STATE	STATE PROJECT REFERENCE NO.	SHEET NO.	TOTAL	ı
N.C.	54000.1.STR03T1B	1	7	
,	*			ł

STATE OF NORTH CAROLINA

DEPARTMENT OF TRANSPORTATION DIVISION OF HIGHWAYS GEOTECHNICAL ENGINEERING UNIT

STRUCTURE SUBSURFACE INVESTIGATION

PROJ. REFERENCE NO. <u>54000.1.STR03T1B</u> (*U-4716B*) F.A. PROJ. *N/A*

COUNTY **DURHAM**

PROJECT DESCRIPTION <u>PIEDMONT CORRIDOR - EXTEND</u> CHURCH STREET (SR 1980) TO HOPSON ROAD (SR 1978)

SITE DESCRIPTION NC RAIL UTILITY BORINGS

CONTENTS

SHEET

DESCRIPTION TITLE SHEET

2-2A

LEGEND SHEETS

3

SITE PLAN BORING LOGS

CAUTION NOTICE

THE SUBSURFACE INFORMATION AND THE SUBSURFACE INVESTIGATION ON WHICH IT IS BASED WERE WADE FOR THE PURPOSE OF STUDY, PLANNING, AND DESIGN, AND NOT FOR CONSTRUCTION OF THE VARIOUS FIELD BORING LOGS, ROCK CORES, AND SOIL TEST DATA AVAILABLE MAY BE REVIEWED OR INSPECTED IN RALEIGH BY CONTACTING THE N. C. DEPARTMENT OF TRANSPORTATION. GEOTECHNICAL ENGINEERING UNIT AT 1919) 707-6850. NEITHER THE SUBSURFACE PLANS AND REPORTS, NOR THE FIELD BORING LOGS, ROCK CORES, OR SOIL TEST DATA ARE PART OF THE CONTRACT.

GENERAL SOIL AND ROCK STRATA DESCRIPTIONS AND INDICATED BOUNDARIES ARE BASED ON A GEOTECHNICAL INTERPRETATION OF ALL AVAILABLE SUBSURFACE DATA AND MAY NOT NECESSARILY REFLECT THE ACTUAL SUBSURFACE CONDITIONS BETWEEN BORINGS OR BETWEEN SAMPLED STRATA WITHIN THE BOREHOLE. THE LABORATORY SAMPLE DATA AND THE IN SITU IN-PLACED TEST DATA CAN BE RELIED ON ONLY TO THE DEGREE OF RELIABILITY INMERENT IN THE STANDARD TEST METHOD, THE OBSERVED WATER LEVELS OR SOIL MOISTURE CONDITIONS MOICATED IN THE SUBSURFACE INVESTIGATIONS ARE AS RECORDED AT THE TIME OF THE INVESTIGATION, THESE MATER LEVELS OR SOIL MOISTURE CONDITIONS MAY VARY CONSIDERABLY WITH TIME ACCORDING TO CLIMATIC CONDITIONS INCLUDING TEMPERATURES, PRECIPITATION, AND WIND, AS WELL AS OTHER NON-CLIMATIC FACTORS.

THE BDDER OR CONTRACTOR IS CAUTIONED THAT DETAILS SHOWN ON THE SUBSURFACE PLANS ARE PRELIMINARY ONLY AND IN MANY CASES THE FINAL DESIGN DETAILS ARE DIFFERENT, FOR BIDDING AND CONSTRUCTION PURPOSES, REFER TO THE CONSTRUCTION OF THE MERCHANIA CADA

- NOTE THE INFORMATION CONTAINED HEREIN IS NOT IMPLIED OR GUARANTEED BY THE N. C. DEPARTMENT OF TRANSPORTATION AS BEING ACCURATE NOR IT IS CONSIDERED TO BE PART OF THE PLANS, SPECIFICATIONS, OR CONTRACT FOR THE PROJECT.
- NOTE BY HAVING REQUESTED THIS INFORMATION THE CONTRACTOR SPECIFICALLY WAIVES ANY CLAIMS FOR INCREASED COMPENSATION OR EXTENSION OF TIME BASED ON DIFFERENCES BETWEEN THE

CONDITIONS INDICATED HEREIN AND THE ACTUAL CONDITIONS AT THE PROJECT SITE.	NC Engineering F-1253 NC Geology C-24
DRAWN BY: R. RAHIE	NC Engineering F-1253 NC Geology C-24

	PERSONNEL
	F. COX
	D. RHODES
	J. HOWARD
NVESTIGATED E	BY AMEC E&I. Inc.
CHECKED BY	J. HOWARD
SUBMITTED BY	B. DEOBALD
DATE	JUNE 2012
CONSTRUCTION OR PA	Y PURPOSES.

AMEC E&I, Inc. 4021 STIRRUP CREEK DRIVE, SUITE 100

DURHAM, NORTH CAROLINA 27703

PROJECT	REFERENCE	NO.	SHEET	NO.
54000	LISTRO3T	IR	2	

NORTH CAROLINA DEPARTMENT OF TRANSPORTATION

DIVISION OF HIGHWAYS

GEOTECHNICAL ENGINEERING UNIT

SOIL AND ROCK LEGEND, TERMS, SYMBOLS, AND ABBREVIATIONS

Section Sect		·					
BILLINE OF ROOT ACCOUNTS OF THE CHAPTER OF ACCOUNTS OF THE CHAPTER OF ACCOUNTS OF THE CHAPTER OF THE OF ACCOUNTS OF THE CHAPTER OF THE CHAP	ON TOTAL TOTAL						
BILLINE OF THE COLUMN	SOIL IS CONSIDERED TO BE THE UNCONSOLIDATED, SEMI-CONSOLIDATED, OR WEATHERED EARTH MATERIALS WELL GRADED - INDICATES AG GOOD REPRESENTATION OF PARTICLE SI UNIFORM - INDICATES THAT SOIL PARTICLES ARE ALL APPROXIMATEL.	<u>WELL GRADED</u> - INDICATES A GOOD REPRESENTATION OF PARTICLE SIZES FROM FINE TO COARSE. <u>UNIFORM</u> - INDICATES THAT SOIL PARTICLES ARE ALL APPROXIMATELY THE SAME SIZE, (ALSO					
**************************************	188 BLUNS PER FOOT ACCORDING TO STANDARD FROM FORE HOUSE, AND TIELD LESS THAN PROBLEM PROPERTY GRADED PROPERTY OF THE STANDARD FROM TEST (ASSITT 1286, SOIL GAP-GRADED INDICATES A MIXTURE OF INTERNAL PROPERTY OF THE STANDARD FROM	I POORLY COADED					
## AND PROPERTY OF THE PROPERY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY	CLRSSFLARI ON IS BRISED ON THE RRIGHTO SYSTEM, BRISIC DESCRIPTIONS GENERALLY SHALL INCLUDE; CONSISTENCY, COLOR, TEXTURE, MOSTRUE, ASSISTICATION, AND OTHER PERTINENT FACTORS SUCH ANGULARITY OF GRAI						
SOIL LEGEND AND AGSHTO CLASSIFICATION CLOSE 1 - 2 - 2 - 2 - 2 - 2 - 2 - 2 - 2 - 2 -	AS MINERALOGICAL COMPOSITION, ANGULARITY, STRUCTURE, PLASTICITY, ETC. EXAMPLE: THE ANGULARITY OR ROUNDNESS OF SOIL GRAINS IS DESIGNATED BY						
SECRETARY CONTINUES SATING MATERIAL CONTINUES SATING MATERIAL CONTINUES CONT		TION					
CLASS CLASS PROSERVE VARIETY CAPPAINT VARI	GENERAL GRAND AR MATERIALS SUIT-CLAY MATERIALS MINERAL NAMES SUIT-AS GUARTZ FELICEAR MICA TALC MADE IN ETC.						
CLASS A-1-1-1-1-1	CLASS. (≤ 35% PASSING *200) (> 35% PASSING *200) CHORAGE PRICE PRICE THEY ARE CONSIDERED OF SIGNIFICANCE,						
### STATE	COM RESSIDIE T						
March 18	SYMBOL SECOND STATELY COMPRESSIBLE LIQUID	IMIT EQUAL TO 31-50					
1.00 B R R R R R R R R R R R R R R R R R R							
28.8 28 18 18 18 18 18 18 1	" 10 BO MX GRANULAR SILT - MUCK, GRANULAR SILT - CLAY						
USB 19 19 19 19 19 19 19 1	SOILS SOILS SOILS						
Section Sect	LITTLE ORGANIC MATTER 3 - 5% 5 - 12%	LITTLE 10 - 20%					
SOURCE Color Col	PLASTIC INDEX S MX NP 18 MX 11 MN 11						
## ALTO PROJECTION SELLY OF CLAFFY SELLY	GROUP INDEX 0 0 0 4 MX 8 MX 12 MX 15 MX No MX MODERATE ORGANIC GROUND WATER						
MISTRIAL SIGN SOURCE SO	USUAL TYPES STUE FRACES, FINE SILTY OR CLAYEY SILTY CLAYEY ORGANIC WATER LEVEL IN BORE HOLE IMMEDIATELY AF	ER DRILLING					
SERIOR EXCILLENT 10 GOOD	MATERIALS SAND SAND CHAVEL AND SAND SUILS SUILS PRATER YEAR 24 HOURS						
PT OF A-7-5 SUBGROUP IS \$ LL - 30 PT OF A-7-6 SUBGROUP IS > LL - 30	AS A EXCELLENT TO GOOD FAIR TO POOR FAIR TO POOR UNSUITABLE YPW PERCHED WATER, SATURATED ZONE, OR WATER I	EARING STRATA					
CONSISTENCY OF DENSENS PRIMARY SOIL TYPE COMPANDED OF STRONG PRIMARY SOIL TYPE COMPANDED OF STRONG PRIMARY SOIL TYPE COMPANDED OF STRONG PRIMARY SOIL STRONG	SUBGRADE						
PARMARY SOIL TYPE COMPACTNESS OR CONSTRUCTORY PRINCE OF INCOMPRESSYSTEM CONTINUES COMPRESSYSTEM CONTINUES COMPRE	The state of the s	ni s					
VERT LODGE	DANCE OF STANDARD DANCE OF UNDONESTINES						
MEDIUM GENSE 19 10 38 10 10 8 10 10 38 31 10 58 32 10		BORING W/ CORE					
MEDIUM DENSE	GENERALLY VERY LOOSE 4 4 SOIL SYMBOL AUGER BOS	ING SPT N-VALUE					
GENERALLY SIT-CLAY MATERIAL COHESIVE) SET STIFF SOL MATERIAL COHESIVE) SET STIFF SOL MOSTURE COBBLE GRAVEL COBBLE COBBLE GRAVEL CLAY GRAVEL COBBLE GRAVEL CO	GHANULAH MEDIUM DENSE 16 TO 30 N/A ARTIFICIAL FILL (AF) OTHER CORE BORI	IG REF SPT REFUSAL					
SOFT SUPPLIES STORE ST	(NON-COHESIVE) DENSE 38 TO 50 THAN ROADWAY EMBANKMENT Y						
SIT-CLAY MEDIUM STIFF 4 TO 8 67 TO 12 7 TO 2	0,25						
MATERIAL VERY STIFF 15 TO 35 2 TO 4	SILT-CLAY MEDIUM STIFF 4 TO 8 0.5 TO 1.0						
TEXTURE OR GRAIN SIZE	MATERIAL STIFF 8 TO 15 1 TO 2 +T++++ ALLUVIAL SOIL BOUNDARY SLOPE IND.	CATOR					
STOLLER STOL	HARD >30 >4 25/625 DIP & DIP DIRECTION OF	•					
DEEMING (MM)	TEXTURE OR GRAIN SIZE ROCK STRUCTURES CONE PENE	TROMETER TEST					
BOULDER GRAVEL CORRECTION OF SILT CLAY GRUD (GR.) GRAVEL (CSE. 50.0) SAND (GR.) (CSE. 50.0) SAND (GR.) (CSE. 50.0) SAND (GR.) (CSE. 50.0) SAND (GR.) (GSE. 50.0) SAND (GR.) (GSE. 50.0) SAND (GR.) (GSE. 50.0) SAND (GSE. 50.0) SAN		OD					
SOLL MOISTURE COBB. CORRELATION OF TERMS COBB.	COARSE SING ABBREVIATIONS						
GRAIN MM 365 75 2.0 0.25 0.86 0.895 SIZE IN. 12 3 SOIL MOISTURE - CORRELATION OF TERMS SOIL MOISTURE SCALE (ATTERBERG LIMITS) SOIL MOISTURE SCALE (ATTERBERG LIMITS) SOIL MOISTURE SCALE (ATTERBERG LIMITS) SOIL MOISTURE SCALE (GAT) - SATURATED - USUALLY LIQUID, VERY WET, USUALLY FROM BELOW THE GROUND WATER TABLE FROM BELOW THE GROUND WATER TABLE FROM SEMISOLOR REQUIRES DRIVING TO ATTAIN OPTIMUM MOISTURE PLASTIC LIMIT - WET - (W) SEMISOLID, REQUIRES DRIVING TO ATTAIN OPTIMUM MOISTURE SHRINKAGE LIMIT - DRY - (D) REQUIRES ADDITIONAL, WATER TO ATTAIN OPTIMUM MOISTURE SHRINKAGE LIMIT - DRY - (D) REQUIRES ADDITIONAL, WATER TO ATTAIN OPTIMUM MOISTURE SHRINKAGE LIMIT - DRY - (D) REQUIRES ADDITIONAL, WATER TO ATTAIN OPTIMUM MOISTURE SHRINKAGE LIMIT - DRY - (D) REQUIRES ADDITIONAL, WATER TO ATTAIN OPTIMUM MOISTURE SHRINKAGE LIMIT - DRY - (D) REQUIRES ADDITIONAL, WATER TO ATTAIN OPTIMUM MOISTURE SHRINKAGE LIMIT - DRY - (D) REQUIRES ADDITIONAL, WATER TO ATTAIN OPTIMUM MOISTURE SHRINKAGE LIMIT - DRY - (D) RECUIRES ADDITIONAL, WATER TO ATTAIN OPTIMUM MOISTURE SHRINKAGE LIMIT - DRY - (D) RESTRICTIV INDEX (P) ORY STRENGTH MOBILE B- CAY BITS CAP BITS NONPLASTIC WATER AND AND PRESSURE TEST SHOULD SHAP AND FACED FINGER BITS NONPLASTIC WATER TO ATTAIN OPTIMUM MOISTURE BK-BI SC - CHARACT SAMPLE ABBREVIATIONS S - SHLI SPCON SC - SHRINKAGE THE - PRESSUREMETER TEST SAME AND SALE SHE SHEWER TO A SHULL SHE SHEW THE SHOULD SHAP AND FACED FINGER BITS - WET - (W) RECOURSE ADDITIONAL WATER TO ATTAIN OPTIMUM MOISTURE SC - COLOR WATER AND TOLLS - WATER AND TOLLS - WATER AND AUGER ADVANCING TOLLS - WATER AND AUGER - WOIST RECONTENT SAMPLE ABBREVIATIONS S - SHLI SPCON S - SHLI SPCON S - SHULL WISTON S - SHULL WEIGHT NET - FRICE PRESTATION TEST SAMP - SARROLTIC SC - CALIFORNIA BEARING RATIO BRILL UNITS: MOBILE B- CAY BITS CRC - FRACTURED, FRACTURES THE - HIGHLY SAMPLE ABBREVIATIONS S - SHULK S - SHUK S - SHOUL WAS AND AND AND AND AND AND	BUULDER CUBBLE GRAVEL SAND SAND SILT CLAY AR - AUGER REFUSAL MED MEDUM						
SOIL MOISTURE - CORRELATION OF TERMS SOIL MOISTURE - CORRELATION OF TERMS SOIL MOISTURE SCALE SOIL MOISTURE - CORRELATION OF TERMS SOIL MOISTURE SCALE SOIL MOISTURE SCALE SOIL MOISTURE SCALE SOIL MOISTURE - CORRELATION OF TERMS OUTDE FOR FIELD MOISTURE DESCRIPTION CHARGE LIMITS - SATURATED - USUALLY LIQUID, VERY WET, USUALLY FROM BELOW THE GROUND WATER TABLE LIQUID LIMIT - SATURATED - USUALLY LIQUID, VERY WET, USUALLY FROM BELOW THE GROUND WATER TABLE FARACE FEACTURED, FRACTURED, FRACTURED SEMISOLID, REQUIRES ORYING TO ATTAIN OPTIMUM MOISTURE PLASTIC LIMIT - WET - (W) SOLID; AT OR NEAR OPTIMUM MOISTURE SHRINKAGE LIMIT - DRY - (D) REQUIRES ADDITIONAL WATER TO ATTAIN OPTIMUM MOISTURE PLASTICITY PLASTICITY PLASTICITY PLASTICITY PLASTICITY PLASTICITY PLASTICITY BC-16 SCILOHT ONLY PORTABLE HOIST TRICONE	GDAIN MM 385 75 2.0 8.25 8.05 0.05 CL CLAY MOD MODERATELY	→ UNIT WEIGHT					
SOIL MOISTURE SCALE (ATTERBERG LIMITS) OUTDE FOR FIELD MOISTURE DESCRIPTION OUTDE FOR FIELD MOISTURE SD. SARA, SANDY SL SILT, SILTY SL SILT, SILTY FRAC FRACTURED, FRACTURES FRAGS FRACMENTS W - MOISTURE CONTENT V - VERY V - VERY OUTDE FOR FIELD MOISTURE OUTDE FOR FIELD MOISTURE OUTDE FOR FIELD MOISTURE SUBJECT OF THE SALL SILTY SUBJECT OF MOISTURE OUTDE FOR FIELD MOISTURE SUBJECT OF THE SILD AND SILE SILE SILD SILE SILE SILE SILE SILE SILE SILE SILE	STATE IN 12 3	%- DRY UNIT WEIGHT					
OLIDE FOR FIELD MOISTURE DESCRIPTION CATTERBERG LIMITS) - SATURATED - (SAT.) - WET - (W) - SEMISOLIDI REQUIRES DRYING TO ATTAIN OPTIMUM MOISTURE OM OPTIMUM MOISTURE - SHRINKAGE LIMIT - DRY - (D) - REQUIRES ADDITIONAL WATER TO ATTAIN OPTIMUM MOISTURE - DRY - (D) - REQUIRES ADDITIONAL WATER TO ATTAIN OPTIMUM MOISTURE - DRY - (D) - REQUIRES ADDITIONAL WATER TO ATTAIN OPTIMUM MOISTURE - DRY - (D) - REQUIRES ADDITIONAL WATER TO ATTAIN OPTIMUM MOISTURE - DRY - (D) - REQUIRES ADDITIONAL WATER TO ATTAIN OPTIMUM MOISTURE - DRY - (D) - REQUIRES ADDITIONAL WATER TO ATTAIN OPTIMUM MOISTURE - DRY - (D) - REQUIRES ADDITIONAL WATER TO ATTAIN OPTIMUM MOISTURE - DRY - (D) - REQUIRES ADDITIONAL WATER TO ATTAIN OPTIMUM MOISTURE - DRY - (D) - REQUIRES ADDITIONAL WATER TO ATTAIN OPTIMUM MOISTURE - DRY - (D) - REQUIRES ADDITIONAL WATER TO ATTAIN OPTIMUM MOISTURE - DRY - (D) - REQUIRES ADDITIONAL WATER TO ATTAIN OPTIMUM MOISTURE - DRY - (D) - REQUIRES ADDITIONAL WATER TO ATTAIN OPTIMUM MOISTURE - DRY - (D) - REQUIRES ADDITIONAL WATER TO ATTAIN OPTIMUM MOISTURE - DRY - (D) - REQUIRES ADDITIONAL WATER TO ATTAIN OPTIMUM MOISTURE - DRY - (D) - REQUIRES ADDITIONAL WATER TO ATTAIN OPTIMUM MOISTURE - DRY - (D) - REQUIRES ADDITIONAL WATER TO ATTAIN OPTIMUM MOISTURE - DRY - (D) - REQUIRES ADDITIONAL WATER TO ATTAIN OPTIMUM MOISTURE - DRY - (D) - REQUIRES ADDITIONAL WATER TO ATTAIN OPTIMUM MOISTURE - DRY - (D) - REQUIRES ADDITIONAL WATER TO ATTAIN OPTIMUM MOISTURE - DRY - (D) - REQUIRES ADDITIONAL WATER TO ATTAIN OPTIMUM MOISTURE - DRY - (D) - REQUIRES ADDITIONAL WATER TO ATTAIN OPTIMUM MOISTURE - DRY - (D) - REQUIRES ADDITIONAL WATER TO ATTAIN OPTIMUM MOISTURE - DRY - (D) - REQUIRES ADDITIONAL WATER TO ATTAIN OPTIMUM MOISTURE - DRY - (D) - REQUIRES ADDITIONAL WATER TO ATTAIN OPTIMUM MOISTURE - DRY - (D) - REQUIRES ADDITIONAL WATER TO ATTAIN OPTIMUM MOISTURE - DRY - (WATER TO A MAND TOOLS) - WATER	RPT - DVNAMIC PENETRATION TEST CAR CARROLITIC						
SATURATED - USUALLY LIQUID, VERY WET, USUALLY FROM BELOW THE GROUND WATER TABLE LIQUID LIMIT - WET - (W) SEMISOLID, REQUIRES DRYING TO ATTAIN OPTIMUM MOISTURE OM OPTIMUM MOISTURE SL SHRINKAGE LIMIT - DRY - (D) REQUIRES ADDITIONAL WATER TO ATTAIN OPTIMUM MOISTURE - DRY - (D) REQUIRES ADDITIONAL WATER TO ATTAIN OPTIMUM MOISTURE - DRY - (D) REQUIRES ADDITIONAL WATER TO ATTAIN OPTIMUM MOISTURE - DRY - (D) REQUIRES ADDITIONAL WATER TO ATTAIN OPTIMUM MOISTURE - DRY - (D) REQUIRES ADDITIONAL WATER TO ATTAIN OPTIMUM MOISTURE - DRY - (D) REQUIRES ADDITIONAL WATER TO ATTAIN OPTIMUM MOISTURE - DRY - (D) REQUIRES ADDITIONAL WATER TO ATTAIN OPTIMUM MOISTURE - DRY - (D) REQUIRES ADDITIONAL WATER TO ATTAIN OPTIMUM MOISTURE - DRY - (D) REQUIRES ADDITIONAL WATER TO ATTAIN OPTIMUM MOISTURE - DRY - (D) REQUIRES ADDITIONAL WATER TO ATTAIN OPTIMUM MOISTURE - DRY - (D) REQUIRES ADDITIONAL WATER TO ATTAIN OPTIMUM MOISTURE - DRY - (D) REQUIRES ADDITIONAL WATER TO ATTAIN OPTIMUM MOISTURE - DRY - (D) REQUIRES ADDITIONAL WATER TO ATTAIN OPTIMUM MOISTURE - DRY - (D) RECOURS GROWN WATER TO ATTAIN OPTIMUM MOISTURE - DRY - (D) REQUIRES ADDITIONAL WATER TO ATTAIN OPTIMUM MOISTURE - DRY - (D) REQUIRES ADDITIONAL WATER TO ATTAIN OPTIMUM MOISTURE - DRY - (D) RECOURS SIZE. - FRACE FRACTURED, FRACTURED, FRACTURES FRACE FRACTURED, FRACTURED - FRACE FRACTURED, FRACTURES - FRACE FRACMENTS - TRICONE SIZE SICHT - RT - RECONECTED TRIAXIAL - CER - CALIFORNIA BEARING RS - ROCK RT - RECONECTED TRIAXIAL - CER - CALIFORNIA BEARING - MOISTURE - COL PROJECT - WOISTURE CONTENT - PCOS FRAGMENTS - MOISTURE CONTENT - RECONECTED TRIAXIAL - CER - CALIFORNIA BEARING - MOISTURE - COL PROJECT - RECONECTED TRIAXIAL - POST SHELLES TO MOISTURE - STELL TEST - RECURSAL - RS - RCCK - RT - RECONECTED TRIAXIAL - CER - CALIFORNIA BEARING - CALIFORNIA - BCD - SIZE - SCHOOL	GATTERBERG LIMITS) DESCRIPTION GUIDE FOR FIELD MOISTURE DESCRIPTION e - VOID RATIO SD SAND, SANDY	SS - SPLIT SPOON					
TRAC FRACTURED, FRACTURES TOR - TRICONE REFUSAL RT - RECOMPACTED TRIAXIAL CRR - CALLFORNIA BEARING PRACTURES FRACS FRACTURED, FRACTURES FRACS FRACTURED, FRACTURED FRACTURED, FRACTUR	F - FINE SL - SLIT SLITY						
RANCE (PI) PLASTIC LIMIT SEMISOLIDI REQUIRES DAYING TO ATTAIN OPTIMUM MOISTURE OM OPTIMUM MOISTURE SHRINKAGE LIMIT - MOIST - (M) SOLIDI AT OR NEAR OPTIMUM MOISTURE SL SHRINKAGE LIMIT - DRY - (D) REQUIRES ADDITIONAL WATER TO ATTAIN OPTIMUM MOISTURE - DRY - (D) REQUIRES ADDITIONAL WATER TO ATTAIN OPTIMUM MOISTURE - DRY - (D) REQUIRES ADDITIONAL WATER TO ATTAIN OPTIMUM MOISTURE - DRY - (D) REQUIRES ADDITIONAL WATER TO ATTAIN OPTIMUM MOISTURE - DRY - (D) REQUIRES ADDITIONAL WATER TO ATTAIN OPTIMUM MOISTURE - DRY - (D) REQUIRES ADDITIONAL WATER TO ATTAIN OPTIMUM MOISTURE - DRY - (D) REQUIRES ADDITIONAL WATER TO ATTAIN OPTIMUM MOISTURE - DRY - (D) REQUIRES ADDITIONAL WATER TO ATTAIN OPTIMUM MOISTURE - DRY - (D) REQUIRES ADDITIONAL WATER TO ATTAIN OPTIMUM MOISTURE - DRY - (D) REQUIRES ADDITIONAL WATER TO ATTAIN OPTIMUM MOISTURE - DRY - (D) REQUIRES ADDITIONAL WATER TO ATTAIN OPTIMUM MOISTURE - DRY - (D) REQUIRES ADDITIONAL WATER TO ATTAIN OPTIMUM MOISTURE - DRY - (D) REQUIRES ADDITIONAL WATER TO ATTAIN OPTIMUM MOISTURE - DRY - (D) REQUIRES ADDITIONAL WATER TO ATTAIN OPTIMUM MOISTURE - DRY - (D) REQUIRES ADDITIONAL WATER TO ADVANCING TOOLS; - BK-51 - BK-51 - BK-51 - MOBILE B- - CLAY BITS - MOBILE B- - CLAY BITS - MODILE B- -	FRACTURES TORY THE POLITION WATER TOUR FRACTURES TOR TRICONE REFUSAL	RT - RECOMPACTED TRIAXIAL					
RANGE (PI) PLASTIC LIMIT OM OPTIMUM MOISTURE SL SHRINKAGE LIMIT OM OPTIMUM MOISTURE SL SHRINKAGE LIMIT - DRY - (D) REQUIRES ADDITIONAL WATER TO ATTAIN OPTIMUM MOISTURE - DRY - (D) REQUIRES ADDITIONAL WATER TO ATTAIN OPTIMUM MOISTURE - DRY - (D) REQUIRES ADDITIONAL WATER TO ATTAIN OPTIMUM MOISTURE - DRY - (D) REQUIRES ADDITIONAL WATER TO ATTAIN OPTIMUM MOISTURE - DRY - (D) REQUIRES ADDITIONAL WATER TO ATTAIN OPTIMUM MOISTURE - DRY - (D) REQUIRES ADDITIONAL WATER TO ATTAIN OPTIMUM MOISTURE - DRY - (D) REQUIRES ADDITIONAL WATER TO ATTAIN OPTIMUM MOISTURE - DRY - (D) REQUIRES ADDITIONAL WATER TO ATTAIN OPTIMUM MOISTURE - DRY - (D) REQUIRES ADDITIONAL WATER TO ATTAIN OPTIMUM MOISTURE - DRY - (D) REQUIRES ADDITIONAL WATER TO ATTAIN OPTIMUM MOISTURE - DRY - (D) REQUIRES ADDITIONAL WATER TO ATTAIN OPTIMUM MOISTURE - DRY - (D) REQUIRES ADDITIONAL WATER TO ATTAIN OPTIMUM MOISTURE - DRY - (D) REQUIRES ADDITIONAL WATER TO ATTAIN OPTIMUM MOISTURE - DRY - (D) REQUIRES ADDITIONAL WATER TO ATTAIN OPTIMUM MOISTURE - DRY - (D) REQUIRES ADDITIONAL WATER TO ATTAIN OPTIMUM MOISTURE - DRY - (D) REQUIRES ADDITIONAL WATER TO ATTAIN OPTIMUM MOISTURE - DRY - (D) REQUIRES ADDITIONAL WATER TO ATTAIN OPTIMUM MOISTURE - DRY - (D) REQUIRES ADDITIONAL WATER TO ATTAIN OPTIMUM MOISTURE - DRY - (D) REQUIRES ADDITIONAL WATER TO ATTAIN OPTIMUM MOISTURE - DRY - (D) REQUIRES ADDITIONAL WATER TO ATTAIN OPTIMUM MOISTURE - DRY - (D) REQUIRES ADDITIONAL WATER TO ATTAIN OPTIMUM MOISTURE - DRY - (D) REQUIRES ADDITIONAL WATER TO ATTAIN OPTIMUM MOISTURE - DRY - (D) REQUIRES ADDITIONAL WATER TO ATTAIN OPTIMUM MOISTURE - DRY - (D) REQUIRES ADDITIONAL WATER TO ATTAIN OPTIMUM MOISTURE - DRY - (D) REQUIRES ADDITIONAL WATER TO ATTAIN OPTIMUM MOISTURE - DRY - (D) REQUIRES ADDITIONAL WATER TO ATTAIN OPTIMUM MOISTURE - DRY - (D) REQUIRES ADDITIONAL WATER TO ATTAIN OPTIMUM MOISTURE - DRY - (D) REQUIRES ADDITIONAL WATER TO ATTAIN OPTIMUM MOISTURE - DRY - (D) REQUIRES ADDITIONAL WATER TO ATTAIN OPTIMUM MOISTURE - DRY - (D) REQUIRES ADDIT							
OM OPTIMUM MOISTURE SHRINKAGE LIMIT OM OPTIMUM MOISTURE SHRINKAGE LIMIT - DRY - (D) REQUIRES ADDITIONAL WATER TO ATTAIN OPTIMUM MOISTURE - DRY - (D) REQUIRES ADDITIONAL WATER TO ATTAIN OPTIMUM MOISTURE - DRY - (D) REQUIRES ADDITIONAL WATER TO BK-51 - DRY - (D) REQU	PANCE C - WET - (W) SEMISOLIDI RECUIRES DIVING TO THE EQUIPMENT USED ON SUBJECT OF THE PARCE CONTROL OF THE PARCE	T PROJECT					
OM OPTIMUM MOISTURE SULID; AT OR NEAR OPTIMUM MOISTURE SL SHRINKAGE LIMIT - DRY - (D) REQUIRES ADDITIONAL WATER TO ATTAIN OPTIMUM MOISTURE - DRY - (D) REQUIRES ADDITIONAL WATER TO ATTAIN OPTIMUM MOISTURE - DRY - (D) REQUIRES ADDITIONAL WATER TO ATTAIN OPTIMUM MOISTURE - DRY - (D) REQUIRES ADDITIONAL WATER TO ATTAIN OPTIMUM MOISTURE - DRY - (D) REQUIRES ADDITIONAL WATER TO SHOULD WATER TO ATTAIN OPTIMUM MOISTURE - DRY - (D) REQUIRES ADDITIONAL WATER TO SHOULD WATER TO WATER THE WATER TO WATER TO WATER TO WATER TO WATER TO WATER TO WATER THE WATER TO WATER TO WATER THE WATER TO WATER TO WATER TO WATER TO WATER THE WATER TO WATER THE WATER TO WATER TO WATER TO WATER TO WATER THE WATER TO WATER THE WATER TO WATER TO WATER TO WATER THE WATER TO WATER THE WATER TO WATER THE WATER TO WATER THE WATER TO WATER TO WATER THE WATER TO WATER TO WATER THE WATER TO WATER THE WATER TO WATER TO WATER THE WATER TO WATER THE WATER TO WATER THE WATER TO WATER TO WATER THE WATER TO WATER THE WATER TO WATER TO WATER THE WATER TO WATER THE WATER TO WATER THE WATER TO WATER THE WATER T	PL 1 remote that	HAMMER TYPE:					
BE SHRINKAGE LIMIT - DRY - (D) REQUIRES ADDITIONAL WATER TO ATTAIN OPTIMUM MOISTURE - DRY - (D) REQUIRES ADDITIONAL WATER TO ATTAIN OPTIMUM MOISTURE - DRY - (D) REQUIRES ADDITIONAL WATER TO SHOOL WATER TO ATTAIN OPTIMUM MOISTURE - B SHOLLOW AUGERS - B SHOLLOW AUGERS - B SSIZEI - N ST STEEL FINGER BITS - N ST STEEL FEETH - NUMPLASTICITY - STEEL TEETH - SOURDING ROD - STEEL TEETH - PORTABLE HOIST - SOUNDING ROD	OM OPTIMUM MOISTURE - MOIST - (M) SOLID; AT OR NEAR OPTIMUM MOISTURE	X AUTOMATIC MANUAL					
- DRY - (D) ATTAIN OPTIMUM MOISTURE PLASTICITY NONPLASTIC 9-5 VERY LOW LOW PLASTICITY 6-15 SLIGHT MED. PLASTICITY 16-25 MEDIUM HIGH PLASTICITY 28 OR MORE HIGH COLOR DESCRIPTIONS MAY INCLUDE COLOR OR COLOR COMBINATIONS (TAN, RED, YELLOW-BROWN, BLUE-GRAY). BK-5I X CME-48C HARD FACED FINGER BITS TUNG,-CARBIDE INSERTS -N TUNG,-CARBIDE INSERTS -H CASING W/ ADVANCER HAND TOOLS: TRICONE *TUNG,-CARB, HAND AUGER SOUNDING ROD CORE BIT SOUNDING ROD	SL SHRINKAGE LIMIT	***************************************					
PLASTICITY PLASTICITY NONPLASTIC 8-5 VERY LOW LOW PLASTICITY 6-15 MED, PLASTICITY 16-25 MED, PLASTICITY 26 OR MORE HIGH DESCRIPTIONS MAY INCLUDE COLOR OR COLOR COMBINATIONS (TAN, RED, YELLOW-BROWN, BLUE-GRAY). CME-48C	- DRY - (D)						
PLASTICITY INDEX (PI) ORY STRENGTH NONPLASTIC 8-5 VERY LOW LOW PLASTICITY 6-15 SLIGHT MED, PLASTICITY 16-25 MEDIUM HIGH PLASTICITY 28 OR MORE HIGH PORTABLE HOIST TRICONE *TUNG, -CARBIDE INSERTS HAND TOOLS: PORTABLE HOIST TRICONE *TUNG, -CARB, HAND AUGER HAND AUGER SOUNDING ROD ESCRIPTIONS MAY INCLUDE COLOR OR COLOR COMBINATIONS (TAN, RED, YELLOW-BROWN, BLUE-GRAY).	TI ACTIONS						
NONPLASTIC 0-6	DI ACTICITY INDEX (DI) DDV CTDPACTU	N					
LOW PLASTICITY 6-16 SLIGHT MED. PLASTICITY 16-25 MEDIUM HIGH PLASTICITY 26 OR MORE HIGH PORTABLE HOIST CASING WY ADVANCER HAND TOOLS: TRICONE STEEL TEETH POST HOLE DIGGER HAND AUGER COLOR DESCRIPTIONS MAY INCLUDE COLOR OR COLOR COMBINATIONS (TAN, RED, YELLOW-BROWN, BLUE-GRAY).	NONPLASTIC 0-6 VERY LOW CME-850	□-H					
HIGH PLASTICITY 26 OR MORE HIGH PORTABLE HOIST TRICONE STEEL TEETH POST HOLE DIGGER COLOR DESCRIPTIONS MAY INCLUDE COLOR OR COLOR COMBINATIONS (TAN, RED, YELLOW-BROWN, BLUE-GRAY).	LOW PLASTICITY 6-16 SLIGHT CASING W/ ADVANCER MEDIUM CASING W/ ADVANCER MEDIUM						
DESCRIPTIONS MAY INCLUDE COLOR OR COLOR COMBINATIONS (TAN, RED, YELLOW-BROWN, BLUE-GRAY).	HIGH PLASTICITY Z6 OR MORE HIGH PORTABLE HOIST TRICONE STEEL TEE						
DESCRIPTIONS MAY INCLUDE COLOR OR COLOR COMBINATIONS (TAN, RED, YELLOW-BROWN, BLUE-GRAY).	30CON	·					
	BESSET FIGURE AND THE THOUGHT OF COUNTY TO THE TOTAL THE TELEGRAPH OF THE THE THOUGHT THE THE THE THE THE THE THE THE THE T	VANE SHEAR TEST					
MUDIFIERS SUCH AS LIGHT, DANK, STREAKED, ETC. ARE USED TO DESCRIBE APPEARANCE.	MODIFIERS SUCH AS LIGHT, DARK, STREAKED, ETC. ARE USED TO DESCRIBE APPEARANCE,						

REVISED 09/23/09

Earthwork Balance Sheet Volumes in Cubic Yards DATE: 5/15/2012 COMP

		T	T		 101110	 II dino	 <u> </u>	Mer.					,	 -
SHEETS		TOTAL	1,152	1,152				1152	1 150	1,102				
SHEET OF	STE	UNSUIT.												
	WASTE	SUITABLE	1,152	1,152				1.152	1 153	1,102				
BLP		ROCK												
BI		BORROW	2,026 181	2,466				2,466	84	1,398	. 02	1,468	1.580	The state of the s
COMPILED BY:		EMBANK. +20%	5,290 672 1,212 259	7,433				7,433	84	7,517	·	7,517		101011111111111111111111111111111111111
	EMBANKMENT	EARTH	4,408 560 1,010 216	6,194				6,194	70	6,264		6,264		TO TO TO TO
Volumes in Cubic Yards 5/15/2012	EMBA	<u> </u>												THE CHAPTER
Volumes 5/		E TOTAL	4,408 560 1,010 216	6,194				6,194	70	6,264		6,264		TA OUTTING
DATE:		SUITABLE. UNCLASS.	3,264 491 2,364	6,119				6,119		6,119		6,119		A domin
	ION	UT UNSUIT. UNCLASS.												TUESE BADT
	EXCAVATION	UNDERCUT												TIMIT NOISE
COUNTY: Durham		ROCK												IN A MUAN
COUNT		TOTAL UNCLASS.	3,264 491 2,364	6,119				6,119		6,119		6,119	9,600	D BY THE B
J.4716		STATION	-L. 26+28.08 -L.I. 17+40.00 -Y. 24+00.00 -DR. 10+94.22	SUBTOTAL	SUBTOTAL	SUBTOTAL	SUBTOTAL		CONSTRUCTION		OIL ON BORROW PIT			TTIES ARE CALCIN ATE
PROJECT: U-4716		STATION	LL 11+70 -L1- 10+00 -Y- 13+50 -DR- 10+10					TOTAL	MATERIAL FOR SHOULDER CONSTRUCTION WASTE IN LIEU OF BORROW	PROJECT TOTAL	EST. 5% TO REPLACE TOP SOIL ON BORROW PIT	GRAND TOTAL	SAY	NOTE: EARTHWORK OI I ATTER ARE CALCULATED BY THE ROADWAY DESIGN INIT. THESE BARTHWORK OI ANTICHES AND DASCED BY DARD CALCULATED BY THE POARMAN OF THE POARMA

EST, DDE = 94 CUBIC YARDS

PROJECT REFERENCE NO.	SHEET NO.
54000.I.STR03TIB	2A

NORTH CAROLINA DEPARTMENT OF TRANSPORTATION DIVISION OF HIGHWAYS

GEOTECHNICAL ENGINEERING UNIT

SOIL AND ROCK LEGEND, TERMS, SYMBOLS, AND ABBREVIATIONS

HVAU BUCK 15 75	ON-COASTAL DIAIN MATER	ROCK DESCRIPTION TAL THAT IF TESTED, WOULD YIELD SPT REFUSAL, AN INFERRED	TERMS AND DEFINITIONS
ROCK LINE INDIC	CATES THE LEVEL AT WHI	CH NON-COASTAL PLAIN MATERIAL WOULD YIELD SPT REFUSAL.	ALLUYIUM (ALLUY.) - SOILS THAT HAYE BEEN TRANSPORTED BY WATER.
SPT REFUSAL IS IN NON-COASTAL	PENETRATION BY A SPLI PLAIN MATERIAL, THE T	T SPOON SAMPLER EQUAL TO OR LESS THAN 0.1 FOOT PER 60 BLOWS. RANSITION BETWEEN SOIL AND ROCK IS OFTEN REPRESENTED BY A ZONE	AGUIFER - A WATER BEARING FORMATION OR STRATA. ARENACEOUS - APPLIED TO ROCKS THAT HAVE BEEN DERIVED FROM SAND OR THAT CONTAIN SAND.
OF WEATHERED R ROCK MATERIALS	ROCK. 3 ARE TYPICALLY DIVIDED	AS FOLLOWS:	ARGILLACEOUS " APPLIED TO ALL ROCKS OR SUBSTANCES COMPOSED OF CLAY MINERALS,
WEATHERED ROCK (WR)	PART IN DUID	ASTAL PLAIN MATERIAL THAT WOULD YIELD SPT N VALUES > 100 PER FOOT IF TESTED.	OR HAVING A NOTABLE PROPORTION OF CLAY IN THEIR COMPOSITION, AS SHALE, SLATE, ETC. ARTESIAN - GROUND WATER THAT IS UNDER SUFFICIENT PRESSURE TO RISE ABOVE THE LEVEL
CRYSTALLINE ROCK (CR)	WOULD !	D COARSE GRAIN IGNEOUS AND METAMORPHIC ROCK THAT YIELD SPT REFUSAL IF TESTED, ROCK TYPE INCLUDES GRANITE, GABBRO, SCHIST, ETC.	AT WHICH IT IS ENCOUNTERED, BUT WHICH DOES NOT NECESSARILY RISE TO OR ABOVE THE GROUND SURFACE. CALCAREOUS (CALC.) - SOILS THAT CONTAIN APPRECIABLE AMOUNTS OF CALCIUM CARBONATE.
NON-CRYSTALLINE ROCK (NCR)	SEDIMEN) COARSE GRAIN METAMORPHIC AND NON-COASTAL PLAIN HTARY ROCK THAT WOULD YEILD SPT REFUSAL IF TESTED, ROCK TYPE	COLLUVIUM - ROCK FRAGMENTS MIXED WITH SOIL DEPOSITED BY GRAVITY ON SLOPE OR AT BOTTOM OF SLOPE.
COASTAL PLAIN SEDIMENTARY ROCK (CP)	COASTAI SPT REI	S PHYLLITE, SLATE, SANDSTONE, ETC. PLAIN SEDIMENTS CEMENTED INTO ROCK, BUT MAY NOT YIELD TUSAL. ROCK TYPE INCLUDES LIMESTONE, SANDSTONE, CEMENTED SEDS, ETC.	CORE RECOVERY (REC.) - TOTAL LENGTH OF ALL MATERIAL RECOVERED IN THE CORE BARREL DIVIDED BY TOTAL LENGTH OF CORE RUN AND EXPRESSED AS A PERCENTAGE.
VGF7	J J SHELL	WEATHERING	DIKE - A TABULAR BODY OF IGNEOUS ROCK THAT CUTS ACROSS THE STRUCTURE OF ADJACENT ROCKS OR CUTS MASSIVE ROCK.
	K FRESH, CRYSTALS BRIGHT	FEW JOINTS MAY SHOW SLIGHT STAINING. ROCK RINGS UNDER	DIP - THE ANGLE AT WHICH A STRATUM OR ANY PLANAR FEATURE IS INCLINED FROM THE HORIZONTAL.
(V SLI.) CRYS	STALS ON A BROKEN SPEC	IS STAINED, SOME JOINTS MAY SHOW THIN CLAY COATINGS IF OPEN, IMEN FACE SHINE BRIGHTLY, ROCK RINGS UNDER HAMMER BLOWS IF	DIP DIRECTION (DIP AZIMUTH) - THE DIRECTION OR BEARING OF THE HORIZONTAL TRACE OF THE LINE OF DIP, MEASURED CLOCKWISE FROM NORTH.
SLIGHT ROCK		IS STAINED AND DISCOLORATION EXTENDS INTO ROCK UP TO ITAIN CLAY, IN GRANITOID ROCKS SOME OCCASIONAL FELDSPAR	FAULT - A FRACTURE OR FRACTURE ZONE ALONG WHICH THERE HAS BEEN DISPLACEMENT OF THE SIDES RELATIVE TO ONE ANOTHER PARALLEL TO THE FRACTURE.
CRYS	STALS ARE DULL AND DIS	COLORED, CRYSTALLINE ROCKS RING UNDER HAMMER BLOWS.	FISSILE - A PROPERTY OF SPLITTING ALONG CLOSELY SPACED PARALLEL PLANES.
(MOD.) GRAN	NITOID ROCKS, MOST FELDS	IX SHOW DISCOLORATION AND WEATHERING EFFECTS. IN PARS ARE DULL AND DISCOLORED, SOME SHOW CLAY, ROCK HAS LOWS AND SHOWS SIGNIFICANT LOSS OF STRENGTH AS COMPARED	FLOAT - ROCK FRAGMENTS ON SURFACE NEAR THEIR ORIGINAL POSITION AND DISLODGED FROM PARENT MATERIAL.
WITH	FRESH ROCK.	SCOLORED OR STAINED. IN GRANITOID ROCKS, ALL FELDSPARS DULL	FLOOD PLAIN (FP) - LAND BORDERING A STREAM, BUILT OF SEDIMENTS DEPOSITED BY THE STREAM.
SEVERE AND (DISCOLORED AND A MAJOR CAN BE EXCAVATED WITH	RITY SHOW KAOLINIZATION, ROCK SHOWS SEVERE LOSS OF STRENGTH A GEOLOGIST'S PICK, ROCK GIVES 'CLUNK' SOUND WHEN STRUCK.	FORMATION (FM.) - A MAPPABLE GEOLOGIC UNIT THAT CAN BE RECOGNIZED AND TRACED IN THE FIELD.
SEVERE ALL		SCOLORED OR STAINED, ROCK FABRIC CLEAR AND EVIDENT BUT REDUCED	JOINT - FRACTURE IN ROCK ALONG WHICH NO APPRECIABLE MOVEMENT HAS OCCURRED. LEDGE - A SHELF-LIKE RIDGE OR PROJECTION OF ROCK WHOSE THICKNESS IS SMALL COMPARED TO
EXTE		., IN GRANITOID ROCKS ALL FELDSPARS ARE KAOLINIZED TO SOME STRONG ROCK USUALLY REMAIN. 11FS > 188 RPF	ITS LATERAL EXTENT. LENS - A BODY OF SOIL OR ROCK THAT THINS OUT IN ONE OR MORE DIRECTIONS.
VERY SEVERE ALL.	ROCK EXCEPT QUARTZ DIS	SCOLORED OR STAINED. ROCK FABRIC ELEMENTS ARE DISCERNIBLE BUT	MOTILED (MOT.) - IRREGULARLY MARKED WITH SPOTS OF DIFFERENT COLORS, MOTILING IN
REMA	AINING, SAPROLITE IS AN	DUCED TO SOIL STATUS, WITH ONLY FRAGMENTS OF STRONG ROCK EXAMPLE OF ROCK WEATHERED TO A DEGREE SUCH THAT ONLY MINOR DCK FABRIC REMAIN. IF TESTED, YIELDS SPT. N. VALUES (108 BPF	SOILS USUALLY INDICATES POOR AERATION AND LACK OF GOOD DRAINAGE, <u>PERCHED WATER</u> - WATER MAINTAINED ABOVE THE NORMAL GROUND WATER LEVEL BY THE PRESENCE OF AN INTERVENING IMPERVIOUS STRATUM.
		FABRIC NOT DISCERNIBLE, OR DISCERNIBLE ONLY IN SMALL AND DUARTZ MAY BE PRESENT AS DIKES OR STRINGERS, SAPROLITE IS	RESIDUAL (RES.) SOIL - SOIL FORMED IN PLACE BY THE WEATHERING OF ROCK.
	AN EXAMPLE.	ROCK HARDNESS	ROCK QUALITY DESIGNATION REQU: A MEASURE OF ROCK QUALITY DESCRIBED BY TOTAL LENGTH OF ROCK SEGMENTS EQUAL TO OR GREATER THAN 4 INCHES DIVIDED BY THE TOTAL LENGTH OF CORE RUN AN EXPRESSED AS A PERCENTAGE.
		NIFE OR SHARP PICK. BREAKING OF HAND SPECIMENS REQUIRES	SAPPOLITE (SAP.) - RESIDUAL SOIL THAT RETAINS THE RELIC STRUCTURE OR FABRIC OF THE PARENT ROCK.
HARD CAN	ERAL HARD BLOWS OF TH BE SCRATCHED BY KNIFE DETACH HAND SPECIMEN,	OR PICK ONLY WITH DIFFICULTY, HARD HAMMER BLOWS RECUIRED	SILL - AN INTRUSIVE BODY OF IGNEOUS ROCK OF APPROXIMATELY UNIFORM THICKNESS AND RELATIVELY THIN COMPARED WITH ITS LATERAL EXTENT, THAT HAS BEEN EMPLACED PARALLEL TO THE BEDDING OR SCHISTOSITY OF THE INTRUDED ROCKS.
MODERATELY CAN HARD EXC	BE SCRATCHED BY KNIFE	OR PICK, GOUGES OR GROOVES TO 0.25 INCHES DEEP CAN BE F A GEOLOGIST'S PICK, HAND SPECIMENS CAN BE DETACHED	SLICKENSIDE - POLISHED AND STRIATED SURFACE THAT RESULTS FROM FRICTION ALONG A FAULT OR SLIP PLANE.
MEDIUM CAN		0.05 INCHES DEEP BY FIRM PRESSURE OF KNIFE OR PICK POINT. CHIPS TO PEICES 1 INCH MAXIMUM SIZE BY HARD BLOWS OF THE	STANDARD PENETRATION TEST (PENETRATION RESISTANCE) (SPT) - NUMBER OF BLOWS (N OR BPF) OF A 140 LB. HAMMER FALLING 30 INCHES REQUIRED TO PRODUCE A PENETRATION OF 1 FOOT INTO SOIL WITH
POIN	NT OF A GEOLOGIST'S PIG		A 2 INCH OUTSIDE DIAMETER SPLIT SPOON SAMPLER, SPT REFUSAL IS PENETRATION EQUAL TO OR LESS THAN 0.1 FOOT PER 90 BLOWS.
FRO		THES IN SIZE BY MODERATE BLOWS OF A PICK POINT. SMALL, THIN	STRATA CORE RECOVERY ISREC.) - TOTAL LENGTH OF STRATA MATERIAL RECOVERED DIVIDED BY TOTAL LENGTH OF STRATUM AND EXPRESSED AS A PERCENTAGE.
SOFT OR	MORE IN THICKNESS CAN	CAN BE EXCAVATED READILY WITH POINT OF PICK. PIECES I INCH BE BROKEN BY FINGER PRESSURE. CAN BE SCRATCHED READILY BY	STRATA ROCK QUALITY DESIGNATION ISRODY - A MEASURE OF ROCK QUALITY DESCRIBED BY TOTAL LENGTH OF ROCK SEGMENTS WITHIN A STRATUM EQUAL TO OR GREATER THAN 4 INCHES DIVIDED BY TH TOTAL LENGTH OF STRATA AND EXPRESSED AS A PERCENTAGE.
	GERNAIL. TURE SPACING	BEDDING	TOPSOIL (TS.) - SURFACE SOILS USUALLY CONTAINING ORGANIC MATTER.
TERM	SPACING	TERM THICKNESS	BENCH MARK: -BYI-II4 N. 773106 E. 2042517
VERY WIDE WIDE	MORE THAN 10 F 3 TO 10 FEET	HICKLY BEDDED 10 - 4 FEE	
MODERATELY CL	OSE 1 TO 3 FEET	THINLY BEDDED 0.16 - 1.5 FEET VERY THINLY BEDDED 0.03 - 0.16 FEET	ELEVATION: 383.36 FT.
CLOSE VERY CLOSE	0.16 TO 1 FEET LESS THAN 0.16	THICKLY I AMBIATED 8 888 - 8.83 FEET	NOTES:
		INDURATION	BENCHMARK
FOR SEDIMENTARY R		HARDENING OF THE MATERIAL BY CEMENTING, HEAT, PRESSURE, ETC.	
FRIABLE		RUBBING WITH FINGER FREES NUMEROUS GRAINS; GENTLE BLOW BY HAMMER DISINTEGRATES SAMPLE.	
MODERATE		GRAINS CAN BE SEPARATED FROM SAMPLE WITH STEEL PROBE: BREAKS EASILY WHEN HIT WITH HAMMER.	
INDURATE	••	GRAINS ARE DIFFICULT TO SEPARATE WITH STEEL PROBE; DIFFICULT TO BREAK WITH HAMMER.	
EXTREMEL		SHARP HAMMER BLOWS REQUIRED TO BREAK SAMPLE; SAMPLE BREAKS ACROSS GRAINS.	

REVISED 09/23/0

NCDOT GEOTECHNICAL ENGINEERING UNIT BORELOG REPORT

BS	54000	.1.STR	03T1E	3	TII	P U-471	6B		COUNT	Y D	URHAN	l			GEOLOGIST Howard, J		
TE	DESCR	IPTION	NC	Rail U	tility Bo	orings - P	Piedmo	nt Cor	ridor - E	xtenc	Church	st. (Si	₹ 1980) to I	lopson Rd (SR 1978)	GROUNI	WTR (f
ORI	NG NO.	B-1			ST	ATION	15+77			OF	SET 6	ft RT			ALIGNMENT -L-	0 HR.Ca	ave@14.
OLL	AR ELE	. 38	6.7 ft		TC	OTAL DE	PTH 2	22.1 ft		NO	RTHING	773,1	66		EASTING 2,042,556	24 HR.	9.
RILL	RIG/HAI	MER E	FF./DA	TE M	AC9354	CME-45C	88% 05/	30/2012				DRILL I	/IETHO	D H.	S. Augers HAN	MER TYPE	Automatic
	LER C				ST	ART DA	TE 06	3/11/12		СО	MP. DA	Γ E 06/	11/12		SURFACE WATER DEPTH	N/A	
ΕV	DRIVE ELEV	DEPTH	BLC	W CO					ER FOOT			SAMP.	lacksquare	г О	SOIL AND ROCK DE	SCRIPTION	
t)	(ft)	(ft)	0.5ft	0.5ft	0.5ft	0	25	50) .	75	100	NO.	MOI		ELEV. (ft)		DEPTH
90	-	- - -													OPOLINIS CUI	nr's or	
5	386.7 -	- 0.0	• 4	3	4	·•7 ·]		Τ.		· ·	D		386.7 GROUND SUF - ARTIFICIAL	FILL	
1	383.2 -	- - 3.5				· L				1:					Tan-brown, sandy SILT		e ,— –
Ī	- 10.1.2	-	85	15/0.1		::::					100/0.6				WEATHERED Tan-brown, red-brown, Tr		one .
0	-	-						• • •		<u> </u>					•		
}	378.2 _	8.5	100/0.4								100/0.4		_		•		
,	-	-													•		
1	373.2	- 13.5						• • •		· -					7374.2 Red-brown, purple, Tria	assic Siltstone	1
		-	23	39	61/0.4						100/0.9				•		
4	-	-				• • •				+-					• -		
}	368.2	18.5	70	30/0.2				• • •			400/0.7				•		
	364.7 -	-				: : :					100/0.7				264.7		,
1	364.7-	- 22.0	60/0.1	ļ —							60/0.1	1	 	729	364.7 364.6\/ NON-CRYSTALLII - Triassic Silts		7
															Boring Terminated w Penetration Test Refusal a ft in Non-Crystalline Rock:	ith Standard at Elevation 36	
	-	-													•	,	
															· · · · · · · · · · · · · · · · · · ·		
		_													•	•	
		_													·		
		<u>-</u>															
	-	-															
	-	<u>.</u>						•				1					
	_	•													•		
ĺ	-	_													_		
	-	-													•		
	_	-													• •••		
	1	-	·												•		
	1	-													•		
		-													·		
	1	•												F	. ,		
	1	-													•		
	7	-													•		
- 1	4	•	1	l	1							I	i .	ı £			

		NCDOT GEOTECHNICAL ENG BORELOG REPORT	GINEERING UNIT
2~Y	W	BORELOG REPORT	

2	少U	D	BO.	RE	LOC	G RE	EPOI	RT								•		
WBS	54000					P U-47			COUNT	Y DURHA	M			GEOLOG	IST Howard,	J		
SITE	DESCR	IPTION	I NC	Rail L	Itility B	orings -	Piedmo	nt Cor	ridor - E	xtend Chui	ch St. (S	SR 1986	0) to	Hopson Rd	(SR 1978)		GROUN	D WTR (ft)
BOR	ING NO.	B-2	-				17+40			OFFSET				ALIGNME	ENT -L-		0 HR.	7.0
	LAR ELI						EPTH 2			NORTHIN					2,042,583	,	24 HR.	4.9
			FF./DA	TE M			C 88% 05/			·				I.S. Augers		<u> </u>		Automatic
	LER C		T = .			TART D	ATE 06			COMP. D			111	SURFACI	E WATER DEF	TH N/A	4	
ELEV (ft)	ELEV (ft)	DEPTH (ft)	 	0.5ft		0	25	JVVS PI 50	ER FOOT	75 10	SAMF NO.	\perp	0		SOIL AND RO	CK DESC	RIPTION	
	(11)		0.010	0.011	0.010		I			<u> </u>	110	MOI	G	ELEV. (ft)				DEPTH (ft)
390		,																
300	388.6 -	- 0.0												388.6		D SURFA		0.0
	-	-	3	1	3	4			: : : :			D		-	ARTIF Red-brown, tai	ICIAL FIL n, sandy S		
385	385.1	3.5	1	1	1	1				<u> </u>		M		-				
		_										_		- <u>382.6</u>		C RESIDU		6.0
380	380.1	8.5												380.1	Red-brown,	sandy SIL	T (A-4)	8.5
	-		60/0.1							60/0.			477	379.1	NON-CRYS Red-brown,	Triassic Si	Itstone	9.5
	-													-	WEATH Red-brown,	ERED RO	CK Itstone	
375	375.1	13.5	100/0.2							100/0.	•		1	_				
	-	-					:: ::							-				
370		-							· · · ·				M	-				
	368.6	20.0	100/0.4				· · · ·	• • •		100/0.4	•		9/1	368.2	oring Terminated	at Elevati	on 368 2 f	20.4
	-	-													Weathered Roo	k: Triassio	Siltstone	(11)
	-	-												-				
	_	-												-				
	_	-												-				
	-	-												- -				
	_	-												-				
	_	- -																,
	-	_												_				
	_	_												_				
	-	-												_				
	_	- -																
	-	-																
	-	-												-				
	_	-												-				
	-	-												-				
·	-	-												-		•		
	-	-												- - .				
	-	-												-	,			
	_	_																
		-																
		-							•					_				
	-	-										1.		-			*	
]	-						i				1						
	-	-										1				•		
	1	- -																
	_	-										1		_				
	1	-												-				
	1	•												- -				

WBS 5400	0.1.STR	03T1	3	TI	P	U-4716B		COUN	TY	DURH	IAM				GEOLOGIST Howard, J		
SITE DESCR	RIPTION	NC	Rail U	tility B	orin	ngs - Piedmoi	nt Co	rridor -	Exter	nd Chu	urch	St. (SF	1980) to h	Hopson Rd (SR 1978)	GRO	UND WTR (f
BORING NO	. В-3			S	ΓΑΤ	TION 18+69			OF	FSET	Г 7	ft LT			ALIGNMENT -L-	0 HF	R. 3.
COLLAR EL	EV . 38	9.2 ft		TO	OTA	AL DEPTH 1	9.3 f	t	NC	ORTH	ING	773,4	56	**************************************	EASTING 2,042,577	24 HF	R. 1.
DRILL RIG/HA	MMER E	FF./DA	TE M	AC9354	CM	/E-45C 88% 05/3	30/201	12				DRILL N	IETHO	D H.	S. Augers	IAMMER TYP	PE Automatic
ORILLER C	Cox, F			S	ΓAF	RT DATE 06	/11/1	2	CC	COMP. DATE 06/11/12				SURFACE WATER DEPT	H N/A		
LEV DRIVE	DEPTH	BLC	w co	UNT	Π	BLO)WS I	PER FOO)T		Т	SAMP.	∇	L	SOIL AND ROCK	DESCRIPTION	``````````````````````````````````````
(ft) ELEV	(ft)		0.5ft	0.5ft	0	25		50	75	1	00	NO.	MOI	O G	ELEV, (ft)	DESCRIPTION	DEPTH (
390	_							•							TOO O COOLIND	PUDEACE	,
389.2	_0.0	2	2	- 5	\vdash	1 7		T:::	:		\exists		V		389.2 GROUND ARTIFIC	AL FILL	
385.7	3.5				j	/::: ::		: : :			:		D		Brown-red, sandy S gravel, trac	LT (A-4), with e organics	trace
385 385.7	Ξ''''	1	WOH	WOH	€0) 			-		\dashv		М		• • • • • • • • • • • • • • • • • • • •		,
	<u> </u>				-	·				 	:				383.2 TRIASSIC	RESIDUAL	<u>_</u>
380.7	8.5	14	8	25		· · · · - - -					\cdot		М		Red-brown, sa	ndy SILT (A-4).
	<u> </u>	, .					3	: : :			:		IVI		•		
375.7	13.5							: : :									
375		23	29	71/0.4	-	 . <u>!</u>		 		100/0	29		М	77	_374.7 WEATHER	ED ROCK	14
	<u> </u>					::::	: :				:				Purple, red-brown,	Triassic Silts	tone
370 370.2	19.0	10000							•								. 19
	1	100/0.3								100/0	0.3				Boring Terminated at Weathered Rock:	Elevation 369 Triassic Siltst	9.9 ft in one
	<u> </u>														•		
-	<u> </u>								•								
	±					•								l E	•		
1.	\pm													<u> </u>	• •		
	\pm													1 1	· •		
	<u> </u>														•		
-	<u> </u>								-						-		
	1														•		
	+													1	· •· 		
	\pm														•		
	$\frac{1}{1}$													1 }	 •		
-	\pm														<u> </u>		
	<u> </u>														•		
_	1														· , •		
	±														•		
	Ì													1 6	•		
-	\pm													lt	<u></u>		
	7														· •	•	
	Ŧ													F	•		
	Ŧ													F	•		
	‡														•		
-	‡														<u>.</u>		
İ	‡			-											• •		
	Ŧ										,			F	•		
	Ŧ														 -		
	‡														- •		
-	‡														.		
	‡														• •		
	+	l		1	ł							1	I	1 F	- '		

CONTENTS

TITLE SHEET

CLOSURE

SITE PHOTOGRAPHS

PAY ITEM QUANTITIES SITE VICINITY MAP BORING LOCATION PLAN

DESCRIPTION

PROJECT DESCRIPTION

LABORATORY TESTING CONCLUSIONS

SUBSURFACE PROFILES ALONG -L-

NCDOT DIVISION OF HIGHWAYS GEOTECHNICAL UNIT

STRUCTURE SUBSURFACE INVESTIGATION REPORT

SITE DESCRIPTION AND GEOLOGY FIELD EVALUATION PROCEDURE

SOIL AND ROCK LEGEND, TERMS, AND ABBREVIATIONS

SUBSURFACE AND GROUNDWATER CONDITIONS

STRUCTURE FOUNDATION RECOMMENDATIONS

SUMMARY OF FOUNDATION RECOMMENDATIONS

SHEET

2

10-11

12

13-26

27

28-29

STATE OF NORTH CAROLINA

DEPARTMENT OF TRANSPORTATION **DIVISION OF HIGHWAYS** GEOTECHNICAL ENGINEERING UNIT

STRUCTURE SUBSURFACE INVESTIGATION

PROJ. REFER				F.A. PROJ	
				ALIGNMENT A	T
		HOPSON RO	DAD GRADI	E SEPARATION	
SITE DESCRIF	TION <u>BR</u>	IDGE ON NC	RR MAINL	INE OVER	
HOPSON I	ROAD BE	ETWEEN DAV	IS DRIVE	(SR 1999)	
AND S. M	IAMI BLV	D (NC 54)			

STATE STATE PROJECT REFERENCE NO. N.C. 1 29

CAUTION NOTICE

THE SUBSURFACE INFORMATION AND THE SUBSURFACE INVESTIGATION ON WHICH IT IS BASED WERE MADE FOR THE PURPOSE OF STUDY, PLANNING, AND DESIGN, AND NOT FOR CONSTRUCTION OR PAY PURPOSES. THE VARIOUS FIELD BORING LOGS, ROCK CORES, AND SOUL TEST DATA AVAILABLE MAY BE REVIEWED OR INSPECTED IN RALEIGH BY CONTACTING THE N.C. DEPARTMENT OF TRANSPORTATION, CEOTECHNICAL ENGINEERING UNIT AT (919) 250-4088. NEITHER THE SUBSURFACE PLANS AND REPORTS, NOR THE FIELD BORING LOGS, ROCK CORES, OR SOIL TEST DATA ARE PART OF THE CONTRACT.

GENERAL SOIL AND ROCK STRATA DESCRIPTIONS AND INDICATED BOUNDARIES ARE BASED ON A CEMERAL SOIL AND ROCK STRATA DESCRIPTIONS AND INDICATED BOUNDARIES ARE BASED ON A CEOTECHNICAL INTERPRETATION OF ALL AVAILABLE SUBSURFACE DATA AND MAY NOT NECESSARILY REFLECT THE ACTUAL SUBSURFACE CONDITIONS BETWEEN BORNOS OR BETWEEN SAMPLED STRATA WITHIN THE BOREHOLE. THE LABORATORY SAMPLE DATA AND THE IN SITU (IN-PLACE) TEST DATA CAN BE RELIED ON ONLY TO THE DEGREE OF RELIBBLITY INHERENT IN THE STRADARD TEST METHOD. THE OBSERVED WATER LEVELS OR SOIL MOISTURE CONDITIONS INDICATED IN THE SUBSURFACE INVESTIGATIONS ARE AS RECORDED AT THE TIME OF THE INVESTIGATION. THESE WATER LEVELS OR SOIL MOISTURE CONDITIONS MOY VARY CONSIDERABLY WITH TIME ACCORDING TO CLIMATIC CONDITIONS INCLUDING TEMPERATURES, PRECIPITATION, AND WIND, AS WELL AS OTHER NON-CLIMATIC CONDITIONS INCLUDING TEMPERATURES, PRECIPITATION, AND WIND, AS WELL AS OTHER NON-CLIMATIC FACTORS.

THE BIDDER OR CONTRACTOR IS CAUTIONED THAT DETAILS SHOWN ON THE SUBSURFACE PLANS ARE PRELIMINARY ONLY AND IN MANY CASES THE FINAL DESIGN DETAILS ARE DIFFERENT. FOR BIDDING AND CONSTRUCTION PURPOSES, REFER TO THE CONSTRUCTION PLANS AND DOCUMENTS FOR FINAL DESIGN INFORMATION ON THIS PROJECT. THE DEPARTMENT DOES NOT WARRANT OR GUARANTEE THE SUFFICIENCY OR ACCURACY OF THE INVESTIGATION MADE, NOR THE INTERPRETATIONS MADE, OR OPINION OF THE DEPARTMENT AS TO THE TYPE OF MATERIALS AND CONDITIONS TO BE ENCOUNTERED. THE BIDDER OR CONTRACTOR IS CAUTIONED TO MAKE SUCH INDEPENDENT SUBSURFACE INVESTIGATIONS AS HE DEEMS NECESSARY TO SATISFY HIMSEL AS TO CONDITIONS TO BE ENCOUNTERED ON THIS PROJECT. THE CONTRACTOR SHALL HAVE NO CLAIM FOR ADDITIONAL COMPENSATION OR FOR AN EXTENSION OF TIME FOR ANY REASON RESULTING FROM THE ACTUAL CONDITIONS ENCOUNTERED AT THE SITE DIFFERING FROM THOSE MOICATED IN THE SUBSURFACE INSURING FROM THOSE INDICATED IN THE SUBSURFACE INFORMATION.

	PERSONNEL
	M. BAHIRADHAN
	Ј. НАММ
***************************************	T. EVANS
****	C. NORVILLE
- Constitution	
INVESTIGATED BY	T. EVANS
CHECKED BY	M. BAHIRADHAN
SUBMITTED BY	FALCON ENG.

SEPTEMBER 14, 2012

APPENDIX A - DRILLED SHAFT LPILE ANALYSIS RESULTS

SUBSURFACE CROSS SECTIONS ALONG STRUCTURE BENTS

FINAL LOGS: BORE LOGS, CORE LOGS, CORE PHOTOS

AASHTO SOIL CLASSIFICATION AND GRADATION SHEET ROCK CORE COMPRESSIVE STRENGTH TEST RESULTS

> NOTE - THE INFORMATION CONTAINED HEREIN IS NOT IMPLIED OR GUARANTEED BY THE N. C. DEPARTMENT OF TRANSPORTATION AS BEING ACCURATE NOR IT IS CONSIDERED TO BE PART OF THE PLANS, SPECIFICATIONS, OR CONTRACT FOR THE PROJECT.

NOTE - BY HAVING REQUESTED THIS INFORMATION THE CONTRACTOR SPECIFICALLY WAIVES ANY CLAIMS FOR INCREASED COMPENSATION OR EXTENSION OF TIME BASED ON DIFFERENCES BETWEEN THE CONDITIONS INDICATED HEREIN AND THE ACTUAL CONDITIONS AT THE PROJECT SITE.

NORTH CAROLINA DEPARTMENT OF TRANSPORTATION

DIVISION OF HIGHWAYS

GEOTECHNICAL ENGINEERING UNIT

SUBSURFACE INVESTIGATION

SOIL AND ROCK LEGEND, TERMS, SYMBOLS, AND ABBREVIATIONS					
SOIL DESCRIPTION	GRADATION			ROCK DESCRIPTION	TERMS AND DEFINITIONS
SOIL IS CONSIDERED TO BE THE UNCONSOLIDATED, SEMI-CONSOLIDATED, OR WEATHERED EARTH MATERIALS THAT CAN BE PENETRATED WITH A CONTINUOUS FLIGHT POWER AUGER, AND VIELD LESS THAN 180 BLOWS PER FOOT ACCORDING TO STANDARD PENETRATION TEST (AASHTO T286, ASTM O-1586). SOIL CLASSIFICATION IS BASED ON THE AASHTO SYSTEM. BASIC DESCRIPTIONS GENERALLY SHALL INCLUDE; CONSISTENCY, COLOR, TEXTURE, MOISTURE, AASHTO CLASSIFICATION, AND OTHER PERTINENT FACTORS SUCH AS MINERALOGICAL COMPOSITION, ANGULARITY, STRUCTURE, PLASTICITY, ETC. EXAMPLE:	WELL GRADED - INDICATES A GOOD REPRESENTATION OF PARTICLE SIZES UNIFORM - INDICATES THAT SOIL PARTICLES ARE ALL APPROXIMATELY TH POURLY GRADED - INDICATES A MIXTURE OF UNIFORM PARTICLES OF TWO OR CAP-GRADED - INDICATES A MIXTURE OF UNIFORM PARTICLES OF TWO OR ANGULARITY OF GRAINS THE ANGULARITY OR ROUNDNESS OF SOIL GRAINS IS DESIGNATED BY THE	MORE SIZES.	ROCK LINE INDICATES THE SPT REFUSAL IS PENETRAT IN NON-COASTAL PLAIN MA OF WEATHERED ROCK.	AL PLAIN MATERIAL THAT IF TESTED, WOULD YIELD SPT REFUSAL, AN INFERRED LEVEL AT WHICH NON-COASTAL PLAIN MATERIAL WOULD YIELD SPT REFUSAL. ION BY A SPLIT SPOON SAMPLER EQUAL TO OR LESS THAN 0.1 FOOT PER 60 BLOWS. ATERIAL, THE TRANSITION BETWEEN SOIL AND ROCK IS OFTEN REPRESENTED BY A ZONE ICALLY DIVIDED AS FOLLOWS:	ALLUVIUM (ALLUV.) - SOILS THAT HAVE BEEN TRANSPORTED BY WATER. AQUIFER - A WATER BEARING FORMATION OR STRATA. ARENACEOUS - APPLIED TO ROCKS THAT HAVE BEEN DERIVED FROM SAND OR THAT CONTAIN SAND. ARGILLACEOUS - APPLIED TO ALL ROCKS OR SUBSTANCES COMPOSED OF CLAY MINERALS.
VERY STIFF, GRAY, SILTY CLAY, MOIST WITH INTERBEDOED FINE SAND LAYERS, HIGHLY PLASTIC, A-7-6	SUBANGULAR, SUBROUNDED, OR ROUNDED.	WE/	EATHERED OCK (WR)	NON-COASTAL PLAIN MATERIAL THAT WOULD VIELD SPT N VALUES > 100	OR HAVING A NOTABLE PROPORTION OF CLAY IN THEIR COMPOSITION, AS SHALE, SLATE, ETC.
SOIL LEGEND AND AASHTO CLASSIFICATION GENERAL GRANULAR MATERIALS SILT-CLAY MATERIALS CONTROL ASSETS SOL LEGEND AND AASHTO CLASSIFICATION GENERAL GRANULAR MATERIALS SILT-CLAY MATERIALS CONTROL ASSETS SOL LEGEND AND AASHTO CLASSIFICATION	MINERAL OGICAL COMPOSITI MINERAL NAMES SUCH AS QUARTZ, FELDSPAR, MICA, TALC, KAOLIN, ETC. ARE	ION CRI	RYSTALLINE	BLOWS PER FOOT IF TESTED. FINE TO COARSE GRAIN IGNEOUS AND METAMORPHIC ROCK THAT WOULD YIELD SPT REFUSAL IF TESTED, ROCK TYPE INCLUDES GRANITE.	ARTESIAN - GROUND WATER THAT IS UNDER SUFFICIENT PRESSURE TO RISE ABOVE THE LEVEL AT WHICH IT IS ENCOUNTERED, BUT WHICH DOES NOT NECESSARILY RISE TO OR ABOVE THE GROUND SURFACE.
CLASS. (≤ 35% PASSING *200) (> 35% PASSING *200) ORGANIC MATERI	WHENEVER THE THRE CONSIDERED OF SIGNIFICANCE.		OCK (CR)	GNEISS, GABBRO, SCHIST, ETC. FINE TO COARSE GRAIN METAMORPHIC AND NON-COASTAL PLAIN	CALCAREOUS (CALC.) - SOILS THAT CONTAIN APPRECIABLE AMOUNTS OF CALCIUM CARBONATE.
GROUP A-1 A-3 A-2 A-4 A-5 A-6 A-7 A-1, A-2 A-4, A-5 A-6 A-7 A-6, A-7		IT LESS THAN 31 ROC	ON-CRYSTALLINE OCK (NCR) DASTAL PLAIN	SEDIMENTARY ROCK THAT WOULD YEILD SPT REFUSAL IF TESTED, ROCK TYPE INCLUDES PHYLLITE, SLATE, SANDSTONE, ETC.	COLLUYIUM - ROCK FRAGMENTS MIXED WITH SOIL DEPOSITED BY GRAVITY ON SLOPE OR AT BOTTOM OF SLOPE.
SYMBOL 000000000000000000000000000000000000		IT GREATER THAN 50 SED	DIMENTARY ROCK	COASTAL PLAIN SEDIMENTS CEMENTED INTO ROCK, BUT MAY NOT YIELD SHERUSAL. ROCK TYPE INCLUDES LIMESTONE, SANDSTONE, CEMENTED SHELL BEOS, ETC.	CORE RECOVERY (REC.) - TOTAL LENGTH OF ALL MATERIAL RECOVERED IN THE CORE BARREL DIVIDED BY TOTAL LENGTH OF CORE RUN AND EXPRESSED AS A PERCENTAGE.
# 10 50 MX GRANULAR CLAY	MUCK, ORGANIC MATERIAL SOILS SOILS	OTHER MATERIAL		WEATHERING	<u>DIKE</u> - A TABULAR BODY OF IGNEOUS ROCK THAT CUTS ACROSS THE STRUCTURE OF ADJACENT ROCKS OR CUTS MASSIVE ROCK.
# 200 15 MX 25 MX 18 MX 35 MX 35 MX 35 MX 36 MN 36 MN	TRACE OF ORGANIC MATTER 2 - 3% 3 - 5% TF LITTLE ORGANIC MATTER 3 - 5% 5 - 12% LI	TRACE 1 - 10%	HAMMER IF CR		<u>DIP</u> - THE ANGLE AT WHICH A STRATUM OR ANY PLANAR FEATURE IS INCLINED FROM THE HORIZONTAL.
PLASTIC INDEX 6 MX NP 18 MX 18 MX 11 MN 11 MN 18 MX 18 MX 11 MN 11 MN 11 MN LITTLE OR	GHLY HIGHLY ORGANIC >10% >20% HI		RY SLIGHT ROCK GENERALI SLI.) CRYSTALS ON OF A CRYSTALI	LY FRESH, JOINTS STAINED, SOME JOINTS MAY SHOW THIN CLAY COATINGS IF OPEN, A BROKEN SPECIMEN FACE SHINE BRIGHTLY. ROCK RINGS UNDER HAMMER BLOWS IF INF MATHER	<u>OIP DIRECTION (OIP AZIMUTH) -</u> THE DIRECTION OR BEARING OF THE HORIZONTAL TRACE OF THE LINE OF DIP, MEASURED CLOCKWISE FROM NORTH.
USUAL TYPES STONE FRAGS. STATE STATE OF CLAVEY STATE CLAVEY ORGANIC	RGANIC GROUND WATER DILS WATER LEVEL IN BORE HOLE IMMEDIATELY AFTER	SLI SLI	IGHT ROCK GENERALI	LY FRESH, JOINTS STAINED AND DISCOLORATION EXTENDS INTO ROCK UP TO DOINTS MAY CONTAIN CLAY. IN GRANITOID ROCKS SOME OCCASIONAL FELDSPAR	<u>FAULT</u> - A FRACTURE OR FRACTURE ZONE ALONG WHICH THERE HAS BEEN DISPLACEMENT OF THE SIDES RELATIVE TO ONE ANOTHER PARALLEL TO THE FRACTURE.
OF MAJOR GRAVEL, AND SAND GRAVEL AND SAND SOILS SOILS MATTER	STATIC WATER LEVEL AFTER 24 HOURS	MOL	CRYSTALS ARE	DULL AND DISCOLORED, CRYSTALLINE ROCKS RING UNDER HAMMER BLOWS. ORTIONS OF ROCK SHOW DISCOLORATION AND WEATHERING EFFECTS. IN	FISSILE - A PROPERTY OF SPLITTING ALONG CLOSELY SPACED PARALLEL PLANES.
GEN. RATING AS A EXCELLENT TO GOOD FAIR TO POOR POOR POOR POOR	SUITABLE PERCHED WATER, SATURATED ZONE, OR WATER BEAR		IOD.) GRANITOID ROC DULL SOUND UI	KS, MOST FELDSPARS ARE DULL AND DISCOLORED, SOME SHOW CLAY, ROCK HAS NDER HAMMER BLOWS AND SHOWS SIGNIFICANT LOSS OF STRENGTH AS COMPARED	FLOAT - ROCK FRAGMENTS ON SURFACE NEAR THEIR ORIGINAL POSITION AND DISLODGED FROM PARENT MATERIAL.
PI OF A-7-5 SUBGROUP IS ≤ LL - 30 ; PI OF A-7-6 SUBGROUP IS > LL - 30	→ SPRING OR SEEP	мор	WITH FRESH RO DERATELY ALL ROCK EXCE	EPT QUARTZ DISCOLORED OR STAINED. IN GRANITOID ROCKS. ALL FELDSPARS DULL	FLOOD PLAIN (FP) - LAND BORDERING A STREAM, BUILT OF SEDIMENTS DEPOSITED BY THE STREAM.
CONSISTENCY OR DENSENESS COMPACTNESS OR RANGE OF STANDARD RANGE OF UNCONFI	MISCELLANEOUS SYMBOL O FINANCIAL REPORT (RE)	0401	OD. SEV.) AND CAN BE EX	ED AND A MAJORITY SHOW KAOLINIZATION. ROCK SHOWS SEVERE LOSS OF STRENGTH XCAYATED WITH A GEOLOGIST'S PICK. ROCK GIVES "CLUNK" SOUND WHEN STRUCK.	FORMATION (FM.) - A MAPPABLE GEOLOGIC UNIT THAT CAN BE RECOGNIZED AND TRACED IN THE FIELD.
CONSISTENCY PENEIRATION RESISTENCE COMPRESSIVE STR	WITH SOIL DESCRIPTION VST PMT TEST BORD			<u>ULD YIELD SPI REFUSAL</u> EPT QUARTZ DISCOLORED OR STAINED.ROCK FABRIC CLEAR AND EVIDENT BUT REDUCED	JOINT - FRACTURE IN ROCK ALONG WHICH NO APPRECIABLE MOVEMENT HAS OCCURRED.
GENERALLY VERY LOOSE	SOIL SYMBOL AUGER BORING	S SPT N-VALUE (SE	EV.) IN STRENGTH 1	TO STRONG SOIL. IN GRANITOID ROCKS ALL FELOSPARS ARE KAOLINIZED TO SOME FRAGMENTS OF STRONG ROCK USUALLY REMAIN.	LEDGE - A SHELF-LIKE RIDGE OR PROJECTION OF ROCK WHOSE THICKNESS IS SMALL COMPARED TO ITS LATERAL EXTENT.
MATERIAL (NON-COHESIVE) DENSE 30 TO 50 VERY DENSE >50 VERY SOFT <2 <0.25	ARTIFICIAL FILL (AF) OTHER THAN ROADWAY EMBANKMENT INFERRED SOIL BOUNDARY MONITORING WE		RY SEVERE ALL ROCK EXCE SEV.) THE MASS IS E	<u>ELOS SPT N VALUES > 100 BPF</u> EPT QUARTZ DISCOLORED OR STAINED. ROCK FABRIC ELEMENTS ARE DISCERNIBLE BUT EFFECTIVELY REDUCED TO SOIL STATUS, WITH ONLY FRAGMENTS OF STRONG ROCK PROLITE IS AN EXAMPLE OF ROCK WEATHERED TO A DEGREE SUCH THAT ONLY MINOR	LENS - A BODY OF SOIL OR ROCK THAT THINS OUT IN ONE OR MORE DIRECTIONS. MOTILED (MOT.) - IRREGULARLY MARKED WITH SPOTS OF DIFFERENT COLORS, MOTTLING IN SOILS USUALLY INDICATES POOR AERATION AND LACK OF GOOD DRAINAGE. PERCHED WATER - WATER MAINTAINED ABOVE THE NORMAL GROUND WATER LEVEL BY THE PRESENCE OF AN
GENERALLY SOFT 2 TO 4 0.25 TO 0.50 SILT-CLAY MEDIUM STIFF 4 TO 8 0.5 TO 1.0	INFERRED ROCK LINE A PIEZOMETER INSTALLATION	j CUM	VESTIGES OF T	THE ORIGINAL ROCK FABRIC REMAIN. IF TESTED, YIELDS SPT N VALUES < 100 BPF TO SOIL. ROCK FABRIC NOT DISCERNIBLE, OR DISCERNIBLE DNLY IN SMALL AND	INTERVENING IMPERVIOUS STRATUM. RESIDUAL (RES.) SOIL - SOIL FORMED IN PLACE BY THE WEATHERING OF ROCK.
MATERIAL STIFF 8 10 15 1 TO 2 (COHESIVE) VERY STIFF 15 TO 30 2 TO 4 HARD >30 >4	25/025 DIP & DIP DIRECTION OF		SCATTERED CON ALSO AN EXAMP	NCENTRATIONS. QUARTZ MAY BE PRESENT AS DIKES OR STRINGERS. SAPROLITE IS PLE.	ROCK QUALITY DESIGNATION (ROD) - A MEASURE OF ROCK QUALITY DESCRIBED BY TOTAL LENGTH OF ROCK SEGMENTS EQUAL TO OR GREATER THAN 4 INCHES DIVIDED BY THE TOTAL LENGTH OF CORE RUN AND
TEXTURE OR GRAIN SIZE	ROCK STRUCTURES CONE PENETRO		CANDOT DE CO	ROCK HARDNESS	EXPRESSED AS A PERCENTAGE. SAPROLITE (SAP.) - RESIDUAL SOIL THAT RETAINS THE RELIC STRUCTURE OR FABRIC OF THE
U.S. STO. SIEVE SIZE 4 10 40 60 200 270 OPENING (MM) 4.76 2.00 0.42 0.25 0.075 0.053	SOUNDING ROD)	SEVERAL HARD	CRATCHED BY KNIFE OR SHARP PICK. BREAKING OF HAND SPECIMENS REQUIRES D BLOWS OF THE GEOLOGIST'S PICK.	PARENT ROCK. SILL - AN INTRUSIVE BODY OF IGNEOUS ROCK OF APPROXIMATELY UNIFORM THICKNESS AND
BOULDER COBBLE GRAVEL COARSE FINE SILT	ABBREVIATIONS AR - AUGER REFUSAL MED MEDIUM	VST - VANE SHEAR TEST	TO DETACH HA		RELATIVELY THIN COMPARED WITH ITS LATERAL EXTENT, THAT HAS BEEN EMPLACED PARALLEL TO THE BEDDING OR SCHISTOSITY OF THE INTRUDED ROCKS.
(BLDR.) (COB.) (GR.) (CSE. SD.) (F SD.) (SL.) GRAIN MM 305 75 2.0 0.25 0.005 0.005	CL.) BT - BORING TERMINATED MICA MICACEOUS CL CLAY MOD MODERATELY CPT - CONE PENETRATION TEST NP - NON PLASTIC	WEA WEATHERED 7 - UNIT WEIGHT 7 - DRY UNIT WEIGHT	40DERATELY CAN BE SCRAT HARD EXCAVATED BY BY MODERATE	TCHED BY KNIFE OR PICK. GOUGES OR GROOVES TO 0.25 INCHES DEEP CAN BE Y HARD BLOW OF A GEOLOGIST'S PICK, HAND SPECIMENS CAN BE DETACHED BI DWS.	SLICKENSIDE - POLISHED AND STRIATED SURFACE THAT RESULTS FROM FRICTION ALONG A FAULT OR SLIP PLANE.
SOIL MOISTURE - CORRELATION OF TERMS	CSE COARSE ORG ORGANIC DMT - DILATOMETER TEST PMT - PRESSUREMETER TEST	ME	MEDIUM CAN BE GROOT HARD CAN BE EXCAT	VED OR GOUGED 0.05 INCHES DEEP BY FIRM PRESSURE OF KNIFE OR PICK POINT. VATED IN SMALL CHIPS TO PEICES 1 INCH MAXIMUM SIZE BY HARD BLOWS OF THE	STANDARD PENETRATION TEST (PENETRATION RESISTANCE) (SPT) - NUMBER OF BLOWS (N OR BPF) OF A 140 LB. HAMMER FALLING 30 INCHES REQUIRED TO PRODUCE A PENETRATION OF 1 FOOT INTO SOIL WITH
SOIL MOISTURE SCALE FIELD MOISTURE GUIDE FOR FIELD MOISTURE DESCRIPTION GUIDE FOR FIELD MOISTURE DESCRIPTION			SOFT CAN BE GROVE	SEOLOGIST'S PICK. ED OR GOUGED READILY BY KNIFE OR PICK. CAN BE EXCAVATED IN FRAGMENTS	A 2 INCH OUTSIDE DIAMETER SPLIT SPOON SAMPLER, SPT REFUSAL IS PENETRATION EQUAL TO OR LESS THAN 0.1 FOOT PER 60 BLOWS.
- SATURATED - USUALLY LIQUID; VERY WET, USUA (SAT.) FROM BELOW THE GROUND WATE		ST - SHELBY TUBE RS - ROCK RT - RECOMPACTED TRIAXIAL VI	PIECES CAN 8	TO SEVERAL INCHES IN SIZE BY MODERATE BLOWS OF A PICK POINT. SMALL, THIN BE BROKEN BY FINGER PRESSURE. ED WITH KNIFE. CAN BE EXCAVATED READILY WITH POINT OF PICK, PIECES 1 INCH	STRATA CORE RECOVERY (SREC) - TOTAL LENGTH OF STRATA MATERIAL RECOVERED DIVIDED BY TOTAL LENGTH OF STRATUM AND EXPRESSED AS A PERCENTAGE. STRATA ROCK QUALITY DESIGNATION (SRQD) - A MEASURE OF ROCK QUALITY DESCRIBED BY
PLASTIC LIQUID LIMIT	FRAGS FRAGMENTS			HICKNESS CAN BE BROKEN BY FINGER PRESSURE. CAN BE SCRATCHED READILY BY	TOTAL LENGTH OF ROCK SEGMENTS WITHIN A STRATUM EQUAL TO OR GREATER THAN 4 INCHES DIVIDED BY THE TOTAL LENGTH OF STRATA AND EXPRESSED AS A PERCENTAGE.
RANGE - WET - (W) SEMISULID RECORRES DRYING TO ATTAIN OPTIMUM MOISTURE	EQUIPMENT USED ON SUBJECT	T T T T T T T T T T T T T T T T T T T	FRACTURE S	T501/	TOPSOIL (TS.) - SURFACE SOILS USUALLY CONTAINING ORGANIC MATTER.
MOICT IN COLUDATION NEAR ORTHMIN M	DRILL UNITS: ADVANCING TOOLS:			SPACING TERM THICKNESS ORE THAN 10 FEET VERY THICKLY BEDDED > 4 FEET	BENCH MARK:
SL SHRINKAGE LIMIT	MOBILE B CLAY BITS		MODERATELY CLOSE 1	TO 10 FEET THICKLY BEDDED 1.5 - 4 FEET TO 3 FEET VERY THINLY BEDDED 0.16 - 1.5 FEET VERY THINLY BEDDED 0.03 - 0.16 FEET	ELEVATION: FT.
- DRY - (D) REQUIRES ADDITIONAL WATER TO ATTAIN OPTIMUM MOISTURE	6. CONTINUOUS FLIGHT AUGER X 8. HOLLOW AUGERS			1.6 TO 1 FEET	NOTES: FIAD - FILLED-IN AFTER DRILLING
PLASTICITY	CME-45C HARD FACED FINGER BITS		D CEDIMENTARY DOGGE	INDURATION	
PLASTICITY INDEX (PI) DRY STRENGTH NONPLASTIC 0-5 VERY LOW	TUNGCARBIDE INSERTS			RATION IS THE HARDENING OF THE MATERIAL BY CEMENTING, HEAT, PRESSURE, ETC. RUBBING WITH FINGER FREES NUMEROUS GRAINS:	
LOW PLASTICITY 6-15 SLIGHT MED. PLASTICITY 16-25 MEDIUM	CASING W/ ADVANCER	HAND TOOLS:	FRIABLE	GENTLE BLOW BY HAMMER DISINTEGRATES SAMPLE.	
HIGH PLASTICITY 26 OR MORE HIGH COLOR	PORTABLE HOIST X TRICONE 3 STEEL TEETH TRICONE TRICONE TRICO. TRICO.	POST HOLE DIGGER HAND AUGER	MODERATELY INDUR	ATED GRAINS CAN BE SEPARATED FROM SAMPLE WITH STEEL PROBE; BREAKS EASILY WHEN HIT WITH HAMMER.	
DESCRIPTIONS MAY INCLUDE COLOR OR COLOR COMBINATIONS (TAN, RED. YELLOW-BROWN, BLUE-G	X DIEDRICH D-50	SOUNDING ROD	INDURATED	GRAINS ARE DIFFICULT TO SEPARATE WITH STEEL PROBE; DIFFICULT TO BREAK WITH HAMMER,	
MODIFIERS SUCH AS LIGHT, DARK, STREAKED, ETC. ARE USED TO DESCRISE APPEARANCE.	X 4' DRAC BIT	VANE SHEAR TEST	EXTREMELY INDURA		

PROJECT REFERENCE NO.

SHEET NO.

September 14, 2012

Mr. Corey Vernier, P.E. HNTB North Carolina, P.C. 343 East Six Forks Rd, Suite 200 Raleigh, NC 27609

Re: Structure Subsurface Investigation Report

TIP No.: U-4716 County: Durham

Project Description:

Proposed Railroad Alignment at Hopson Road Grade Separation

Site Description: Bridge on NCRR Mainline over Hopson Road

between Davis Drive (SR 1999) and S. Miami Blvd (NC 54)

Falcon Project No.: G10018.00

Dear Mr. Vernier,

As authorized, Falcon Engineering, Inc. (Falcon) has completed the geotechnical subsurface investigation for the proposed new grade separation on the NCRR Mainline over Hopson Road in Durham County, North Carolina. A site vicinity map is shown on Sheet 8. Our investigation was performed in general accordance with our proposal number F9070R, dated May 10, 2010. This report includes the results of our field and laboratory testing, geotechnical recommendations for foundations, site and boring location plans, and profiles and cross sections showing subsurface conditions.

PROJECT DESCRIPTION

The existing at-grade crossing between the NCRR Mainline tracks and Hopson Road will be replaced with a new bridge structure. The existing railroad will also be realigned between Station 3298+92 and Station 3343+16, for a total of approximately 4,424 feet. Our Railroad Subsurface Investigation Report will be submitted under a separate cover. The realigned mainline track will cross Hopson Road approximately 152 feet north of the existing at-grade crossing. The proposed structure will be an approximately 165-foot-long, 39-foot-wide, four-span, five-bent, ballast deck bridge. The structure is planned from approximate Station 3314+94 to Station 3316+59 and will cross Hopson Road at a skew angle of approximately 85°. Information provided by HNTB indicates the finished grade elevations at the approaches will be approximately 407 feet at both End Bent1 and End Bent 2 with reference to North American Vertical Datum, 1988 (NAVD). The End Bents will be supported by two rows of piles; one vertical and one battered. Interior Bents will be supported by four (4) 60-inch diameter drilled shaft foundations. A brief summary of the design data provided by HNTB is given in Table 1.

www.FalconEngineers.com

Engineering | Inspect on | Testing | Agency CM 1210 Trinity Road, Suite 110 | Raleigh, North Carolina 27607 | T 919.871.0800 | F 919.871.0803

Table 1: Summary of Proposed Foundation System

Bent	Station	Total Number of Piles/Shafts	Foundation Type and Size	Pile/Shaft Spacing (Center to Center)	Bottom of Pile Cap Elevation (feet, NAVD)
End Bent 1	nd Bent 1 3314+94		HP14x73 Steel Piles	<u>+</u> 4'-6"	398.2
Bent 1	3315+24	4	60-inch diameter Drilled Shafts	11'-11"	397.2
Bent 2	3315+77	4	60-inch diameter Drilled Shafts	11'-11"	397.1
Bent 3	3316+30	4	60-inch diameter Drilled Shafts	11'-11"	397.0
End Bent 2	3316+59	20 (two rows)	HP14x73 Steel Piles	<u>+</u> 4'-6"	397.8

1. Top of Drilled Shaft elevation is approximately 385 feet for all interior bents. Column diameter is 54 inches.

We understand two rows of 10 evenly-spaced piles (for a total of 20 piles) will be driven at each end bent. The back row (away from the bridge) will be driven vertically, and the front row (towards the bridge) will be battered. Design loads were not provided for end bent piles. Loads for drilled shaft foundations were provided for our use in foundation design calculations. We understand the provided loads are based on the American Railway Engineering and Maintenance-of-way Association (AREMA) Service Load Design (SLD), with allowable overstress factors accounted for. The provided loads are summarized in Table 2 below.

Table 2: Interior Bent Drilled Shaft Foundation Loads (Left Two Columns)

Load Case	Axial (Kips)	F _y (Kips)	F _z (Kips)	M _y (ff-K)	Mz (ft-K)	Torsion, M _x (ff-K)
SLD_I	776	22	2	73	355	3
SLD_II	181	9	69	173	87	46
SLD_III	618	16	60	318	271	74
SLD_VI	158	25	2	39	356	1
SLD_IV	137	22	62	155	311	41

^{1.} Loads are based on 5'-0" diameter drilled shaft with point of fixity at 360 ft. Loads are applied at the top of the column.

^{2.} Fz and My act in opposing directions.

^{3.} Torsion forces act in the clockwise direction as viewed from the top of the column.

Load Case	Axial (Kips)	F _y (Kips)	F _z (Kips)	M _y (ff-K)	Mz (ff-K)	Torsion, M _x (ff-K)
SLD_I	417	46	3	56	816	7
SLD_II	844	38	3	60	636	6
SLD_III	679	29	92	60	495	118
SLD_VI	338	36	79	257	644	134

Table 3: Interior Bent Drilled Shaft Foundation Loads (Right Two Columns)

Notes

- 1. Loads are based on 5'-0" diameter drilled shaft with point of fixity at 364 ft. Loads are applied at the top of the column.
- 2. Fz and My act in opposing directions.
- 3. Torsion forces act in the clockwise direction as viewed from the top of the column.

Slopes at the end bents are proposed at 2 Horizontal (H) to 1 Vertical (V). The end bent slopes will be protected by concrete slope protection.

SITE DESCRIPTION/GEOLOGY

The general site topography consists of gentle slopes and shallow ravines, typical of the eastern piedmont of North Carolina where the site is located. The proposed structure location is relatively flat, with a small roadway embankment and drainage ditches (generally less than 5 feet of relief). The bridge site is predominantly grassy, with a few trees present and wooded areas bordering the site. The bridge will cross an active state-owned roadway (Hopson Road) and is located in close proximity to the existing NCRR/NS rail corridor. The entire project will be constructed on lands owned by NCRR and is therefore subject to NCRR/NS Right of Entry (ROE) requirements.

According to the *Geologic Map of North Carolina* (1985), the proposed site is located within the Triassic Basin in the eastern piedmont region. The Triassic basin is a large, northeast-southwest trending rift basin which opened along the Jonesboro Fault and subsequently filled with upland piedmont sediments. Over the passing of Geologic time, these sediments have since been consolidated into sedimentary rocks varying from fine-grained mudstones to conglomerate, containing coal and shale beds and dikes and sills of intrusive diabase. Specifically, Triassic sedimentary rocks at the site are noted to be of the Chatham Group, undivided (TRc). This group typically consists of varying compositions of sedimentary rock including conglomerate, fanglomerate, sandstone and mudstone.

FIELD EVALUATION PROCEDURE

Evaluation of the subsurface conditions for the project consisted of drilling ten (10) Standard Penetration Test (SPT) borings. Two (2) borings were drilled near each bent location. Rock coring was performed in the six (6) interior bent borings in order to verify the presence, quality, and composition of rock and to assist in the design of drilled shaft foundations. Borings were performed with a Diedrich D-50 rubber-track-mounted drill rig equipped with 2 1/4-inch inside diameter hollow-stem augers, mud rotary drilling equipment, an automatic hammer, and NQ2 sized, wire-line type diamond-impregnated rock coring equipment. SPT borings and soil/rock core sampling were performed in general accordance with the American Association of State Highway Transportation Officials (AASHTO T-206 and T-225).

Soil and rock core samples were obtained from the borings and visually classified in the field before being placed in moisture-proof containers and transported to our laboratory. Groundwater measurement readings were taken within each borehole with a weighted 100-foot measuring tape from a reference location at the top of each boring. Readings were recorded immediately after boring termination, and again after a waiting period of at least 24 hours before being backfilled.

SUBSURFACE AND GROUNDWATER CONDITIONS

Based on the results of our borings, subsurface conditions generally consist of residual soil, underlain by weathered rock and non-crystalline rock materials of Triassic Sedimentary origin.

Topsoil and rootmat was encountered in the majority of the borings and ranged in thickness from 3 to 9 inches. All borings encountered Triassic residual soils near the ground surface, ranging in thickness from approximately 4 to 15 feet, and consisting of soft to hard fine sandy and silty clay (A-6, A-7) and loose to very dense, silty and clayey sands (A-2-4, A-2-6). Weathered rock (WR) was encountered beneath the residual soils and consisted of approximately 4 to 20 feet of Triassic siltstone and sandstone. Auger and/or SPT refusal was encountered at depths ranging from approximately 19 to 24 feet below existing ground surface. Approximately 12.5 feet of non-crystalline rock (NCR) was cored from each interior bent boring, consisting of Triassic siltstone and sandstone, with isolated occurrences of conglomerate.

Groundwater measurements were obtained immediately after boring termination. The measured groundwater ranged in elevation from approximately 3 to 7 feet below ground surface.

LABORATORY TESTING

Representative split-spoon and bulk samples were selected from soil test borings to verify visual field classifications and determine soil index properties. A total of eight (8) samples were analyzed in our laboratory for natural moisture content, grain size analysis, and Atterberg limits. Additionally, five (5) representative rock core samples were subjected to unconfined compressive strength testing. The results of these laboratory tests can be found on Sheet 27 of this report. All testing was performed in accordance with the following American Society for Testing and Materials (ASTM) and AASHTO procedures:

- AASHTO T-88 (as modified by NCDOT) "Particle Size Analysis of Soil"
- AASHTO T-89 (as modified by NCDOT) "Determining the Liquid Limits of Soil"
- AASHTO T-90 "Determining the Plastic Limit and Plasticity of Soils"
- AASHTO T-265 "Laboratory Determination of Moisture Content of Soils"
- ASTM D-2938-86 "Standard Test Method for Unconfined Compressive Strength of Intact Rock"

FOUNDATION RECOMMENDATIONS

The foundation recommendations presented below are based on the AREMA SLD load scenarios provided by HNTB. Our foundation analysis and design was performed in general accordance with NCDOT LFD/ASD design methodology, with modifications and considerations where necessary to comply with AREMA SLD and pile and drilled shaft foundation requirements.

End bent piles will be tipped into weathered rock/rock at both end bents to satisfy a minimum of 15 feet of embedment in native ground. End bent piles are designed for an allowable load of 80 tons, A factor of safety of 2.0 was used on this allowable load. We understand the total number of piles and pile spacing has not been determined. However, we anticipate the pile spacing will exceed 3 times the diameter of the piles. Assuming the HP 14x73 piles are spaced at least 42 inches center-to-center, the group axial capacities of the piles will be the sum of the individual capacities of the piles in a group. We understand a row of end bent piles will be battered to provide resistance against lateral forces. Therefore, vertical end bent piles are not anticipated to carry lateral forces or moments. End bent piles are not otherwise designed to resist lateral forces. We understand selection of batter angle(s)/direction(s) and number of battered piles will the responsibility of others based on the allowable pile loads recommended in this report. Please refer to Sheet 6 for pile foundation recommendations and plan notes. Pile pay item quantities are presented on Sheet 7.

Required drilled shaft axial capacity will be achieved by a combination of side friction and end bearing in WR and NCR. Since torsion forces (Mx) on the shafts are relatively small, the forces will be carried by the skin friction of the drilled shafts. However, drilled shafts will require a socket into competent rock materials to achieve lateral capacity and shaft fixity. Drilled shafts are designed for an allowable load of 422 tons, socketed into competent, non-crystalline sedimentary rock, with a factor of safety exceeding 2.5. Based on our LPILE analysis using the provided loads and bridge geometry, the maximum pile deflection at the top of the columns is less than one inch. LPILE analysis results for each boring are included in Appendix A of this report. Please refer to Sheet 6 for detailed drilled shaft foundation recommendations and plan notes. Drilled shaft pay item quantities are presented on Sheet 7.

All drilled shaft foundations should be inspected in accordance with the NCDOT *Drilled Pier Inspection Manual*, applicable AREMA or other railway associated guidance documents, or both. We understand this will be the responsibility of others. However, Falcon can provide geotechnical design support during construction if requested in order to ensure compliance with the design.

Due to the presence of thick, variable weathered rock and soft layers within the competent rock below, we recommend a single pay item be included in the contract for drilled shaft excavation, to include penetration of all subsurface materials to the required depth.

Based on the preliminary plans we received in October, 2011, end bent slopes are proposed at 2H:1V with concrete slope protection. Approach embankment fills shall be placed in accordance with NCDOT Standard Specifications for Roads and Structures (NCDOT Specifications).

CLOSURE

If any of the project information contained in this report is incorrect or has changed, please inform Falcon so that we may amend the contents of this report as appropriate.

Recommendations and evaluations provided by Falcon are based on the information provided by HNTB. Modifications of our recommendations and evaluations may be required if there are changes to the design or location of the structure or roadway. Recommendations in this report are based on data obtained from soil borings. The nature and extent of variations between borings may not become evident until construction.

Our professional services for this project have been performed in accordance with generally accepted engineering practices. No other warranty, expressed or implied, is made. Falcon appreciates the opportunity to have provided you with geotechnical engineering services for this project. If you have any questions regarding this report, please contact our office.

Sincerely,

FALCON ENGINEERING, INC.

Jeremy R. Hamm, El Geotechnical Designer Mahalingam Bahiradhan (Bahi), PE Senior Geotechnical Project Manager

FOUNDATION RECOMMENDATIONS

WBS#		DESCRIPTION Bridge on NCRR mainline over Hopson
T.I.P. NO.	<u>U-4716</u>	Rd. between Davis Dr. (SR 1999) and S. Miami Blvd.
COUNTY	Durham	(NC 54)
STATION	3314+94 TO 3316+59	SFAL SALUTTULL

			SEAL SEAL
	INITIALS	DATE	三美。 036072
DESIGN	MB	09/14/12	E Same
CHECK	CN	09/14/12	
APPROVAL			SKINATURE

	STATION	FOUNDATION TYPE	DESIGN LOAD	MISCELLANEOUS DETAILS*
END BENT 1	-L- 3314+93.76	Cap on HP14x73 Steel Piles	80 tons/pile	Bottom of Cap Elev. = 398.2 ft Length of Pile = 30 ft Tip Elev. No Higher Than = 369.0 ft. Number of Vertical Piles = 10 Number of Battered Piles = 10 Pile Spacing = ±4 feet 6 inches
BENT 1 (Left of Centerline)	-L- 3315+24.26	60-inch Diameter	422 tons/pier	Bottom of Cap Elev. = 397.2 ft Point of Fixity Elev. = 360.0 ft. Tip Elev. No Higher Than = 350.0 ft. Number of Drilled Piers = 2 Pier Spacing = 11 feet 11 inches
BENT 1 (Right of Centerline)	*D* 3313 · 24.20	Drilled Piers	422 tons/prei	Bottom of Cap Elev. = 397.2 ft Point of Fixity Elev. = 364.0 ft. Tip Elev. No Higher Than = 354.0 ft. Number of Drilled Piers = 2 Pier Spacing = 11 feet 11 inches
BENT 2 (Left of Centerline)	-L- 3315+77.26	60-inch Diameter	422 tons/pier	Bottom of Cap Elev. = 397.1 ft Point of Fixity Elev. = 358.0 ft. Tip Elev. No Higher Than = 348.0 ft. Number of Drilled Piers = 2 Pier Spacing = 11 feet 11 inches
BENT 2 (Right of Centerline)	B 3313+77.20	Drilled Piers	422 tolls/pter	Bottom of Cap Elev. = 397.1 ft Point of Fixity Elev. = 364.0 ft. Tip Elev. No Higher Than = 354.0 ft. Number of Drilled Piers = 2 Pier Spacing = 11 feet 11 inches
BENT 3	-L- 3316+30.26	60-inch Diameter Drilled Piers	422 tons/pier	Bottom of Cap Elev. = 397.0 ft Point of Fixity Elev. = 363.0 ft. Tip Elev. No Higher Than = 353.0 ft. Number of Drilled Piers = 4 Pier Spacing = 11 feet 11 inches
END BENT 2	-L- 3316+58.76	Cap on HP14x73 Steel Piles	80 tons/pile	Bottom of Cap Elev. = 397.8 ft Length of Pile = 35 ft Tip Elev. No Higher Than = 368.0 ft. Number of Vertical Piles = 10

Number of Battered Piles = 10 Pile Spacing = ±4 feet 6 inches **TIP** # U-4716

County Durham

FOUNDATION RECOMMENDATION NOTES ON PLANS

- 1. Piles at End Bent 1 are designed for an allowable load of 80 Tons per pile
- 2. Drive piles at End Bent 1 to a required bearing capacity of 160 Tons per pile. The required bearing capacity is equal to the allowable bearing capacity with the minimum factor of safety of 2.0
- 3, Piles at End Bent 2 are designed for an allowable load of 80 Tons per pile
- 4, Drive piles at End Bent 2 to a required bearing capacity of 160 Tons per pile. The required bearing capacity is equal to the allowable bearing capacity with the minimum factor of safety of 2.0
- 5. Install piles at End Bent 1 to a tip elevation no higher than 369.0 feet
- 6. Install piles at End Bent 2 to a tip elevation no higher than 368.0 feet
- 7. Pile excavation is required to install piles at End Bent 1. Excavate holes at pile locations to elevation 369.0 feet. For pile excavation, see Section 450 of the Standard Specifications
- 8. Pile excavation is required to install piles at End Bent 2. Excavate holes at pile locations to elevation 368.0 feet. For pile excavation, see Section 450 of the Standard Specifications
- 9. Concrete or grout is required to fill holes for pile excavations at End Bent 1 and End Bent 2
- 10. For Piles, See Section 450 of the Standard Specification
- 11. Drilled piers at Bent No. 1 are designed for both skin friction and end bearing. Check field conditions for the required end bearing capacity of 20 TSF
- 12. Install drilled piers at Bent No. 1 (left of centerline) that extend to an elevation no higher than 350.0 ft, and satisfy the required end bearing capacity
- 13. Permanent steel casings may be required for drilled piers at Bent No.1 (left of centerline). If required, do not extend permanent casings below elevation 377 feet without prior approval from the engineer
- 14. Install drilled piers at Bent No. 1 (right of centerline) that extend to an elevation no higher than 354.0 ft, and satisfy the required end bearing capacity
- 15. Permanent steel casings may be required for drilled piers at Bent No.1 (right of centerline). If required, do not extend permanent casings below elevation 370 feet without prior approval from the engineer
- 16. Drilled piers at Bent No. 2 are designed for both skin friction and end bearing. Check field conditions for the required end bearing capacity of 20 TSF
- 17. Install drilled piers at Bent No. 2 (left of centerline) that extend to an elevation no higher than 348.0 ft, and satisfy the required tip resistance
- 18. Permanent steel casings may be required for drilled piers at Bent No. 2 (left of centerline). If required, do not extend permanent casings below elevation 378 feet without prior approval from the engineer
- 19. Install drilled piers at Bent No. 2 (right of centerline) that extend to an elevation no higher than 354.0 ft, and satisfy the required tip resistance
- 20. Permanent steel casings may be required for drilled piers at Bent No. 2 (right of centerline). If required, do not extend permanent casings below elevation 378 feet without prior approval from the engineer
- 21. Drilled piers at Bent No. 3 are designed for both skin friction and end bearing. Check field conditions for the required end bearing capacity of 20 TSF
- 22. Install drilled piers at Bent No. 3 that extend to an elevation no higher than 353.0 ft, and satisfy the required tip resistance
- 23. Permanent steel casings may be required for drilled piers at Bent No.3. If required, do not extend permanent casings below elevation 378 feet without prior approval from the engineer
- 24. SID inspections may be required for drilled piers. The Engineer will determine the need for SID inspections. For SID inspection, see Section 411 of the Standard Specifications
- 25. CSL tubes are required and CSL testing may be required for drilled piers. The Engineer will determine the need for CSL testing For Crosshole Sonic Logging, see Section 411 of the Standard Specifications
- 26. For drilled piers, see Section 411 of the Standard Specifications

FOUNDATION RECOMMENDATION COMMENTS

- 1. A waiting period of two weeks is required for the approach at End Bent 2
- 2. End slopes of 2:1(H:V) are OK with slope protection
- 3. Top of drilled pier elevation is assumed at 385 ft
- 4. Single pay item for drilled pier excavation is recommended
- 5. Pile spacing (center to center) for the end bent piles should be geater than 42 inches
- 6. Do not drive piles at End Bent 2 prior to the completion of waiting period
- 7. Do not drive piles at End Bent 1 prior to completing the approach fills
- 8. Minimum pile embedment of 10 feet is required at End Bent 1 and End Bent 2

DRILLED PIER PAY ITEM QUANTITIES

WBS ELEMENT_		DATE_	9/14/2012
TIP NO.	U-4716	DESIGNED BY_	MB
COUNTY	Durham	CHECKED BY	CN
STATION	3314+94 TO 3316+59		
_			
DESCRIPTION :	Bridge on NCRR mainline over Hops	on	
-	Rd. between Davis Dr. (SR 1999) and	S. Miami Blvd.	
NUMBER (OF BENTS WITH DRILLED PIERS	3	
NUMBE	ER OF DRILLED PIERS PER BENT	4	
NUMBER OF EN	ND BENTS WITH DRILLED PIERS		
NUMBER OF	DRILLED PIERS PER END BENT		

		DRILLED	PIER PAY	ITEMS	
	PERMANENT				
	STEEL CASING	60" DIA.			CROSSHOLE
	FOR 60" DIA.	DRILLED PIERS	SPT	SID	SONIC
BENT # OR	DRILLED PIER	NOT IN SOIL	TESTING	INSPECTION*	LOGGING
END BENT #	(yes/no/maybe)	(per linear ft/m)	(per each)	(per each)	(per each)
Bent 1	Maybe				
Bent 2	Maybe				
Bent 3	Maybe				
TOTALS		0	0	1	3

^{*} If SID inspections are required with a Note on Plans, show "SID Inspection" pay item per bent or end bent. If SID inspections may be required with a Note on Plans, show "SID Inspection" pay item as a total per structure only (do not show per bent or end bent).

Notes:

Blanks or "no" represent quantity of zero.

If permanent steel casing is required or may be required, Structure Design should calculate the pay item quantity, "Permanent Steel Casing for ____ Dia. Drilled Pier", as the difference between the top of drilled pier elevation or the top of permanent steel casing elevation (whichever is lower) and the elevation the permanent steel casing can not extend below as shown with a Note on Plans.

Structure Design should determine the pay item quantity, "___ Dia. Drilled Piers in Soil", based upon the total drilled pier length per bent or end bent minus the "___ Dia. Drilled Piers not in Soil" per bent or end bent shown in the table above.

Show "Crosshole Sonic Logging" pay item as a total only equal to the anticipated number of drilled piers to be CSL tested. Crosshole Sonic Logging (CSL) tests are required for most bridges with drilled piers. CSL tests and tubes may be omitted by not including the CSL provision in the Contract if, based on the subsurface conditions, there is a low risk of drilled pier construction problems.

PILE PAY ITEMS

(For 2012 Lettings and Later - Revised 4/18/11)

WBS ELEMENT		-	DATE	9/14/2012
TIP NO.	U-4716	_	DESIGNED BY	MB
COUNTY	Durham		CHECKED BY	CN
STATION	3314+94 TO 3316+59	-		
DESCRIPTION	Bridge on NCRR mainline over Hopson		_	
	Rd. between Davis Dr. (SR 1999) and S. M	iami Blvd.		
NUMB NUMBER OF E	OF BENTS WITH PILES ER OF PILES PER BENT END BENTS WITH PILES F PILES PER END BENT	- 🖊 "Pred	Only required for drilling for Piles" & e Excavation" Pay	

		r.	ILE PAY ITEM	I QUANTIT	TES		
	Steel Pile	Pipe Pile	Predrilling	Pile	Exca		PDA
Bent # or	Points	Plates	For Piles	Redrives	In	Not In	Testing
End Bent#	(yes/no)	yes/no/maybe	(per linear ft)	(per each)	Soil	Soil	(per each)
End Bent 1	no				510	50	
End Bent 2	no				415	200	
2 ΙΔΤΩΤ			0	0	025	250	0
	End Bent 1 End Bent 2	Bent # or Pile Points End Bent # (yes/no) End Bent 1 no	Bent # or Points Plates End Bent 1 no End Bent 2 no End Bent 2 loo End Bent 2 loo End Bent 2 loo End Bent 3 loo End Bent 4 loo End Bent 4 loo End Bent 5 loo End Bent 6 loo End Bent 7 loo End Bent 8 loo End Bent 9 loo End Bent 9 loo End Bent 1 loo End Bent 1 loo End Bent 2 loo End Bent 2 loo End Bent 1 loo End Bent 2 loo End Bent 1 loo End Bent 2 loo End Bent 1 loo End Bent 1 loo End Bent 1 loo End Bent 1 loo End Bent 2 loo End Bent 1 loo End Bent 2 loo End Bent 1 loo End Bent 1 loo End Bent 2 loo End Bent 2 loo End Bent 2 loo End Bent 1 loo End Bent 2 loo End Bent 3 loo End Bent 4 loo	Bent # or Points Plates For Piles End Bent 1 no	Bent # or End Bent # Pile Points (yes/no) Plates Plates (yes/no) For Piles (per linear ft) Redrives (per each) End Bent 1 no ————————————————————————————————————	Steel Pile Pipe Pile Predrilling Pile Pile (per lite) Bent # or End Bent # Points (yes/no) Plates For Piles Redrives In End Bent 1 no (per linear ft) (per each) Soil End Bent 2 no 415 End Bent 3 no 415 End Bent 4 no 415 End Bent 2 no 415 End Bent 3 no 415 End Bent 4 no 415 End Bent 5 no 415 End Bent 6 no 415 End Bent 7 no 415 End Bent 8 no 415 End Bent 9 no 415 End Bent 1 no 415 End Bent 2 no 415 End Bent 3 no 415 End Bent 4 no 415 End Bent 2 no 415 End Bent 3 no 415 End Bent 4 no 415 End Bent 5 no 415 </td <td>Steel Pile Pipe Pile Pipe Pile Predrilling Predrilling Pile Pile In Not In Soil End Bent # points Plates For Piles Redrives In Not In End Bent 1 no yes/no/maybe per linear ft) per each 510 50 End Bent 2 no 1 1 1 200 End Bent 2 no 1 1 1 1 1 End Bent 2 no 1 1 1 1 1 1 2 1</br></br></td>	Steel Pile Pipe Pile Pipe Pile Predrilling Predrilling Pile

Notes:

Blanks or "no" represent quantity of zero.

If steel pile points are required, calculate quantity of "Steel Pile Points" as equal to the number of steel piles.

If pipe pile plates are or may be required, calculate the quantity of "Pipe Pile Plates" as equal to the number of pipe piles.

If PDA testing may be required, show quantities of "PDA Testing" on the substructure plans as totals only. If PDA testing is required, show quantities of "PDA Testing" on the substructure plans for each bent or end bent.

FALCON ENGINEERING, INC. 1210 TRINITY ROAD, SUITE 110 RALEIGH, NC 27607

PHONE: 919.871.0800 FAX: 919.871.0803

SITE VICINITY MAP

PROPOSED RAILROAD ALIGNMENT AT HOPSON ROAD GRADE SEPARATION DURHAM COUNTY, NORTH CAROLINA

OCTOBER, 2011

PROJECT NO.: G10018.00

SHEET 1

GROUNDLINE PROFILE OF -L- TAKEN FROM ROADWAY PLANS PROVIDED BY HNTB NORTH CAROLINA, DATED SEPTEMBER 2011.

INFERRED STRATIGRAPHY IS DRAWN THROUGH THE BORINGS WITH BOTH PROJECTED ONTO THE CROSS SECTIONS.

BRIDGE SKEW: 85 DEGREES

FALCON ENGINEERING, IN 1210 TRINITY ROAD, SUITE 1 RALEIGH, NC 27607

PHONE: 919.871.0800 FAX: 919.871.0803

BRIDGE BENT CROSS SECTIONS

PROPOSED RAIL ALIGNMENT AT HOPSON ROAD GRADE CROSSING DURHAM COUNTY, NORTH CAROLINA

OCTOBER, 2011

PROJECT NO.: G10018.00

NCDOT GEOTECHNICAL ENGINEERING UNIT BORELOG REPORT

WBS G10018.00	TIP N/A	COUNTY DURHAM	GEOLOGIST T. EVANS	WBS G10018.00	TIP N/A COUN	TY DURHAM	GEOLOGIST T. EVANS
SITE DESCRIPTION HOPSON	I ROAD IMPROVEMENTS		GROUND WTR (ft)	SITE DESCRIPTION HOPSON R	ROAD IMPROVEMENTS		GROUND WTR (ft)
BORING NO. EB2-A	STATION 3316+50	OFFSET 27 ft LT	ALIGNMENT -L- 0 HR. Dry	BORING NO. EB2-B	STATION 3316+50	OFFSET N/A	ALIGNMENT -L- 0 HR. CI@15.8
COLLAR ELEV. 383.5 ft	TOTAL DEPTH 20.2 ft	NORTHING 774,112	EASTING 2,043,245 24 HR. 5.7	COLLAR ELEV. 385.0 ft	TOTAL DEPTH 23.5 ft	NORTHING 774,115	EASTING 2,043,219 24 HR . 6.4
DRILL RIG/HAMMER EFF./DATE SI			S. Augers HAMMER TYPE Automatic	DRILL RIG/HAMMER EFF./DATE SUM	//0093 DIEDRICH D-50 82% 07/22/2011	DRILL METHOD	H.S. Augers HAMMER TYPE Automatic
DRILLER W. DUGGINS	START DATE 04/26/11		SURFACE WATER DEPTH N/A	DRILLER W. DUGGINS	START DATE 04/26/11	COMP. DATE 04/26/11	SURFACE WATER DEPTH N/A
ELEV CHIPTON DEPTH CHIPTON CO (ft) DEPTH (ft		75 400 7 0	SOIL AND ROCK DESCRIPTION ELEV. (ft) DEPTH (ft)	ELEV (ft) DEPTH BLOW COUNTY (ft) (ft) 0.5ft 0.5ft (OT SAMP. L O NO. MOI G	
385			_	385 384.0 1.0 3 3	3 1		385.0 GROUND SURFACE 0.0 TRIASSIC RESIDUAL
382.5 1.0			383.5 GROUND SURFACE 0.0 383.1 TOPSOIL 0.4 TRIASSIC RESIDUAL	381.5 + 3.5 14 46 5			GRAY AND TAN, MED. STIFF, SANDY CLAY (A-6) 381.0 4.0 WEATHERED ROCK
	²	SS-8	- GRAY AND TAN, SOFT, SANDY CLAY (A-6) -	379.0 6.0 29 71/.4 376.5 + 8.5 400/.4		· · · · · · · · · · · · · · · · · · ·	WEATHERED ROCK PURPLE GRAY AND RED-BROWN, TRIASSIC SANDSTONE
380 380.0 3.5 31 64			379.5 4.0 WEATHERED ROCK RED-BROWN BLACK GRAY AND PURPLE,	375 100/.4		- 100/.4	
377.5 6.0 1007.2			TDIACCIC CANDOTONE	370 371.5 + 13.5 67 33/.2		100/.7	
375 375.0 8.5		100/.3	_	366.5 18.5 100/.3		· · · · · · · · · · · · · · · · · · ·	
100/.3			_	361.5 + 23.5 60/0		600	
			-	1 1 50/0		50/0 -	Boring Terminated by Auger Refusal at Elevation 361.5 ft
370 370.0 13.5			- _				-
100/.3		100/.3	-				
			• •				-
365 365.0 18.5			-				-
		60/0					- - -
363.3 20.2 60/0		60/0	Boring Terminated by Auger Refusal at Elevation 363.3 ft				
			-				-
			-				- - -
			- -				- - -
			-				-
			- -				-
+							
			-				-
			<u>-</u>				-
보 20 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1							<u>-</u>
363.3 - 2007.GDT GDT GDT GDT GDT GDT GDT GDT GDT GDT							-
							-

MDO	G100	18.00			TI	P N/A	con	NTY DURHA	\М			GEOLOGIST T. EVANS	
SITE	DESCR	IPTION	1 НО	PSON	ROAL) IMPROVE	EMENTS						GROUND WTR (1
BORI	NG NO.	B1-A	\		S	TATION 3	315+00	OFFSET	26 ft LT			ALIGNMENT -L-	0 HR. N/
COLL	AR ELE	EV. 38	35.0 ft		TO	OTAL DEPT	H 36.0 ft	NORTHIN	IG 774,2	260		EASTING 2,043,264	24 HR. 4.
RILL	RIGIHAI	MMER E	FF./DA	TE SU	JM0093	DIEDRICH D	-50 82% 07/22/2011		DRILL	METHO	D M	ud Rotary HAMI	MER TYPE Automatic
PRILI	LER W	. DUG	GINS		ST	TART DATE	04/29/11	COMP. D	ATE 04	/29/11	•	SURFACE WATER DEPTH	I/A
LEV	DRIVE ELEV	DEPTH	BLC	M CO	JNT		BLOWS PER FO	ОТ	SAMP.	V /	L	COLLAND DOOK DEG	COIDTION
(ft)	(ft)	(ft)	0.5ft	0.5ft	0.5ft	0 2	25 50	75 100	NO.	MO		SOIL AND ROCK DES	DEPTH
385							·					385.0 GROUND SURF	
-	384.0	1.0	4	3	5							NO SAMPLE RECOVER' SHOE	Y, GRAVEL IN
	_		4	, s	5	. •8							
		-										382.5 RESIDUAL	
	381.5	3.5 -	13	16	15		.			lacksquare		GRAY AND WHITE, HAR CLAY (A-6) W/ GI	
380	_	_					31		SS-2	18%		· ·	
	379.0	6.0			20/4								
		_	4	14	86/.4								
		_						100/.9	•			377.5 WEATHERED R	OCK
ŀ	376.5	8.5 -	36	64/.4								GRAY RED-BROWN A TRIASSIC SANDS	
375		_						100/.9	•			_	
		_											
		_											
		_											
-	_371.5	13.5	12	32	68/.4								
370	_	_						10040	<u>.</u>	ł		370.5 WEATHERED R	OCK 14
								100/.9	Ţ			RED-BROWN, TRIASSIC	
		_											
ŀ	366.5	18.5 -	100/.2					. 100/.2	•				
365													
												=	
]	_											
+	361.5	23.5	60/0					60/0	•			361.5 NON-CRYSTALLIN	F ROCK
360	1	-										RED-BROWN, MOD. WEA	THERED, MOD.
		-									闉	HARD TO HARD, MOD. (WIDELY FRACTURED 359.0 SANDSTONI	, TRIASSIC
	1	-										NON-CRYSTALLIN	E ROCK
	†	-										RED-BROWN, MOD. WEA HARD TO HARD, MOD. (
	†	-										WIDELY FRACTURED SANDSTON	, TRIASSIC
355	†	-										C, II DOT ON	_
- 55	+	-							11			254.0	
	†	-										NON-CRYSTALLINI	
	†	-				• • • •	• • • • • • •					RED-BROWN, MOD. WEA HARD TO HARD, MOD. (CLOSELY TO
	+	-										WIDELY FRACTURED, SANDSTONE	
350	†	-			-	• • • •	• • • • • • •						
350	+	-							1			_	
H						1			4-	<u> </u>		349.0 Boring Terminated at Eleva	36 ation 349.0 ft in
	+	-										NCR: Triassic San	
	+	-											
	+										ΙL		

SHEET 🗆

	<u>/ </u>	الا	CO	KE B	OK	INC	3 RE	PO	RT							
	G100				TIP				OUNT	ΥΙ	DURHAN		GEOLOGIST T. EVAN	IS		
SITE	DESCR	IPTION	І НО	PSON RO	DAD II	MPRO	VEMENT	S							GROUN	D WTR (ft)
BOR	ING NO.	B1-A			STA	TION	3315+00)		OF	FSET 2	6 ft LT	ALIGNMENT -L-		0 HR.	N/A
COL	LAR ELI	EV . 38	35.0 ft		TOT	AL DE	PTH 36.	.0 ft		NC	PRTHING	774,260	EASTING 2,043,264		24 HR.	4.1
DRILL	RIG/HAI	MMER E	FF.IDA	TE SUM	093 DII	EDRICH	I D-50 82%	07/22/2	2011			DRILL METHOD Mud	Rotary	HAMMI	R TYPE	Automatic
DRIL	LER V	I. DUG	GINS		STA	RT DA	TE 04/2	9/11		CC	MP. DAT	E 04/29/11	SURFACE WATER DEF	TH N/	4	
COR	E SIZE	NQ	-				N 12.5 f									
ELEV (ft)	RUN ELEV (ft)	DEPTH (ft)	RUN (ft)	DRILL RATE (Min/ft)	REC. (ft)	JN RQD (ft)	SAMP. NO.	STR REC. (ft) %	ATA RQD (ft) %	L O G	ELEV. (fl		ESCRIPTION AND REMARK	s		DEPTH (ft)
361.49	264.5	00.5											Begin Coring @ 23.5 ft			
360	361.5	23.5	2.5	1:54/1.0 1:45/1.0	(2.5) 100%	(2.5) 100%		(2.5) 100%	(2.5) 100%		361.5	RED-BROWN, MO	NON-CRYSTALLINE ROCK D. WEATHERED, MOD. HA IDELY FRACTURED, TRIAS	RD TO H		23.5
	359.0	26.0	5.0	0:26/0.5 1:23/1.0	(5.0)	(5.0)		(5.0)	(5.0)		359.0		NON ORVOTALLINE DOOL	,		26.0
	-	_	0.0	1:05/1.0	100%				100%		_	RED-BROWN, MO	NON-CRYSTALLINE ROCK D. WEATHERED, MOD. HAI IDELY FRACTURED, TRIAS	RD TO H).
	_			1:16/1.0												
355	_			1:18/1.0												
	354.0	31.0		1:18/1.0							354.0					31.0
	_	_	5.0	1:44/1.0	(4.8) 96%	(3.5) 70%		(4.8) 96%	(3.5) 70%				NON-CRYSTALLINE ROCK D. WEATHERED, MOD. HA		ARD, MOD	
	_	_		1:10/1.0									IDELY FRACTURED, TRIAS			
	_	_		1:46/1.0												
350			*	2:28/1.0												
	349.0	36.0		2:13/1.0							349.0					36.0
	_											Boring Terminated	at Elevation 349.0 ft in NCR:	Triassic	Sandstone	
	_	_														
	_	_														
		_														
	_															
	_	_														
		_		,												
		_														
		_									_	•				
	_	_														
		_														
		-														
		_														
		_														
		_														İ
		_														
		_														
		_									Ī					
		_														
		_														
		_									•					
											-					
		_														
	1	_														
	I	_														
	Ī										_					
											-					

BORING B-1A, BOX 1 OF 2, 23.5 FEET TO 33.0 FEET.

BORING B-1A, BOX 2 OF 2, 33.0 FEET TO 36.0 FEET.

FALCON ENGINEERING, INC. 1210 TRINITY ROAD, SUITE 110 RALEIGH, NC 27607 PHONE: 919.871.0800 FAX: 919.871.0803 ROCK CORE PHOTOGRAPHS

PROPOSED RAILROAD ALIGNMENT AT HOPSON ROAD GRADE SEPARATION DURHAM COUNTY, NORTH CAROLINA

FEBRUARY 2012

PROJECT NO.: G10018.00

NCDOT GEOTECHNICAL ENGINEERING UNIT

WBS G10018.00 TIP N/A COUNTY DURHAM **GEOLOGIST** T. EVANS SITE DESCRIPTION HOPSON ROAD IMPROVEMENTS GROUND WTR (ft) BORING NO. B1-B **STATION** 3315+05 OFFSET N/A ALIGNMENT -L-0 HR. N/A COLLAR ELEV. 385.0 ft TOTAL DEPTH 31.0 ft **NORTHING** 774,260 **EASTING** 2,043,237 24 HR. 3.3 DRILL RIG/HAMMER EFF./DATE SUM0093 DIEDRICH D-50 82% 07/22/2011 DRILL METHOD Mud Rotary HAMMER TYPE Automatic DRILLER W. DUGGINS **START DATE** 04/29/11 COMP. DATE 04/29/11 SURFACE WATER DEPTH N/A ELEV DRIVE DEPTH BLOW COUNT BLOWS PER FOOT SAMP. ELEV SOIL AND ROCK DESCRIPTION (ft) (ft) 0.5ft 0.5ft 0.5ft 25 100 NO. (ft) ELEV. (ft) GROUND SURFACE 385.0 TOPSOIL/GRAVEL 384.0 TRIASSIC RESIDUAL GRAY AND TAN, MED. STIFF, SILTY CLAY SS-3 24% (A-7-6) 381.5 TRIASSIC RESIDUAL GRAY PURPLE RED-BROWN AND BLACK. D MED. DENSE TO V. DENSE, SILTY SAND 380 379.0 40 39 22 D 376.5 T 8.5 27 20 D 375 371.5 13.5 17 42 58/.4 370 WEATHERED ROCK RED-BROWN, TRIASSIC SILTSTONE 366.5 T 18.5 60/0 60/0 NON-CRYSTALLINE ROCK RED-BROWN, MOD. WEATHERED, MOD. 365 HARD, MOD. CLOSELY FRACTURED, TRIASSIC SANDSTONE NON-CRYSTALLINE ROCK RED-BROWN, MOD. WEATHERED, MOD. HARD, WIDELY FRACTURED, TRIASSIC NC_DOT.GDT SANDSTONE NON-CRYSTALLINE ROCK RED-BROWN, MOD. WEATHERED, MOD. HARD, WIDELY FRACTURED, TRIASSIC SANDSTONE RS-1 355 Boring Terminated at Elevation 354.0 ft in NCR: Triassic Sandstone

SHEET 🗆

MRS	G100				TIP		3 RE				21121144		OTO COLOT T E)			
			. HO	PSON RO	L		\/C.B.4C.B.IT		OUNI	Y L	DURHAM		GEOLOGIST T. EVAI	NS	T	
	ING NO.			-SON KO	T		3315+05			105	COET \	114			-	ID WTR (ft)
	LAR ELI				 					┼	FSET N		ALIGNMENT -L-		0 HR.	N/A
				TE CUMO	<u> </u>		PTH 31		2011	NO		774,260	EASTING 2,043,237	T	24 HR.	3.3
				TE SUMO					2011	Τ		DRILL METHOD Mu	_			Automatic
	LER W		GINS				TE 04/2			CO	MP. DAT	E 04/29/11	SURFACE WATER DE	PTH N	'A	
	51.14	T	I	DRILL	RI	JN	N 12.5 f	STR	АТА	L						
ELEV (ft)	ELEV (ft)	DEPTH (ft)	RUN (ft)	RATE (Min/ft)	REC. (ft) %	RQD (ft) %	SAMP. NO.	REC. (ft)	RQD (ft) %	00	ELEV. (ft		ESCRIPTION AND REMARK	(S		DEPTH (ff
66.49	366.5	18.5	2.5	2:11/1.0	(2.3)	(2.3)		(2.3)	(2.3)		366.5		Begin Coring @ 18.5 ft NON-CRYSTALLINE ROC			40.5
365	-			1:31/1.0	92%	92%		92%	(2.3) 92%		_		DD. WEATHERED, MOD. HA CTURED, TRIASSIC SANDS	RD, MOD). CLOSEL	18.5 Y
	364.0	21.0	5.0	0:34/0.5 2:25/1.0	(5.0)	(5.0)		(5.0)	(5.0)		364.0		NON-CRYSTALLINE ROC	K		21.0
	-	ľ		1:55/1.0	100%	100%		100%	100%		-	RED-BROWN, MOD.	WEATHERED, MOD. HARD TRIASSIC SANDSTONE	,WIDELY	FRACTUR	RED,
	-			1:58/1.0							_					
360	-	t		2:23/1.0							-					
360	359.0	26.0		1:34/1.0												
	J.860	26.0	5.0	1:30/1.0	(4.8)	(3.6)		(4.8)	(3.6)		359.0		NON-CRYSTALLINE ROC			26.0
	-	-		1:17/1.0	96%	72%		96%	72%		-	RED-BROWN, MOD.	WEATHERED, MOD. HARD TRIASSIC SANDSTONE	,WIDELY	FRACTUR	ED,
	-	-		1:52/1.0			RS-1									
355	_			1:30/1.0							-					
	354.0	31.0		1:19/1.0							354.0					
		9119									334.0	Boring Terminated	d at Elevation 354.0 ft in NCR	: Triassic	Sandstone	31.0

BORING B-1B, BOX 1 OF 2, 18.5 FEET TO 26.0 FEET.

BORING B-1B, BOX 2 OF 2, 26.0 FEET TO 31.0 FEET.

FALCON ENGINEERING, INC. 1210 TRINITY ROAD, SUITE 110 RALEIGH, NC 27607

PHONE: 919.871.0800 FAX: 919.871.0803

ROCK CORE PHOTOGRAPHS

PROPOSED RAILROAD ALIGNMENT AT HOPSON ROAD GRADE SEPARATION DURHAM COUNTY, NORTH CAROLINA

FEBRUARY 2012

PROJECT NO.: G10018.00

NCDOT GEOTECHNICAL ENGINEERING UNIT

WBS	G1001					G REPORT		Y DURHAI	 И			GEOLOGIST T. EVANS		
			I 40	PSON		D IMPROVEMENTS	100111	. DOMIN	*1			OLOLOGIOI I. EVAINS	GROUND V	ACT D 10
	ING NO.			PSON				OFFORT	05.61.7			T		•
						TATION 3315+78		OFFSET				ALIGNMENT -L-	0 HR.	N/A
	LAR ELE				<u>i</u>	OTAL DEPTH 36.0 f		NORTHING				EASTING 2,043,261	24 HR.	3.0
DRILL	. RIG/HAI	MMER E	FF./DA	TE SI	JM0093	3 DIEDRICH D-50 82% 07	22/2011		DRILL	METHO	D Mı	ud Rotary HA	MMER TYPE Au	tomatic
DRIL	LER W	. DUG	GINS		S	TART DATE 04/28/1	1	COMP. DA	TE 04/	/28/11		SURFACE WATER DEPTH	N/A	
ELEV	DRIVE ELEV	DEPTH	BLC	OW CO	UNT	4	PER FOOT		SAMP.		L	SOIL AND ROCK [DESCRIPTION	
(ft)	(ft)	(ft)	0.5ft	0.5ft	0.5ft	0 25	5 0	75 100	NO.	MOI		ELEV. (ft)		DEPTH
385														
												_		
	-	_										383.0 GROUND SU	JRFACE	
	382.0	1.0)IL	
			2	2	2	1 			—	1		TRIASSIC RE GRAY AND TAN, SOFT,		3)
	-	-				4			SS-4	19%		W/ TRACE OF		-,
380	379.5	3.5								\blacksquare		-		
	•	-	10	10	90]						379.0 WEATHERE	DOCK	
	_	-		İ								ORANGE GRAY TAN A	ND RED-BROWN,	
	377.0	6.0	75	25/4				!				TRASSIC SAN	DSTONE	
		_	75	25/.1			1	100/.6	•					
375														
	374.5	8.5	75	25/.1								_		
	-	-	'	20111				100/.6						
	-	-												
	-	-				• • • • • • • •								
	-	_												
370	369.5	10.5										-		
	- 305.0	- 10.0	100/.4	1				100/.4	,					
		_												
365		-										205.0		
000	364.5	18.5	400/0									365.0 WEATHERE		1;
	-	_	100/.2					100/.2	"			RED-BROWN, TRIAS	SIC SILTSTONE	
	-	_				• • • • • • • •								
	-	-												
	-	_	:	:										
360	_													
ŀ	359.5	23.5	60/0				l	60/0	•		700	359.5 NON-CRYSTALI	INE ROCK	2:
		_										RED-BROWN, MOD. WE MOD. CLOSELY FRAC	EATHERED, HARD	,
		_										SANDSTO		26
	1	-							RS-2			NON-CRYSTALI	INE ROCK	
355	†	-				• • • • • • • •				1		RED-BROWN, MOD. WE MOD. CLOSELY FRAC	TURED, TRIASSIC	,
355	+	-						 				SANDST	ONE	
	+	-				• • • • • • • •					=			
	+	-												
	-	-										352.0		3.
]	_						!				NON-CRYSTALI RED-BROWN, MOD. WE	INE ROCK ATHERED, HARD	
350	T										I	MOD. CLOSELY FRACT	TURED, TRIASSIC	•
	1	-										_ SILTSTO	T VIC	
	-	•						• • • •						
	+	-				• • • • • • • • •								
	į		l				L	1 1	1	1 - 1	===	347.0		36
					l l					 		Boring Terminated at E	evation 347 0 ft in	

SHEET 🗆

	G100				TIP				TNUC	Υ	URHAN		**********	GEOLOGIST T. EVANS					
SITE	DESCR	IPTION	• но	PSON R	OAD II	MPRO'	VEMENT	S									GROUN	UND WTR (ft)	
BOR	ING NO	. B2-A	١		STA	TION	3315+78			OF	FSET 3	5 ft LT		T	ALIGNMENT -L-		0 HR.	N/A	
COL	LAR EL	EV . 38	33.0 ft		TOT	AL DE	PTH 36.	0 ft		NC	RTHING	774,182	2		EASTING 2,043,261		24 HR.	3.6	
DRILI	L RIG/HA	MMER E	FF./DA	TE SUM	093 DIE	EDRICH	I D-50 82%	07/22/2	2011			DRILL ME	THOD M	1ud	Rotary	HAMN	MER TYPE	Automatic	
DRIL	LER V	/. DUG	GINS		STAI	RT DA	TE 04/2	8/11		CC	MP. DA	E 04/28	3/11		SURFACE WATER DEP	TH N	/A		
COR	E SIZE	NQ			TOTA	AL RU	N 12.5 f												
LEV (ft)	RUN ELEV (ft)	DEPTH (ft)	RUN (ft)	DRILL RATE (Min/ft)	REC. (ft)	JN RQD (ft)	SAMP. NO.	STR REC. (ft) %	ATA RQD (ft) %	L O G	ELEV. (f)		DE	ESCRIPTION AND REMARK	S		DEPTH (
59.49												(Begin Coring @ 23.5 ft			DETTIL	
	359.5	23.5	2.5	1:50/1.0 1:39/1.0	(2.5) 100%	(2.5) 100%		(2.5) 100%	(2.5) 100%		_ 359.5	RE		N, N	NON-CRYSTALLINE ROCK MOD. WEATHERED, HARD, CTURED, TRIASSIC SANDS	MOD. C	CLOSELY	23.	
	357.0	26.0	5.0	0:22/0.5 1:11/1.0	(5.0)	(4.7)	RS-2	(5.0)	(4.7)		357.0				NON-CRYSTALLINE ROCK		·····	26	
		+		1:17/1.0	100%	94%		100%	94%		-	RE		N, M	MOD. WEATHERED, HARD, CTURED, TRIASSIC SANDS	MOD. C	CLOSELY		
355_	_	+		1:35/1.0							_			.,	770, 120, 770, 100, 100	10112			
		+		2:39/1.0							_								
	-	+		3:41/1.0							-								
	352.0	31.0	5.0	2:52/1.0	(4.9)	(4.7)		(4.9)	(4.7)		352.0				NON-CRYSTALLINE ROCK	,		31	
	-	-	0.0	1:37/1.0	98%	94%		98%	(4.7) 94%		_	REI		٧, ١٧	MOD. WEATHERED, HARD,	MOD. C	CLOSELY		
350		-											F	RAG	CTURED, TRIASSIC SILTST	ONE			
		-		2:07/1.0							_								
		<u> </u>		3:00/1.0							_								
	347.0	36.0		3:17/1.0							347.0							36	
		_									_	Borin	ng Termina	ated	d at Elevation 347.0 ft in NCF	l: Triass	ic Siltstone		
	_																		
											-								
	-	Ī									-								
	-	Ī									-								
	-	Ī									-								
	-	t									-								
	_	<u> </u>																	
	-	-									-								
	-	-									-								
	-	_									-								
	-	-									-								
	-	-																	
	-	-									-								
	-	-									-								
	_	_									-								
	_	_									-								
	_										-								
											•								
	-			,							-								
	-										•								
	-	-									-								
	_	 									-								
	-	-									-								
	_	-									-								
	-	-						l											
	-	_				j	1	l											
						1													

BORING B-2A, BOX 1 OF 2, 23.5 FEET TO 31.0 FEET.

BORING B-2A, BOX 2 OF 2, 31.0 FEET TO 36.0 FEET.

FALCON ENGINEERING, INC. 1210 TRINITY ROAD, SUITE 110 RALEIGH, NC 27607

PHONE: 919.871.0800 FAX: 919.871.0803

ROCK CORE PHOTOGRAPHS

PROPOSED RAILROAD ALIGNMENT AT HOPSON ROAD GRADE SEPARATION DURHAM COUNTY, NORTH CAROLINA

FEBRUARY 2012

PROJECT NO.: G10018.00

NCDOT GEOTECHNICAL ENGINEERING UNIT

VBS	G1001	18.00			TI	P N/A	COUNT	Y DURHAI	VI .			GEOLOGIST T. EVANS			
SITE	DESCR	IPTION	I HOI	PSON	ROA	DIMPROVEMENTS							GROUN	ID WTR (f	
3OR	ING NO.	B2-E	3		S	TATION 3315+84		OFFSET	N/A			ALIGNMENT -L-	0 HR.	N/	
COL	LAR ELE	EV. 38	34.5 ft		T	OTAL DEPTH 31.0 ft		NORTHING	774, 1	181		EASTING 2,043,226	24 HR.	2.	
RILI	RIG/HAI	MMER E	FF./DA	TE SI	JM0093	DIEDRICH D-50 82% 07/2	22/2011		DRILL I	METHO	DD M	ud Rotary HA	MMER TYPE	Automatic	
ORIL	LER W	. DUG	GINS		S	TART DATE 04/28/1	1	COMP. DA				SURFACE WATER DEPTH			
LEV	DRIVE	DEPTH	BLC	W CO	UNT	BLOWS F	ER FOOT		SAMP.	V/	L SOIL AND ROCK DESCRIPTION				
(ft)	ELEV (ft)	(ft)	0.5ft	0.5ft	0.5ft	0 25 5	0	75 100	NO.	МО	0 G	SOIL AND ROCK D	ESCRIPTION	DEPTH	
385															
								T	-	 	255	384.5 GROUND SU 384.0 TOPSO			
	_383.5	1.0	3	5	6							TRIASSIC RE	SIDUAL		
						1 11				М	//	GRAY AND TAN, MED. SAND (A-2-6), TF		EY	
	381.0	3.5					• • • •					•			
380			13	18	82/.3						//	380.0			
		_						100/.8				WEATHERED			
	378.5	6.0	100/.2					40010				, RED-BROWN AND G SANDSTO		C	
		-	1.007.2					100/.2							
	376.0	- 8.5									9				
375	370.0	0.0	100/.4			• • • • • • • •		100/.4				•			
310	1	-										_			
	-	_				• • • • • • • • •									
	1	-													
		-				• • • • • • • •									
170	371.0	13.5	15	15	45							371.0 TRIASSIC RE		1	
370	-	-					60		SS-5	13%		_ RED-BROWN AND BLA CLAY (A		_TY	
	+	-				• • • • • • • • •	\						-7		
	+	-				• • • • • • • •		1							
	+	-													
	366.0	18.5	60/0			• • • • • • • •		60/0				366.0 NON-CRYSTALL	NE ROCK	1:	
365	+	-										_ RED-BROWN, SEV. WEATHRED, SOFT TO N	O MOD. SEV		
	+	-										CLOSELY FRACTUR	ED, TRIASSIC		
	+	-										NON-CRYSTALL	NE ROCK		
	+	-										RED-BROWN, SEV. T WEATHRED, SOF			
	4	-										HARD, WIDELY FRACT! SILTSTO	JRED, TRIASS	SIC	
60	4	_										_	-		
	1	-										250 5			
	1	-							-			NON-CRYSTALL		20	
	4	_							RS-3			RED-BROWN, SEV. T WEATHRED, SOFT TO N	IED. HARD, M	OD.	
	1	-										CLOSELY FRACTUR SANDSTO		;	
55		-										355.4 NON-CRYSTALL		25	
	1											RED-BROWN, SEV. 1	O MOD. SEV.		
ŀ		-							 		Ħ	353.5 CLOSELY FRACTUR	ED, TRIASSIC		
	1											Boring Terminated at Ele	vation 353.5 f	iin	
	1										[NCR: Triassic S	siitstone		
	[_													
	T											-			
	Ť														
	Ī				ļ										
	Ť	•													
	+										Ιŀ				

SHEET 🗆

WBS	G100	18.00			TIP	N/A		c	OUNT	Υ	DURHAM		GEOLOGIS	T. EVAN	S		
SITE	DESCR	IPTION	но	PSON R	II DAC	ИPRO	VEMENT	·s								GROUN	ID WTR (f
BOR	ING NO	. B2-B	1		STA	TION	3315+84	ļ		OF	FSET N	/A	ALIGNMEN	NT -L-		0 HR.	N/
COL	LAR EL	EV . 38	34.5 ft		TOT	AL DE	PTH 31	.0 ft		NC	RTHING	774,181	EASTING	2,043,226		24 HR.	2.
DRILL	. RIG/HA	MMER E	FF.IDA	TE SUM	0093 DII	EDRICH	I D-50 82%	07/22/	2011	·		DRILL METHOD Mu	d Rotary		HAMM	ER TYPE	Automatic
DRIL	LER V	/. DUG	GINS		STA	RT DA	TE 04/2	8/11	**	CC	MP. DAT	E 04/29/11	SURFACE	WATER DEP	TH N	'A	
COR	E SIZE	NQ			TOT	AL RU	N 12.5 f	t						***************************************			
ELEV	RUN ELEV	DEPTH		DRILL RATE	REC.	JN RQD	SAMP.	REC.	RQD	L			ESCRIPTION	AND REMARK		778740281111	
(ft)	(ft)	(ft)	(ft)	(Min/ft)	(ft) %	(ft) %	NO.	(ft) %	(ft) %	Ğ	ELEV. (ft)			AND REMARK			DEPTH
65.99	366.0	18.5	2.5	2:17/1.0	(2.5)	(2.2)			(0.5)			**		ng @ 18.5 ft			***************************************
365	_	-	2.0	2:05/1.0	100%	(2.2) 88%			(2.5) 100%		366.0 —	RED-BROWN, SEV.	TO MOD. SEV	ALLINE ROCK . WEATHRED,	SOFT TO	D MED. HA	18 ARD,
	363.5	21.0		0:43/0.5					2.2		363.5	MOD. CLOS	SELY FRACTU	RED, TRIASSIC	C SILTS	TONE	
		ļ	5.0	2:09/1.0	(5.0)	(5.0)			(5.0)				NON-CRYST	ALLINE ROCK			21
	-	-		2:46/1.0	100%	100%			100% 5		_	RED-BROWN, SE HARD,WID	EV. TO MOD. 8 ELY FRACTUR	SEV. WEATHRI RED, TRIASSIC	ED, SOF SILTST	T TO MED ONE	
	-	-		2:41/1.0							-						
360	_	-		2:42/1.0							_						
	358.5	26.0		1:52/1.0							350 5						
	-	20.0	5.0	2:30/1.0	(5.0)	(4.7)	RS-3		(3.1)		358.5	DED	NON-CRYST	ALLINE ROCK			26
	-	-		1:14/1.0	100%	94%			100% 2.9			RED-BROWN, SE HARD, MOD. CL	V. TO MOD. SI .OSELY FRAC	EV. WEATHER TURED, TRIAS	ED, SOF SIC SAN	T TO MED IDSTONE).
	-	-		1:41/1.0													
355	_	-		3:04/1.0					(1.9)		355.4		NON-CRYST	ALLINE ROCK			25
	353.5	31.0		3:55/1.0					100% 1.8			RED-BROWN, SE HARD, MOD. C	V. TO MOD. SI LOSELY FRAC	EV. WEATHER	ED, SOF	T TO MED	
	-	01.0									353.5	Boring Terminate					3
	-	-									_						
	_																
	_																
	_	-									_						
	-	-			Ì						-						
	_										_						
	_																
											_						
	_	-									_						
	-	-									_						
	-	-									-						
	-	-									_						
	_										_						
								,									
-	-	-									-						
	-	-									-						
	_	-									_						
		_									_						
						ļ					_						
	_	-									-						
	-	-									-						
	4	-				l					_						
	1	-				l					-						
	+	-															
	+	-				ĺ					-						
	4	-				l					-						
		_									_						
						I											
1																	

BORING B-2B, BOX 1 OF 2, 16.5 FEET TO 25.6 FEET.

BORING B-2B, BOX 2 OF 2, 25.6 FEET TO 31.0 FEET.

ROCK CORE PHOTOGRAPHS

PROPOSED RAILROAD ALIGNMENT AT HOPSON ROAD GRADE SEPARATION DURHAM COUNTY, NORTH CAROLINA

FEBRUARY 2012

PROJECT NO.: G10018.00

NCDOT GEOTECHNICAL ENGINEERING UNIT BORELOG REPORT

2	YY	V	BO	REI	LO	G REPORT								
WBS	G1001	8.00		,	TI	TP N/A	COUNT	/ DURHAM	1			GEOLOGIST T. EVAN	S	
SITE	DESCR	IPTION	l HOI	PSON	ROAL	D IMPROVEMENTS							GROUI	ID WTR (ft)
BOR	ING NO.	B3-A			S	STATION 3316+07		OFFSET 2	28 ft LT			ALIGNMENT -L-	0 HR.	N/A
COLI	LAR ELE	V . 38	3.0 ft		Т	OTAL DEPTH 31.0 f		NORTHING	774,1	55		EASTING 2,043,251	24 HR.	3.5
DRILL	. RIG/HAI	MER E	FF./DA	TE SU	JM0093	3 DIEDRICH D-50 82% 07/	 22/2011		DRILL N	ИЕТНО	D M	ud Rotary	HAMMER TYPE	Automatic
DRIL	LER W	. DUG	GINS		S	START DATE 04/28/1	1	COMP. DAT				SURFACE WATER DEF	<u> </u>	
ELEV	DRIVE	DEPTH	BLC	W CO	JNT	BLOWS	PER FOOT		SAMP.	V /		COIL AND DO	OK DECODIDATION	
(ft)	ELEV (ft)	(ft)	0.5ft	0.5ft	0.5ft	0 25	50	75 100	NO.	МОІ	O G	ELEV. (ft)	CK DESCRIPTION	DEPTH (ff
385												_		
												_		
													D SURFACE	0.
	382.0	1.0											PSOIL C RESIDUAL	0.4
			3	4	5				SS-6	19%		GRAY AND TAN,	STIFF, SANDY CL A-7-6)	AY
380	_									┨		_	(1 0)	
	379.5	3.5	13	87/.3				+				379.0		4.
								100/.8					ERED ROCK DWN AND PURPLE	= ,
	377.0	6.0											SANDSTONE	•
			100/.2					100/.2	'			_		
375												-		
	374.5	8.5	100/.3					- 100/.3	,			_		
	-	-						1007.3				-		
	-											-		
	-											-		
370	_											-		
	369.5	13.5	100/.2					100/.2	,			_		
	-											-		
	-											-		
	-											-		
365	-											-		
-000	364.5	18.5	60/.1					60/.1	,	1		364.5	TALLINE ROCK	18.
	-							93/11		1		RED-BROWN, MOI		
	-												SANDSTONE	_D, 21.
	-	Ī											TALLINE ROCK	
360	-	Ī								Ì		HARD, MOD. CLO	OSELY FRACTURE SANDSTONE	
	_	Ī										TRIAGGIO	SANDSTONE	
	-	Ī										-		
	-											357.0		26.
	-	l l										NON-CRYS	TALLINE ROCK	
355	-	t											OSELY FRACTURE	
000	-	t							RS-4	1			SANDSTONE	00
	-	t						• • • •		1			TALLINE ROCK	29.
	-	t										_ RED-BROWN, SE\ HARD, CLOSELY F	RACTURED, TRIA	SSIC
					 				 	 		352.0 SIL ⁻ Boring Terminated	rSTONE at Elevation 352.0	31.0 ft in
	-	t											tstone and Sandsto	
		H										_		
	-	<u> </u>										-		
	-	L										-		
	-	<u> </u>										-		
	-	}										-		
			<u> </u>	L						1				

SHEET LL

WBS G10018.00 TIP N/A COUNTY DURHAM GEOLOGIST T. EVANS									ANS										
SITE	DESCR	IPTION	I HOI	PSON RO	DAD IN	/IPRO	VEMENT								L	 		GROUN	ID WTR (ft)
	NG NO.						3316+07			OF	FSET 2	28 ft LT		T	ALIGNMEN	IT -L-		0 HR.	N/A
COLL	AR ELI	EV . 38	3.0 ft		TOTA	AL DE	PTH 31.	.0 ft		-	RTHING				EASTING			24 HR.	3.5
DRILL	RIG/HAI	MMER E	FF./DA	TE SUMO	L				2011	1		·····	METHOD	Mud	L		·	<u> </u>	Automatic
	ER W						TE 04/2			CC	MP. DA				SURFACE	WATER D			71010711010
CORE	SIZE	NQ			·		N 12.5 f												
LEV	RUN	DEPTH	RUN	DRILL	1	JN	SAMP.	STR	ATA	L								····	······································
(ft)	ELEV (ft)	(ft)	(ft)	RATE (Min/ft)	(ft)	Z(ff)%	NO.	REC. (ft) %	RQD (ft) %	O G	ELEV. (f	t)		D	ESCRIPTION .	AND REMA	RKS		DEPTH (f
64.49															Begin Corin	ng @ 18.5	ft		
	364.5	18.5	2.5	4:06/1.0	(2.2) 88%	(2.2) 88%			(2.4) 96%		364.5	RE	D-BROW	N. MO	NON-CRYST D. WEATHER			D. CLOSEL	18. Y
	-	 		2:13/1.0					2.4		-				CTURED, TRI				
-	362.0	21.0	5.0	0:51/0.5 3:27/1.0	(5.0)	(4.7)			(5.0)		362.0				NON-CRYST	ALLINE RO	CK		21.
	-	+		2:00/1.0	100%				100% 4.8		-	RE	D-BROW		D. WEATHER			D. CLOSEL	Y
360	-	_		1:20/1.0							-				, , , , , ,	, , , , , , , , , , , , , , , , , , , ,			
	-	-		1:00/1.0							-								
		 		1:40/1.0							-								
-	357.0	26.0	5.0	1:17/1.0	(4.5)	(4.5)			(3.0)		357.0				NON-CRYST	ALLINE RO	CK		26
	-	<u> </u>		1:18/1.0	90%	90%			100%		-	RE	D-BROW		D. WEATHER			D. CLOSEL	Y
555		-		1:37/1.0			RS-4				_								
	-	<u> </u>		2:42/1.0				ļ	(1.0)		354.0	····			NON-CRYST	ALLINE RO	CK		29
	-	<u> </u>		2:30/1.0					50%		-	RE	D-BROW		D. WEATHER	ED, MOD. H	HARD, MOI	D. CLOSEL	Y
-	352.0	31.0									352.0	Bor	ing Termi		at Elevation 35			Siltstone a	31 nd
	-	+									-		J			dstone			
		-									L								
	-	}									-								
	-	-									-								
	-	-									-								
	-	+									-								
	-	+									L								
		-							İ		_								
		+									-								
	-	+									-								
	-	-									-								
	-	-									L								
		-									Ļ								
	-	1									_								
	-	1																	
	-	-									_								
		_							1		L								
											L								
	_																		
	_	L																	
	•	Ī									Ţ								
	•	Ť									<u> </u>								
	-	<u> </u>																	
	•	†									<u> </u>								
	-	+			1					1	 -								

BORING B-3A, BOX 1 OF 2, 18.5 FEET TO 26.0 FEET.

BORING B-3A, BOX 2 OF 2, 26 FEET TO 31.0 FEET.

FALCON ENGINEERING, INC.
1210 TRINITY ROAD, SUITE 110
RALEIGH, NC 27607
PHONE: 919.871.0800
FAX: 919.871.0803

ROCK CORE PHOTOGRAPHS

PROPOSED RAILROAD ALIGNMENT AT HOPSON ROAD GRADE SEPARATION DURHAM COUNTY, NORTH CAROLINA

FEBRUARY 2012

PROJECT NO.: G10018.00

NCDOT GEOTECHNICAL ENGINEERING UNIT

VBS G	31001	00.81			TI	IP N/A	COUNTY	Y DURHA	М			GEOLOGIST T. EVANS	
SITE DE	SCR	IPTION	I HOI	PSON	ROAL	D IMPROVEMENTS							GROUND WTR
BORING	NO.	B3-E	}		S	TATION 3316+11		OFFSET	N/A			ALIGNMENT -L-	0 HR. 1
COLLAF	RELE	V. 38	35.0 ft		TO	OTAL DEPTH 31.0 ft		NORTHIN	G 774,1	54		EASTING 2,043,223	24 HR.
RILL RIC	G/HAN	MER E	FF./DA	TE SI	JM0093	3 DIEDRICH D-50 82% 07/2	1 22/2011				D H		MER TYPE Automa
PRILLE						TART DATE 04/27/1		COMP. DA	<u> </u>			SURFACE WATER DEPTH N	****
	RIVE	DEPTH	BLC	W CO		T1	ER FOOT		SAMP.	1	1		
/ft\ EL	LEV (ft)	(ft)	0.5ft	0.5ft	0.5ft	0 25 5	0	75 100	NO.	МОІ	0 G	SOIL AND ROCK DES	CRIPTION DEPT
385												385.0 GROUND SURF	ACE
	84.0	1.0										384.5 TOPSOIL	
	U4.U		3	2	4	1 1 1 1 1 1 1 1 1 1				М		TRIASSIC RESIDENT TAN AND GRAY, MED. STI	
	1	-				●6				141		· (A-6)	
_38	81.5	3.5	11	25	38	1		• • • •				TRIASSIC RESI	
380	†	-	''	20	36	· · · · · · · ·	63.		SS-7	13%		. TAN AND GRAY, V. DEN SAND (A-2-6	
		-					· · · · ·	1				-	
_37	79.0	6.0	100/.3			• • • • • • • •		100/.3				379.0 WEATHERED R	
	†	-								V		RED-BROWN, TRIASSIC	
_37	76.5	- 8.5				• • • • • • • •						. WEATHERED R GARY AND RED-BROW	
	+	-	100/.3			• • • • • • • •		- · 100/.3				. SANDSTONI	
75	+	-										_	
	+	-											
	+	-				• • • • • • • •							
37	71.5	13.5											
		-	100/.3					- · 100/.3					
70	4	-									90	_	
	4	_									70		
	+	-											
	<u>,, </u>	- 40 5									1		
36	66.5	18.5 -	60/.1					60/.1				366.5 NON-CRYSTALLINI	
65	4	_										RED-BROWN, MOD. WEAT HARD, MOD. CLOSELY F	RACTURED,
	1	_										TRIASSIC SILTSTO	
	1	_					l					NON-CRYSTALLINI	EROCK
		_					1					RED-BROWN, MOD. WEAT HARD, MOD. CLOSELY	TO WIDELY
												FRACTURED, TRIASSIC S SANDSTONE LA	
60	T	•						• • • •					
	1	-										- 359.0	
	1	-										NON-CRYSTALLINI	ROCK
	†	-				• • • • • • • • • •	 	• • • •				RED-BROWN, MOD. WE HARD, MOD. CLOSELY F	RACTURED,
	†	-				• • • • • • • •			RS-5			TRIASSIC SILTS	FONE
EE	†	•							110-0				
55	+	-						-				-	
-								L	 	 		354.0 Boring Terminated at Eleva	ation 354.0 ft in
	+	•									-	NCR: Triassic Siltstone ar	
	+												
	+										-		
	4	-										_	
	+	•											
	- 4	-											
	1												
	1												
									1		ΙΓ		

SHEET \Box

	G100				TIP				OUNT	Y	DURHAM		GEOLOGIST T. E	VANS		
SITE	DESCR	IPTION	1 но	PSON RO	OAD II	MPRO'	VEMENT	S							GROUN	ID WTR (fi
BOR	NG NO.	B3-B			STA	TION	3316+11			OF	FSET N/	A	ALIGNMENT -L-		0 HR.	N/A
COLI	AR ELI	EV . 38	35.0 ft		TOTA	AL DE	PTH 31.	.0 ft		NO	RTHING	774,154	EASTING 2,043,2	223	24 HR.	7.
DRILL	RIGIHAI	MMER E	FF./DA	TE SUM	0093 DIE	EDRICH	I D-50 82%	07/22/	2011		[ORILL METHOD H.S	6. Augers	HAM	MER TYPE	Automatic
DRIL	LER W	/. DUG	GINS		STAI	RT DA	TE 04/2	7/11		CO	MP. DATE	E 04/27/11	SURFACE WATER	DEPTH I	N/A	
COR	E SIZE	NQ			TOT	AL RUI	N 12.5 f	t								*************
ELEV	RUN ELEV	DEPTH		DRILL RATE	REC.	JN RQD	SAMP.	REC.	ATA	ГО		F	DESCRIPTION AND REA	4A DIZO		
(ft)	t) (ft) (ft) (ft) (ft) (ft) (ft) (ft) (f										DEPTH (
66.49													Begin Coring @ 18			
365	300.0 _	10.3	2.5	2:10/1.0	(2.4) 96%	(2.4) 96%		(2.2) 88%	(2.2) 88%		_ 366.5		NON-CRYSTALLINE DD. WEATHERED, MOD). HARD, MC		18 Y
300	364.0	21.0		1:20/1.0								FRACTURED,	TRIASSIC SILTSTONE,	W/ CONGLO	DMERATE	
	304.0	21.0	5.0	0:37/0.5 1:33/1.0	(5.0)	(4.8)		(5.0)	(4.7)		364.0		NON-CRYSTALLINE	ROCK		21
	-	-		1:31/1.0	100%	96%		100%	94%		١ ١). WEATHERED, MOD. D, TRIASSIC SILTSTON			
	-	-		2:04/1.0							_					
en.	-	-		2:07/1.0							_					
360	359.0	26.0		1:46/1.0												
	309.0	20.0	5.0	1:47/1.0	(4.0)	(4.0)		(4.5)	(4.5)		359.0		NON-CRYSTALLINE		····	26
	-	-		1:40/1.0	80%	80%		90%	90%		-	RED-BROWN, N FR	/IOD. WEATHERED, V. ACTURED, TRIASSIC S	HARD, MOD ILTSTONE	. CLOSELY	
	-	-		1:25/1.0			RS-5				_					
355	-	-		3:05/1.0												
555	- 354.0	24.0		2:17/1.0							_					
	304.0	0 31.0 Solution 354.0 Boring Terminated at Elevation 354.0 ft in NCR: Triassic						: Siltstone ar	3 [.] 1d							
	-	_									_		Sandstone			
	<u>.</u>	_									-					
	-	_									-					
		_									_					
	-	-									-					
	-	-									-					
	-	_									-					
	-	-									-					
		-														
	-	-									_					
	-	_									_					
	_	-									_					
	_	_									_					
	_	_														
		_									_					
		_														
											_					
		_									-					
	1	-									-					
		-							,		_					
	1	-									-					
	1	-									-					
	†	-									-					
	+	-									-					
	+	-				l										
	+	-									-					
	+	-									-					
	4	-									-					

BORING B-3B, BOX 1 OF 2, 18.5 FEET TO 28.0 FEET.

BORING B-3B, BOX 2 OF 2, 28.0 FEET TO 31.0 FEET.

FALCON ENGINEERING, INC. 1210 TRINITY ROAD, SUITE 110 RALEIGH, NC 27607 PHONE: 919.871.0800 FAX: 919.871.0803 ROCK CORE PHOTOGRAPHS

PROPOSED RAILROAD ALIGNMENT AT HOPSON ROAD GRADE SEPARATION DURHAM COUNTY, NORTH CAROLINA

FEBRUARY 2012

PROJECT NO.: G10018.00

FALCON

1210 TRINITY ROAD, SUITE 110, RALEIGH, NC 27607

AASHTO SOIL CLASSIFICATION AND GRADATION SHEET

BRIDGE ON NCRR MAINLINE OVER HOPSON ROAD BETWEEN DAVIS DRIVE (SR 1999) AND S. MIAMI BLVD (NC 54)

TIP NO.: U-4716A

DURHAM COUNTY, NORTH CAROLINA FALCON ENGINEERING, INC. PROJECT NO: G10018.00

BORIN	IG#	SAMPLE#	TO'	TAL SAM	PLE	Atter	berg Limi	t Test	Natural Moisture	Organic	
AASH	TO Classifi	cation	PEI	RCENT PASS	SING		Results		Content	Content	
STATION#	OFFSET (FEET)	DEPTH (FEET)	#10	#40	#200	LL	PL	PI	%	%	
EB1	-B	SS-1			20						
	A-2-4		95	60	30	27	21	6	22.7	N/A	
		8.5 - 10.0									
B1-		SS-2									
	A-6		97	70	43	26	19	17	15.8	N/A	
		3.5 - 5.0									
B1-		SS-3									
A-7-6			99	87	64	60	17	43	24.4	N/A	
B2-	A	SS-4									
	A-6		100	100	63 85	34	16	18	19.0	N/A	
		3.5 - 5.0									
B2-		SS- 5						11	12.8		
	A-6		100			33	22			N/A	
		13.5 - 15									
B3-,		SS-6			l						
	A-7-6	1.0 - 2.5	100	83	55	50	19	31	19.3	N/A	
		1.0 - 2.5 SS-7									
В3-				-00	00	0.7	00	45	40.0	A17.A	
	A-2-6	3.5 - 5.0	97	60	26	37	22	15	12.8	N/A	
EB2-A SS-8											
	A-6		100	87	56	30	14	16	16.2	N/A	
	1.0										

LABORATORY SUMMARY SHEET FOR ROCK CORE SAMPLES

SHEET LL

PROJECT ID NO.: (U-4716A)

F.A. NO.:

COUNTY: DURHAM

BRIDGE ON NCRR MAINLINE OVER HOPSON ROAD BETWEEN DAVIS DRIVE (SR 1999) AND S. MIAMI BLVD (NC 54)

Sample #	Boring #	Depth (ft)	Rock Type	Geologic Map Unit	Run RQD	Length (ft)	Diameter (ft)	Unit Weight (PCF)	Unconfined Compressive Strength (PSI)	Young's Modulus (PSI)	Splitting Tensile Strength (PSI)
RS-1	B1-B	28.0 - 29.0	Triassic Sandstone	-	72%	0.33	0.17	148.2	6,652	1,027,826	-
RS-2	B2-A	26.0 - 26.9	Triassic Sandstone	-	94%	0.34	0.16	143.1	2,971	408,502	-
RS-3	B2-B	26.2 - 27.6	Triassic Sandstone	-	94%	0.35	0.16	146.3	4,810	757,058	-
RS-4	B-3A	28.0 - 28.8	Triassic Sandstone	-	90%	0.34	0.17	151.9	6,807	935,943	-
RS-5	В-3В	28.0 - 29.2	Triassic Siltstone	-	80%	0.35	0.17	145.5	5,966	1,056,493	-

PHOTO 1: LOOKING SOUTHWARD ALONG PROPOSED REALIGNMENT FROM EAST SIDE OF EXISTING TRACKS NEAR THE BEGINNING OF THE PROJECT.

PHOTO 2: TYPICAL WOODED AREA ALONG PROPOSED NEW ALIGNMENT. PHOTO TAKEN NEAR STATION 19+00 ON NORTH SIDE OF HOPSON ROAD.

FALCON ENGINEERING, INC. 1210 TRINITY ROAD, SUITE 110 RALEIGH, NC 27607

PHONE: 919.871.0800 FAX: 919.871.0803

SITE PHOTOGRAPHS

PROPOSED RAILROAD ALIGNMENT AT HOPSON ROAD GRADE SEPARATION DURHAM COUNTY, NORTH CAROLINA

FEBRUARY 2012

PROJECT NO.: G10018.00

PHOTO 3: LOOKING WEST ALONG HOPSON ROAD AT EXISTING AT-GRADE CROSSING. PHOTO TAKEN FROM NEAR PROPOSED GRADE SEPARATION LOCATION EAST OF EXISTING TRACKS.

PHOTO 4: LOOKING SOUTH FROM NEAR EXISTING AT-GRADE CROSSING TOWARDS PROPOSED RAILROAD ALIGNMENT.

1210 TRINITY ROAD, SUITE 110 RALEIGH, NC 27607

PHONE: 919.871.0800 FAX: 919.871.0803

SITE PHOTOGRAPHS

PROPOSED RAILROAD ALIGNMENT AT HOPSON ROAD GRADE SEPARATION DURHAM COUNTY, NORTH CAROLINA

FEBRUARY 2012

PROJECT NO.: G10018.00

SHEET 2 OF 2

BENT 1 (LT)

Lateral Deflection (in)

BENT 1 (LT)
Bending Moment (in-kips)

BENT 1 (LT)
Shear Force (kips)

BENT 1 (RT)
Lateral Deflection (in)

BENT 1 (RT) Shear Force (kips)

BENT 1 (RT)
Bending Moment (in-kips)

BENT 2 (LT)

Lateral Deflection (in)

BENT 2 (LT)
Bending Moment (in-kips)

BENT 2 (LT)
Shear Force (kips)

BENT 2 (RT)

Lateral Deflection (in)

BENT 2 (LT)
Bending Moment (in-kips)

BENT 2 (LT) Shear Force (kips)

BENT 3 (LT)
Lateral Deflection (in)

BENT 3 (LT)
Bending Moment (in-kips)

BENT 3 (LT) Shear Force (kips)

BENT 3 (RT)
Lateral Deflection (in)

BENT 3 (RT)
Bending Moment (in-kips)

BENT 3 (RT) Shear Force (kips)

