3

4400

20

3680.

3

DRAWN BY: Roya Rahie

CONTENTS

DESCRIPTION

LEGEND BORING LOCATION PLAN

4 PROFILE ALONG CENTERLINE
5 CROSS SECTION ALONG END BENT I

6 CROSS SECTION ALONG BENT I
7 CROSS SECTION ALONG BENT 2

8 CROSS SECTION ALONG END BENT 2
9-15 BORE LOG, CORE REPORTS AND CORE PHOTOGRAPHS

16 ROCK TEST RESULTS17-18 SITE PHOTOGRAPHS

STATE OF NORTH CAROLINA

DEPARTMENT OF TRANSPORTATION
DIVISION OF HIGHWAYS
GEOTECHNICAL ENGINEERING UNIT

STRUCTURE SUBSURFACE INVESTIGATION

PROJ. REFERENCE NO. 33680.1.1 (B-4400) F.A. PROJ. BRZ-1122(4)

COUNTY ALAMANCE

PROJECT DESCRIPTION BRIDGE NO. 160 ON SR 1122 (EULISS RD.)

OVER SOUTH PRONG OF STINKING QUARTER CREEK

N.C. 33680.1.1 1 18

CAUTION NOTICE

THE SUBSURFACE INFORMATION AND THE SUBSURFACE INVESTIGATION ON WHICH IT IS BASED WERE MADE FOR THE PURPOSE OF STUDY, PLANNING, AND DESIGN, AND NOT FOR CONSTRUCTION OR PAY PURPOSES. THE VARIOUS FIELD BORNING LOGS, ROCK CORES, AND SOL TEST DATA AVAILABLE MAY BE REVIEWED OR INSPECTED IN RALEIGH BY CONTACTING THE N. C. DEPARTMENT OF TRANSPORTATION, GEOTECHNICAL ENGINEERING UNIT AT 1919) 707-6850. NEITHER THE SUBSURFACE PLANS AND REPORTS, NOR THE FIELD BORNIG LOGS, ROCK CORES, OR SOLL TEST DATA ARE PART OF THE CONTRACT.

GENERAL SOIL AND ROCK STRATA DESCRIPTIONS AND INDICATED BOUNDARIES ARE BASED ON A GEOTECHNICAL INTERPRETATION OF ALL AVALABLE SUBSURFACE DATA AND MAY NOT NECESSARILY REFLECT THE ACTUAL SUBSURFACE CONDITIONS BETWEEN BORNGS OR BETWEEN SAMPLED STRATA WITHIN THE BORENOLE, THE LABORATORY SAMPLE DATA AND THE IN STIL IN-PLACED TEST DATA CAN BE RELIED ON ONLY TO THE DEGREE OF RELIABILITY NHERENT IN THE STANDARD TEST METHOD. THE OBSERVED WATER LEVELS OR SOIL MOSITURE CONDITIONS SIDICATED IN THE SUBSURFACE INVESTICATIONS ARE AS RECORDED AT THE TIME OF THE INVESTICATION. THESE WATER LEVELS OR SOIL MOISTURE CONDITIONS TO CLIMATIC CONDITIONS TO CLIMATIC CONDITIONS TO CLIMATIC CONDITIONS TO CONDITIONS TO CHARTIC CONDITIONS TO CLIMATIC CONDITIONS TO CONDITIONS TO CONDITIONS TO CLIMATIC CONDITIONS TO CONDITIONS

THE BIDDER OR CONTRACTOR IS CAUTIONED THAT DETAILS SHOWN ON THE SUBSURFACE PLANS ARE PRELIMINARY OBLY AND IN MANY CASES THE FRAIL DESIGN DETAILS ARE DIFFERENT, FOR BIDDING AND CONSTRUCTION PURPOSES, REFER TO THE CONSTRUCTION PLANS AND DOCUMENTS FOR FINAL DESIGN INFORMATION ON THIS PROLECT. THE DEPARTMENT DOES NOT WARRANT OR GUARANTEE THE SUFFICIENCY OR ACCURACY OF THE INVESTICATION MADE, NOR THE INTERPRETATIONS MADE, OR OPINION OF THE DEPARTMENT AS TO THE TYPE OF MATERIALS AND CONDITIONS TO BE ENCOUNTERED. THE BIDDER OR CONTRACTOR IS CAUTIONED TO MAKE SUCH INDEPENDENT SUBSURFACE INVESTIGATIONS AS HE DEEMS NECESSARY TO SATISFY HIMSELF AS TO CONDITIONS TO BE ENCOUNTERED ON THIS PROJECT. THE CONTRACTOR SHALL HAVE NO CLAIM FOR ADDITIONAL COMPENSATION OR FOR AN EXTENSION OF TIME FOR ANY RESON RESULTING FROM THE ACTUAL CONDITIONS ENCOUNTERED AT THE SITE DIFFERING FROM THOSE INDICATED.

PERSONNEL

J. Howard
D. White

O. Smith

INVESTIGATED BY AMEC E&I, Inc.

NC Engineering F-0653 NC Geology C-247

CHECKED BY J. Shane Johnson

SUBMITTED BY B. Deobald

DATE 4/09/2012

AMEC Ed. Inc.
4021 STRIRLE CREEK DRIVE, SUITE 100
DURHAM, NORTH CAROLING 27705
(919) 381-9900

NOTE - THE INFORMATION CONTAINED HEREIN IS NOT IMPLIED OR GUARANTEED BY THE N. C. DEPARTMENT OF TRANSPORTATION AS BEING ACCURATE NOR IT IS CONSIDERED TO BE PART OF THE PLANS, SPECIFICATIONS, OR CONTRACT FOR THE PROJECT.

NOTE - BY HAVING REQUESTED THIS INFORMATION THE CONTRACTOR SPECIFICALLY WAIVES ANY CLAIMS
FOR INCREASED COMPENSATION OR EXTENSION OF TIME BASED ON DIFFERENCES BETWEEN THE
CONDITIONS INDICATED HEREIN AND THE ACTUAL CONDITIONS AT THE PROJECT SITE.

NORTH CAROLINA DEPARTMENT OF TRANSPORTATION

DIVISION OF HIGHWAYS

GEOTECHNICAL ENGINEERING UNIT

SUBSURFACE INVESTIGATION

	SOIL AND ROO	CK LEGEND, TERM	IS, SYMBOLS, AND A	BBREVIATIONS	
SOIL DESCRIPTION	GRADATION			ROCK DESCRIPTION	TERMS AND DEFINITIONS
SOIL IS CONSIDERED TO BE THE UNCONSOLIDATED, SEMI-CONSOLIDATED, OR WEATHERED EARTH MATERIALS THAT CAN BE PENETRATED WITH A CONTINUOUS FLICHT POWER AUGIER, AND YIELD LESS THAN 180 BLOWS PER FOOT ACCORDING TO STANDARD PENETRATION TEST (AASHTO TZ06, ASTIN D-1586). SOIL CLASSIFICATION IS BASED ON THE AASHTO SYSTEM, BASIC DESCRIPTIONS GENERALLY SHALL INCLUDE: CONSISTENCY, COLOR, TEXTURE, MOISTURE, AASHTO CLASSIFICATION, AND OTHER PERTITIENT FACTORS SUCH AS MINERALUDICAL COMPOSITION, ANGULARITY, STRUCTURE, PLASTICITY, ETC. EXAMPLE:	WELL GRADED - INDICATES A GOOD REPRESENTATION OF PARTICLE SIZES F UNIFORM - INDICATES THAT SOIL PARTICLES ARE ALL APPROXIMATELY THE POORLY GRADED) - INDICATES A MIXTURE OF UNIFORM PARTICLES OF TWO OR M ANGULARITY OF GRAINS THE ANGULARITY OR ROUNDNESS OF SOIL GRAINS IS DESIGNATED BY THE	E SAME SIZE. (ALSO MORE SIZES.	SPT REFLISAL IS PENETRATION BY	I MATERIAL THAT IF TESTED, WOULD YIELD SPT REFUSAL, AN INFERRED AT WHICH NON-COASTAL PLAIN MATERIAL WOULD YIELD SPT REFUSAL. A SPLIT SPOON SAMPLER EDUAL TO OR LESS THAN ØL FOOT PER 60 BLOWS. THE TRANSITION BETWEEN SOIL AND ROCK IS OFTEN REPRESENTED BY A ZON	ALLUYIUM (ALLUY.) - SOILS THAT HAVE BEEN TRANSPORTED BY WATER. AQUIFER - A WATER BEARING FORMATION OR STRATA. ARENACEOUS - APPLIED TO ROCKS THAT HAVE BEEN DERIVED FROM SAND OR THAT CONTAIN SAND.
VERY STIFF, GRAV, SULTY CLM. MOST WITH INTERBEDDED FINE SAND LAVERS, HIGHLY PLASTIC, A-7-6	SUBANGULAR, SUBROUNDED, OR ROUNDED.		WEATHERED CONTROL OF THE PROCESS AS A SECOND CONTRO	NON-COASTAL PLAIN MATERIAL THAT WOULD YIELD SPT N VALUES > 100	ARGILLACEOUS - APPLIED TO ALL ROCKS OR SUBSTANCES COMPOSED OF CLAY MINERALS, OR HAYING A NOTABLE PROPORTION OF CLAY IN THEIR COMPOSITION, AS SHALE, SLATE, ETC.
SOIL LEGEND AND AASHTO CLASSIFICATION GENERAL GRANULAR MATERIALS SILT-CLAY MATERIALS CLASS. (≤ 35% PASSING *200) (> 35% PASSING *200) ORGANIC MATERIALS	MINERAL DGICAL COMPOSITIO MINERAL NAMES SUCH AS QUARTZ, FELDSPAR, MICA, TALC, KAOLIN, ETC. ARE U WHENEVER THEY ARE CONSIDERED OF SIGNIFICANCE.	ON USED IN DESCRIPTIONS	CRYSTALLINE ROCK (CR)	BLOWS PER FOOT IF TESTED. FINE TO COARSE GRAIN IGNEOUS AND METAMORPHIC ROCK THAT WOULD YIELD SPT REFUSAL IF TESTED. ROCK TYPE INCLUDES GRANITE.	ARTESIAN - GROUND WATER THAT IS UNDER SUFFICIENT PRESSURE TO RISE ABOVE THE LEVEL AT WHICH IT IS ENCOUNTERED, BUT WHICH DOES NOT NECESSARILY RISE TO OR ABOVE THE GROUND SURFACE.
GROUP A-1 A-3 A-2 A-4 A-5 A-6 A-7 A-1, A-2 A-4, A-5 CLASS. A-1-a A-1-b A-2-4 A-2-5 A-2-6 A-2-7 A-1, A-2 A-4, A-5 A-6, A-7	COMPRESSIBILITY	LESS THAN 31	NON-CRYSTALLINE ROCK (NCR)	GNEISS GABBRO, SCHIST, ETC. FINET TO COAPSE GRAIN METAMORPHIC AND NON-CDASTAL PLAIN SEDIMENTARY ROCK THAT WOULD YEILD SPT REFUSAL IF TESTED. ROCK TYPE	CALCAREOUS (CALC.) - SOILS THAT CONTAIN APPRECIABLE AMOUNTS OF CALCIUM CARBONATE. COLLUTIUM - ROCK FRAGMENTS MIXED WITH SOIL DEPOSITED BY GRAVITY ON SLOPE OR AT BOTTOM
SYMBOL 0000 0000 0000 0000 0000 0000 0000 0	MUDERATELY COMPRESSIBLE LIQUID LIMIT	EQUAL TO 31-50 GREATER THAN 50	COASTAL PLAIN SEDIMENTARY ROCK	INCLUDES PHYLLITE, SLATE, SANDSTONE, ETC. COASTAL PLAIN SEDIMENTS CEMENTED INTO ROCK, BUT MAY NOT YIELD SPT REFUSAL, ROCK TYPE INCLUDES LIMESTONE, SANDSTONE, CEMENTED SHELL BEDS, ETC.	OF SLOPE. CORE RECOVERY (REC.) - TOTAL LENGTH OF ALL MATERIAL RECOVERED IN THE CORE BARREL DIVIDED BY TOTAL LENGTH OF CORE RUN AND EXPRESSED AS A PERCENTAGE.
* 10 58 MX GRANULAR SILT- MUCK CAY SOILS COV. PEAT	OPCANIC MATERIAL GRANULAR SILT - CLAY	OTHER MATERIAL		WEATHERING	DIKE - A TABULAR BODY OF IGNEOUS ROCK THAT CUTS ACROSS THE STRUCTURE OF ADJACENT ROCKS OR CUTS MASSIVE ROCK.
= 200 15 MX 25 MX 10 MX 35 MX 35 MX 35 MX 36 MX	TRACE OF ORGANIC MATTER 2 - 3% 3 - 5% TRAIL LITTLE ORGANIC MATTER 3 - 5% 5 - 12% LITTLE ORGANIC MATTER 3 - 5% 5 - 12% LITTLE	DCE 1 - 10% TLE 10 - 20%	HAMMER IF CRYSTALLII		DIP - THE ANGLE AT WHICH A STRATUM OR ANY PLANAR FEATURE IS INCLINED FROM THE HORIZONTAL.
GROUP INDEX 8 8 8 8 4 4MX 8 MX 12 MX 15 MX 10 MX	HIGHLY ORGANIC >10% >20% HIGH		(V SLI.) CRYSTALS ON A BROKE OF A CRYSTALLINE NA	H, JOINTS STAINED, SOME JOINTS MAY SHOW THIN CLAY COATINGS IF OPEN, N SPECIMEN FACE SHINE BRIGHTLY. ROCK RINGS UNDER HAMMER BLOWS IF TURE.	<u>DIP DIRECTION (DIP AZIMUTH) -</u> THE DIRECTION OR BEARING OF THE HORIZONTAL TRACE OF THE LINE OF DIP, MEASURED CLOCKWISE FROM NORTH.
USUAL TYPES STONE FRAGS. OF MAJOR GRAVEL AND MATERIALS SAND OF MAJOR GRAVEL AND SAND GRAVEL AND SAND SOILS SOILS OF MATERIALS SAND OF MATE	✓ WATER LEVEL IN BORE HOLE IMMEDIATELY AFTER DI STATIC WATER LEVEL AFTER 24 HOURS	PILLING	(SLI.) I INCH. OPEN JOINTS N	H. JOINTS STAINED AND DISCOLORATION EXTENDS INTO ROCK UP TO AY CONTAIN CLAY. IN GRANITOID ROCKS SOME OCCASIONAL FELDSPAR ND DISCOLORED. CRYSTALLINE ROCKS RING UNDER HAMMER BLOWS.	FAULT - A FRACTURE OR FRACTURE ZONE ALONG WHICH THERE HAS BEEN DISPLACEMENT OF THE SIDES RELATIVE TO ONE ANOTHER PARALLEL TO THE FRACTURE. FISSILE - A PROPERTY OF SPLITTING ALONG CLOSELY SPACED PARALLEL PLANES.
GEN.RATING AS A EXCELLENT TO GOOD FAIR TO POOR FAIR TO POOR UNSUITAL SUBGRADE	∇PW	NG STRATA	MODERATE SIGNIFICANT PORTIONS (MOD.) GRANITOID ROCKS, MOST	OF ROCK SHOW DISCOLORATION AND WEATHERING EFFECTS. IN FELDSPARS ARE DULL AND DISCOLORED SOME SHOW CLAY, ROCK HAS	FLOAT - ROCK FRACMENTS ON SURFACE NEAR THEIR ORIGINAL POSITION AND DISLOGED FROM PARENT MATERIAL.
PI OF A-7-5 SUBGROUP IS \(\text{LL} - 30 : PI OF A-7-6 SUBGROUP IS \(\text{>LL} - 30 \) CONSISTENCY OR DENSENESS	SPRING OR SEEP		WITH FRESH ROCK.	MMER BLOWS AND SHOWS SIGNIFICANT LOSS OF STRENGTH AS COMPARED RTZ DISCOLORED OR STAINED. IN GRANITOID ROCKS, ALL FELDSPARS DULL	FLOOD PLAIN (FP) - LAND BORDERING A STREAM, BUILT OF SEDIMENTS DEPOSITED BY THE STREAM.
PRIMARY SOIL TYPE COMPACTNESS OR CONSISTENCY PRETRATION RESISTENCE COMPRESSIVE STRENGTH CHARLES OF CONSISTENCY CONSISTENCY CONSISTENCY COMPRESSIVE STRENGTH CHARLES OF CONSISTENCY	MISCELLANEOUS SYMBOLS ROADWAY EMBANKMENT (RE) WITH SOIL DESCRIPTION MITH SOIL DESCRIPTION MISCELLANEOUS SYMBOLS SPT ONT TEST BORING	G TEST BORING	SEVERE AND DISCOLORED AND A	MAJORITY SHOW KAOLINIZATION. ROCK SHOWS SEVERE LOSS OF STRENGTH WITH A GEOLOGIST'S PICK. ROCK GIVES 'CLUNK' SOUND WHEN STRUCK	FORMATION (FM.) - A MAPPABLE GEOLOGIC UNIT THAT CAN BE RECOGNIZED AND TRACED IN THE FIELD.
GENERALLY VERY LOOSE <4	SOIL SYMBOL AUGER BORING	W/ CORE SPT N-VALUE	SEVERE ALL ROCK EXCEPT QUA	RTZ DISCOLORED OR STAINED ROCK FABRIC CLEAR AND EVIDENT RUT REDUCED	JOINT - FRACTURE IN ROCK ALONG WHICH NO APPRECIABLE MOVEMENT HAS OCCURRED. LEDGE - A SHELF-LIKE RIDGE OR PROJECTION OF ROCK WHOSE THICKNESS IS SMALL COMPARED TO
GRANULAR MEDIUM DENSE 10 TO 30 N/A MATERIAL DENSE 10 TO 30 N/A DENSE 30 TO 50	ARTIFICIAL FILL (AF) OTHER - CORE BORING		EXTENT. SOME FRAGME	IG SOIL. IN GRANITOID ROCKS ALL FELDSPARS ARE KAOLINIZED TO SOME ITS OF STRONG ROCK USUALLY REMAIN.	ITS LATERAL EXTENT.
VERY DENSE >50	THAN ROADWAY EMBANKMENT INFERRED SOIL BOUNDARY MONITORING WELI TITEITE INFERRED ROCK LINE PIEZOMETER PIEZOMETER	(REF)— SPT REFUSAL	VERY SEVERE ALL ROCK EXCEPT QUA (V SEV.) THE MASS IS EFFECTIV REMAINING. SAPROLITE	RTZ DISCOLORED OR STAINED. ROCK FABRIC ELEMENTS ARE DISCERNIBLE BUT ELY REDUCED TO SOIL STATUS, WITH ONLY FRAGMENTS OF STRONG ROCK IS AN EXAMPLE OF ROCK WEATHERED TO A DEGREE SUCH THAT ONLY MINOR	LENS - A BODY OF SOIL OR ROCK THAT THINS OUT IN ONE OR MORE DIRECTIONS. MOTTLED (MOT.) - IRREGULARLY MARKED WITH SPOTS OF DIFFERENT COLORS, MOTTLING IN SOILS USUALLY INDICATES POOR AERATION AND LACK OF GOOD DRAINAGE. PERCHED WATER - WATER MAINTAINED ABOVE THE NORMAL GROUND WATER LEVEL BY THE PRESENCE OF AN
SILT-CLAY MEDIUM STIFF 4 TO 8 0.5 TO 1.0 MATERIAL STIFF 8 TO 15 1 TO 2 (COHESIVE) VERY STIFF 15 TO 30 2 TO 4 HARD >30 >4	INSTALLATION TTTTT ALLUVIAL SOIL BOUNDARY SLOPE INDICATOR INSTALLATION		COMPLETE ROCK REDUCED TO SOIL	INAL ROCK FABRIC REMAIN. <u>IF TESTED, YIELDS SPT N VALUES < 100 BPF</u> . ROCK FABRIC NOT DISCERNIBLE, OR DISCERNIBLE ONLY IN SMALL AND TIONS, QUARTZ MAY BE PRESENT AS DIKES OR STRINGERS, SAPROLITE IS	INTERVENING IMPERVIOUS STRATUM. RESIDUAL (RES.) SOIL - SOIL FORMED IN PLACE BY THE WEATHERING OF ROCK. ROCK QUALITY DESIGNATION (ROD) - A MEASURE OF ROCK QUALITY DESCRIBED BY TOTAL LENGTH OF ROCK SEGMENTS EQUAL TO OR GREATER THAN 4 INCHES DIVIDED BY THE TOTAL LENGTH OF CORE RUN AND
TEXTURE OR GRAIN SIZE	ROCK STRUCTURES CONE PENETROME	ETER TEST		ROCK HARDNESS	EXPRESSED AS A PERCENTAGE.
U.S. STD. SIEVE SIZE 4 10 40 60 200 270 DPENING (MM) 4.76 2.00 0.42 0.25 0.075 0.053	SOUNDING ROD		SEVERAL HARD BLOWS	D BY KNIFE OR SHARP PICK, BREAKING OF HAND SPECIMENS REQUIRES OF THE GEOLOGIST'S PICK.	SAPROLITE (SAP.) - RESIDUAL SOIL THAT RETAINS THE RELIC STRUCTURE OR FABRIC OF THE PARENT ROCK.
BOULDER	ABBREVIATIONS AR - AUCER REFUSAL MED MEDIUM BT - BORING TERMINATED MICA MICACEOUS	VST - VANE SHEAR TEST WEA WEATHERED	TO DETACH HAND SPE		SILL - AN INTRUSIVE BODY OF IGNEOUS ROCK OF APPROXIMATELY UNIFORM THICKNESS AND RELATIVELY THIN COMPARED WITH ITS LATERAL EXTENT, THAT HAS BEEN EMPLACED PARALLEL TO THE BEDDING OR SCHISTOSITY OF THE INTRUDED ROCKS.
GRAIN MM 305 75 2.0 0.25 0.05 0.005 SIZE IN. 12 3	CL CLAY MOD MODERATELY CPT - CONE PENETRATION TEST NP - NON PLASTIC	y - UNIT WEIGHT	BY MODERATE BLOWS.	/ KNIFE OR PICK, GOUGES OR GROOVES TO 0.25 INCHES DEEP CAN BE BLOW OF A GEOLOGIST'S PICK, HAND SPECIMENS CAN BE DETACHED	SLICKENSIDE - POLISHED AND STRIATED SURFACE THAT RESULTS FROM FRICTION ALONG A FAULT OR SLIP PLANE.
SOIL MOISTURE - CORRELATION OF TERMS SOIL MOISTURE SCALE FIELD MOISTURE GUIDE FOR FIELD MOISTURE DESCRIPTION	DMT - DILATOMETER TEST PMT - PRESSUREMETER TEST DPT - DYNAMIC PENETRATION TEST SAP, - SAPROLITIC	SAMPLE ABBREVIATIONS S - BULK	MEDIUM CAN BE GROOVED OR I HARD CAN BE EXCAVATED IN POINT OF A GEOLOGIS	COUGED 0.05 INCHES DEEP BY FIRM PRESSURE OF KNIFE OR PICK POINT. I SMALL CHIPS TO PEICES I INCH MAXIMUM SIZE BY HARD BLOWS OF THE T'S PICK.	STANDARD PENETRATION TEST (PENETRATION RESISTANCE) (SPT) - NUMBER OF BLOWS (N OR BPP) OF A 148 LB. HAMMER FALLING 30 INCHES REQUIRED TO PRODUCE A PENETRATION OF I FOOT INTO SOIL WITH A 2 INCH OUTSIDE DIAMETER SPLIT SPOON SAMPLER. SPT REFUSAL IS PENETRATION EQUIAL TO OR LESS
(ATTERBERG LIMITS) DESCRIPTION - SATURATED - USUALLY LIQUID; VERY WET, USUALLY	F - FINE SL SILT, SILTY FOSS FOSSILIFEROUS SLI SLIGHTLY	SS - SPLIT SPOON ST - SHELBY TUBE RS - ROCK	FROM CHIPS TO SEVER	DUGED READILY BY KNIFE OR PICK, CAN BE EXCAVATED IN FRAGMENTS TAL INCHES IN SIZE BY MODERATE BLOWS OF A PICK POINT, SMALL, THIN N BY FINGER PRESSURE.	THAN 0.1 FOOT PER 60 BLOWS. STRATA CORE RECOVERY (SREC) - TOTAL LENGTH OF STRATA MATERIAL RECOVERED DIVIDED BY TOTAL LENGTH OF STRATUM AND EXPRESSED AS A PERCENTAGE.
LL LIQUID LIMIT (SAT.) FROM BELOW THE GROUND WATER TABLE	FRAC FRACTURED, FRACTURES TCR - TRICONE REFUSAL FRAGS FRAGMENTS ω - MOISTURE CONTENT HI HIGHLY Y - YERY	RT - RECOMPACTED TRIAXIAL CBR - CALIFORNIA BEARING RATIO	VERY CAN BE CARVED WITH SOFT OR MORE IN THICKNES	KNIFE. CAN BE EXCAVATED READILY WITH POINT OF PICK. PIECES 1 INCH 5 CAN BE BROKEN BY FINGER PRESSURE. CAN BE SCRATCHED READILY BY	STRATA ROCK QUALITY DESIGNATION (SRQD) - A MEASURE OF ROCK QUALITY DESCRIBED BY TOTAL LENGTH OF ROCK SEGMENTS WITHIN A STRATUM EQUAL TO OR GREATER THAN 4 INCHES DIVIDED BY THE
RANCE - WET - (W) SEMISOLID: REQUIRES DRYING TO ATTAIN OPTIMUM MOISTURE	EQUIPMENT USED ON SUBJECT PR	ROJECT	FINGERNAIL. FRACTURE SPACIN		TOTAL LENGTH OF STRATA AND EXPRESSED AS A PERCENTAGE. TOPSOIL (TS.) - SURFACE SOILS USUALLY CONTAINING ORGANIC MATTER.
OM OPTIMUM MOISTURE - MOIST - (M) SOLID; AT OR NEAR OPTIMUM MOISTURE	DRILL UNITS: ADVANCING TOOLS:	HAMMER TYPE: X AUTOMATIC MANUAL	TERM SPAI VERY WIDE MORE THA	CING TERM THICKNESS	BENCH MARK: BL-4, N 811192 E 1848721
SL SHRINKAGE LIMIT	MOBILE B- CLAY BITS	X AUTOMATIC MANUAL	WIDE 3 TO 10 F	THICKLY BEDDED 1.5 - 4 FEET THINLY BEDDED 0.16 - 1.5 FEET	ELEVATION: 541.98 FT.
- DRY - (D) REQUIRES ADDITIONAL WATER TO ATTAIN OPTIMUM MOISTURE	6° CONTINUOUS FLIGHT AUGER 8° HOLLOW AUGERS	CORE SIZE:	CLOSE Ø.16 TO 1		NOTES:
PLASTICITY PLASTICITY INDEX (PD) DRY STRENGTH	CME-45C HARD FACED FINGER BITS	V-N 0	EOD CEDIMENTADA SOCIA MANA	INDURATION	♦ BENCHMARK
NONPLASTIC 0-5 VERY LOW	X CME-55 LC TUNGCARBIDE INSERTS			IS THE HARDENING OF THE MATERIAL BY CEMENTING, HEAT, PRESSURE, ETC.	
LOW PLASTICITY 6-15 SLIGHT MED. PLASTICITY 16-25 MEDIUM	X CASING W/ ADVANCER	HAND TOOLS:	FRIABLE	RUBBING WITH FINGER FREES NUMEROUS GRAINS; CENTLE BLOW BY HAMMER DISINTEGRATES SAMPLE.	F.I.A.D FILLED IMMEDIATELY AFTER DRILLING
HIGH PLASTICITY 26 OR MORE HIGH COLOR	PORTABLE HOIST X TRICONE	POST HOLE DIGGER HAND AUGER	MODERATELY INDURATED	GRAINS CAN BE SEPARATED FROM SAMPLE WITH STEEL PROBE; BREAKS EASILY WHEN HIT WITH HAMMER.	CT - CORING TERMINATED
DESCRIPTIONS MAY INCLUDE COLOR OR COLOR COMBINATIONS (TAN, RED, YELLOW-BROWN, BLUE-GRAY). MODIFIERS SUCH AS LIGHT, DARK, STREAKED, ETC. ARE USED TO DESCRIBE APPEARANCE.	CORE BIT	SOUNDING ROD VANE SHEAR TEST	INDURATED	CRAINS ARE DIFFICULT TO SEPARATE WITH STEEL PROBE; DIFFICULT TO BREAK WITH HAMMER.	
TO SECURE OF THE			EXTREMELY INDURATED	SHARP HAMMER BLOWS REQUIRED TO BREAK SAMPLE; SAMPLE BREAKS ACROSS GRAINS.	

PROJECT REFERENCE NO. 33680.I.!

SHEET NO.

(A) ROADWAY EMBANKMENT: ASPHALT AND ABC STONE

ROADWAY EMBANKMENT: MEDIUM STIFF TO STIFF, DRY, ORANGE AND BROWN, SANDY CLAY (A-6) WITH TRACE GRAVEL

- GROUNDLINE CROSS SECTION SURVEYED BY AMEC ALONG THE LOCATION OF END BENT 1 ON 2/24/12.

- INFERRED STRATIGRAPHY IS DRAWN AT THE CROSS SECTION WITH BORINGS PROJECTED ONTO THE CROSS SECTION.

CROSS SECTION ALONG END BENT 1
BRIDGE NO. 160 ON SR 1122 (EULISS RD.) OVER
SOUTH PRONG OF STINKING QUARTER CREEK
NCDOT PROJECT NO. 33680.1.1 (B-4400)
F.A. NO. BRZ-1122(4)
ALAMANCE COUNTY, NORTH CAROLINA

AMEC	ENVIRONMENT	AND	INFRASTRUCTURE,	INC.
	DURHAM, N	IORTH	CAROLINA	

REVISIONS	DRAWN:	R.R.	DATE:	04/09/2012
	DFT CHECK:	W.B.D.	JOB :	6468-12-1054
	ENG CHECK:	J.S.J.	DWG:	3

- GROUNDLINE CROSS SECTION SURVEYED BY AMEC ALONG THE LOCATION OF BENT 1 ON 2/24/12.

- INFERRED STRATIGRAPHY IS DRAWN AT THE CROSS SECTION WITH BORINGS PROJECTED ONTO THE CROSS SECTION.

CROSS SECTION ALONG BENT 1
BRIDGE NO. 160 ON SR 1122 (EULISS RD.) OVER
SOUTH PRONG OF STINKING QUARTER CREEK
NCDOT PROJECT NO. 33680.1.1 (B-4400)
F.A. NO. BRZ-1122(4)
ALAMANCE COUNTY, NORTH CAROLINA

AMEC	ENVIRONMENT	AND	INFRASTRUCTURE,	INC.	
	DURHAM, N	IORTH	CAROLINA		

DRAWN:	R.R.	DATE:	04/09/2012	
DFT CHECK:	W.B.D.	JOB :	6468-12-1054	
ENG CHECK:	J.S.J.	DWG:	4	

RESIDUAL: DENSE, WET, GRAY AND TAN, SILTY, FINE TO COARSE SAND (A-2-4), SAPROLITIC

- GROUNDLINE CROSS SECTION SURVEYED BY AMEC ALONG THE LOCATION OF BENT 2 ON 2/24/12.

- INFERRED STRATIGRAPHY IS DRAWN AT THE CROSS SECTION WITH BORINGS PROJECTED ONTO THE CROSS SECTION.

CROSS SECTION ALONG BENT 2
BRIDGE NO. 160 ON SR 1122 (EULISS RD.) OVER
SOUTH PRONG OF STINKING QUARTER CREEK
NCDOT PROJECT NO. 33680.1.1 (B-4400)
F.A. NO. BRZ-1122(4)
ALAMANCE COUNTY, NORTH CAROLINA

AMEC	ENVIRONMENT AND INFRASTRUCTU	RE, INC.
	DURHAM, NORTH CAROLINA	

DRAWN:	R.R.	DATE:	04/09/2012
DFT CHECK:	W.B.D.	JOB :	6468-12-1054
ENG CHECK:	J.S.J.	DWG:	5

- (A) ROADWAY EMBANKMENT: ASPHALT AND ABC STONE
- ROADWAY EMBANKMENT: MEDIUM STIFF
 TO VERY STIFF, DRY TO MOIST, RED,
 BROWN AND ORANGE, SANDY CLAY
 (A-6) WITH TRACE GRAVEL
- GROUNDLINE CROSS SECTION SURVEYED BY AMEC ALONG THE LOCATION OF END BENT 2 ON 2/24/12.
- INFERRED STRATIGRAPHY IS DRAWN AT THE CROSS SECTION WITH BORINGS PROJECTED ONTO THE CROSS SECTION.

CROSS SECTION ALONG END BENT 2
BRIDGE NO. 160 ON SR 1122 (EULISS RD.) OVER
SOUTH PRONG OF STINKING QUARTER CREEK
NCDOT PROJECT NO. 33680.1.1 (B-4400)
F.A. NO. BRZ-1122(4)
ALAMANCE COUNTY, NORTH CAROLINA

AMEC	ENVIRONMENT	AND	INFRASTRUCTURE,	INC.
	DURHAM, 1	NORTH	CAROLINA	

DRAWN:	R.R.	DATE:	04/09/2012
DFT CHECK:	W.B.D.	JOB :	6468-12-1054
ENG CHECK:	J.S.J.	DWG:	6

GEOLOGIST Howard, J. P. TIP B-4400 **COUNTY ALAMANCE** WBS 33680.1.1 SITE DESCRIPTION Bridge No. 160 on SR 1122 (Euliss Rd.) over South Prong of Stinking Quarter Creek **GROUND WTR (ft) STATION** 16+13 OFFSET 8ft LT ALIGNMENT -L-0 HR. **NORTHING** 811,208 **EASTING** 1.848.732 COLLAR ELEV. 542.8 ft TOTAL DEPTH 39.1 ft 24 HR. FIAD DRILL RIG/HAMMER EFF./DATE MAC1145 CME-55LC 87% 10/29/2010 DRILL METHOD Mud Rotary HAMMER TYPE Automatic DRILLER White, D. A. **START DATE** 02/23/12 COMP. DATE 02/23/12 SURFACE WATER DEPTH N/A DEPTH BLOW COUNT SAMP. **BLOWS PER FOOT** ELEV SOIL AND ROCK DESCRIPTION (ft) (ft) 0.5ft 0.5ft 0.5ft 50 75 100 NO. (ft) MOI G 545 **GROUND SURFACE** ROADWAY EMBANKMENT D ASPHALT and ABC stone 540 Orange, sandy CLAY (A-6) with trace gravel 538.8 D 535 RESIDUAL D Tan, brown and gray, sandy SILT (A-4), 530 528.8 . . . 12 D 525 523 8 1 19 0 D 520 518.8 1 24.0 19 39 61/0.4 WEATHERED ROCK - 100/0.9 META-DIORITE 515 513.8 + 29.0 100/0.5 · 100/0.5 510 508.8 + 34.0 100/0.4 - 100/0.4 505 CRYSTALLINE ROCK META-DIORITE Boring Terminated with Standard Penetration Test Refusal at Elevation 503.7 ft in Crystalline Rock: META-DIORITE

NCDOT GEOTECHNICAL ENGINEERING UNIT

BORELOG REPORT TIP B-4400 **COUNTY** ALAMANCE GEOLOGIST Howard, J. P. **WBS** 33680.1.1 SITE DESCRIPTION Bridge No. 160 on SR 1122 (Euliss Rd.) over South Prong of Stinking Quarter Creek GROUND WTR (ft) **BORING NO.** EB1-B **STATION** 16+13 OFFSET 8 ft RT ALIGNMENT -L-0 HR. 7.9 **NORTHING** 811.197 **EASTING** 1.848.721 COLLAR ELEV. 542.8 ft TOTAL DEPTH 39.0 ft 24 HR. FIAD HAMMER TYPE Automatic DRILL RIG/HAMMER EFF./DATE MAC1145 CME-55LC 87% 10/29/2010 DRILL METHOD Mud Rotary DRILLER White, D. A. **START DATE** 02/23/12 **COMP. DATE** 02/23/12 SURFACE WATER DEPTH N/A DRIVE BLOW COUNT SAMP. **BLOWS PER FOOT** DEPTH ELEV SOIL AND ROCK DESCRIPTION (ft) (ft) 0.5ft | 0.5ft | 0.5ft 25 50 75 100 NO. MOI G 545 **GROUND SURFACE** ROADWAY EMBANKMENT D ASPHALT and ABC stone 540 Orange and brown, sandy CLAY (A-6) with 538.8 D 535 RESIDUAL Tan, gray, orange and brown, sandy SILT D (A-4), saprolitic 530 528.8 14.0 8 D 525 19.0 22 D 520 518.8 45 55/0.4 25 WEATHERED ROCK - 100/0.9^t META-DIORITE 515 513.8 + 29.0 100/0.4 100/0.4 510 508.8 4 34.0 00/0.2 100/0.2 505 Boring Terminated with Standard Penetration Test Refusal at Elevation 503.8 ft on Crystalline Rock: META-DIORITE

NCDOT GEOTECHNICAL ENGINEERING UNIT BORELOG REPORT

NBS	3368	0.1.1				TI	IP	B-4400		cou	INT	/ ALAMA	NCE				GEOLOGIST Howard,	J. P.		
SITE	DESCI	RIPTIC	N	Brid	ge No	. 160	on (SR 1122	2 (Euliss	Rd.) ov	er S	outh Pror	g of S	inki	ng Qı	uartei	Creek		GROUN	ID WTR (
3OR	ING NO). B1	-A			S	TA	TION 1	6+53			OFFSET	16 ft	LT			ALIGNMENT -L-		0 HR.	3
COLI	LAR EL	EV.	528.	2 ft		To	OT/	AL DEP	TH 46.0	ft		NORTHI	IG 8	11,1	84		EASTING 1,848,766		24 HR.	4
RILL	RIG/HA	MMER	EFF	./DAT	E M	AC1145	CN	ME-55LC	87% 10/29	9/2010			DR	ILL N	1ETHO	D S	PT Core Boring	HAMM	ER TYPE	Automatic
DRIL	LER \	White,	D. A	١.		S	TAF	RT DAT	E 02/24/	12		COMP. D	ATE	02/2	24/12		SURFACE WATER DEP	TH N	/A	
LEV	DRIVE ELEV	DEPT	Н	BLO	w co	UNT			BLOWS	PER F	тос		SA	MP.	$\mathbf{V}/$	LO	SOIL AND RO	CK DES	CDIDTION	***************************************
(ft)	(ft)	(ft)	0	.5ft	0.5ft	0.5ft	0)	25	50		75 10	0 1	10.	MOI		ELEV. (ft)	JN DES	CRIFTION	DEPTH
				l																
530		1		l																
	528.2	<u> </u>					Ц										528.2 GROUN		ACE	
		Ŧ		2	3	3		6	: : : :			: : : :			М		Red and brown, sa	LUVIAL andy, silt	y CLAY (A	-6)
525	524.1	Ŧ 4.1					۱,	ļ	+			 	-		_		525.2 Tan and gray,			
		Ŧ		2	2	1	•	3			: :				W					
520		Ŧ									: :	: : : :					.			
-	519.1	9.1	- -	2	21	79	†	<u></u>	1			L					- 518.6			
		‡		-		10					::	100/1	0				- WEATHE - META	RED RO	DCK E	
515	5444	‡							<u> </u>		• •	ļ · · · ·	41				- - _{514.1}			
	514.1	14.1	60	0/0.1								- 60/0.	1				CRYSTAI			
		<u>†</u>							1::::		: :	00/0.	']]				. META	-DIORIT	E	
10	509.1	<u> </u>					╟						-				_			
		Ŧ	60	0/0.1								- 60/0.	1 🛉				•			
05		Ŧ									: :	::::					•			
	504.1	24.1	60	0.0			$\ \ $					- 60/0.	0				- ·			
		Ŧ									: :	: : : :	11				•			
500		‡					ll		<u> </u>			ļ · · · ·	-11				- -			
		‡						: : : :			::						.			
195		‡									: :						•			
190		‡					卜		 	 		 	11				-			
		‡									: :	: : : :					492.2	I INTER		
90		<u> </u>							1					S-1			CRYSTAI META	-DIORIT		
		İ							1 : : : :			: : : :								
		Ŧ															•			
85		7							1				╢	S-2			- -			
		Ŧ									: :			3-2			482.2			
		Ŧ															Boring Terminated Crystalline Roc	at Eleva	tion 482.2	ft in
		‡															Orystalline root	K. WILI7	-DIOINIL	
		‡											İ				<u>.</u>			
		<u> </u>															• •••			
		<u>†</u> .											İ			1	•			
		Ŧ															•			
		‡															<u>. </u>			
		‡															<u>.</u>			
		‡															<u>-</u> -			
		‡																		
		‡														{	<u>.</u>			
		Ŧ															- - 			
		Ŧ															- -			
		‡															• •			
		#															- -			
		<u>+</u>															- -			
		Ŧ															-			

NCDOT GEOTECHNICAL ENGINEERING UNIT

WBS	33680.1.1			RE B		B-440				ΥA	ALAMANCE GEOLOGIST Howard, J. P.
			Bride	ge No. 16							h Prong of Stinking Quarter Creek GROUND WTR (ft)
	NG NO. B1						16+53				FSET 16 ft LT
	AR ELEV.		2 ft				PTH 46.	.0 ft			PRTHING 811,184 EASTING 1,848,766 24 HR. 4.7
	. RIG/HAMMEI			TE MAC1					<u> </u>	L	DRILL METHOD SPT Core Boring HAMMER TYPE Automatic
	LER White						TE 02/2		-	co	OMP. DATE 02/24/12 SURFACE WATER DEPTH N/A
	E SIZE NQ						N 21.9 f				
ELEV	RUN DED		RUN	DRILL	RI	JN	SAMP.	STR	ATA	L	
(ft)	ELEV (ft		(ft)	RATE (Min/ft)	REC.	RQD (ft)%	NO.	REC. (ft)	RQD (ft)	O G	DESCRIPTION AND REMARKS ELEV. (ft) DEPTH (f
504.1											Begin Coring @ 24.1 ft
	504.1 24. 502.2 26.	.0	1.9	N=60/0.0 2:45 3:00/0.9	(1.4) 74%	(0.0) 0%		(11.1) 93%	(2.1) 18%	R	CRYSTALLINE ROCK (continued) Brown-gray and green, moderately severe to moderate weathering, medium
500	1		5.0	<u>3:00/0.9</u> 2:00	(5.0)	(1.5)		3370	1070		hard to hard, very close to close fracturing, META-DIORITE (rock highly broken, most joint orientations not discernible)
000	‡			2:00 2:00 3:45 3:00	100%	30%					4 joints at 45°
	497.2 + 31.		5.0	5:00 2:45	(4.7)	(0.6)					L 3 joints at 90°
495	‡		0.0	2:30 2:30	94%	12%					_
	492.2 + 36.	0		3:00 2:30							34.0-34.6ft: Weathered rock zone 36.2
490	1		5.0	2:30 2:45	(4.8) 96%	(4.1) 82%	RS-1	(9.4) 94%	(6.8) 68%	3	CRYSTALLINE ROCK Brown-gray to blue-gray, moderate to very slightly weathered, moderately
430	‡			3:00 3:00	3070	0270		3470	0070		hard to hard, close to moderately close fracturing, META-DIORITE 3 joints at 20°
	487.2 + 41.		5.0	2:45 2:45	(4.6)	(2.7)					2 joints at 45°
485	‡		0.0	2:45 3:00	92%	54%					4 joints at 70° 42.3-42.8ft: Weathered rock zone
	482.2 + 46.	.0		3:15 3:15			RS-2	1			L RS-1: RMR = 55 RS-2: RMR = 47
	1										Boring Terminated at Elevation 482.2 ft in Crystalline Rock: META-DIORITE
	‡										
	‡										
	‡										<u> </u>
	‡										<u>-</u> -
	‡										- -
	‡										 - -
	‡			:							- -
	#										- -
	‡										- -
	#										- -
	+										 - -
	‡										-
											_
	‡				İ						
	<u> </u>										E
	+										-
	Ŧ										-
	Ŧ										F
	Ŧ										F
											F
	‡										<u>-</u>
	‡										ļ.
	‡										- -
	‡										F .
	‡										ţ.
	‡										<u>L</u>
	<u> </u>										<u>t</u>
	<u> </u>										<u>t</u>
	ı I						I	1		1	-

CORE PHOTOGRAPHS

B1-ABOX 1: 24.1 - 34.3 FEET

B1-ABOXES 2 & 3: 34.3 - 46.0 FEET

NCDOT GEOTECHNICAL ENGINEERING UNIT BORELOG REPORT

WBS	33680	.1.1			T	P B	-4400		COUNT	Y ALAMAI	NCE			GEOLOGIST Howard, J.	P.		
SITE	DESCR	IPTION	l Brid	lge No	. 160	on SF	R 1122	(Euliss I	Rd.) over	South Prong	of Stink	king Qu	uarte	r Creek		GROUN	D WTR (fi
BOR	ING NO.	B1-B	3		S	TATIO	ON 16	6+49		OFFSET	15 ft RT	•		ALIGNMENT -L-		0 HR.	4.
COL	LAR ELE	EV. 52	29.9 ft		T	OTAL	DEP1	TH 24.4	ft	NORTHIN	G 811,	166		EASTING 1,848,741		24 HR.	FIAD
DRILI	RIG/HAI	MMER E	FF./DA	TE M	AC1145	CME	-55LC	87% 10/29	9/2010	······································	DRILL	METHO	D M	lud Rotary H	AMME	R TYPE	Automatic
DRIL	LER V	/hite, D). A.		S	TART	DATE	02/24/	12	COMP. DA	TE 02	/24/12		SURFACE WATER DEPTH	1 N/A	4	
ELEV	DRIVE ELEV	DEPTH	BLC	w co	UNT			BLOWS	PER FOO	Γ	SAMP	V /		SOIL AND BOOK	DESC	DIDTION	
(ft)	(ft)	(ft)		0.5ft	0.5ft	0	2	25	50	75 100	NO.	МОІ	O G	SOIL AND ROCK ELEV. (ft)	DESC	RIPTION	DEPTH (
530														529.9 GROUND S	URFA	CE	c
	529.9	0.0	4	6	10	$\prod \cdot$	- •16					М		ALLU\ Red, orange and gray		v silty CL /	
	525.9	4.0				:	: : :	: : : :						- (A-6	5)	y, only OL	
525		- 4.0	WOH	7	12	1	 -	9				M		-			
	-						·/. :	::::				"		- -			
520	520.9	9.0	WOH		WOH	1/		: : : :						. -			
520	-	-	WOH	1	WOH	1			1			M					
	-					<u> </u> -	: : :		:-:-	:+::::-				- 517.4 12.5ft: Bit			12
515	515.9	14.0	60/0.1							60/0.1				- META-DI			
	-					:											
	510.9	190		l						.				- -			
510	_	-	60/0.1			-			+	60/0.1							
	_	-				:		: : : :						- 508.4 WEATHERE	D RO	<u>ск</u> — — —	21
	505.9	24.0	100/0.4				 	: : : :						- 505.5 META-DI			24
	-		100/0.2	1						100/0.4	1			Boring Terminated at Weathered Rock:			in
	-	t												-			
	-	_												- -			
	-	-												-			
	-	-												-			
	_	-												-			
	-	<u> </u>												- -			
	-	<u> </u>												- -			
	-	E															
	-	F												- -			
	-	ļ.												- -			
	-	ţ												- -			
	-	ŧ											1	_			
	-	}												-			
	-	F												-			
		‡			l									- -			
	-	ţ												<u>-</u>			
	-	ł											1	-			
		F				1								- -			
		-												- 			
	:	‡												- -			
	:	ţ												- -			
	-	t												<u>-</u>			
	:	F												- -			
	:	‡															
	-	‡												<u>-</u>			
ı		t												- -			
	:	Ŧ												-			
ı	-	Ŧ															
	;	‡												-			
	! .	L	1	1	1	1					1	1	1 1	_			

NCDOT GEOTECHNICAL ENGINEERING UNIT

	.1.1			TI	P B-4400	COUNT	Y ALAMAN	ICE			GEOLOGIST Howard, J. P.		
SITE DESCR	IPTION	Brid	ge No	. 160 d	on SR 1122 (Euliss F	d.) over S	South Prong	of Stink	ing Qu	ıarter	Creek	GROUND WTR	₹ (ft
BORING NO.	B2-A			S	TATION 17+14		OFFSET	16 ft LT			ALIGNMENT -L-	0 HR.	4.
COLLAR ELE	EV. 52	7.7 ft		TO	OTAL DEPTH 14.0 f	t	NORTHING	811,1	40		EASTING: 1,848,808	24 HR.	5.
RILL RIG/HAN	MMER E	FF./DA	TE M	AC1145	CME-55LC 87% 10/29/	2010	<u> </u>	DRILL I	METHO	D M	ud Rotary HAM	MER TYPE Automat	atic
DRILLER W	/hite, D	. A.		ST	TART DATE 02/22/1	2	COMP. DA	TE 02/	22/12		SURFACE WATER DEPTH	N/A	
LEV DRIVE	DEPTH	BLC	W COI	UNT	BLOWS	PER FOOT	-	SAMP.	V /	L	CON AND DOOK DE	CONTION	
(ft) ELEV (ft)	(ft)		0.5ft	0.5ft	0 25	50	75 100	NO.	МОІ	O G	SOIL AND ROCK DES	DEPT	TH
				· «									
530													
	-										- . 527.7 GROUND SURI	EACE	,
527.7 -	- 0.0	2	3	4	.	T		 	М		- ALLUVIAL		
525	-				·] · · · · · · ·	ļ · · · · ·					Red and brown, sandy CLA organics	Y (A-6) with trace	3
<u>523.7 -</u>	<u>- 4.0</u>	2	3	2	5	: : : :			V		Red, brown and gray, si (A-2-4)	ty, fine SAND	
						: : : :			М		•		
520 <u>-</u> 518.7 -	9.0					1					519.7 - RESIDUAL		
		5	5	34	#39	1::::			w		Gray and tan, silty, fine to	coarse SAND	
515	Ŀ									10	11.5ft: Bit cha	itter	11
513.7 -	14.0	60/0.0			1	<u> </u>	60/0.0	\dashv	ļ	G.	. 513.7 WEATHERED F	TE	14
	F	00,010								F	Boring Terminated with Penetration Test Refusal a	th Standard Flevation 513.7	

NCDOT GEOTECHNICAL ENGINEERING UNIT BORELOG REPORT

	3368							B-4400	L	Y ALAMAN	_				GEOLOGIST Howard, J. P.		
				ridg	je No			SR 1122 (Euliss F	.d.) over S	.,			ng Q	uarte			ID WTR (ft
	ING NO					S	TA	ATION 17+14		OFFSET					ALIGNMENT -L-	0 HR.	4.5
	LAR EL							TAL DEPTH 40.3 f		NORTHING	_				EASTING 1,848,783	24 HR.	5.1
DRIL	RIG/HA	MMER	EFF./I	DAT	E M/	AC1145	5 C	CME-55LC 87% 10/29/	2010		_				PT Core Boring HAMN	IER TYPE	Automatic
DRIL	LER V						TA	ART DATE 02/22/1		COMP. DA	_				SURFACE WATER DEPTH N	/A	
ELEV (ft)	DRIVE ELEV	DEPT (ft)	''⊢—		N COL		1		PER FOOT 50	T 75 100		SAMP.	/	0	SOIL AND ROCK DES	CRIPTION	
(1.1)	(ft)	1 (15)	10.8	5ft	0.5ft	0.5ft	H	0 25	<u> </u>	75 100	+	NO.	/MO	l G	ELEV. (ft)		DEPTH (
							П										
530	528.9	$\frac{1}{1}$ 0.0													528.9 GROUND SURF	ACE	0
		T	3	3	4	4	П						М		ALLUVIAL Red and brown, sandy CLAY	(A-6) with	trace
525	525.0	Ŧ 3.9						. 1							organics	()	
		Ī	4	1	8	6		• • • 14	1 : : : :	: : : : :			M		• •		÷
		l						: : 'n: : : : :	1 : : : :	.			101		521.9 Gray, silty, fine to coarse SA	ND (A-2-4)	
520	520.0	8.9	1 2	2	4	13	1	17	+				Sat.		trace gravel		
		ł													- - 546 A		12
<u>515</u>	515.0	I 13.9							+					M	515.0 WEATHERED R		
		ł	60/	0.0						60/0.0					META-DIORIT	OCK	/
		Ŧ													META-DIORIT	Έ	
510		Ŧ					$\ \cdot\ $										20
		Ŧ								.					- META-DIORIT	Έ	20
505		Ŧ								.					•		
	•	Ŧ							T						-		
		Ŧ								.					501.2		27
500	-	Ŧ					$\ \cdot\ $		1						META-DIORIT	Έ	
		Ŧ													•		
495		Ŧ								.					•		
	1	Ŧ													- •		
		‡					Ш					RS-3			<u>.</u>		
490		‡					$\ \cdot\ $								<u>.</u> 		40
		‡—	+	\dashv		 	H		<u> </u>	.	Н				 488.6 Boring Terminated at Eleva 	tion 488.6	40. ft in
		‡													- Crystalline Rock: MET/	A-DIORITE	
		‡													- -		
		‡													• •		
		‡													- 		
		‡													- -		
		‡					Ì								- -		
		‡													 -		
		‡													- -		
		<u> </u>													<u>.</u>		
		<u>†</u>													<u>-</u> -		
		<u>†</u>													<u>-</u>		
		\pm															
		Ŧ													- -		
		‡													- -		
		‡													- -		
		‡													- -		
		#		İ											- -		
		<u></u>									l				<u>-</u>		
		Ţ													_		

NCDOT GEOTECHNICAL ENGINEERING UNIT

### STATION OF STATE COLLAR CO			I D	T Howard	GEOLOGIST			1 00000							RE B	<i>501</i>			WRS
COLLAR ELEV. 528.9 ft TOTAL DEPTH 40.3 ft NORTHING 811,117 EASTING 1,848,783 24 HR.	WITD /f	GROUNI	, J. F.	i nowaru,											ga No. 16	Brid			
COLLAR ELEV. 528.9 ft TOTAL DEPTH 40.3 ft NORTHING 811,117 EASTING 1,848,783 24 HR.	•	-		т ,						overs	Ku.)				ge No. 10	Bilu			
DRILLER White, D. A. START DATE 02/22/12 COMP. DATE 02/22/12 SURFACE WATER DEPTH N/A	4.	-									-	0 O #							
DRILLER White, D. A. START DATE 02/22/12 COMP. DATE 02/22/12 SURFACE WATER DEPTH N/A	5.	J	1110.8080											FF MAC1:					
TOTAL RUN 26.4 ft TOTAL RUN 26.4 ft RUN RUN RUN REC. ROD R	Mulomatic			MATER RE		T	······································	MD DA	T 60	, 					IE WACI				
LEV RUN (ft) DEPTH RUN (ft) RATE (ft) RATE (Min/ft)	<u> </u>	PIH IN/	WATER DEF	SURFACE V		02/22/12	WP. DA	CO							A.				
LEV C(t) C									 	ATA					DRILL			DUNI	
513.0	DEPTH		<s< td=""><td>AND REMARK</td><td>ESCRIPTION A</td><td>DE</td><td></td><td>ELEV. (1</td><td>0</td><td>RQD</td><td>REC.</td><td></td><td>RQD</td><td>REC.</td><td>RATE</td><td></td><td></td><td>ELEV</td><td></td></s<>	AND REMARK	ESCRIPTION A	DE		ELEV. (1	0	RQD	REC.		RQD	REC.	RATE			ELEV	
3:30 3:30	13							E1E 0	درج	(5.9)	(6.4)		(1.2)	(1.4)	N=60/0 0	1.4	13.9	515.0	515
505 3:15 3:06 7:15 5:00 7:15 5:00 7:15 5:00 5:0	ly 20	to moderate	ard, close RITE	fresh, very ha , META-DIORI s at 45°	ly weathered to close fracturing, 5 joints	slightl ci	Blue-gray, very	- - -		91%	100%		(4.6)	(5.0)	2:45 2:00/0.4 / 3:30 3:00 2:30 2:30 2:30		•	1	510
5.0 3:15 3:00 52% 501.2 25.3-27.7ft: Weathered rock zone 498.6 - 30.3 3:00 5.0 100% 100% 100% 100% 100% 100% 100% 10		n, most joint	ghly broker e)	ons of rock hig not discernible s at 45°	DIORITE (portion orientations no 2 joints	ĒTA-D	fracturing, M	-		(0.9) 12%					3:15 3:00 3:30 7:15	5.0			505
3:15 4:00 498.6 30.3 3:00 100% 100% 100% 100% 100% 100% 100% 1	07				• •		_	- 504.0					(2.6)	(3.5)	3:15	5.0	-	1	
493.6 - 35.3	27	e fracturing	/ hard, wid			ry sligt	Blue-gray, ve	501.2		(12.6)	(12.6)		J= /0	. 5,0	3:15		:	<u>†</u>	500
493.6 - 35.3								-		100%	100%		(5.0) 100%	(5.0)	3:00 3:30	5.0	- 30.3 -	498.6	
493.6 + 35.3 2:15 7								-									-		495
488.6 + 40.3 2:45 2:45 488.6 488.6 488.6 488.6				RMR = 77	RS-3: R			-				RS-3	(5.0)	(5.0)	2:15	5.0	- 35.3	493.6	
488.6 + 40.3 2:45 488.6								-				1100	100%		3:00	0.0	-	1	
	40							 - 488 6							2:45		40.3	488 6	190

CORE PHOTOGRAPHS

B2-BBOX 1: 13.9 - 24.8 FEET

B2-BBOXES 2 & 3: 24.8 - 40.3 FEET

BOREL 8 33680.1.1		ITY ALAMANCE	GEOLOGIST Howard, J. P.		WBS	33680.1.1			TIP B-4400	COUN	TY ALAMAN	ICE		G	EOLOGIST Howard,	J. P.	
	160 on SR 1122 (Euliss Rd.) over	r South Prong of Stinking Quarter	Creek	GROUND WTR (ft)	SITE	DESCRIPTI	ON Bridg	e No. 16	60 on SR 1122 (Euliss	Rd.) over			ng Qu			GRO	UND WT
RING NO. EB2-A	STATION 17+63	OFFSET 8 ft LT	ALIGNMENT -L-	0 HR. 7.4	BOR	ING NO. E	B2-B		STATION 17+63		OFFSET 8	8 ft RT		A	LIGNMENT -L-	0 HF	₹.
LLAR ELEV. 542.6 ft	TOTAL DEPTH 25.9 ft	NORTHING 811,099	EASTING 1,848,836	24 HR. FIAD	COLI	LAR ELEV.	542.7 ft		TOTAL DEPTH 23.	6 ft	NORTHING	·			ASTING 1,848,824	24 HF	
LL RIG/HAMMER EFF./DATE MA	C1145 CME-55LC 87% 10/29/2010	DRILL METHOD MU	d Rotary HAMI	MER TYPE Automatic	DRILL	L RIG/HAMME	R EFF/DAT	E MAC1	145 CME-55LC 87% 10/	29/2010		DRILL MI	ETHO	D Mud Ro	otary	HAMMER TYP	E Autom
ILLER White, D. A.	START DATE 02/23/12	COMP. DATE 02/23/12	SURFACE WATER DEPTH N	I/A	DRIL	LER White			START DATE 02/2	3/12	COMP. DA	TE 02/2	3/12	SI	URFACE WATER DEP	TH N/A	
V DRIVE DEPTH BLOW COU			SOIL AND ROCK DES	CRIPTION	ELEV	DRIVE DEF	TH BLOV	V COUNT	i	S PER FOO	1	SAMP.		0	SOIL AND ROO	CK DESCRIPTION	NC
(ft) (ft) 0.5ft 0.5ft	0.5ft 0 25 50		ELEV. (ft)	DEPTH (ft)	(ft)	(ft) (f	0.5ft	0.5ft 0.5	5ft 0 25	50	75 100	NO.	/MOI	G			
5 1					545	 								 -			
		· <u> </u>	542.6 GROUND SURF			542.7 + 0	0 0	40 4				11		542		SURFACE	
542.0 0.6 9 8	8 . • • 16		ROADWAY EMBAN ASPHALT and AB		540	‡	24	10 1				1 1	D		Red and brown, sand	EMBANKMENT Iy CLAY (A-6) w	
538.6 + 4.0	 / 	D D	Orange, sandy CLAY (A-6)		340	538.8 - 3									g	ravel	
330.0 7 4.0 3 2	6 . 8	:: :::: м 🗠				‡	4	3 3	³ •6: · · · · ·				М				
$\underline{\underline{I}}$			_		535	<u> </u>			1 1	• • • •			∇				
533.6 + 9.0						533.8 + 8	9 3	5 5	5 : : : : : : : : : : : : : : : : : : :	-	1 1	1	м				
3 6	4 . •10	·· ··· "" - }				F			9				101				
니 ‡			529.6	13.0	530	528.8 - 13								529	<u>.7</u>	IDUAL	
528.6 + 14.0 4 7	14	·· ···	RESIDUAL Tan, green and gray, san	dy SILT (A-4),		528.8 + 13	9	30 2	23	• • • •	-		м	I F	Tan, brown and gr	ay, sandy SILT	(A-4),
1 1 1	$ \cdot \cdot ^{2^{1}}\cdot\cdot\cdot\cdot \cdot\cdot $	·· ···	saprolitic		E0E	‡									sar	orolitic	
5 700 7 100 1	 		-		525	523.8 1 18	3.9			-		1 1		523.	.3		
523.6 + 19.0 5 7	9					1	3	97/0.2		:	1 100/0./ T	'		1115	WEATHE	RED ROCK	
			540.0		520	1 ±				1	1 1			521. 519.	21.5ft:	DIORITE Bit chatter	
518.6 + 24.0			-519.6 WEATHERED F	ROCK		519.2 23	60/0.1				60/0.1	ᅥᅡ		519.		LINE ROCK DIORITE	
516.7 + 25.9		- 100/0.3	WEATHERED F META-DIORI 516.7	25.9		 								l F	Boring Termina	ited with Standa	
1 60/0.0		60/0.0	Boring Terminated wit Penetration Test Refusal a	t Elevation 516.7		‡								F	Penetration Test Re ft in Crystalline Re		
			ft on Crystalline Rock: M	ETA-DIORITE		1 ‡											
 						1 1											
			<u> </u>			1 ±								<u> </u> -			
			· ·			1 +								l E			
1 1 1			•											l F			
			- ·			1 ‡		1						l F			
1 1 1			•			‡											
			-			‡											
 																	
 						‡											
1 1 1			_			1 ±								-			
			•			 								<u> </u>			
			•											F			
1 1 1			- •														
 			•			1 ‡											
			-			1 ±						1 1		l <u>E</u>			
			-			+						1 1		<u> </u>			
			- -									1 1		F			
1 1 1	·		• ••			‡											
+			• -				.										
			- •			 											
			-			‡								l F			
+			- -														
 			<u>.</u>			1 ±											
‡			-			 								 -			
			<u>-</u>			‡								l F			
1 + 1 1			_			1. +		1				1 1		1 F			

SHEET 16 33680.1.1 (B-4400)

	ROCK TEST RESULTS												
SAMPLE	OFFSET	STATION	BORING	DEPTH	UNIT WT.	UNCONFINED COMPRESSIVE	ROCK MASS RATING						
NO.			NO.	INTERVAL		STRENGTH KSI							
RS-1	16 LT	16+53	B1-A	36.1-37.3	177.3	2.13	55						
RS-2	16 LT	16+53	B1-A	43.5-44.2	179.1	6.52	47						
RS-3	18 RT	17+14	B2-B	35.3-36.6	184.4	25.8	77						

Looking up station left of -L- from End Bent 1

Looking up station right of -L- from End Bent 1

Looking right to left along Bent 1

Looking left to right along Bent 2

SITE PHOTOS AMEC Proj. No. 6468-12-1054

SHEET 18 Bridge No. 160 on SR 1122 over S. Prong of Stinking Quarter Creek NCDOT Project No. 33680.1.1 (B-4400)

Looking down station left of -L- from End Bent 2

Looking down station right of -L- from End Bent 2