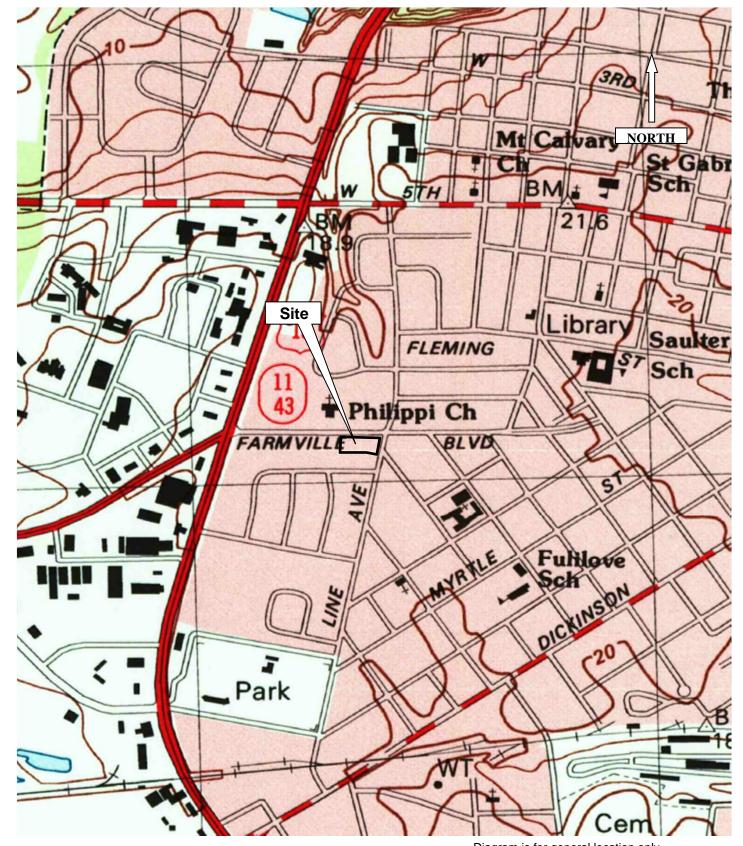
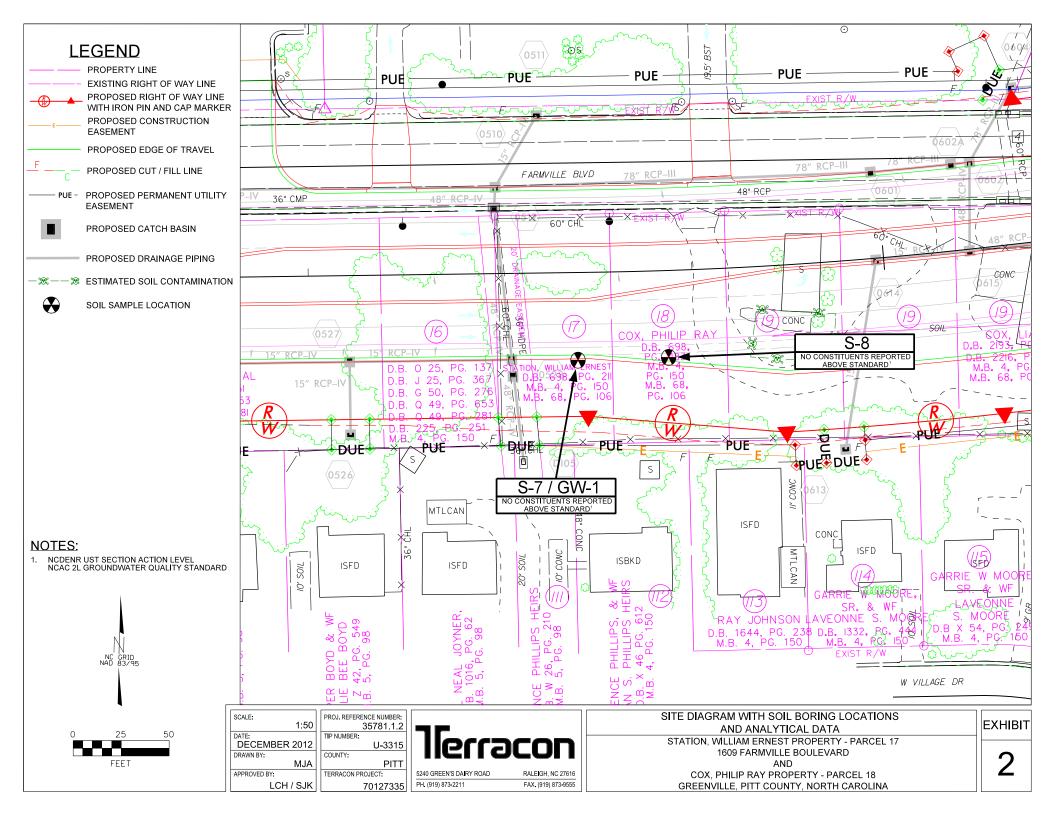
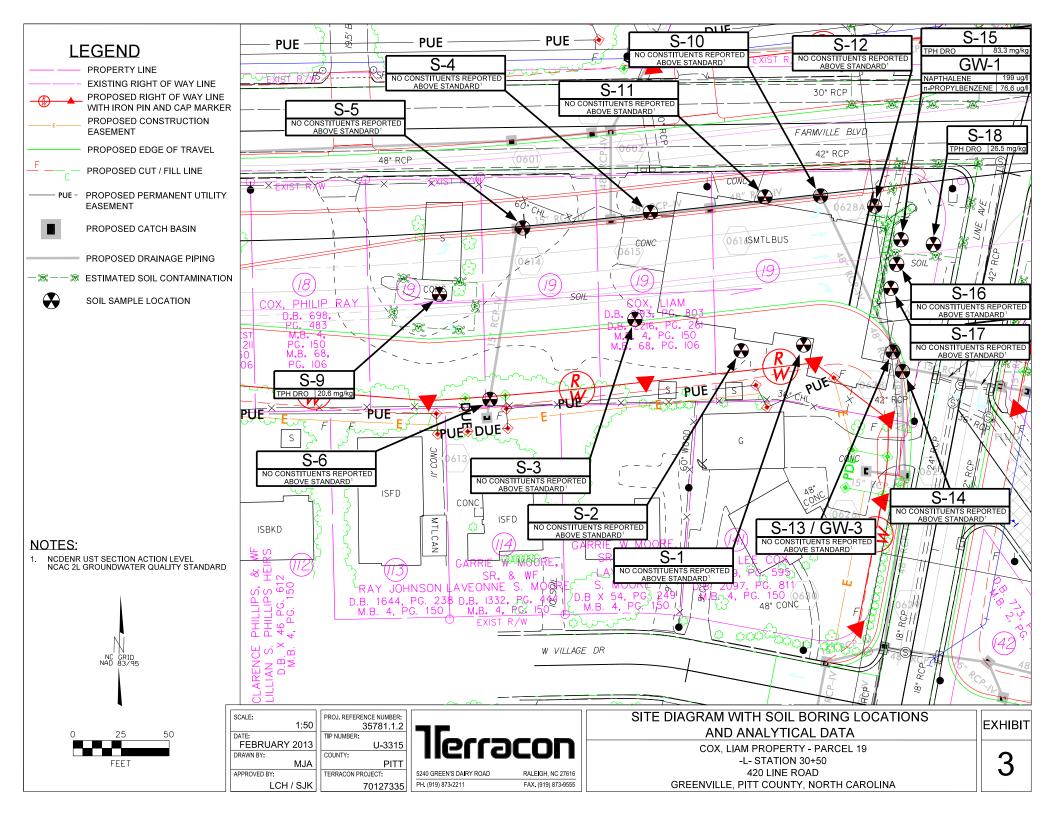


Diagram is for general location only


Site Vicinity Map
Parcel # 17, #18, and #19
420 Line Avenue
Greenville, Pitt County, North Carolina


Reference: Greenville SW, NC USGS Quadrangle

Dated Year: 1998

lerracon

PROJECT NO.:	70127335
DATE: 12/6/12	CONTOUR INT: 2 meters
DRAWN: TAP	CHECK: LCH
SCALE: NTS	

APPENDIX A

Boring Logs

	SOIL BORING LOG											
PROJECT NA	AME: Stant	onsburg/Ter	nth Street Conne	ector		SOIL BORING I.D.: S-1						
PROJECT NO						DATE(S) DRILLED: November 28, 2012						
PROJECT LO	CATION:					DRILLING CONTR.: Bridger Drilling Enterprises, Inc.						
Parcel #17, #	18, and #19	9, 420 Line /	Avenue			DRILL METHOD: Geoprobe						
Greenville, N	orth Carolin	ia				BORING DIAMETER: 2 inches						
CLIENT: NC						SAMPLING METHOD/INTERVAL: 5-Foot						
LOGGED BY	: Thomas	A. Perdue, E	1			REMARKS: BGS = below grade surface						
DESCRIPTIV	E LOG											
SAMPLE	SAMPLE	BLOWS	PID/FID	Odene	DEPTH							
INTERVAL	REC. (IN.)	PER 6"	(ppm)	Odors	(FT)	DESCRIPTION OF SOIL						
0 - 2.5		NA	1.51/0.98		0.0	Organic sand to six inches, orange and brown clay from 6						
					0.5	inches to 5 feet						
					1.0							
					1.5							
					2.0							
2.5 - 5.0		NA	0.66/1.05		2.5							
					3.0							
					3.5							
					4.0							
					4.5							
5.0 - 7.5		NA	0.91/1.15		5.0	Gray and orange clay from 5 feet to 15 feet						
					5.5							
					6.0							
					6.5							
					7.0							
7.5 - 10.0		NA	1.09/1.32		7.5							
					8.0							
					8.5							
					9.0							
					9.5							
10.0 - 12.5		NA	0.71/1.20		10.0							
					10.5							
					11.0							
					11.5							
					12.0							
12.5 - 15.0		NA	-		12.5	Wet						
					13.0							
					13.5							
					14.0							
					14.5							
5500				-	15.0	Boring terminated at 15 feet						
DRILLING METH AR - AIR ROTAR CFA - CONTINUU DC - DRIVEN CA HA - HAND AUG! HSA - HOLLOW : MD - MUD DRILL RC - ROCK COR WR - WATER RC	Y DUS FLIGHT A SING ER STEM AUGER ING ING	UGER	SAMPLING METHOD SS - SPLIT SPOON ST - SHELBY TUBE GP - GEOPROBE * - Sample collected for ND = <1 ppm			lerracon						

				SOIL	BORING	LOG
PROJECT NA	AME: Stant	onsburg/Ter	nth Street Conne	ector		SOIL BORING I.D.: S-2
PROJECT NO						DATE(S) DRILLED: November 28, 2012
PROJECT LO	CATION:					DRILLING CONTR.: Bridger Drilling Enterprises, Inc.
Parcel #17, #	18, and #19	9, 420 Line A	Avenue			DRILL METHOD: Geoprobe
Greenville, No						BORING DIAMETER: 2 inches
CLIENT: NC						SAMPLING METHOD/INTERVAL: 5-Foot
LOGGED BY	: Thomas /	A. Perdue, E	1			REMARKS: BGS = below grade surface
DESCRIPTIV	E LOG					
SAMPLE	SAMPLE	BLOWS	PID/FID	0.4	DEPTH	
INTERVAL	REC. (IN.)	PER 6"	(ppm)	Odors	(FT)	DESCRIPTION OF SOIL
0 - 2.5		NA	0.91/1.06		0.0	Organic sand to six inches, orange and brown clay from 6
					0.5	inches to 2.5 feet
					1.0	
					1.5	
					2.0	
2.5 - 5.0		NA	1.05/1.37		2.5	Gray and orange clay from 2.5 feet to 15 feet
					3.0	
					3.5	
					4.0	
					4.5	
5.0 - 7.5		NA	1.75/2.03		5.0	
					5.5	
					6.0	
					6.5	
					7.0	
7.5 - 10.0		NA	2.14/1.94		7.5	
					8.0	
					8.5	
					9.0	
					9.5	
10.0 - 12.5		NA	1.76/2.04		10.0	
					10.5	
					11.0	
					11.5	
					12.0	
12.5 - 15.0		NA	-		12.5	Wet
					13.0	
					13.5	
					14.0	
					14.5	
				_	15.0	Boring terminated at 15 feet
DRILLING METH AR - AIR ROTAR CFA - CONTINUC DC - DRIVEN CA HA - HAND AUG HSA - HOLLOW S MD - MUD DRILL RC - ROCK COR WR - WATER RC	Y DUS FLIGHT A SING ER STEM AUGER ING ING	UGER	SAMPLING METHOD SS - SPLIT SPOON ST - SHELBY TUBE GP - GEOPROBE * - Sample collected f ND = <1 ppm	<u> </u>		lerracon

				SOIL	BORING	_OG			
PROJECT NA	AME: Stanto	onsburg/Ter	nth Street Connec			SOIL BORING I.D.: S-3			
PROJECT NO						DATE(S) DRILLED: November 28, 2012			
PROJECT LO	OCATION:					DRILLING CONTR.: Bridger Drilling Enterprises, Inc.			
Parcel #17, #	18, and #19	9, 420 Line /	Avenue			DRILL METHOD: Geoprobe			
Greenville, N						BORING DIAMETER: 2 inches			
CLIENT: NCI						SAMPLING METHOD/INTERVAL: 5-Foot			
LOGGED BY						REMARKS: BGS = below grade surface			
DESCRIPTIV						, , , , , , , , , , , , , , , , , , ,			
SAMPLE	SAMPLE	BLOWS	PID/FID		DEPTH				
INTERVAL	REC. (IN.)	PER 6"	(ppm)	Odors	(FT)	DESCRIPTION OF SOIL			
0 - 2.5		NA	1.89/1.43		0.0	Gray and brown sandy clay to 5 feet			
					0.5	, ,			
					1.0				
					1.5				
					2.0				
2.5 - 5.0		NA	2.81/1.52		2.5				
2.0 0.0			2.0 17 1.02		3.0				
					3.5				
					4.0				
					4.5				
5.0 - 7.5		NA	2.18/1.46		5.0	Gray and brown clay from 5 feet to 10 feet			
0.0 7.0		101	2.10/1.10		5.5				
					6.0				
					6.5				
					7.0				
7.5 - 10.0		NA	2.19/1.14		7.5				
7.0 10.0		101	2.10/1.11		8.0	Wet			
					8.5	*****			
					9.0				
					9.5				
					10.0	Boring terminated at 10 feet			
	1				10.5	Donning tommutod at 10 100t			
			† 1		11.0				
			† 1		11.5				
			†		12.0				
					12.5				
					13.0				
					13.5				
	† †				14.0				
	† †				14.5				
					15.0				
DRILLING METH AR - AIR ROTAR CFA - CONTINUO DC - DRIVEN CA HA - HAND AUG HSA - HOLLOW : MD - MUD DRILL RC - ROCK COR WR - WATER RO	Y OUS FLIGHT AI .SING ER STEM AUGER .ING ING	UGER	SAMPLING METHODS SS - SPLIT SPOON ST - SHELBY TUBE GP - GEOPROBE * - Sample collected for ND = <1 ppm			lerracon			

				SOII	POPING	00
DDO IFOT N	^ \ 4 \ . Ot = mt	· · · · · · · · · · · · · · · · · · ·	" Oliver the Common		L BORING I	
PROJECT N			nth Street Connec	tor		SOIL BORING I.D.: S-4 DATE(S) DRILLED: November 28, 2012
PROJECT IN	0.: 101213	,35				DATE(S) DRILLED: November 26, 2012
PROJECT LO	OCATION:					DRILLING CONTR.: Bridger Drilling Enterprises, Inc.
		0 420 Lino	A			
Parcel #17, #			Avenue			DRILL METHOD: Geoprobe
Greenville, N			1			BORING DIAMETER: 2 inches
CLIENT: NCI LOGGED BY						SAMPLING METHOD/INTERVAL: 5-Foot REMARKS: BGS = below grade surface
DESCRIPTIV		A. Feluue, L	=1			REMARKS. DGS = DEIOW Glade Surface
SAMPLE	SAMPLE	BLOWS	DID/EID		DEPTH	T
INTERVAL	REC. (IN.)	PER 6"	PID/FID	Odors	(FT)	DESCRIPTION OF SOIL
0 - 2.5	REG. (IIV.)	NA	(ppm) 1.42/1.39		0.0	Gray and orange sandy clay to 5 feet
0 - 2.0	+	INA	1.42/1.35			Gray and Grange Sandy Gray to 5 reet
 	++		+		0.5	Į.
	+		+		1.0	
	++		+		1.5	
	++		1 12/1 07		2.0	
2.5 - 5.0	++	NA	4.16/1.37		2.5	
<u> </u>	\longrightarrow				3.0	
<u> </u>	++				3.5	
	$\downarrow \longrightarrow$				4.0	
	↓				4.5	
5.0 - 7.5		NA	-		5.0	Gray and orange clay from 5 feet to 10 feet
		<u> </u>			5.5	
	\coprod	_ I			6.0	
	<u> </u>	_ L			6.5	Wet
		 			7.0	
7.5 - 10.0		NA	-		7.5	1
					8.0	
					8.5	
					9.0	1
					9.5	1
					10.0	Boring terminated at 10 feet
	1				10.5	1
					11.0	1
					11.5	1
					12.0	1
	1				12.5	1
			1		13.0	1
			1		13.5	1
			1		14.0	1
			†		14.5	1
	† †		+		15.0	1
DRILLING METH AR - AIR ROTAR CFA - CONTINUO DC - DRIVEN CA HA - HAND AUG HSA - HOLLOW MD - MUD DRILL RC - ROCK COR	RY OUS FLIGHT AI ASING EER STEM AUGER LING	AUGER	SAMPLING METHODS SS - SPLIT SPOON ST - SHELBY TUBE GP - GEOPROBE * - Sample collected for ND = <1 ppm			lerracon
WR - WATER RO			ид – ст ррпі		l	

				SOIL	BORING	_OG		
PROJECT NA	AME: Stanto	onsburg/Ter	nth Street Connec			SOIL BORING I.D.: S-5		
PROJECT NO				DATE(S) DRILLED: November 28, 2012				
PROJECT LO	OCATION:					DRILLING CONTR.: Bridger Drilling Enterprises, Inc.		
Parcel #17, #	18, and #19	9, 420 Line A	Avenue			DRILL METHOD: Geoprobe		
Greenville, N						BORING DIAMETER: 2 inches		
CLIENT: NCI						SAMPLING METHOD/INTERVAL: 5-Foot		
LOGGED BY						REMARKS: BGS = below grade surface		
DESCRIPTIV						<u> </u>		
SAMPLE	SAMPLE	BLOWS	PID/FID		DEPTH			
INTERVAL	REC. (IN.)	PER 6"	(ppm)	Odors	(FT)	DESCRIPTION OF SOIL		
0 - 2.5		NA	1.94/1.17		0.0	Gray and orange sandy clay to 5 feet		
					0.5			
					1.0			
					1.5			
			†		2.0			
2.5 - 5.0		NA	3.98/1.42		2.5			
		, .	3.33, 11.12		3.0			
					3.5			
					4.0			
					4.5			
5.0 - 7.5		NA	_		5.0	Gray and orange clay from 5 feet to 10 feet		
0.0 7.0		101			5.5	Ciay and ciango day nonito toot to too.		
					6.0			
					6.5			
					7.0			
7.5 - 10.0		NA	_		7.5	Wet		
7.0 .0.0					8.0	****		
					8.5			
					9.0			
					9.5			
					10.0	Boring terminated at 10 feet		
					10.5	Donning tommutod at 10 100t		
			†		11.0			
			†		11.5			
			† 1		12.0			
					12.5			
					13.0			
					13.5			
					14.0			
					14.5			
			†		15.0			
DRILLING METH AR - AIR ROTAR CFA - CONTINUO DC - DRIVEN CA HA - HAND AUG HSA - HOLLOW : MD - MUD DRILL RC - ROCK COR WR - WATER RO	Y DUS FLIGHT AI SING ER STEM AUGER ING ING	UGER	SAMPLING METHODS SS - SPLIT SPOON ST - SHELBY TUBE GP - GEOPROBE * - Sample collected for ND = <1 ppm		•	llerracon		

				SOIL	BORING I	_OG
PROJECT N	AMF: Stanto	onsburg/Ter	nth Street Connec			SOIL BORING I.D.: S-6
PROJECT N			in onoc comico	DATE(S) DRILLED: November 28, 2012		
						,
PROJECT LO	OCATION:					DRILLING CONTR.: Bridger Drilling Enterprises, Inc.
Parcel #17, #	#18, and #19	9, 420 Line	Avenue			DRILL METHOD: Geoprobe
Greenville, N						BORING DIAMETER: 2 inches
CLIENT: NCI						SAMPLING METHOD/INTERVAL: 5-Foot
LOGGED BY	': Thomas /	A. Perdue, E	ΞI			REMARKS: BGS = below grade surface
DESCRIPTIV	/E LOG					
SAMPLE	SAMPLE	BLOWS	PID/FID		DEPTH	
INTERVAL	REC. (IN.)	PER 6"	(ppm)	Odors	(FT)	DESCRIPTION OF SOIL
0 - 2.5		NA	3.08/1.71		0.0	Brown and gray sandy clay to 10 feet
					0.5	
					1.0	
					1.5	
					2.0	
2.5 - 5.0		NA	2.57/1.46		2.5	
					3.0	
					3.5	
					4.0	
					4.5	
5.0 - 7.5		NA	2.41/1.36		5.0	
					5.5	
					6.0	
					6.5	
					7.0	
7.5 - 10.0		NA	-		7.5	
					8.0	
					8.5	Wet
					9.0	
					9.5	
					10.0	Boring terminated at 10 feet
					10.5	
					11.0	
			 		11.5	
			 		12.0	
			 		12.5	
			 		13.0	
			 		13.5	
			 		14.0	
			 		14.5	
DRILLING METH	IODS		<u> </u>		15.0	<u> </u>
AR - AIR ROTAR CFA - CONTINU DC - DRIVEN CA HA - HAND AUG HSA - HOLLOW MD - MUD DRILL	RY OUS FLIGHT A ASING ER STEM AUGER	UGER	SAMPLING METHODS SS - SPLIT SPOON ST - SHELBY TUBE GP - GEOPROBE * - Sample collected for			Terracon
RC - ROCK COR WR - WATER RO	RING		ND = <1 ppm	anaiyoio		

				SOII	PARING		
-50 (FOT N		<u> </u>			_ BORING I		
			nth Street Connec	tor		SOIL BORING I.D.: S-7	
PROJECT NO	J.: /012/3	.35				DATE(S) DRILLED: November 28, 2012	
PROJECT LO	CATION:					DRILLING CONTR.: Bridger Drilling Enterprises, Inc.	
Parcel #17, #		0 420 Line	Λνορμο			DRILL METHOD: Geoprobe	
Greenville, No			Avenue			BORING DIAMETER: 2 inches	
CLIENT: NC			.1			SAMPLING METHOD/INTERVAL: 5-Foot	
LOGGED BY					REMARKS: BGS = below grade surface		
DESCRIPTIV		1.10100,				TEMPUTO. 200 - 200 H grade canada	
SAMPLE	SAMPLE	BLOWS	PID/FID		DEPTH		
INTERVAL	REC. (IN.)	PER 6"	(ppm)	Odors	(FT)	DESCRIPTION OF SOIL	
0 - 2.5		NA	2.47/41.08		0.0	Dark brown sandy clay to 15 feet	
		1	†		0.5	1	
		1	†		1.0	1	
					1.5		
					2.0		
2.5 - 5.0		NA	-		2.5		
					3.0		
					3.5		
					4.0	Wet	
					4.5		
5.0 - 7.5		NA	-		5.0		
					5.5		
					6.0	1	
					6.5		
					7.0		
7.5 - 10.0		NA	-		7.5		
					8.0		
					8.5		
			Γ		9.0]	
		<u> </u>			9.5]	
10.0 - 12.5		NA	-		10.0]	
	igsquare				10.5		
		 _			11.0		
	igsquare		<u> </u>		11.5		
	igsquare		<u> </u>		12.0		
12.5 - 15.0		NA	-		12.5		
	\longmapsto		<u> </u>		13.0		
	\longmapsto		<u> </u>		13.5		
	 		 		14.0		
	 		1		14.5	D. Continued and Applicati	
SOUL INC METH					15.0	Boring terminated at 15 feet	
DRILLING METH	Υ		SAMPLING METHODS	<u> </u>			
CFA - CONTINUO DC - DRIVEN CA		.UGER	SS - SPLIT SPOON ST - SHELBY TUBE	J		The same of the same of the same of	
HA - HAND AUGE HSA - HOLLOW S	ER		GP - GEOPROBE	ļ		lerracon	
MD - MUD DRILL RC - ROCK COR	ING		* - Sample collected for	analysis		IICII OLUII	
WR - WATER RO			ND = <1 ppm	J			
				,	4		

				SOIL	. BORING I	ORING LOG		
PROJECT N	AME: Stant	onsburg/Tei	nth Street Conn	SOIL BORING I.D.: S-8				
PROJECT N				DATE(S) DRILLED: November 28, 2012				
PROJECT LO	OCATION:					DRILLING CONTR.: Bridger Drilling Enterprises, Inc.		
Parcel #17, #	18, and #19	9, 420 Line <i>i</i>	Avenue			DRILL METHOD: Geoprobe		
Greenville, N						BORING DIAMETER: 2 inches		
CLIENT: NCI						SAMPLING METHOD/INTERVAL: 5-Foot		
LOGGED BY	: Thomas	A. Perdue, E	ΞI			REMARKS: BGS = below grade surface		
DESCRIPTIV	'E LOG							
SAMPLE	SAMPLE	BLOWS	PID/FID	0.1	DEPTH			
INTERVAL	REC. (IN.)	PER 6"	(ppm)	Odors	(FT)	DESCRIPTION OF SOIL		
0 - 2.5		NA	3.43/52.91		0.0	Dark brown clay with organics to 2.5 feet		
					0.5			
					1.0			
					1.5			
					2.0			
2.5 - 5.0		NA	3.81/10.11		2.5	Dark brown clay from 2.5 feet to 5 feet		
					3.0			
					3.5			
					4.0			
					4.5			
5.0 - 7.5		NA	1.51/4.62		5.0	Dark brown with gray clay from 5 feet to 10 feet		
					5.5			
					6.0			
					6.5			
					7.0			
7.5 - 10.0		NA	-		7.5			
					8.0			
					8.5	Wet		
					9.0			
					9.5			
					10.0	Boring terminated at 10 feet		
					10.5			
					11.0			
					11.5			
					12.0			
					12.5			
					13.0			
					13.5			
					14.0			
					14.5			
					15.0			
DRILLING METH AR - AIR ROTAR CFA - CONTINUO DC - DRIVEN CA HA - HAND AUG HSA - HOLLOW MD - MUD DRILL RC - ROCK COR WR - WATER RC	Y DUS FLIGHT A .SING ER STEM AUGER .ING ING		SAMPLING METHO SS - SPLIT SPOON ST - SHELBY TUBE GP - GEOPROBE * - Sample collected 1 ND = <1 ppm	=		Terracon		

				SOII	BORING	06		
DDO IFOT N	A N 4 E . O L = 1	l /T	- th. Other - t. O		- BURING			
PROJECT N			nth Street Connec	tor		SOIL BORING I.D.: S-9 DATE(S) DRILLED: November 28, 2012		
PROJECTIN	O 701273	33			DATE(5) DKILLED: November 28, 2012			
PROJECT LO	OCATION.					DRILLING CONTR.: Bridger Drilling Enterprises, Inc.		
		1201:50	Λικοπικο			<u> </u>		
Parcel #17, #			Avenue			DRILL METHOD: Geoprobe		
Greenville, N			<u> </u>			BORING DIAMETER: 2 inches		
CLIENT: NC LOGGED BY						SAMPLING METHOD/INTERVAL: 5-Foot REMARKS: BGS = below grade surface		
DESCRIPTIN		4. Ferdue, i	_1			NEIWANNO. 1003 = below grade surface		
	SAMPLE	DI OIMO	DID (FID		DEDTU	Γ		
SAMPLE INTERVAL	REC. (IN.)	BLOWS PER 6"	PID/FID	Odors	DEPTH (FT)	DESCRIPTION OF SOIL		
0 - 2.5	REG. (IIV.)		(ppm)			Concrete to 6 inches		
0 - 2.5		NA	1.84/1.51		0.0	Gray and orange clay from 6 inches to 2.5 feet		
						Gray and drange day from 6 inches to 2.5 feet		
					1.0			
					2.0			
2.5 - 5.0		NA	1.88/1.55		2.0	Brown clay from 2.5 feet to 5 feet		
2.5 - 5.0		INA	1.00/1.33			Brown day from 2.3 feet to 3 feet		
					3.0			
					4.0			
					4.0			
5.0 - 7.5		NA	3.29/3.88		5.0	Brown with gray clay from 5 feet to 10 feet		
5.0 - 7.5		INA	3.29/3.00		5.5	Brown with gray clay from 3 feet to 10 feet		
					-			
					6.0			
					7.0			
7.5 - 10.0		NA	_		7.0			
7.5 - 10.0		INA	 		8.0			
			1		8.5			
			1		9.0	Wet		
					9.5	Wet		
					10.0			
					10.5			
					11.0			
					11.5			
					12.0			
					12.5			
					13.0			
			+		13.5			
			+		14.0	1		
	1		+		14.5			
	1		+		15.0			
DRILLING METHAR - AIR ROTAF CFA - CONTINU DC - DRIVEN CA HA - HAND AUG HSA - HOLLOW MD - MUD DRILI RC - ROCK COF	OUS FLIGHT A SING ER STEM AUGER LING		SAMPLING METHODS SS - SPLIT SPOON ST - SHELBY TUBE GP - GEOPROBE * - Sample collected for ND = <1 ppm		,	lerracon		
WR - WATER RO	DTARY		•					

				SOIL	BORING	RING LOG		
PROJECT N	AME: Stant	onsburg/Ter	nth Street Conne	SOIL BORING I.D.: S-10				
PROJECT N	O.: 701273	35		DATE(S) DRILLED: November 28, 2012				
PROJECT LO	OCATION:			DRILLING CONTR.: Bridger Drilling Enterprises, Inc.				
Parcel #17, #	18, and #19	9, 420 Line /	Avenue			DRILL METHOD: Geoprobe		
Greenville, N						BORING DIAMETER: 2 inches		
CLIENT: NCI						SAMPLING METHOD/INTERVAL: 5-Foot		
LOGGED BY	: Thomas	A. Perdue, E	1			REMARKS: BGS = below grade surface		
DESCRIPTIV	'E LOG							
SAMPLE	SAMPLE	BLOWS	PID/FID		DEPTH			
INTERVAL	REC. (IN.)	PER 6"	(ppm)	Odors	(FT)	DESCRIPTION OF SOIL		
0 - 2.5		NA	0.91/1.12		0.0	Gray and brown sandy clay to 2.5 feet		
					0.5			
					1.0			
					1.5			
					2.0			
2.5 - 5.0		NA	1.01/0.95		2.5	Orange and gray sandy clay from 2.5 feet to 5 feet		
					3.0			
					3.5			
					4.0			
					4.5			
5.0 - 7.5		NA	1.48/1.30		5.0	Orange and gray clay from 5 feet to 10 feet		
					5.5			
					6.0			
					6.5			
					7.0			
7.5 - 10.0		NA	-		7.5	Wet		
					8.0			
					8.5			
					9.0			
					9.5			
					10.0	Boring terminated at 10 feet		
					10.5	, and the second		
					11.0			
					11.5			
					12.0			
					12.5			
					13.0			
					13.5			
					14.0			
					14.5			
					15.0			
DRILLING METH AR - AIR ROTAR CFA - CONTINUO DC - DRIVEN CA HA - HAND AUG HSA - HOLLOW MD - MUD DRILL RC - ROCK COR WR - WATER RC	Y OUS FLIGHT A .SING ER STEM AUGER .ING ING	UGER	SAMPLING METHOL SS - SPLIT SPOON ST - SHELBY TUBE GP - GEOPROBE * - Sample collected f ND = <1 ppm	:		lerracon		

				SOIL	POPING	LOC			
DDO JEOT N	ANAT: Otamb	b /T a	" Oliver the Common		BUKING	BORING LOG			
PROJECT N			nth Street Connec	tor		SOIL BORING I.D.: S-11 DATE(S) DRILLED: November 28, 2012			
PROJECTIV	U.: 101213	35				DATE(S) DRILLED. NOVEHIDEI 26, 2012			
PROJECT LO	OCATION:					DRILLING CONTR.: Bridger Drilling Enterprises, Inc.			
Parcel #17, #		0 420 Line	Λνοημο			DRILLING CONTR.: Bridger Drilling Enterprises, Inc. DRILL METHOD: Geoprobe			
Greenville, N			Avenue			BORING DIAMETER: 2 inches			
CLIENT: NCI			ı			SAMPLING METHOD/INTERVAL: 5-Foot			
LOGGED BY						REMARKS: BGS = below grade surface			
DESCRIPTIV		4. 1 Glado, 2	_1			NEWANNO. 200 - Bolow grade surface			
SAMPLE	SAMPLE	BLOWS	PID/FID		DEPTH	1			
INTERVAL	REC. (IN.)	PER 6"	(ppm)	Odors	(FT)	DESCRIPTION OF SOIL			
0 - 2.5	+	NA	0.94/1.26		0.0	Gray and brown sandy clay to 2.5 feet			
	† †		+		0.5	1			
	† †		+		1.0	1			
	† †		+		1.5	1			
	+ +		+		2.0	1			
2.5 - 5.0	+ +	NA	1.05/1.42		2.5	Orange and gray sandy clay from 2.5 feet to 5 feet			
	†	***	1.00		3.0				
	†		+		3.5	1			
	† †		+		4.0	1			
	† †		+		4.5	1			
5.0 - 7.5	† †	NA	-		5.0	Orange and gray clay from 5 feet to 10 feet			
	†		+ 1		5.5	1			
	†		+ 1		6.0	1			
	†		 		6.5	Wet			
	† †		†		7.0	1			
7.5 - 10.0	† †	NA	 -		7.5	1			
	†		1		8.0	1			
	†		†		8.5	1			
					9.0	1			
	†				9.5	1			
	†		†		10.0	Boring terminated at 10 feet			
	†		†		10.5	-			
	†				11.0	1			
					11.5	1			
			T		12.0	1			
					12.5	1			
					13.0	1			
					13.5	1			
					14.0	1			
					14.5]			
					15.0				
DRILLING METH AR - AIR ROTAR CFA - CONTINU DC - DRIVEN CA HA - HAND AUG HSA - HOLLOW MD - MUD DRILL RC - ROCK COR	RY JOUS FLIGHT AI ASING BER STEM AUGER LING	NUGER	SAMPLING METHODS SS - SPLIT SPOON ST - SHELBY TUBE GP - GEOPROBE * - Sample collected for ND = <1 ppm			lerracon			
WR - WATER RO									

			•	SOIL	BORING I	LOG
PROJECT N/	AME: Stant	onsburg/Ter	nth Street Conne	ector		SOIL BORING I.D.: S-12
PROJECT NO				-		DATE(S) DRILLED: November 28, 2012
PROJECT LC	CATION:			DRILLING CONTR.: Bridger Drilling Enterprises, Inc.		
Parcel #17, #	18, and #19	9, 420 Line <i>i</i>	Avenue			DRILL METHOD: Geoprobe
Greenville, No						BORING DIAMETER: 2 inches
CLIENT: NCC			ı			SAMPLING METHOD/INTERVAL: 5-Foot
LOGGED BY:				-		REMARKS: BGS = below grade surface
DESCRIPTIV	E LOG					
SAMPLE	SAMPLE	BLOWS	PID/FID	Odors	DEPTH	
INTERVAL	REC. (IN.)	PER 6"	(ppm)	Ouois	(FT)	DESCRIPTION OF SOIL
0 - 2.5		NA	0.79/1.13		0.0	Gray and brown sandy clay to 2.5 feet
					0.5]
					1.0]
					1.5]
					2.0	1
2.5 - 5.0		NA	0.99/1.21		2.5	Orange and gray sandy clay from 2.5 feet to 5 feet
					3.0	1
					3.5	1
					4.0]
					4.5	1
5.0 - 7.5		NA	0.81/1.56		5.0	Orange and gray clay from 5 feet to 15 feet
					5.5	1
					6.0	1
					6.5	1
					7.0	1
7.5 - 10.0		NA	1.02/1.47		7.5	1
					8.0	1
					8.5	Wet
					9.0	1
					9.5	1
10.0 - 12.5		NA	-		10.0	1
					10.5	1
					11.0	1
					11.5	1
					12.0	1
12.5 - 15.0		NA	-		12.5	1
			1		13.0	1
			1		13.5	1
					14.0	1
					14.5	1
					15.0	Boring terminated at 15 feet
DRILLING METHO AR - AIR ROTAR' CFA - CONTINUC DC - DRIVEN CAS HA - HAND AUGE HSA - HOLLOW S MD - MUD DRILLI RC - ROCK CORI WR - WATER RO	Y DUS FLIGHT AI SING ER STEM AUGER ING ING	NUGER	SAMPLING METHOD SS - SPLIT SPOON ST - SHELBY TUBE GP - GEOPROBE * - Sample collected fo ND = <1 ppm		·	Terracon

				SOIL	BORING LOG			
PROJECT N	AME: Stant	onsburg/Ter	nth Street Conne	SOIL BORING I.D.: S-13				
PROJECT NO	O.: 701273	35		DATE(S) DRILLED: November 28, 2012				
PROJECT LO	OCATION:			DRILLING CONTR.: Bridger Drilling Enterprises, Inc.				
Parcel #17, #	18, and #19	9, 420 Line <i>i</i>	Avenue			DRILL METHOD: Geoprobe		
Greenville, N	orth Carolin	ıa				BORING DIAMETER: 2 inches		
CLIENT: NC	OOT Geoen	vironmental				SAMPLING METHOD/INTERVAL: 5-Foot		
LOGGED BY	: Thomas i	A. Perdue, E	ΞI			REMARKS: BGS = below grade surface		
DESCRIPTIV	'E LOG							
SAMPLE	SAMPLE	BLOWS	PID/FID	Odors	DEPTH			
INTERVAL	REC. (IN.)	PER 6"	(ppm)	Odols	(FT)	DESCRIPTION OF SOIL		
0 - 2.5		NA	0.44/1.09		0.0	Brown and orange sandy clay to 15 feet		
					0.5			
					1.0			
					1.5			
					2.0			
2.5 - 5.0		NA	0.76/1.22		2.5			
					3.0			
					3.5			
					4.0			
					4.5			
5.0 - 7.5		NA	0.59/1.34		5.0			
					5.5			
					6.0			
					6.5	Wet		
					7.0			
7.5 - 10.0		NA	-		7.5			
					8.0			
					8.5			
					9.0			
					9.5			
10.0 - 12.5		NA	-		10.0			
					10.5			
					11.0			
					11.5			
					12.0			
12.5 - 15.0		NA	-		12.5			
					13.0			
			 		13.5			
					14.0			
			 		14.5	Daving tagenting to day 45 foot		
DDII LINO METU	ODS				15.0	Boring terminated at 15 feet		
AR - AIR ROTAR CFA - CONTINUO DC - DRIVEN CA HA - HAND AUGI HSA - HOLLOW : MD - MUD DRILL RC - ROCK COR	DRILLING METHODS					Terracon		

				SOIL	L BORING I	NG LOG		
PROJECT N.	AME: Stant	onsburg/Ter	nth Street Conne	SOIL BORING I.D.: S-14				
PROJECT NO						DATE(S) DRILLED: November 29, 2012		
PROJECT LO	OCATION:					DRILLING CONTR.: Bridger Drilling Enterprises, Inc.		
Parcel #17, #	#18, and #19	9, 420 Line <i>i</i>	Avenue			DRILL METHOD: Geoprobe		
Greenville, N						BORING DIAMETER: 2 inches		
CLIENT: NC	DOT Geoen	nvironmental				SAMPLING METHOD/INTERVAL: 5-Foot		
LOGGED BY		A. Perdue, F	≣ I			REMARKS: BGS = below grade surface		
DESCRIPTIV	/E LOG							
SAMPLE	SAMPLE	BLOWS	PID/FID	Odors	DEPTH			
INTERVAL	REC. (IN.)	PER 6"	(ppm)	000.2	(FT)	DESCRIPTION OF SOIL		
0 - 2.5		NA	0.51/1.31		0.0	Gray and brown sandy clay to 2.5 feet		
		1			0.5]		
	\Box				1.0]		
	\coprod	_ 			1.5]		
					2.0]		
2.5 - 5.0		NA	0.49/1.48		2.5	Gray and orange sandy clay from 2.5 to 5 feet		
	Щ	_ 	<u> </u>		3.0]		
	\coprod	_ 			3.5]		
		<u>-</u>			4.0]		
	\coprod		<u> </u>		4.5]		
5.0 - 7.5	\perp	NA	0.96/1.08		5.0	Brown, orange, and gray sandy clay from 5 feet to 7.5 feet		
	\perp	1			5.5]		
	<u> </u>		<u> </u>		6.0]		
		<u> </u>			6.5	1		
<u></u>		<u> </u>			7.0	1		
7.5 - 10.0	igsquare	NA	0.62/1.28		7.5	Orange and gray clay from 7.5 feet to 10 feet		
	igspace				8.0	1		
	igspace				8.5	1		
	$\downarrow \downarrow \downarrow \downarrow$		<u> </u>		9.0	Wet		
	igspace				9.5	1		
	igspace				10.0	-		
	$\downarrow \downarrow \downarrow \downarrow$		<u> </u>		10.5	-		
	\longrightarrow		 		11.0	≟		
<u></u>	$\downarrow \downarrow \downarrow \downarrow$	 -	 		11.5	≟		
<u></u>	$\downarrow \downarrow \downarrow \downarrow$	 -	 		12.0	-		
<u></u>	$\downarrow \downarrow \downarrow \downarrow$	 -	 		12.5			
	$\downarrow \downarrow \downarrow \downarrow$				13.0	1		
<u></u>	++		↓		13.5	4		
<u></u>	++		↓		14.0	-		
<u> </u>	$\downarrow \longrightarrow$		 		14.5	≟		
DOUL INC MET	.020				15.0	<u>, </u>		
DRILLING METHODS						lerracon		
WK - WAIER NO	JIAKT			I	1			

				SOIL BOI	RING	_OG
PROJECT N	AMF: Stant	onsburg/Te	nth Street Conn			SOIL BORING I.D.: S-15
PROJECT N			THE OUTCOL COINT	COLOI		DATE(S) DRILLED: November 29, 2012
	0				27.11 = (0) 21.11 = 22.11 = 0.11 = 0.12	
PROJECT L	OCATION:					DRILLING CONTR.: Bridger Drilling Enterprises, Inc.
Parcel #17, #		120 Line	Δνερμε			DRILL METHOD: Geoprobe
Greenville, N			Avenue			BORING DIAMETER: 2 inches
			1			SAMPLING METHOD/INTERVAL: 5-Foot
CLIENT: NC LOGGED BY						REMARKS: BGS = below grade surface
DESCRIPTIV		A. Ferdue,	<u> </u>			INCIVIANNO. 1993 = Delow grade Surface
SAMPLE	SAMPLE	BLOWS	PID/FID		DEPTH	
INTERVAL	REC. (IN.)	PER 6"	(ppm)	Odors	(FT)	DESCRIPTION OF SOIL
0 - 2.5	ICEO. (IIV.)	NA	0.48/1.06		0.0	Gray and brown sandy clay to 2.5 feet
0 - 2.5	+	INA	0.46/1.00		0.5	Gray and brown sainty day to 2.3 leet
	+ +				1.0	
	+ +					
					1.5	
05.50		NIA	0.77/4.50		2.0	Crow and arong conductor from 2.5 to 5 feet
2.5 - 5.0		NA	0.77/1.59		2.5	Gray and orange sandy clay from 2.5 to 5 feet
					3.0	
					3.5	
					4.0	
					4.5	
5.0 - 7.5		NA	328.0/622.0	Petroleum odor	5.0	Brown, orange, and gray sandy clay from 5 feet to 7.5 feet
					5.5	
					6.0	
					6.5	
					7.0	
7.5 - 10.0		NA	-	Petroleum odor	7.5	Orange and gray clay from 7.5 feet to 10 feet
					8.0	
					8.5	Wet
					9.0	
					9.5	
					10.0	Boring terminated at 10 feet
					10.5	
					11.0	
					11.5	
					12.0	
					12.5	
					13.0	
					13.5	
					14.0	
					14.5	
					15.0	
DRILLING METH			OAMBUNG MET	D0		
AR - AIR ROTAF CFA - CONTINU DC - DRIVEN CA HA - HAND AUG HSA - HOLLOW MD - MUD DRILI RC - ROCK COF	OUS FLIGHT A ASING ER STEM AUGER LING	UGER	SAMPLING METHO SS - SPLIT SPOON ST - SHELBY TUBI GP - GEOPROBE * - Sample collected ND = <1 ppm	E		Terracon

RC - ROCK CORING WR - WATER ROTARY

ND = <1 ppm

				SOIL BO	RING	LOG
PROJECT N/	ME: Stanto	onsburg/Ter	nth Street Conn	ector		SOIL BORING I.D.: S-16
PROJECT NO						DATE(S) DRILLED: November 29, 2012
PROJECT LO	CATION:					DRILLING CONTR.: Bridger Drilling Enterprises, Inc.
Parcel #17, #	18, and #19), 420 Line /	Avenue			DRILL METHOD: Geoprobe
Greenville, No	orth Carolin	а				BORING DIAMETER: 2 inches
CLIENT: NCD			ı			SAMPLING METHOD/INTERVAL: 5-Foot
OGGED BY:	Thomas /	۱. Perdue, F	ΞĪ			REMARKS: BGS = below grade surface
DESCRIPTIV	E LOG					
SAMPLE	SAMPLE	BLOWS	PID/FID	Odoro	DEPTH	
INTERVAL	REC. (IN.)	PER 6"	(ppm)	Odors	(FT)	DESCRIPTION OF SOIL
0 - 2.5		NA	0.69/1.24		0.0	Orange sand, fill to 15 feet
					0.5	1
			1		1.0	1
			 		1.5	1
			+		2.0	1
2.5 - 5.0		NA	1.24/1.37		2.5	1
			1		3.0	1
			+		3.5	1
		-	 		4.0	1
			+		4.5	1
5.0 - 7.5		NA	0.98/1.29		5.0	1
0.0			0.00,		5.5	1
			+		6.0	1
			+		6.5	1
			+		7.0	1
7.5 - 10.0		NA	-	Petroleum odor	7.5	1
7.0 .0.0			+	Tottoloum ouc.	8.0	Wet
			+		8.5	1
			+		9.0	1
			+		9.5	1
10.0 - 12.5		NA	-	Petroleum odor	10.0	1
10.0 - 12.5		INA	+	i etioleum odoi	10.5	1
	 		+		11.0	1
			+		11.5	1
			+		12.0	1
12.5 - 15.0		NA	-	Petroleum odor	12.5	1
12.5 - 15.0	-	INA	-	retioleum odol	13.0	1
	 		+			1
	-		├		13.5	1
	+				14.0	1
	-				14.5 15.0	Boring terminated at 15 feet
DRILLING METHO AR - AIR ROTARY CFA - CONTINUO DC - DRIVEN CAS HA - HAND AUGE HSA - HOLLOW S MD - MUD DRILLI RC - ROCK CORI	Y DUS FLIGHT AU SING ER STEM AUGER ING ING	UGER	SAMPLING METHO SS - SPLIT SPOON ST - SHELBY TUBE GP - GEOPROBE * - Sample collected ND = <1 ppm	E		1 Terracon

				SOIL	BORING I	_OG
PROJECT N	AME: Stant	onsburg/Ter	nth Street Conne	ector		SOIL BORING I.D.: S-17
PROJECT N	O.: 701273	35				DATE(S) DRILLED: November 29, 2012
PROJECT LO	OCATION:					DRILLING CONTR.: Bridger Drilling Enterprises, Inc.
Parcel #17, #	18, and #19	9, 420 Line <i>i</i>	Avenue			DRILL METHOD: Geoprobe
Greenville, N						BORING DIAMETER: 2 inches
CLIENT: NCI						SAMPLING METHOD/INTERVAL: 5-Foot
LOGGED BY	: Thomas	A. Perdue, E	ΞI			REMARKS: BGS = below grade surface
DESCRIPTIV	/E LOG					
SAMPLE	SAMPLE	BLOWS	PID/FID	0.1	DEPTH	
INTERVAL	REC. (IN.)	PER 6"	(ppm)	Odors	(FT)	DESCRIPTION OF SOIL
0 - 2.5		NA	1.11/1.71		0.0	Orange sand, fill to 10 feet
					0.5	
					1.0	
					1.5	
					2.0	
2.5 - 5.0		NA	1.66/1.21		2.5	
					3.0	
					3.5	
					4.0	
					4.5	
5.0 - 7.5		NA	2.91/2.66		5.0	
					5.5	
					6.0	
					6.5	
					7.0	
7.5 - 10.0		NA	-		7.5	
					8.0	Wet
					8.5	
					9.0	
					9.5	
					10.0	Boring terminated at 10 feet
					10.5	
					11.0	
					11.5	
					12.0	
					12.5	
					13.0	
					13.5	
					14.0	
					14.5	
					15.0	
DRILLING METH AR - AIR ROTAR CFA - CONTINUO DC - DRIVEN CA HA - HAND AUG HSA - HOLLOW MD - MUD DRILL RC - ROCK COR WR - WATER RC	Y OUS FLIGHT A SING ER STEM AUGER LING		SAMPLING METHOI SS - SPLIT SPOON ST - SHELBY TUBE GP - GEOPROBE * - Sample collected f ND = <1 ppm	:		1[erracon

				SOIL BOI	RING	-OG
PROJECT N	AMF: Stanto	onsburg/Ter	nth Street Conn			SOIL BORING I.D.: S-18
PROJECT NO			in Guest Com	00:01		DATE(S) DRILLED: November 29, 2012
PROJECT LO	OCATION:					DRILLING CONTR.: Bridger Drilling Enterprises, Inc.
		9. 420 Line	Avenue			
		,				Ÿ
		BLOWS	PID/FID		DEPTH	
INTERVAL		PER 6"		Odors		DESCRIPTION OF SOIL
0 - 2.5		NA			_	Gray and brown sandy clay to 2.5 feet
					_	, , ,
Parcel #17, #18, and #19, 420 Line Avenue Greenville, North Carolina BORING DIAMETER: 2 inches						
				1.0 1.5 2.0 2.5 3.0 3.5 4.0 4.5 Petroleum odor 5.0 5.5		
2.5 - 5.0		NA	1.50/1.37			Gray and orange sandy clay from 2.5 feet to 10 feet
					—	
					-	
					4.0	
					4.5	
5.0 - 7.5		NA	78.44/258.0	Petroleum odor		
					5.5	
					6.0	
					6.5	
					7.0	
7.5 - 10.0		NA	-	Petroleum odor	7.5	
					8.0	
					8.5	Wet
					9.0	
					9.5	
					10.0	Boring terminated at 10 feet
					10.5	
					11.0	
					11.5	
					12.0	
					12.5	
					13.0	
					13.5	
					14.0	
					14.5	
					15.0	
DRILLING METH AR - AIR ROTAR CFA - CONTINUO DC - DRIVEN CA HA - HAND AUGI HSA - HOLLOW S MD - MUD DRILL RC - ROCK COR WR - WATER RO	Y DUS FLIGHT AI SING ER STEM AUGER ING ING		SAMPLING METHO SS - SPLIT SPOON ST - SHELBY TUB GP - GEOPROBE * - Sample collected ND = <1 ppm	E		lerracon

APPENDIX B

Geophysical Survey Report

December 13, 2012

Stephen J. Kerlin Terracon Consulting Engineers and Scientists 5240 Green's Dairy Road Raleigh, NC 27616

RE: State Project: U-3315

WBS Element: 35781.1.2 County: Pitt

Description: Stantonsburg Road/Tenth Street Connector from Memorial Drive (US 13)

to Evans Street

Subject: Project 11821014.17, Report on Geophysical Surveys

Parcel 17, William Ernest Statton Property, Greenville, North Carolina

Dear Mr. Kerlin:

SCHNABEL ENGINEERING SOUTH, PC (Schnabel) is pleased to present this report on the geophysical surveys we performed on the subject property. The report includes two 11x17 color figures and two 8.5x11 color figures with relevant data collected for this study. This study was performed in accordance with our proposal for Geophysical Surveys to Locate Possible USTs dated July 3, 2012, and approved by Cathy Houser on July 26, 2012, the subsequent approval via Gordon Box to add this property to the scope described in our proposal, and our agreement dated June 2, 2011.

INTRODUCTION

The field work described in this report was performed on November 19 and November 20, 2012, by Schnabel under our 2011 contract with the NCDOT. The purpose of the geophysical surveys was to investigate the presence of metal underground storage tanks (USTs) in the accessible areas of the right-of-way and/or easement. Photographs of the property are included on Figure 1. The property is located on Farmville Boulevard approximately 700 feet east of the intersection of S. Memorial Drive in Greenville, NC.

The geophysical surveys consisted of an electromagnetic (EM) induction survey and a ground penetrating radar (GPR) survey. The EM survey was performed using a Geonics EM61-MK2 instrument. The EM61 is a time domain metal detector that stores data digitally for later processing and review. Sensitivity to metallic objects is dependent on the size, depth, and orientation of the buried object and the amount of noise (i.e. response from spurious metallic objects) in the area. The EM61 can generally observe a single

buried 55 gallon drum at a depth of more than 10 ft. The EM61 makes measurements by creating an electromagnetic pulse and then measuring the response from metallic objects with time after the pulse is generated. We recorded the response at several times after the pulse to help evaluate relative size and depth of metallic objects in the earth.

The GPR survey was performed over a selected EM61 anomaly using a Geophysical Survey Systems SIR-3000 system equipped with a 400 MHz antenna to further evaluate an EM response that could indicate a potential UST.

Photographs of the equipment we used are shown on Figure 2.

FIELD METHODOLOGY

Locations of geophysical data points were obtained using a sub-meter Trimble Pro-XRS DGPS system. References to direction and location in this report are based on the US State Plane 1983 System, North Carolina 3200 Zone, using the NAD 83 datum, with units in US survey feet. We recorded the locations of existing site features (utilities, metal objects, etc.) with the Trimble system for later correlation with the geophysical data and locations provided by the NCDOT.

The EM61 data were collected along parallel survey lines spaced approximately 2.5 feet apart. The EM61 and DGPS data were recorded digitally using a field computer and later transferred to a desktop computer for data processing. The GPR data were collected along survey lines spaced one to two feet apart in orthogonal directions over anomalous EM readings not obviously attributed to cultural features. The GPR data were reviewed in the field to evaluate the possible presence of USTs. The GPR data also were recorded digitally and later transferred to a desktop computer for further review.

DISCUSSION OF RESULTS

The contoured EM61 data collected over Parcel 17 and the GPR survey area location are shown on Figures 3 and 4. Early time data are plotted on Figure 3 and differential data (a comparison of the response at two different elevations above the ground surface) are presented in Figure 4. The early time data provide a more sensitive detection of all metal objects than later time data, which tend to highlight deeper and/or larger objects. Differential response is calculated from later time data between the top and bottom coils of the EM61 instrument that tend to filter out the effect of surface and very shallowly buried metallic objects. Typically, the differential response emphasizes anomalies from deeper and larger objects such as USTs.

The early time and differential results show anomalies of unknown cause, in addition to those apparently caused by known site features. The site tenant stated that the site contained abundant scrap metal in the past and may have buried metal throughout the site. The early time data contain elevated readings throughout much of the site that is indicative of small items in the near surface. The differential data contain one anomalous area that we selected to investigate with GPR. The GPR data, along with the EM data, indicate that the differential EM anomaly of unknown cause is probably the result of buried scrap metal. The geophysical data collected at the site do not indicate the presence of metallic USTs within the areas surveyed.

CONCLUSIONS

Our evaluation of the geophysical data collected on the subject property on Project U-3315 in Greenville, NC indicates that metallic USTs are unlikely to be encountered within 8 feet of the ground surface in the areas surveyed on the subject property.

LIMITATIONS

These services have been performed and this report prepared for Terracon Consulting Engineers and Scientists and the North Carolina Department of Transportation in accordance with generally accepted guidelines for conducting geophysical surveys. It is generally recognized that the results of geophysical surveys are non-unique and may not represent actual subsurface conditions.

We appreciate the opportunity to have provided these services. Please call if you need additional information or have any questions.

Sincerely,

SCHNABEL ENGINEERING SOUTH, PC

James W. Whitt, PG Senior Staff Geophysicist

Nigel Miller, PE Project Manager

JW:MHD:NM

Attachments: Figures (4)

FILE: G/2011-SDE-JOBS\11821014_00_NCDOT_2011_GEOTECHNICAL_UNIT_SERVICES\11821014_17_U-3315_PITT_COUNTY/REPORT\PARCEL 17\SCHNABEL GEOPHYSICAL REPORT ON PARCEL 17 (U-3315).DOCX

Attachments:

Figure 1 - Parcel 17 Site Photos

Figure 2 - Photos of Geophysical Equipment Used

Figure 3 - Parcel 17 Early Time Gate Response

Figure 4 - Parcel 17 Differential Response

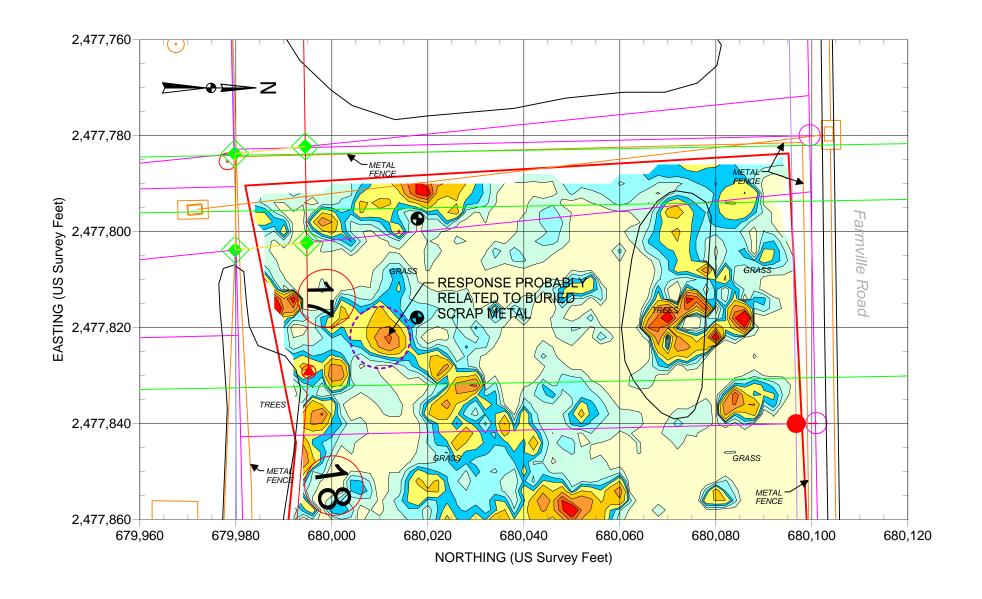
Parcel 17 (William Ernest Statton Property), looking southwest

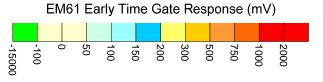
Parcel 17 (William Ernest Statton Property), looking west

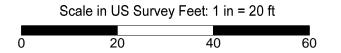
STATE PROJECT U-3315 NC DEPT. OF TRANSPORTATION PITT COUNTY, NORTH CAROLINA PROJECT NO. 11821014.17

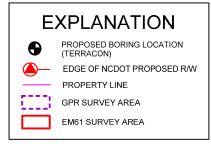
PARCEL 17 SITE PHOTOS

Geonics EM61-MK2 Metal Detector with Trimble DGPS Unit

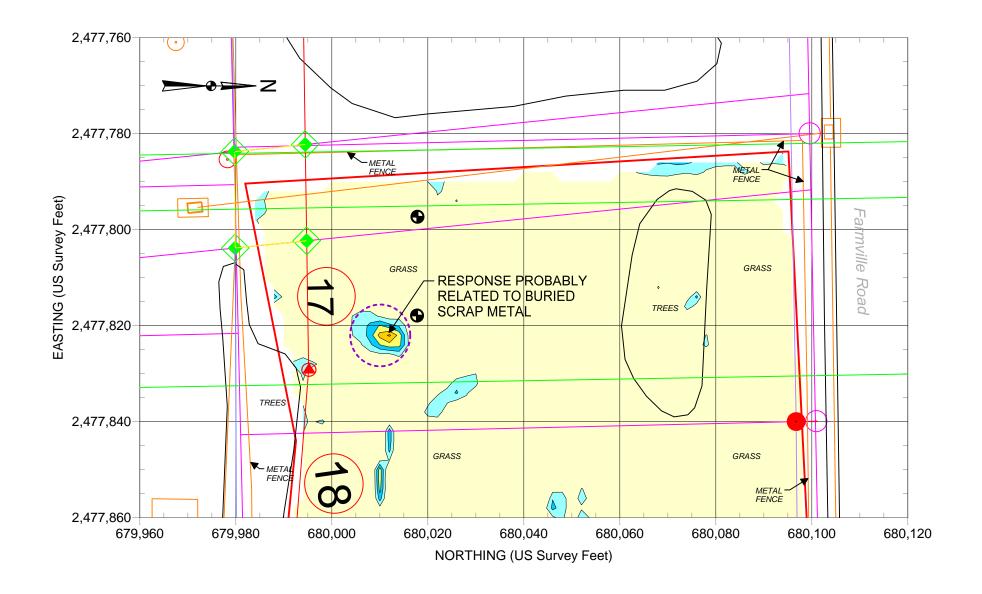

GSSI SIR-3000 Ground-Penetrating Radar with 400 MHz Antenna

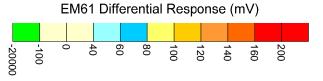

Note: Stock photographs – not taken on site.

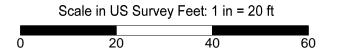


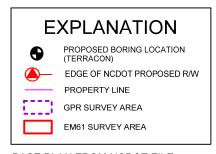

STATE PROJECT U-3315 NC DEPT. OF TRANSPORTATION PITT COUNTY, NORTH CAROLINA PROJECT NO. 11821014.17 PHOTOS OF GEOPHYSICAL EQUIPMENT USED

PARCEL 17


BASE PLAN FROM NCDOT FILE: u3315_rdy_psh05.dgn (FOR SOME SITE FEATURES)


Note: The contour plot shows the earliest and more sensitive time gate of the EM61 bottom coil/channel in millivolts (mV). The EM data were collected on November 19, 2012, using a Geonics EM61-MK2 instrument. Positioning for the EM61 survey was provided using a submeter Trimble ProXRS DGPS system. Coordinates are in the US State Plane 1983 System, North Carolina Zone 3200, using the NAD 1983 datum. GPR data were acquired on November 20, 2012, using a Geophysical Survey Systems SIR 3000 equipped with a 400 MHz antenna.




STATE PROJECT U-3315 NC DEPARTMENT OF TRANSPORTATION PITT COUNTY, NC PROJECT NO. 11821014.17 PARCEL 17 EM61 EARLY TIME GATE RESPONSE & GPR SURVEY AREAS

PARCEL 17

BASE PLAN FROM NCDOT FILE: u3315_rdy_psh05.dgn (FOR SOME SITE FEATURES)

Note: The contour plot shows the difference, in millivolts (mV), between the readings from the top and bottom coils of the EM61. The difference is taken to reduce the effect of shallow metal objects and emphasize anomalies caused by deeper metallic objects, such as drums and tanks. The EM data were collected on November 19, 2012, using a Geonics EM61-MK2 instrument. Positioning for the EM61 survey was provided using a submeter Trimble ProXRS DGPS system. Coordinates are in the US State Plane 1983 System, North Carolina 3200 Zone, using the NAD 1983 datum. GPR data were acquired on November 20, 2012, using a Geophysical Survey Systems SIR 3000 equipped with a 400 MHz antenna.

STATE PROJECT U-3315 NC DEPARTMENT OF TRANSPORTATION PITT COUNTY, NC PROJECT NO. 11821014.17 PARCEL 17 EM61 DIFFERENTIAL RESPONSE & GPR SURVEY AREAS

December 13, 2012

Stephen J. Kerlin Terracon Consulting Engineers and Scientists 5240 Green's Dairy Road Raleigh, NC 27616

RE: State Project: U-3315

WBS Element: 35781.1.2 County: Pitt

Description: Stantonsburg Road/Tenth Street Connector from Memorial Drive (US 13)

to Evans Street

Subject: Project 11821014.17, Report on Geophysical Surveys

Parcel 18, Phillip Ray Cox Property, Greenville, North Carolina

Dear Mr. Kerlin:

SCHNABEL ENGINEERING SOUTH, PC (Schnabel) is pleased to present this report on the geophysical surveys performed on the subject property. The report includes two 11x17 color figures and two 8.5x11 color figures with relevant data collected for this study. This study was performed in accordance with our proposal for Geophysical Surveys to Locate Possible USTs dated July 3, 2012, as approved by Cathy Houser on July 26, 2012, the subsequent approval via Gordon Box to add this property to the scope described in our proposal, and our agreement dated June 2, 2011.

INTRODUCTION

The field work described in this report was performed on November 19 and November 20, 2012, by Schnabel under our 2011 contract with the NCDOT. The purpose of the geophysical surveys was to investigate the presence of metal underground storage tanks (USTs) in the accessible areas of the right-of-way and/or easement. Photographs of the property are included on Figure 1. The property is located on Farmville Boulevard approximately 800 feet east of the intersection of S. Memorial Drive in Greenville, NC.

The geophysical surveys consisted of an electromagnetic (EM) induction survey and a ground penetrating radar (GPR) survey. The EM survey was performed using a Geonics EM61-MK2 instrument. The EM61 is a time domain metal detector that stores data digitally for later processing and review. Sensitivity to metallic objects is dependent on the size, depth, and orientation of the buried object and the amount of noise (i.e. response from spurious metallic objects) in the area. The EM61 can generally observe a single

buried 55 gallon drum at a depth of more than 10 ft. The EM61 makes measurements by creating an electromagnetic pulse and then measuring the response from metallic objects with time after the pulse is generated. We recorded the response at several times after the pulse to help evaluate relative size and depth of metallic objects in the earth.

The GPR survey was performed over selected EM61 anomalies using a Geophysical Survey Systems SIR-3000 system equipped with a 400 MHz antenna to further evaluate EM responses that could indicate a potential UST.

Photographs of the equipment used are shown on Figure 2.

FIELD METHODOLOGY

Locations of geophysical data points were obtained using a sub-meter Trimble Pro-XRS DGPS system. References to direction and location in this report are based on the US State Plane 1983 System, North Carolina 3200 Zone, using the NAD 83 datum, with units in US survey feet. We recorded the locations of existing site features (utilities, metal objects, etc.) with the Trimble system for later correlation with the geophysical data and locations provided by the NCDOT.

The EM61 data were collected along parallel survey lines spaced approximately 2.5 feet apart. The EM61 and DGPS data were recorded digitally using a field computer and later transferred to a desktop computer for data processing. The GPR data were collected along survey lines spaced one to two feet apart in orthogonal directions over areas of anomalous EM readings not obviously attributed to cultural features. The GPR data were reviewed in the field to evaluate the possible presence of USTs. The GPR data also were recorded digitally and later transferred to a desktop computer for further review.

DISCUSSION OF RESULTS

The contoured EM61 data collected over Parcel 18 and the GPR survey area locations are shown on Figures 3 and 4. Early time data are plotted on Figure 3 and differential data (a comparison of the response at two different elevations above the ground surface) are presented in Figure 4. The early time data provide a more sensitive detection of metal objects than later time data, which tend to highlight deeper and/or larger objects. Differential response is calculated from later time data between the top and bottom coils of the EM61 instrument that tend to filter out the effect of surface and very shallowly buried metallic objects. Typically, the differential response emphasizes anomalies from deeper and larger objects such as USTs.

The early time and differential results show anomalies of unknown cause, in addition to those apparently caused by known site features. The site tenant stated that the site contained abundant scrap metal in the past and may have buried metal throughout the site. The early time data contain elevated readings throughout much of the site that is indicative of small items in the near surface. The differential data contain three anomalous areas that were selected to be investigated with GPR. The GPR data, along with the EM data, indicate that the northernmost differential EM anomaly of unknown cause is probably the result of buried scrap metal. The GPR data collected over the two more southern anomalies, along with the EM data, indicate that those anomalies of unknown cause are probably caused by buried metal

plates. The geophysical data collected at the site do not indicate the presence of metallic USTs within the areas surveyed.

CONCLUSIONS

Our evaluation of the geophysical data collected on the subject property on Project U-3315 in Greenville, NC indicates that metallic USTs are unlikely to be encountered within 8 feet of the ground surface in the areas surveyed on the subject property.

LIMITATIONS

These services have been performed and this report prepared for Terracon Consulting Engineers and Scientists and the North Carolina Department of Transportation in accordance with generally accepted guidelines for conducting geophysical surveys. It is generally recognized that the results of geophysical surveys are non-unique and may not represent actual subsurface conditions.

We appreciate the opportunity to have provided these services. Please call if you need additional information or have any questions.

Sincerely,

SCHNABEL ENGINEERING SOUTH, PC

James W. Whitt, PG Senior Staff Geophysicist

Nigel Miller, PE Project Manager

JW:MHD:NM

Attachments: Figures (4)

FILE: G\2011-SDE-JOBS\11821014_00_NCDOT_2011_GEOTECHNICAL_UNIT_SERVICES\11821014_17_U-3315_PITT_COUNTY\REPORT\PARCEL 18\SCHNABEL GEOPHYSICAL REPORT ON PARCEL 18\(\(\text{U-3315}\)).DOCX

Attachments:

Figure 1 - Parcel 18 Site Photos

Figure 2 - Photos of Geophysical Equipment Used

Figure 3 - Parcel 18 Early Time Gate Response

Figure 4 - Parcel 18 Differential Response

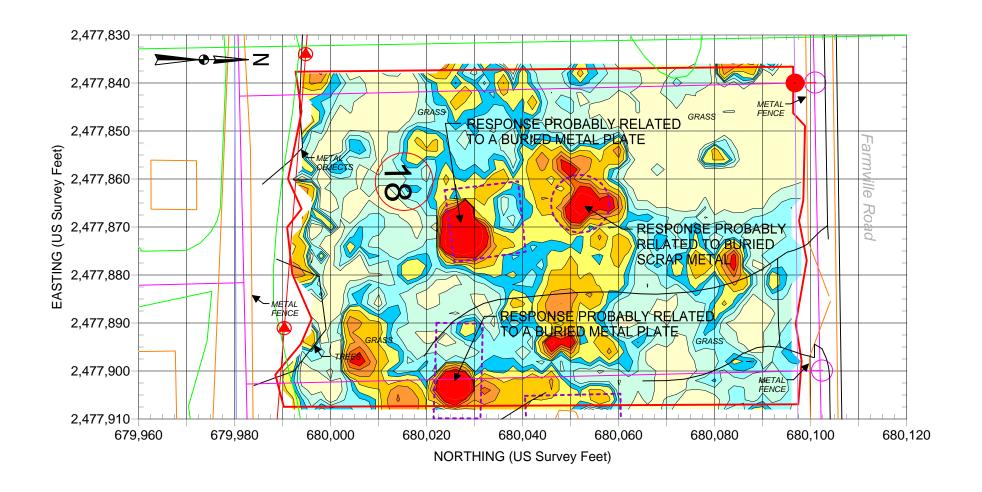
Parcel 18 (Phillip Ray Cox Property), looking south

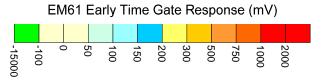
Parcel 18 (Phillip Ray Cox Property), looking southwest

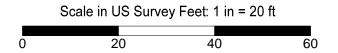
STATE PROJECT U-3315 NC DEPT. OF TRANSPORTATION PITT COUNTY, NORTH CAROLINA PROJECT NO. 11821014.17

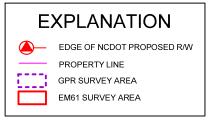
PARCEL 18 SITE PHOTOS

Geonics EM61-MK2 Metal Detector with Trimble DGPS Unit

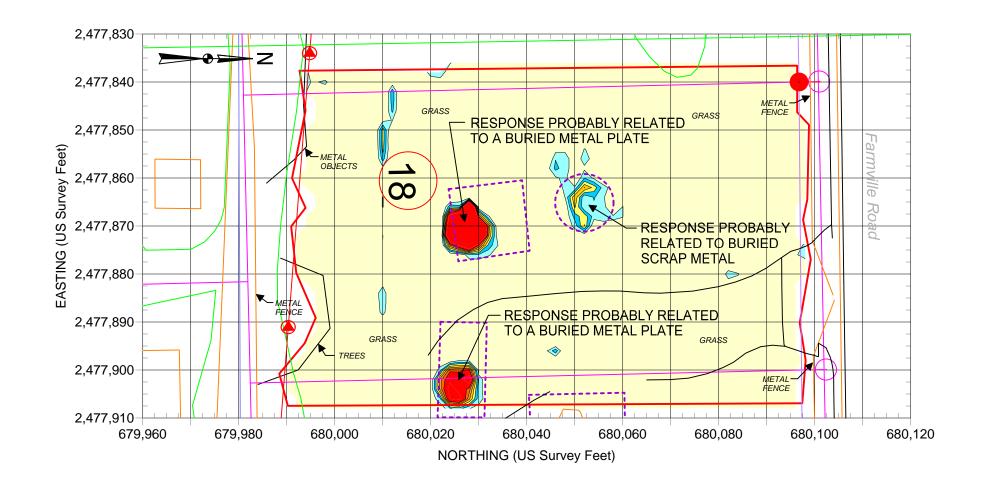

GSSI SIR-3000 Ground-Penetrating Radar with 400 MHz Antenna

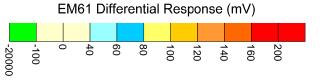

Note: Stock photographs – not taken on site.

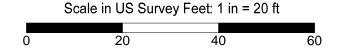


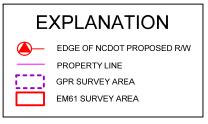

STATE PROJECT U-3315 NC DEPT. OF TRANSPORTATION PITT COUNTY, NORTH CAROLINA PROJECT NO. 11821014.17 PHOTOS OF GEOPHYSICAL EQUIPMENT USED

PARCEL 18


BASE PLAN FROM NCDOT FILE: u3315_rdy_psh05.dgn & u3315_rdy_psh06.dgn (FOR SOME SITE FEATURES)


Note: The contour plot shows the earliest and more sensitive time gate of the EM61 bottom coil/channel in millivolts (mV). The EM data were collected on November 19, 2012, using a Geonics EM61-MK2 instrument. Positioning for the EM61 survey was provided using a submeter Trimble ProXRS DGPS system. Coordinates are in the US State Plane 1983 System, North Carolina Zone 3200, using the NAD 1983 datum. GPR data were acquired on November 20, 2012, using a Geophysical Survey Systems SIR 3000 equipped with a 400 MHz antenna.




STATE PROJECT U-3315 NC DEPARTMENT OF TRANSPORTATION PITT COUNTY, NC PROJECT NO. 11821014.17 PARCEL 18 EM61 EARLY TIME GATE RESPONSE & GPR SURVEY AREAS

PARCEL 18

BASE PLAN FROM NCDOT FILE: u3315_rdy_psh05.dgn & u3315_rdy_psh06.dgn (FOR SOME SITE FEATURES)

Note: The contour plot shows the difference, in millivolts (mV), between the readings from the top and bottom coils of the EM61. The difference is taken to reduce the effect of shallow metal objects and emphasize anomalies caused by deeper metallic objects, such as drums and tanks. The EM data were collected on November 19, 2012, using a Geonics EM61-MK2 instrument. Positioning for the EM61 survey was provided using a submeter Trimble ProXRS DGPS system. Coordinates are in the US State Plane 1983 System, North Carolina 3200 Zone, using the NAD 1983 datum. GPR data were acquired on November 20, 2012, using a Geophysical Survey Systems SIR 3000 equipped with a 400 MHz antenna.

STATE PROJECT U-3315
NC DEPARTMENT OF TRANSPORTATION
PITT COUNTY, NC
PROJECT NO. 11821014.17

PARCEL 18 EM61
DIFFERENTIAL RESPONSE
& GPR SURVEY AREAS

December 13, 2012

Stephen Kerlin Terracon Consulting Engineers and Scientists 5240 Green's Dairy Road Raleigh, NC 27616

RE: State Project: U-3315

WBS Element: 35781.1.2 County: Pitt

Description: Stantonsburg Road/Tenth Street Connector from Memorial Drive (US 13)

to Evans Street

Subject: Project 11821014.17, Report on Geophysical Surveys

Parcel 19, Liam Cox Property, Greenville, North Carolina

Dear Mr. Kerlin:

SCHNABEL ENGINEERING SOUTH, PC (Schnabel) is pleased to present this report on the geophysical surveys performed on the subject property. The report includes two 11x17 color figures and two 8.5x11 color figures with relevant data collected for this study. This study was performed in accordance with our proposal for Geophysical Surveys to Locate Possible USTs dated July 3, 2012, as approved by Cathy Houser on July 26, 2012, the subsequent approval via Gordon Box to add this property to the scope described in our proposal, and our agreement dated June 2, 2011.

INTRODUCTION

The field work described in this report was performed on November 19 and November 20, 2012, by Schnabel under our 2011 contract with the NCDOT. The purpose of the geophysical surveys was to investigate the presence of metal underground storage tanks (USTs) in the accessible areas of the right-of-way and/or easement. Photographs of the site are included on Figure 1. The site is located on the southwest quadrant of the intersection of Farmville Boulevard and Line Avenue in Greenville, NC.

The geophysical surveys consisted of an electromagnetic (EM) induction survey and a ground penetrating radar (GPR) survey. The EM survey was performed using a Geonics EM61-MK2 instrument. The EM61 is a time domain metal detector that stores data digitally for later processing and review. Sensitivity to metallic objects is dependent on the size, depth, and orientation of the buried object and the amount of noise (i.e. response from spurious metallic objects) in the area. The EM61 can generally observe a single buried 55 gallon drum at a depth of more than 10 ft. The EM61 makes measurements by creating an

electromagnetic pulse and then measuring the response from metallic objects with time after the pulse is generated. We recorded the response at several times after the pulse to help evaluate relative size and depth of metallic objects in the earth.

The GPR survey was performed over selected EM61 anomalies using a Geophysical Survey Systems SIR-3000 system equipped with a 400 MHz antenna to further evaluate EM responses that could indicate a potential UST.

Photographs of the geophysical instruments we used are shown on Figure 2.

FIELD METHODOLOGY

Locations of geophysical data points were obtained using a sub-meter Trimble Pro-XRS DGPS system. References to direction and location in this report are based on the US State Plane 1983 System, North Carolina 3200 Zone, using the NAD 83 datum, with units in US survey feet. We recorded the locations of existing site features (utilities, metallic objects, etc.) with the Trimble system for later correlation with the geophysical data and locations provided by the NCDOT.

The EM61 data were collected along parallel survey lines spaced approximately 2.5 feet apart. The EM61 and DGPS data were recorded digitally using a field computer and later transferred to a desktop computer for data processing. The GPR data were collected along survey lines spaced one to two feet apart in orthogonal directions over anomalous EM readings not attributed to cultural features. The GPR data were reviewed in the field to evaluate the presence of USTs. The GPR data also were recorded digitally and later transferred to a desktop computer for further review.

DISCUSSION OF RESULTS

The contoured EM61 data collected over Parcel 19 and the GPR survey area locations are shown on Figures 3 and 4. Early time data are plotted on Figure 3 and differential data (a comparison of the response at two different elevations above the ground surface) are presented in Figure 4. The early time data provide a more sensitive detection of all metal objects than later time data, which tend to highlight deeper and/or larger objects. Differential response is calculated from later time data between the top and bottom coils of the EM61 instrument that tend to filter out the effect of surface and very shallowly buried metallic objects. Typically, the differential response emphasizes anomalies from deeper and larger objects such as USTs.

The early time gate and differential results contain anomalies of unknown cause, in addition to those apparently caused by buried utilities or known site features (Figures 3 and 4). The site tenant stated that the site contained abundant scrap metal in the past and may have buried metal throughout the site. The early time data contain elevated readings throughout much of the site that is indicative of small items in the near surface. The differential data contain several anomalies of unknown cause, shown on Figures 3 and 4, that we selected to investigate with GPR. The GPR data indicate that those EM anomalies of unknown cause are probably caused by buried metal plates, buried metal pipes, other small buried metal objects, or metal objects on or above the ground surface.

After further data processing and review in the office, we noted an additional differential EM anomaly adjacent to the west side of the largest building on Parcel 19 that we designated Possible UST No. 1. The area is located about 20 to 25 feet northwest of the southwestern corner of the largest building on Parcel 19 (see Figures 3 and 4). Although the EM data suggest there may be UST at this location, our confidence in the location of the data is somewhat questionable due to poor GPS coverage near the building, and the anomaly could possibly be representative of some other buried metallic object. We selected Possible UST No. 1 in accordance with the anomaly categories provided by the NCDOT in their letter, dated May 19, 2009, entitled "Geophysical Surveys to Identify USTs". The location of Possible UST No. 1 is shown on Figures 3 and 4. The size of the EM anomaly suggests Possible UST No. 1 is potentially about 3 feet in diameter and about 5 feet long, equivalent to a capacity of about 270 to 280 gallons.

CONCLUSIONS

Our evaluation of the geophysical data collected on the subject property on Project U-3315 in Greenville, NC indicates the following:

The geophysical data indicate the presence of a possible UST 20 to 25 feet northwest of the southwestern corner of the largest building on Parcel 19. The EM data suggest Possible UST No. 1 is potentially about 3 feet in diameter and about 5 feet long, equivalent to a capacity of about 270 to 280 gallons. We recommend that this location be physically investigated to confirm or rule out the presence of a UST.

LIMITATIONS

These services have been performed and this report prepared for Terracon Consulting Engineers and Scientists and the North Carolina Department of Transportation in accordance with generally accepted guidelines for conducting geophysical surveys. It is generally recognized that the results of geophysical surveys are non-unique and may not represent actual subsurface conditions.

We appreciate the opportunity to have provided these services. Please call if you need additional information or have any questions.

Sincerely,

SCHNABEL ENGINEERING SOUTH, PC

James W. Whitt, PG Senior Staff Geophysicist

Nigel Miller, PE Associate

JW:MHD:NM

Attachments: Figures (4)

FILE: G:\2011-SDE-JOBS\11821014_00_NCDOT_2011_GEOTECHNICAL_UNIT_SERVICES\11821014_17_U-3315_PITT_COUNTY/REPORT\PARCEL 19\SCHNABEL GEOPHYSICAL REPORT ON PARCEL 19 (U-3315).DOCX

Attachments:

Figure 1 - Parcel 19 Site Photos

Figure 2 - Photos of Geophysical Equipment Used

Figure 3 - Parcel 19 Early Time Gate Response

Figure 4 - Parcel 19 Differential Response

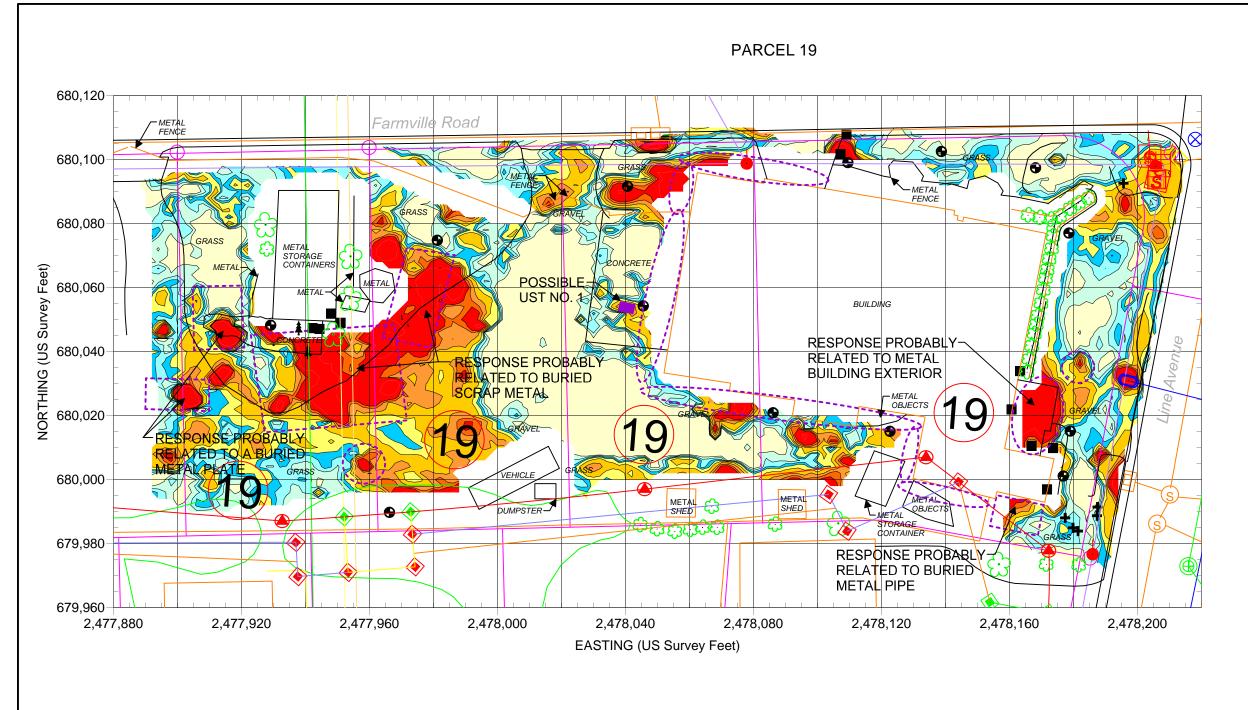
Parcel 19 (Liam Cox Property), looking southwest

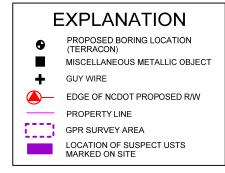
Parcel 19 (Liam Cox Property), looking southeast

STATE PROJECT U-3315 NC DEPT. OF TRANSPORTATION PITT COUNTY, NORTH CAROLINA PROJECT NO. 11821014.17

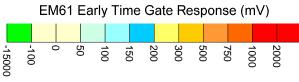
PARCEL 19 SITE PHOTOS

Geonics EM61-MK2 Metal Detector with Trimble DGPS Unit



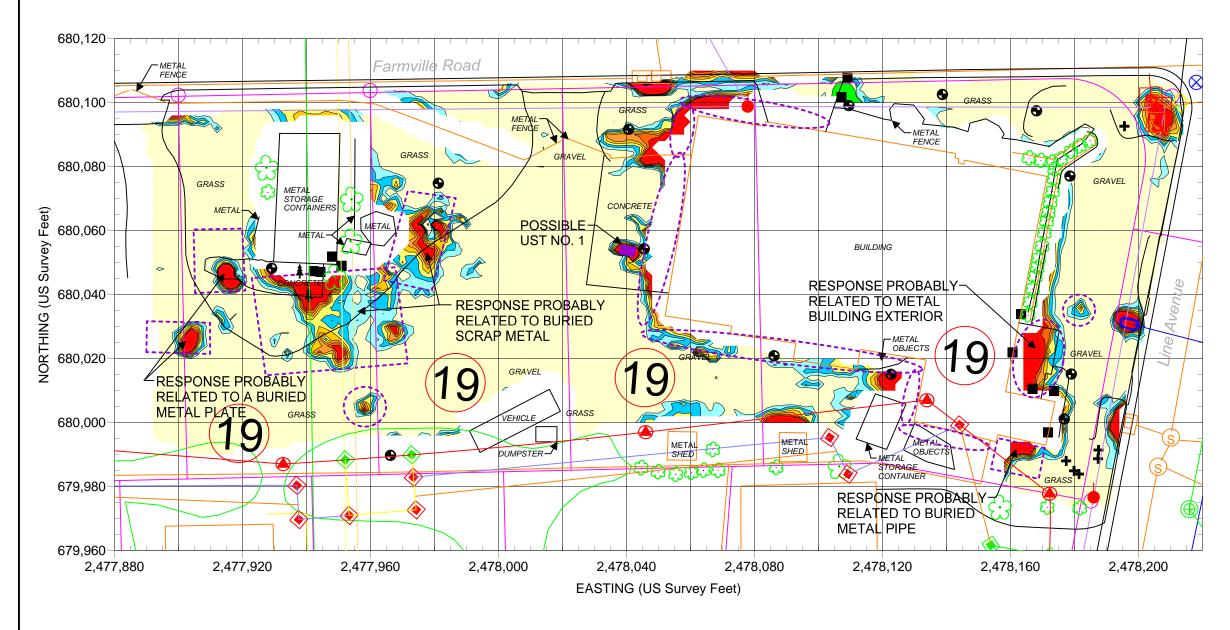

GSSI SIR-3000 Ground-Penetrating Radar with 400 MHz Antenna

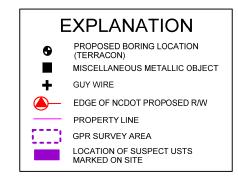
Note: Stock photographs – not taken on site.

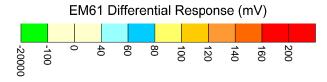


STATE PROJECT U-3315 NC DEPT. OF TRANSPORTATION PITT COUNTY, NORTH CAROLINA PROJECT NO. 11821014.17 PHOTOS OF GEOPHYSICAL EQUIPMENT USED

BASE PLAN FROM NCDOT FILE: u3315_rdy_psh06.dgn (FOR SOME SITE FEATURES)




Note: The contour plot shows the earliest and more sensitive time gate of the EM61 bottom coil/channel in millivolts (mV). The EM data were collected on November 19, 2012, using a Geonics EM61-MK2 instrument. Positioning for the EM61 survey was provided using a submeter Trimble ProXRS DGPS system. Coordinates are in the US State Plane 1983 System, North Carolina Zone 3200, using the NAD 1983 datum. GPR data were acquired on November 20, 2012, using a Geophysical Survey Systems SIR 3000 equipped with a 400 MHz antenna.


STATE PROJECT U-3315 NC DEPARTMENT OF TRANSPORTATION PITT COUNTY, NC PROJECT NO. 11821014.17 PARCEL 19 EM61 EARLY TIME GATE RESPONSE & GPR SURVEY AREAS

PARCEL 19

BASE PLAN FROM NCDOT FILE: u3315_rdy_psh06.dgn (FOR SOME SITE FEATURES)

Note: The contour plot shows the difference, in millivolts (mV), between the readings from the top and bottom coils of the EM61. The difference is taken to reduce the effect of shallow metal objects and emphasize anomalies caused by deeper metallic objects, such as drums and tanks. The EM data were collected on November 19, 2012, using a Geonics EM61-MK2 instrument. Positioning for the EM61 survey was provided using a submeter Trimble ProXRS DGPS system. Coordinates are in the US State Plane 1983 System, North Carolina 3200 Zone, using the NAD 1983 datum. GPR data were acquired on November 20, 2012, using a Geophysical Survey Systems SIR 3000 equipped with a 400 MHz antenna.

STATE PROJECT U-3315 NC DEPARTMENT OF TRANSPORTATION PITT COUNTY, NC PROJECT NO. 11821014.17 PARCEL 19 EM61 DIFFERENTIAL RESPONSE & GPR SURVEY AREAS

APPENDIX C

Laboratory Analytical Reports and Chain of Custody

Laboratory Report of Analysis

To: Steve Kerlin

Terracon

5240 Greens Dairy Rd Raleigh, NC 27616

Report Number: **31203948**Client Project: **70127335**

Dear Steve Kerlin.

michael.page@sgs.com

Enclosed are the results of the analytical services performed under the referenced project for the received samples and associated QC as applicable. The samples are certified to meet the requirements of the National Environmental Laboratory Accreditation Conference Standards. Copies of this report and supporting data will be retained in our files for a period of five years in the event they are required for future reference. All results are intended to be used in their entirety and SGS is not responsible for use of less than the complete report. Any samples submitted to our laboratory will be retained for a maximum of thirty (30) days from the date of this report unless other arrangements are requested.

If there are any questions about the report or services performed during this project, please call Michael D. Page at (910) 350-1903. We will be happy to answer any questions or concerns which you may have.

Thank you for using SGS North America Inc. for your analytical services. We look forward to working with you again on any additional analytical needs.

SGS North America Inc.	
Michael D. Page	Date
Project Manager	

Print Date: 12/13/2012 N.C. Certification # 481

ANALYTICAL PERSPECTIVES IS NOW PART OF SGS, THE WORLD'S LEADING INSPECTION, VERIFICATION, TESTING AND CERTIFICATION COMPANY.

SGS Analytical Perspectives | 5500 Business Dr. US - 28405 - Wilmington, NC t+1 910 350 1903 f+1 910 350 1557 www.sgs.com

Laboratory Qualifiers

Report Definitions

DL Method, Instrument, or Estimated Detection Limit per Analytical Method

CL Control Limits for the recovery result of a parameter

LOQ Reporting Limit
DF Dilution Factor

RPD Relative Percent Difference

LCS(D) Laboratory Control Spike (Duplicate)

MS(D) Matrix Spike (Duplicate)

MB Method Blank

Qualifier Definitions

* Recovery or RPD outside of control limits

B Analyte was detected in the Lab Method Blank at a level above the LOQ

U Undetected (Reported as ND or < DL)

V Recovery is below quality control limit. The data has been validated based on a favorable signal-to-noise and detection limit

A Amount detected is less than the Lower Method Calibration Limit

J Estimated Concentration.

O The recovery of this analyte in the OPR is above the Method QC Limits and the reported concentration in the sample may be biased high

E Amount detected is greater than the Upper Calibration Limit

S The amount of analyte present has saturated the detector. This situation results in an underestimation of the affected analyte(s)

Q Indicates the presence of a quantitative interference. This situation may result in an underestimation of the affected analyte(s)

I Indicates the presence of a qualitative interference that could cause a false positive or an overestimation of the affected analyte(s)

DPE Indicates the presence of a peak in the polychlorinated diphenylether channel that could cause a false positive or an overestimation of the affected analyte(s)

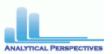
TIC Tentatively Identified Compound

EMPC Estimated Maximum possible Concentration due to ion ratio failure

ND Not Detected

K Result is estimated due to ion ratio failure in High Resolution PCB Analysis

P RPD > 40% between results of dual columns


D Spike or surrogate was diluted out in order to achieve a parameter result within instrument calibration range

Samples requiring manual integrations for various congeners and/or standards are marked and dated by the analyst. A code definition is provided below:

M1 Mis-identified peak

Note Results pages that include a value for "Solids (%)" have been adjusted for moisture content.

Sample Summary

Client Sample ID	Lab Sample ID	Collected	Received	Matrix
S-9	31203948001	11/28/2012 15:00	12/01/2012 10:30	Soil-Solid as dry weight
S-15	31203948002	11/30/2012 09:22	12/01/2012 10:30	Soil-Solid as dry weight
S-18	31203948003	11/30/2012 10:18	12/01/2012 10:30	Soil-Solid as dry weight

Case Narrative

0	4	0

8260B - The result for 1,3,5-Trimethylbenzene at a 1X dilution was above the calibration range. The sample was diluted and re-analyzed, but was ND for this analyte. The initial run has been reported with an E flag. E - Results over Calibration Range

Client Sample ID: **S-9**Client Project ID: **70127335**Lab Sample ID: 31203948001-A
Lab Project ID: 31203948

Collection Date: 11/28/2012 15:00 Received Date: 12/01/2012 10:30 Matrix: Soil-Solid as dry weight

Solids (%): 72.70

Results by **SW-846 8260B**

<u>Parameter</u>	Result	Qual	LOQ/CL	<u>Units</u>	<u>DF</u>	Date Anal
1,1,2-Tetrachloroethane	ND		4.58	ug/Kg	1	12/7/2012
1,1-Trichloroethane	ND		4.58	ug/Kg	1	12/7/201
1,2,2-Tetrachloroethane	ND		4.58	ug/Kg	1	12/7/2012
,1,2-Trichloroethane	ND		4.58	ug/Kg	1	12/7/2012
,1-Dichloroethane	ND		4.58	ug/Kg	1	12/7/2012
,1-Dichloroethene	ND		4.58	ug/Kg	1	12/7/2012
,1-Dichloropropene	ND		4.58	ug/Kg	1	12/7/2012
,2,3-Trichlorobenzene	ND		4.58	ug/Kg	1	12/7/2012
,2,3-Trichloropropane	ND		4.58	ug/Kg	1	12/7/2012
,2,4-Trichlorobenzene	ND		4.58	ug/Kg	1	12/7/2012
1,2,4-Trimethylbenzene	ND		4.58	ug/Kg	1	12/7/2012
1,2-Dibromo-3-chloropropane	ND		27.5	ug/Kg	1	12/7/2012
1,2-Dibromoethane	ND		4.58	ug/Kg	1	12/7/2012
1,2-Dichlorobenzene	ND		4.58	ug/Kg	1	12/7/2012
I,2-Dichloroethane	ND		4.58	ug/Kg	1	12/7/2012
,2-Dichloropropane	ND		4.58	ug/Kg	1	12/7/2012
,3,5-Trimethylbenzene	ND		4.58	ug/Kg	1	12/7/2012
,3-Dichlorobenzene	ND		4.58	ug/Kg	1	12/7/2012
,3-Dichloropropane	ND		4.58	ug/Kg	1	12/7/2012
,4-Dichlorobenzene	ND		4.58	ug/Kg	1	12/7/2012
2,2-Dichloropropane	ND		4.58	ug/Kg	1	12/7/2012
2-Butanone	ND		22.9	ug/Kg	1	12/7/2012
-Chlorotoluene	ND		4.58	ug/Kg	1	12/7/2012
-Hexanone	ND		11.5	ug/Kg	1	12/7/2012
-Chlorotoluene	ND		4.58	ug/Kg	1	12/7/2012
-Isopropyltoluene	ND		4.58	ug/Kg	1	12/7/2012
-Methyl-2-pentanone	ND		11.5	ug/Kg	1	12/7/2012
Acetone	ND		45.8	ug/Kg	1	12/7/2012
Benzene	ND		4.58	ug/Kg	1	12/7/2012
Bromobenzene	ND		4.58	ug/Kg	1	12/7/2012
Bromochloromethane	ND		4.58	ug/Kg	1	12/7/2012
Bromodichloromethane	ND		4.58	ug/Kg	1	12/7/2012
Bromoform	ND		4.58	ug/Kg	1	12/7/2012
Bromomethane	ND		4.58	ug/Kg	1	12/7/2012
n-Butylbenzene	ND		4.58	ug/Kg	1	12/7/2012
Carbon disulfide	ND		4.58	ug/Kg	1	12/7/2012
Carbon tetrachloride	ND		4.58	ug/Kg	1	12/7/2012
Chlorobenzene	ND		4.58	ug/Kg	1	12/7/2012
Chloroethane	ND		4.58	ug/Kg	1	12/7/2012
Chloroform	ND		4.58	ug/Kg	1	12/7/2012
Chloromethane	ND		4.58	ug/Kg	1	12/7/2012
Dibromochloromethane	ND		4.58	ug/Kg	1	12/7/2012
Dibromomethane	ND		4.58	ug/Kg	1	12/7/2012

Client Sample ID: **S-9**Client Project ID: **70127335**Lab Sample ID: 31203948001-A
Lab Project ID: 31203948

Collection Date: 11/28/2012 15:00 Received Date: 12/01/2012 10:30 Matrix: Soil-Solid as dry weight

Solids (%): 72.70

Results by **SW-846 8260B**

Parameter_	Result	Qual	LOQ/CL	<u>Units</u>	<u>DF</u>	Date Ana
Dichlorodifluoromethane	ND		4.58	ug/Kg	1	12/7/2012
cis-1,3-Dichloropropene	ND		4.58	ug/Kg	1	12/7/2012
trans-1,3-Dichloropropene	ND		4.58	ug/Kg	1	12/7/2012
Diisopropyl Ether	ND		4.58	ug/Kg	1	12/7/201
Ethyl Benzene	ND		4.58	ug/Kg	1	12/7/201
Hexachlorobutadiene	ND		4.58	ug/Kg	1	12/7/201
Isopropylbenzene (Cumene)	ND		4.58	ug/Kg	1	12/7/201
Methyl iodide	ND		4.58	ug/Kg	1	12/7/201
Methylene chloride	ND		18.3	ug/Kg	1	12/7/201
Naphthalene	ND		4.58	ug/Kg	1	12/7/201
Styrene	ND		4.58	ug/Kg	1	12/7/2012
Tetrachloroethene	ND		4.58	ug/Kg	1	12/7/201
Toluene	ND		4.58	ug/Kg	1	12/7/201
Trichloroethene	ND		4.58	ug/Kg	1	12/7/2012
Trichlorofluoromethane	ND		4.58	ug/Kg	1	12/7/201
Vinyl chloride	ND		4.58	ug/Kg	1	12/7/201
Xylene (total)	ND		9.16	ug/Kg	1	12/7/201
cis-1,2-Dichloroethene	ND		4.58	ug/Kg	1	12/7/201
m,p-Xylene	ND		9.16	ug/Kg	1	12/7/201
n-Propylbenzene	ND		4.58	ug/Kg	1	12/7/201
o-Xylene	ND		4.58	ug/Kg	1	12/7/201
sec-Butylbenzene	ND		4.58	ug/Kg	1	12/7/2012
tert-Butyl methyl ether (MTBE)	ND		4.58	ug/Kg	1	12/7/2012
tert-Butylbenzene	ND		4.58	ug/Kg	1	12/7/201
trans-1,2-Dichloroethene	ND		4.58	ug/Kg	1	12/7/201
trans-1,4-Dichloro-2-butene	ND		22.9	ug/Kg	1	12/7/201
Surrogates						
1,2-Dichloroethane-d4	114		55.0-173	%	1	12/7/201
4-Bromofluorobenzene	99.0		23.0-141	%	1	12/7/201
Toluene d8	102		57.0-134	%	1	12/7/201

Batch Information

Analytical Batch: VMS2772

Analytical Method: SW-846 8260B

Instrument: MSD9
Analyst: DVO

Prep Batch: VXX4417

Prep Method: **SW-846 5035 SL** Prep Date/Time: **12/07/2012 16:22**

Prep Initial Wt./Vol.: **7.5 g**Prep Extract Vol: **5 mL**

Client Sample ID: **S-9**Client Project ID: **70127335**Lab Sample ID: 31203948001-D
Lab Project ID: 31203948

Collection Date: 11/28/2012 15:00 Received Date: 12/01/2012 10:30 Matrix: Soil-Solid as dry weight

Solids (%): 72.70

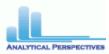
Results by MADEP VPH

<u>Parameter</u>	Result	<u>Qual</u>	LOQ/CL	LOQ/CL Units
C5-C8 Aliphatics	ND		4.63	4.63 mg/kg
C9-C10 Aromatics	ND		4.63	4.63 mg/kg
C9-C12 Aliphatics	ND		4.63	4.63 mg/kg
Surrogates				
FID - 4-Bromofluorobenzene	88.0		70.0-130	70.0-130 %
PID - 4-Bromofluorobenzene	71.0		70.0-130	70.0-130 %

Batch Information

Analytical Batch: VGC2282

Analytical Method: MADEP VPH


Instrument: GC4
Analyst: MDY

Prep Batch: VXX4430

Prep Method: **SW-846 5035 VPH prep** Prep Date/Time: **12/11/2012 14:34**

Prep Initial Wt./Vol.: **7.42 g**Prep Extract Vol: **5 mL**

Client Sample ID: **S-9**Client Project ID: **70127335**Lab Sample ID: 31203948001-E
Lab Project ID: 31203948

Collection Date: 11/28/2012 15:00 Received Date: 12/01/2012 10:30 Matrix: Soil-Solid as dry weight

Solids (%): 72.70

Results by **SW-846 8270D**

arameter_	Result	<u>Qual</u>
1,2,4-Trichlorobenzene	ND	
,2-Dichlorobenzene	ND	
1,3-Dichlorobenzene	ND	
1,4-Dichlorobenzene	ND	
2,4,5-Trichlorophenol	ND	
2,4,6-Trichlorophenol	ND	
2,4-Dichlorophenol	ND	
2,4-Dinitrophenol	ND	
2,4-Dinitrotoluene	ND	
2,6-Dinitrotoluene	ND	
2-Chloronaphthalene	ND	
2-Chlorophenol	ND	
2-Methylnaphthalene	ND	
2-Methylphenol	ND	
2-Nitroaniline	ND	
2-Nitrophenol	ND	
3 and/or 4-Methylphenol	ND	
3,3'-Dichlorobenzidine	ND	
3-Nitroaniline	ND	
4,6-Dinitro-2-methylphenol	ND	
4-Chloro-3-methylphenol	ND	
4-Chloroaniline	ND	
4-Chlorophenyl phenyl ether	ND	
Acenaphthene	ND	
Acenaphthylene	ND	
Anthracene	ND	
Benzo(a)anthracene	ND	
Benzo(a)pyrene	ND	
Benzo(b)fluoranthene	ND	
Benzo(g,h,i)perylene	ND	
Benzo(k)fluoranthene	ND	
Benzoic acid	ND	
Bis(2-Chloroethoxy)methane	ND	
Bis(2-Chloroethyl)ether	ND	
Bis(2-Chloroisopropyl)ether	ND	
Bis(2-Ethylhexyl)phthalate	ND	
4-Bromophenyl phenyl ether	ND	
Butyl benzyl phthalate	ND	
Chrysene	ND	
Di-n-butyl phthalate	ND	
Di-n-octyl phthalate	ND	
Dibenz(a,h)anthracene	ND	
Dibenzofuran	ND	

Client Sample ID: **S-9**Client Project ID: **70127335**Lab Sample ID: 31203948001-E
Lab Project ID: 31203948

Collection Date: 11/28/2012 15:00 Received Date: 12/01/2012 10:30 Matrix: Soil-Solid as dry weight

Solids (%): 72.70

Results by **SW-846 8270D**

<u>Parameter</u>	Result	<u>Qual</u>	LOQ/CL	<u>Un</u>	<u>its</u>
Diethyl phthalate	ND		446	ug/Ko	9
Dimethyl phthalate	ND		446	ug/Kg	
2,4-Dimethylphenol	ND		446	ug/Kg	
Diphenylamine	ND		446	ug/Kg	
Fluoranthene	ND		446	ug/Kg	
Fluorene	ND		446	ug/Kg	
Hexachlorobenzene	ND		2230	ug/Kg	
Hexachlorobutadiene	ND		446	ug/Kg	
Hexachlorocyclopentadiene	ND		892	ug/Kg	
Hexachloroethane	ND		446	ug/Kg	
ndeno(1,2,3-cd)pyrene	ND		446	ug/Kg	1
Isophorone	ND		446	ug/Kg	1
Naphthalene	ND		446	ug/Kg	1
4-Nitroaniline	ND		2230	ug/Kg	1
Nitrobenzene	ND		446	ug/Kg	1
I-Nitrophenol	ND		2230	ug/Kg	1
Pentachlorophenol	ND		2230	ug/Kg	1
Phenanthrene	ND		446	ug/Kg	1
Phenol	ND		446	ug/Kg	1
Pyrene	ND		446	ug/Kg	1
n-Nitrosodi-n-propylamine	ND		446	ug/Kg	1
urrogates					
2,4,6-Tribromophenol	89.0		41.0-129	%	1
2-Fluorobiphenyl	93.0		48.0-123	%	1
2-Fluorophenol	87.0		42.0-123	%	1
Nitrobenzene-d5	87.0		46.0-117	%	1
Phenol-d6	92.0		48.0-125	%	1
Terphenyl-d14	90.0		44.0-140	%	1

Batch Information

Analytical Batch: XMS1766
Analytical Method: SW-846 8270D

Instrument: MSD6
Analyst: CMP

Prep Batch: XXX3394
Prep Method: SW-846 3541

Prep Date/Time: 12/11/2012 13:16 Prep Initial Wt./Vol.: 30.88 g Prep Extract Vol: 10 mL

Client Sample ID: **S-9**Client Project ID: **70127335**Lab Sample ID: 31203948001-E
Lab Project ID: 31203948

Collection Date: 11/28/2012 15:00 Received Date: 12/01/2012 10:30 Matrix: Soil-Solid as dry weight

Solids (%): 72.70

Results by MADEP EPH

<u>Parameter</u>	Result	<u>Qual</u>	LOQ/CL	<u>Units</u>	<u>DF</u>	Date Analyzed
C11-C22 Aromatics	ND		15.6	mg/kg	1	12/12/2012 22:13
C19-C36 Aliphatics	ND		8.06	mg/kg	1	12/12/2012 21:44
C9-C18 Aliphatics	14.2		6.98	mg/kg	1	12/12/2012 21:44
Surrogates						
2-Bromonaphthalene	81.3		40.0-140	%	1	12/12/2012 22:13
2-Fluorobiphenyl	81.0		40.0-140	%	1	12/12/2012 22:13
n-Tricosane	110		40.0-140	%	1	12/12/2012 21:44
o-Terphenyl	80.0		40.0-140	%	1	12/12/2012 22:13

Batch Information

Analytical Batch: XGC2788

Analytical Method: MADEP EPH

Instrument: GC6
Analyst: DTF

Prep Batch: XXX3393

Prep Method: **SW-846 3541/8015 EPH**Prep Date/Time: **12/11/2012 13:13**Prep Initial Wt./Vol.: **13.71 g**

Prep Extract Vol: 10 mL

Client Sample ID: **S-15**Client Project ID: **70127335**Lab Sample ID: 31203948002-A
Lab Project ID: 31203948

Collection Date: 11/30/2012 09:22 Received Date: 12/01/2012 10:30 Matrix: Soil-Solid as dry weight

Solids (%): 84.70

Results by **SW-846 8260B**

Parameter	Result	Qual	LOQ/CL	<u>Units</u>	<u>DF</u>	Date Analyz
,1,2-Tetrachloroethane	ND		4.18	ug/Kg	1	12/7/2012
,1,1-Trichloroethane	ND		4.18	ug/Kg	1	12/7/2012
,1,2,2-Tetrachloroethane	ND		4.18	ug/Kg	1	12/7/2012
,1,2-Trichloroethane	ND		4.18	ug/Kg	1	12/7/2012
,1-Dichloroethane	ND		4.18	ug/Kg	1	12/7/2012
,1-Dichloroethene	ND		4.18	ug/Kg	1	12/7/2012
,1-Dichloropropene	ND		4.18	ug/Kg	1	12/7/2012
,2,3-Trichlorobenzene	ND		4.18	ug/Kg	1	12/7/2012
,2,3-Trichloropropane	ND		4.18	ug/Kg	1	12/7/2012
,2,4-Trichlorobenzene	ND		4.18	ug/Kg	1	12/7/2012
,2,4-Trimethylbenzene	51.8		4.18	ug/Kg	1	12/7/2012
,2-Dibromo-3-chloropropane	ND		25.1	ug/Kg	1	12/7/2012
,2-Dibromoethane	ND		4.18	ug/Kg	1	12/7/2012
,2-Dichlorobenzene	ND		4.18	ug/Kg	1	12/7/2012
,2-Dichloroethane	ND		4.18	ug/Kg	1	12/7/2012
,2-Dichloropropane	ND		4.18	ug/Kg	1	12/7/2012
,3,5-Trimethylbenzene	24.6		4.18	ug/Kg	1	12/7/2012
,3-Dichlorobenzene	ND		4.18	ug/Kg	1	12/7/2012
,3-Dichloropropane	ND		4.18	ug/Kg	1	12/7/2012
,4-Dichlorobenzene	ND		4.18	ug/Kg	1	12/7/2012
2,2-Dichloropropane	ND		4.18	ug/Kg	1	12/7/2012
P-Butanone	ND		20.9	ug/Kg	1	12/7/2012
-Chlorotoluene	ND		4.18	ug/Kg	1	12/7/2012
-Hexanone	ND		10.4	ug/Kg	1	12/7/2012
-Chlorotoluene	ND		4.18	ug/Kg	1	12/7/2012
-Isopropyltoluene	ND		4.18	ug/Kg	1	12/7/2012
-Methyl-2-pentanone	ND		10.4	ug/Kg	1	12/7/2012
Acetone	ND		41.8	ug/Kg	1	12/7/2012
Benzene	ND		4.18	ug/Kg	1	12/7/2012
Bromobenzene	ND		4.18	ug/Kg	1	12/7/2012
Bromochloromethane	ND		4.18	ug/Kg	1	12/7/2012
Bromodichloromethane	ND		4.18	ug/Kg	1	12/7/2012
Bromoform	ND		4.18	ug/Kg	1	12/7/2012
Bromomethane	ND		4.18	ug/Kg	1	12/7/2012
i-Butylbenzene	ND		4.18	ug/Kg	1	12/7/2012
Carbon disulfide	ND		4.18	ug/Kg	1	12/7/2012
Carbon tetrachloride	ND		4.18	ug/Kg	1	12/7/2012
Chlorobenzene	ND		4.18	ug/Kg	1	12/7/2012
Chloroethane	ND		4.18	ug/Kg	1	12/7/2012
Chloroform	ND		4.18	ug/Kg	1	12/7/2012
Chloromethane	ND		4.18	ug/Kg	1	12/7/2012
Dibromochloromethane	ND		4.18	ug/Kg	1	12/7/2012
Dibromomethane	ND		4.18	ug/Kg	1	12/7/2012

Client Sample ID: **S-15**Client Project ID: **70127335**Lab Sample ID: 31203948002-A
Lab Project ID: 31203948

Collection Date: 11/30/2012 09:22 Received Date: 12/01/2012 10:30 Matrix: Soil-Solid as dry weight

Solids (%): 84.70

Results by **SW-846 8260B**

Parameter Parameter	Result	Qual	LOQ/CL	<u>Units</u>	<u>DF</u>	Date A
Dichlorodifluoromethane	ND		4.18	ug/Kg	1	12/7/20
cis-1,3-Dichloropropene	ND		4.18	ug/Kg	1	12/7/20
trans-1,3-Dichloropropene	ND		4.18	ug/Kg	1	12/7/20
Diisopropyl Ether	ND		4.18	ug/Kg	1	12/7/20
Ethyl Benzene	ND		4.18	ug/Kg	1	12/7/20
Hexachlorobutadiene	ND		4.18	ug/Kg	1	12/7/20
Isopropylbenzene (Cumene)	ND		4.18	ug/Kg	1	12/7/20
Methyl iodide	ND		4.18	ug/Kg	1	12/7/20
Methylene chloride	ND		16.7	ug/Kg	1	12/7/20
Naphthalene	9.80		4.18	ug/Kg	1	12/7/20
Styrene	ND		4.18	ug/Kg	1	12/7/20
Tetrachloroethene	ND		4.18	ug/Kg	1	12/7/20
Toluene	ND		4.18	ug/Kg	1	12/7/20
Trichloroethene	ND		4.18	ug/Kg	1	12/7/20
Trichlorofluoromethane	ND		4.18	ug/Kg	1	12/7/20
Vinyl chloride	ND		4.18	ug/Kg	1	12/7/20
Xylene (total)	17.4		8.36	ug/Kg	1	12/7/20
cis-1,2-Dichloroethene	ND		4.18	ug/Kg	1	12/7/20
m,p-Xylene	ND		8.36	ug/Kg	1	12/7/20
n-Propylbenzene	7.29		4.18	ug/Kg	1	12/7/20
o-Xylene	12.9		4.18	ug/Kg	1	12/7/20
sec-Butylbenzene	ND		4.18	ug/Kg	1	12/7/20
tert-Butyl methyl ether (MTBE)	ND		4.18	ug/Kg	1	12/7/20
tert-Butylbenzene	ND		4.18	ug/Kg	1	12/7/20
trans-1,2-Dichloroethene	ND		4.18	ug/Kg	1	12/7/20
trans-1,4-Dichloro-2-butene	ND		20.9	ug/Kg	1	12/7/20
Surrogates						
1,2-Dichloroethane-d4	96.0		55.0-173	%	1	12/7/20
4-Bromofluorobenzene	101		23.0-141	%	1	12/7/20
Toluene d8	102		57.0-134	%	1	12/7/20

Batch Information

Analytical Batch: VMS2772
Analytical Method: SW-846 8260B

Instrument: MSD9
Analyst: DVO

Prep Batch: VXX4417

Prep Method: **SW-846 5035 SL**Prep Date/Time: **12/07/2012 16:23**

Prep Initial Wt./Vol.: **7.06 g**Prep Extract Vol: **5 mL**

Client Sample ID: **S-15**Client Project ID: **70127335**Lab Sample ID: 31203948002-D
Lab Project ID: 31203948

Collection Date: 11/30/2012 09:22 Received Date: 12/01/2012 10:30 Matrix: Soil-Solid as dry weight

Solids (%): 84.70

Results by MADEP VPH

<u>Parameter</u>	Result	<u>Qual</u>	LOQ/CL	<u>Units</u>	<u>DF</u>	Date Analyzed
C5-C8 Aliphatics	ND		3.99	mg/kg	1	12/11/2012 15:16
C9-C10 Aromatics	9.20		3.99	mg/kg	1	12/11/2012 15:16
C9-C12 Aliphatics	16.8		3.99	mg/kg	1	12/11/2012 15:16
Surrogates						
FID - 4-Bromofluorobenzene	99.0		70.0-130	%	1	12/11/2012 15:16
PID - 4-Bromofluorobenzene	84.0		70.0-130	%	1	12/11/2012 15:16

Batch Information

Analytical Batch: VGC2282

Analytical Method: MADEP VPH

Instrument: GC4 Analyst: MDY Prep Batch: VXX4430

Prep Method: **SW-846 5035 VPH prep** Prep Date/Time: **12/11/2012 14:34**

Prep Initial Wt./Vol.: **7.39 g**Prep Extract Vol: **5 mL**

Client Sample ID: **S-15**Client Project ID: **70127335**Lab Sample ID: 31203948002-E
Lab Project ID: 31203948

Collection Date: 11/30/2012 09:22 Received Date: 12/01/2012 10:30 Matrix: Soil-Solid as dry weight

Solids (%): 84.70

Results by **SW-846 8270D**

	LOQ/CL	<u>LOQ/CL</u> <u>Units</u>	<u>LOQ/CL</u> <u>Units</u> <u>DF</u>
1,2-Dichlorobenzene ND		270	070
•		370 ug/Kg	1.3
1,3-Dichioropenzene	370	0 0	5 5
1.4 Diablarahannana ND	370	8 8	0 0
1,4-Dichlorobenzene ND	370	5 5	5 5
2,4,5-Trichlorophenol ND	370	0 0	5 5
2,4,6-Trichlorophenol ND	370	0 0	5 5
2,4-Dichlorophenol ND	370	0 0	5 5
2,4-Dinitrophenol ND	1850		8 8
2,4-Dinitrotoluene ND	370	8 8	5 5
2,6-Dinitrotoluene ND	370		
2-Chloronaphthalene ND	370	8 8	5 5
2-Chlorophenol ND	370	9 9	
2-Methylnaphthalene 1040	370		~ ~
2-Methylphenol ND	370	0 0	
2-Nitroaniline ND	370	0 0	3 3
2-Nitrophenol ND	370	0 0	3 3
3 and/or 4-Methylphenol ND	370	0 0	5 5
3,3'-Dichlorobenzidine ND	740	8 8	
3-Nitroaniline ND	1850	0 0	
4,6-Dinitro-2-methylphenol ND	1850	0 0	
4-Chloro-3-methylphenol ND	370	0 0	
4-Chloroaniline ND	370	370 ug/Kg	370 ug/Kg 1
4-Chlorophenyl phenyl ether ND	370	370 ug/Kg	370 ug/Kg 1
Acenaphthene ND	370	370 ug/Kg	370 ug/Kg 1
Acenaphthylene ND	370	370 ug/Kg	370 ug/Kg 1
Anthracene ND	370	370 ug/Kg	370 ug/Kg 1
Benzo(a)anthracene ND	370	370 ug/Kg	370 ug/Kg 1
Benzo(a)pyrene ND	370	370 ug/Kg	370 ug/Kg 1
Benzo(b)fluoranthene ND	370	370 ug/Kg	370 ug/Kg 1
Benzo(g,h,i)perylene ND	370	370 ug/Kg	370 ug/Kg 1
Benzo(k)fluoranthene ND	370	370 ug/Kg	370 ug/Kg 1
Benzoic acid ND	1850	1850 ug/Kg	1850 ug/Kg 1
Bis(2-Chloroethoxy)methane ND	370	370 ug/Kg	370 ug/Kg 1
Bis(2-Chloroethyl)ether ND	370	370 ug/Kg	370 ug/Kg 1
Bis(2-Chloroisopropyl)ether ND	370		
Bis(2-Ethylhexyl)phthalate ND	370		
4-Bromophenyl phenyl ether ND	370		
Butyl benzyl phthalate ND	370		
Chrysene ND	370		
Di-n-butyl phthalate ND	370		
Di-n-octyl phthalate ND	370		
Dibenz(a,h)anthracene ND	370		
Dibenzofuran ND	370		

Client Sample ID: **S-15**Client Project ID: **70127335**Lab Sample ID: 31203948002-E
Lab Project ID: 31203948

Collection Date: 11/30/2012 09:22 Received Date: 12/01/2012 10:30 Matrix: Soil-Solid as dry weight

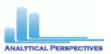
Solids (%): 84.70

Results by **SW-846 8270D**

<u>Parameter</u>	Result	Qual	LOQ/CL	<u>Units</u>	<u>DF</u>	Date Ana
Diethyl phthalate	ND		370	ug/Kg	1	12/11/20 ⁻
Dimethyl phthalate	ND		370	ug/Kg	1	12/11/20 ⁻
2,4-Dimethylphenol	ND		370	ug/Kg	1	12/11/20
Diphenylamine	ND		370	ug/Kg	1	12/11/20
Fluoranthene	ND		370	ug/Kg	1	12/11/20
Fluorene	ND		370	ug/Kg	1	12/11/20
Hexachlorobenzene	ND		1850	ug/Kg	1	12/11/20
Hexachlorobutadiene	ND		370	ug/Kg	1	12/11/20
Hexachlorocyclopentadiene	ND		740	ug/Kg	1	12/11/20
Hexachloroethane	ND		370	ug/Kg	1	12/11/20
Indeno(1,2,3-cd)pyrene	ND		370	ug/Kg	1	12/11/20
Isophorone	ND		370	ug/Kg	1	12/11/20
Naphthalene	ND		370	ug/Kg	1	12/11/20 ⁻
4-Nitroaniline	ND		1850	ug/Kg	1	12/11/20
Nitrobenzene	ND		370	ug/Kg	1	12/11/20
4-Nitrophenol	ND		1850	ug/Kg	1	12/11/20
Pentachlorophenol	ND		1850	ug/Kg	1	12/11/20
Phenanthrene	ND		370	ug/Kg	1	12/11/20
Phenol	ND		370	ug/Kg	1	12/11/20
Pyrene	ND		370	ug/Kg	1	12/11/20
n-Nitrosodi-n-propylamine	ND		370	ug/Kg	1	12/11/20
Surrogates						
2,4,6-Tribromophenol	86.0		41.0-129	%	1	12/11/20
2-Fluorobiphenyl	88.0		48.0-123	%	1	12/11/20
2-Fluorophenol	84.0		42.0-123	%	1	12/11/20
Nitrobenzene-d5	86.0		46.0-117	%	1	12/11/20
Phenol-d6	91.0		48.0-125	%	1	12/11/20
Terphenyl-d14	87.0		44.0-140	%	1	12/11/20

Batch Information

Analytical Batch: XMS1766
Analytical Method: SW-846 8270D


Instrument: MSD6
Analyst: CMP

Prep Batch: XXX3394

Prep Method: SW-846 3541

Prep Date/Time: 12/11/2012 13:16 Prep Initial Wt./Vol.: 31.94 g Prep Extract Vol: 10 mL

Client Sample ID: **S-15**Client Project ID: **70127335**Lab Sample ID: 31203948002-E
Lab Project ID: 31203948

Collection Date: 11/30/2012 09:22 Received Date: 12/01/2012 10:30 Matrix: Soil-Solid as dry weight

Solids (%): 84.70

Results by MADEP EPH

<u>Parameter</u>	<u>Result</u>	<u>Qual</u>	LOQ/CL	<u>Units</u>	<u>DF</u>	Date Analyzed
C11-C22 Aromatics	20.0		14.2	mg/kg	1	12/12/2012 2
C19-C36 Aliphatics	ND		7.33	mg/kg	1	12/12/2012 2
C9-C18 Aliphatics	48.1		6.34	mg/kg	1	12/12/2012 2
Surrogates						
2-Bromonaphthalene	83.5		40.0-140	%	1	12/12/2012 23
2-Fluorobiphenyl	84.0		40.0-140	%	1	12/12/2012 23
n-Tricosane	110		40.0-140	%	1	12/12/2012 2
o-Terphenyl	83.0		40.0-140	%	1	12/12/2012 23

Batch Information

Analytical Batch: XGC2788

Analytical Method: MADEP EPH Instrument: GC6

Instrument: GC6
Analyst: DTF

Prep Batch: XXX3393

Prep Extract Vol: 10 mL

Prep Method: **SW-846 3541/8015 EPH**Prep Date/Time: **12/11/2012 13:13**Prep Initial Wt./Vol.: **12.95** g

Client Sample ID: **S-18**Client Project ID: **70127335**Lab Sample ID: 31203948003-A
Lab Project ID: 31203948

Collection Date: 11/30/2012 10:18 Received Date: 12/01/2012 10:30 Matrix: Soil-Solid as dry weight

Solids (%): 77.40

Results by **SW-846 8260B**

<u>Parameter</u>	Result	<u>Qual</u>	LOQ/CL	<u>Units</u>	<u>DF</u>	<u>Date</u>
,1,1,2-Tetrachloroethane	ND		4.81	ug/Kg	1	12/7
1,1-Trichloroethane	ND		4.81	ug/Kg	1	12/7
,1,2,2-Tetrachloroethane	ND		4.81	ug/Kg	1	12/7/
,1,2-Trichloroethane	ND		4.81	ug/Kg	1	12/7/
,1-Dichloroethane	ND		4.81	ug/Kg	1	12/7/
,1-Dichloroethene	ND		4.81	ug/Kg	1	12/7/
1,1-Dichloropropene	ND		4.81	ug/Kg	1	12/7/
1,2,3-Trichlorobenzene	ND		4.81	ug/Kg	1	12/7/
1,2,3-Trichloropropane	ND		4.81	ug/Kg	1	12/7/
1,2,4-Trichlorobenzene	ND		4.81	ug/Kg	1	12/7/
1,2,4-Trimethylbenzene	24.8		4.81	ug/Kg	1	12/7/
1,2-Dibromo-3-chloropropane	ND		28.9	ug/Kg	1	12/7/
1,2-Dibromoethane	ND		4.81	ug/Kg	1	12/7/2
1,2-Dichlorobenzene	ND		4.81	ug/Kg	1	12/7/2
,2-Dichloroethane	ND		4.81	ug/Kg	1	12/7/2
,2-Dichloropropane	ND		4.81	ug/Kg	1	12/7/2
,3,5-Trimethylbenzene	294	E	4.81	ug/Kg	1	12/7/2
,3-Dichlorobenzene	ND		4.81	ug/Kg	1	12/7/2
,3-Dichloropropane	ND		4.81	ug/Kg	1	12/7/2
,4-Dichlorobenzene	ND		4.81	ug/Kg	1	12/7/2
,2-Dichloropropane	ND		4.81	ug/Kg	1	12/7/2
-Butanone	ND		24.1	ug/Kg	1	12/7/2
-Chlorotoluene	ND		4.81	ug/Kg	1	12/7/2
-Hexanone	ND		12.0	ug/Kg	1	12/7/2
-Chlorotoluene	ND		4.81	ug/Kg	1	12/7/2
-Isopropyltoluene	9.33		4.81	ug/Kg	1	12/7/2
-Methyl-2-pentanone	ND		12.0	ug/Kg	1	12/7/2
Acetone	ND		48.1	ug/Kg	1	12/7/2
Benzene	ND		4.81	ug/Kg	1	12/7/2
Bromobenzene	ND		4.81	ug/Kg	1	12/7/2
Bromochloromethane	ND		4.81	ug/Kg	1	12/7/2
Bromodichloromethane	ND		4.81	ug/Kg	1	12/7/2
Bromoform	ND		4.81	ug/Kg	1	12/7/2
Bromomethane	ND		4.81	ug/Kg	1	12/7/2
n-Butylbenzene	ND		4.81	ug/Kg	1	12/7/2
Carbon disulfide	ND		4.81	ug/Kg	1	12/7/2
Carbon tetrachloride	ND		4.81	ug/Kg	1	12/7/2
Chlorobenzene	ND		4.81	ug/Kg	1	12/7/2
Chloroethane	ND		4.81	ug/Kg	1	12/7/2
Chloroform	ND		4.81	ug/Kg	1	12/7/2
Chloromethane	ND		4.81	ug/Kg	1	12/7/2
Dibromochloromethane	ND		4.81	ug/Kg	1	12/7/2
Dibromomethane	ND		4.81	ug/Kg	1	12/7/2

Client Sample ID: **S-18**Client Project ID: **70127335**Lab Sample ID: 31203948003-A
Lab Project ID: 31203948

Collection Date: 11/30/2012 10:18 Received Date: 12/01/2012 10:30 Matrix: Soil-Solid as dry weight

Solids (%): 77.40

Results by **SW-846 8260B**

Dichlorodifluoromethane ND 4.81 4.81 cis-1,3-Dichloropropene ND 4.81 4.81 trans-1,3-Dichloropropene ND 4.81 4.81 Diisopropyl Ether ND 4.81 4.81 Ethyl Benzene ND 4.81 4.81 Hexachlorobutadiene ND 4.81 4.81 Isopropylbenzene (Cumene) ND 4.81 4.81 Methyl iodide ND 4.81 4.81 Methylene chloride ND 4.81 4.81 Methylene chloride ND 4.81 4.81 Styrene ND 4.81 4.81 Styrene ND 4.81 4.81 Tetrachloroethene ND 4.81 4.81 Trichlorofluoromethane ND 4.81 4.81 Vinyl chloride ND 4.81 4.81 Viylene (total) 68.1 68.1 68.1 Sylene ND 4.81 4.81 o-Xylene	Parameter	Result	Qual	LOQ/CL	ı	<u>Units</u>
trans-1,3-Dichloropropene ND 4.81 ug/l Diisopropyl Ether ND 4.81 ug/l Ethyl Benzene ND 4.81 ug/l Hexachlorobutadiene ND 4.81 ug/l Isopropylbenzene (Cumene) ND 4.81 ug/l Isopropylbenzene (Cumene) ND 4.81 ug/l Methyl iodide ND 19.2 ug/l Naphthalene 7.36 4.81 ug/l Styrene ND 4.81 ug/l Styrene ND 4.81 ug/l Tetrachloroethene ND 4.81 ug/l Toluene ND 4.81 ug/l Trichloroethene ND 4.81 ug/l Trichlorofluoromethane ND 4.81 ug/l Trichlorofluoromethane ND 4.81 ug/l Stylene (total) 68.1 ug/l Os-2-Dichloroethene ND 4.81 ug/l Np-Xylene ND 4.81 ug/l Np-Yolpene ND 4.81 ug/l Np-Yolpene ND 4.81 ug/l Np-Yolpene ND 4.81 ug/l Np-Trichlorophorophorophorophorophorophorophoro	Dichlorodifluoromethane	ND		4.81	ug/l	Kg
Diisopropyl Ether ND 4.81 ug/Kg Ethyl Benzene ND 4.81 ug/Kg Hexachlorobutadiene ND 4.81 ug/Kg Isopropylbenzene (Cumene) ND 4.81 ug/Kg Methyl iodide ND 4.81 ug/Kg Methylene chloride ND 19.2 ug/Kg Naphthalene 7.36 4.81 ug/Kg Styrene ND 4.81 ug/Kg Styrene ND 4.81 ug/Kg Tetrachloroethene ND 4.81 ug/Kg Toluene ND 4.81 ug/Kg Trichloroethene ND 4.81 ug/Kg Trichlorofluoromethane ND 4.81 ug/Kg Vinyl chloride ND 4.81 ug/Kg Xylene (total) 68.1 ug/Kg ug/Kg xylene (total) 68.1 ug/Kg ug/Kg n-Propylbenzene ND 4.81 ug/Kg ver-Butylbenzene <td< td=""><td>cis-1,3-Dichloropropene</td><td>ND</td><td></td><td>4.81</td><td>ug/Kg</td><td>)</td></td<>	cis-1,3-Dichloropropene	ND		4.81	ug/Kg)
Ethyl Benzene ND 4.81 ug/Kg Hexachlorobutadiene ND 4.81 ug/Kg Isopropylbenzene (Cumene) ND 4.81 ug/Kg Methyl iodide ND 4.81 ug/Kg Methylene chloride ND 19.2 ug/Kg Naphthalene 7.36 4.81 ug/Kg Styrene ND 4.81 ug/Kg Tetrachloroethene ND 4.81 ug/Kg Toluene ND 4.81 ug/Kg Trichloroethene ND 4.81 ug/Kg Trichlorofluoromethane ND 4.81 ug/Kg Vinyl chloride ND 4.81 ug/Kg Xylene (total) 68.1 9.62 ug/Kg xylene (total) 68.1 9.62 ug/Kg mp-Yylene ND 4.81 ug/Kg n-Propylbenzene ND 4.81 ug/Kg o-Xylene 68.1 4.81 ug/Kg sec-Butylbenzene ND <td>trans-1,3-Dichloropropene</td> <td>ND</td> <td></td> <td>4.81</td> <td>ug/Kg</td> <td></td>	trans-1,3-Dichloropropene	ND		4.81	ug/Kg	
Hexachlorobutadiene ND 4.81 ug/Kg Isopropylbenzene (Cumene) ND 4.81 ug/Kg Methyl iodide ND 4.81 ug/Kg Methylene chloride ND 19.2 ug/Kg Maphthalene 7.36 4.81 ug/Kg Styrene ND 4.81 ug/Kg Tetrachloroethene ND 4.81 ug/Kg Toluene ND 4.81 ug/Kg Trichloroethene ND 4.81 ug/Kg Trichlorofluoromethane ND 4.81 ug/Kg Vinyl chloride ND 4.81 ug/Kg Xylene (total) 68.1 9.62 ug/Kg cis-1,2-Dichloroethene ND 4.81 ug/Kg mp-Xylene ND 9.62 ug/Kg n-Propylbenzene ND 4.81 ug/Kg o-Xylene 68.1 4.81 ug/Kg sec-Butylbenzene ND 4.81 ug/Kg tert-Butylmethyl ether (MTBE) </td <td>Diisopropyl Ether</td> <td>ND</td> <td></td> <td>4.81</td> <td>ug/Kg</td> <td></td>	Diisopropyl Ether	ND		4.81	ug/Kg	
Sopropy Benzene (Cumene) ND 4.81 ug/Kg	Ethyl Benzene	ND		4.81	ug/Kg	
Methyl iodide ND 4.81 ug/Kg Methylene chloride ND 19.2 ug/Kg Maphthalene 7.36 4.81 ug/Kg Styrene ND 4.81 ug/Kg Tetrachloroethene ND 4.81 ug/Kg Toluene ND 4.81 ug/Kg Trichloroethene ND 4.81 ug/Kg Trichlorofluoromethane ND 4.81 ug/Kg Vinyl chloride ND 4.81 ug/Kg Xylene (total) 68.1 ug/Kg Cis-1,2-Dichloroethene ND 9.62 ug/Kg m,p-Xylene ND 4.81 ug/Kg n-Propylbenzene ND 4.81 ug/Kg o-Xylene 68.1 4.81 ug/Kg sec-Butylbenzene ND 4.81 ug/Kg tert-Butyl methyl ether (MTBE) ND 4.81 ug/Kg tert-Butylbenzene ND 4.81 ug/Kg trans-1,4-Dichloro-2-butene ND </td <td>Hexachlorobutadiene</td> <td>ND</td> <td></td> <td>4.81</td> <td>ug/Kg</td> <td></td>	Hexachlorobutadiene	ND		4.81	ug/Kg	
Methylene chloride ND 19.2 ug/Kg Naphthalene 7.36 4.81 ug/Kg Styrene ND 4.81 ug/Kg Tetrachloroethene ND 4.81 ug/Kg Toluene ND 4.81 ug/Kg Trichloroethene ND 4.81 ug/Kg Trichlorofluoromethane ND 4.81 ug/Kg Vinyl chloride ND 4.81 ug/Kg Xylene (total) 68.1 ug/Kg xylene (total) 68.1 ug/Kg m.p-Xylene ND 9.62 ug/Kg m.p-Yopylbenzene ND 4.81 ug/Kg o-Xylene 68.1 4.81 ug/Kg sec-Butylbenzene ND 4.81 ug/Kg sec-Butylbenzene ND 4.81 ug/Kg tert-Butyl methyl ether (MTBE) ND 4.81 ug/Kg tert-Butylbenzene ND 4.81 ug/Kg trans-1,2-Dichloroethene ND 4.81	Isopropylbenzene (Cumene)	ND		4.81	ug/Kg	
Naphthalene 7.36 4.81 ug/Kg Styrene ND 4.81 ug/Kg Tetrachloroethene ND 4.81 ug/Kg Toluene ND 4.81 ug/Kg Trichloroethene ND 4.81 ug/Kg Trichlorofluoromethane ND 4.81 ug/Kg Vinyl chloride ND 4.81 ug/Kg Xylene (total) 68.1 9.62 ug/Kg cis-1,2-Dichloroethene ND 4.81 ug/Kg m,p-Xylene ND 4.81 ug/Kg n-Propylbenzene ND 4.81 ug/Kg o-Xylene 68.1 4.81 ug/Kg sec-Butylbenzene ND 4.81 ug/Kg tert-Butyl methyl ether (MTBE) ND 4.81 ug/Kg tert-Butylbenzene ND 4.81 ug/Kg trans-1,2-Dichloroethene ND 4.81 ug/Kg trans-1,4-Dichloro-2-butene ND 24.1 ug/Kg urrogates 1,2-Dichloroethane-d4 106 55.0-173 <td< td=""><td>Methyl iodide</td><td>ND</td><td></td><td>4.81</td><td>ug/Kg</td><td></td></td<>	Methyl iodide	ND		4.81	ug/Kg	
Styrene ND 4.81 ug/kg Tetrachloroethene ND 4.81 ug/kg Toluene ND 4.81 ug/kg Trichloroethene ND 4.81 ug/kg Trichlorofluoromethane ND 4.81 ug/kg Vinyl chloride ND 4.81 ug/kg Xylene (total) 68.1 9.62 ug/kg xylene (total) 9.62 ug/kg mp-Xylene ND 4.81 ug/kg n-Propylbenzene ND 4.81 ug/kg o-Xylene 68.1 4.81 ug/kg sec-Butylbenzene ND 4.81 ug/kg tert-Butyl methyl ether (MTBE) ND 4.81 ug/kg tert-Butylbenzene ND 4.81 ug/kg trans-1,2-Dichloroethene ND 4.81 ug/kg trans-1,4-Dichloro-2-butene ND 24.1 ug/kg urrogates 1,2-Dichloroethane-d4 106 55.0-173 %	Methylene chloride	ND		19.2	ug/Kg	
Tetrachloroethene ND 4.81 ug/Kg Toluene ND 4.81 ug/Kg Trichloroethene ND 4.81 ug/Kg Trichlorofluoromethane ND 4.81 ug/Kg Trichlorofluoromethane ND 4.81 ug/Kg Vinyl chloride ND 4.81 ug/Kg Xylene (total) 68.1 9.62 ug/Kg cis-1,2-Dichloroethene ND 4.81 ug/Kg m,p-Xylene ND 9.62 ug/Kg n-Propylbenzene ND 9.62 ug/Kg o-Xylene ND 9.62 ug/Kg tert-Butyl methyl ether (MTBE) ND 4.81 ug/Kg tert-Butyl methyl ether (MTBE) ND 4.81 ug/Kg tert-Butylbenzene ND 4.81 ug/Kg	Naphthalene	7.36		4.81	ug/Kg	
Toluene ND 4.81 ug/Kg Trichloroethene ND 4.81 ug/Kg Trichlorofluoromethane ND 4.81 ug/Kg Vinyl chloride ND 4.81 ug/Kg Xylene (total) 68.1 9.62 ug/Kg cis-1,2-Dichloroethene ND 4.81 ug/Kg m,p-Xylene ND 9.62 ug/Kg n-Propylbenzene ND 4.81 ug/Kg o-Xylene 68.1 4.81 ug/Kg sec-Butylbenzene ND 4.81 ug/Kg tert-Butyl methyl ether (MTBE) ND 4.81 ug/Kg tert-Butylbenzene ND 4.81 ug/Kg trans-1,2-Dichloroethene ND 4.81 ug/Kg trans-1,4-Dichloro-2-butene ND 24.1 ug/Kg urrogates 1,2-Dichloroethane-d4 106 55.0-173 % 4-Bromofluorobenzene 98.0 23.0-141 %	Styrene	ND		4.81	ug/Kg	
Trichloroethene ND 4.81 ug/Kg Trichlorofluoromethane ND 4.81 ug/Kg Vinyl chloride ND 4.81 ug/Kg Xylene (total) 68.1 9.62 ug/Kg cis-1,2-Dichloroethene ND 4.81 ug/Kg m,p-Xylene ND 9.62 ug/Kg n-Propylbenzene ND 4.81 ug/Kg o-Xylene 68.1 4.81 ug/Kg sec-Butylbenzene ND 4.81 ug/Kg tert-Butyl methyl ether (MTBE) ND 4.81 ug/Kg tert-Butylbenzene ND 4.81 ug/Kg trans-1,2-Dichloroethene ND 4.81 ug/Kg trans-1,4-Dichloro-2-butene ND 24.1 ug/Kg urrogates 1,2-Dichloroethane-d4 106 55.0-173 % 4-Bromofluorobenzene 98.0 23.0-141 %	Tetrachloroethene	ND		4.81	ug/Kg	
Trichlorofluoromethane ND 4.81 ug/Kg Vinyl chloride ND 4.81 ug/Kg Xylene (total) 68.1 9.62 ug/Kg cis-1,2-Dichloroethene ND 4.81 ug/Kg m,p-Xylene ND 9.62 ug/Kg n-Propylbenzene ND 4.81 ug/Kg o-Xylene 68.1 4.81 ug/Kg sec-Butylbenzene ND 4.81 ug/Kg tert-Butyl methyl ether (MTBE) ND 4.81 ug/Kg tert-Butylbenzene ND 4.81 ug/Kg trans-1,2-Dichloroethene ND 4.81 ug/Kg trans-1,4-Dichloro-2-butene ND 24.1 ug/Kg urrogates 1,2-Dichloroethane-d4 106 55.0-173 % 4-Bromofluorobenzene 98.0 23.0-141 %	Toluene	ND		4.81	ug/Kg	
Vinyl chloride ND 4.81 ug/Kg Xylene (total) 68.1 9.62 ug/Kg cis-1,2-Dichloroethene ND 4.81 ug/Kg m,p-Xylene ND 9.62 ug/Kg n-Propylbenzene ND 4.81 ug/Kg o-Xylene 68.1 4.81 ug/Kg sec-Butylbenzene ND 4.81 ug/Kg tert-Butyl methyl ether (MTBE) ND 4.81 ug/Kg tert-Butylbenzene ND 4.81 ug/Kg trans-1,2-Dichloroethene ND 4.81 ug/Kg trans-1,4-Dichloro-2-butene ND 24.1 ug/Kg urrogates 1,2-Dichloroethane-d4 106 55.0-173 % 4-Bromofluorobenzene 98.0 23.0-141 %	Trichloroethene	ND		4.81	ug/Kg	
Xylene (total) 68.1 9.62 ug/Kg cis-1,2-Dichloroethene ND 4.81 ug/Kg m,p-Xylene ND 9.62 ug/Kg n-Propylbenzene ND 4.81 ug/Kg o-Xylene 68.1 4.81 ug/Kg sec-Butylbenzene ND 4.81 ug/Kg tert-Butyl methyl ether (MTBE) ND 4.81 ug/Kg tert-Butylbenzene ND 4.81 ug/Kg trans-1,2-Dichloroethene ND 4.81 ug/Kg trans-1,4-Dichloro-2-butene ND 24.1 ug/Kg urrogates 1,2-Dichloroethane-d4 106 55.0-173 % 4-Bromofluorobenzene 98.0 23.0-141 %	Trichlorofluoromethane	ND		4.81	ug/Kg	
cis-1,2-Dichloroethene ND 4.81 ug/Kg m,p-Xylene ND 9.62 ug/Kg n-Propylbenzene ND 4.81 ug/Kg o-Xylene 68.1 4.81 ug/Kg sec-Butylbenzene ND 4.81 ug/Kg tert-Butyl methyl ether (MTBE) ND 4.81 ug/Kg tert-Butylbenzene ND 4.81 ug/Kg trans-1,2-Dichloroethene ND 4.81 ug/Kg trans-1,4-Dichloro-2-butene ND 24.1 ug/Kg urrogates 1,2-Dichloroethane-d4 106 55.0-173 % 4-Bromofluorobenzene 98.0 23.0-141 %	Vinyl chloride	ND		4.81	ug/Kg	
m,p-Xylene ND 9.62 ug/Kg n-Propylbenzene ND 4.81 ug/Kg o-Xylene 68.1 4.81 ug/Kg sec-Butylbenzene ND 4.81 ug/Kg tert-Butyl methyl ether (MTBE) ND 4.81 ug/Kg tert-Butylbenzene ND 4.81 ug/Kg trans-1,2-Dichloroethene ND 4.81 ug/Kg trans-1,4-Dichloro-2-butene ND 24.1 ug/Kg urrogates 1,2-Dichloroethane-d4 106 55.0-173 % 4-Bromofluorobenzene 98.0 23.0-141 %	Xylene (total)	68.1		9.62	ug/Kg	
n-Propylbenzene ND 4.81 ug/Kg o-Xylene 68.1 4.81 ug/Kg sec-Butylbenzene ND 4.81 ug/Kg tert-Butyl methyl ether (MTBE) ND 4.81 ug/Kg tert-Butylbenzene ND 4.81 ug/Kg tert-Butylbenzene ND 4.81 ug/Kg trans-1,2-Dichloroethene ND 4.81 ug/Kg trans-1,4-Dichloro-2-butene ND 24.1 ug/Kg urrogates 1,2-Dichloroethane-d4 106 55.0-173 % 4-Bromofluorobenzene 98.0 23.0-141 %	cis-1,2-Dichloroethene	ND		4.81	ug/Kg	
o-Xylene 68.1 4.81 ug/Kg sec-Butylbenzene ND 4.81 ug/Kg tert-Butyl methyl ether (MTBE) ND 4.81 ug/Kg tert-Butylbenzene ND 4.81 ug/Kg trans-1,2-Dichloroethene ND 4.81 ug/Kg trans-1,4-Dichloro-2-butene ND 24.1 ug/Kg trans-1,4-Dichloro-2-butene ND 24.1 ug/Kg trans-1,4-Dichloroethane-d4 106 55.0-173 % 4-Bromofluorobenzene 98.0 23.0-141 %	m,p-Xylene	ND		9.62	ug/Kg	
sec-Butylbenzene ND 4.81 ug/Kg tert-Butyl methyl ether (MTBE) ND 4.81 ug/Kg tert-Butylbenzene ND 4.81 ug/Kg trans-1,2-Dichloroethene ND 4.81 ug/Kg trans-1,4-Dichloro-2-butene ND 24.1 ug/Kg urrogates 1,2-Dichloroethane-d4 106 55.0-173 % 4-Bromofluorobenzene 98.0 23.0-141 %	n-Propylbenzene	ND		4.81	ug/Kg	
tert-Butyl methyl ether (MTBE) ND 4.81 ug/Kg tert-Butylbenzene ND 4.81 ug/Kg trans-1,2-Dichloroethene ND 4.81 ug/Kg trans-1,4-Dichloro-2-butene ND 24.1 ug/Kg urrogates 1,2-Dichloroethane-d4 106 55.0-173 % 4-Bromofluorobenzene 98.0 23.0-141 %	o-Xylene	68.1		4.81	ug/Kg	
tert-Butylbenzene ND 4.81 ug/Kg trans-1,2-Dichloroethene ND 4.81 ug/Kg trans-1,4-Dichloro-2-butene ND 24.1 ug/Kg urrogates 1,2-Dichloroethane-d4 106 55.0-173 % 4-Bromofluorobenzene 98.0 23.0-141 %	sec-Butylbenzene	ND		4.81	ug/Kg	
trans-1,2-Dichloroethene ND 4.81 ug/Kg trans-1,4-Dichloro-2-butene ND 24.1 ug/Kg urrogates 1,2-Dichloroethane-d4 106 55.0-173 % 4-Bromofluorobenzene 98.0 23.0-141 %	tert-Butyl methyl ether (MTBE)	ND		4.81	ug/Kg	
trans-1,4-Dichloro-2-butene ND 24.1 ug/Kg urrogates 1,2-Dichloroethane-d4 106 55.0-173 % 4-Bromofluorobenzene 98.0 23.0-141 %	tert-Butylbenzene	ND		4.81	ug/Kg	
urrogates 1,2-Dichloroethane-d4 106 55.0-173 % 1 4-Bromofluorobenzene 98.0 23.0-141 % 1	trans-1,2-Dichloroethene	ND		4.81	ug/Kg	1
1,2-Dichloroethane-d4 106 55.0-173 % 1 4-Bromofluorobenzene 98.0 23.0-141 % 1	trans-1,4-Dichloro-2-butene	ND		24.1	ug/Kg	1
4-Bromofluorobenzene 98.0 23.0-141 % 1	Surrogates					
	1,2-Dichloroethane-d4	106		55.0-173	%	1
Toluene d8 104 57.0-134 % 1	4-Bromofluorobenzene	98.0		23.0-141	%	1
	Toluene d8	104		57.0-134	%	1

Batch Information

Analytical Batch: VMS2772
Analytical Method: SW-846 8260B

Instrument: MSD9
Analyst: DVO

Prep Batch: VXX4417

Prep Method: **SW-846 5035 SL**Prep Date/Time: **12/12/2012 11:44**

Prep Initial Wt./Vol.: **6.71 g**Prep Extract Vol: **5 mL**

Client Sample ID: **S-18**Client Project ID: **70127335**Lab Sample ID: 31203948003-D
Lab Project ID: 31203948

Collection Date: 11/30/2012 10:18 Received Date: 12/01/2012 10:30 Matrix: Soil-Solid as dry weight

Solids (%): 77.40

Results by MADEP VPH

<u>Parameter</u>	Result	Qual	LOQ/CL	<u>Units</u>	<u>DF</u>	Date Analyzed
C5-C8 Aliphatics	ND		4.27	mg/kg	1	12/11/2012 15:42
C9-C10 Aromatics	ND		4.27	mg/kg	1	12/11/2012 15:42
C9-C12 Aliphatics	4.66		4.27	mg/kg	1	12/11/2012 15:42
Surrogates						
FID - 4-Bromofluorobenzene	97.0		70.0-130	%	1	12/11/2012 15:42
PID - 4-Bromofluorobenzene	82.0		70.0-130	%	1	12/11/2012 15:42

Batch Information

Analytical Batch: VGC2282

Analytical Method: MADEP VPH

Instrument: GC4 Analyst: MDY Prep Batch: VXX4430

Prep Method: **SW-846 5035 VPH prep** Prep Date/Time: **12/11/2012 14:34**

Prep Initial Wt./Vol.: **7.56 g** Prep Extract Vol: **5 mL**

Client Sample ID: S-18 Client Project ID: 70127335 Lab Sample ID: 31203948003-E Lab Project ID: 31203948

Collection Date: 11/30/2012 10:18 Received Date: 12/01/2012 10:30 Matrix: Soil-Solid as dry weight

Solids (%): 77.40

Results by **SW-846 8270D**

Parameter	Result	Qual	LOQ/CL	<u>Units</u>	<u>DF</u>	Date Analy
,2,4-Trichlorobenzene	ND		404	ug/Kg	1	12/11/2012
,2-Dichlorobenzene	ND		404	ug/Kg	1	12/11/2012
,3-Dichlorobenzene	ND		404	ug/Kg	1	12/11/2012
,4-Dichlorobenzene	ND		404	ug/Kg	1	12/11/2012
2,4,5-Trichlorophenol	ND		404	ug/Kg	1	12/11/2012
2,4,6-Trichlorophenol	ND		404	ug/Kg	1	12/11/2012
2,4-Dichlorophenol	ND		404	ug/Kg	1	12/11/2012
2,4-Dinitrophenol	ND		2020	ug/Kg	1	12/11/2012
2,4-Dinitrotoluene	ND		404	ug/Kg	1	12/11/2012
2,6-Dinitrotoluene	ND		404	ug/Kg	1	12/11/2012
2-Chloronaphthalene	ND		404	ug/Kg	1	12/11/2012
2-Chlorophenol	ND		404	ug/Kg	1	12/11/2012
2-Methylnaphthalene	ND		404	ug/Kg	1	12/11/2012
2-Methylphenol	ND		404	ug/Kg	1	12/11/2012
2-Nitroaniline	ND		404	ug/Kg	1	12/11/2012
2-Nitrophenol	ND		404	ug/Kg	1	12/11/2012
and/or 4-Methylphenol	ND		404	ug/Kg	1	12/11/2012
3,3'-Dichlorobenzidine	ND		807	ug/Kg	1	12/11/2012
3-Nitroaniline	ND		2020	ug/Kg	1	12/11/2012
,6-Dinitro-2-methylphenol	ND		2020	ug/Kg	1	12/11/2012
I-Chloro-3-methylphenol	ND		404	ug/Kg	1	12/11/2012
I-Chloroaniline	ND		404	ug/Kg	1	12/11/2012
I-Chlorophenyl phenyl ether	ND		404	ug/Kg	1	12/11/2012
Acenaphthene	ND		404	ug/Kg	1	12/11/2012
Acenaphthylene	ND		404	ug/Kg	1	12/11/2012
Anthracene	ND		404	ug/Kg	1	12/11/2012
Benzo(a)anthracene	ND		404	ug/Kg	1	12/11/2012
Benzo(a)pyrene	ND		404	ug/Kg	1	12/11/2012
Benzo(b)fluoranthene	ND		404	ug/Kg	1	12/11/2012
Benzo(g,h,i)perylene	ND		404	ug/Kg	1	12/11/2012
Benzo(k)fluoranthene	ND		404	ug/Kg	1	12/11/2012
Benzoic acid	ND		2020	ug/Kg	1	12/11/2012
Bis(2-Chloroethoxy)methane	ND		404	ug/Kg	1	12/11/2012
Bis(2-Chloroethyl)ether	ND		404	ug/Kg	1	12/11/2012
Bis(2-Chloroisopropyl)ether	ND		404	ug/Kg	1	12/11/2012
Bis(2-Ethylhexyl)phthalate	ND		404	ug/Kg	1	12/11/2012
I-Bromophenyl phenyl ether	ND		404	ug/Kg	1	12/11/2012
Butyl benzyl phthalate	ND		404	ug/Kg	1	12/11/2012
Chrysene	ND		404	ug/Kg	1	12/11/2012
Di-n-butyl phthalate	ND		404	ug/Kg	1	12/11/2012
Di-n-octyl phthalate	ND		404	ug/Kg	1	12/11/2012
Dibenz(a,h)anthracene	ND		404	ug/Kg	1	12/11/2012
Dibenzofuran	ND		404	ug/Kg	1	12/11/2012

Print Date: 12/13/2012 N.C. Certification # 481

Member of the SGS Group (SGS SA)

Client Sample ID: **S-18**Client Project ID: **70127335**Lab Sample ID: 31203948003-E
Lab Project ID: 31203948

Collection Date: 11/30/2012 10:18 Received Date: 12/01/2012 10:30 Matrix: Soil-Solid as dry weight

Solids (%): 77.40

Results by **SW-846 8270D**

<u>Parameter</u>	Result	<u>Qual</u>	LOQ/CL	<u>Units</u>	<u>DF</u>
Diethyl phthalate	ND		404	ug/Kg	1
Dimethyl phthalate	ND		404	ug/Kg	1
2,4-Dimethylphenol	ND		404	ug/Kg	1
Diphenylamine	ND		404	ug/Kg	1
Fluoranthene	ND		404	ug/Kg	1
Fluorene	ND		404	ug/Kg	1
Hexachlorobenzene	ND		2020	ug/Kg	1
Hexachlorobutadiene	ND		404	ug/Kg	1
Hexachlorocyclopentadiene	ND		807	ug/Kg	1
Hexachloroethane	ND		404	ug/Kg	1
Indeno(1,2,3-cd)pyrene	ND		404	ug/Kg	1
Isophorone	ND		404	ug/Kg	1
Naphthalene	ND		404	ug/Kg	1
4-Nitroaniline	ND		2020	ug/Kg	1
Nitrobenzene	ND		404	ug/Kg	1
4-Nitrophenol	ND		2020	ug/Kg	1
Pentachlorophenol	ND		2020	ug/Kg	1
Phenanthrene	ND		404	ug/Kg	1
Phenol	ND		404	ug/Kg	1
Pyrene	ND		404	ug/Kg	1
n-Nitrosodi-n-propylamine	ND		404	ug/Kg	1
Surrogates					
2,4,6-Tribromophenol	88.0		41.0-129	%	1
2-Fluorobiphenyl	85.0		48.0-123	%	1
2-Fluorophenol	84.0		42.0-123	%	1
Nitrobenzene-d5	84.0		46.0-117	%	1
Phenol-d6	91.0		48.0-125	%	1
Terphenyl-d14	88.0		44.0-140	%	1

Batch Information

Analytical Batch: XMS1766
Analytical Method: SW-846 8270D

Instrument: MSD6
Analyst: CMP

Prep Batch: XXX3394

Prep Method: **SW-846 3541**Prep Date/Time: **12/11/2012 13:16**Prep Initial Wt./Vol.: **32.05** g

Prep Extract Vol: 10 mL

Client Sample ID: **S-18**Client Project ID: **70127335**Lab Sample ID: 31203948003-E
Lab Project ID: 31203948

Collection Date: 11/30/2012 10:18 Received Date: 12/01/2012 10:30 Matrix: Soil-Solid as dry weight

Solids (%): 77.40

Results by MADEP EPH

<u>Parameter</u>	Result	Qual	LOQ/CL	<u>Units</u>	<u>DF</u>	Date Analyzed
C11-C22 Aromatics	ND		16.2	mg/kg	1	12/13/2012 0:06
C19-C36 Aliphatics	ND		8.35	mg/kg	1	12/12/2012 23:37
C9-C18 Aliphatics	24.9		7.23	mg/kg	1	12/12/2012 23:37
Surrogates						
2-Bromonaphthalene	82.3		40.0-140	%	1	12/13/2012 0:06
2-Fluorobiphenyl	82.0		40.0-140	%	1	12/13/2012 0:06
n-Tricosane	111		40.0-140	%	1	12/12/2012 23:37
o-Terphenyl	81.0		40.0-140	%	1	12/13/2012 0:06

Batch Information

Analytical Batch: XGC2788

Analytical Method: MADEP EPH Instrument: GC6

Analyst: DTF

Prep Batch: XXX3393

Prep Method: **SW-846 3541/8015 EPH**Prep Date/Time: **12/11/2012 13:13**Prep Initial Wt./Vol.: **12.43** g

Prep Extract Vol: 10 mL

REPORTS TO:

INVOICE TO: Sam

LAB NO.

CHAIN OF CUSTODY RECORD SGS North America Inc.

Locations Nationwide

105968

www.us.sgs.com

• Maryland • New York • Ohio

AlaskaNew JerseyNorth Carolina

Hald succeptive ABSENT) the sia, va, BPH, VRH 4.8 3 REMARKS Samples Received Cold? (Circle) (ES) P Chain of Custody Seal: (Circle) BROKEN Temperature°C: 5.2 PAGE_ 3 12038pm 14/11/21 INTACT 3403948 Special Deliverable Requirements: Shipping Ticket No: FCC 6X. AUA ٧٥ر \times メ Special Instructions: 2013 Shipping Carrier: 680 Preservatives Usod Analysis Required (c) SGS Reference: SAMPLE 200 PMD GRAB D Ś M 3 \sim 002F4-2m40 MATRIX 500 PHONE NO:(414) 873- 221 35781.12 wBS E-lement Received By: Received By: Received By: 13:45 14130 51.01 10:48 00;51 2:5 1:45 16:07 6,49 00:21 TIME 12//82/12 10100 1/30/(2 /600 DATE Time Time SITE/PWSID#: CLIENT: TELLOCON CONSULTABILITS tapera ue eterracon.comfaxno: 7,20 Date Date SAMPLE IDENTIFICATION CONTACT. Thomas Perdu Collected/Religewished By:(1) 5-5 2-10 PROJECT 5125 5-3 らな パー から 8-4 2-7 5-8 31203892-00A 5-4 Iquished By: (2) Relinquished By: (3)

© 200 W. Potter Drive Anchorage, AK 99518 Tel: (907) 562-2343 Fax: (907) 56∮5301 © 5500 Business Drive WilmIngton, NC 28405 Tel: (910) 350-1903 Fax: (910) ∖850-1557

White - Retained by Lab Pink - Retained by Client

STD

Date Needed

Requested Turnaround Time:

Marina Miller Men

1250/1251 XI

Received By:

Time

Date

Relinquished By: (4)

Page 23 of 26

CHAIN OF CUSTODY RECORD SGS North America Inc.

 Maryland
 New York
 Ohio Locations Nationwide AlaskaNew JerseyNorth Carolina

105967

www.us.sgs.com

3/2/503/5

CLIENT:	CLIENT: TO CONTACT CALC	70		SGS Reference:		
CONTACT	40	IE NO: (9/8) &	1, C C - S C > (a/a)	1.	3/2028/5/1/1/10	PAGE OF
PBO IECT:		- #USWGIZE	1000	No SAMPLE	Presenctives USed	
	/ SS /	wolch.				
REPORTS TO:	REPORTS TO:			J O Z	<u> </u>	
49/6/90	FAXN	10.:((3)	
INVOICE TO:	→ auote#:	TE #:		A GRAB		
7 7		P.O. NUMBER:		Z W	A / 12 / 10 / 10 / 10 / 10 / 10 / 10 / 10	- A
LAB NO.	SAMPLE IDENTIFICATION	DATE	TIME MATRIX	-	八京外经河口	S
	5-1/	21/62/11	16:21 50;	_	XX	
	21-5	2//2/1	16:30	2	×	
	51-5	2/1/2/11	00:71	>	X	
	41-5		_	~	X	
3003892-0V	lii	-	27:6	ν	×××××××	Hold SVALIVELEPHINE
	91-5		9:30	3	XX	
	Kerry	1				
3123592-017	dx 5-18	A	10:18	/ 5	XXXXXX	Hab SWGVAC, EPH, YPH
į				→		
	Collected/Relinquished By:(1) Date	Time	Required By:	•	Shipping Carrier:	Sircle YES NO
	11/30	11/50/12 10:40	Control	4.	Shipping Ticket No:	Temperaturo'C: 5.2 \ 9 4.8
Relinguished By: (2)	5	11/80/12 1600	Received By:		Special Deliverable Requirements:	Chain of Custody Seal: (Circle)
Relinquished By: (3)		Time	Received By:		Special Instructions:	
oden serio	250	Ţ,	Doorwood Day			
Kelinquished by: (4)) (750) 7)-1, (037)	GCO IX NAT.	Ore IN NOT NICKED THE	Requested Turnaround Time: XRUSH 12/5 2	атр ———

© 200 W. Potter Drive Anchorage, AK 99518 Tel: (907) 562-2343 Fax: (907) 567-5501 © 5500 Business Drive Wilmington, NC 28405 Tel: (910) 350-1903 Fax: (910) \$50-1557

White - Retained by Lab Pink - Retained by Client

Page 24 of 26

CHAIN OF CUSTODY RECORD SGS North America Inc.

 Maryland
 New York
 Ohio Locations Nationwide AlaskaNew JerseyNorth Carolina

www.us.sgs.com 3/203948

105505

4.8 (ABSENT) M Samples Received Cold? (Circle)(YES) NO REMARKS Temperature °C: 5.2, 1.7 A H Chain of Custody Seal: (Circle) 3 BROKEN □STD PAGE 312038920 12/1/2 INTACT Special Deliverable Requirements: Requested Turnaround Time: Special Instructions: Shipping Ticket No: Shipping Carrier: □ RUSH_ Analysis Required (5) SGS Reference: SAMPLE GRAB GRAB 5 Berna Willia Plan 160 N 002F4-2mK0 5 MATRIX S PHONE NO: (419) 873-221 Received By: Received By: Received By: 12:30 11.30 12:00 TIME 15/20/12 10:00 1030 Date | Time 1/3c/12 | 1.00 DATE Time Time P.O. NUMBER: SITE/PWSID#: takerdur@tendem.comfaxno: Date 11/54/12 18 QUOTE #: 12:17 CLIENT PERACON CONSULTANTS Date Date SAMPLE IDENTIFICATION CONTACT TROUBLE REPORT GW-3 5-MO Collected/Retinquished By:(1) (OW-PROJECT: 7525 REPORTS TO: Relinquished By: (3) Relinquished By: (4) 5a m2 INVOICE TO: LAB NO.

🗅 200 W. Potter Drive **Anchorage, AK 99518** Tel: (907) 562-2343 Fax: (907) **\$**61/5301 🗅 5500 Business Drive **Wilmington, NC 28405** Tel: (910) 350-1903 Fax: (910) **3**50-1557

Page 25 of 26

SGS North America Inc.

Sample Receipt Checklist (SRC)

Client:	NCDOT-Terracon	Work Order No.:	31203948
1.	X Shipped Hand Delivered	Notes:	
2.	X COC Present on Receipt No COC Additional Transmittal Forms		
3.	Custody Tape on Container X No Custody Tape		
4.	X Samples Intact Samples Broken / Leaking		
5.	X Chilled on Receipt Actual Temp.(s) in a Ambient on Receipt Walk-in on Ice; Coming down to temp. Received Outside of Temperature Specific		
6.	X Sufficient Sample Submitted Insufficient Sample Submitted		
7.	Chlorine absent HNO3 < 2 HCL < 2 Additional Preservatives verified (see notes)		
8.	X Received Within Holding Time Not Received Within Holding Time		
9.	X No Discrepancies Noted Discrepancies Noted NCDENR notified of Discrepancies*		
10.	No Headspace present in VOC vials Headspace present in VOC vials >6mm		
Comments: _	Relog of 31203892.		
	Insp	pected and Logged in by: JJ Date:	Fri-12/7/12 00:00