PROJECT SPECIAL PROVISIONS Project 17BP.11.H.3 Caldwell & Wilkes Counties ## **SCOPE OF WORK** This work shall consist of furnishing all labor, equipment, and materials to rehabilitate specific elements of existing bridge structures and overlay existing bridge decks with latex modified concrete as directed in the plans. Work includes: portable lighting, scarification and removal of existing asphalt wearing surfaces on bridge decks (where applicable), existing deck surface preparation by removing deteriorated concrete using scarification and hydro-demolition methods, batching and placement of latex modified concrete overlay, milling and resurfacing of roadway approaches, disposal of waste materials, existing joint demolition and installation of foam joint seals, grooving bridge floors, asphalt paving for bridge approaches, pavement markings, seeding and mulching all grassed areas disturbed; and all incidental items necessary to complete the project as specified and shown on the plans. No separate payment will be made for portable lighting as the cost of such is incidental to the work being performed. Work will be performed on existing bridges at the following locations: 1.) Caldwell County Bridge #008 –US 64 over Setzer Creek (Latex Modified Concrete Deck Overlay – Very Early Strength) 2.) Caldwell County Bridge #013 – US 321 NBL over SR 1002 (Latex Modified Concrete Deals Overlay, Very Early Strength) Deck Overlay – Very Early Strength) 3.) Caldwell County Bridge #014 - US 321 SBL over SR 1002 (Latex Modified Concrete Deck Overlay - Very Early Strength) 4.) Wilkes County Bridge #056 - NC 268 over Beaver Creek (Latex Modified Concrete Deck Overlay - Very Early Strength) Contractor shall provide all necessary access; provide all traffic control; provide all staging areas, material storage, waste disposal, provide environmental controls to limit loss of materials from collection of hydro-demolition water and paint removal, sawing equipment, and chipping equipment; and all else necessary to complete the work. The contractor shall be responsible for fulfilling all requirements of the NCDOT Standard Specifications for Roads and Structures dated January 2012, except as otherwise specified herein. #### 1.0 GENERAL Submit working drawings in accordance with Article 105-2 of the *Standard Specifications* and this provision. For this provision, "submittals" refers to only those listed in this provision. The list of submittals contained herein does not represent a list of required submittals for the project. Submittals are only necessary for those items as required by the contract. Make submittals that are not specifically noted in this provision directly to the Resident Engineer. Either the Structure Design Unit or the Geotechnical Engineering Unit or both units will jointly review submittals. If a submittal contains variations from plan details or specifications or significantly affects project cost, field construction or operations, discuss the submittal with and submit all copies to the Resident Engineer. State the reason for the proposed variation in the submittal. To minimize review time, make sure all submittals are complete when initially submitted. Provide a contact name and information with each submittal. Direct any questions regarding submittal requirements to the Resident Engineer, Structure Design Unit contacts or the Geotechnical Engineering Unit contacts noted below. In order to facilitate in-plant inspection by NCDOT and approval of working drawings, provide the name, address and telephone number of the facility where fabrication will actually be done if different than shown on the title block of the submitted working drawings. This includes, but is not limited to, precast concrete items, prestressed concrete items and fabricated steel or aluminum items. #### 2.0 ADDRESSES AND CONTACTS For submittals to the Structure Design Unit, use the following addresses: Via US mail: Mr. G. R. Perfetti, P. E. State Bridge Design Engineer North Carolina Department of Transportation Structure Design Unit 1581 Mail Service Center Raleigh, NC 27699-1581 Attention: Mr. P. D. Lambert, P. E. Via other delivery service: Mr. G. R. Perfetti, P. E. State Bridge Design Engineer North Carolina Department of Transportation Structure Design Unit 1000 Birch Ridge Drive Raleigh, NC 27610 Attention: Mr. P. D. Lambert, P. E. Submittals may also be made via email. Send submittals to: plambert@ncdot.gov (Paul Lambert) Send an additional e-copy of the submittal to the following address: igaither@ncdot.gov (James Gaither) For submittals to the Geotechnical Engineering Unit, use the following addresses: For projects in Divisions 1-7, use the following Eastern Regional Office address: Via US mail: Mr. K. J. Kim, Ph. D., P. E. Eastern Regional Geotechnical Manager North Carolina Department of Transportation Geotechnical Engineering Unit Eastern Regional Office 1570 Mail Service Center Raleigh, NC 27699-1570 Via other delivery service: Mr. K. J. Kim, Ph. D., P. E. Eastern Regional Geotechnical Manager North Carolina Department of Transportation Geotechnical Engineering Unit Eastern Regional Office 3301 Jones Sausage Road, Suite 100 Garner, NC 27529 For projects in Divisions 8-14, use the following Western Regional Office address: Via US mail: Mr. John Pilipchuk, L. G., P. E. Western Regional Geotechnical Manager North Carolina Department of Transportation Geotechnical Engineering Unit Western Regional Office 5253 Z Max Boulevard Harrisburg, NC 28075 Via other delivery service: Mr. John Pilipchuk, L. G., P. E. Western Region Geotechnical Manager North Carolina Department of Transportation Geotechnical Engineering Unit Western Regional Office 5253 Z Max Boulevard Harrisburg, NC 28075 The status of the review of structure-related submittals sent to the Structure Design Unit can be viewed from the Unit's web site, via the "Contractor Submittal" link. Direct any questions concerning submittal review status, review comments or drawing markups to the following contacts: **Primary Structures Contact:** Paul Lambert (919) 707 - 6407 (919) 250 - 4082 facsimile plambert@ncdot.gov **Secondary Structures Contacts:** James Gaither (919)707 - 6409 Eastern Regional Geotechnical Contact (Divisions 1-7): K. J. Kim (919) 662 - 4710 (919) 662 - 3095 facsimile kkim@ncdot.gov Western Regional Geotechnical Contact (Divisions 8-14): John Pilipchuk (704) 455 – 8902 (704) 455 – 8912 facsimile jpilipchuk@ncdot.gov #### 3.0 SUBMITTAL COPIES Furnish one complete copy of each submittal, including all attachments, to the Resident Engineer. At the same time, submit the number of hard copies shown below of the same complete submittal directly to the Structure Design Unit and/or the Geotechnical Engineering Unit. The first table below covers "Structure Submittals". The Resident Engineer will receive review comments and drawing markups for these submittals from the Structure Design Unit. The second table in this section covers "Geotechnical Submittals". The Resident Engineer will receive review comments and drawing markups for these submittals from the Geotechnical Engineering Unit. Unless otherwise required, submit one set of supporting calculations to either the Structure Design Unit or the Geotechnical Engineering Unit unless both units require submittal copies in which case submit a set of supporting calculations to each unit. Provide additional copies of any submittal as directed. # STRUCTURE SUBMITTALS | Submittal | Copies
Required by
Structure
Design Unit | Copies Required by Geotechnical Engineering Unit | Contract Reference
Requiring Submittal ¹ | |--|---|--|--| | Arch Culvert Falsework | 5 | 0 | Plan Note, SN Sheet & "Falsework and Formwork" | | Box Culvert Falsework ⁷ | 5 | 0 | Plan Note, SN Sheet & "Falsework and Formwork" | | Cofferdams | 6 | 2 | Article 410-4 | | Foam Joint Seals ⁶ | 9 | 0 | "Foam Joint Seals" | | Expansion Joint Seals (hold down plate type with base angle) | 9 | 0 | "Expansion Joint Seals" | | Expansion Joint Seals (modular) | 2, then 9 | 0 | "Modular Expansion Joint
Seals" | | Expansion Joint Seals (strip seals) | 9 | 0 | "Strip Seals" | | | 33 | | | |--|---------------------------|---|--| | Falsework & Forms ² (substructure) | 8 | 0 | Article 420-3 & "Falsework and Formwork" | | Falsework & Forms (superstructure) | 8 | 0 | Article 420-3 & "Falsework and Formwork" | | Girder Erection over Railroad | 5 | 0 | Railroad Provisions | | Maintenance and Protection of
Traffic Beneath Proposed
Structure | 8 | 0 | "Maintenance and
Protection of Traffic
Beneath Proposed Structure
at Station" | | Metal Bridge Railing | 8 | 0 | Plan Note | | Metal Stay-in-Place Forms | 8 | 0 | Article 420-3 | | Metalwork for Elastomeric
Bearings ^{4,5} | 7 | 0 | Article 1072-8 | | Miscellaneous Metalwork ^{4,5} | 7 | 0 | Article 1072-8 | | Optional Disc Bearings 4 | 8 | 0 | "Optional Disc Bearings" | | Overhead and Digital Message
Signs (DMS) (metalwork and
foundations) | 13 | 0 | Applicable Provisions | | Placement of Equipment on Structures (cranes, etc.) | 7 | 0 | Article 420-20 | | Pot Bearings ⁴ | 8 | 0 | "Pot Bearings" | | Precast Concrete Box Culverts | 2, then 1 reproducible | 0 | "Optional Precast Reinforced Concrete Box Culvert at Station" | | Prestressed Concrete Cored Slab (detensioning sequences) ³ | 6 | 0 | Article 1078-11 | | Prestressed Concrete Deck Panels | 6 and
1 reproducible | 0 | Article 420-3 | | Prestressed Concrete Girder (strand elongation and detensioning sequences) | 6 | 0 | Articles 1078-8 and 1078-
11 | | Removal of Existing
Structure over Railroad | 5 | 0 | Railroad Provisions | | Revised Bridge Deck Plans
(adaptation to prestressed deck
panels) | 2, then
1 reproducible | 0 | Article 420-3 | | Revised Bridge Deck Plans (adaptation to modular expansion joint seals) | 2, then
1 reproducible | 0 | "Modular Expansion Joint
Seals" | |---|---------------------------|---|---| | Sound Barrier Wall (precast items) | 10 | 0 | Article 1077-2 & "Sound Barrier Wall" | | Sound Barrier Wall Steel Fabrication Plans ⁵ | 7 | 0 | Article 1072-8 & "Sound Barrier Wall" | | Structural Steel ⁴ | 2, then 7 | 0 | Article 1072-8 | | Temporary Detour Structures | 10 | 2 | Article 400-3 & "Construction, Maintenance and Removal of Temporary Structure at Station" | | TFE Expansion Bearings ⁴ | 8 | 0 | Article 1072-8 | #### **FOOTNOTES** - 1. References are provided to help locate the part of the contract where the submittals are required. References in quotes refer to the provision by that name. Articles refer to the *Standard Specifications*. - 2. Submittals for these items are necessary only when required by a note on plans. - 3. Submittals for these items may not be required. A list of pre-approved sequences is available from the producer or the Materials & Tests Unit. - 4. The fabricator may submit these items directly to the Structure Design Unit. - 5. The two sets of preliminary submittals required by Article 1072-8 of the *Standard Specifications* are not required for these items. - 6. Submittals for Fabrication Drawings are not required. Submittals for Catalogue Cuts of Proposed Material are required. See Section 5.A of the referenced provision. - 7. Submittals are necessary only when the top slab thickness is 18" or greater. # **GEOTECHNICAL SUBMITTALS** | Submittal | Copies Required by Geotechnical Engineering Unit | Copies
Required by
Structure
Design Unit | Contract Reference
Requiring Submittal ¹ | |---|--|---|--| | Drilled Pier Construction Plans ² | 1 | 0 | Subarticle 411-3(A) | | Crosshole Sonic Logging (CSL)
Reports ² | 1 | 0 | Subarticle 411-5(A)(2) | | Pile Driving Equipment Data
Forms ^{2,3} | 1 | 0 | Subarticle 450-3(D)(2) | | Pile Driving Analyzer (PDA)
Reports ² | 1 | 0 | Subarticle 450-3(F)(3) | | Retaining Walls ⁴ | 8 drawings,
2 calculations | 2 drawings | Applicable Provisions | | Temporary Shoring ⁴ | 5 drawings,
2 calculations | 2 drawings | "Temporary Shoring" & "Temporary Soil Nail Walls" | #### **FOOTNOTES** - 1. References are provided to help locate the part of the contract where the submittals are required. References in quotes refer to the provision by that name. Subarticles refer to the *Standard Specifications*. - 2. Submit one hard copy of submittal to the Resident or Bridge Maintenance Engineer. Submit a second copy of submittal electronically (PDF via email) or by facsimile, US mail or other delivery service to the appropriate Geotechnical Engineering Unit regional office. Electronic submission is preferred. - 3. The Pile Driving Equipment Data Form is available from: www.ncdot.org/doh/preconstruct/highway/geotech/formdet/ See second page of form for submittal instructions. Electronic copy of submittal is required. See referenced provision (9-30-11) #### 4.0 DESCRIPTION Use this Special Provision as a guide to develop temporary works submittals required by the Standard Specifications or other provisions; no additional submittals are required herein. Such temporary works include, but are not limited to, falsework and formwork. Falsework is any temporary construction used to support the permanent structure until it becomes self-supporting. Formwork is the temporary structure or mold used to retain plastic or fluid concrete in its designated shape until it hardens. Access scaffolding is a temporary structure that functions as a work platform that supports construction personnel, materials, and tools, but is not intended to support the structure. Scaffolding systems that are used to temporarily support permanent structures (as opposed to functioning as work platforms) are considered to be falsework under the definitions given. Shoring is a component of falsework such as horizontal, vertical, or inclined support members. Where the term "temporary works" is used, it includes all of the temporary facilities used in bridge construction that do not become part of the permanent structure. Design and construct safe and adequate temporary works that will support all loads imposed and provide the necessary rigidity to achieve the lines and grades shown on the plans in the final structure. #### 5.0 MATERIALS Select materials suitable for temporary works; however, select materials that also ensure the safety and quality required by the design assumptions. The Engineer has authority to reject material on the basis of its condition, inappropriate use, safety, or nonconformance with the plans. Clearly identify allowable loads or stresses for all materials or manufactured devices on the plans. Revise the plan and notify the Engineer if any change to materials or material strengths is required. ## 6.0 DESIGN REQUIREMENTS # A. Working Drawings Provide working drawings for items as specified in the contract, or as required by the Engineer, with design calculations and supporting data in sufficient detail to permit a structural and safety review of the proposed design of the temporary work. On the drawings, show all information necessary to allow the design of any component to be checked independently as determined by the Engineer. When concrete placement is involved, include data such as the drawings of proposed sequence, rate of placement, direction of placement, and location of all construction joints. Submit the number of copies as called for by the contract. When required, have the drawings and calculations prepared under the guidance of, and sealed by, a North Carolina Registered Professional Engineer who is knowledgeable in temporary works design. If requested by the Engineer, submit with the working drawings manufacturer's catalog data listing the weight of all construction equipment that will be supported on the temporary work. Show anticipated total settlements and/or deflections of falsework and forms on the working drawings. Include falsework footing settlements, joint take-up, and deflection of beams or girders. Falsework hangers that support concentrated loads and are installed at the edge of thin top flange concrete girders (such as bulb tee girders) shall be spaced so as not to exceed 75% of the manufacturer's stated safe working load. Use of dual leg hangers (such as Meadow Burke HF-42 and HF-43) are not allowed on concrete girders with thin top flanges. Design the falsework and forms supporting deck slabs and overhangs on girder bridges so that there will be no differential settlement between the girders and the deck forms during placement of deck concrete. When staged construction of the bridge deck is required, detail falsework and forms for screed and fluid concrete loads to be independent of any previous deck pour components when the mid-span girder deflection due to deck weight is greater than 3/4". Note on the working drawings any anchorages, connectors, inserts, steel sleeves or other such devices used as part of the falsework or formwork that remains in the permanent structure. If the plan notes indicate that the structure contains the necessary corrosion protection required for a Corrosive Site, epoxy coat, galvanize or metalize these devices. Electroplating will not be allowed. Any coating required by the Engineer will be considered incidental to the various pay items requiring temporary works. Design falsework and formwork requiring submittals in accordance with the 1995 AASHTO Guide Design Specifications for Bridge Temporary Works except as noted herein. #### 1. Wind Loads Table 2.2 of Article 2.2.5.1 is modified to include wind velocities up to 110 mph. In addition, Table 2.2A is included to provide the maximum wind speeds by county in North Carolina. | Height Zone | Pressure, lb/ft ² for Indicated Wind Velocity, mph | | | | | |-------------------|---|----|----|-----|-----| | feet above ground | 70 | 80 | 90 | 100 | 110 | | 0 to 30 | 15 | 20 | 25 | 30 | 35 | | 30 to 50 | 20 | 25 | 30 | 35 | 40 | | 50 to 100 | 25 | 30 | 35 | 40 | 45 | | over 100 | 30 | 35 | 40 | 45 | 50 | Table 2.2 - Wind Pressure Values # 2. Time of Removal The following requirements replace those of Article 3.4.8.2. Do not remove forms until the concrete has attained strengths required in Article 420-16 of the Standard Specifications and these Special Provisions. Do not remove forms until the concrete has sufficient strength to prevent damage to the surface. Table 2.2A - Steady State Maximum Wind Speeds by Counties in North Carolina | COUNTY | 25 YR
(mph) | COUNTY | 25 YR
(mph) | COUNTY | 25 YR
(mph) | |------------|----------------|-------------|----------------|--------------|----------------| | Alamance | 70 | Franklin | 70 | Pamlico | 100 | | Alexander | 70 | Gaston | 70 | Pasquotank | 100 | | Alleghany | 70 | Gates | 90 | Pender | 100 | | Anson | 70 | Graham | 80 | Perquimans | 100 | | Ashe | 70 | Granville | 70 | Person | 70 | | Avery | 70 | Greene | 80 | Pitt | 90 | | Beaufort | 100 | Guilford | 70 | Polk | 80 | | Bertie | 90 | Halifax | 80 | Randolph | 70 | | Bladen | 90 | Harnett | 70 | Richmond | 70 | | Brunswick | 100 | Haywood | 80 | Robeson | 80 | | Buncombe | 80 | Henderson | 80 |
Rockingham | 70 | | Burke | 70 | Hertford | 90 | Rowan | 70 | | Cabarrus | 70 | Hoke | 70 | Rutherford | 70 | | Caldwell | 70 | Hyde | 110 | Sampson | 90 | | Camden | 100 | Iredell | 70 | Scotland | 70 | | Carteret | 110 | Jackson | 80 | Stanley | 70 | | Caswell | 70 | Johnston | 80 | Stokes | 70 | | Catawba | 70 | Jones | 100 | Surry | 70 | | Cherokee | 80 | Lee | 70 | Swain | 80 | | Chatham | 70 | Lenoir | 90 | Transylvania | 80 | | Chowan | 90 | Lincoln | 70 | Tyrell | 100 | | Clay | 80 | Macon | 80 | Union | 70 | | Cleveland | 70 | Madison | 80 | Vance | 70 | | Columbus | 90 | Martin | 90 | Wake | 70 | | Craven | 100 | McDowell | 70 | Warren | 70 | | Cumberland | 80 | Mecklenburg | 70 | Washington | 100 | | Currituck | 100 | Mitchell | 70 | Watauga | 70 | | Dare | 110 | Montgomery | 70 | Wayne | 80 | | Davidson | 70 | Moore | 70 | Wilkes | 70 | | Davie | 70 | Nash | 80 | Wilson | 80 | | Duplin | 90 | New Hanover | 100 | Yadkin | 70 | | Durham | 70 | Northampton | 80 | Yancey | 70 | | Edgecombe | 80 | Onslow | 100 | | | | Forsyth | 70 | Orange | 70 | | | # B. Review and Approval The Engineer is responsible for the review and approval of temporary works' drawings. Submit the working drawings sufficiently in advance of proposed use to allow for their review, revision (if needed), and approval without delay to the work. The time period for review of the working drawings does not begin until complete drawings and design calculations, when required, are received by the Engineer. Do not start construction of any temporary work for which working drawings are required until the drawings have been approved. Such approval does not relieve the Contractor of the responsibility for the accuracy and adequacy of the working drawings. # 7.0 CONSTRUCTION REQUIREMENTS All requirements of Section 420 of the Standard Specifications apply. Construct temporary works in conformance with the approved working drawings. Ensure that the quality of materials and workmanship employed is consistent with that assumed in the design of the temporary works. Do not weld falsework members to any portion of the permanent structure unless approved. Show any welding to the permanent structure on the approved construction drawings. Provide tell-tales attached to the forms and extending to the ground, or other means, for accurate measurement of falsework settlement. Make sure that the anticipated compressive settlement and/or deflection of falsework does not exceed 1 inch. For cast-in-place concrete structures, make sure that the calculated deflection of falsework flexural members does not exceed 1/240 of their span regardless of whether or not the deflection is compensated by camber strips. ## A. Maintenance and Inspection Inspect and maintain the temporary work in an acceptable condition throughout the period of its use. Certify that the manufactured devices have been maintained in a condition to allow them to safely carry their rated loads. Clearly mark each piece so that its capacity can be readily determined at the job site. Perform an in-depth inspection of an applicable portion(s) of the temporary works, in the presence of the Engineer, not more than 24 hours prior to the beginning of each concrete placement. Inspect other temporary works at least once a month to ensure that they are functioning properly. Have a North Carolina Registered Professional Engineer inspect the cofferdams, shoring, sheathing, support of excavation structures, and support systems for load tests prior to loading. #### B. Foundations Determine the safe bearing capacity of the foundation material on which the supports for temporary works rest. If required by the Engineer, conduct load tests to verify proposed bearing capacity values that are marginal or in other high-risk situations. The use of the foundation support values shown on the contract plans of the permanent structure is permitted if the foundations are on the same level and on the same soil as those of the permanent structure. Allow for adequate site drainage or soil protection to prevent soil saturation and washout of the soil supporting the temporary works supports. If piles are used, the estimation of capacities and later confirmation during construction using standard procedures based on the driving characteristics of the pile is permitted. If preferred, use load tests to confirm the estimated capacities; or, if required by the Engineer conduct load tests to verify bearing capacity values that are marginal or in other high risk situations. The Engineer reviews and approves the proposed pile and soil bearing capacities. ## 8.0 REMOVAL Unless otherwise permitted, remove and keep all temporary works upon completion of the work. Do not disturb or otherwise damage the finished work. Remove temporary works in conformance with the contract documents. Remove them in such a manner as to permit the structure to uniformly and gradually take the stresses due to its own weight. # 9.0 METHOD OF MEASUREMENT Unless otherwise specified, temporary works will not be directly measured. ## 10.0 BASIS OF PAYMENT Payment at the contract unit prices for the various pay items requiring temporary works will be full compensation for the above falsework and formwork. # FOAM JOINT SEALS (9-30-11) #### **SEALS** Use preformed seals compatible with concrete and resistant to abrasion, oxidation, oils, gasoline, salt and other materials that are spilled on or applied to the surface. Use a resilient, UV stable, preformed, impermeable, flexible, expansion joint seal. The joint seal shall consist of low-density, closed cell, cross-linked polyethylene non-extrudable, foam. The joint seal shall contain no EVA (Ethylene Vinyl Acetate). Cell generation shall be achieved by being physically blown using nitrogen. No chemical blowing agents shall be used in the cell generation process. Use seals manufactured with grooves 1/8"± wide by 1/8"± deep and spaced between 1/4" and 1/2" apart along the bond surface running the length of the joint. Use seals with a depth that meets the manufacturer's recommendation, but is not less than 70% of the uncompressed width. Provide a seal designed so that, when compressed, the center portion of the top does not extend upward above the original height of the seal by more than 1/4". Provide a seal that has a working range of 30% tension and 60% compression and meets the requirements given below. | TEST | TEST METHOD | REQUIREMENT | |---------------------|--------------------------------|-----------------------------| | Tensile strength | ASTM D3575-08, Suffix T | 110 – 130 psi | | Compression Set | ASTM D1056 | 10% - 16% | | - | Suffix B, 2 hr recovery | 1070 - 1070 | | Water Absorption | ASTM D3575 | $< 0.03 \text{ lb/ft}^2$ | | Elongation at Break | ASTM D3575 | 180% - 210% | | Tear Strength | ASTM D624 (D3575-08, Suffix G) | 14 – 20 pli | | Б | ASTM D3575-08, | $1.8 - 2.2 \text{ lb/ft}^3$ | | Density | Suffix W, Method A | 1.6 – 2.2 10/11 | | Toxicity | ISO-10993.5 | Pass (not cytotoxic) | Have the top of the joint seal clearly shop marked. Inspect the joint seals upon receipt to ensure that the marks are clearly visible before installation. #### **BONDING ADHESIVE** Use a two component, 100% solid, modified epoxy adhesive supplied by the joint seal manufacturer that meets the requirements given below. | TEST | TEST METHOD | REQUIREMENT | |----------------------|---------------|----------------------| | Tensile strength | ASTM D638 | 3000 psi (min.) | | Compressive strength | ASTM D695 | 7000 psi (min.) | | Hardness | Shore D Scale | 75-85 psi | | Water Absorption | ASTM D570 | 0.25% by weight max. | | Elongation to Break | ASTM D638 | 5% (max.) | | Bond Strength | ASTM C882 | 2000 psi (min.) | Use an adhesive that is workable to 40°F. When installing in ambient air or surface temperatures below 40°F or for application on moist, difficult to dry concrete surfaces, use an adhesive specified by the manufacturer of the joint seal. ## **ELASTOMERIC CONCRETE** When specified in the plans, the elastomeric concrete shall not be placed until the reinforced concrete deck slab has cured for seven full days and reached a minimum strength of 3000 psi. Prepare the concrete surface within 48 hours prior to placing the elastomeric concrete. Before placing the elastomeric concrete, all concrete surfaces shall be thoroughly cleaned and dry. Sandblast the concrete surface in the blockout and clear the surface of all loose debris. Do not place the elastomeric concrete until the surface preparation is completed and approved. A manufacturer's representative shall be present when placing elastomeric concrete. Do not place elastomeric concrete if the ambient air or surface temperature is below 45°F. Prepare and apply a primer, as per manufacturer's recommendations, to all vertical concrete faces to be in contact with elastomeric concrete, and to areas specified by the manufacturer. Prepare, batch, and place the elastomeric concrete in accordance with the manufacturer's instructions. Place the elastomeric concrete in the areas specified on the plans while the primer is still tacky and within 2 hours after applying the primer. Trowel the elastomeric concrete to a smooth finish. #### **SAWING THE JOINT** The joint opening shall be initially formed to the width shown on the plans including the blockout for the elastomeric concrete. The elastomeric concrete shall cure a minimum of 2 days prior to sawing the elastomeric concrete to the final width and depth as specified in the plans. When sawing the joint to receive the foam seal, always use a rigid guide to control the saw in the desired direction. To control the saw and to produce a straight line as indicated on the plans, anchor and positively connect a template or a track to the bridge deck. Do not saw the joint by visual means such as a chalk line. Fill the holes used for holding the template or track to the deck with an approved, flowable non-shrink, non-metallic grout. Saw cut to
the desired width and depth in one or two passes of the saw by placing and spacing two metal blades on the saw shaft to the desired width for the joint opening. The desired depth is the depth of the seal plus 1/4" above the top of the seal plus approximately 1" below the bottom of the seal. An irregular bottom of sawed joint is permitted as indicated on the plans. Grind exposed corners on saw cut edges to a 1/4" chamfer. Saw cut a straight joint, centered over the formed opening and to the desired width specified in the plans. Prevent any chipping or damage to the sawed edges of the joint. Remove any staining or deposited material resulting from sawing with a wet blade to the satisfaction of the Engineer. # PREPARATION OF SAWED JOINT FOR SEAL INSTALLATION After sawing the joint, the Engineer will thoroughly inspect the sawed joint opening for spalls, popouts, cracks, etc. All necessary repairs will be made by the Contractor prior to blast cleaning and installing the seal. Clean the joints by sandblasting with clean dry sand immediately before placing the bonding agent. Sandblast the joint opening to provide a firm, clean joint surface free of curing compound, loose material and any foreign matter. Sandblast the joint opening without causing pitting or uneven surfaces. The aggregate in the elastomeric concrete may be exposed after sandblasting. After blasting, either brush the surface with clean brushes made of hair, bristle or fiber, blow the surface with compressed air, or vacuum the surface until all traces of blast products and abrasives are removed from the surface, pockets, and corners. If nozzle blasting is used to clean the joint opening, use compressed air that does not contain detrimental amounts of water or oil. Examine the blast cleaned surface and remove any traces of oil, grease or smudge deposited in the cleaning operations. Bond the seal to the blast cleaned surface on the same day the surface is blast cleaned. #### **SEAL INSTALLATION** Install the joint seal according to the manufacturer's procedures and recommendations and as recommended below. Do not install the joint seal if the ambient air or surface temperature is below 45°F. Have a manufacturer's certified trained factory representative present during the installation of the first seal of the project. Before installing the joint seal, check the uninstalled seal length to insure the seal is the same length as the deck opening. When the joint seal requires splicing, use the heat welding method by placing the joint material ends against a teflon heating iron of 425-475°F for 7 - 10 seconds, then pressing the ends together tightly. Do not test the welding until the material has completely cooled. Begin installation by protecting the top edges of the concrete deck adjacent to the vertical walls of the joint as a means to minimize clean up. After opening both cans of the bonding agent, stir each can using separate stirring rods for each component to prevent premature curing of the bonding agent. Pour the two components, at the specified mixing ratio, into a clean mixing bucket. Mix the components with a low speed drill (400 rpm max.) until a uniform gray color is achieved without visible marbling. Apply bonding agent to both sides of the elastomeric concrete as well as both sides of the joint seal, making certain to completely fill the grooves with epoxy. With gloved hands, compress the joint seal and with the help of a blunt probe, push the seal into the joint opening until the seal is recessed approximately 1/4" below the surface. When pushing down on the joint seal, apply pressure only in a downward direction. Do not push the joint seal into the joint opening at an angle that would stretch the material. Seals that are stretched during installation shall be removed and rejected. Once work on placing a seal begins, do not stop until it is completed. Clean the excess epoxy from the top of the joint seal immediately with a trowel. Do not use solvents or any cleaners to remove the excess epoxy from the top of the seal. Remove the protective cover at the joint edges and check for any excess epoxy on the surface. Remove excess epoxy with a trowel, the use of solvents or any cleaners will not be allowed. The installed system shall be watertight and will be monitored until final inspection and approval. Do not place pavement markings on top of foam joint seals. #### **BASIS OF PAYMENT** Payment for all foam joint seals will be at the lump sum contract price bid for "Foam Joint Seals". Prices and payment will be full compensation for furnishing all material, including elastomeric concrete, labor, tools and equipment necessary for installing these units in place and accepted. ## **ELASTOMERIC CONCRETE** (9-30-11) ## 1.0 DESCRIPTION Elastomeric concrete is a mixture of a two-part polymer consisting of polyurethane and/or epoxy and kiln-dried aggregate. Provide an elastomeric concrete and binder system that is preapproved. Use the concrete in the blocked out areas on both sides of the bridge deck joints as indicated on the plans. ## 2.0 MATERIALS Provide materials that comply with the following minimum requirements at 14 days (or at the end of the specified curing time). | ELASTOMERIC CONCRETE PROPERTIES | TEST METHOD | MINIMUM
REQUIREMENT | |---------------------------------|-------------------|------------------------| | Compressive Strength, psi | ASTM D695 | 2000 | | 5% Deflection Resilience | ASTM D695 | 95 | | Splitting Tensile Strength, psi | ASTM D3967 | 625 | | Bond Strength to Concrete, psi | ASTM D882 (D882M) | 450 | | Durometer Hardness | ASTM D2240 | 50 | | BINDER PRO (without aggregate) | PERTIES TEST METHOD | MINIMUM
REQUIREMENT | |--------------------------------|---------------------|------------------------| | Tensile Strength, psi | ASTM D638 | 1000 | | Ultimate Elongation | ASTM D638 | 150% | | Tear Resistance, lb/in | ASTM D624 | 200 | In addition to the requirements above, the elastomeric concrete must be resistant to water, chemical, UV and ozone exposure and withstand temperature extremes. Elastomeric concrete systems requiring preheated aggregates are not allowed. # 3.0 PREQUALIFICATION Manufacturers of elastomeric concrete materials shall submit samples (including aggregate, primer and binder materials) and a Type 4 certification in accordance with Article 106-3 of the Standard Specifications for prequalification to: North Carolina Department of Transportation Materials and Tests Unit 1801 Blue Ridge Road Raleigh, NC 27607 Prequalification will be determined for the system. Individual components will not be evaluated, nor will individual components of previously evaluated systems be deemed prequalified for use. The submitted binder (a minimum volume of 1 gallon) and corresponding aggregate samples will be evaluated for compliance with the Materials requirements specified above. Systems satisfying all of the Materials requirements will be prequalified for a one year period. Before the end of this period new product samples shall be resubmitted for prequalification evaluation. If, at any time, any formulation or component modifications are made to a prequalified system that system will no longer be approved for use. #### 4.0 MATERIAL CERTIFICATION AND INSTALLATION Provide a Type 5 certification in accordance with Article 106-3 of the Standard Specifications, verifying that the materials satisfy the above requirements and proof of NCDOT pregualification. Prior to placing the elastomeric concrete, thoroughly clean and dry all concrete surfaces. Sandblast the concrete surface in the blockout and clear the surface of all loose debris. Provide a manufacturer's representative at the bridge site during the installation of the elastomeric concrete to ensure that all steps being performed comply with all manufacturer installation requirements including, but not limited to weather conditions (ambient temperature, relative humidity, precipitation, wind, etc), concrete deck surface preparation, binder and aggregate mixing, primer application, elastomeric concrete placement, curing conditions and minimum curing time before joint exposure to traffic. ## 5.0 FIELD SAMPLING Provide additional production material to allow freshly mixed elastomeric concrete to be sampled for acceptance. A minimum of six 2 inch cube molds and three 3x6 inch cylinders will be taken by the Department for each day's production. Compression, splitting tensile, and durometer hardness testing will be performed by the Department to determine acceptance. Materials failing to meet the requirements listed above are subject to removal and replacement at no cost to the Department. ## **6.0 BASIS OF PAYMENT** No separate payment will be made for elastomeric concrete. The lump sum contract price bid for "Foam Joint Seals" will be full compensation for furnishing and placing the Elastomeric Concrete. ## HYDRO-DEMOLITION OF BRIDGE DECK (SPECIAL) # **Description** Hydro-demolition shall consist of the removal of the deck surface by means of high pressure water blasting which will remove concrete, asphalt, oil, dirt, concrete laitance and rust from the exposed reinforcing bars by direct impact, pressurization of micro and macro cracks and cavitation produced by jet instability. If reinforcing bars or bridge drainage devices are pulled up or snagged during scarification milling operations, the Contractor shall cease operations and consult with the Engineer to determine what adjustments, if any, need to be made to the rotomilling operations. The Contractor shall submit for approval prior to beginning work, his Hydro-demolition Management Plan. This plan shall include how the Contractor shall provide for the collection, treatment, and disposal of all run-off water generated by the scarification and hydro-demolition processes. This Water Management Plan shall be prepared in accordance the NCDOT Guidelines for Managing Hydro-demolition Water. The contractor shall comply with
applicable regulation concerning such water disposal. # **Equipment** Use the following surface preparation equipment: - Hydro-demolition machine, self-propelled with min. 17,000 psi orifice pressure. - Sawing equipment capable of sawing concrete to the specified depth. - Scarifying equipment that is a power-operated, mechanical scarifier or grinder capable of removing at least 1/4 inch (6 mm) for each pass. - Hand-held high velocity (7,500 psi minimum) water-jet equipment capable of removing rust scale from reinforcing steel, or removing small chips of concrete partially loosened by the scarifying or chipping operation, and of removing rehydrated dust left from scarification. - Power driven hand tools for removal of unsound concrete are required that meet the following requirements: - Pneumatic hammers weighing a nominal 35 lb (16 kg) or less. - Pneumatic hammer chisel-type bits that do not exceed the diameter of the shaft in width. - Hand tools such as hammers and chisels for removal of final particles of unsound concrete. • Vibratory screed for overlays, except as noted herein. The hydro-demolition machine shall be self-propelled and capable of producing a water-jet through an orifice at a pressure of at least 17,000 PSI. The machine shall move the jet transversely across the area and forward and backward so that the entire deck is covered with the water-jet and operated at a pressure sufficient to remove the unsound concrete. The machine shall have sufficient means to control and vary the following functions: - (1) Water pressure. - (2) Angle and distance of the orifice in relation to the surface to be blasted. - (3) Limits of transverse and longitudinal movement of the orifice. - (4) Speed of the orifice in the transverse and longitudinal direction. The high pressure pump (or pumps) shall be equipped with over-pressurization relief valves and rupture disc systems. All high pressure components shall be rated at full working pressure of the hydro-demolition system. The complete hydro-demolition system must be capable of depressurization from a single point. The equipment must operate at a noise level of less than 90 decibels at a distance of 50 feet. #### **Construction Methods** Remove all existing asphalt overlays and all loose, disintegrated, unsound or contaminated concrete from the bridge deck in accordance with the following surface preparation classifications shown below: Seal all expansion joints subjected to run-off water from the hydro-demolition process with material approved by the Engineer, prior to beginning the Class I Surface Preparation. The expansion joints shall remain sealed until water from the hydro-demolition process no longer passes over them. The contractor shall take all steps necessary to eliminate the flow of water through the expansion joints, and any other locations water could leak from the deck. All deck drains in the immediate work area and the other sections of the bridge affected by the work being performed in the immediate work area shall be sealed prior to beginning the Deck Scarification. They shall remain sealed until it has been determined that materials from the hydro-demolition and concrete overlay operations can not be discharged through them any longer. A. <u>Scarifying Bridge Deck:</u> Removal of any asphalt wearing surface from the bridge deck or if applicable, the approach roadway pavement, and scarification of the concrete deck to remove the entire concrete surface of the deck to a uniform depth not less than ½" above the top mat of steel and not less than ½" above the plan demolition depth (1/2" minimum hydrodemolition required). Caldwell Co. Bridge #8, #13, & #14: Estimated average cover to top mat: 1½" +/- 3/8" Wilkes Co. Bridge #56: Estimated average cover to top mat: $1\frac{1}{2}$ " +/- $\frac{3}{8}$ " Remove and dispose of all concrete and asphalt, and thoroughly clean the scarified surface. In areas where reinforcing steel is located in the depth to be scarified, use another method with the Engineer's approval. If reinforcing bars or bridge drainage devices are pulled up or snagged during scarification milling operations, the Contractor shall cease operations and consult with the Engineer to determine what adjustments, if any, need to be made. B. <u>Class I Surface Preparation (Partial Depth)</u>: Remove by hydro-demolition and by chipping with hand tools all loose, unsound and contaminated deck concrete and in areas where reinforcing steel is exposed by removing deck to an average depth of ½ inch below the top mat of reinforcing steel. Dispose of the removed concrete, clean, repair or replace rusted or loose reinforcing steel, and thoroughly clean the newly exposed surface. Care shall be taken not to cut, stretch, or damage any exposed reinforcing steel. C. <u>Class II Surface Preparation (Partial Depth)</u>: Remove by hydro-demolition and by chipping with hand tools all loose, unsound and contaminated deck concrete to an average depth of approximately one-half the deck thickness, but no less than 3/4 inch below the top mat of steel. In areas where the entire perimeter of the reinforcing steel bar is exposed, chip or use hand-held high velocity water-jet equipment to provide a minimum depth of 3/4 inch below the bar. Dispose of the removed concrete, clean, repair or replace rusted or loose reinforcing steel, and thoroughly clean the newly exposed surface. Care shall be taken not to cut, stretch, or damage any exposed reinforcing steel. In overhangs, removing concrete areas of less than 0.60 ft²/ft length of bridge without overhang support is permitted unless the Engineer directs otherwise. Overhang support is required for areas removed greater than 0.60 ft²/ft length of bridge. Submit details of overhang support to the Engineer for approval prior to beginning the work. D. <u>Class III Surface Preparation (Full Depth)</u>: Remove by hydro-demolition, and chipping with hand tools all loose, unsound and contaminated deck concrete to the full slab depth. Thoroughly clean the routed out areas and dispose of concrete removed and clean, repair, or replace reinforcing bars. For areas of less than 3 ft² suspending forms from existing reinforcing steel using wire ties is permitted. For larger areas, support forms by blocking from the beam flanges, or other approved method. Overhang support is required for full depth removal adjacent to bridge rails. Submit details of overhang support to the Engineer for approval prior to beginning the work. E. <u>Under Deck Containment:</u> Under deck containment shall be installed under areas of the bridge deck where Class III surface preparation occurs. The containment shall be installed prior to hydro-demolition in the areas indicated on the plans and in any other areas where blow thru or full depth removal occurs during surface preparation. Submit for approval detailed plans for under deck containment. Detail how waste, debris, and wastewater are kept from falling below. F. <u>Class AA Concrete</u>: Fill the Class III surface preparation areas with Class AA or latex modified concrete up to the bottom of the proposed concrete overlay in accordance with the methods described below: Refill areas where concrete was removed with Class AA concrete up to the bottom of the proposed concrete overlay in accordance with Section 420 of the Standard Specifications. Any of the methods for curing Class AA concrete as stated in the Standard Specifications are permitted except the membrane curing compound method. Provide a raked finish to the surface of the Class AA concrete to provide a minimum relief of 1/16" and a maximum relief of 1/4". Place the overlay course only after the Class AA concrete has attained 2500 psi (17.2 MPa) as measured by an approved, non-destructive test method. Refilling the areas from which concrete has been removed with latex modified concrete during the Class III repair is permitted if any of the following conditions are met: - The reinforcing steel cover is 1½ inches or less for the top mat of steel. - The area being repaired is less than 1 yd². - The Engineer directs the fill. For areas of less than 3 ft² suspending forms from existing reinforcing steel using wire ties is permitted. For larger areas, support forms by blocking from the beam flanges, or other approved method. # **Surface Preparation** Two trial areas shall be designated by the Engineer to demonstrate that the equipment, personnel, and methods of operation are capable of producing results to the satisfaction of the owner's Engineer. The first trial area shall consist of approximately 50 square feet of sound concrete as determined by the Engineer. The equipment shall be calibrated to remove the sound concrete from the scarified surface to the depth required to achieve the plan overlay thickness. After completion of this test area, the equipment shall be moved to the second area consisting of deteriorated or defective concrete, to determine whether this unsound concrete will be completely removed with the previous calibration and to establish a baseline for requiring the contractor to place under-deck containment in areas subject to full depth removal, before beginning the hydrodemolition process in a span. Should it be determined that not all defective concrete has been removed, the hydro-demolition system shall be recalibrated to remove an additional 1/4 inch of sound concrete, then re-test on deteriorated concrete. If additional defective concrete is found, the depth of cut will increase in 1/4 inch increments until only sound concrete is found remaining. When satisfactory results are obtained, the machine parameters shall be used for production removal. The contractor shall make adjustments to the operating parameters, as required, to perform concrete removal as indicated on the drawings and to adjust to the variance in the compressive strength of the concrete. Hand held water blasting equipment, pneumatic hammers, and hand tools may be
substituted for the hydro-demolition unit in areas inaccessible (such as adjacent to the curb) or inconvenient (such as small patch areas). The Engineer will re-inspect after each removal and require additional removals until compliance with plans and specifications are met. Regardless of the method of removal, the removal operation shall be stopped if it is determined that sound concrete is being removed. Appropriate recalibration, or change in equipment and methods shall be performed prior to resuming the removal operation. The Contractor shall take all steps necessary to prevent cutting or otherwise damaging existing steel designated to remain in place. Any such bars damaged (nicks deeper than 20% of the bar diameter) by the Contractor's operation shall be repaired or replaced. Defects in embedded reinforcing steel due to corrosion, which has reduced the cross sectional area of the steel by 25% or greater, shall have new reinforcing steel of similar cross section area lap-spliced to each side of the damaged area. Reinforcing bars shall be Grade 60 and meet the material requirements of Section 1070 of the Standard Specifications. Replacement bars shall be spliced to existing bars using either minimum 30 bar diameter lap splices or approved mechanical connectors. The Contractor shall support and protect the exposed reinforcing steel, which is left unsupported by the hydro-demolition process, against displacement and damage from loads such as those caused by removal equipment and delivery buggies. All reinforcing steel damaged or dislodged by these operations shall be replaced with bars of the same size at the contractor's expense. Rebar exposed and cleaned by hydro-demolition shall not require re-cleaning if encased in concrete within seven (7) days. Rebar exposed for more than seven (7) days shall be cleaned by high velocity water jets (4,000 PSI minimum) prior to placement of the new concrete. When large areas of the deck on composite bridges are removed resulting in the debonding of the main stress carrying longitudinal reinforcing bars, the removal shall be performed in stages to comply with the construction sequence shown on the plans or as directed by the Engineer. The Contractor shall shield his operations to prevent injury or damage from flying or falling debris. The Contractor shall provide a method of handling expected and unexpected blow-through of the deck where shown on the plans and as directed by the Engineer. This method shall provide for the containment of the runoff water and debris, and the protection of the area under the bridge deck. The Contractor shall be responsible for any injury or damage caused by his operations. The containment shall remain in-place until the latex modified concrete has been cast and reach minimum strength. The removal area shall be thoroughly cleaned of all dirt, foreign materials and loose concrete to the extent necessary to produce a firm solid surface for adherence of new concrete. Removal of concrete debris shall be accomplished either by hand or by mechanical means capable of removing wet debris and water all in the same pass and directly follow the hydrodemolition process to prevent the debris from re-setting or re-adhering to the surface of the remaining sound concrete. All concrete debris shall become the property of the Contractor and shall be legally disposed of at the contractor's expense. The contractor shall be responsible for disposing of all debris generated by the scarification operations. Any debris which is allowed to re-settle or re-adhere to the surface of the sound concrete shall be carefully removed by the Contractor (at no additional cost), and the Contractor shall exercise care to avoid any damage to the remaining sound concrete or exposed reinforcement. Following the removal of the debris and prior to the placement of the overlay, the entire surface shall be blasted clean with high pressure water to remove any bond-breaking residue, loose material from the concrete surface, and/or rust from the reinforcing steel. This residue shall be collected and disposed of by the contractor. The Contractor will not be permitted to allow material to fall from the deck. All water used for hydro-demolition shall be potable. The Contractor is responsible for furnishing all of the water required for the project. Any areas of the prepared surface contaminated by oil or other materials detrimental to good bond as a result of the contractor's operations shall be removed to such depth as may be required at the contractor's expense. The Contractor shall provide adequate lighting as required to allow for the safe conduct of nighttime removal operation if he elects to do hydro-demolition at night. Submit a lighting plan to the Engineer for approval prior to beginning work. # **Measurement and Payment** Scarifying Bridge Deck will be measured and paid for by the contract unit price per square yard and shall be full compensation for the milling of any existing asphalt wearing surface from the bridge deck, milling of the entire concrete bridge deck, repairing or replacing any damaged reinforcing steel, and the cleaning and disposal of all waste material generated. Hydro-demolition of Bridge Deck will be measured and paid for by the contract unit price per square yard and shall be full compensation for Classes I, II, and III deck preparation, removal and disposal of unsound and contaminated concrete, cleaning, repairing or replacing of reinforcing steel, under deck containment, Class AA concrete, and for furnishing all materials, labor, tools, equipment and incidentals necessary to complete the work. Payment will be made under: Pay Item Scarifying Bridge Deck Hydro-demolition of Bridge Deck Pay Unit Square Yard Square Yard # MANAGING HYDRODEMOLITION WATER (6-17-08) SPI 4-03 #### 1.0 Description Collect and properly dispose of hydrodemolition water from bridge decks. #### 2.0 Construction Methods - (A) Prepare a written hydrodemolition water management plan in accordance with the Guidelines for Managing Hydrodemolition Water available at http://www.ncdot.gov/projects/ncbridges/#stats. Submit plan and obtain approval from the Engineer prior to beginning of the hydrodemolition operation. - **(B)** Prior to final payment, submit a paper copy of all completed records pertaining to disposal of hydrodemolition water. # 3.0 Measurement and Payment Payment for collecting, sampling, testing, pH adjustment, monitoring, handling, discharging, hauling, disposing of the hydrodemolition water, documentation, record keeping, and obtaining permits if applicable, shall be included in the payment for other items. # **MANAGING BRIDGE WASH WATER** # 1.0 Description Collect and properly dispose of Bridge Wash Water from bridge decks. ## 2.0 Construction Methods - (A) Prepare a written Bridge Wash Water management plan in accordance with the Guidelines for Managing Bridge Wash Water available at http://www.ncdot.org/doh/preconstruct/ps/contracts/letting.html. Submit plan and obtain approval from the Engineer prior to beginning of the bridge cleaning operation. - (B) Prior to final payment, submit a paper copy of all completed records pertaining to disposal of Bridge Wash Water. # 3.0 Measurement and Payment Payment for collecting, sampling, testing, pH adjustment, monitoring, handling, discharging, hauling, disposing of the bridge wash water, documentation, record keeping, and obtaining permits if applicable, shall be included in the payment for other items # LATEX MODIFIED CONCRETE - VERY EARLY STRENGTH **SPECIAL** # **Description** This work consists of furnishing and placing an overlay of latex modified concrete-very early strength (LMC-VES) over conventional existing concrete or repair concrete on bridge decks. Unless otherwise indicated on the plans, groove the bridge floor in accordance with Subarticle 420-14(B) of the *Standard Specifications*. ## Materials For equipment, proportioning and mixing of modified compositions, see Section 1000-8 of the *Standard Specifications*. Prior to beginning any work, obtain approval for all equipment to be used for deck preparation, mixing, placing, finishing, and curing the latex modified concrete. For material of modified compositions, revise the 2012 Standard Specifications as follows: Page 10-8, Section 1000-7(A), lines 24-25, replace the last paragraph with the following: Cement – For latex modified concrete-very early strength, Cement shall be approximately 1/3 calcium sulfoaluminate (C4A3S) and 2/3 dicalcium silicate (C2S) or other hydraulic cement that will provide a Latex-Modified Concrete that meets the physical requirements for Latex-Modified Concrete as indicated in this special provision. # Page 10-9, Table 1000-5 PROPERTIES OF LATEX MODIFIED CONCRETE, add the following: Minimum compressive strength, normal setting concrete, 3000 psi at 7 days; very early strength concrete, 3000 psi at 3 hours. Water-Cement Ratio by weight, normal setting concrete, maximum 0.40; very early strength concrete, maximum 0.42 Page 10-11, last paragraph of 1000-8, add the following: Submit the latex modified concrete mix design, including laboratory compressive strength data for a minimum of six 4-inch by 8-inch cylinders at the appropriate age (7 days for normal setting concrete; 3 hours for very early strength concrete) to the Engineer for review. Include test results for the slump and air content of the laboratory mix. Perform tests in accordance with AASHTO T 22, T 119 and T 152. # **System Quality Submittals** Past Performance Submittal: At the preconstruction conference, the latex modified concrete overlay Contractor shall submit verifiable records demonstrating that he or his approved subcontractor has performed satisfactorily, or that he has had direct supervision of such satisfactory performance of a
subcontractor constructing contracts using very early strength latex modified concrete. At least 5 bridges with similar scope of work in any state shall be the minimum number demonstrated. #### **Construction Methods** # (A) <u>Preparation of Surface</u> Completely clean all surfaces within the 48 hours prior to placing the overlay unless otherwise approved. Thoroughly soak the clean surface for at least 2 hours immediately prior to placing the latex modified concrete. After soaking the surface for at least 2 hours, cover it with a layer of white opaque polyethylene film that is at least 4 mils (0.100 mm) thick. Immediately prior to placing the latex modified concrete, remove standing water from the surface. # (B) <u>Placing and Finishing</u> Prior to placing modified material, install a bulkhead of easily compressible material at expansion joints to the required grade and profile. Placing material across expansion joints and sawing it later is not permitted. Place and fasten screed rails in position to ensure finishing the new surface to the required profile. Do not treat screed rails with parting compound to facilitate their removal. Prior to placing the overlay, attach a filler block sized for the plan overlay thickness to the bottom of the screed and pass it over the area to be repaired to check the thickness. Remove all concrete that the block does not clear. Separate screed rails or construction dams from the newly placed material by passing a pointing trowel along their inside face. Carefully make this trowel cut for the entire depth and length of rails or dams after the modified composition has sufficiently stiffened and cannot flow back. Brush a latex cement mixture onto the wetted, prepared surface. Carefully give all vertical and horizontal surfaces a thorough, even coating and do not let the brushed material dry before it is covered with the additional material required for the final grade. Remove all loose aggregate from the latex cement brushed surface prior to latex concrete placement (NOTE: Not required for surfaces prepared with hydro-demolition). Place the latex modified concrete in one operation. Provide a minimum overlay thickness of as shown in the plans and a final surface that is approximately the same as the original deck surface. Construction joints other than those shown on the plans will be submitted to the Engineer for approval. When a tight, uniform surface is achieved and before the concrete becomes non-plastic, further finish the surface of the floor by burlap dragging or another acceptable method that produces an acceptable uniform surface texture. Promptly cover the surface with a single layer of clean, wet burlap as soon as the surface will support it without deformation. Wet cure only the surface for minimum 3 hours and until a compressive strength of 3000 psi is reached. Keep the curing material saturated during the wet cure period. # Field Testing Latex Modified Concrete-Very Early Strength For projects with multiple bridges using the same mix design, or bridge decks with time constraints that require more than one night for placement, a relationship between the compressive strength and rebound hammer readings may be developed and used to obtain the three hour cylinder strength, in lieu of compressive strength testing. For the correct procedure, reference Document: PL11-LMC Rapid Set Overlays. Contact your local M&T representative for a copy of this document or see the following link: http://www.ncdot.org/doh/operations/materials/eforms.html under Physical Lab. Seven day concrete compressive strength sampling and testing is required in addition to the use of this method. Do not place the latex modified concrete before the burlap is saturated and approved by the Engineer. Drain excess water from the wet burlap before placement. As soon as practical, after the concrete has hardened sufficiently, test the finished surface with an approved rolling straightedge that is designed, constructed, and adjusted so that it will accurately indicate or mark all floor areas which deviate from a plane surface by more than 1/8 inch in 10 feet (3 mm in 3 m). Remove all high areas in the hardened surface in excess of 1/8 inch in 10 feet (3 mm in 3 m) with an approved grinding or cutting machine. Where variations are such that the corrections extend below the limits of the top layer of grout, seal the corrected surface with an approved sealing agent if required by the Engineer. If approved by the Engineer, correct low areas in an acceptable manner. Vehicular traffic may travel across an un-grooved deck, however, complete the transverse sawed grooves across the entire deck area after the latex modified concrete achieves design strength and no later than seven days after placing the latex modified concrete. # (C) Limitations of Operations The mixer will not be permitted on the bridge deck unless otherwise approved. No traffic is permitted on the finished latex modified concrete surface until the total specified curing time is completed and until the concrete reaches the minimum specified compressive strength. Do not place latex modified concrete if the temperature of the concrete surface on which the overlay is to be placed is below 40°F (4°C) or above 85°F (29°C). Measure the surface temperature by placing a thermometer under the insulation against the surface. Prior to placing latex modified concrete, the Engineer determines the air temperature and wind speed. Do not place latex modified concrete if the ambient air temperature is below 45°F (7°C) or above 85°F (29°C), or if the wind velocity is in excess of 10 mph (16 km/h). If working at night, provide approved lighting. Provide aggregates for use in the latex modified concrete that are free from ice, frost and frozen particles when introduced into the mixer. Do not place latex modified concrete when the temperature of the latex modified concrete is below 45°F (7°C) or above 85°F (29°C). If the rate of evaporation of surface moisture from the latex modified concrete exceeds 0.05 pounds per square foot per hour during placement, measures shall be taken to reduce the rate of evaporation. The evaporation rate is calculated using the following formula: $$E=(T_c^{2.5}-rT_a^{2.5})(1+0.4V)(10^{-6})$$ where, E=Evaporation Rate, T_c=Concrete Temp (⁰F), r=Relative Humidity (%/100) T_a=Air Temp (⁰F), V=Wind Velocity (mph) Stop all placement operations during periods of precipitation. Take adequate precautions to protect freshly placed latex modified concrete from sudden or unexpected precipitation. Keep an adequate quantity of protective coverings at the worksite to protect the freshly placed pavement from precipitation. # Measurement and Payment Latex Modified Concrete Overlay-Very Early Strength will be measured and paid for in cubic yards of latex modified concrete satisfactorily placed in the completed deck. Placing and Finishing of Latex Modified Concrete Overlay-Very Early Strength will be paid for at the contract unit price bid per square yard which price will be full compensation for furnishing all labor, materials, tools, equipment and incidentals required to complete the work in accordance with the contract documents. Grooving Bridge Floors will be measured and paid for in accordance with Section 420 of the Standard Specifications. Payment will be made under: Pay ItemPay UnitLatex Modified Concrete Overlay-Very Early StrengthCubic YardPlacing and Finishing Latex Modified Concrete Overlay-Very Early StrengthSquare YardGrooving Bridge FloorsSquare Feet CRANE SAFETY (8-15-05) Comply with the manufacturer specifications and limitations applicable to the operation of any and all cranes and derricks. Prime contractors, sub-contractors, and fully operated rental companies shall comply with the current Occupational Safety and Health Administration regulations (OSHA). Submit all items listed below to the Engineer prior to beginning crane operations involving critical lifts. A critical lift is defined as any lift that exceeds 75 percent of the manufacturer's crane chart capacity for the radius at which the load will be lifted or requires the use of more than one crane. Changes in personnel or equipment must be reported to the Engineer and all applicable items listed below must be updated and submitted prior to continuing with crane operations. ## **CRANE SAFETY SUBMITTAL LIST** <u>Competent Person:</u> Provide the name and qualifications of the "Competent Person" responsible for crane safety and lifting operations. The named competent person will have the responsibility and authority to stop any work activity due to safety concerns. <u>Riggers:</u> Provide the qualifications and experience of the persons responsible for rigging operations. Qualifications and experience should include, but not be limited to, weight calculations, center of gravity determinations, selection and inspection of sling and rigging equipment, and safe rigging practices. <u>Crane Inspections:</u> Inspection records for all cranes shall be current and readily accessible for review upon request. Certifications: By July 1, 2006, crane operators performing critical lifts shall be certified by NC CCO (National Commission for the Certification of Crane Operators), or satisfactorily complete the Carolinas AGC's Professional Crane Operator's Proficiency Program. Other approved nationally accredited programs will be considered upon request. All crane operators shall also have a current CDL medical card. Submit a list of anticipated critical lifts and corresponding crane operator(s). Include current certification for the type of crane operated (small hydraulic, large hydraulic, small lattice, large lattice) and medical evaluations for each operator. (6-11-07) #### **GENERAL** Installation and Testing of Adhesively anchored anchor bolts and dowels shall be in accordance with Section 420-13, 420-21 and 1081-1 of the
Standard Specifications except as modified in this provision. #### INSTALLATION Installation of the adhesive anchors shall be in accordance with manufacturer's recommendations and shall occur when the concrete is above 40 degrees Fahrenheit and has reached its 28 day strength. The anchors shall be installed before the adhesive's initial set ('gel time'). #### FIELD TESTING Replace the third paragraph of Section 420-13 (C) with the following: "In the presence of the Engineer, field test the anchor bolt or dowel in accordance with the test level shown on the plans and the following:. Level One Field testing: Test a minimum of 1 anchor but not less than 10% of all anchors to 50% of the yield load shown on the plans. If less than 60 anchors are to be installed, install and test the required number of anchors prior to installing the remaining anchors. If more than 60 anchors are to be installed, test the first 6 anchors prior to installing the remaining anchors, then test 10% of the number in excess of 60 anchors. Level Two Field testing: Test a minimum of 2 anchors but not less than 10% of the all anchors to 80% of the yield load shown on the plans. If less than 60 anchors are to be installed, install and test the required number of anchors prior to installing the remaining anchors. If more than 60 anchors are to be installed, test the first 6 anchors prior to installing the remaining anchors, then test 10% of the number in excess of 60 anchors. Testing should begin only after the Manufacturer's recommended cure time has been reached. For testing, apply and hold the test load for three minutes. If the jack experiences any drop in gage reading, the test must be restarted. For the anchor to be deemed satisfactory, the test load must be held for three minutes with no movement or drop in gage reading." # REMOVAL AND REPLACEMENT OF FAILED TEST SPECIMENS: Remove all anchors and dowels that fail the field test without damage to the surrounding concrete. Redrill holes to remove adhesive bonding material residue and clean the hole in accordance with specifications. For reinstalling replacement anchors or dowels, follow the same procedures as new installations. Do not reuse failed anchors or dowels unless approved by the Engineer. #### USAGE The use of adhesive anchors for overhead installments is not permitted without written permission from the Engineer. #### BASIS OF PAYMENT No separate measurement or payment will be made for furnishing, installing, and testing anchor bolts/dowels. Payment at the contract unit prices for the various pay items will be full compensation for all materials, equipment, tools, labor, and incidentals necessary to complete the work. # **GROUT FOR STRUCTURES** 9-30-11 #### DESCRIPTION This special provision addresses grout for use in pile blockouts, grout pockets, shear keys, dowel holes and recesses for structures. This provision does not apply to grout placed in post-tensioning ducts for bridge beams, girders, or decks. Mix and place grout in accordance with the manufacturer's recommendations, the applicable sections of the Standard Specifications and this provision. # **MATERIAL REQUIREMENTS** Use a Department approved pre-packaged, non-shrink, non-metallic grout. Contact the Materials and Tests Unit for a list of approved pre-packaged grouts and consult the manufacturer to determine if the pre-packaged grout selected is suitable for the required application. When using an approved pre-packaged grout, a grout mix design submittal is not required. The grout shall be free of soluble chlorides and contain less than one percent soluble sulfate. Supply water in compliance with Article 1024-4 of the Standard Specifications. Aggregate may be added to the mix only where recommended or permitted by the manufacturer and Engineer. The quantity and gradation of the aggregate shall be in accordance with the manufacturer's recommendations. Admixtures, if approved by the Department, shall be used in accordance with the manufacturer's recommendations. The manufacture date shall be clearly stamped on each container. Admixtures with an expired shelf life shall not be used. The Engineer reserves the right to reject material based on unsatisfactory performance. Initial setting time shall not be less than 10 minutes when tested in accordance with ASTM C266. Test the expansion and shrinkage of the grout in accordance with ASTM C1090. The grout shall expand no more than 0.2% and shall exhibit no shrinkage. Furnish a Type 4 material certification showing results of tests conducted to determine the properties listed in the Standard Specifications and to assure the material is non-shrink. Unless required elsewhere in the contract the compressive strength at 3 days shall be at least 5000 psi. Compressive strength in the laboratory shall be determined in accordance with ASTM C109 except the test mix shall contain only water and the dry manufactured material. Compressive strength in the field will be determined by molding and testing 4" x 8" cylinders in accordance with AASHTO T22. Construction loading and traffic loading shall not be allowed until the 3 day compressive strength is achieved. When tested in accordance with ASTM C666, Procedure A, the durability factor of the grout shall not be less than 80. #### SAMPLING AND PLACEMENT Place and maintain components in final position until grout placement is complete and accepted. Concrete surfaces to receive grout shall be free of defective concrete, laitance, oil, grease and other foreign matter. Saturate concrete surfaces with clean water and remove excess water prior to placing grout. Do not place grout if the grout temperature is less than 50°F or more than 90°F or if the air temperature measured at the location of the grouting operation in the shade away from artificial heat is below 45°F. Provide grout at a rate that permits proper handling, placing and finishing in accordance with the manufacturer's recommendations unless directed otherwise by the Engineer. Use grout free of any lumps and undispersed cement. Agitate grout continuously before placement. Control grout delivery so the interval between placing batches in the same component does not exceed 20 minutes. The Engineer will determine the locations to sample grout and the number and type of samples collected for field and laboratory testing. The compressive strength of the grout will be considered the average compressive strength test results of 3 cube or 2 cylinder specimens at 28 days. #### **BASIS OF PAYMENT** No separate payment will be made for "Grout for Structures". The cost of the material, equipment, labor, placement, and any incidentals necessary to complete the work shall be considered incidental to the structure item requiring grout.