Project Special Provisions Structures

Table of Contents

	Page
	#
Maintenance & Protection of Traffic Beneath Proposed Structure	
at Station 21+37.80 -Y6L- (8-13-04)	 . 1
Pot Bearings (9-30-11)	 . 2
Optional Disc Bearings (9-30-11)	 . 5
Thermal Sprayed Coatings (Metallization) (9-30-11)	 10
(1010)	
Submittal of Working Drawings (2-10-12)	 21
Crane Safety (8-15-05)	 28
Grout for Structures (9-30-11)	 28
()	
Concrete Barrier Rail with Moment Slab (1-17-12)	 31
MSE Retaining Walls (7-17-12)	 32
Soldier Pile Retaining Walls (5-15-12)	 41
Pile Driving Criteria (9-18-12)	 49

PROJECT SPECIAL PROVISIONS STRUCTURES

PROJECT U-3324 MOORE COUNTY

MAINTENANCE AND PROTECTION OF TRAFFIC BENEATH PROPOSED STRUCTURE AT STATION 21+37.80 -Y6-

(8-13-04)

1.0 GENERAL

Maintain traffic on US 1 as shown in Traffic Control Plans and as directed by the Engineer.

Provide a minimum temporary vertical clearance of 16'-7" at all times during construction.

Submit plans and calculations for review and approval for protecting traffic and bracing girders, as described herein, at the above station before beginning work at this location. Have the drawings and design calculations prepared, signed, and sealed by a North Carolina Registered Professional Engineer. The approval of the Engineer will not relieve the Contractor of the responsibility for the safety of the method or equipment.

2.0 PROTECTION OF TRAFFIC

Protect traffic from any operation that affords the opportunity for construction materials, equipment, tools, etc. to be dropped into the path of traffic beneath the structure. Based on Contractor means and methods determine and clearly define all dead and live loads for this system, which, at a minimum, shall be installed between beams or girders over any travelway or shoulder area where traffic is maintained. Install the protective system before beginning any construction operations over traffic. In addition, for these same areas, keep the overhang falsework in place until after the rails have been poured.

3.0 Bracing Girders

Brace girders to resist wind forces, weight of forms and other temporary loads, especially those eccentric to the vertical axis of the member during all stages of erection and construction. Before casting of intermediate diaphragms, decks, or connecting steel diaphragms do not allow the horizontal movement of girders to exceed ½ inch.

4.0 Basis of Payment

Payment at the contract unit prices for the various pay items will be full compensation for the above work.

<u>POT BEARINGS</u> (9-30-11)

1.0 GENERAL

This item consists of furnishing, fabrication and installation of pot bearings in accordance with AASHTO LRFD Bridge Design Specifications, the Standard Specifications, the recommendations of the manufacturer and the details shown on the plans and as specified herein.

Fixed pot bearings consist of a sole plate, a disc of elastomer in a steel cylinder with a snug fitting steel piston, masonry plate, anchor bolts, nuts and washers. Expansion pot bearings consist of a sole plate, a top steel plate with a polished stainless steel sheet facing bearing on a fixed pot bearing with a layer of virgin polytetraflouroethylene (PTFE) material on its top, masonry plate, anchor bolt assembly which includes anchor bolts, nuts, washers, pipe sleeves, a closure plate, grout and various sizes of standard pipe and any other necessary material as detailed on the plans.

2.0 MATERIALS

Use pot bearings produced by the same manufacturer.

Use AASHTO M270 Grade 50W (345W) for all steel in the pot bearings. Clean, coat, and seal the plates in the pot bearing assemblies except for the areas with special facings and the internal surfaces of pot, in accordance with the Special Provision for "Thermal Sprayed Coatings (Metallization)". Metallization of the internal surfaces of the pot is permitted provided these surfaces are then polished to a surface smoother than 60 micro inches. The surfaces shall be coated to a thickness of 8 mils minimum on all external parts. Repair surfaces that are abraded or damaged after the application of metallizing in accordance with the Special Provision for "Thermal Sprayed Coatings (Metallization)".

Galvanize all fill plates specified on the plans. Provide anchor bolts and nuts in accordance with the Standard Specifications.

When the maximum plan dimension of the sheet is 12" or less, provide a stainless steel sheet in expansion pot bearings that is at least 16 gage or 1/16". When the maximum plan dimension is greater than 12", provide a stainless steel sheet that is at least 11 gage or 1/8". Ensure that all stainless steel sheets are in conformance with ASTM A240/A167 Type 304 and polished to a minimum #8 mirror surface finish.

Blast clean the surface of the plate that will be attached to the stainless sheet to a near white condition in accordance with the Standard Specifications. Position and clamp the back of the stainless sheet that is to be in contact with the steel plate on the steel plate. Apply the stainless steel to the blast cleaned surface of the steel plate as soon as possible after blasting and before any visible oxidation of the blast cleaned surface occurs. Weld the stainless sheet continuously around its perimeter using a tungsten inert gas, wire-fed welder.

For the PTFE sheet, used as a mating surface for the stainless sheet, provide an unfilled virgin PTFE Sheet (Recessed) or a glass-fiber filled PTFE sheet, resulting from skiving billets formed under hydraulic pressure and heat. Provide resin that conforms to the requirements of ASTM D4894 or D4895.

To bond the PTFE and the piston, use heat cured high temperature epoxy capable of withstanding temperature of -320°F to 500°F.

Provide a neoprene or natural rubber elastomer with a durometer hardness of 50 that allows for a minimum rotation of 0.02 radians. Place a 1/64" thick unfilled PTFE disc or other approved lubricant that is not detrimental to the elastomer on either side of the elastomer inside the bearing. Use a brass sealing ring with the neoprene or natural rubber elastomer.

3.0 DESIGN

Have the manufacturer design the pot bearings for the loads and movements shown on the contract plans. However, use the anchor bolt size, length, spacing and masonry plate thickness as shown on the contract plans and provide an overall height of the bearing assembly that is at least the height shown on the contract plans, but no more than 1/2 inch greater than this height. Either combine, cast as a single piece, or weld together the sole plate and top plate/piston and the cylinder with the masonry plate.

When designing the bearings, use the following allowable bearing stresses:

- On confined elastomer: 3500 psi
- On PTFE Sliding Surface, filled or unfilled PTFE (recessed): 3500 psi

Submit eight sets of shop drawings and one set of design calculations for review, comments and acceptance. Have a North Carolina Registered Professional Engineer check and seal the shop drawings and design calculations.

After the Engineer reviews the drawings and, if necessary, corrections are made, submit one 22" x 34" reproducible set of the working drawings.

4.0 SAMPLING AND TESTING

A. Sampling

The manufacturer is responsible for randomly selecting and testing sample bearings from completed lots of bearings. The manufacturer is also responsible for certifying that the completed bearings and their components have been tested and are in compliance with the requirements of this Special Provision. The manufacturer shall furnish results of the tests to the Materials and Tests Engineer.

B. Testing

1. Proof Load Test

Load a test bearing to 150% of the bearing's rated design capacity and simultaneously subject it to a rotational range of 0.02 radians (1.146°) for a period of 1 hour.

Have the bearing visually examined both during the test and upon disassembly after the test. Any resultant visual defects, such as extruded or deformed elastomer or PTFE, damaged seals or rings, or cracked steel is cause for rejection.

Keep the steel bearing plate and steel piston in continuous and uniform contact for the duration of the test. Any observed lift-off is cause for rejection.

2. Sliding Coefficient of Friction

For all guided and non-guided expansion type bearings, measure the sliding coefficient of friction at the bearing's design capacity in accordance with the test method described below, and on the fifth and fiftieth cycles, at a sliding speed of 1 in/min.

Calculate the sliding coefficient of friction as the horizontal load required to maintain continuous sliding of one bearing, divided by the bearing's vertical design capacity.

The test results are evaluated as follows:

- A maximum measured sliding coefficients of friction of 3%.
- A visual examination both during and after the test. Any resultant visual defects, such as bond failure, physical destruction, cold flow of PTFE to the point of debonding, or damaged components is cause for rejection of the lot.

Using undamaged test bearings in the work is permitted.

3. Test Method

For the test method and equipment, meet the following requirements:

- a. Arrange the test to determine the coefficient of friction on the first movement of the manufactured bearing.
- b. Clean the bearing surface prior to testing.
- c. Conduct the test at maximum working stress for the PTFE surface with the test load applied continuously for 12 hours prior to measuring friction.

d. Determine the first movement static and dynamic coefficient of friction of the test bearing at a sliding speed of less than 1 in/min, not to exceed:

0.04 unfilled PTFE 0.08 filled PTFE

e. Subject the bearing specimen to 100 movements of at least 1 inch of relative movement and, if the test facility permits, the full design movement at a speed of less than 1 ft/min. Following this test determine the static and kinetic coefficient of friction again. The specimen is considered a failure if it exceeds the values measured in (d) above or if it shows any signs of bond failure or other defects.

Bearings represented by test specimens passing the above requirements are approved for use in the structure subject to on-site inspection for visible defects.

5.0 Installation

Prior to shipment, seal the joint between the steel piston and the steel cylinder with a bead of caulk. Store pot bearings delivered to the bridge site under cover on a platform above the ground surface. Protect the bearings from injury at all times and, before placing the bearings, dry and clean all dirt, oil, grease or other foreign substances from the bearing. Do not disassemble the bearings during installation, except at the manufacturer's direction. Place the bearings in accordance with the recommendations of the manufacturer, Contract Drawings, and as directed by the Engineer. If there is any discrepancy between the recommendations of the manufacturer, Special Provisions, and Contract Drawings, the Engineer is the sole judge in reconciling any such discrepancy.

Provide preformed bearing pads under the masonry plates in accordance with Article 1079-1 of the Standard Specifications.

Do not install any bearing before the Engineer approves it.

6.0 BASIS OF PAYMENT

Payment will be at the lump sum contract price bid for "Pot Bearings" which price will be full compensation for furnishing all labor, materials, tools, equipment and incidentals required to complete the work in accordance with the Standard Specifications, this Special Provision, the manufacturer's requirements and as directed by the Engineer.

OPTIONAL DISC BEARINGS

(9-30-11)

1.0 GENERAL

This item consists of furnishing, fabrication and installation of disc bearings in accordance with AASHTO LRFD Bridge Design Specifications, the Standard Specifications, the recommendations of the manufacturer and as specified herein. In addition, all plan notes

pertaining to furnishing and installing pot bearing assemblies shall also apply to disc bearing assemblies, except as noted herein.

Disc Bearings consist of a polyether urethane structural element (disc) confined by upper and lower steel bearing plates. Equip disc bearings with a shear restriction mechanism to prevent movement of the disc. Supply disc bearings as fixed bearings and guided expansion bearings as designated by the Contract Documents.

Fixed disc bearings allow rotation but no longitudinal or transverse movement in the bearing plane. Fixed bearings consist of a sole plate, an elastomer disc, upper bearing plate, lower bearing plate, masonry plate, anchor bolts, nuts and washers.

Guided expansion disc bearings allow rotation and only longitudinal movement in the bearing plane. Guided expansion disc bearings consist of a sole plate, a top steel plate with a polished stainless steel sheet facing bearing on a fixed disc bearing with a layer of virgin polytetraflouroethylene (PTFE) material on its top, masonry plate, anchor bolt assembly which includes anchor bolts, nuts, washers, pipe sleeves, a closure plate, grout and various sizes of standard pipe and any other necessary material as detailed on the plans. To allow longitudinal movement, bond a polytetraflouroethylene (PTFE) sheet to the upper steel bearing plate. Support a sliding steel top bearing plate with the upper steel bearing plate. Face the mating surface of the sliding steel top bearing plate with polished stainless steel. Use either a guide bar or keyway system to restrict transverse movement. Face the sliding surfaces of the guide bar or keyway systems with either PTFE sheets or stainless steel.

2.0 MATERIALS

Use disc bearings produced by the same manufacturer.

Use AASHTO M270 Grade 50W (345W) for all steel in the disc bearings. Clean, coat, and seal the plates in the disc bearing assemblies except for the areas with special facings and the areas that come in contact with the elastomer disc, in accordance with the Special Provision for "Thermal Sprayed Coatings (Metallization)". The surfaces shall be coated to a thickness of 8 mils minimum on all external parts. Repair surfaces that are abraded or damaged after the application of metallizing in accordance with the Special Provision for "Thermal Sprayed Coatings (Metallization)".

Provide anchor bolts and nuts in accordance with the Standard Specifications.

When the maximum plan dimension of the sheet is 12" or less, provide a stainless steel sheet in expansion disc bearings that is at least 16 gage or 1/16". When the maximum plan dimension is greater than 12", provide a stainless steel sheet that is at least 11 gage or 1/8". Ensure that all stainless steel sheets are in conformance with ASTM A240/A167 Type 304 and polished to a minimum #8 mirror surface finish.

Blast clean the surface of the plate that will be attached to the stainless sheet to a near white condition in accordance with the Standard Specifications. Position and clamp the back of the stainless sheet that is to be in contact with the steel plate on the steel plate. Apply the stainless steel to the blast cleaned surface of the steel plate as soon as possible after blasting

and before any visible oxidation of the blast cleaned surface occurs. Weld the stainless sheet continuously around its perimeter using a tungsten inert gas, wire-fed welder.

For the PTFE sheet, used as a mating surface for the stainless sheet, provide an unfilled virgin PTFE Sheet (Recessed) or a glass-fiber filled PTFE sheet, resulting from skiving billets formed under hydraulic pressure and heat. Provide resin that conforms to the requirements of ASTM D4894 or D4895.

To bond the PTFE and the bearing plate, use heat cured high temperature epoxy capable of withstanding temperature of -320°F to 500°F.

Mold the polyether urethane structural element from a polyether urethane compound. Conform the physical properties of the polyether urethane to the following requirements:

Physical Property	ASTM Test	Requirements	
	Method	Min.	Max.
Hardness, Type D Durometer	D2240	60	64
Tensile Stress psi At 100% elongation At 200% elongation	D412	2000 3700	
Tensile Strength psi	D412	5000	
Ultimate Elongation %	D412	220	
Compression Set % 22 hrs. at 158°F	D395		40

3.0 DESIGN

Design the disc bearings for the loads and movements shown on the contract plans. However, use the anchor bolt size, length, spacing and masonry plate thickness as shown on the contract plans and provide an overall height of the bearing assembly that is at least the height shown on the contract plans, but no more than 1/2 inch greater than this height. Either combine and cast the sole plate and top plate/upper bearing plate and the lower bearing plate and masonry plate as a single unit or weld together prior to the installation of the disc.

When designing the bearings, use the following allowable bearing stresses:

- On polyether urethane structural element: 5000 psi
- On PTFE Sliding Surface, filled or unfilled PTFE (recessed): 3500 psi

Submit eight sets of shop drawings and one set of design calculations for review, comments and acceptance. Have a North Carolina Registered Professional Engineer check and seal the shop drawings and design calculations.

After the Engineer reviews the drawings and, if necessary, corrections are made, submit one 22" x 34" reproducible set of the working drawings.

4.0 SAMPLING AND TESTING

A. Sampling

The manufacturer is responsible for randomly selecting and testing sample bearings from completed lots of bearings. The manufacturer is also responsible for certifying that the completed bearings and their components have been tested and are in compliance with the requirements of this Special Provision. The manufacturer shall furnish the results of the tests to the Materials and Tests Engineer.

B. Testing

1. Proof Load Test

Load a test bearing to 150% of the bearing's rated design capacity and simultaneously subject it to a rotational range of 0.02 radians (1.146°) for a period of 1 hour.

Have the bearing visually examined both during the test and upon disassembly after the test. Any resultant visual defects, such as extruded or deformed elastomer or PTFE, damaged seals or rings, or cracked steel is cause for rejection.

Keep continuous and uniform contact between the polyether urethane element and the bearing plates and between the sliding steel top plate and the upper bearing plate for the duration of the test. Any observed lift-off is cause for rejection.

2. Sliding Coefficient of Friction

For all guided and non-guided expansion type bearings, measure the sliding coefficient of friction at the bearing's design capacity in accordance with the test method described below, and on the fifth and fiftieth cycles, at a sliding speed of 1 in/min.

Calculate the sliding coefficient of friction as the horizontal load required to maintain continuous sliding of one bearing, divided by the bearing's vertical design capacity.

The test results are evaluated as follows:

- A maximum measured sliding coefficient of friction of 3%.
- A visual examination both during and after the test. Any resultant visual defects, such as bond failure, physical destruction, cold flow of PTFE to the point of debonding, or damaged components is cause for rejection of the lot.

Using undamaged test bearings in the work is permitted.

3. Test Method

The test method and equipment shall meet the following requirements:

- f. Arrange the test to determine the coefficient of friction on the first movement of the manufactured bearing.
- g. Clean the bearing surface prior to testing.
- h. Conduct the test at maximum working stress for the PTFE surface with the test load applied continuously for 12 hours prior to measuring friction.
- i. Determine the first movement static and dynamic coefficient of friction of the test bearing at a sliding speed of less than 1 in/min, not to exceed:
 - 0.04 unfilled PTFE
 - 0.08 filled PTFE
- j. Subject the bearing specimen to 100 movements of at least 1 inch of relative movement and, if the test facility permits, the full design movement at a speed of less than 1 ft/min. Following this test determine the static and kinetic coefficient of friction again. The specimen is considered a failure if it exceeds the values measured in (d) above or if it shows any signs of bond failure or other defects.

Bearings represented by test specimens passing the above requirements are approved for use in the structure subject to on-site inspection for visible defects.

5.0 Installation

Store disc bearings delivered to the bridge site under cover on a platform above the ground surface. Protect the bearings from injury at all times and, before placing the bearings, dry and clean all dirt, oil, grease or other foreign substances from the bearing. Do not disassemble the bearings during installation, except at the manufacturer's direction. Place the bearings in accordance with the recommendations of the manufacturer, Contract Drawings, and as directed by the Engineer. If there is any discrepancy between the recommendations of the manufacturer, Special Provisions, and Contract Drawings, the Engineer is the sole judge in reconciling any such discrepancy.

Provide preformed bearing pads under the masonry plates in accordance with Article 1079-1 of the Standard Specifications.

Do not install any bearing before the Engineer approves it.

6.0 BASIS OF PAYMENT

Payment for all optional disc bearings will be at the lump sum contract price bid for "Pot Bearings" which includes full compensation for furnishing all disc bearings, labor, materials, tools, equipment, testing and incidentals required to complete the work in accordance with the Standard Specifications, this Special Provision, the manufacturer's requirements and as directed by the Engineer.

THERMAL SPRAYED COATINGS (METALLIZATION)

(9-30-11)

1.0 DESCRIPTION

Apply a thermal sprayed coating (TSC) and sealer to metal surfaces as specified herein when called for on the plans or by other Special Provisions, or when otherwise approved by the Engineer in accordance with the SSPC-CS 23.00/AWS C2.23/NACE No. 12 Specification. Only Arc Sprayed application methods are used to apply TSC coatings, the Engineer must approve other methods of application.

2.0 QUALIFICATIONS

Only use NCDOT approved TSC Contractors meeting the following requirements:

- 1. The capability of blast cleaning steel surfaces to SSPC SP-5 and SP-10 Finishes.
- 2. Employ Spray Operator(s) qualified in accordance with AWS C.16/C2.16M2002 and Quality Control Inspector(s) who have documented training in the applicable test procedures of ASTM D-3276 and SSPC-CS 23.00.

A summary of the contractor's related work experience and the documents verifying each Spray Operator's and Quality Control Inspector's qualifications are submitted to the Engineer before any work is performed.

3.0 MATERIALS

Provide wire in accordance with the metallizing equipment manufacturer's recommendations. Use the wire alloy specified on the plans which meets the requirements in Annex C of the SSPC-CS 23.00 Specification. Have the contractor provide a certified analysis (NCDOT Type 2 Certification) for each lot of wire material.

Apply an approved sealer to all metallized surfaces in accordance with Section 9 of SSPC-CS 23. The sealer must either meet SSPC Paint 27 or is an alternate approved by the Engineer.

4.0 SURFACE PREPARATION AND TSC APPLICATION

Grind flame cut edges to remove the carbonized surface prior to blasting. Bevel all flame cut edges in accordance with Article 442-10(D) regardless of included angle. Blast clean surfaces to be metallized with grit or mineral abrasive in accordance with Steel Structures Painting Council SSPC SP-5/10(as specified) to impart an angular surface profile of 2.5 - 4.0 mils. Surface preparation hold times are in accordance with Section 7.32 of SSPC-CS 23. If flash rusting occurs prior to metallizing, blast clean the metal surface again. Apply the thermal sprayed coating only when the surface temperature of the steel is at least 5°F above the dew point.

At the beginning of each work period or shift, conduct bend tests in accordance with Section 6.5 of SSPC-CS 23.00. Any disbonding or delamination of the coating that exposes the substrate requires corrective action, additional testing, and the Engineer's approval before resuming the metallizing process.

Apply TSC with the alloy to the thickness specified on the plans or as provided in the table below. All spot results (the average of 3 to 5 readings) must meet the minimum requirement. No additional tolerance (as allowed by SSPC PA-2) is permitted. (For Steel Beams: For pieces with less than 200 ft² measure 2 spots/surface per piece and for pieces greater than 200 ft² add 1 additional spots/surface for each 500 ft²).

Application	Thickness	Alloy	Seal Coat
Pot Bearings	8 mil	85/15 Zinc (W-Zn-Al-2)	0.5 mil
Armored Joint Angles	8 mil	85/15 Zinc (W-Zn-Al-2)	0.5 mil
Modular Joints	8 mil	99.99% Zn (W-Zn-1)	0.5 mil
Expansion Joint Seals	8 mil	99.99% Zn (W-Zn-1)	0.5 mil
Optional Disc Bearings	8 mil	85/15 Zinc (W-Zn-Al-2)	0.5 mil

When noted on the plans or as specified in the above chart, apply the sealer to all metallized surfaces in accordance with the manufacturer's recommendations and these provisions. Apply the seal coat only when the air temperature is above 40°F and the surface temperature of the steel is at least 5°F above the dew point. If the sealer is not applied within eight hours after the final application of TSC, the applicator verifies acceptable TSC surfaces and obtains approval from the Engineer before applying the sealer.

5.0 Inspection Frequency

The TSC Contractor must conduct the following tests at the specified frequency and the results documented in a format approved by the Engineer.

Test/Standard	Location	Frequency	Specification
Ambient Conditions	Site	Each Process	5°F above the dew point
Abrasive Properties	Site	Each Day	Size, angularity, cleanliness
Surface Cleanliness SSPC Vis 1	All Surfaces	Visual All Surfaces	SSPC-SP-10 Atmospheric Service SSPC-SP - 5 Immersion Service
Surface Profile ASTM D-4417 Method C	Random Surfaces	3 per 500 ft ²	2.5 - 4.0 mils
Bend Test SSPC-CS 23.00	Site	5 per shift	Pass Visual
Thickness SSPC PA-2R SSPC-CS 23.00	Each Surface	Use the method in PA-2 Appendix 3 for Girders and Appendix 4 for frames and miscellaneous steel. See Note 1.	Zn - 8 mils minimum Al - 8 mils minimum Zn Al - 8 mils minimum Areas with more than twice the minimum thickness are inspected for compliance to the adhesion and cut testing requirements of this specification.
Adhesion ASTM 4541	Random Surfaces Splice Areas	1 set of 3 per 500 ft ²	Zn > 500 psi Al > 1000 psi Zn Al > 750 psi
Cut Test - SSPC-CS 23.00	Random Surfaces	3 sets of 3 per 500 ft ²	No peeling or delamination
Job Reference Std. SSPC-CS 23.00	Site	1 per job	Meets all the above requirements

6.0 REPAIRS

All Repairs are to be performed in accordance with the procedures below, depending on whether the repair surface is hidden or exposed. As an exception to the following, field welded splices on joint angles and field welding bearing plates to girders may be repaired in accordance with the procedures for hidden surfaces.

For hidden surfaces (including but not limited to interior girders, interior faces of exterior girders, and below-grade sections of piles):

- 1. Welding of metallized surfaces may be performed only if specifically permitted by the Engineer. Remove metallizing at the location of field welds by blast cleaning (SSPC SP-6 finish), or hand (SSPC SP-2 finish) or power tool cleaning (SSPC SP-3 finish) just prior to welding. Clean sufficiently to prevent contamination of the weld. All repairs to welded connections are metallized in accordance with SSPC CS 23.00.
- 2. Minor areas less than or equal to 0.1 ft² exposing the substrate are metallized in accordance with SSPC CS 23.00 or painted in accordance with ASTM A780, "Repair of Damaged and Uncoated Areas of Hot Dip Galvanized Coatings."
- 3. Large areas greater than 0.1 ft² exposing the substrate are metallized in accordance with SSPC CS 23.00.
- 4. Damaged (burnished) areas not exposing the substrate with less than the specified coating thickness are metallized in accordance with SSPC CS 23.00 or painted in accordance with ASTM A780, "Repair of Damaged and Uncoated Areas of Hot Dip Galvanized Coatings."
- 5. Damaged (burnished) areas not exposing the substrate with more than the specified coating thickness are not repaired.
- 6. Defective coating is repaired by either method 2 or 3 depending on the area of the defect.

For Exposed Surfaces (including but not limited to exterior faces of exterior girders and above-grade sections of piles):

- 1. Welding of metallized surfaces may be performed only if specifically permitted by the Engineer. Remove metallization at the location of field welds by blast cleaning (SSPC SP-6 finish), or hand (SSPC SP-2 finish) or power tool cleaning (SSPC SP-3 finish) just prior to welding. Clean sufficiently to prevent contamination of the weld. All repairs to welded connections are metallized in accordance with SSPC CS 23.00.
- 2. All areas exposing the substrate are metallized in accordance with SSPC CS 23.00
- 3. Defective coating is repaired by either method 2 or 3 depending on the area of the defect.

7.0 TWELVE MONTH OBSERVATION PERIOD

The contractor maintains responsibility for the coating system for a twelve (12) month observation period beginning upon the satisfactory completion of all the work required in the plans or as directed by the engineer. The contractor must guarantee the coating system under the payment and performance bond (refer to Article 109-10). To successfully complete the observation period, the coating system must meet the following requirements after twelve(12) months service:

- No visible rust, contamination or application defect is observed in any coated area.
- Painted surfaces have a uniform color and gloss.
- Surfaces have an adhesion of no less than 500 psi when tested in accordance with ASTM D-4541.

8.0 BASIS OF PAYMENT

The contract price bid for the bridge component to which the coating is applied will be full compensation for the thermal sprayed coating.

FALSEWORK AND FORMWORK

(4-5-12)

1.0 DESCRIPTION

Use this Special Provision as a guide to develop temporary works submittals required by the Standard Specifications or other provisions; no additional submittals are required herein. Such temporary works include, but are not limited to, falsework and formwork.

Falsework is any temporary construction used to support the permanent structure until it becomes self-supporting. Formwork is the temporary structure or mold used to retain plastic or fluid concrete in its designated shape until it hardens. Access scaffolding is a temporary structure that functions as a work platform that supports construction personnel, materials, and tools, but is not intended to support the structure. Scaffolding systems that are used to temporarily support permanent structures (as opposed to functioning as work platforms) are considered to be falsework under the definitions given. Shoring is a component of falsework such as horizontal, vertical, or inclined support members. Where the term "temporary works" is used, it includes all of the temporary facilities used in bridge construction that do not become part of the permanent structure.

Design and construct safe and adequate temporary works that will support all loads imposed and provide the necessary rigidity to achieve the lines and grades shown on the plans in the final structure.

2.0 MATERIALS

Select materials suitable for temporary works; however, select materials that also ensure the safety and quality required by the design assumptions. The Engineer has authority to reject material on the basis of its condition, inappropriate use, safety, or nonconformance with the plans. Clearly identify allowable loads or stresses for all materials or manufactured devices on the plans. Revise the plan and notify the Engineer if any change to materials or material strengths is required.

3.0 DESIGN REQUIREMENTS

A. Working Drawings

Provide working drawings for items as specified in the contract, or as required by the Engineer, with design calculations and supporting data in sufficient detail to permit a structural and safety review of the proposed design of the temporary work.

On the drawings, show all information necessary to allow the design of any component to be checked independently as determined by the Engineer.

When concrete placement is involved, include data such as the drawings of proposed sequence, rate of placement, direction of placement, and location of all construction joints. Submit the number of copies as called for by the contract.

When required, have the drawings and calculations prepared under the guidance of, and sealed by, a North Carolina Registered Professional Engineer who is knowledgeable in temporary works design.

If requested by the Engineer, submit with the working drawings manufacturer's catalog data listing the weight of all construction equipment that will be supported on the temporary work. Show anticipated total settlements and/or deflections of falsework and forms on the working drawings. Include falsework footing settlements, joint takeup, and deflection of beams or girders.

As an option for the Contractor, overhang falsework hangers may be uniformly spaced, at a maximum of 36 inches, provided the following conditions are met:

Member Type (PCG)	Member Depth, (inches)	Max. Overhang Width, (inches)	Max. Slab Edge Thickness, (inches)	Max. Screed Wheel Weight, (lbs.)	Bracket Min. Vertical Leg Extension, (inches)
II	36	39	14	2000	26
III	45	42	14	2000	35
IV	54	45	14	2000	44
MBT	63	51	12	2000	50
MBT	72	55	12	1700	48

Overhang width is measured from the centerline of the girder to the edge of the deck slab.

For Type II, III & IV prestressed concrete girders (PCG), 45-degree cast-in-place half hangers and rods must have a minimum safe working load of 6,000 lbs.

For MBT prestressed concrete girders, 45-degree angle holes for falsework hanger rods shall be cast through the girder top flange and located, measuring along the top of the member, 1'-2 ½" from the edge of the top flange. Hanger hardware and rods must have a minimum safe working load of 6,000 lbs.

The overhang bracket provided for the diagonal leg shall have a minimum safe working load of 3,750 lbs. The vertical leg of the bracket shall extend to the point that the heel bears on the girder bottom flange, no closer than 4 inches from the bottom of the member. However, for 72-inch members, the heel of the bracket shall bear on the web, near the bottom flange transition.

Provide adequate overhang falsework and determine the appropriate adjustments for deck geometry, equipment, casting procedures and casting conditions.

If the optional overhang falsework spacing is used, indicate this on the falsework submittal and advise the girder producer of the proposed details. Failure to notify the Engineer of hanger type and hanger spacing on prestressed concrete girder casting drawings may delay the approval of those drawings.

Falsework hangers that support concentrated loads and are installed at the edge of thin top flange concrete girders (such as bulb tee girders) shall be spaced so as not to exceed 75% of the manufacturer's stated safe working load. Use of dual leg hangers (such as Meadow Burke HF-42 and HF-43) are not allowed on concrete girders with thin top flanges. Design the falsework and forms supporting deck slabs and overhangs on girder bridges so that there will be no differential settlement between the girders and the deck forms during placement of deck concrete.

When staged construction of the bridge deck is required, detail falsework and forms for screed and fluid concrete loads to be independent of any previous deck pour components when the mid-span girder deflection due to deck weight is greater than 3/4".

Note on the working drawings any anchorages, connectors, inserts, steel sleeves or other such devices used as part of the falsework or formwork that remains in the permanent structure. If the plan notes indicate that the structure contains the necessary corrosion protection required for a Corrosive Site, epoxy coat, galvanize or metalize these devices. Electroplating will not be allowed. Any coating required by the Engineer will be considered incidental to the various pay items requiring temporary works.

Design falsework and formwork requiring submittals in accordance with the 1995 AASHTO *Guide Design Specifications for Bridge Temporary Works* except as noted herein.

1. Wind Loads

Table 2.2 of Article 2.2.5.1 is modified to include wind velocities up to 110 mph. In addition, Table 2.2A is included to provide the maximum wind speeds by county in North Carolina.

Table 2.2 - Wind Pressure Values

Height Zone	Pressur	Pressure, lb/ft ² for Indicated Wind Velocity, mph					
feet above ground	70	70 80 90 100 110					
0 to 30	15	20	25	30	35		
30 to 50	20	25	30	35	40		
50 to 100	25	30	35	40	45		
over 100	30	35	40	45	50		

2. Time of Removal

The following requirements replace those of Article 3.4.8.2.

Do not remove forms until the concrete has attained strengths required in Article 420-16 of the Standard Specifications and these Special Provisions.

Do not remove forms until the concrete has sufficient strength to prevent damage to the surface.

Table 2.2A - Steady State Maximum Wind Speeds by Counties in North Carolina

COUNTY	25 YR (mph)	COUNTY	25 YR (mph)	COUNTY	25 YR (mph)
Alamance	70	Franklin	70	Pamlico	100
Alexander	70	Gaston	70	Pasquotank	100
Alleghany	70	Gates	90	Pender	100
Anson	70	Graham	80	Perquimans	100
Ashe	70	Granville	70	Person	70
Avery	70	Greene	80	Pitt	90
Beaufort	100	Guilford	70	Polk	80
Bertie	90	Halifax	80	Randolph	70
Bladen	90	Harnett	70	Richmond	70
Brunswick	100	Haywood	80	Robeson	80
Buncombe	80	Henderson	80	Rockingham	70
Burke	70	Hertford	90	Rowan	70
Cabarrus	70	Hoke	70	Rutherford	70
Caldwell	70	Hyde	110	Sampson	90
Camden	100	Iredell	70	Scotland	70
Carteret	110	Jackson	80	Stanley	70
Caswell	70	Johnston	80	Stokes	70
Catawba	70	Jones	100	Surry	70
Cherokee	80	Lee	70	Swain	80
Chatham	70	Lenoir	90	Transylvania	80
Chowan	90	Lincoln	70	Tyrell	100
Clay	80	Macon	80	Union	70
Cleveland	70	Madison	80	Vance	70
Columbus	90	Martin	90	Wake	70
Craven	100	McDowell	70	Warren	70
Cumberland	80	Mecklenburg	70	Washington	100
Currituck	100	Mitchell	70	Watauga	70
Dare	110	Montgomery	70	Wayne	80
Davidson	70	Moore	70	Wilkes	70
Davie	70	Nash	80	Wilson	80
Duplin	90	New Hanover	100	Yadkin	70
Durham	70	Northampton	80	Yancey	70
Edgecombe	80	Onslow	100		
Forsyth	70	Orange	70		

B. Review and Approval

The Engineer is responsible for the review and approval of temporary works' drawings.

Submit the working drawings sufficiently in advance of proposed use to allow for their review, revision (if needed), and approval without delay to the work.

The time period for review of the working drawings does not begin until complete drawings and design calculations, when required, are received by the Engineer.

Do not start construction of any temporary work for which working drawings are required until the drawings have been approved. Such approval does not relieve the Contractor of the responsibility for the accuracy and adequacy of the working drawings.

4.0 CONSTRUCTION REQUIREMENTS

All requirements of Section 420 of the Standard Specifications apply.

Construct temporary works in conformance with the approved working drawings. Ensure that the quality of materials and workmanship employed is consistent with that assumed in the design of the temporary works. Do not weld falsework members to any portion of the permanent structure unless approved. Show any welding to the permanent structure on the approved construction drawings.

Provide tell-tales attached to the forms and extending to the ground, or other means, for accurate measurement of falsework settlement. Make sure that the anticipated compressive settlement and/or deflection of falsework does not exceed 1 inch. For cast-in-place concrete structures, make sure that the calculated deflection of falsework flexural members does not exceed 1/240 of their span regardless of whether or not the deflection is compensated by camber strips.

A. Maintenance and Inspection

Inspect and maintain the temporary work in an acceptable condition throughout the period of its use. Certify that the manufactured devices have been maintained in a condition to allow them to safely carry their rated loads. Clearly mark each piece so that its capacity can be readily determined at the job site.

Perform an in-depth inspection of an applicable portion(s) of the temporary works, in the presence of the Engineer, not more than 24 hours prior to the beginning of each concrete placement. Inspect other temporary works at least once a month to ensure that they are functioning properly. Have a North Carolina Registered Professional Engineer inspect the cofferdams, shoring, sheathing, support of excavation structures, and support systems for load tests prior to loading.

B. Foundations

Determine the safe bearing capacity of the foundation material on which the supports for temporary works rest. If required by the Engineer, conduct load tests to verify proposed bearing capacity values that are marginal or in other high-risk situations.

The use of the foundation support values shown on the contract plans of the permanent structure is permitted if the foundations are on the same level and on the same soil as those of the permanent structure.

Allow for adequate site drainage or soil protection to prevent soil saturation and washout of the soil supporting the temporary works supports.

If piles are used, the estimation of capacities and later confirmation during construction using standard procedures based on the driving characteristics of the pile is permitted. If preferred, use load tests to confirm the estimated capacities; or, if required by the Engineer conduct load tests to verify bearing capacity values that are marginal or in other high risk situations.

The Engineer reviews and approves the proposed pile and soil bearing capacities.

5.0 REMOVAL

Unless otherwise permitted, remove and keep all temporary works upon completion of the work. Do not disturb or otherwise damage the finished work.

Remove temporary works in conformance with the contract documents. Remove them in such a manner as to permit the structure to uniformly and gradually take the stresses due to its own weight.

6.0 METHOD OF MEASUREMENT

Unless otherwise specified, temporary works will not be directly measured.

7.0 Basis of Payment

Payment at the contract unit prices for the various pay items requiring temporary works will be full compensation for the above falsework and formwork.

SUBMITTAL OF WORKING DRAWINGS

(2-10-12)

1.0 GENERAL

Submit working drawings in accordance with Article 105-2 of the Standard Specifications and this provision. For this provision, "submittals" refers to only those listed in this provision. The list of submittals contained herein does not represent a list of required submittals for the project. Submittals are only necessary for those items as required by the contract. Make submittals that are not specifically noted in this provision directly to the Resident Engineer. Either the Structure Design Unit or the Geotechnical Engineering Unit or both units will jointly review submittals.

If a submittal contains variations from plan details or specifications or significantly affects project cost, field construction or operations, discuss the submittal with and submit all copies to the Resident Engineer. State the reason for the proposed variation in the submittal. To minimize review time, make sure all submittals are complete when initially submitted. Provide a contact name and information with each submittal. Direct any questions regarding submittal requirements to the Resident Engineer, Structure Design Unit contacts or the Geotechnical Engineering Unit contacts noted below.

In order to facilitate in-plant inspection by NCDOT and approval of working drawings, provide the name, address and telephone number of the facility where fabrication will actually be done if different than shown on the title block of the submitted working drawings. This includes, but is not limited to, precast concrete items, prestressed concrete items and fabricated steel or aluminum items.

Via other delivery service:

of Transportation

Structure Design Unit

Raleigh, NC 27610

1000 Birch Ridge Drive

Mr. G. R. Perfetti, P. E.

State Bridge Design Engineer

Attention: Mr. P. D. Lambert, P. E.

North Carolina Department

2.0 **ADDRESSES AND CONTACTS**

For submittals to the Structure Design Unit, use the following addresses:

Via US mail:

Mr. G. R. Perfetti, P. E. State Bridge Design Engineer North Carolina Department of Transportation Structure Design Unit 1581 Mail Service Center Raleigh, NC 27699-1581

Attention: Mr. P. D. Lambert, P. E.

Submittals may also be made via email.

Send submittals to:

plambert@ncdot.gov (Paul Lambert)

Send an additional e-copy of the submittal to the following address:

jgaither@ncdot.gov (James Gaither) ilbolden@ncdot.gov (James Bolden)

21

For submittals to the Geotechnical Engineering Unit, use the following addresses:

For projects in Divisions 1-7, use the following Eastern Regional Office address:

Via US mail: Via other delivery service:

Mr. K. J. Kim, Ph. D., P. E.

Eastern Regional Geotechnical

Mr. K. J. Kim, Ph. D., P. E.

Eastern Regional Geotechnical

Manager Manager

North Carolina Department North Carolina Department

of Transportation of Transportation

Geotechnical Engineering Unit Geotechnical Engineering Unit

Eastern Regional Office Eastern Regional Office

1570 Mail Service Center 3301 Jones Sausage Road, Suite 100

Raleigh, NC 27699-1570 Garner, NC 27529

For projects in Divisions 8-14, use the following Western Regional Office address:

Via US mail: Via other delivery service:

Mr. John Pilipchuk, L. G., P. E.
Western Regional Geotechnical
Western Region Geotechnical

Manager Manager

North Carolina Department North Carolina Department

of Transportation of Transportation

Geotechnical Engineering Unit Geotechnical Engineering Unit

Western Regional Office
5253 Z Max Boulevard
Harrisburg, NC 28075
Western Regional Office
5253 Z Max Boulevard
Harrisburg, NC 28075

The status of the review of structure-related submittals sent to the Structure Design Unit can be viewed from the Unit's web site, via the "Contractor Submittal" link.

Direct any questions concerning submittal review status, review comments or drawing markups to the following contacts:

Primary Structures Contact: Paul Lambert (919) 707 – 6407

(919) 250 - 4082 facsimile

plambert@ncdot.gov

Secondary Structures Contacts: James Gaither (919) 707 – 6409

James Bolden (919) 707 – 6408

Eastern Regional Geotechnical Contact (Divisions 1-7):

K. J. Kim (919) 662 – 4710

(919) 662 - 3095 facsimile

kkim@ncdot.gov

Western Regional Geotechnical Contact (Divisions 8-14):

John Pilipchuk

167

(704) 455 – 8902 (704) 455 – 8912 facsimile

jpilipchuk@ncdot.gov

3.0 SUBMITTAL COPIES

Furnish one complete copy of each submittal, including all attachments, to the Resident Engineer. At the same time, submit the number of hard copies shown below of the same complete submittal directly to the Structure Design Unit and/or the Geotechnical Engineering Unit.

The first table below covers "Structure Submittals". The Resident Engineer will receive review comments and drawing markups for these submittals from the Structure Design Unit. The second table in this section covers "Geotechnical Submittals". The Resident Engineer will receive review comments and drawing markups for these submittals from the Geotechnical Engineering Unit.

Unless otherwise required, submit one set of supporting calculations to either the Structure Design Unit or the Geotechnical Engineering Unit unless both units require submittal copies in which case submit a set of supporting calculations to each unit. Provide additional copies of any submittal as directed.

STRUCTURE SUBMITTALS

Submittal	Copies Required by Structure Design Unit	Copies Required by Geotechnical Engineering Unit	Contract Reference Requiring Submittal ¹
Arch Culvert Falsework	5	0	Plan Note, SN Sheet & "Falsework and Formwork"
Box Culvert Falsework ⁷	5	0	Plan Note, SN Sheet & "Falsework and Formwork"
Cofferdams	6	2	Article 410-4
Foam Joint Seals ⁶	9	0	"Foam Joint Seals"
Expansion Joint Seals (hold down plate type with base angle)	9	0	"Expansion Joint Seals"
Expansion Joint Seals (modular)	2, then 9	0	"Modular Expansion Joint Seals"
Expansion Joint Seals (strip seals)	9	0	"Strip Seals"
Falsework & Forms ² (substructure)	8	0	Article 420-3 & "Falsework and Formwork"
Falsework & Forms (superstructure)	8	0	Article 420-3 & "Falsework and Formwork"
Girder Erection over Railroad	5	0	Railroad Provisions
Maintenance and Protection of Traffic Beneath Proposed Structure	8	0	"Maintenance and Protection of Traffic Beneath Proposed Structure at Station"
Metal Bridge Railing	8	0	Plan Note
Metal Stay-in-Place Forms	8	0	Article 420-3
Metalwork for Elastomeric Bearings ^{4,5}	7	0	Article 1072-8
Miscellaneous Metalwork ^{4,5}	7	0	Article 1072-8
Optional Disc Bearings 4	8	0	"Optional Disc Bearings"

Overhead and Digital Message Signs (DMS) (metalwork and foundations)	13	0	Applicable Provisions
Placement of Equipment on Structures (cranes, etc.)	7	0	Article 420-20
Pot Bearings ⁴	8	0	"Pot Bearings"
Precast Concrete Box Culverts	2, then 1 reproducible	0	"Optional Precast Reinforced Concrete Box Culvert at Station"
Prestressed Concrete Cored Slab (detensioning sequences) 3	6	0	Article 1078-11
Prestressed Concrete Deck Panels	6 and 1 reproducible	0	Article 420-3
Prestressed Concrete Girder (strand elongation and detensioning sequences)	6	0	Articles 1078-8 and 1078- 11
Removal of Existing Structure over Railroad	5	0	Railroad Provisions
Revised Bridge Deck Plans (adaptation to prestressed deck panels)	2, then 1 reproducible	0	Article 420-3
Revised Bridge Deck Plans (adaptation to modular expansion joint seals)	2, then 1 reproducible	0	"Modular Expansion Joint Seals"
Sound Barrier Wall (precast items)	10	0	Article 1077-2 & "Sound Barrier Wall"
Sound Barrier Wall Steel Fabrication Plans ⁵	7	0	Article 1072-8 & "Sound Barrier Wall"
Structural Steel ⁴	2, then 7	0	Article 1072-8
Temporary Detour Structures	10	2	Article 400-3 & "Construction, Maintenance and Removal of Temporary Structure at Station"
TFE Expansion Bearings ⁴	8	0	Article 1072-8

FOOTNOTES

- 1. References are provided to help locate the part of the contract where the submittals are required. References in quotes refer to the provision by that name. Articles refer to the *Standard Specifications*.
- 2. Submittals for these items are necessary only when required by a note on plans.
- 3. Submittals for these items may not be required. A list of pre-approved sequences is available from the producer or the Materials & Tests Unit.
- 4. The fabricator may submit these items directly to the Structure Design Unit.
- 5. The two sets of preliminary submittals required by Article 1072-8 of the *Standard Specifications* are not required for these items.
- 6. Submittals for Fabrication Drawings are not required. Submittals for Catalogue Cuts of Proposed Material are required. See Section 5.A of the referenced provision.
- 7. Submittals are necessary only when the top slab thickness is 18" or greater.

171
GEOTECHNICAL SUBMITTALS

Submittal	Copies Required by Geotechnical Engineering Unit	Copies Required by Structure Design Unit	Contract Reference Requiring Submittal ¹
Drilled Pier Construction Plans ²	1	0	Subarticle 411-3(A)
Crosshole Sonic Logging (CSL) Reports ²	1	0	Subarticle 411-5(A)(2)
Pile Driving Equipment Data Forms ^{2,3}	1	0	Subarticle 450-3(D)(2)
Pile Driving Analyzer (PDA) Reports ²	1	0	Subarticle 450-3(F)(3)
Retaining Walls ⁴	8 drawings, 2 calculations	2 drawings	Applicable Provisions
Temporary Shoring ⁴	5 drawings, 2 calculations	2 drawings	"Temporary Shoring" & "Temporary Soil Nail Walls"

FOOTNOTES

- 1. References are provided to help locate the part of the contract where the submittals are required. References in quotes refer to the provision by that name. Subarticles refer to the *Standard Specifications*.
- 2. Submit one hard copy of submittal to the Resident or Bridge Maintenance Engineer. Submit a second copy of submittal electronically (PDF via email) or by facsimile, US mail or other delivery service to the appropriate Geotechnical Engineering Unit regional office. Electronic submission is preferred.
- 3. The Pile Driving Equipment Data Form is available from: www.ncdot.org/doh/preconstruct/highway/geotech/formdet/ See second page of form for submittal instructions.
- 4. Electronic copy of submittal is required. See referenced provision.

CRANE SAFETY (8-15-05)

Comply with the manufacturer specifications and limitations applicable to the operation of any and all cranes and derricks. Prime contractors, sub-contractors, and fully operated rental companies shall comply with the current Occupational Safety and Health Administration regulations (OSHA).

Submit all items listed below to the Engineer prior to beginning crane operations involving critical lifts. A critical lift is defined as any lift that exceeds 75 percent of the manufacturer's crane chart capacity for the radius at which the load will be lifted or requires the use of more than one crane. Changes in personnel or equipment must be reported to the Engineer and all applicable items listed below must be updated and submitted prior to continuing with crane operations.

CRANE SAFETY SUBMITTAL LIST

- A. <u>Competent Person:</u> Provide the name and qualifications of the "Competent Person" responsible for crane safety and lifting operations. The named competent person will have the responsibility and authority to stop any work activity due to safety concerns.
- B. <u>Riggers:</u> Provide the qualifications and experience of the persons responsible for rigging operations. Qualifications and experience should include, but not be limited to, weight calculations, center of gravity determinations, selection and inspection of sling and rigging equipment, and safe rigging practices.
- C. <u>Crane Inspections:</u> Inspection records for all cranes shall be current and readily accessible for review upon request.
- D. <u>Certifications</u>: By July 1, 2006, crane operators performing critical lifts shall be certified by NC CCO (National Commission for the Certification of Crane Operators), or satisfactorily complete the Carolinas AGC's Professional Crane Operator's Proficiency Program. Other approved nationally accredited programs will be considered upon request. All crane operators shall also have a current CDL medical card. Submit a list of anticipated critical lifts and corresponding crane operator(s). Include current certification for the type of crane operated (small hydraulic, large hydraulic, small lattice, large lattice) and medical evaluations for each operator.

GROUT FOR STRUCTURES

(9-30-11)

1.0 DESCRIPTION

This special provision addresses grout for use in pile blockouts, grout pockets, shear keys, dowel holes and recesses for structures. This provision does not apply to grout placed in post-tensioning ducts for bridge beams, girders, or decks. Mix and place grout in accordance with the manufacturer's recommendations, the applicable sections of the Standard Specifications and this provision.

2.0 MATERIAL REQUIREMENTS

Use a Department approved pre-packaged, non-shrink, non-metallic grout. Contact the Materials and Tests Unit for a list of approved pre-packaged grouts and consult the manufacturer to determine if the pre-packaged grout selected is suitable for the required application.

When using an approved pre-packaged grout, a grout mix design submittal is not required.

The grout shall be free of soluble chlorides and contain less than one percent soluble sulfate. Supply water in compliance with Article 1024-4 of the Standard Specifications.

Aggregate may be added to the mix only where recommended or permitted by the manufacturer and Engineer. The quantity and gradation of the aggregate shall be in accordance with the manufacturer's recommendations.

Admixtures, if approved by the Department, shall be used in accordance with the manufacturer's recommendations. The manufacture date shall be clearly stamped on each container. Admixtures with an expired shelf life shall not be used.

The Engineer reserves the right to reject material based on unsatisfactory performance.

Initial setting time shall not be less than 10 minutes when tested in accordance with ASTM C266.

Test the expansion and shrinkage of the grout in accordance with ASTM C1090. The grout shall expand no more than 0.2% and shall exhibit no shrinkage. Furnish a Type 4 material certification showing results of tests conducted to determine the properties listed in the Standard Specifications and to assure the material is non-shrink.

Unless required elsewhere in the contract the compressive strength at 3 days shall be at least 5000 psi. Compressive strength in the laboratory shall be determined in accordance with ASTM C109 except the test mix shall contain only water and the dry manufactured material. Compressive strength in the field will be determined by molding and testing 4" x 8" cylinders in accordance with AASHTO T22. Construction loading and traffic loading shall not be allowed until the 3 day compressive strength is achieved.

When tested in accordance with ASTM C666, Procedure A, the durability factor of the grout shall not be less than 80.

3.0 SAMPLING AND PLACEMENT

Place and maintain components in final position until grout placement is complete and accepted. Concrete surfaces to receive grout shall be free of defective concrete, laitance, oil, grease and other foreign matter. Saturate concrete surfaces with clean water and remove excess water prior to placing grout.

Do not place grout if the grout temperature is less than 50°F or more than 90°F or if the air temperature measured at the location of the grouting operation in the shade away from artificial heat is below 45°F.

....

Provide grout at a rate that permits proper handling, placing and finishing in accordance with the manufacturer's recommendations unless directed otherwise by the Engineer. Use grout free of any lumps and undispersed cement. Agitate grout continuously before placement.

Control grout delivery so the interval between placing batches in the same component does not exceed 20 minutes.

The Engineer will determine the locations to sample grout and the number and type of samples collected for field and laboratory testing. The compressive strength of the grout will be considered the average compressive strength test results of 3 cube or 2 cylinder specimens at 28 days.

4.0 BASIS OF PAYMENT

No separate payment will be made for "Grout for Structures". The cost of the material, equipment, labor, placement, and any incidentals necessary to complete the work shall be considered incidental to the structure item requiring grout.

CLASSIC CONCRETE BRIDGE RAIL

(SPECIAL)

1.0 General

The "Classic Concrete Bridge Rail" shall be in accordance with applicable parts of the Standard Specifications, the details shown on the plans and as outlined in these special provisions. Plans for the bridge rails are detailed for cast in place concrete and must be placed using conventional forms.

2.0 Concrete Mix

Concrete for the bridge rail shall meet the requirements for class AA concrete with exception noted below:

The maximum size coarse aggregate used in the concrete mix shall be #78M. The slump shall be within the range of 5" to 8" when tested in accordance with AASHTO T119. A high range water reducer shall be used. The quantity of high range water reducer per pound of cement shall be within the range recommended on the current list of approved admixtures issued by M&T Unit.

3.0 Construction

The bridge rails shall be placed to the established shape, line, grade and dimensions shown on the plans.

Joints in the rails shall be constructed at the locations and of the type specified on the plans.

4.0 Finishing

All exposed surfaces which are not satisfactory to the Engineer as to uniformity of color and texture or because of excessive patching shall be corrected as required by the Engineer. All surfaces of the bridge rails shall be given a Class I surface finish in accordance with the Standard Specifications unless directed otherwise by the Engineer.

5.0 Measurement

The quantity to be paid for under this item shall be the actual number of linear feet of "Classic Concrete Bridge Rail", complete in place and accepted, measured continuously along the top surface of completed rail from end to end without deductions for spaces between sections.

6.0 Payment

The quantity, measured as described above, will be paid for at the contract unit price per linear foot bid for "Classic Concrete Bridge Rail", which price and payment shall be full compensation for all materials, admixtures, forms, falsework, curing, surface finish, tools, labor, equipment and incidentals necessary to complete the item.

CONCRETE BARRIER RAIL WITH MOMENT SLAB

(1-17-12)

1.0 GENERAL

Construct concrete barrier rail connected to moment slabs to resist traffic impact above retaining walls. Construct concrete barrier rail with moment slab in accordance with the contract and accepted submittals.

2.0 MATERIALS

Refer to Division 10 of the Standard Specifications.

Item	Section
Barrier Delineators	1088-2
Portland Cement Concrete	1000
Reinforcing Steel	1070

Use Class AA concrete for concrete barrier rail and Class A concrete for moment slabs. Provide epoxy coated reinforcing steel that meets Article 1070-7 of the *Standard Specifications* for concrete barrier rail.

3.0 Construction Methods

Construct concrete barrier rail with moment slab in accordance with the plans and accepted submittals. Construct cast-in-place reinforced concrete moment slabs in accordance with Section 420 of the *Standard Specifications* and concrete barrier rail in accordance with Subarticle 460-3(C) of the *Standard Specifications*. Do not remove forms until concrete attains a compressive strength of at least 2,400 psi.

4.0 MEASUREMENT AND PAYMENT

Concrete Barrier Rail with Moment Slab will be measured and paid in linear feet. Concrete barrier rail with moment slab will be measured as the length of concrete barrier rail above retaining walls. The contract unit price for Concrete Barrier Rail with Moment Slab will be full compensation for submittals, labor, tools, equipment and concrete barrier rail with moment slab materials, excavating, backfilling, hauling and removing excavated materials and supplying any incidentals necessary to construct concrete barrier rail with moment slab.

Payment will be made under:

Pay Item
Concrete Barrier Rail with Moment Slab

Pay Unit Linear Foot

MECHANICALLY STABILIZED EARTH RETAINING WALLS

(7-17-12)

1.0 GENERAL

Construct mechanically stabilized earth (MSE) retaining walls consisting of steel or geogrid reinforcement in the reinforced zone connected to vertical facing elements. The facing elements may be precast concrete panels or segmental retaining wall (SRW) units unless required otherwise in the plans or the *NCDOT Policy for Mechanically Stabilized Earth Retaining Walls* prohibits the use of SRW units. At the Contractor's option, use coarse or fine aggregate in the reinforced zone of MSE retaining walls except do not use fine aggregate for walls subject to scour, walls that support or are adjacent to railroads or walls with design heights greater than 35 ft or internal acute corners less than 45°. Provide reinforced concrete coping as required. Design and construct MSE retaining walls based on actual elevations and wall dimensions in accordance with the contract and accepted submittals. Use a prequalified MSE Wall Installer to construct MSE retaining walls.

Define "MSE wall" as a mechanically stabilized earth retaining wall and "MSE Wall Vendor" as the vendor supplying the chosen MSE wall system. Define a "segmental retaining wall" as an MSE wall with SRW units and an "abutment wall" as an MSE wall with bridge foundations in the reinforced zone. Define "reinforcement" as steel or geogrid reinforcement and "aggregate" as coarse or fine aggregate. Define "panel" as a precast concrete panel and "coping" as precast or cast-in-place concrete coping.

Use an approved MSE wall system in accordance with the plans, NCDOT MSE wall policy and any NCDOT restrictions for the chosen system. Value engineering proposals for other MSE wall systems will not be considered. Do not use segmental retaining walls or MSE wall systems with an "approved for provisional use" status code for critical walls or MSE walls connected to critical walls. Critical walls are defined in the NCDOT MSE wall policy. The list of approved MSE wall systems and NCDOT MSE wall policy are available from:

www.ncdot.org/doh/preconstruct/highway/geotech/msewalls

2.0 MATERIALS

Refer to the Standard Specifications.

Item	Section
Aggregate	1014
Anchor Pins	1056-2
Curing Agents	1026
Geotextiles, Type 2	1056
Joint Materials	1028
Portland Cement Concrete, Class A	1000
Precast Retaining Wall Coping	1077
Reinforcing Steel	1070
Retaining Wall Panels	1077
Segmental Retaining Wall Units	1040-4
Shoulder Drain Materials	816-2
Wire Staples	1060-8(D)

Provide Type 2 geotextile for filtration and separation geotextiles. Use Class A concrete for cast-in-place coping, leveling concrete and pads.

Provide panels and SRW units produced by a manufacturer approved or licensed by the MSE Wall Vendor. Unless required otherwise in the contract, produce panels with a smooth flat final finish that meets Article 1077-11 of the *Standard Specifications*. Accurately locate and secure reinforcement connectors in panels and maintain required concrete cover. Produce panels within 1/4" of the panel dimensions shown in the accepted submittals.

Damaged panels or SRW units with excessive discoloration, chips or cracks as determined by the Engineer will be rejected. Do not damage reinforcement connection devices or mechanisms in handling or storing panels and SRW units.

Store steel materials on blocking at least 12" above the ground and protect it at all times from damage; and when placing in the work make sure it is free from dirt, dust, loose mill scale, loose rust, paint, oil or other foreign materials. Handle and store geogrids in

accordance with Article 1056-2 of the *Standard Specifications*. Load, transport, unload and store MSE wall materials so materials are kept clean and free of damage.

A. Aggregate

Use standard size No. 57, 57M, 67 or 78M that meets Table 1005-1 of the *Standard Specifications* for coarse aggregate except do not use No. 57 or 57M stone in the reinforced zone of MSE walls with geogrid reinforcement. Use the following for fine aggregate:

- 1. Standard size No. 1S, 2S, 2MS or 4S that meets Table 1005-2 of the *Standard Specifications* or
- 2. Gradation that meets Class III, Type 3 select material in accordance with Article 1016-3 of the *Standard Specifications*.

Fine aggregate is exempt from mortar strength and siliceous particle content referenced in Subarticles 1014-1(E) and 1014-1(H) of the *Standard Specifications*. Provide fine aggregate that meets the following requirements:

FINE AGGREGATE REQUIREMENTS					
Reinforcement or Connector Material	pН	Resistivity	Chlorides	Sulfates	Organics
Steel	5-10	\geq 3,000 $\Omega \cdot \text{cm}$	≤ 100 ppm	≤ 200 ppm	≤1%
Polyester Type (PET) Geogrid	5-8	N/A*	N/A*	N/A*	≤1%
Polyolefin Geogrid	4.5-9	N/A*	N/A*	N/A*	≤ 1%

^{*} Resistivity, chlorides and sulfates are not applicable to geogrid.

Use fine aggregate from a source that meets the *Mechanically Stabilized Earth Wall Fine Aggregate Sampling and Testing Manual*. Perform organic content tests in accordance with AASHTO T 267 instead of Subarticle 1014-1(D) of the *Standard Specifications*. Perform electrochemical tests in accordance with the following test procedures:

Property	Test Method
pH	AASHTO T 289
Resistivity	AASHTO T 288
Chlorides	AASHTO T 291
Sulfates	AASHTO T 290

B. Reinforcement

Provide steel or geogrid reinforcement supplied by the MSE Wall Vendor or a manufacturer approved or licensed by the vendor. Use approved reinforcement for the chosen MSE wall system. The list of approved reinforcement for each MSE wall system is available from the website shown elsewhere in this provision.

Steel Reinforcement

Provide Type 1 material certifications in accordance with Article 106-3 of the *Standard Specifications* for steel reinforcement. Use welded wire grid reinforcement ("mesh", "mats" and "ladders") that meet Article 1070-3 of the *Standard Specifications* and metallic strip reinforcement ("straps") that meet ASTM A572 or A1011. Galvanize steel reinforcement in accordance with Section 1076 of the *Standard Specifications*.

Geogrid Reinforcement

Define "machine direction" (MD) for geogrids in accordance with ASTM D4439. Provide Type 1 material certifications for geogrid strengths in the MD in accordance with Article 1056-3 of the *Standard Specifications*. Test geogrids in accordance with ASTM D6637.

C. Bearing Pads

Use bearing pads that meet Section 3.6.1.a of the FHWA Design and Construction of Mechanically Stabilized Earth Walls and Reinforced Soil Slopes – Volume I (Publication No. FHWA-NHI-10-024).

D. Miscellaneous Components

Miscellaneous components may include connectors (e.g., anchors, bars, clamps, pins, plates, ties, etc.), fasteners (e.g., bolts, nuts, washers, etc.) and any other MSE wall components not included above. Galvanize steel components in accordance with Section 1076 of the *Standard Specifications*. Provide approved miscellaneous components for the chosen MSE wall system. The list of approved miscellaneous components for each MSE wall system is available from the website shown elsewhere in this provision.

3.0 PRECONSTRUCTION REQUIREMENTS

A. MSE Wall Surveys

The Retaining Wall Plans show a plan view, typical sections, details, notes and an elevation or profile view (wall envelope) for each MSE wall. Before beginning MSE wall design, survey existing ground elevations shown in the plans and other elevations in the vicinity of MSE wall locations as needed. Based on these elevations, finished grades and actual MSE wall dimensions and details, submit revised wall envelopes for acceptance. Use accepted wall envelopes for design.

B. MSE Wall Designs

Submit 11 copies of working drawings and 3 copies of design calculations and a PDF copy of each for MSE wall designs at least 30 days before the preconstruction meeting.

Do not begin MSE wall construction until a design submittal is accepted.

Use a prequalified MSE Wall Design Consultant to design MSE walls. Provide designs sealed by a Design Engineer approved as a Geotechnical Engineer (key person) for the MSE Wall Design Consultant.

Design MSE walls in accordance with the plans, AASHTO LRFD Bridge Design Specifications and any NCDOT restrictions for the chosen MSE wall system unless otherwise required. Design MSE walls for seismic if walls are located in seismic zone 2 based on Figure 2-1 of the Structure Design Manual. Use a uniform reinforcement length throughout the wall height of at least 0.7H with H as defined for the embedment requirements in this provision or 6 ft, whichever is greater, unless shown otherwise in the plans. Extend the reinforced zone at least 6" beyond end of reinforcement. Do not locate drains, the reinforced zone or leveling pads outside right-of-way or easement limits.

Use the simplified method for determining maximum reinforcement loads and approved design parameters for the chosen MSE wall system or default values in accordance with the AASHTO LRFD specifications. Design steel components including reinforcement and connectors for the design life noted in the plans and aggregate type in the reinforced zone. Use corrosion loss rates for galvanizing in accordance with the AASHTO LRFD specifications for nonaggressive backfill and carbon steel corrosion rates in accordance with the following:

CARBON STEEL CORROSION RATES		
Aggregate Type	Corrosion Loss Rate	
(in the reinforced zone)	(after zinc depletion)	
Coarse	0.47 mil/year	
Fine (except abutment walls)	0.58 mil/year	
Fine (abutment walls)	0.70 mil/year	

For geogrid reinforcement and connectors, use approved geogrid properties for the design life noted in the plans and aggregate type in the reinforced zone.

When noted in the plans, design MSE walls for a live load (traffic) surcharge of 250 lb/sf in accordance with Figure C11.5.5-3(b) of the AASHTO LRFD specifications. For steel beam guardrail with 8 ft posts or concrete barrier rail above MSE walls, analyze top 2 reinforcement layers for traffic impact loads in accordance

 RF_{CR}

with Section 7.2 of the FHWA MSE wall manual shown elsewhere in this provision except use the following for geogrid reinforcement rupture:

		$\phi T_{al} R_{c} \geq T_{max} + (T_{I} / RF_{CR})$
Where,		
ф	=	resistance factor for tensile resistance in accordance with Section 7.2.1 of the FHWA MSE wall manual,
T_{al}	=	long-term geogrid design strength approved for chosen MSE wall system,
R_c	=	reinforcement coverage ratio = 1 for continuous geogrid reinforcement,
T_{max}	=	factored static load in accordance with Section 7.2 of the FHWA MSE wall manual,
T_{I}	=	factored impact load in accordance with Section 7.2 of the FHWA MSE wall manual and

If existing or future obstructions such as foundations, guardrail, fence or handrail posts, moment slabs, pavements, pipes, inlets or utilities will interfere with reinforcement, maintain a clearance of at least 3" between obstructions and reinforcement unless otherwise approved. Locate reinforcement layers so all of reinforcement length is within 3" of corresponding connection elevations.

creep reduction factor approved for chosen MSE wall system.

Use 6" thick cast-in-place unreinforced concrete leveling pads beneath panels and SRW units that are continuous at steps and extend at least 6" in front of and behind bottom row of panels or SRW units. Unless required otherwise in the plans, embed top of leveling pads in accordance with the following requirements:

EMBEDMENT REQUIREMENTS				
Front Slope ¹ (H:V)	Minimum Embedment Depth ² (whichever is greater)			
6.1 on flotten (ever at aboutment smalle)	11/20	1 ft for $H \le 10$ ft		
6:1 or flatter (except abutment walls)	H/20	2 ft for $H > 10$ ft		
6:1 or flatter (abutment walls)	H/10	2 ft		
> 6:1 to < 3:1	H/10	2 ft		
3:1 to 2:1	H/7	2 ft		

1. Front slope is as shown in the plans.

2. Define "H" as the maximum design height plus embedment per wall with the design height and embedment as shown in the plans.

When noted in the plans, locate a continuous aggregate shoulder drain along base of reinforced zone behind aggregate. Provide wall drainage systems consisting of drains and outlet components in accordance with Standard Drawing No. 816.02 of the *Roadway Standard Drawings*.

For MSE walls with panels, place at least 2 bearing pads in each horizontal panel joint so the final horizontal joint opening is between 5/8" and 7/8". Additional bearing pads may be required for panels wider than 5 ft as determined by the Engineer. Cover joints at back of panels with filtration geotextiles at least 12" wide.

For segmental retaining walls, fill SRW unit core spaces with coarse aggregate and between and behind SRW units with coarse aggregate for a horizontal distance of at least 18".

Separation geotextiles are required between aggregate and overlying fill or pavement sections except when concrete pavement, full depth asphalt or cement treated base is placed directly on aggregate. Separation geotextiles may also be required between coarse aggregate and backfill or natural ground as determined by the Engineer.

Unless required otherwise in the plans, use reinforced concrete coping at top of walls. Extend coping at least 6" above where the grade intersects back of coping unless required otherwise in the plans. Use coping dimensions shown in the plans and cast-in-place concrete coping for segmental retaining walls and when noted in the plans. At the Contractor's option, connect cast-in-place concrete coping to panels and SRW units with dowels or extend coping down back of MSE walls. Also, connect cast-in-place leveling concrete for precast concrete coping to panels with dowels. When concrete barrier rail is required above MSE walls, use concrete barrier rail with moment slab as shown in the plans.

Submit working drawings and design calculations for acceptance in accordance with Article 105-2 of the Standard Specifications. Submit working drawings showing plan views, wall profiles with required resistances, typical sections with reinforcement and connection details, aggregate locations and types, geotextile locations and details of leveling pads, panels or SRW units, coping, bin walls, slip joints, etc. If necessary, include details on working drawings for concrete barrier rail with moment slab, reinforcement splices if allowed for the chosen MSE wall system, reinforcement connected to end bent caps and obstructions extending through walls or interfering with reinforcement, leveling pads, barriers or moment slabs. Submit design calculations for each wall section with different surcharge loads, geometry or material parameters. At least one analysis is required for each wall section with different reinforcement lengths. When designing MSE walls with computer software other than MSEW, use MSEW version 3.0 with update 14.2 or later, manufactured by ADAMA Engineering, Inc. to verify the design. At least one MSEW analysis is required per 100 ft of wall length with at least one MSEW analysis for the wall section with the longest reinforcement. Submit electronic MSEW input files and PDF output files with design calculations.

C. Preconstruction Meeting

Before starting MSE wall construction, hold a preconstruction meeting to discuss the construction and inspection of the MSE walls. Schedule this meeting after all MSE wall submittals have been accepted. The Resident or Bridge Maintenance Engineer,

Bridge Construction Engineer, Geotechnical Operations Engineer, Contractor and MSE Wall Installer Superintendent will attend this preconstruction meeting.

4.0 Corrosion Monitoring

Corrosion monitoring is required for MSE walls with steel reinforcement. The Engineer will determine the number of monitoring locations and where to install the instrumentation. Contact the Materials and Tests (M&T) Unit before beginning wall construction. M&T will provide the corrosion monitoring instrumentation kits and if necessary, assistance with installation.

5.0 SITE ASSISTANCE

Unless otherwise approved, provide an MSE Wall Vendor representative to assist and guide the MSE Wall Installer on-site for at least 8 hours when the first panels or SRW units and reinforcement layer are placed. If problems are encountered during construction, the Engineer may require the vendor representative to return to the site for a time period determined by the Engineer.

6.0 CONSTRUCTION METHODS

Control drainage during construction in the vicinity of MSE walls. Direct run off away from MSE walls, aggregate and backfill. Contain and maintain aggregate and backfill and protect material from erosion.

Excavate as necessary for MSE walls in accordance with the accepted submittals. If applicable and at the Contractor's option, use temporary shoring for wall construction instead of temporary slopes to construct MSE walls. Define "temporary shoring for wall construction" as temporary shoring not shown in the plans or required by the Engineer including shoring for OSHA reasons or the Contractor's convenience.

Unless required otherwise in the plans, install foundations located in the reinforced zone before placing aggregate or reinforcement. Notify the Engineer when foundation excavation is complete. Do not place leveling pad concrete, aggregate or reinforcement until excavation dimensions and foundation material are approved.

Construct cast-in-place concrete leveling pads at elevations and with dimensions shown in the accepted submittals and in accordance with Section 420 of the *Standard Specifications*. Cure leveling pads at least 24 hours before placing panels or SRW units.

Erect and support panels and stack SRW units with no negative batter (wall face leaning forward) so the final wall position is as shown in the accepted submittals. Place SRW units with a maximum vertical joint width of 3/8".

Set panels with a vertical joint width of 3/4". Place bearing pads in horizontal panel joints and cover all panel joints with filtration geotextiles as shown in the accepted submittals. Attach filtration geotextiles to back of panels with adhesives, tapes or other approved methods.

Stagger panels and SRW units to create a running bond by centering panels or SRW units over joints in the row below as shown in the accepted submittals. Construct MSE walls with the following tolerances:

- A. SRW units are level from front to back and between units when checked with a 3 ft long level,
- B. Final wall face is within 3/4" of horizontal and vertical alignment shown in the accepted submittals when measured along a 10 ft straightedge and
- C. Final wall plumbness (batter) is within 0.5° of vertical unless otherwise approved.

Place reinforcement at locations and elevations shown in the accepted submittals and within 3" of corresponding connection elevations. Install reinforcement with the direction shown in the accepted submittals. Place reinforcement in slight tension free of kinks, folds, wrinkles or creases. Reinforcement may be spliced once per reinforcement length if shown in the accepted submittals. Use reinforcement pieces at least 6 ft long. Contact the Engineer when unanticipated existing or future obstructions such as foundations, guardrail, fence or handrail posts, pavements, pipes, inlets or utilities will interfere with reinforcement. To avoid obstructions, deflect, skew or modify reinforcement as shown in the accepted submittals.

Place aggregate in the reinforced zone in 8" to 10" thick lifts. Compact fine aggregate in accordance with Subarticle 235-3(C) of the *Standard Specifications*. Use only hand operated compaction equipment to compact aggregate within 3 ft of panels or SRW units. At a distance greater than 3 ft, compact aggregate with at least 4 passes of an 8 ton to 10 ton vibratory roller in a direction parallel to the wall face. Smooth wheeled or rubber tired rollers are also acceptable for compacting aggregate. Do not use sheepsfoot, grid rollers or other types of compaction equipment with feet. Do not displace or damage reinforcement when placing and compacting aggregate. End dumping directly on geogrids is not permitted. Do not operate heavy equipment on reinforcement until it is covered with at least 8" of aggregate. Replace any damaged reinforcement to the satisfaction of the Engineer.

Backfill for MSE walls outside the reinforced zone in accordance with Article 410-8 of the *Standard Specifications*. If a drain is required, install wall drainage systems as shown in the accepted submittals and in accordance with Section 816 of the *Standard Specifications*.

Place and construct coping and leveling concrete as shown in the accepted submittals. Construct leveling concrete in accordance with Section 420 of the *Standard Specifications*. Construct cast-in-place concrete coping in accordance with Subarticle 452-3(C) of the *Standard Specifications*. When single faced precast concrete barrier is required in front of and against MSE walls, stop coping just above barrier so coping does not interfere with placing barrier up against wall faces.

When separation geotextiles are required, overlap adjacent geotextiles at least 18" and hold separation geotextiles in place with wire staples or anchor pins as needed. Seal joints above and behind MSE walls between coping and ditches or concrete slope protection with silicone sealant.

185

7.0 MEASUREMENT AND PAYMENT

MSE Retaining Wall No. __ will be measured and paid in square feet. MSE walls will be measured as the square feet of exposed wall face area with the height equal to the difference between top and bottom of wall elevations. Define "top of wall" as top of coping or top of panels or SRW units for MSE walls without coping. Define "bottom of wall" as shown in the plans and no measurement will be made for portions of MSE walls embedded below bottom of wall elevations.

The contract unit price for MSE Retaining Wall No. __ will be full compensation for providing designs, submittals, labor, tools, equipment and MSE wall materials, excavating, backfilling, hauling and removing excavated materials and supplying site assistance, leveling pads, panels, SRW units, reinforcement, aggregate, wall drainage systems, geotextiles, bearing pads, coping, miscellaneous components and any incidentals necessary to construct MSE walls. The contract unit price for MSE Retaining Wall No. __ will also be full compensation for reinforcement connected to and aggregate behind end bent caps in the reinforced zone, if required.

No separate payment will be made for temporary shoring for wall construction. Temporary shoring for wall construction will be incidental to the contract unit price for MSE Retaining Wall No. .

The contract unit price for MSE Retaining Wall No. ___ does not include the cost for ditches, fences, handrails, barrier or guardrail associated with MSE walls as these items will be paid for elsewhere in the contract.

Where it is necessary to provide backfill material behind the reinforced zone from sources other than excavated areas or borrow sources used in connection with other work in the contract, payment for furnishing and hauling such backfill material will be paid as extra work in accordance with Article 104-7 of the *Standard Specifications*. Placing and compacting such backfill material is not considered extra work but is incidental to the work being performed.

Payment will be made under:

Pay Item
MSE Retaining Wall No.

Pay Unit Square Foot

SOLDIER PILE RETAINING WALLS

(5-15-12)

1.0 GENERAL

Construct soldier pile retaining walls consisting of driven or drilled-in steel H-piles with either precast concrete panels in between piles or a cast-in-place reinforced concrete face attached to front of piles unless required otherwise in the plans. Timber lagging is typically used for temporary support of excavations during construction. Provide cast-in-place

reinforced concrete coping as required. Design and construct soldier pile retaining walls based on actual elevations and wall dimensions in accordance with the contract and accepted submittals. Use a prequalified Cantilever Wall Contractor to construct soldier pile retaining walls. Define "soldier pile wall" as a soldier pile retaining wall. Define "panel" as a precast concrete panel and "concrete facing" as a cast-in-place reinforced concrete face. Define "pile" as a steel H-pile and "coping" as cast-in-place concrete coping.

2.0 MATERIALS

Refer to the Standard Specifications.

Item	Section
Anchor Pins	1056-2
Curing Agents	1026
Flowable Fill, Excavatable	1000-6
Geosynthetics	1056
Joint Materials	1028
Masonry	1040
Neat Cement Grout, Nonshrink	1003
Portland Cement Concrete	1000
Reinforcing Steel	1070
Retaining Wall Panels	1077
Select Material, Class VI	1016
Shoulder Drain Materials	816-2
Steel H-Piles	1084-1
Untreated Timber	1082-2
Welded Stud Shear Connectors	1072-6
Wire Staples	1060-8(D)

Provide Type 2 geotextile for separation geotextiles and Class VI select material (standard size No. 57 stone) for leveling pads and backfilling. Use Class A concrete for concrete facing and coping and Class A concrete that meets Article 450-2 of the *Standard Specifications* for drilled-in piles. Use untreated timber with a thickness of at least 3" and a bending stress of at least 1,000 psi for timber lagging.

Unless required otherwise in the contract, produce panels with a smooth flat final finish that meets Article 1077-11 of the *Standard Specifications*. When noted in the plans, produce panels with an exposed aggregate finish that meets Article 1077-12 of the *Standard Specifications*. Produce panels within 1/4" of the panel dimensions shown in the accepted submittals. Damaged panels with excessive discoloration, chips or cracks as determined by the Engineer will be rejected.

For soldier pile walls with panels, galvanize piles in accordance with Section 1076 of the *Standard Specifications*. When noted in the plans, paint galvanized piles in accordance with Article 442-12 of the *Standard Specifications*. Apply the following system to paint galvanized piles gray with waterborne paints that meet Article 1080-11 of the *Standard*

Specifications. For painting galvanized piles other colors, contact the Materials and Tests (M&T) Unit for an appropriate paint system.

Coat : Color	Color	Dry/Wet Film Thickness (Mile	
	•	Min.	Max.
Intermediate	Brown	3.0 DFT	5.0 DFT
Stripe	White	4.0 WFT	7.0 WFT
Topcoat	Gray	2.0 DFT	4.0 DFT
Total		5.0 DFT	9.0 DFT

Store steel materials on blocking at least 12" above the ground and protect it at all times from damage; and when placing in the work make sure it is free from dirt, dust, loose mill scale, loose rust, paint, oil or other foreign materials. Load, transport, unload and store soldier pile wall materials so materials are kept clean and free of damage.

3.0 Preconstruction Requirements

A. Soldier Pile Wall Surveys

The Retaining Wall Plans show a plan view, typical sections, details, notes and an elevation or profile view (wall envelope) for each soldier pile wall. Before beginning soldier pile wall design, survey existing ground elevations shown in the plans and other elevations in the vicinity of soldier pile wall locations as needed. Based on these elevations, finished grades and actual soldier pile wall dimensions and details, submit revised wall envelopes for acceptance. Use accepted wall envelopes for design.

B. Soldier Pile Wall Designs

Submit 11 copies of working drawings and 3 copies of design calculations and a PDF copy of each for soldier pile wall designs at least 30 days before the preconstruction meeting. Do not begin soldier pile wall construction until a design submittal is accepted.

Use a prequalified Cantilever Wall Design Consultant to design soldier pile walls. Provide designs sealed by a Design Engineer approved as a Geotechnical Engineer (key person) for the Cantilever Wall Design Consultant.

Design soldier pile walls in accordance with the plans and Article 11.8 of the AASHTO LRFD Bridge Design Specifications unless otherwise required. Design soldier pile walls for seismic if walls are located in seismic zone 2 based on Figure 2-1 of the Structure Design Manual. Design soldier pile walls for a maximum deflection of 2" or 1.5% of H, whichever is less, with H as shown in the plans.

When noted in the plans, design soldier pile walls for a live load (traffic) surcharge of 250 lb/sf in accordance with Article 11.5.5 of the AASHTO LRFD specifications. For steel beam guardrail with 8 ft posts above soldier pile walls, analyze walls for a

horizontal load (P_{H1}) of 300 lb/ft of wall in accordance with Figure 3.11.6.3-2(a) of the AASHTO LRFD specifications. For concrete barrier rail above soldier pile walls, analyze walls for a P_{H1} of 500 lb/ft of wall in accordance with Figure 3.11.6.3-2(a).

Use a maximum H-pile spacing of 10 ft. At the Contractor's option, use driven or drilled-in piles for soldier pile walls with concrete facing unless otherwise required. For soldier pile walls with panels, use drilled-in piles unless noted otherwise in the plans. Use concrete or grout for embedded portions of drilled-in piles. Install drilled-in piles by excavating holes with diameters that will result in at least 3" of clearance all around piles.

Provide temporary support of excavations for excavations more than 4 ft deep and timber lagging in accordance with the AASHTO Guide Design Specifications for Bridge Temporary Works. At the Contractor's option and when noted in the plans, provide temporary slopes instead of temporary support of excavations. Do not extend temporary slopes outside right-of-way or easement limits. Except for fill sections or when using temporary slopes, backfill voids behind panels, lagging and piles with No. 57 stone. Place separation geotextile between No. 57 stone and overlying fill or pavement sections except when concrete pavement, full depth asphalt or cement treated base is placed directly on stone.

At the Contractor's option, use panels or concrete facing unless required otherwise in the plans. Design panels and concrete facing in accordance with the plans and Section 5 of the AASHTO LRFD Bridge Design Specifications. Provide reinforcing steel of sufficient density to satisfy Article 5.7.3.4 of the AASHTO LRFD specifications. Attach concrete facing to front of H-piles with welded stud shear connectors. Use panels or concrete facing at least 6" thick and extend facing at least 6" above where the grade intersects back of concrete facing unless required otherwise in the plans.

Use No. 57 stone for aggregate leveling pads. Use 6" thick leveling pads beneath panels and concrete facing. Unless required otherwise in the plans, embed top of leveling pads at least 12" below bottom of walls shown in the plans.

Provide wall drainage systems consisting of geocomposite drain strips, drains and outlet components. Place drain strips with a horizontal spacing of no more than 10 ft and center strips between adjacent piles. Attach drain strips to front of timber lagging or back of panels or concrete facing and connect strips to leveling pads. Locate a continuous aggregate shoulder drain along the base of panels or concrete facing in front of piles and leveling pads. Provide drains and outlet components in accordance with Standard Drawing No. 816.02 of the *Roadway Standard Drawings*.

Unless required otherwise in the plans, use cast-in-place reinforced concrete coping at top of soldier pile walls with panels. Extend coping at least 6" above where the grade intersects back of coping unless required otherwise in the plans. Use coping dimensions shown in the plans. At the Contractor's option, connect coping to panels with dowels or extend coping down back of panels. When concrete barrier rail is required above soldier pile walls, use concrete barrier rail with moment slab as shown

189

in the plans.

Submit working drawings and design calculations for acceptance in accordance with Article 105-2 of the *Standard Specifications*. Submit working drawings showing plan views, wall profiles with pile locations, typical sections and details of piles, drainage, temporary support, leveling pads, panels and concrete facing. If necessary, include details on working drawings for coping, concrete barrier rail with moment slab and obstructions extending through walls or interfering with piles, barriers or moment slabs. Submit design calculations including deflection calculations for each wall section with different surcharge loads, geometry or material parameters. Include analysis of temporary conditions in design calculations. When designing soldier pile walls with computer software, a hand calculation is required for the tallest wall section.

C. Soldier Pile Wall Construction Plan

Submit 4 copies and a PDF copy of a soldier pile wall construction plan at least 30 days before the preconstruction meeting. Do not begin soldier pile wall construction until the construction plan submittal is accepted. Provide project specific information in the soldier pile wall construction plan including a detailed construction sequence. For driven piles, submit proposed pile driving methods and equipment in accordance with Subarticle 450-3(D)(2) of the *Standard Specifications*. For drilled-in piles, submit installation details including drilling equipment and methods for stabilizing and filling holes. Provide details in the construction plan of excavations including temporary support and any other information shown in the plans or requested by the Engineer.

If alternate construction procedures are proposed or necessary, a revised soldier pile wall construction plan submittal may be required. If the work deviates from the accepted submittal without prior approval, the Engineer may suspend soldier pile wall construction until a revised plan is accepted.

D. Preconstruction Meeting

Before starting soldier pile wall construction, hold a preconstruction meeting to discuss the construction and inspection of the soldier pile walls. Schedule this meeting after all soldier pile wall submittals have been accepted. The Resident or Bridge Maintenance Engineer, Bridge Construction Engineer, Geotechnical Operations Engineer, Contractor and Cantilever Wall Contractor Superintendent will attend this preconstruction meeting.

4.0 Construction Methods

Control drainage during construction in the vicinity of soldier pile walls. Direct run off away from soldier pile walls and areas above and behind walls. Contain and maintain No. 57 stone and backfill and protect material from erosion.

Notify the Engineer before blasting in the vicinity of soldier pile walls. Perform blasting in accordance with the contract. Unless required otherwise in the plans, install foundations located behind soldier pile walls before beginning wall construction if the horizontal

distance to the closest foundation is less than the height of the tallest wall section.

Install soldier pile walls in accordance with the accepted submittals and as directed. Do not excavate behind soldier pile walls unless a temporary slope is shown in the accepted submittals. If overexcavation occurs and is not approved, repair walls with an approved method and a revised soldier pile wall design or construction plan may be required.

A. Piles

If a temporary slope is shown in the accepted submittals, excavate the slope before installing piles. Otherwise, install piles before excavating for soldier pile walls. Weld stud shear connectors to piles in accordance with Article 1072-6 of the *Standard Specifications*.

Install piles within 1" of horizontal and vertical alignment shown in the accepted submittals and with no negative batter (piles leaning forward). Minimize alignment variations between piles for soldier pile walls with concrete facing since variations can result in thicker concrete facing in some locations in order to provide the minimum required facing thickness elsewhere. Locate piles so the minimum required concrete facing thickness, if applicable, and roadway clearances are maintained for variable pile alignments.

Install piles with the minimum required embedment in accordance with Subarticles 450-3(D) and 450-3(E) of the *Standard Specifications*. Piles may be installed with a vibratory hammer as approved by the Engineer. Do not splice piles. If necessary, cut off piles at elevations shown in the accepted submittals along a plane normal to the pile axis.

Use pile excavation to install drilled-in piles. If overexcavation occurs, fill to required elevations with No. 57 stone before setting piles. After filling holes with concrete or grout to the elevations shown in the accepted submittals, remove any fluids and fill remaining portions of holes with flowable fill. Cure concrete or grout at least 7 days before excavating.

Notify the Engineer if refusal is reached before pile excavation or driven piles attain the minimum required embedment. When this occurs, a revised soldier pile wall design or construction plan submittal may be required.

B. Excavation

If a temporary slope is shown in the accepted submittals, excavate the slope as shown. Otherwise, excavate in front of piles from the top down in accordance with the accepted submittals. Excavate in staged horizontal lifts with a maximum height of 5 ft. Use timber lagging or an alternate approved method for temporary support of excavations in accordance with the accepted submittals.

Install temporary support within 24 hours of excavating each lift unless otherwise approved. The installation may be delayed if it can be demonstrated that delays will

not adversely affect excavation stability. If excavation faces will be exposed for more than 24 hours, use polyethylene sheets anchored at top and bottom of lifts to protect excavation faces from changes in moisture content.

If an excavation becomes unstable at any time, suspend soldier pile wall construction and temporarily stabilize the excavation by immediately placing an earth berm up against the unstable excavation face. When this occurs, repair walls with an approved method and a revised soldier pile wall design or construction plan may be required.

Remove flowable fill and material in between piles as necessary to install timber lagging. Position lagging with at least 3" of contact in the horizontal direction between the lagging and pile flanges. Do not excavate the next lift until temporary support for the current lift is accepted.

C. Wall Drainage Systems

Install wall drainage systems as shown in the accepted submittals and in accordance with Section 816 of the *Standard Specifications*. Place geocomposite drain strips with the geotextile side facing away from wall faces. Secure drain strips so strips are in continuous contact with surfaces to which they are attached and allow for full flow the entire height of soldier pile walls. Discontinuous drain strips are not allowed. If splices are needed, overlap drain strips at least 12" so flow is not impeded. Connect drain strips to leveling pads by embedding strip ends at least 4" into No. 57 stone.

D. Leveling Pads, Panels, Coping and Concrete Facing

Construct aggregate leveling pads at elevations and with dimensions shown in the accepted submittals. Compact leveling pads with a vibratory compactor to the satisfaction of the Engineer.

Set panels against pile flanges as shown in the accepted submittals. Position panels with at least 2" of contact in the horizontal direction between the panels and pile flanges. If contact cannot be maintained, remove panels, fill gaps with joint filler and reset panels. Securely support panels until enough No. 57 stone or backfill is placed to hold panels in place.

Construct coping as shown in the accepted submittals and Subarticle 452-3(C) of the *Standard Specifications*. When single faced precast concrete barrier is required in front of and against soldier pile walls, stop coping just above barrier so coping does not interfere with placing barrier up against wall faces.

Construct concrete facing in accordance with the accepted submittals and Section 420 of the *Standard Specifications*. Do not remove forms until concrete attains a compressive strength of at least 2,400 psi. Unless required otherwise in the plans, provide a Class 2 surface finish for concrete facing that meets Subarticle 420-17(F) of the *Standard Specifications*. Construct concrete facing joints at a maximum spacing of 30 ft unless required otherwise in the plans. Make 1/2" thick expansion joints that meet Article 420-10 of the *Standard Specifications* for every third joint and 1/2" deep

grooved contraction joints that meet Subarticle 825-11(B) for the remaining joints. Stop reinforcing steel for concrete facing 2" on either side of expansion joints.

If a brick veneer is required, construct brick masonry in accordance with Section 830 of the *Standard Specifications*. Anchor brick veneers to soldier pile walls with approved brick to concrete type anchors in accordance with the manufacturer's instructions. Space anchors no more than 16" apart in the vertical direction and no more than 32" apart in the horizontal direction with each row of anchors staggered 16" from the row above and below.

Seal joints above and behind soldier pile walls between coping or concrete facing and ditches or concrete slope protection with silicone sealant.

E. Backfill

For fill sections or if a temporary slope is shown in the accepted submittals, backfill behind piles, panels and concrete facing in accordance with Article 410-8 of the *Standard Specifications*. Otherwise, backfill voids behind panels, lagging and piles with No. 57 stone as shown in the accepted submittals. Ensure all voids between panels and lagging and between piles, lagging and excavation faces are filled with No. 57 stone. Compact stone to the satisfaction of the Engineer. When separation geotextiles are required, overlap adjacent geotextiles at least 18" and hold separation geotextiles in place with wire staples or anchor pins as needed.

F. Pile Coatings

For soldier pile walls with panels, clean exposed galvanized or painted surfaces of piles with a 2,500 psi pressure washer after wall construction is complete. Repair galvanized surfaces that are exposed and damaged in accordance with Article 1076-7 of the *Standard Specifications*. Repair painted surfaces that are exposed and damaged by applying 4.0 to 7.0 mils wet film thickness of a topcoat to damaged areas with brushes or rollers. Use the same paint for damaged areas that was used for the topcoat when painting piles initially. Feather or taper topcoats in damaged areas to be level with surrounding areas.

5.0 MEASUREMENT AND PAYMENT

Soldier Pile Retaining Walls will be measured and paid in square feet. Soldier pile walls will be measured as the square feet of exposed wall face area with the height equal to the difference between top and bottom of wall elevations. Define "top of wall" as top of coping or top of panels or concrete facing for soldier pile walls without coping. Define "bottom of wall" as shown in the plans and no measurement will be made for portions of soldier pile walls embedded below bottom of wall elevations.

The contract unit price for Soldier Pile Retaining Walls will be full compensation for providing designs, submittals, labor, tools, equipment and soldier pile wall materials, installing piles, excavating, backfilling, hauling and removing excavated materials and supplying temporary support of excavations, wall drainage systems, leveling pads, panels,

193

concrete facing, No. 57 stone, geotextiles and any incidentals necessary to construct soldier pile walls. The contract unit price for *Soldier Pile Retaining Walls* will also be full compensation for coping, pile coatings and brick veneers, if required. No additional payment will be made and no extension of completion date or time will be allowed for repairing overexcavations or unstable excavations or thicker concrete facing.

The contract unit price for Soldier Pile Retaining Walls does not include the cost for ditches, fences, handrails, barrier or guardrail associated with soldier pile walls as these items will be paid for elsewhere in the contract.

Where it is necessary to provide backfill material behind soldier pile walls from sources other than excavated areas or borrow sources used in connection with other work in the contract, payment for furnishing and hauling such backfill material will be paid as extra work in accordance with Article 104-7 of the *Standard Specifications*. Placing and compacting such backfill material is not considered extra work but is incidental to the work being performed.

Payment will be made under:

Pay Item
Soldier Pile Retaining Walls

Pay Unit Square Foot

PILE DRIVING CRITERIA

(9-18-12)

Revise the 2012 Standard Specifications as follows:

Page 4-72, Subarticle 450-3(D)(3) Required Driving Resistance, lines 26-30, delete first paragraph and replace with the following:

The Engineer will determine if the proposed pile driving methods and equipment are acceptable and provide the blows/ft and equivalent set for the required driving resistance noted in the plans, i.e., "pile driving criteria" except for structures with pile driving analyzer (PDA) testing. For structures with PDA testing, provide pile driving criteria for any bents and end bents with piles in accordance with Subarticle 450-3(F)(4).

Page 4-73, Subarticle 450-3(F) Pile Driving Analyzer, lines 45-48, delete third paragraph and replace with the following:

The Engineer will complete the review of the proposed pile driving methods and equipment within 7 days of receiving PDA reports and pile driving criteria. Do not place concrete for caps or footings on piles until PDA reports and pile driving criteria have been accepted.

Page 4-75, Subarticle 450-3(F) Pile Driving Analyzer, add the following:

(4) Pile Driving Criteria

Analyze pile driving with the GRL Wave Equation Analysis Program (GRLWEAP) manufactured by Pile Dynamics, Inc. Use the same PDA Consultant that provides PDA

reports to perform GRLWEAP analyses and develop pile driving criteria. Provide driving criteria sealed by an engineer approved as a Project Engineer (key person) for the same PDA Consultant.

Analyze pile driving so driving stresses, energy transfer, ram stroke and blows/ft from PDA testing and resistances from CAPWAP analyses correlate to GRLWEAP models. Provide pile driving criteria for each combination of required driving resistance and pile length installed for all pile types and sizes. Submit 2 copies of pile driving criteria with PDA reports. Include the following for driving criteria:

- (a) Project information in accordance with Subarticle 450-3(F)(3)(a)
- (b) Table showing blows/ft and equivalent set vs. either stroke for multiple strokes in increments of 6" or bounce chamber pressure for multiple pressures in increments of 1 psi
- (c) Maximum stroke or blows/ft or pile cushion requirements to prevent overstressing piles as needed
- (d) GRLWEAP software version information
- (e) PDF copy of all pile driving criteria and executable GRLWEAP input and output files

Page 4-76, Article 450-4 MEASUREMENT AND PAYMENT, add the following:

The contract unit price for *PDA Testing* will also be full compensation for performing GRLWEAP analysis and developing and providing pile driving criteria.