PROJECT SPECIAL PROVISIONS # **ROADWAY** # **CLEARING AND GRUBBING - METHOD III:** (4-6-06) (Rev. 1-17-12) 200 SP2 R02B Perform clearing on this project to the limits established by Method "III" shown on Standard Drawing No. 200.03 of the 2012 Roadway Standard Drawings. # **SHOULDER AND FILL SLOPE MATERIAL:** 5-21-02) 235, 56 SP2 R45 A #### **Description** Perform the required shoulder and slope construction for this project in accordance with the applicable requirements of Section 560 and Section 235 of the 2012 Standard Specifications. #### **Measurement and Payment** Where the material has been obtained from an authorized stockpile or from a borrow source and *Borrow Excavation* is not included in the contract, no direct payment will be made for this work, as the cost of this work will be part of the work being paid at the contract lump sum price for *Grading*. If *Borrow Excavation* is included in this contract and the material has been obtained from an authorized stockpile or from a borrow source, measurement and payment will be as provided in Section 230 of the 2012 Standard Specifications for Borrow Excavation. ### **SHOULDER RECONSTRUCTION PER SHOULDER MILE (DETOUR):** (1-18-00) (Rev. 8-21-12) 560 SP1 R07AR Rev. #### **Description** This work consists of reconstructing each shoulder (including median shoulders as applicable) in accordance with Standard Drawing No. 560.01 and 560.02 of the 2012 Roadway Standard Drawings except that the rate of slope and width will be as shown on typical section, or to the existing shoulder point, whichever is nearer, as long as the desired typical is achieved, and when completed, seeding and mulching. This work shall be performed immediately after the resurfacing operations are complete as directed by the Engineer. #### **Materials** The Contractor shall use Aggregate Shoulder Borrow (ASB) which meets the following gradation on all maps as directed by the Engineer. | <u>Sieve</u> | Percent Passing | |--------------|-----------------| | 1 1/2" | 100 | | 1/2" | 55 - 95 | | #4 | 35 - 74 | #### **Construction Methods** Obtain material from within the project limits or approved borrow source. Material shall be compacted to the satisfaction of the Engineer. Any excess material generated by the shoulder reconstruction shall be disposed of by the Contractor in an approved disposal site. # **Measurement and Payment** Shoulder Reconstruction will be measured and paid as the actual number of miles of shoulders that have been reconstructed. Measurement will be made along the surface of each shoulder to the nearest 0.01 of a mile. Such price will include disposing of any excess material in an approved disposal site, and for all labor, tools, equipment, and incidentals necessary to complete the work. # Aggregate Shoulder Borrow will be measured and paid at the contract unit price per ton. Incidental Stone Base will be measured and paid as provided in Article 545-6 of the 2012 Standard Specifications. If ASB is used for Incidental Stone Base, payment will be made for **Aggregate Shoulder Borrow** as referenced above. Seeding and Mulching will be measured and paid as shown elsewhere in the contract documents. Payment will be made under: Pay Item Shoulder Reconstruction Aggregate Shoulder Borrow Pay Unit Shoulder Mile Ton ### **GEOTEXTILE FOR EMBANKMENT STABILIZATION** (SPECIAL) #### **DESCRIPTION:** This work consists of furnishing and installing synthetic geotextile for stabilizing embankment in accordance with this provision or as directed by the Engineer. The work shall include maintaining the geotextile in the required configuration until completion and acceptance of overlying work items. The geotextile shall be placed at the locations shown in the plans or as directed by the Engineer. # **MATERIAL:** The geotextile for embankment stabilization shall be made of high tenacity polypropylene in the machine direction with a plain or straight-warp weave pattern and polyester or polypropylene in the cross machine direction or approved equal. The geotextile shall be composed of strong rot-proof synthetic fibers formed into a geotextile of the woven type. The geotextile shall be free of any treatment or coating which might significantly alter its physical properties after installation. The geotextile shall contain stabilizers and/or inhibitors to make the filaments resistant to deterioration resulting from ultraviolet or heat exposure. The geotextile shall be a pervious sheet of synthetic fibers oriented into a stable network so that the fibers retain their relative positions with respect to each other. The edges of the geotextile shall be finished to prevent the outer yarn from pulling away from the geotextile. The geotextile shall be free of defects or flaws which significantly affect its physical and/or filtering properties. Sheets of geotextile shall be sewn together with a seam that furnishes the required minimum strengths. The seam thread shall be made of synthetic fibers which are resistant to deterioration, as are the geotextile fibers. Lamination of geotextile sheets to produce the physical requirements of a geotextile layer will not be accepted. During all periods of shipment and storage, the geotextile shall be wrapped in a heavy duty protective covering to protect the geotextile from direct sunlight ultraviolet rays, mud, dust, dirt, and debris. The geotextile shall not be exposed to temperatures greater than 140°F. After the protective wrapping has been removed, the geotextile shall not be left uncovered under any circumstances for longer than one (1) week. The geotextile shall meet the following physical requirements: All values represent minimum average roll values (any roll in a lot should meet or exceed the minimum values in this table). | Geotextile Property | Test Method | Requirements | |---|----------------------------------|-------------------------------| | Min. Puncture Strength | ASTM D-4833 | 100 lbs | | Min. Bursting Strength | ASTM D-3786 | 600 psi | | Trapezoid Tear | ASTM D-4533 | 100 lbs | | AOS, US STD
Sieve | ASTM D-4751 | 20-70 | | Seams, Strength Cross
Machine Direction Only | ASTM D-4884 | 500 lbs/ft | | Ultraviolet (UV) % Strength Retained | ASTM D-4355 | 30% | | Permeability | ASTM D-4491 | 0.008 in/sec. | | Tensile Strength at 5% Strain | ASTM D-4595
(Wide Strip Test) | Machine Direction 1100 lbs/ft | | Ultimate
Tensile Strength | ASTM D-4595
(Wide Strip Test) | Machine Direction 2000 lbs/ft | The Contractor shall furnish certified test reports by an approved independent testing laboratory with each shipment of material attesting that the geotextile meets the requirements of this provision; however, the material shall be subject to inspection, test, or rejection by the Engineer at any time. The Contractor shall furnish the Engineer certified test reports by an approved independent testing laboratory attesting that the sewn seam provides the required strength. # Select Granular Material, Class III The Contractor shall furnish and place three (3) feet select granular material over the embankment stabilization geotextile as shown in the plan or directed by the Engineer. The select granular material must meet the requirements of the select granular material special provision. ### **CONSTRUCTION METHODS:** The geotextile for embankment stabilization shall be placed at locations shown in the plans or as directed by the Engineer. The locations should be cleared and free of obstructions, debris and pockets. Stumps shall be cut smooth at the ground elevation with the root system left intact. At the time of installation, the geotextile shall be rejected if it has defects, rips, holes, flaws, deterioration or damage incurred during manufacture, transportation, or storage. The geotextile for embankment stabilization shall be placed with the machine directions as shown on the plans or as directed by the engineer. Geotextile shall be laid smooth and free from tension, stress fold, wrinkles or creases. All joints parallel to the machine direction shall be sewn by an approved method to develop the required seam strength. All sewn seams shall be placed facing upward to allow for inspection. No seams will be allowed perpendicular to the machine direction. End dumping fill directly on the geotextile is not permitted. Spreading and compaction of embankment soil with low ground pressure (<4 psi) equipment is required until 2 feet of fill has been placed. Any geotextile which is damaged as a result of installation or which is left uncovered for longer than one week after placement shall be replaced at no additional cost to the Department. ### **METHOD OF MEASUREMENT** The quantity of geotextile to be paid for will be the number of square yards of "Geotextile for Embankment Stabilization" measured along the surface of the ground which has been acceptably placed. No separate measurement will be made of overlapping geotextile. # **BASIS OF PAYMENT:** The quantity of geotextile, measured as provided above, will be paid for at the contract unit price per square yard for "Geotextile for Embankment Stabilization". Such price and payment will be full compensation for furnishing, hauling, placing, compaction, and all incidentals necessary to complete the work. Pay Item: Geotextile for Embankment Stabilization...... Square Yard #### **SELECT GRANULAR MATERIAL:** (3-16-10) (Rev. 1-17-12) 265 SP2 R80 Revise the 2012 Standard Specifications as follows: # Page 2-28, Article 265-2 MATERIALS, add the following: Use only Class III select material for select granular material. Page 2-28, Article 265-4 MEASUREMENT AND PAYMENT, lines 13-30, replace all occurrences of Select Granular Material with Select Granular Material, Class III. Page 2-28, Article 265-4 MEASUREMENT AND PAYMENT, after line 31, delete the pay item and replace with the following: Payment will be made under: Pay ItemPay UnitSelect Granular Material, Class IIICubic Yard # **BRIDGE APPROACH FILLS:** (10-19-10) (Rev. 1-17-12) 422 SP4 R02 # **Description** Bridge approach fills include bridge approach fills for sub regional tier bridges and reinforced bridge approach fills. Construct bridge approach fills in accordance with the contract and Standard Drawing No. 422.10 or 422.11 of the 2012 Roadway Standard Drawings. Define "geosynthetics" as geotextiles or geomembranes. #### **Materials** Refer to Division 10 of the 2012 Standard Specifications. | Item | Section | |-------------------------------|-----------| | Anchor Pins | 1056-2 | | Geotextiles | 1056 | | Portland Cement Concrete | 1000 | | Select Material | 1016 | | Subsurface Drainage Materials | 1044 | | Wire Staples | 1060-8(D) | For bridge approach fills for sub regional tier bridges, provide Type 1 geotextile for filtration geotextiles. For reinforced bridge approach fills, provide Type 5 geotextile for geotextile reinforcement and Type 1 geotextile and No. 78M stone for drains. Use Class B concrete for concrete pads. Use Class III or V select material for reinforced bridge approach fills and only Class V select material (standard size No. 78M stone) for bridge approach fills for sub regional tier bridges. Provide PVC pipes, fittings and outlet pipes for subsurface drainage materials. For drains and PVC pipes behind end bents, use pipes with perforations that meet AASHTO M 278. Use PVC, HDPE or linear low density polyethylene (LLDPE) geomembranes for reinforced bridge approach fills. For PVC geomembranes, provide grade PVC30 geomembranes that meet ASTM D7176. For HDPE and LLDPE geomembranes, use geomembranes with a nominal thickness of at least 30 mils that meet Geosynthetic Research Institute Standard Specifications GM13 or GM17, respectively. Handle and store geomembranes in accordance with Article 1056-2 of the 2012 Standard Specifications. Provide material certifications for geomembranes in accordance with Article 1056-3 of the 2012 Standard Specifications. #### **Construction Methods** Excavate as necessary for bridge approach fills in accordance with the contract. Notify the Engineer when foundation excavation is complete. Do not place geomembranes or filtration geotextiles until excavation dimensions and foundation material are approved. Attach geomembranes and filtration geotextiles to end bent cap back and wing walls with adhesives, tapes or other approved methods. Glue or weld geomembrane seams to prevent leakage. For reinforced bridge approach fills, place geotextile reinforcement within 3" of locations shown in Standard Drawing No. 422.10 of the 2012 Roadway Standard Drawings and in slight tension free of kinks, folds, wrinkles or creases. Install geotextile reinforcement with the orientation, dimensions and number of layers shown in Standard Drawing No. 422.10 of the 2012 Roadway Standard Drawings. Place first layer of geotextile reinforcement directly on geomembranes with no void or material in between. Install geotextile reinforcement with the machine direction (MD) parallel to the roadway centerline. The MD is the direction of the length or long dimension of the geotextile roll. Do not splice or overlap geotextile reinforcement in the MD so seams are perpendicular to the roadway centerline. Wrap geotextile reinforcement at end bent cap back and wing walls as shown in Standard Drawing No. 422.10 of the 2012 Roadway Standard Drawings and directed by the Engineer. Extend geotextile reinforcement at least 4 ft back behind end bent cap back and wing walls into select material. Overlap adjacent geotextiles at least 18" with seams oriented parallel to the roadway centerline. Hold geotextiles in place with wire staples or anchor pins as needed. Contact the Engineer when existing or future obstructions such as foundations, pavements, pipes, inlets or utilities will interfere with geosynthetics. For reinforced bridge approach fills, construct one foot square drains consisting of 4" diameter continuous perforated PVC pipes surrounded by No. 78M stone wrapped in Type 1 geotextiles. Install drains in accordance with Standard Drawing No. 422.10 of the 2012 Roadway Standard Drawings. For bridge approach fills for sub regional tier bridges, install 4" diameter continuous perforated PVC drain pipes in accordance with Standard Drawing No. 422.11 of the 2012 Roadway Standard Drawings. Use solvent cement to connect PVC pipes so joints do not leak. Connect perforated pipes to outlet pipes just behind wing walls. Provide drain pipes and drains with positive drainage towards outlets. Place pipe sleeves in or under wing walls for outlet pipes so positive drainage is maintained. Use sleeves that can withstand wing wall loads. Place select material in 8" to 10" thick lifts. Use only hand operated compaction equipment to compact select material for bridge approach fills. Compact Class III select material in accordance with Subarticle 235-3(C) of the 2012 Standard Specifications. Compact No. 78M stone with a vibratory compactor to the satisfaction of the Engineer. Do not displace or damage geosynthetics, drain pipes or drains when placing and compacting select material. End dumping directly on geosynthetics is not permitted. Do not operate heavy equipment on geosynthetics, drain pipes or drains until they are covered with at least 8" of select material. Replace any damaged geosynthetics, drain pipes or drains to the satisfaction of the Engineer. Cover open ends of outlet pipes with rodent screens as shown in Standard Drawing No. 815.03 of the 2012 Roadway Standard Drawings. Connect ends of outlet pipes to concrete pads or existing drainage structures as directed by the Engineer. Construct concrete pads with an Ordinary surface finish that meets Subarticle 825-6(B) of the 2012 Standard Specifications. #### **Measurement and Payment** Reinforced Bridge Approach Fill, Station Bridge Approach Fill - Sub Regional Tier, Station Lump Sum Lump Sum # **ASPHALT PAVEMENTS - SUPERPAVE:** 19-12) SP6 R01 Revise the 2012 Standard Specifications as follows: Page 6-3, Article 605-7 APPLICATION RATES AND TEMPERATURES, replace this article, including Table 601-1, with the following: Apply tack coat uniformly across the existing surface at target application rates shown in Table 605-1. # TABLE 605-1 APPLICATION RATES FOR TACK COAT | Existing Suuface | Target Rate (gal/sy) | |----------------------------|----------------------| | Existing Surface | Emulsified Asphalt | | New Asphalt | 0.04 ± 0.01 | | Oxidized or Milled Asphalt | 0.06 ± 0.01 | | Concrete | 0.08 ± 0.01 | Apply tack coat at a temperature within the ranges shown in Table 605-2. Tack coat shall not be overheated during storage, transport or at application. # TABLE 605-2 APPLICATION TEMPERATURE FOR TACK COAT | Asphalt Material | Temperature Range | |----------------------------------|-------------------| | Asphalt Binder, Grade PG 64-22 | 350 - 400°F | | Emulsified Asphalt, Grade RS-1H | 130 - 160°F | | Emulsified Asphalt, Grade CRS-1 | 130 - 160°F | | Emulsified Asphalt, Grade CRS-1H | 130 - 160°F | | Emulsified Asphalt, Grade HFMS-1 | 130 - 160°F | | Emulsified Asphalt, Grade CRS-2 | 130 - 160°F | Page 6-18, Article 610-1 DESCRIPTION, lines 40-41, delete the last sentence of the last paragraph. Page 6-19, Subarticle 610-3(A) Mix Design-General, line 5, add the following as the first paragraph: Warm mix asphalt (WMA) is allowed for use at the Contractor's option in accordance with the NCDOT Approved Products List for WMA Technologies available at: http://www.ncdot.org/doh/operations/materials/pdf/wma.pdf. # ASPHALT BINDER CONTENT OF ASPHALT PLANT MIXES: (11-21-00) (Rev. 7-17-12) 609 SP6 R15 The approximate asphalt binder content of the asphalt concrete plant mixtures used on this project will be as follows: | Asphalt Concrete Base Course | Type B 25.0 | 4.4% | |--------------------------------------|--------------|------| | Asphalt Concrete Intermediate Course | Type I 19.0 | 4.8% | | Asphalt Concrete Surface Course | Type S 4.75A | 6.8% | | Asphalt Concrete Surface Course | Type SA-1 | 6.8% | | Asphalt Concrete Surface Course | Type SF 9.5A | 6.7% | | Asphalt Concrete Surface Course | Type S 9.5 | 6.0% | | Asphalt Concrete Surface Course | Type S 12.5 | 5.6% | The actual asphalt binder content will be established during construction by the Engineer within the limits established in the 2012 Standard Specifications. # **PRICE ADJUSTMENT - ASPHALT BINDER FOR PLANT MIX:** (11-21-00) 620 SP6 R25 Price adjustments for asphalt binder for plant mix will be made in accordance with Section 620 of the 2012 Standard Specifications. The base price index for asphalt binder for plant mix is \$ 568.67 per ton. This base price index represents an average of F.O.B. selling prices of asphalt binder at supplier's terminals on **September 1, 2012**. #### **FINAL SURFACE TESTING NOT REQUIRED:** (5-18-04) (Rev. 5-15-12) 610 SP6 R45 Final surface testing is not required on this project. #### **GUARDRAIL ANCHOR UNITS, TYPE 350:** (4-20-04) (Rev. 8-16-11) 862 SP8 R65 # **Description** Furnish and install guardrail anchor units in accordance with the details in the plans, the applicable requirements of Section 862 of the 2012 Standard Specifications, and at locations shown in the plans. #### **Materials** The Contractor may at his option, furnish any one of the guardrail anchor units or approved equal. Guardrail anchor unit (ET-Plus) as manufactured by: Trinity Industries, Inc. 2525 N. Stemmons Freeway Dallas, Texas 75207 Telephone: 800-644-7976 The guardrail anchor unit (SKT 350) as manufactured by: Road Systems, Inc. 3616 Old Howard County Airport Big Spring, Texas 79720 Telephone: 915-263-2435 Prior to installation the Contractor shall submit to the Engineer: - (A) FHWA acceptance letter for each guardrail anchor unit certifying it meets the requirements of NCHRP Report 350, Test Level 3, in accordance with Article 106-2 of the 2012 Standard Specifications. - (B) Certified working drawings and assembling instructions from the manufacturer for each guardrail anchor unit in accordance with Article 105-2 of the 2012 Standard Specifications. No modifications shall be made to the guardrail anchor unit without the express written permission from the manufacturer. Perform installation in accordance with the details in the plans, and details and assembling instructions furnished by the manufacturer. #### **Construction Methods** Guardrail end delineation is required on all approach and trailing end sections for both temporary and permanent installations. Guardrail end delineation consists of yellow reflective sheeting applied to the entire end section of the guardrail in accordance with Article 1088-3 of the 2012 Standard Specifications and is incidental to the cost of the guardrail anchor unit. #### Measurement and Payment Measurement and payment will be made in accordance with Article 862-6 of the 2012 Standard Specifications. Payment will be made under: Pay Item Guardrail Anchor Units, Type 350 Pay Unit Each #### PREFORMED SCOUR HOLE WITH LEVEL SPREADER APRON: (10-15-02) (Rev. 10-20-09) 410 SP8 R105 ## **Description** Construct and maintain preformed scour holes with spreader aprons at the locations shown on the plans and in accordance with the details in the plans. Work includes excavation, shaping and maintaining the hole and apron, furnishing and placing filter fabric, rip rap (class as specified in the plans) and permanent soil reinforcement matting. #### **Materials** | Item | Section | |---------------|---------| | Plain Rip Rap | 1042 | | Filter Fabric | 1056 | The permanent soil reinforcement matting shall be permanent erosion control reinforcement mat and shall be constructed of synthetic or a combination of coconut and synthetic fibers evenly distributed throughout the mat between a bottom UV stabilized netting and a heavy duty UV stabilized top net. The matting shall be stitched together with UV stabilized polypropylene thread to form a permanent three dimensional structure. The mat shall have the following minimum physical properties: | Property | Test Method | Value Unit | |--|---------------------------|-------------------------| | Light Penetration | ASTM D6567 | 9 % | | Thickness | ASTM D6525 | 0.40 in | | Mass Per Unit Area | ASTM D6566 | 0.55 lb/sy | | Tensile Strength | ASTM D6818 | 385 lb/ft | | Elongation (Maximum) | ASTM D6818 | 49 % | | Resiliency | ASTM D1777 | >70 % | | UV Stability * | ASTM 4355 | ≥80 % | | Porosity (Permanent Net) | ECTC Guidelines | ≥85 % | | Maximum Permissible Shear Stress (Vegetated) | Performance Bench
Test | ≥8.0 lb/ft ² | | Maximum Allowable Velocity (Vegetated) | Performance Bench
Test | ≥16.0 ft/s | ^{*}ASTM D1682 Tensile Strength and % strength retention of material after 1,000 hours of exposure. Submit a certification (Type 1, 2, or 3) from the manufacturer showing: - (A) The chemical and physical properties of the mat used, and - (B) Conformance of the mat with this specification. #### **Construction Methods** All areas to be protected with the mat shall be brought to final grade and seeded in accordance with Section 1660 of the 2012 Standard Specifications. The surface of the soil shall be smooth, firm, stable and free of rocks, clods, roots or other obstructions that would prevent the mat from lying in direct contact with the soil surface. Areas where the mat is to be placed will not need to be mulched. # Measurement and Payment Preformed Scour Holes with Level Spreader Aprons will be measured and paid as the actual number incorporated into the completed and accepted work. Such price and payment will be full compensation for all work covered by this provision. Payment will be made under: Pay ItemPay UnitPreformed Scour Hole with Level Spreader ApronsEach # MATERIALS: (2-21-12) (Rev. 9-18-12) 1005, 1081, 1092 SP10 R01 Revise the 2012 Standard Specifications as follows: Page 10-5, Table 1000-1, REQUIREMENTS FOR CONCRETE, replace with the following: | | | | REQ | TA
UIREME | BLE 1000
NTS FOR | | CRETE | | | | | | |-------------------------------------|---|-----------------------|---------------------------|-----------------------|-----------------------------------|---|----------------------|--------------|--------------|---------------|--------------|--| | | | Maxir | num Wat | er-Cement | Ratio | | sistency
. Slump | - | Cemen | t Conten | t | | | Class of | Min. Comp
Strength
at 28 days | | Air-Entrained
Concrete | | Non Air-
Entrained
Concrete | | Non-
Vibrated | Vib | rated | Non- Vibrated | | | | • 0 | Mir
St | Rounded
Aggre-gate | Angular
Aggre-
gate | Rounded
Aggre-gate | Angular
Aggre-
gate | Vibrated | N di | Min. | Max. | Min. | Max. | | | Units | psi | | | | | inch | inch | lb/cy | lb/cy | lb/cy | lb/cy | | | AA | 4,500 | 0.381 | 0.426 | - | - | 3.5 | - | 639 | 715 | - | - | | | AA Slip
Form | 4,500 | 0.381 | 0.426 | - | - | 1.5 | | 639 | 715 | - | - | | | Drilled Pier | 4,500 | - | - | 0.450 | 0.450 | - | 5-7 dry
: 7-9 wet | - | - | 640 | 800 | | | Α | 3,000 | 0.488 | 0.532 | 0.550 | 0.594 | 3.5 | 4 | 564 | · - | 602 | - | | | В | 2,500 | 0.488 | 0.567 | 0.559 | 0.630 | 2.5 | 4 | 508 | - | 545 | - | | | B Slip
Formed | 2,500 | 0.488 | 0.567 | - | - | 1.5 | | 508 | - | - | - | | | Sand Light-
weight | 4,500 | - | 0.420 | - | - | 4 | - | 715 | - | - | - | | | Latex
Modified | 3,000
7 day | 0.400 | 0.400 | - | - | 6 | - | 658 | - | - | - | | | Flowable
Fill
excavatable | 150 max.
at 56 days | as needed | as needed | as needed | as needed | - | Flow-
able | - | - | . 40 | 100 | | | Flowable
Fill
non-excavatable | 125 | as needed | as needed | as needed | as needed | - | Flow- | - | : _ | 100 | as
needed | | | Pavement | 4,500 design, field 650 flexural, design only | 0.559 | 0.559 | _ | - | 1.5
slip
form
3.0
hand
place | . <u>-</u> | 526 | · _ | — | - | | | Precast | See Table
1077-1 | as needed | as needed | - | - | 6 | as
needed | as
needed | as
needed | as
needed | as
needed | | | Prestress | per contract | See Table
1078-1 | See
Table
1078-1 | _ | - | 8 | - | 564 | as
needed | - | - | | Page 10-23, Table 1005-1, AGGREGATE GRADATION-COARSE AGGREGATE, replace with the following: | | Light-
weight ^C | ABC
(M) | ABC | 9 | 14M | 78M | 67 | 6M | 57M | 57 | Ŋ | 467M | 4 | Std.
Size# | _ | | |--------------------------|-------------------------------|---------------------------|---|------|---|--|--|-----------|------------------------|--|-----------------------------|-------------------|-------------------|---------------|---------------------------------------|--| | A. Se | | ı | • | : , | ı | ı | • | | • | ı | • | 100 | 100 | 2" | | | | See Subarticle 1005-4(A) | | 100 | 100 | • | ı | ı | 1 | | 100 | 100 | 100 | 95-
100 | 90- | 1
1/2" | | | | icle 100: | : | 75-
100 | 75 <u>-</u>
97 | | ı | ı | 100 | 100 | 95-
100 | 95-
100 | 90 - | ı | 20-
55 | 1" | | AGG | | 5-4(A). | • | • | • | 1 | | 100 | 100 | | | | 20-
55 | 35 <u>-</u>
70 | 0-15 | 3/4" | P | REG. | | | 100 | 45-
79 | 80
55- | | | 9 8-
100 | ı | 20-
55 | 25-
45 | 25-
60 | 0-10 | ı | • | 1/2" | Percentage of Total by Weight Passing | ATE (| | | 80- | ı | • | 100 | 100 | 75-
100 | 20-
55 | 0-20 | ı | ı | 0-5 | 0-30 | 0-5 | 3/8" | tage o | FRAD | | | 5-
40 | 20 -
40 | 35 <u>-</u>
55 | 100 | 35-
70 | 20-
45 | 0-10 | 0-8 | 0-10 | 0-10 | | 0-5 | ı | #4 | f Tota | ATIC | | | 0-20 | 1 | ı | 4 P | 5-20 | 0-15 | 0-5 | • | 0-5 | 0-5 | ı | • | 1 | # | ıl by V | N-C | | | · | 25 P | 25-
45 | | | ı | ı | • | • | ı | ı | ı | ı | #10 | Veigh | OAR | | | 0-10 | ı | • | 0-10 | 0-8 | | ı | | | 1 | ı | • | • | #16 | t Pass | SE AC | | | • | ı | 14-
30 | ı | | • | ı | | • | • | • | | | #40 | ing | GCRE | | | 0-2.5 | 0-
12 ^B | 4-
12 ^B | > | . > | > | > | > | > | A | > | > | A | #200 | | AGGREGATE GRADATION - COARSE AGGREGATE | | : | AST | Maintenance Stabilization | Aggregate Base Course,
Aggregate Stabilization | AST | Asphalt Plant Mix, AST, Weep Hole Drains, Str. Concrete | Asphalt Plant Mix, AST,
Str. Conc, Weep Hole Drains | AST, Str. Concrete,
Asphalt Plant Mix | AST | AST, Concrete Pavement | AST, Str. Concrete,
Shoulder Drain,
Sediment Control Stone | AST, Sediment Control Stone | Asphalt Plant Mix | Asphalt Plant Mix | Remarks | | (-3) | Page 10-126, Table 1078-1, REQUIREMENTS FOR CONCRETE, replace with the following: | TABLE 1078-1 REQUIREMENTS FOR CONCRETE | | | | | | | |---|---|---|--|--|--|--| | Property | 28 Day Design
Compressive
Strength
6,000 psi or less | 28 Day Design Compressive Strength greater than 6,000 psi | | | | | | Maximum Water/Cementitious Material Ratio | 0.45 | 0.40 | | | | | | Maximum Slump without HRWR | 3.5" | 3.5" | | | | | | Maximum Slump with HRWR | 8" | 8" | | | | | | Air Content (upon discharge into forms) | 5 + 2% | 5 + 2% | | | | | Page 10-162, Subarticle 1081-1(A) Classifications, lines 4-7, delete the second and third sentences of the description for Type 3A. Page 10-162, Subarticle 1081-1(B) Requirements, lines 26-30, replace the second paragraph with the following: For epoxy resin systems used for embedding dowel bars, threaded rods, rebar, anchor bolts and other fixtures in hardened concrete, the manufacturer shall submit test results showing that the bonding system will obtain 125% of the specified required yield strength of the fixture. Furnish certification that, for the particular bolt grade, diameter and embedment depth required, the anchor system will not fail by adhesive failure and that there is no movement of the anchor bolt. For certification and anchorage, use 3,000 psi as the minimum Portland cement concrete compressive strength used in this test. Use adhesives that meet Section 1081. List the properties of the adhesive on the container and include density, minimum and maximum temperature application, setting time, shelf life, pot life, shear strength and compressive strength. Page 10-169, Subarticle 1081-3(G) Anchor Bolt Adhesives, delete this subarticle. Page 10-204, Subarticle 1092-2(A) Performance and Test Requirements, replace Table 1092-3 Minimum Coefficient of Retroreflection for NC Grade A with the following: TABLE 1092-3 MINIMUM COEFFICIENT OF RETROREFLECTION FOR NC GRADE A (Candelas Per Lux Per Square Meter) | Observation
Angle, degrees | Entrance
Angle,
degrees | White | Yellow | Green | Red | Blue | Fluorescent
Yellow Green | Fluorescent
Yellow | |-------------------------------|-------------------------------|-------|--------|-------|-----|------|-----------------------------|-----------------------| | 0.2 | -4.0 | 525 | 395 | 52 | 95 | 30 | 420 | 315 | | 0.2 | 30.0 | 215 | 162 | 22 | 43 | 10 | 170 | 130 | | 0.5 | -4.0 | 310 | 230 | 31 | 56 | 18 | 245 | 185 | | 0.5 | 30.0 | 135 | 100 | 14 | 27 | . 6 | 110 | 81 | | 1.0 | -4.0 | 120 | 60 | 8 | 16 | 3.6 | 64 | 48 | | 1.0 | 30.0 | 45 | 34 | 4.5 | 9 | 2 | 36 | 27 | <u>SELECT MATERIAL, CLASS III, TYPE 3:</u> (1-17-12) 1016, 1044 SP10 R05 Revise the 2012 Standard Specifications as follows: Page 10-39, Article 1016-3, CLASS III, add the following after line 14: ### **Type 3 Select Material** Type 3 select material is a natural or manufactured fine aggregate material meeting the following gradation requirements and as described in Sections 1005 and 1006: | Percentage of Total by Weight Passing | | | | | | | | | | | |---------------------------------------|---------|--------|-------|-------|------|------|------|--|--|--| | 3/8" | " #4 #8 | | #16 | #30 | #50 | #100 | #200 | | | | | 100 | 95-100 | 65-100 | 35-95 | 15-75 | 5-35 | 0-25 | 0-8 | | | | Page 10-39, Article 1016-3, CLASS III, line 15, replace "either type" with "Type 1, Type 2 or Type 3". Page 10-62, Article 1044-1, line 36, delete the sentence and replace with the following: Subdrain fine aggregate shall meet Class III select material, Type 1 or Type 3. Page 10-63, Article 1044-2, line 2, delete the sentence and replace with the following: Subdrain coarse aggregate shall meet Class V select material.