Currituck County ## **Project Special Provisions** ## Structure ## **Table of Contents** | | Page | |--|------| | Scope of Work | 2 | | Falsework and Formwork (4-5-12) | 3 | | Submittal of Working Drawings (2-10-12) | 10 | | Overlay Surface Preparation (SPECIAL) | 16 | | Managing Hydro Demolition Water (6-17-08) | 22 | | Bridge Joint Demolition (SPECIAL) | 23 | | Latex Modified Concrete (SPECIAL) | 25 | | Elastomeric Concrete (12-18-12) | 29 | | Synthetic Rubber Expansion Joint Seal (12-18-12) | 32 | ## **SCOPE OF WORK** This work shall consist of furnishing all labor, equipment, and materials to overlay the existing bridge deck with latex modified concrete as directed in the plans. Work includes: portable lighting, existing bridge deck surface preparation, removing bridge deck concrete using hydroscarification and demolition methods, overlaying the prepared bridge deck with latex modified concrete, milling of roadway approaches, disposal of waste material, installing elastomeric headers and synthetic rubber expansions joint seals, grooving bridge deck, asphalt paving approaches, pavement markings, seeding and mulching all grassed areas disturbed; and all incidental items necessary to complete the project as specified and shown on the plans. No separate payment will be made for portable lighting as the cost of such is incidental to the work being performed. Work will be performed on the existing bridge at the following location: 1.) Currituck County Bridge #35 – US 158 WBL over the Currituck Sound (Latex Modified Concrete Overlay) Contractor shall provide all necessary access; provide all traffic control; provide all staging areas, material storage, waste disposal, provide environmental controls to limit loss of materials from collection of hydro-demolition water, sawing equipment, and chipping equipment; and all else necessary to complete the work. The contractor shall be responsible for fulfilling all requirements of the NCDOT Standard Specifications for Roads and Structures dated January 2012, except as otherwise specified herein. (4-5-12) ## 1.0 DESCRIPTION Use this Special Provision as a guide to develop temporary works submittals required by the Standard Specifications or other provisions; no additional submittals are required herein. Such temporary works include, but are not limited to, falsework and formwork. Falsework is any temporary construction used to support the permanent structure until it becomes self-supporting. Formwork is the temporary structure or mold used to retain plastic or fluid concrete in its designated shape until it hardens. Access scaffolding is a temporary structure that functions as a work platform that supports construction personnel, materials, and tools, but is not intended to support the structure. Scaffolding systems that are used to temporarily support permanent structures (as opposed to functioning as work platforms) are considered to be falsework under the definitions given. Shoring is a component of falsework such as horizontal, vertical, or inclined support members. Where the term "temporary works" is used, it includes all of the temporary facilities used in bridge construction that do not become part of the permanent structure. Design and construct safe and adequate temporary works that will support all loads imposed and provide the necessary rigidity to achieve the lines and grades shown on the plans in the final structure. ## 2.0 MATERIALS Select materials suitable for temporary works; however, select materials that also ensure the safety and quality required by the design assumptions. The Engineer has authority to reject material on the basis of its condition, inappropriate use, safety, or nonconformance with the plans. Clearly identify allowable loads or stresses for all materials or manufactured devices on the plans. Revise the plan and notify the Engineer if any change to materials or material strengths is required. ## 3.0 DESIGN REQUIREMENTS ## A. Working Drawings Provide working drawings for items as specified in the contract, or as required by the Engineer, with design calculations and supporting data in sufficient detail to permit a structural and safety review of the proposed design of the temporary work. On the drawings, show all information necessary to allow the design of any component to be checked independently as determined by the Engineer. When concrete placement is involved, include data such as the drawings of proposed sequence, rate of placement, direction of placement, and location of all construction joints. Submit the number of copies as called for by the contract. When required, have the drawings and calculations prepared under the guidance of, and sealed by, a North Carolina Registered Professional Engineer who is knowledgeable in temporary works design. If requested by the Engineer, submit with the working drawings manufacturer's catalog data listing the weight of all construction equipment that will be supported on the temporary work. Show anticipated total settlements and/or deflections of falsework and forms on the working drawings. Include falsework footing settlements, joint take-up, and deflection of beams or girders. As an option for the Contractor, overhang falsework hangers may be uniformly spaced, at a maximum of 36 inches, provided the following conditions are met: | Member
Type
(PCG) | Member
Depth,
(inches) | Max. Overhang Width, (inches) | Max. Slab Edge
Thickness,
(inches) | Max. Screed
Wheel Weight,
(lbs.) | Bracket Min. Vertical Leg Extension, (inches) | |-------------------------|------------------------------|-------------------------------|--|--|---| | II | 36 | 39 | 14 | 2000 | 26 | | III | 45 | 42 | 14 | 2000 | 35 | | IV | 54 | 45 | 14 | 2000 | 44 | | MBT | 63 | 51 | 12 | 2000 | 50 | | MBT | 72 | 55 | 12 | 1700 | 48 | Overhang width is measured from the centerline of the girder to the edge of the deck slab. For Type II, III & IV prestressed concrete girders (PCG), 45-degree cast-in-place half hangers and rods must have a minimum safe working load of 6,000 lbs. For MBT prestressed concrete girders, 45-degree angle holes for falsework hanger rods shall be cast through the girder top flange and located, measuring along the top of the member, 1'-2 ½" from the edge of the top flange. Hanger hardware and rods must have a minimum safe working load of 6,000 lbs. The overhang bracket provided for the diagonal leg shall have a minimum safe working load of 3,750 lbs. The vertical leg of the bracket shall extend to the point that the heel bears on the girder bottom flange, no closer than 4 inches from the bottom of the member. However, for 72-inch members, the heel of the bracket shall bear on the web, near the bottom flange transition. Provide adequate overhang falsework and determine the appropriate adjustments for deck geometry, equipment, casting procedures and casting conditions. If the optional overhang falsework spacing is used, indicate this on the falsework submittal and advise the girder producer of the proposed details. Failure to notify the Engineer of hanger type and hanger spacing on prestressed concrete girder casting drawings may delay the approval of those drawings. Falsework hangers that support concentrated loads and are installed at the edge of thin top flange concrete girders (such as bulb tee girders) shall be spaced so as not to exceed 75% of the manufacturer's stated safe working load. Use of dual leg hangers (such as Meadow Burke HF-42 and HF-43) are not allowed on concrete girders with thin top flanges. Design the falsework and forms supporting deck slabs and overhangs on girder bridges so that there will be no differential settlement between the girders and the deck forms during placement of deck concrete. When staged construction of the bridge deck is required, detail falsework and forms for screed and fluid concrete loads to be independent of any previous deck pour components when the mid-span girder deflection due to deck weight is greater than 34". Note on the working drawings any anchorages, connectors, inserts, steel sleeves or other such devices used as part of the falsework or formwork that remains in the permanent structure. If the plan notes indicate that the structure contains the necessary corrosion protection required for a Corrosive Site, epoxy coat, galvanize or metalize these devices. Electroplating will not be allowed. Any coating required by the Engineer will be considered incidental to the various pay items requiring temporary works. Design falsework and formwork requiring submittals in accordance with the 1995 AASHTO Guide Design Specifications for Bridge Temporary Works except as noted herein. ## 1. Wind Loads Table 2.2 of Article 2.2.5.1 is modified to include wind velocities up to 110 mph. In addition, Table 2.2A is included to provide the maximum wind speeds by county in North Carolina. **Table 2.2 - Wind Pressure Values** | Height Zone | Pressure, lb/ft ² for Indicated Wind Velocity, mph | | | | | |-------------------|---|----|----|-----|-----| | feet above ground | 70 | 80 | 90 | 100 | 110 | | 0 to 30 | 15 | 20 | 25 | 30 | 35 | | 30 to 50 | 20 | 25 | 30 | 35 | 40 | | 50 to 100 | 25 | 30 | 35 | 40 | 45 | | over 100 | 30 | 35 | 40 | 45 | 50 | ## 2. Time of Removal The following requirements replace those of Article 3.4.8.2. Do not remove forms until the concrete has attained strengths required in Article 420-16 of the Standard Specifications and these Special Provisions. Do not remove forms until the concrete has sufficient strength to prevent damage to the surface. Table 2.2A - Steady State Maximum Wind Speeds by Counties in North Carolina | COUNTY | 25 YR (mph) | COUNTY | 25 YR (mph) | COUNTY | 25 YR
(mph) |
------------|-------------|-------------|-------------|--------------|----------------| | Alamance | 70 | Franklin | 70 | Pamlico | 100 | | Alexander | 70 | Gaston | 70 | Pasquotank | 100 | | Alleghany | 70 | Gates | 90 | Pender | 100 | | Anson | 70 | Graham | 80 | Perquimans | 100 | | Ashe | 70 | Granville | 70 | Person | 70 | | Avery | 70 | Greene | 80 | Pitt | 90 | | Beaufort | 100 | Guilford | 70 | Polk | 80 | | Bertie | 90 | Halifax | 80 | Randolph | 70 | | Bladen | 90 | Harnett | 70 | Richmond | 70 | | Brunswick | 100 | Haywood | 80 | Robeson | 80 | | Buncombe | 80 | Henderson | 80 | Rockingham | 70 | | Burke | 70 | Hertford | 90 | Rowan | 70 | | Cabarrus | 70 | Hoke | 70 | Rutherford | 70 | | Caldwell | 70 | Hyde | 110 | Sampson | 90 | | Camden | 100 | Iredell | 70 | Scotland | 70 | | Carteret | 110 | Jackson | 80 | Stanley | 70 | | Caswell | 70 | Johnston | 80 | Stokes | 70 | | Catawba | 70 | Jones | 100 | Surry | 70 | | Cherokee | 80 | Lee | 70 | Swain | 80 | | Chatham | 70 | Lenoir | 90 | Transylvania | 80 | | Chowan | 90 | Lincoln | 70 | Tyrell | 100 | | Clay | 80 | Macon | 80 | Union | 70 | | Cleveland | 70 | Madison | 80 | Vance | 70 | | Columbus | 90 | Martin | 90 | Wake | 70 | | Craven | 100 | McDowell | 70 | Warren | 70 | | Cumberland | 80 | Mecklenburg | 70 | Washington | 100 | | Currituck | 100 | Mitchell | 70 | Watauga | 70 | | Dare | 110 | Montgomery | 70 | Wayne | 80 | | Davidson | 70 | Moore | 70 | Wilkes | 70 | | Davie | 70 | Nash | 80 | Wilson | 80 | | Duplin | 90 | New Hanover | 100 | Yadkin | 70 | | Durham | 70 | Northampton | 80 | Yancey | 70 | | Edgecombe | 80 | Onslow | 100 | | | | Forsyth | 70 | Orange | 70 | | | ## B. Review and Approval The Engineer is responsible for the review and approval of temporary works' drawings. Submit the working drawings sufficiently in advance of proposed use to allow for their review, revision (if needed), and approval without delay to the work. The time period for review of the working drawings does not begin until complete drawings and design calculations, when required, are received by the Engineer. Do not start construction of any temporary work for which working drawings are required until the drawings have been approved. Such approval does not relieve the Contractor of the responsibility for the accuracy and adequacy of the working drawings. ## 4.0 CONSTRUCTION REQUIREMENTS All requirements of Section 420 of the Standard Specifications apply. Construct temporary works in conformance with the approved working drawings. Ensure that the quality of materials and workmanship employed is consistent with that assumed in the design of the temporary works. Do not weld falsework members to any portion of the permanent structure unless approved. Show any welding to the permanent structure on the approved construction drawings. Provide tell-tales attached to the forms and extending to the ground, or other means, for accurate measurement of falsework settlement. Make sure that the anticipated compressive settlement and/or deflection of falsework does not exceed 1 inch. For cast-in-place concrete structures, make sure that the calculated deflection of falsework flexural members does not exceed 1/240 of their span regardless of whether or not the deflection is compensated by camber strips. ## A. Maintenance and Inspection Inspect and maintain the temporary work in an acceptable condition throughout the period of its use. Certify that the manufactured devices have been maintained in a condition to allow them to safely carry their rated loads. Clearly mark each piece so that its capacity can be readily determined at the job site. Perform an in-depth inspection of an applicable portion(s) of the temporary works, in the presence of the Engineer, not more than 24 hours prior to the beginning of each concrete placement. Inspect other temporary works at least once a month to ensure that they are functioning properly. Have a North Carolina Registered Professional Engineer inspect the cofferdams, shoring, sheathing, support of excavation structures, and support systems for load tests prior to loading. #### B. Foundations Determine the safe bearing capacity of the foundation material on which the supports for temporary works rest. If required by the Engineer, conduct load tests to verify proposed bearing capacity values that are marginal or in other high-risk situations. The use of the foundation support values shown on the contract plans of the permanent structure is permitted if the foundations are on the same level and on the same soil as those of the permanent structure. Allow for adequate site drainage or soil protection to prevent soil saturation and washout of the soil supporting the temporary works supports. If piles are used, the estimation of capacities and later confirmation during construction using standard procedures based on the driving characteristics of the pile is permitted. If preferred, use load tests to confirm the estimated capacities; or, if required by the Engineer conduct load tests to verify bearing capacity values that are marginal or in other high risk situations. The Engineer reviews and approves the proposed pile and soil bearing capacities. #### 5.0 REMOVAL Unless otherwise permitted, remove and keep all temporary works upon completion of the work. Do not disturb or otherwise damage the finished work. Remove temporary works in conformance with the contract documents. Remove them in such a manner as to permit the structure to uniformly and gradually take the stresses due to its own weight. ## 6.0 METHOD OF MEASUREMENT Unless otherwise specified, temporary works will not be directly measured. ## 7.0 BASIS OF PAYMENT Payment at the contract unit prices for the various pay items requiring temporary works will be full compensation for the above falsework and formwork. (2-10-12) #### 1.0 GENERAL Submit working drawings in accordance with Article 105-2 of the *Standard Specifications* and this provision. For this provision, "submittals" refers to only those listed in this provision. The list of submittals contained herein does not represent a list of required submittals for the project. Submittals are only necessary for those items as required by the contract. Make submittals that are not specifically noted in this provision directly to the Resident Engineer. Either the Structure Design Unit or the Geotechnical Engineering Unit or both units will jointly review submittals. If a submittal contains variations from plan details or specifications or significantly affects project cost, field construction or operations, discuss the submittal with and submit all copies to the Resident Engineer. State the reason for the proposed variation in the submittal. To minimize review time, make sure all submittals are complete when initially submitted. Provide a contact name and information with each submittal. Direct any questions regarding submittal requirements to the Resident Engineer, Structure Design Unit contacts or the Geotechnical Engineering Unit contacts noted below. In order to facilitate in-plant inspection by NCDOT and approval of working drawings, provide the name, address and telephone number of the facility where fabrication will actually be done if different than shown on the title block of the submitted working drawings. This includes, but is not limited to, precast concrete items, prestressed concrete items and fabricated steel or aluminum items. ## 2.0 ADDRESSES AND CONTACTS For submittals to the Structure Design Unit, use the following addresses: Via US mail: Mr. G. R. Perfetti, P. E. State Structures Engineer North Carolina Department of Transportation Structures Management Unit 1581 Mail Service Center Raleigh, NC 27699-1581 Attention: Mr. P. D. Lambert, P. E. Via other delivery service: Mr. G. R. Perfetti, P. E. State Structures Engineer North Carolina Department of Transportation Structures Management Unit 1000 Birch Ridge Drive Raleigh, NC 27610 Attention: Mr. P. D. Lambert, P. E. Submittals may also be made via email. Send submittals to: plambert@ncdot.gov (Paul Lambert) Send an additional e-copy of the submittal to the following address: igaither@ncdot.gov (James Gaither) ilbolden@ncdot.gov (James Bolden) For submittals to the Geotechnical Engineering Unit, use the following addresses: For projects in Divisions 1-7, use the following Eastern Regional Office address: Via US mail: Via other delivery service: Mr. K. J. Kim, Ph. D., P. E. Eastern Regional Geotechnical Manager North Carolina Department of Transportation Geotechnical Engineering Unit Eastern Regional Office 1570 Mail Service Center Raleigh, NC 27699-1570 Mr. K. J. Kim, Ph. D., P. E. Eastern Regional Geotechnical Manager North Carolina Department of Transportation Geotechnical Engineering Unit Eastern Regional Office 3301 Jones Sausage Road, Suite 100 Garner, NC 27529 For projects in Divisions 8-14, use the following Western Regional Office address: Via US mail: Via other delivery service: Mr. John Pilipchuk, L. G., P. E. Western Regional Geotechnical Manager North Carolina Department of Transportation Geotechnical Engineering Unit Western Regional Office 5253 Z Max Boulevard Harrisburg, NC 28075 Mr. John Pilipchuk, L. G., P. E. Western Region Geotechnical Manager North Carolina Department of Transportation Geotechnical Engineering Unit Western Regional Office 5253 Z Max Boulevard Harrisburg, NC 28075 The status of the review of structure-related submittals sent to the Structure Design Unit can be viewed from the Unit's web site, via the "Contractor Submittal" link. Direct any questions concerning submittal review status, review comments or drawing markups to the following contacts: **Primary Structures Contact:** Paul Lambert (919) 707 – 6407 (919) 250 - 4082 facsimile plambert@ncdot.gov **Secondary Structures Contacts:** James Gaither (919) 707 – 6409 James Bolden (919) 707 – 6408 Eastern Regional Geotechnical Contact (Divisions 1-7): K. J. Kim (919) 662 – 4710 (919)
662 - 3095 facsimile kkim@ncdot.gov Western Regional Geotechnical Contact (Divisions 8-14): John Pilipchuk (704) 455 – 8902 (704) 455 – 8912 facsimile jpilipchuk@ncdot.gov #### 3.0 SUBMITTAL COPIES Furnish one complete copy of each submittal, including all attachments, to the Resident Engineer. At the same time, submit the number of hard copies shown below of the same complete submittal directly to the Structure Design Unit and/or the Geotechnical Engineering Unit. The first table below covers "Structure Submittals". The Resident Engineer will receive review comments and drawing markups for these submittals from the Structure Design Unit. The second table in this section covers "Geotechnical Submittals". The Resident Engineer will receive review comments and drawing markups for these submittals from the Geotechnical Engineering Unit. Unless otherwise required, submit one set of supporting calculations to either the Structure Design Unit or the Geotechnical Engineering Unit unless both units require submittal copies in which case submit a set of supporting calculations to each unit. Provide additional copies of any submittal as directed. ## **STRUCTURE SUBMITTALS** | Submittal | Copies
Required by
Structure
Design Unit | Copies Required by Geotechnical Engineering Unit | Contract Reference
Requiring Submittal ¹ | |--|---|--|--| | Arch Culvert Falsework | 5 | 0 | Plan Note, SN Sheet & "Falsework and Formwork" | | Box Culvert Falsework ⁷ | 5 | 0 | Plan Note, SN Sheet & "Falsework and Formwork" | | Cofferdams | 6 | 2 | Article 410-4 | | Foam Joint Seals 6 | 9 | 0 | "Foam Joint Seals" | | Expansion Joint Seals (hold down plate type with base angle) | 9 | 0 | "Expansion Joint Seals" | | Expansion Joint Seals (modular) | 2, then 9 | 0 | "Modular Expansion Joint Seals" | | Expansion Joint Seals (strip seals) | 9 | 0 | "Strip Seals" | |--|---------------------------|---|---| | Falsework & Forms ² (substructure) | 8 | 0 | Article 420-3 & "Falsework and Formwork" | | Falsework & Forms (superstructure) | 8 | 0 | Article 420-3 & "Falsework and Formwork" | | Girder Erection over Railroad | 5 | 0 | Railroad Provisions | | Maintenance and Protection of
Traffic Beneath Proposed
Structure | 8 | 0 | "Maintenance and Protection of Traffic Beneath Proposed Structure at Station" | | Metal Bridge Railing | 8 | 0 | Plan Note | | Metal Stay-in-Place Forms | 8 | 0 | Article 420-3 | | Metalwork for Elastomeric
Bearings ^{4,5} | 7 | 0 | Article 1072-8 | | Miscellaneous Metalwork ^{4,5} | 7 | 0 | Article 1072-8 | | Optional Disc Bearings 4 | 8 | 0 | "Optional Disc Bearings" | | Overhead and Digital Message
Signs (DMS) (metalwork and
foundations) | 13 | 0 | Applicable Provisions | | Placement of Equipment on Structures (cranes, etc.) | 7 | 0 | Article 420-20 | | Pot Bearings ⁴ | 8 | 0 | "Pot Bearings" | | Precast Concrete Box Culverts | 2, then
1 reproducible | 0 | "Optional Precast Reinforced Concrete Box Culvert at Station" | | Prestressed Concrete Cored Slab (detensioning sequences) 3 | 6 | 0 | Article 1078-11 | | Prestressed Concrete Deck Panels | 6 and
1 reproducible | 0 | Article 420-3 | | Prestressed Concrete Girder (strand elongation and detensioning sequences) | 6 | 0 | Articles 1078-8 and 1078-
11 | | Removal of Existing Structure over Railroad | 5 | 0 | Railroad Provisions | | Revised Bridge Deck Plans (adaptation to prestressed deck panels) | 2, then
1 reproducible | 0 | Article 420-3 | |---|---------------------------|---|---| | Revised Bridge Deck Plans
(adaptation to modular
expansion joint seals) | 2, then
1 reproducible | 0 | "Modular Expansion Joint
Seals" | | Sound Barrier Wall (precast items) | 10 | 0 | Article 1077-2 & "Sound Barrier Wall" | | Sound Barrier Wall Steel
Fabrication Plans ⁵ | 7 | 0 | Article 1072-8 & "Sound Barrier Wall" | | Structural Steel ⁴ | 2, then 7 | 0 | Article 1072-8 | | Temporary Detour Structures | 10 | 2 | Article 400-3 & "Construction, Maintenance and Removal of Temporary Structure at Station" | | TFE Expansion Bearings ⁴ | 8 | 0 | Article 1072-8 | ## **FOOTNOTES** - 1. References are provided to help locate the part of the contract where the submittals are required. References in quotes refer to the provision by that name. Articles refer to the *Standard Specifications*. - 2. Submittals for these items are necessary only when required by a note on plans. - 3. Submittals for these items may not be required. A list of pre-approved sequences is available from the producer or the Materials & Tests Unit. - 4. The fabricator may submit these items directly to the Structure Design Unit. - 5. The two sets of preliminary submittals required by Article 1072-8 of the *Standard Specifications* are not required for these items. - 6. Submittals for Fabrication Drawings are not required. Submittals for Catalogue Cuts of Proposed Material are required. See Section 5.A of the referenced provision. - 7. Submittals are necessary only when the top slab thickness is 18" or greater. 44 ## **GEOTECHNICAL SUBMITTALS** | Submittal | Copies Required by Geotechnical Engineering Unit | Copies
Required by
Structure
Design Unit | Contract Reference
Requiring Submittal ¹ | |---|--|---|--| | Drilled Pier Construction Plans ² | 1 | 0 | Subarticle 411-3(A) | | Crosshole Sonic Logging (CSL)
Reports ² | 1 | 0 | Subarticle 411-5(A)(2) | | Pile Driving Equipment Data
Forms ^{2,3} | 1 | 0 | Subarticle 450-3(D)(2) | | Pile Driving Analyzer (PDA)
Reports ² | 1 | 0 | Subarticle 450-3(F)(3) | | Retaining Walls ⁴ | 8 drawings,
2 calculations | 2 drawings | Applicable Provisions | | Temporary Shoring ⁴ | 5 drawings,
2 calculations | 2 drawings | "Temporary Shoring" & "Temporary Soil Nail Walls" | ## **FOOTNOTES** - 1. References are provided to help locate the part of the contract where the submittals are required. References in quotes refer to the provision by that name. Subarticles refer to the *Standard Specifications*. - 2. Submit one hard copy of submittal to the Resident or Bridge Maintenance Engineer. Submit a second copy of submittal electronically (PDF via email) or by facsimile, US mail or other delivery service to the appropriate Geotechnical Engineering Unit regional office. Electronic submission is preferred. - 3. The Pile Driving Equipment Data Form is available from: www.ncdot.org/doh/preconstruct/highway/geotech/formdet/ See second page of form for submittal instructions. - 4. Electronic copy of submittal is required. See referenced provision. ## **OVERLAY SURFACE PREPARATION** (SPECIAL) #### DESCRIPTION This provision addresses the surface preparation activities required prior to the placement of latex modified concrete. Unless specifically mentioned below, all requirements specified for the bridge deck are also required for the approach slabs. #### **DEFINITIONS** Scarification shall consist of the removal of any asphalt wearing surface and concrete surface to a uniform depth within ½" of the overlay thickness indicated in the plans. Hydro-demolition shall consist of the removal of the deck surface by means of high pressure water blasting which removes concrete, oil, dirt, concrete laitance and rust from the exposed reinforcing bars by direct impact, pressurization of micro and macro cracks and cavitation produced by jet instability. ## MANAGING HYDRO-DEMOLITION WATER Prior to beginning work, submit for approval a Hydro-demolition Management Plan. This plan shall describe the collection, treatment, and disposal of run-off water generated by the scarification and hydro-demolition processes. Prepare the plan in accordance to the NCDOT Guidelines for Managing Hydro-demolition Water (a copy of which is included in the Appendix). The contractor shall comply with applicable regulations concerning such water disposal. ## **EQUIPMENT** Use the following surface preparation equipment: - Scarifying equipment that is a power-operated, mechanical grinder capable of removing a minimum depth of ¼" for each pass. - Hydro-demolition machine, self-propelled with a minimum orifice pressure of 17,000 psi. - All water used for hydro-demolition shall be potable. - Equipment capable of sawing concrete to the specified plan depth. - Hand-held high velocity (7,500 psi minimum) water-jet equipment capable of removing rust scale from reinforcing steel, removing small chips of concrete partially loosened by the scarifying or chipping operation, and for removing rehydrated dust left from scarification. - Power driven hand tools for removal of unsound concrete are required that meet the following requirements: - Pneumatic hammers weighing a nominal 35 lb or less. - Pneumatic hammer chisel-type bits that do not exceed the diameter of the shaft in width. - Hand tools such as hammers and chisels for removal of final particles of unsound concrete. - Vibratory screed for overlays, except as noted herein. The hydro-demolition machine shall move the water-jet transversely and longitudinally such that the entire deck is covered with the water-jet and operates at a pressure sufficient to remove the unsound concrete. The machine shall have sufficient means to control and vary the
following functions: - (1) Water pressure. - (2) Angle and distance of the orifice in relation to the surface to be blasted. - (3) Limits of transverse and longitudinal movement of the orifice. - (4) Speed of the orifice in the transverse and longitudinal direction. High pressure pump(s) shall be equipped with over-pressurization relief valves and rupture disc systems. All high pressure components shall be rated at full working pressure of the hydrodemolition system. The complete hydro-demolition system must be capable of depressurization from a single point. The equipment must operate at a noise level less than 90 decibels at a distance of 50 feet. #### **SUBMITTALS** Prior to beginning surface preparation activities the Contractor shall submit for review and approval the Bridge Deck Scarification Plan. The plans shall detail the type of equipment that is intended to be used and the means by which the Contractor will achieve a variable scarification depth along the grade shown in the plans. ## **SURFACE PREPARATION** Remove all existing asphalt overlays and all loose, disintegrated, unsound or contaminated concrete to the limits shown on the plans by following these requirements: A. <u>Sealing of Bridge Deck:</u> Prior to beginning any demolition, seal all expansion joints subject to run-off water with material approved by the Engineer. The expansion joints shall remain sealed until water from the demolition process no longer passes over them. Take all steps necessary to eliminate the flow of water through the expansion joints, and any other locations water could leak from the deck. All deck drains in the immediate work area and other sections of the bridge affected by the work being performed shall be sealed prior to beginning scarification. Drains shall remain sealed until it has been determined that materials from the demolition process and concrete overlay operations cannot be discharged through them any longer. B. <u>Scarifying Bridge Deck</u>: Remove the asphalt wearing surface and scarify the concrete deck to a uniform depth within ½" of the overlay thickness indicated in the contract plans. The concrete thickness above the top mat of reinforcing steel after scarification should not be less than ½". It will be the Contractor's responsibility to determine the existing amount of cover for the reinforcing steel. Use a pachometer or other approved device, as directed by Engineer, prior to beginning scarification. Readings shall be taken in the presence of the Engineer. Readings should be taken for each span at 1/5 points longitudinally and 1/3 points transversely. The cost for this work will be considered incidental to the cost of scarification of the bridge deck. ## Estimated average cover to top mat: Bridge # 35: 2" +/-1/2" The above top mat cover dimensions are an estimate based on the best available information. Calibrate scarifying equipment in order to avoid damaging the reinforcing steel in the bridge floor or the approach slab. If reinforcing bars or bridge drainage devices are pulled up or snagged during scarification operations, then cease work and consult with the Engineer to determine any necessary adjustments to the roto-milling operation. Remove and dispose of all concrete and asphalt, and thoroughly clean the scarified surface. In areas where reinforcing steel is located within the scarification depth, use a scarification method that will not damage the existing reinforcing steel and meets the Engineer's approval. C. Calibration of Hydro-Demolition Equipment: Two trial areas shall be designated by the Engineer to demonstrate the equipment, personnel, and methods of operation are capable of producing results to the satisfaction of the Engineer. The first trial area shall consist of approximately 50 square feet of sound concrete as determined by the Engineer. The equipment shall be calibrated to remove the sound concrete from the scarified surface to the depth required to achieve the plan overlay thickness. After completion of this test area, the equipment shall be moved to the second area consisting of deteriorated or defective concrete, to determine whether this unsound concrete will be completely removed with the previous calibration and to establish a baseline for requiring the contractor to place under-deck containment in areas subject to full depth removal, before beginning the hydro-demolition process in a span. Should it be determined that not all defective concrete has been removed, the hydro-demolition system shall be recalibrated to remove an additional ¼" of sound concrete, then re-test on deteriorated concrete. If additional defective concrete is found, the depth of cut will increase in ¼" increments until only sound concrete is found remaining. When satisfactory results are obtained, the machine parameters shall be used for production removal. The contractor shall make adjustments to the operating parameters, as required, to perform concrete removal as indicated on the plans and to adjust to the variance in the compressive strength of the concrete. Hand held water blasting equipment, pneumatic hammers, and hand tools may be substituted for the hydro-demolition unit in inaccessible areas. The Engineer will re-inspect after each removal and require additional removals until compliance with plans and specifications are met. Regardless of the method of removal, the removal operation shall be stopped if it is determined that sound concrete is being removed to a depth greater than required by the plans including any ¼" increments added per the above calibration process. Appropriate recalibration, or change in equipment and methods shall be performed prior to resuming the removal operation. D. <u>Hydro-demolition (Overlay Depth)</u>: Remove by hydro-demolition or chipping with hand tools all loose, unsound and contaminated deck concrete and, if necessary, sound concrete in order to allow for the placement of an overlay with the minimum depth shown on the plans. If reinforcing steel is exposed and debonded, the reinforcing steel shall be securely tied such that no movement is observed when stricken. Additional chipping may be required in order to facilitate re-tying of the steel. Dispose of the unsound concrete, clean, repair or replace damaged reinforcing steel and thoroughly clean the newly exposed surface. Care shall be taken not to cut, stretch, or damage any exposed reinforcing steel. Any areas of the prepared surface contaminated by oil or other materials detrimental to good bond as a result of the contractor's operations shall be cleaned at the contractor's expense. Note: The maximum length of bridge deck exposed by hydro-demolition at any given time shall not exceed 1,020 feet. The Contractor shall alternate between hydro-demolition and placing and finishing the overlay in order to meet this requirement. E. <u>Class II Surface Preparation (Partial Depth)</u>: At locations specified on the plans for Class II Surface Preparation, verify the depth of removal achieved by the hydro-demolition. The average depth of removal shall be approximately one-half the deck thickness but no less than 3/4" below the top mat of steel. When hydro-demolition did not achieve the Class II Surface Preparation depth requirements, remove by hydro-demolition or chipping with hand tools all existing patches and contaminated concrete to the required depth. No additional payment will be made for Class II Surface Preparation depths achieved by the initial hydro-demolition. All patches shall be removed under Class II surface preparation. If any patch cannot be removed by means of hydro-demolition, the Contractor shall use hand tools to remove the patch. Areas indicated on the plans that require Class II surface preparation, including the locations of existing patches, are from the best information available. The Contractor shall verify prior to surface preparation the location of all existing patches. Dispose of the contaminated concrete, clean, repair or replace rusted or loose reinforcing steel and thoroughly clean the newly exposed surface. Care shall be taken not to cut, stretch, or damage any exposed reinforcing steel. In overhangs, removing concrete areas of less than 0.60 ft²/ft length of bridge without overhang support is permitted unless the Engineer directs otherwise. Overhang support is required for areas removed greater than 0.60 ft²/ft length of bridge. Submit details of overhang support to the Engineer for approval prior to beginning the work. F. <u>Class III Surface Preparation (Full Depth)</u>: Remove by hydro-demolition or chipping with hand tools the full depth of slab. Dispose of the concrete, clean, repair or replace damaged reinforcing steel and thoroughly clean the newly exposed surface. Care shall be taken not to cut, stretch, or damage any exposed reinforcing steel. For full depth removal areas 3 ft² or less, suspending forms from existing reinforcing steel using wire ties is permitted. For full depth removal areas greater than 3 ft², support forms by blocking from the beam flanges, or other approved method. Overhang support is required for full depth removal adjacent to bridge rails. Submit details of overhang support to the Engineer for approval prior to beginning the work. <u>Under Deck Containment:</u> Prior to hydro-demolition, under deck containment shall be installed in the areas where full depth removal is required or blow thru may occur during the hydro-demolition process. The containment system shall retain runoff water and debris and protect the area under the bridge deck. The containment system shall remain in place until concrete has been cast and reached minimum strength. Submit for approval detailed plans for the under deck containment system. Detail how waste, debris, and wastewater are contained. <u>Concrete for Full Depth Repair</u>: Fill the Class III surface preparation areas with Class AA, high early strength structural concrete or latex modified concrete in
accordance with the methods described below: Refill areas with Class AA concrete to the bottom of the proposed concrete overlay in accordance with Section 420 of the *Standard Specifications*. Any of the methods for curing Class AA concrete as stated in the *Standard Specifications* are permitted except the membrane curing compound method. Provide a raked finish to the surface of the Class AA concrete which provides a minimum relief of 1/16" and a maximum relief of 1/4". Place the overlay course after the Class AA concrete has attained a minimum compressive strength of 2500 psi. The strength shall be verified by an approved, non-destructive test method. Refilling the areas from which concrete was removed with high early strength concrete as described in the Concrete for Deck Repair and Volumetric Mixer special provisions is permitted. Refilling the areas from which concrete was removed with latex modified concrete during the Class III repair is permitted if any of the following conditions are met: - The reinforcing steel cover is $1\frac{1}{2}$ " or less for the top mat of steel. - The area being repaired is less than 1 yd². - The Engineer directs the fill. - G. <u>Preparation of Reinforcing Steel</u>: Remove concrete without cutting or damaging existing reinforcing steel unless otherwise noted in the plans. Damaged reinforcing steel resulting from concrete removal, e.g. bars with nicks deeper than 20% of the bar diameter, shall be repaired or replaced at the contractor's expense. Reinforcing steel which has a 25% or more reduction in cross sectional area shall be replaced with new reinforcing steel of equal cross section area. Replacement bars shall be Grade 60 and meet the material requirements of Section 1070 of the Standard Specifications. Replacement bars shall be spliced to existing bars using either minimum 30 bar diameter lap splices to existing steel with 100% cross sectional area or approved mechanical connectors. Support and protect the exposed reinforcing steel exposed from the hydro-demolition process against displacement and damage from loads such as those caused by removal equipment and delivery buggies. Any reinforcing steel damaged by these operations shall be replaced with bars of the same size at the contractor's expense. Any reinforcing steel dislodged by these operations shall be secured before concrete placement. Reinforcing steel exposed and cleaned by hydro-demolition will not require additional cleaning if encased in concrete within seven (7) days. Rebar exposed for more than seven (7) days shall be cleaned by high velocity water jets, with a minimum pressure 4,000 psi, prior to placement of the new concrete. When large areas of the deck on composite bridges are removed resulting in the debonding of the primary reinforcing bars, the removal shall be performed in stages to comply with the construction sequence shown on the plans or as directed by the Engineer. - H. <u>Safety</u>: Provide adequate lighting when performing hydro-demolition activities at night. Submit a lighting plan to the Engineer for approval prior to beginning work. - I. Removal of Debris: Removal of concrete debris shall be accomplished either by hand or mechanical means capable of removing wet debris and water in the same pass and after the hydro-demolition process to prevent debris from setting or adhering to the surface of the sound concrete. All concrete debris shall become the property of the Contractor and shall be properly disposed of at the contractor's expense. The contractor shall be responsible for disposing of all debris generated by the scarification and hydro-demolition operations. Any debris which is allowed to set or adhere to the surface of the sound concrete shall be carefully removed at no additional cost. Exercise care to avoid any damage to the remaining sound concrete or exposed reinforcement. Prior to the placement of the overlay, the entire surface shall be cleaned with high pressure water to remove any bond-breaking residue, loose material from the concrete surface, and/or rust from the reinforcing steel. This residue shall be collected and disposed of by the contractor. ### MEASUREMENT AND PAYMENT Scarifying Bridge Deck will be measured and paid for at the contract unit price per square yard and will be full compensation for milling the existing asphalt wearing surface from the bridge deck or approaches, milling the entire concrete bridge deck, repairing or replacing any damaged reinforcing steel, cleaning and disposing of all waste material generated and furnishing all materials, labor, tools, equipment and incidentals necessary to complete the work Hydro-Demolition of Bridge Deck will be measured and paid for at the contract unit price per square yard and will be full compensation for hydro-demolition, removing and disposing of unsound and contaminated concrete, cleaning, repairing or replacing reinforcing steel, and furnishing all materials, labor, tools, equipment and incidentals necessary to complete the work. Class II Surface Preparation will be measured and paid for at the contract unit price per square yard and will be full compensation for Class II deck preparation where required by the plans and not attained by the initial hydro-demolition of the deck. The cost will also include removing and disposing of unsound and contaminated concrete, removing all existing patches, cleaning, repairing or replacing reinforcing steel, and furnishing all materials, labor, tools, equipment and incidentals necessary to complete the work. Class III Surface Preparation will be measured and paid for at the contract unit price per square yard and will be full compensation for Class III deck preparation where required by the plans. The cost will also include removing and disposing of unsound and contaminated concrete, cleaning, repairing or replacing reinforcing steel, under deck containment, placing and finishing concrete for full depth repair, and furnishing all materials, labor, tools, equipment and incidentals necessary to complete the work. Payment will be made under: Pay ItemPay UnitScarifying Bridge DeckSquare YardHydro-Demolition of Bridge DeckSquare YardClass II Surface PreparationSquare YardClass III Surface PreparationSquare Yard ## **MANAGING HYDRODEMOLITION WATER** (6-17-08) SPI 4-03 ## 1.0 Description Collect and properly dispose of hydrodemolition water from bridge decks. ## 2.0 Construction Methods - (A) Prepare a written hydrodemolition water management plan in accordance with the Guidelines for Managing Hydrodemolition Water available at http://www.ncdot.gov/projects/ncbridges/#stats. Submit plan and obtain approval from the Engineer prior to beginning of the hydrodemolition operation. - **(B)** Prior to final payment, submit a paper copy of all completed records pertaining to disposal of hydrodemolition water. ## 3.0 Measurement and Payment Payment for collecting, sampling, testing, pH adjustment, monitoring, handling, discharging, hauling, disposing of the hydrodemolition water, documentation, record keeping, and obtaining permits if applicable, shall be included in the payment for other items. ## **BRIDGE JOINT DEMOLITION** (SPECIAL) #### DESCRIPTION This provision addresses the removal of existing joint material and adjacent concrete to facilitate the installation of new bridge joints at the locations noted in the contract plans. ## **EQUIPMENT** Use the following surface preparation equipment: - Sawing equipment capable of sawing concrete to a specified depth. - Power driven hand tools for removal of concrete are required that meet the following requirements: Pneumatic hammers weighing a nominal 15 lbs (7 kg) or less. Pneumatic hammer chisel-type bits that do not exceed the diameter of the shaft in width. Hand tools such as hammers and chisels for removal of final particles of concrete. #### REMOVAL AND PREPARATION Prior to any construction, take the necessary precautions to ensure debris from joint construction is not allowed to fall below the bridge deck. Remove existing joint material by methods approved by the Engineer. Provide a 1" deep saw cut around the perimeter of areas noted for bridge deck removal. Remove by chipping with hand tools concrete adjacent to the joint to the limits shown on the contract plans. Use a small chipping hammer (15 lb. class) to prepare the edges of the repair area to limit micro fractures. In addition, all loose and unsound concrete shall be removed. In overhangs, removing concrete areas greater than 0.60 ft2/ft length of bridge will require overhang support. Submit the overhang support method to the Engineer for approval. Care shall be taken not to cut, stretch, or damage any exposed reinforcing steel. Dispose of the removed concrete. If the condition of the concrete is such that deep spalls or sheer faces result, notify the Engineer for the proper course of action. Clean, repair or replace rusted or loose reinforcing steel. Thoroughly clean the newly exposed surface to be free of all grease, oil, curing compounds, acids, dirt, or loose debris. ## MEASUREMENT AND PAYMENT Bridge Joint Demolition will be measured and paid for at the contract unit price bid per square foot and will be full compensation for removal, containment and disposal of existing joint material and concrete and shall include the cost of labor, tools, equipment and incidentals necessary to complete the work. Pay Item Pay Unit Bridge Joint Demolition Square Feet (3-5-13) #### DESCRIPTION This provision addresses the requirements for furnishing and placing an overlay of latex modified concrete (LMC) over existing concrete or repair concrete on bridge decks and approach pavement. Perform this work in accordance with this Special Provision and the applicable parts of the Standard Specifications. For materials, equipment, and proportioning and mixing of modified compositions, see Section 1000-7 of the Standard
Specifications. #### **MATERIALS** Provide aggregates for use in the LMC that are free from ice, frost and frozen particles when introduced into the mixer. The 2012 Standard Specifications shall be revised as follows: Add the following paragraph to the end of Section 1000-7(A) – Materials: Submit the LMC mix design, including laboratory compressive strength data for a minimum of six 4-inch by 8-inch cylinders at the appropriate age (7 days for normal setting concrete; 3 hours for very early strength concrete) to the Engineer for review. Include test results for the slump and air content of the laboratory mix. Perform tests in accordance with AASHTO T 22, T 119 and T 152. #### PREPARATION OF SURFACE Completely clean all surfaces within 48 hours prior to placing the overlay unless otherwise approved. Thoroughly soak the clean surface for at least 12 hours immediately prior to placing the LMC. After soaking the surface for at least 12 hours, cover it with a layer of white opaque polyethylene film that is at least 4 mils thick. Immediately prior to placing the LMC, remove standing water from the surface. ## PLACING AND FINISHING Prior to placing LMC, install a bulkhead of easily compressible material at expansion joints to the required grade and profile. Placing material across expansion joints and sawing it later is not permitted. For joints that include an elastomeric header, a rigid form bulkhead shall be installed to the required grade and profile. Placing material across the future block-out and removing it later is not permitted. Construction joints other than those shown on the plans will not be permitted unless approved by the Engineer. Place and fasten screed rails in position to ensure finishing the new surface to the required profile. Do not treat screed rails with parting compound to facilitate their removal. Prior to placing the overlay attach a filler block to the bottom of the screed and pass it over the area to be repaired to check the thickness. The filler block thickness shall be equal to the design overlay thickness as shown in the plans. Remove all concrete that the block does not clear. Brush a latex cement mixture onto the wetted, prepared surface. Carefully give all vertical and horizontal surfaces a thorough, even coating and do not let the brushed material dry before it is covered with the additional material required for the final grade. Remove all loose aggregate from the latex cement brushed surface prior to latex concrete placement (NOTE: Not required for surfaces prepared with hydro-demolition). Do not place the LMC before the burlap is saturated and approved by the Engineer. Drain excess water from the wet burlap before placement. Place the LMC in one operation. Provide a minimum overlay thickness as shown in the plans and a final surface that is approximately the same as the original deck surface. Do not allow more than 15 feet of exposed latex concrete behind the screed. In the event of a delay of 10 minutes or more, temporarily cover all exposed latex concrete with wet burlap and white opaque polyethylene. As soon as the surface supports burlap without deformations, cover the surface with a single layer of clean, wet burlap. Separate screed rails or construction dams from the newly placed concrete by passing a pointing trowel along the face of the formwork and the newly place concrete. Carefully make this trowel cut for the entire depth and length of rails or dams after the LMC has sufficiently stiffened and cannot flow back. When a tight, uniform surface is achieved and before the concrete becomes non-plastic, further finish the surface of the floor by burlap dragging or another acceptable method that produces an acceptable uniform surface texture. Within 1 hour of covering with wet burlap, place a layer of 4 mil white opaque polyethylene film on the wet burlap and cure the surface for 48 hours. Then remove the curing material for an additional 96 hours air cure. As soon as practical, after the concrete has hardened sufficiently, test the finished surface with an approved rolling straightedge that is designed, constructed, and adjusted so that it will accurately indicate or mark all floor areas which deviate from a plane surface by more than 1/8" in 10'. Remove all high areas in the hardened surface in excess of 1/8" in 10' with an approved grinding or cutting machine. Where variations are such that the corrections extend below the limits of the top layer of grout, seal the corrected surface with an approved sealing agent as required by the Engineer. If approved by the Engineer, correct low areas in an acceptable manner. Unless otherwise indicated on the plans, groove the bridge floor in accordance with Article 420-14(B) of the Standard Specifications. ### LIMITATIONS OF OPERATIONS The mixer is not permitted on the bridge deck unless otherwise approved. No traffic is permitted on the finished LMC surface until the total specified curing time is completed and until the concrete reaches the minimum specified compressive strength. Do not place LMC if the temperature of the concrete surface on which the overlay is to be placed is below 40°F or above 85°F. Measure the surface temperature by placing a thermometer under the insulation against the surface. Prior to placing LMC, the Engineer determines the air temperature and wind speed. Do not place LMC if the ambient air temperature is below 50°F or above 85°F, or if the wind velocity is greater than 10 mph. Do not place LMC when the temperature of the LMC is below 45°F or above 85°F. Do not place LMC if the rate of evaporation of surface moisture from the LMC exceeds 0.05 pounds per square foot per hour during placement. The evaporation rate is calculated using the following formula: ``` E = (T_c^{2.5} - r * T_a^{2.5}) * (1 + 0.4 V) * (10^{-6}) where, E = \text{Evaporation Rate,} T_c = \text{Concrete Temp (}^0F\text{),} r = \text{Relative Humidity (}^0/100\text{)} T_a = \text{Air Temp (}^0F\text{),} V = \text{Wind Velocity (mph)} ``` Do not place LMC if the National Weather Service predicts the air temperature at the site to be below 35°F during the next 72 hours. If the predicted air temperature is above 35°F but below 50°F, then use insulation to protect the LMC for a period of at least 48 hours. Use insulation that meets the requirements of Subarticle 420-7(C) and, if required, place it on the LMC as soon as initial set permits. When using insulation to protect LMC during the wet curing period, do not remove the insulation until the ambient air temperature is at least 40°F and rising. Leave the LMC uncovered for the 96 hour air curing period. The Contractor assumes all risks connected with the placement of LMC when cold weather conditions are less than those referred to above. Stop all placement operations during periods of precipitation. Take adequate precautions to protect freshly placed LMC from sudden or unexpected precipitation. Keep an adequate quantity of protective coverings at the worksite to protect the freshly placed pavement from precipitation. If working at night, provide approved lighting. #### MEASUREMENT AND PAYMENT Latex Modified Concrete will be measured and paid for in cubic yards of latex modified concrete satisfactorily placed in the completed deck. Placing and Finishing Latex Modified Concrete Overlay will be paid for at the contract unit price bid per square yard which includes compensation for furnishing all labor, tools, equipment and incidentals necessary to complete the work in accordance with the contract documents. *Grooving Bridge Floors* will be measured and paid in accordance with Section 420-21 of the Standard Specifications. Payment will be made under: | Pay Item | Pay Unit | |---|-------------| | Latex Modified Concrete | Cubic Yard | | Placing and Finishing Latex Modified Concrete Overlay | Square Yard | (12-18-12) #### 1.0 DESCRIPTION Elastomeric concrete is a mixture of a two-part polymer consisting of polyurethane and/or epoxy and kiln-dried aggregate. Provide an elastomeric concrete and binder system that is preapproved. Use the concrete in the blocked out areas on both sides of the bridge deck joints as indicated on the plans. #### 2.0 MATERIALS Provide materials that comply with the following minimum requirements at 14 days (or at the end of the specified curing time). | ELASTOMERIC CONCRETE
PROPERTIES | TEST METHOD | MINIMUM
REQUIREMENT | |------------------------------------|-------------------|------------------------| | Compressive Strength, psi | ASTM D695 | 2000 | | 5% Deflection Resilience | ASTM D695 | 95 | | Splitting Tensile Strength, psi | ASTM D3967 | 625 | | Bond Strength to Concrete, psi | ASTM D882 (D882M) | 450 | | Durometer Hardness | ASTM D2240 | 50 | | BINDER PROPERTIES (without aggregate) | TEST METHOD | MINIMUM
REQUIREMENT | |---------------------------------------|-------------|------------------------| | Tensile Strength, psi | ASTM D638 | 1000 | | Ultimate Elongation | ASTM D638 | 150% | | Tear Resistance, lb/in | ASTM D624 | 200 | In addition to the requirements above, the elastomeric concrete must be resistant to water, chemical, UV and ozone exposure and withstand temperature extremes. Elastomeric concrete systems requiring preheated aggregates are not allowed. ## 3.0 PREQUALIFICATION Manufacturers of elastomeric concrete materials shall submit samples (including aggregate, primer and binder materials) and a Type 3 certification in accordance with Article 106-3 of the Standard Specifications for prequalification to: North Carolina Department of Transportation Materials and Tests Unit # 1801 Blue Ridge Road Raleigh, NC 27607 Prequalification will be determined for the system. Individual components will not be evaluated, nor will individual components of previously evaluated systems be deemed prequalified for use. The submitted binder (a minimum volume of 1 gallon) and corresponding aggregate samples will
be evaluated for compliance with the Materials requirements specified above. Systems satisfying all of the Materials requirements will be prequalified for a one year period. Before the end of this period new product samples shall be resubmitted for prequalification evaluation. If, at any time, any formulation or component modifications are made to a prequalified system that system will no longer be approved for use. #### 4.0 INSTALLATION The elastomeric concrete shall not be placed until the reinforced concrete deck slab has cured for seven full days and reached a minimum strength of 3000 psi. Provide a manufacturer's representative at the bridge site during the installation of the elastomeric concrete to ensure that all steps being performed comply with all manufacturer installation requirements including, but not limited to weather conditions (ambient temperature, relative humidity, precipitation, wind, etc), concrete deck surface preparation, binder and aggregate mixing, primer application, elastomeric concrete placement, curing conditions and minimum curing time before joint exposure to traffic. Do not place elastomeric concrete if the ambient air or surface temperature is below 45°F. Prepare the concrete surface within 48 hours prior to placing the elastomeric concrete. Before placing the elastomeric concrete, all concrete surfaces shall be thoroughly cleaned and dry. Sandblast the concrete surface in the blockout and clear the surface of all loose debris. Do not place the elastomeric concrete until the surface preparation is completed and approved. Prepare and apply a primer, as per manufacturer's recommendations, to all concrete faces to be in contact with elastomeric concrete, and to areas specified by the manufacturer. Prepare, batch, and place the elastomeric concrete in accordance with the manufacturer's instructions. Place the elastomeric concrete in the areas specified on the plans while the primer is still tacky and within 2 hours after applying the primer. Trowel the elastomeric concrete to a smooth finish. The joint opening in the elastomeric concrete shall match the formed opening in the concrete deck prior to sawing the joint. ## 5.0 FIELD SAMPLING Provide additional production material to allow freshly mixed elastomeric concrete to be sampled for acceptance. A minimum of six 2 inch cube molds and three 3x6 inch cylinders will be taken by the Department for each day's production. Compression, splitting tensile, and durometer hardness testing will be performed by the Department to determine acceptance. Materials failing to meet the requirements listed above are subject to removal and replacement at no cost to the Department. ## 6.0 BASIS OF PAYMENT No separate payment will be made for elastomeric concrete. The lump sum contract price bid for "Foam Joint Seals" or "Synthetic Rubber Expansion Joint Seals" will be full compensation for furnishing and placing the Elastomeric Concrete. ## SYNTHETIC RUBBER EXPANSION JOINT SEALS #### **SEALS** Use an inverted "V" shaped, preformed extruded ethylene propylene diene monomer (M-class) rubber (EPDM), or silicone rubber seal compatible with concrete and resistant to abrasion, oxidation, oils, gasoline, salt and other materials that are spilled on or applied to the surface. Seal shall be secured to concrete surfaces with a single component silicone locking adhesive and a primer, or with a quick setting epoxy adhesive. Use seals set in a sawed joint opening with a depth that meets the manufacturer's recommendation, and is not less than ½" below the top of the deck slab at the opening's minimum width specified in the plans. Seals edges shall be set on the bottom of the sawed joint opening that is at least 1/8" wide. Provide a seal that has a working temperature range of 0°F to 120°F and meets the requirements given below. | TEST | TEST METHOD | REQUIREMENT | |----------------------------------|-------------|------------------| | Tensile Strength | ASTM D412 | 1,000 psi (min.) | | Elongation at Break | ASTM D412 | 300% (min.) | | Tear Strength | ASTM D624 | 100 ppi (min.) | | Compression Set 212 °F @ 70 hrs. | ASTM D395 | 30% (max.) | | Water Resistance | ASTM D471 | 70 hrs. @ 212 °F | | Durometer (Shore A) | ASTM D2240 | 55-65 +/-5 | Have the top of the joint seal clearly shop marked. Inspect the joint seals upon receipt to ensure that the marks are clearly visible before installation. ## **BONDING ADHESIVE** For silicone adhesive, use a single component, 100% solid, silicone locking adhesive supplied by the joint seal manufacturer that meets the following requirements: | TEST | TEST METHOD | REQUIREMENT | |-----------------------|-------------|---| | Tensile strength | ASTM D412 | 200 psi (min.) | | Tack Free Time | ASTM C679 | 20 minutes (max.) | | Cure Time (1/4" Bead) | ASTM C679 | 24 hours (max.) | | Resistance to UV | ASTM C793 | No cracking, ozone chalking, or degredation | | Elongation to Break | ASTM D412 | 450% (min.) | For epoxy adhesive, use a quick setting two-component thixotropic paste that is mixed in strict conformance to the manufacturer's instructions. Epoxy adhesive shall be supplied by the joint seal manufacturer and shall meet the following requirements: | TEST | TEST METHOD | REQUIREMENT | |---------------------------|-------------|-----------------| | Tensile strength | ASTM D638 | 7000 psi (min.) | | Bond Strength to Concrete | ASTM C881 | 1000 psi (min.) | | Peel Adhesion | ASTM C794 | 50 pli | | Gel Time | | 8 minutes | | Pot Life | | 45 minutes | | Cure Time | | 24 hours (max.) | Use an adhesive that is workable to 45°F. When installing in ambient air or surface temperatures below 45°F or for application on moist, difficult to dry concrete surfaces, use an adhesive specified by the manufacturer of the joint seal. #### **SAWING THE JOINT** The joint opening shall be initially formed to the width shown on the plans including the blockout for the elastomeric concrete. The elastomeric concrete shall have sufficient time to cure such that no damage can occur to the elastomeric concrete prior to sawing to the final width and depth as specified in the plans. When sawing the joint to receive the joint seal, always use a rigid guide to control the saw in the desired direction. To control the saw and to produce a straight line as indicated on the plans, anchor and positively connect a template or a track to the bridge deck. Do not saw the joint by visual means such as a chalk line. Fill the holes used for holding the template or track to the deck with an approved, flowable non-shrink, non-metallic grout. Saw cut to the desired width and depth in one or two passes of the saw by placing and spacing two metal blades on the saw shaft to the desired width for the joint opening. The desired depth of the saw cut is the depth of the seal plus 1/2" minimum above the top of the seal at the minimum sawed joint width. An irregular bottom of sawed joint is permitted as indicated on the plans. Maximum surface amplitude at the bottom of the saw cut joint is 1/8". Grind exposed corners on saw cut edges to a 1/4" chamfer. Saw cut a straight joint, centered over the formed opening and to the desired width specified in the plans. Prevent any chipping or damage to the sawed edges of the joint. Remove any staining or deposited material resulting from sawing with a wet blade to the satisfaction of the Engineer. #### PREPARATION OF SAWED JOINT FOR SEAL INSTALLATION After sawing the joint, the Engineer will thoroughly inspect the sawed joint opening for spalls, popouts, cracks, etc. All necessary repairs will be made by the Contractor prior to blast cleaning and installing the seal. Seals shall be secured to substrate that is clean and sound. Clean the joints by sandblasting with clean dry sand immediately before placing the bonding agent. Sandblast the joint opening to provide a firm, clean joint surface free of curing compound, loose material and any foreign matter. Sandblast the joint opening without causing pitting or uneven surfaces. The aggregate in the elastomeric concrete may be exposed after sandblasting. After blasting, either brush the surface with clean brushes made of hair, bristle or fiber, blow the surface with compressed air, or vacuum the surface until all traces of blast products and abrasives are removed from the surface, pockets, and corners. If nozzle blasting is used to clean the joint opening, use compressed air that does not contain detrimental amounts of water or oil. Examine the blast cleaned surface and remove any traces of oil, grease or smudge deposited in the cleaning operations. Bond the seal to the blast cleaned surface on the same day the surface is blast cleaned. #### **SEAL INSTALLATION** Install the joint seal according to the manufacturer's procedures and recommendations and as recommended herein. Do not install the joint seal if the ambient air or surface temperature is below 45°F. Have a manufacturer's certified trained factory representative present during the installation of the first seal of the project. Before installing the joint seal, check the uninstalled seal length to insure the seal is the same length as the required seal length shown in the plans. Splices in joint seals will not be permitted. Begin installation by protecting the top edges of the concrete deck adjacent to the vertical walls of the joint as a means to minimize clean up. The joint seal shall be installed to strict conformance with the manufacturer's requirements for atmospheric conditions, concrete surface preparation, mixing and application of adhesive, seal material installation procedure, minimum cure time prior to exposure to traffic, as well as worker health and safety. Once work on placing a seal begins, do not stop until it is completed. Clean any excess adhesive from the top of the joint seal immediately with a trowel. Do not use solvents or any cleaners to remove the excess adhesive from the top of
the seal. Remove the protective cover at the joint edges and check for any adhesive on concrete surfaces. Remove excess adhesive with a trowel, the use of solvents or any cleaners will not be allowed. The installed system shall be watertight and will be monitored until final inspection and approval. Do not place pavement markings on top of synthetic rubber joint seals. ## **BASIS OF PAYMENT** Payment for all expansion joint seals will be at the lump sum contract price bid for "Synthetic Rubber Expansion Joint Seals". Prices and payment will be full compensation for furnishing all material, including elastomeric concrete, labor, tools and equipment necessary for installing these units in place and accepted.