STATE STATE PROJECT REFERENCE NO. NOTE: SEE SHEET 2A FOR PLAN SHEET STATE OF NORTH CAROLINA N.C. B-5101 ð LAYOUT AT TIME OF INVESTIGATION DEPARTMENT OF TRANSPORTATION STATE PROLNO. 42223.1.1 BRZ-1149(5) PE DIVISION OF HIGHWAYS 42223.2.1 **CONTENTS** BRZ-1149(5) RW, UTL. GEOTECHNICAL ENGINEERING UNIT 42223,3.FD1 BRZ-1149(5) CONST. PLAN PROFILE XSECT LINE STATION 13+25 - 20+00 **ROADWAY CAUTION NOTICE** THE SUBSURFACE INFORMATION AND THE SUBSURFACE INVESTIGATION ON WHICH IT IS BASED WERE MADE FOR THE PURPOSE OF STUDY, PLANNING, AND DESIGN, AND NOT FOR CONSTRUCTION OR PAY PURPOSES. THE VARIOUS FIELD BORING LOGS, ROCK CORES, AND SOIL TEST DATA AVAILABLE MAY BE REVIEWED OR INSPECTED IN RALEIGH BY CONTACTING THE N. C. DEPARTMENT OF TRANSPORTATION, SAMPLES SUBSURFACE INVESTIGATION GEOTECHNICAL ENGINEERING UNIT AT 1919) 250-4088, NEITHER THE SUBSURFACE PLANS AND REPORTS NOR THE FIELD BORING LOGS, ROCK CORES, OR SOIL TEST DATA ARE PART OF THE CONTRACT. GENERAL SOIL AND ROCK STRATA DESCRIPTIONS AND INDICATED BOUNDARIES ARE BASED ON A GEOTECHNICAL INTERPRETATION OF ALL AVAILABLE SUBSURFACE DATA AND MAY NOT INCCESSARILY REFLECT THE ACTUAL SUBSURFACE CONDITIONS BETWEEN BORINGS OR BETWEEN SAMPLED STRATA WITHIN THE BOREHOLE. THE LABORATORY SAMPLE DATA AND THE IN SITU (IN-PLACE) TEST DATA CAN BE RELIED ON ORLY TO THE DEGREE OF RELIABILITY INHERENT IN THE STANDARD TEST METHOD. THE OBSERVED WATER LEVELS OR SOIL MOSTURE CONDITIONS INDICATED IN THE SUBSURFACE INVESTIGATIONS ARE AS RECORDED AT THE TIME OF THE INVESTIGATION. THESE WATER LEVELS OR SOIL MOISTURE CONDITIONS WERE AS RECORDED AT THE TIME OF THE INVESTIGATION. THESE WATER LEVELS OR SOIL MOISTURE CONDITIONS AND CONDITIONS MAY VARY CONSIDERABLY WITH TIME ACCORDING TO CLIMATIC CONDITIONS INCLUDING TEMPERATURES, PRECIPITATION, AND WIND, AS WELL AS OTHER NON-CLIMATIC FACTORS. PROJ. REFERENCE NO. 42223.1.1 (B-5101) _ F.A. PROJ. *BRZ-1149(5)* COUNTY CATAWBA PROJECT DESCRIPTION BRIDGE NO. 83 ON SR 1149 OVER CLARK CREEK THE BIDDER OR CONTRACTOR IS CAUTIONED THAT DETAILS SHOWN ON THE SUBSURFACE PLANS THE BIDDER OR CONTRACTOR IS CAUTIONED THAT DETAILS SHOWN ON THE SUBSURFACE PLANS ARE PRELIMINARY ONLY AND IN MANY CASES THE FIRML DESIGN DETAILS ARE DIFFERENT, FOR BIDDING AND CONSTRUCTION PURPOSES, REFER TO THE CONSTRUCTION PLANS AND DOCUMENTS FOR FINAL DESIGN INFORMATION ON THIS PROJECT. THE DEPARTMENT DOES NOT WARRANT OR QUARANTEE THE SUFFICIENCY OR ACCURACY OF THE INVESTIGATION MADE, NOR THE INTERPRETATIONS MADE, OR PHINON OF THE DEPARTMENT AS TO THE TYPE OF MATERIALS AND CONDITIONS TO BE ENCOUNTERED. THE BIDDER OR CONTRACTOR IS CAUTIONED TO MAKE SUCH INDEPENDENT SUBSURFACE INVESTIGATIONS AS HE DEEMS NECESSARY TO SATISFY HIMSELF AS TO CONDITIONS TO BE ENCOUNTERED ON THIS PROJECT. THE CONTRACTOR IS ALL HAVE NO CLAIM FOR ADDITIONAL COMPENSATION OR FOR AN EXTENSION OF TIME FOR ANY REASON RESULTING FROM THE ACTUAL CONDITIONS ENCOUNTERED AT THE SITE DIFFERING FROM THOSE INDICATED IN THE SUBSURFACE INFORMATION. INVENTORY BEGIN TIP PROJECT B-5101 -L- POT Sta. 13+25.00 PERSONNEL END TIP PROJECT B-5101 C. C. MURRAY <u>-L- POT</u> Sta. 16+17.21 J. E. ESTEP O STARTOWN BEGIN BRIDGE -L- POT Sta. 17+49.79 C203299 M. R. MOORE END BRIDGE CONOVER-STARTOWN RD INVESTIGATED BY C.B. LITTLE C. B. LITTLE SUBMITTED BY C. B. LITTLE AUGUST 2011 CAROLIA THE INFORMATION CONTAINED HEREIN IS NOT IMPLIED OR GUARANTEED BY THE N.C. DEPARTMENT - BY HAVING REQUESTED THIS INFORMATION THE CONTRACTOR SPECIFICALLY WAIVES ANY CLAIMS DRAWN BY: C. E. BURRIS /J.K. McCLURE OF TRANSPORTATION AS BEING ACCURATE NOR IT IS CONSIDERED TO BE PART OF THE PLANS, FOR INCREASED COMPENSATION OR EXTENSION OF TIME BASED ON DIFFERENCES BETWEEN THE SPECIFICATIONS, OR CONTRACT FOR THE PROJECT.

CONDITIONS INDICATED HEREIN AND THE ACTUAL CONDITIONS AT THE PROJECT SITE.

NORTH CAROLINA DEPARTMENT OF TRANSPORTATION

DIVISION OF HIGHWAYS

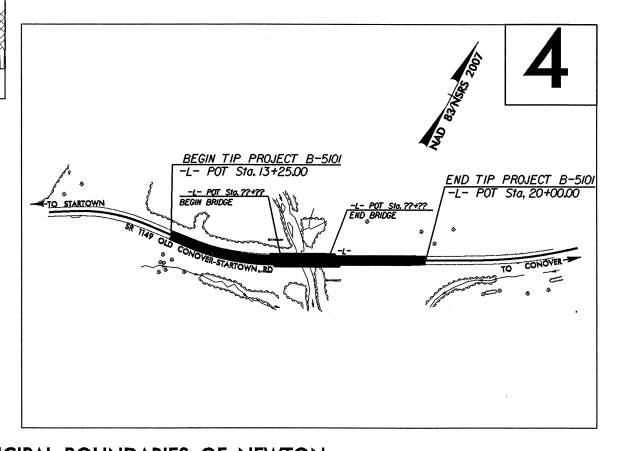
GEOTECHNICAL ENGINEERING UNIT

SUBSURFACE INVESTIGATION

	SOIL AND ROCE	LEGEND, TERMS	S, SYMBOLS, AN	D ABBREVIA	ATIONS			
SOIL DESCRIPTION	GRADATION				ESCRIPTION	TERMS AND DEFINITIONS		
SOIL IS CONSIDERED TO BE THE UNCONSOLIDATED, SEMI-CONSOLIDATED, OR WEATHERED EARTH MATERIALS THAT CAN BE PENETRATED WITH A CONTINUOUS FLIGHT POWER AUGER, AND YIELD LESS THAN 100 BLOWS PER FOOT ACCORDING TO STANDARD PENETRATION TEST (AASHTO T206, ASTM D-1586), SOIL CLASSIFICATION IS BASED ON THE AASHTO SYSTEM, BASIC DESCRIPTIONS GENERALLY SHALL INCLUDE: CONSISTENCY, COLOR, TEXTURE, MOISTURE, AASHTO CLASSIFICATION, AND OTHER PERTINENT FACTORS SUCH AS MINERALOGICAL COMPOSITION, ANGULARITY, STRUCTURE, PLASTICITY, ETC. EXAMPLE:	MELL GRADED - INDICATES A GOOD REPRESENTATION OF PARTICLE SIZES FROM UNIFORM - INDICATES THAT SOIL PARTICLES ARE ALL APPROXIMATELY THE SAI POORLY GRADED - INDICATES A MIXTURE OF UNIFORM PARTICLES OF TWO OR MORE ANGULARITY OF GRAINS THE ANGULARITY OR ROUNDNESS OF SOIL GRAINS IS DESIGNATED BY THE TER	ME SIZE. (ALSO	ROCK LINE INDICATES THE SPT REFUSAL IS PENETRAT	E LEVEL AT WHICH NON-CO TION BY A SPLIT SPOON S ATERIAL, THE TRANSITION	IF TESTED, WOULD YIELD SPT REFUSAL. AN INFERRED ASTAL PLAIN MATERIAL. WOULD YIELD SPT REFUSAL. AMPLER EQUAL TO OR LESS THAN BL FOOT PER 60 BLOWS. BETWEEN SOIL AND ROCK IS OFTEN REPRESENTED BY A ZONE WS:	ARGILLACEOUS - APPLIED TO ALL ROCKS OR SUBSTANCES COMPOSED OF CLAY MINERALS,		
VERY STEFF, GRAV, SUTY CLA, MOST WITH INTERGEDDED FINE SAND LIVERS, HISHLY PLASTIC, 4-7-6	SUBANGULAR, SUBROUNDED, OR ROUNDED.	HIVOULHITS	WEATHERED ROCK (WR)	NON-COASTAL PLA BLOWS PER FOOT	IN MATERIAL THAT WOULD YIELD SPT N VALUES > 100	OR HAVING A NOTABLE PROPORTION OF CLAY IN THEIR COMPOSITION, AS SHALE, SLATE, ETC. ARTESIAN - GROUND WATER THAT IS UNDER SUFFICIENT PRESSURE TO RISE ABOVE THE LEVEL		
SOIL LEGEND AND AASHTO CLASSIFICATION GENERAL GRANULAR MATERIALS SILT-CLAY MATERIALS CLASS. (≤ 35% PASSING *200) (> 35% PASSING *200) ORGANIC MATERIALS	MINERAL OGICAL COMPOSITION MINERAL NAMES SUCH AS QUARTZ, FELOSPAR, MICA, TALC, KAOLIN, ETC. ARE USED WHENEVER THEY ARE CONSIDERED OF SIGNIFICANCE.	O IN DESCRIPTIONS	CRYSTALLINE ROCK (CR)	FINE TO COARSE (WOULD YIELD SPT GNEISS, GABBRO, SO	GRAIN IGNEOUS AND METAMORPHIC ROCK THAT REFUSAL IF TESTED. ROCK TYPE INCLUDES GRANITE, CHIST, ETC.	AT WHICH IT IS ENCOUNTERED, BUT WHICH DOES NOT NECESSARILY RISE TO OR ABOVE THE GROUND SURFACE. CALCAREOUS (CALC.) - SOILS THAT CONTAIN APPRECIABLE AMOUNTS OF CALCIUM CARBONATE.		
GROUP A-1 A-3 A-2 A-4 A-5 A-6 A-7 A-1, A-2 A-4, A-5 CLASS. A-1-0 A-1-b A-2-4 A-2-5 A-2-6 A-2-7 A-3 A-6, A-7	COMPRESSIBILITY SLIGHTLY COMPRESSIBLE LIQUID LIMIT LES	CC TUAL OI	NON-CRYSTALLINE ROCK (NCR)	SEDIMENTARY ROCK	GRAIN METAMORPHIC AND NON-COASTAL PLAIN K THAT WOULD YEILD SPT REFUSAL IF TESTED. ROCK TYPE E, SLATE, SANDSTONE, ETC.	COLLUVIUM - ROCK FRAGMENTS MIXED WITH SOIL DEPOSITED BY GRAVITY ON SLOPE OR AT BOTTOM OF SLOPE.		
SYMBOL 0000 0000 0000 0000 0000 0000 0000 0	MODERATELY COMPRESSIBLE LIQUID LIMIT LEG HIGHLY COMPRESSIBLE LIQUID LIMIT EQU PERCENTAGE OF MATERIAL	JAL TO 31-50	CDASTAL PLAIN SEDIMENTARY ROCK (CP)	COASTAL PLAIN SE	ELSLATE, SHINDS TONE, ETC. EDIMENTS CEMENTED INTO ROCK, BUT MAY NOT YIELD KK TYPE INCLUDES LIMESTONE, SANDSTONE, CEMENTED	CORE RECOVERY (REC.) - TOTAL LENGTH OF ALL MATERIAL RECOVERED IN THE CORE BARREL DIVIDED BY TOTAL LENGTH OF CORE RUN AND EXPRESSED AS A PERCENTAGE.		
# 10 58 MX GRANULAR CLAY PEAT	OPCANIC MATERIAL GRANULAR SILT - CLAY	HER MATERIAL		WEAT	THERING	DIKE - A TABULAR BODY OF IGNEOUS ROCK THAT CUTS ACROSS THE STRUCTURE OF ADJACENT ROCKS OR CUTS MASSIVE ROCK.		
* 40 39 MX 58 MX 51 MN	SOILS SOILS SOILS TRACE OF ORGANIC MATTER 2 - 3½ 3 - 5½ TRACE LITTLE ORGANIC MATTER 3 - 5½ 5 - 12½ LITTLE	1 - 10%	FRESH ROCK FRESH, CF HAMMER IF CRY		NTS MAY SHOW SLIGHT STAINING. ROCK RINGS UNDER	DIP - THE ANGLE AT WHICH A STRATUM OR ANY PLANAR FEATURE IS INCLINED FROM THE HORIZONTAL.		
10000 LIMIT	MDDERATELY ORGANIC 5 - 10% 12 - 20% SOME HIGHLY ORGANIC >10% >20% HIGHLY	20 - 35%		A BROKEN SPECIMEN FACE	D, SOME JOINTS MAY SHOW THIN CLAY COATINGS IF OPEN, SHINE BRIGHTLY. ROCK RINGS UNDER HAMMER BLOWS IF	<u>DIP DIRECTION (DIP AZIMUTH) -</u> THE DIRECTION OR BEARING OF THE HORIZONTAL TRACE OF THE LINE OF DIP, MEASURED CLOCKWISE FROM NORTH.		
USUAL TYPES STORE FRAGS. FINE SILTY OR CLAYEY SILTY CLAYEY ORGANIC SOILS	C GROUND WATER WATER LEVEL IN BORE HOLE IMMEDIATELY AFTER DRILLI	LING	(SLI.) 1 INCH. OPEN J	JOINTS MAY CONTAIN CLAY	O AND DISCOLORATION EXTENDS INTO ROCK UP TO IN GRAN)TOID ROCKS SOME OCCASIONAL FELDSPAR	FAULT - A FRACTURE OR FRACTURE ZONE ALONG WHICH THERE HAS BEEN DISPLACEMENT OF THE SIDES RELATIVE TO ONE ANOTHER PARALLEL TO THE FRACTURE.		
OF MAJOR GRAVEL AND SAND GRAVEL AND SAND SOILS SOILS MATTER	STATIC WATER LEVEL AFTER 24 HOURS				CRYSTALLINE ROCKS RING UNDER HAMMER BLOWS. ISCOLORATION AND WEATHERING EFFECTS. IN	FISSILE - A PROPERTY OF SPLITTING ALONG CLOSELY SPACED PARALLEL PLANES. FLOAT - ROCK FRAGMENTS ON SURFACE NEAR THEIR ORIGINAL POSITION AND DISLODGED FROM		
GEN. RATING AS A EXCELLENT TO GOOD FAIR TO POOR FAIR TO POOR POOR UNSUITABLE SUBGRADE	PERCHED WATER, SATURATED ZONE, OR WATER BEARING S SPRING OR SEEP	STRATA	(MDD.) GRANITOID ROC	CKS, MOST FELDSPARS ARE UNDER HAMMER BLOWS AND	DULL AND DISCOLORED, SOME SHOW CLAY, ROCK HAS SHOWS SIGNIFICANT LOSS OF STRENGTH AS COMPARED	PARENT MATERIAL. FLOOD PLAIN (FP) - LAND BORDERING A STREAM, BUILT OF SEDIMENTS DEPOSITED BY		
PI OF A-7-5 SUBGROUP IS ≤ LL - 30; PI OF A-7-6 SUBGROUP IS > LL - 30 CONSISTENCY OR DENSENESS	MISCELLANEOUS SYMBOLS		SEVERE AND DISCOLORE	ED AND A MAJORITY SHOW	OR STAINED, IN GRANITOID ROCKS, ALL FELDSPARS DULL KAOLINIZATION, ROCK SHOWS SEVERE LOSS OF STRENGTH	THE STREAM. FORMATION (FM.) - A MAPPABLE GEOLOGIC UNIT THAT CAN BE RECOGNIZED AND TRACED IN		
PRIMARY SOIL TYPE COMPACTNESS OR CONSISTENCY RANGE OF STANDARD PENETRATION RESISTENCE COMPRESSIVE STRENGTH	ROADWAY EMBANKMENT (RE) WITH SOIL DESCRIPTION POPT DATE TEST BORING WITH SOIL DESCRIPTION	TEST BORING		XCAVATED WITH A GEOLOGI IULD YIELD SPT REFUSAL	IST'S PICK. ROCK GIVES "CLUNK" SDUND WHEN STRUCK.	THE FIELD. JOINT - FRACTURE IN ROCK ALONG WHICH NO APPRECIABLE MOVEMENT HAS OCCURRED.		
GENERALLY VERY LOOSE (4	SOIL SYMBOL AUGER BORING	SPT N-VALUE	(SEV.) IN STRENGTH T	TO STRONG SOIL. IN GRANI	OR STAINED. ROCK FABRIC CLEAR AND EVIDENT BUT REDUCED ITOID ROCKS ALL FELDSPARS ARE KADLINIZED TO SOME	LEDGE - A SHELF-LIKE RIDGE OR PROJECTION OF ROCK WHOSE THICKNESS IS SMALL COMPARED TO ITS LATERAL EXTENT.		
LOSE	ARTIFICIAL FILL (AF) OTHER THAN ROADWAY EMBANKMENT INFERRED SOIL BOUNDARY MONITORING WELL PIZZONE INFERRED BOCK LINE A PIEZOMETER	REF)— SPT REFUSAL	VERY SEVERE ALL ROCK EXCE (V SEV.) THE MASS IS E REMAINING. SAF	EFFECTIVELY REDUCED TO PROLITE IS AN EXAMPLE O		LENS - A BODY OF SOIL OR ROCK THAT THINS OUT IN ONE OR MORE DIRECTIONS. MOTTLED (MOT.)- IRREGULARLY MARKED WITH SPOTS OF DIFFERENT COLORS, MOTTLING IN SOILS USUALLY INDICATES POOR AFRATION AND LACK OF GOOD DRAINAGE. PERCHED WATER - WATER MAINTAINED ABOVE THE NORMAL GROUND WATER LEVEL BY THE PRESENCE OF AN INTERVENING IMPERVIOUS STRATUM.		
SILT-CLAY	INSTALLATION ****** ALLUVIAL SOIL BOUNDARY SLOPE INDICATOR	,	COMPLETE ROCK REDUCED	TO SOIL. ROCK FABRIC NO	OT DISCERNIBLE, OR DISCERNIBLE ONLY IN SMALL AND BY PRESENT AS DIKES OR STRINGERS, SAPROLITE IS	RESIDUAL (RES.) SOIL - SOIL FORMED IN PLACE BY THE WEATHERING OF ROCK. ROCK QUALITY DESIGNATION (ROD) - A MEASURE OF ROCK QUALITY DESCRIBED BY TOTAL LENGTH OF		
HARD >30 >4	25/025 DIP & DIP DIRECTION OF ROCK STRUCTURES INSTALLATION TO INSTALLATION CONE PENETROMETEI	:D TEST	ALSO AN EXAMP		HARDNESS	ROCK SEGMENTS EQUAL TO OR GREATER THAN 4 INCHES DIVIDED BY THE TOTAL LENGTH OF CORE RUN AND EXPRESSED AS A PERCENTAGE.		
TEXTURE OR GRAIN SIZE U.S. STD. SIEVE SIZE	Sounding Rod			SCRATCHED BY KNIFE OR SI	HARP PICK. BREAKING OF HAND SPECIMENS REQUIRES	SAPROLITE (SAP.) - RESIDUAL SOIL THAT RETAINS THE RELIC STRUCTURE OR FABRIC OF THE PARENT ROCK.		
0PENING (MM) 4.76 2.00 0.42 0.25 0.075 0.053	ABBREVIATIONS		HARD CAN BE SCRAT	RD BLOWS OF THE GEOLOGIS NTCHED BY KNIFE OR PICK NAND SPECIMEN.	ONLY WITH DIFFICULTY. HARD HAMMER BLOWS REQUIRED	SILL - AN INTRUSIVE BODY OF IGNEOUS ROCK OF APPROXIMATELY UNIFORM THICKNESS AND RELATIVELY THIN COMPARED WITH ITS LATERAL EXTERT, THAT HAS BEEN EMPLACED PARALLEL TO THE BEDDING OR SCHISTOSITY OF THE INTRUDED ROCKS.		
BOULDER COBBLE GRAVEL SAND SAND SILT CLAY	AR - AUGER REFUSAL MED MEDIUM BT - BORING TERMINATED MICA MICACEOUS CL CLAY MOD MODERATELY	VST - VANE SHEAR TEST WEA WEATHERED 7 - UNIT WEIGHT		BY HARD BLOW OF A GEOLO	GOUGES OR GROOVES TO 0.25 INCHES DEEP CAN BE DGIST'S PICK, HAND SPECIMENS CAN BE DETACHED	SLICKENSIDE - POLISHED AND STRIATED SURFACE THAT RESULTS FROM FRICTION ALONG A FAULT OR SLIP PLANE.		
SOIL MOISTURE - CORRELATION OF TERMS	CPT - CONE PENETRATION TEST NP - NON PLASTIC CSE COARSE DMT - DILATOMETER TEST DPT - DYNAMIC PENETRATION TEST SAP SAPROLITIC	7d- DRY UNIT WEIGHT SAMPLE ABBREVIATIONS S - BULK	MEDIUM CAN BE GROOM HARD CAN BE EXCAN	OVED OR GOUGED 0.05 INCH	ES DEEP BY FIRM PRESSURE OF KNIFE OR PICK POINT. D PEICES 1 INCH MAXIMUM SIZE BY HARD BLOWS OF THE	STANDARD PENETRATION TEST (PENETRATION RESISTANCE) (SPT) - NUMBER OF BLOWS (N OR BPF) OF A 140 LB. HAMMER FALLING 30 INCHES REQUIRED TO PRODUCE A PENETRATION OF 1 FOOT INTO SOIL WITH A 2 INCH OUTSIDE DIAMETER SPLIT SPOON SAMPLER, SPT REFUSAL IS PENETRATION EQUAL TO OR LESS THAN 0.1 FOOT PER 60 BLOWS.		
SOIL MOISTURE SCALE FIELD MOISTURE GUIDE FOR FIELD MOISTURE DESCRIPTION - SATURATED - USUALLY LIQUID; VERY WET, USUALLY	N e - VOID RATIO SD SAND, SANDY F - FINE SL SLIT, SILTY FOSS FOSSILIFEROUS SLI SLIGHTLY	SS - SPLIT SPOON ST - 9HELBY TUBE RS - ROCK	FROM CHIPS 1		Y KNIFE OR PICK. CAN BE EXCAVATED IN FRAGMENTS ZE BY MODERATE BLOWS OF A PICK POINT. SMALL, THIN ESSURE.	STRATA CORE RECOVERY ISREC TOTAL LENGTH OF STRATA MATERIAL RECOVERED DIVIDED BY TOTAL LENGTH DF STRATUM AND EXPRESSED AS A PERCENTAGE.		
LL LIQUID LIMIT (SAT.) FROM BELOW THE GROUND WATER TABLE	FRACS FRACTURED, FRACTURES TCR - TRICONE REFUSAL FRAGS FRAGMENTS ## - MOISTURE CONTENT HI HIGHLY V - VERY	RT - RECOMPACTED TRIAXIAL CBR - CALIFORNIA BEARING RATIO			XCAVATED READILY WITH POINT OF PICK, PIECES 1 INCH 8 BY FINGER PRESSURE, CAN BE SCRATCHED READILY BY	STRATA ROCK QUALITY DESIGNATION (SROD) - A MEASURE OF ROCK QUALITY DESCRIBED BY TOTAL LENGTH OF ROCK SEGMENTS WITHIN A STRATUM EQUAL TO OR GREATER THAN 4 INCHES DIVIDED BY THE TOTAL LENGTH OF STRATA AND EXPRESSED AS A PERCENTAGE.		
RANGE - WET - (W) SEMISULIDE REDUIRES DRYING TO	EQUIPMENT USED ON SUBJECT PRO	DJECT	FRACTURE S	PACING	BEDDING	TOPSOIL (TS.) - SURFACE SOILS USUALLY CONTAINING ORGANIC MATTER.		
PLC PERSONE CAPALITY	DATE ON 131	HAMMER TYPE: X AUTOMATIC MANUAL	TERM VERY WIDE M	SPACING MORE THAN 10 FEET	TERM THICKNESS VERY THICKLY BEDDED > 4 FEET	BENCH MARK:		
OM OPTIMUM MOISTURE - MOIST - (M) SOLID; AT OR NEAR OPTIMUM MOISTURE SL SHRINKAGE LIMIT	MOBILE B- LLAY BITS	X HOTOMATIC MANORE	MODERATELY CLOSE 1	3 TO 10 FEET I TO 3 FEET	THICKLY BEDDED 1.5 - 4 FEET THINLY BEDDED 0.16 - 1.5 FEET VERY THINLY BEDDED 0.03 - 0.16 FEET	ELEVATION: FT.		
- DRY - (D) REQUIRES ADDITIONAL WATER TO ATTAIN OPTIMUM MOISTURE		CORE SIZE:		0.16 TO 1 FEET LESS THAN 0.16 FEET	VERY THINLY BEDDED 0.03 - 0.16 FEET THICKLY LAMINATED 0.008 - 0.03 FEET THINLY LAMINATED < 0.008 FEET	NOTES: AUTOMATIC HAMMER EFFICIENCY RECORD		
PLASTICITY			FOD CEDIMENTARY POOR		RATION	AUTOMATIC HAMMER: HF00066		
PLASTICITY INDEX (PI) DRY STRENGTH NONPLASTIC 8-5 VERY LOW	X TUNGCARBIDE INSERTS				G OF THE MATERIAL BY CEMENTING, HEAT, PRESSURE, ETC. VITH FINGER FREES NUMEROUS GRAINS:	EFFICIENCY: 81% TEST DATE: 09/02/09		
LOW PLASTICITY 6-15 SLIGHT MED. PLASTICITY 16-25 MEDIUM	CASING W/ ADVANCER	HAND TOOLS:	FRIABLE	GENTLE BL	DW BY HAMMER DISINTEGRATES SAMPLE.	REPORT NO.: GRL 099065-I		
HIGH PLASTICITY 26 OR MORE HIGH	PORTABLE HOIST TRICONE STEEL TEETH TRICONE TUNG,-CARB.	POST HOLE DIGGER HAND AUGER	MODERATELY INDUR		IN BE SEPARATED FROM SAMPLE WITH STEEL PROBE; ASILY WHEN HIT WITH HAMMER.	PROFILE INFERRED STRATIGRAPHY DRAWN THRU BORINGS		
COLOR DESCRIPTIONS MAY INCLUDE COLOR OR COLOR COMBINATIONS (TAN, RED, YELLOW-BROWN, BLUE-GRAY).	CORE BIT	SOUNDING ROD	INDURATED		RE DIFFICULT TO SEPARATE WITH STEEL PROBE: TO BREAK WITH HAMMER.	BORING ELEVATIONS OBTAINED FROM B5101_LS_TIN.TIN		
MODIFIERS SUCH AS LIGHT, DARK, STREAKED, ETC. ARE USED TO DESCRIBE APPEARANCE.		VANE SHEAR TEST	EXTREMELY INDURA	ATED SHARP HAI	MMER BLOWS REQUIRED TO BREAK SAMPLE; REAKS ACROSS GRAINS.			
						DEVISED 09 (27 /09		

PROJECT AREA PR VICINITY MAP DETOUR

STATE OF NORTH CAROLINA DIVISION OF HIGHWAYS


CATAWBA COUNTY

LOCATION: BRIDGE NO. 83 ON SR 1149 OVER CLARK CREEK

TYPE OF WORK: GRADING, PAVING, DRAINAGE, AND STRUCTURE

BTATE	STAT	E PROJECT REPERENCE NO.	NO.	SHEETS				
N.C.		B-5101	2A					
STAT	B PROLNO.	P. A. PROJ. NO.	DESCRIPT	ION				
42	223.1.1	BRZ-1149(5)	PE					
42	223.2.1	BRZ-1149(5)	RW, UTL.					
42	223.3.1	BRZ-1149(5)	CONST.					

	···							

THIS PROJECT IS WITHIN THE MUNICIPAL BOUNDARIES OF NEWTON. CLEARING ON THIS PROJECT SHALL BE PERFORMED BY THE LIMITS ESTABLISHED BY METHOD

INCOMPLETE PLANS
DO NOT USE FOR R/W ACQUISITION PRELIMINARY PLANS
DO NOT USE FOR CONSTRUCTION

DIVISION OF HIGHWAYS STATE OF NORTH CAROLINA

GRAPHIC SCALES DESIGN DATA ADT 2011 = 6260 ADT 2035 = 9400 DHV = 11% D = 65%T = 4% * V = 50 MPHFunc Class: URBAN MINOR ARTERIAL PROFILE (HORIZONTAL) Subregional Tier PROFILE (VERTICAL) * TTST 1% DUAL 3%

PROJECT LENGTH

Length Roadway TIP Project B-5101 = Length Structure TIP Project B-5101 = Total Length TIP Project B-5101 = 0.128 mi

Prepared in the Office of: **DIVISION OF HIGHWAYS** 1000 Birch Ridge Dr., Raleigh NC, 27610

2006 STANDARD SPECIFICATIONS RIGHT OF WAY DATE: **DECEMBER 24, 2013**

LETTING DATE: JANUARY 20, 2015 JASON MOORE, P.E.
PROJECT ENGINEER

JEANIE TYSON

HYDRAULICS ENGINEER

ROADWAY DESIGN

ENGINEER

				THE RESERVE AND A STATE OF THE	Earthy	vork B	alance	Sheet						
DD CWCC D 5101	COLDINA	0.4.1					Cubic Yard		WDII FIN FIL				CIDET OF	CITETTO
PROJECT: B-5101	COUNTY:	Catawba		-	DATE:	9/19/	/2013	CO	MPILED BY:	SI	eC		SHEETOF	5HEE15
		EXCAVATIO	N	1	EMBANKMENT						WA	STE		
STATION STATION	TOTAL	ROCK	UNDERCUT	UNSUIT.	SUITABLE	TOTAL	ROCK	EARTH	EMBANK.	BORROW	ROCK	SUITABLE	UNSUIT.	TOTAL
	UNCLASS.			UNCLASS.	UNCLASS.				+20%					
13+25.00 16+17.21	319				319	839		839	1,007	688				
SUBTOTAL	319				319	839		839	1,007	688				
									antanamanan marin manan manan manan marin ka					
17+49.79 19+50.00	177				177	418		418	502	325				
SUBTOTAL	177				177	418		418	502	325				
SUBIOTAL	177				177	410		410	302	323				
SUBTOTAL														
														ikadunisiahiikidunum khiikidumina
SUBTOTAL														
TOTAL	496				496 .	1,257	<u> </u>	1,257	1,508	1,012	anadamina da	Valdadas anticipalitation and anticipalitation and anticipalitation and anticipalitation and anticipalitation		a palaina a mana a Tanàna a mana a man
TOTAL	470				1 70	1,237		1,237	1,500	1,012				
LOSS DUE TO CLEARING & GRUBBING	-38				-38					38				
PROJECT TOTAL	458				458	1,257		1,257	1,508	1,050				
TROUBET TOTALE	1.50				130	1,22		1,200	1,500					
EST. 5% TO REPLACE TOP SOIL ON BORROW PIT										53				
GRAND TOTAL	458				458	1,257		1,257	1,508	1,103				
					1.50	1,201		1,201	1,500					
SAY	470									1,200				
NOTE: EARTHWORK QUANTITIES ARE CALCULA	∥ TED BY THE RO	ADWAY D	ESIGN UNIT.	 THESE EART	HWORK OUA	NTITIES AR	E BASED IN	PART ON SI	⊥ JBSURFACE D	I ATA PROVIDED	BY THE GEOTE	 CHNICAL ENGIN	EERING UNIT.	
TOTAL SHALLOW UNDERCUT	100	CY												
CLASS IV SUBGRADE STABILIZATION		TON		HOED DITTI	DICORTA	I OF THE PE	CIDENTE ENT	TATIFED						
PER GEOTECH RECOMMENDATION, ESTIMATED	SU CUBIC YARD	2 OF UNDE	EKCUI TO BE	OSED IN THE	DISCRETION	OF THE RE	SIDENT ENC	IINEEK.						

STATE OF NORTH CAROLINA DEPARTMENT OF TRANSPORTATION

BEVERLY EAVES PERDUE **GOVERNOR**

EUGENE A. CONTI, JR. SECRETARY

August 25, 2011

STATE PROJECT:

42223.1.1 (B-5101)

FEDERAL PROJECT:

BRZ-1149(5)

COUNTY:

Catawba

DESCRIPTION:

Bridge 83 on SR 1149 over Clark Creek

SUBJECT:

Geotechnical Report – Inventory

Project Description

The project location is near the city of Newton, in central Catawba County. SR 1149 (Old Conover-Startown Road) is a rural, two-lane (22' BST) roadway. The existing bridge over Clark Creek is 106' long, 25.1' wide, and three spans, built in 1952. Proposed improvements will replace the existing bridge and improve the roadway approaches. Total length of the project is 775'.

This report addresses the roadway portion of the project. The approach roadway will be widened to provide two 12' travel lanes plus 8' shoulders (4' paved shoulder). Most of the widening is in embankment section, but there is a cut section from Station 13+25 to 15+00 -L-, left side. The cuts are for ditches and back slopes – typically 3-4' deep. Maximum embankment height is on the order of 8'.

The Geotechnical Engineering Unit conducted a total of three Standard Penetration Test borings. One boring was in the cut section to determine presence of rock. The other two borings were intended to characterize the alluvial soils under the proposed widened embankments.

Areas of Special Geotechnical Interest

There were no areas of special interest.

Physiography and Geology

The existing roadway grade elevation is between 850' and 860', 851'-852' on the bridge. The streambed elevation is about 835'. The floodplain surface is near 847'. Clark Creek flows

MAILING ADDRESS: NC DEPARTMENT OF TRANSPORTATION GEOTECHNICAL ENGINEERING UNIT 1589 MAIL SERVICE CENTER RALEIGH NC 27699-1589

TELEPHONE: 919-707-6850 Fax: 919-250-4237

www.ncdot.gov/doh/preconstruct/highway/geotech

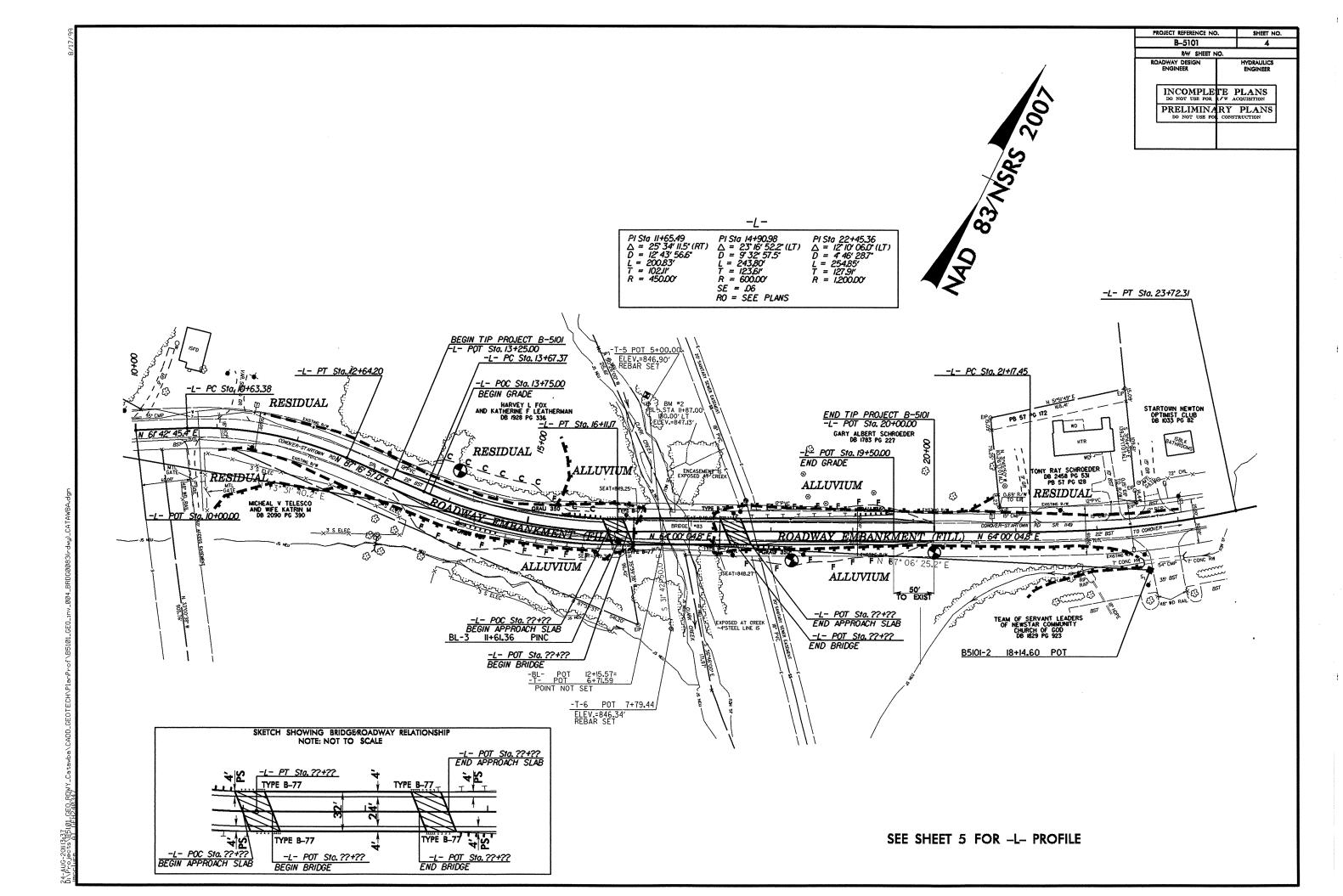
CENTURY CENTER COMPLEX **ENTRANCE B-2** 1020 BIRCH RIDGE DRIVE RALEIGH NC 27610

LOCATION:

from northwest to southeast within the project area. The stream channel is about 30' wide; depth of water is one foot or less at normal flow. Geology at the site is Inner Piedmont Belt, biotite gneiss and amphibolite. Rock core samples were not obtained. Saprolite and weathered rock samples were consistent with biotite gneiss.

Soils

The boring in the cut section (Station 14+00, 40' Lt.) encountered four feet of residual soil (v. stiff, fine sandy silt, A-4), then 10' of weathered rock, but no rock (as defined by auger or SPT refusal). The floodplain borings found alluvial soils, soft sandy clay or loose clayey sand (A-7, A-6, A-2-6) to a maximum depth of 10'. Residual soils under the alluvial deposit were very stiff sandy silt, dense silty sand, and/or weathered rock.


Groundwater

The boring at Station 14+00 was dry. The floodplain borings drew water at depths of 7' and 8', near elevation 840'.

Respectfully Submitted.

Clint Little

Project Geological Engineer

SOIL TEST RESULTS																
SAMPLE			DEPTH	AASHTO				% BY W	/EIGHT		% PASSING (SIEVES) %				%	Line or
NO.	OFFSET	STATION	INTERVAL	CLASS.	L.L.	P.I.	C.SAND	F.SAND	SILT	CLAY	10	40	200	MOISTURE	ORGANIC	Boring ID
SS-1	35 RT	18+25	0.0-1.5	A-7-5(28)	62	27	2.4	14.3	20.7	62.6	100	99	87		-	L
SS-2	35 RT	18+25	4.0-5.0	A-6(2)	39	18	36.1	27.6	10.0	26.2	96	74	38	-	•	L
SS-3	35 RT	18+25	9.0-10.5	A-2-6(0)	31	11	38.1	27.6	10.0	24.2	94	72	34	•	-	L
SS-4	35 RT	20+00	0.0-1.5	A-7-6(10)	47	27	23.4	27.9	6.4	42.4	99	86	52	-	-	L
SS-5	25 RT	20+00	4.0-5.5	A-2-6(1)	36	19	44.8	25.8	7.2	22.2	98	72	31	•	=	L
SS-6	40 LT	14+00	0.0-1.5	A-4(0)	32	NP	22.2	51.1	18.7	8.1	100	90	37	-		L
SS-7	40 LT	14+00	4.0-5.5	A-2-4(0)	31	NP	32.3	48.8	12.8	6.1	93	77	26		-	L
SS-8	40 LT	14+00	9.0-10.5	A-2-4(0)	34	NP	22.2	53.1	18.7	6.1	100	90	35		-	L

SHEET NO.

6