Project B-3187 ### **Haywood County** ## Project Special Provisions Structures ### **Table of Contents** | | Page | |--|------| | | # | | Evazote Joint Seals (11-5-10) | 1 | | Elastomeric Concrete (1-27-10) | 5 | | Falsework and Formwork (4-1-11) | 7 | | Submittal of Working Drawings (4-1-11) | 12 | | Crane Safety (8-15-05) | 20 | | Shipping Steel Structural Members (7-18-06) | 20 | | Grout for Structures (7-12-07) | 22 | | High Strength Bolts (5-25-10) | 24 | | Adhesively Anchored Anchor Bolts or Dowels (6-11-07) | 25 | | Direct Tension Indicators (6-12-09) | 26 | | Curing Concrete (6-12-09) | 27 | | Placing Load on Structure Members (8-4-09) | 27 | | Rehabilitation of Existing Structure (SPECIAL) | 28 | | Under Structure Work Platform (SPECIAL) | 30 | | Cleaning and Painting Existing Structure (SPECIAL) | 30 | | Managing Bridge Wash Water (SPECIAL) | 39 | | Pile Excavation (7-18-06) | 40 | | Piles (8-4-09) | 42 | | Structural Timber and Lumber (SPECIAL) | 42 | ## PROJECT SPECIAL PROVISIONS STRUCTURE PROJECT B-3187 **HAYWOOD COUNTY** ### **EVAZOTE JOINT SEALS** (11-5-10) ### 1.0 SEALS Use preformed seals compatible with concrete and resistant to abrasion, oxidation, oils, gasoline, salt and other materials that are spilled on or applied to the surface. Use a resilient, UV stable, preformed, impermeable, flexible, expansion joint seal. The joint seal shall consist of low-density, closed cell, cross-linked polyethylene non-extrudable, foam. The joint seal shall contain no EVA (Ethylene Vinyl Acetate). Cell generation shall be achieved by being physically blown using nitrogen. No chemical blowing agents shall be used in the cell generation process. Use seals manufactured with grooves 1/8" (3 mm) \pm wide by 1/8" (3 mm) \pm deep and spaced between 1/4" (6 mm) and 1/2" (13 mm) apart along the bond surface running the length of the joint. Use seals with a depth that meets the manufacturer's recommendation, but is not less than 70% of the uncompressed width. Provide a seal designed so that, when compressed, the center portion of the top does not extend upward above the original height of the seal by more than 1/4" (6 mm). Provide a seal that has a working range of 30% tension and 60% compression and meets the requirements given below. | TEST | TEST METHOD | REQUIREMENT | |---------------------|--------------------------------|----------------------------------| | Tensile strength | ASTM D3575-08, Suffix T | 110 – 130 psi
(758 – 896 kpa) | | Compression Set | ASTM D1056 | 10% - 16% | | | Suffix B, 2 hr recovery | 10% - 10% | | Water Absorption | ASTM D3575 | < 0.03 lb/ft² | | <u> </u> | ASTM D3373 | (< 0.001 kpa) | | Elongation at Break | ASTM D3575 | 180% - 210% | | Tear Strength | ASTM D624 (D3575-08, Suffix G) | 14 – 20 pli | | Donaite | ASTM D3575-08, | $1.8 - 2.2 \text{ lb/ft}^3$ | | Density | Suffix W, Method A | $(28.8 - 35.2 \text{ kg/m}^3)$ | | Toxicity | ISO-10993.5 | Pass (not cytotoxic) | Have the top of the evazote seal clearly shop marked. Inspect the evazote seals upon receipt to ensure that the marks are clearly visible before installation. ### 2.0 BONDING ADHESIVE Use a two component, 100% solid, modified epoxy adhesive supplied by the joint seal manufacturer that meets the requirements given below. | TEST | TEST METHOD | REQUIREMENT | |----------------------|---------------|---------------------------| | Tensile strength | ASTM D638 | 3000 psi (20.7 MPa) min. | | Compressive strength | ASTM D695 | 7000 psi (48.3 MPa) min. | | Hardness | Shore D Scale | 75-85 psi (0.51-0.58 MPa) | | Water Absorption | ASTM D570 | 0.25% by weight max. | | Elongation to Break | ASTM D638 | 5% max. | | Bond Strength | ASTM C882 | 2000 psi (13.8 MPa) min. | Use an adhesive that is workable to 40°F (4°C). When installing in ambient air or surface temperatures below 40°F (4°C) or for application on moist, difficult to dry concrete surfaces, use an adhesive specified by the manufacturer of the joint seal. ### 3.0 ELASTOMERIC CONCRETE The elastomeric concrete shall not be placed until the reinforced concrete deck slab has cured for seven full days and reached a minimum strength of 3000 psi (20.7 Mpa). Prepare the concrete surface within 48 hours prior to placing the elastomeric concrete. Before placing the elastomeric concrete, all concrete surfaces shall be thoroughly cleaned and dry. Sandblast the concrete surface in the blockout and clear the surface of all loose debris. Do not place the elastomeric concrete until the surface preparation is completed and approved. A manufacturer's representative shall be present when placing elastomeric concrete. Do not place elastomeric concrete if the ambient air or surface temperature is below 45°F (7°C). Prepare and apply a primer, as per manufacturer's recommendations, to all vertical concrete faces to be in contact with elastomeric concrete, and to areas specified by the manufacturer. Prepare, batch, and place the elastomeric concrete in accordance with the manufacturer's instructions. Place the elastomeric concrete in the areas specified on the plans while the primer is still tacky and within 2 hours after applying the primer. Trowel the elastomeric concrete to a smooth finish. #### 4.0 SAWING THE JOINT The joint opening shall be initially formed to the width shown on the plans including the blockout for the elastomeric concrete. The elastomeric concrete shall cure a minimum of 2 days prior to sawing the elastomeric concrete to the final width and depth as specified in the plans. When sawing the joint to receive the evazote seal, always use a rigid guide to control the saw in the desired direction. To control the saw and to produce a straight line as indicated on the plans, anchor and positively connect a template or a track to the bridge deck. Do not saw the joint by visual means such as a chalk line. Fill the holes used for holding the template or track to the deck with an approved, flowable non-shrink, non-metallic grout. Saw cut to the desired width and depth in one or two passes of the saw by placing and spacing two metal blades on the saw shaft to the desired width for the joint opening. The desired depth is the depth of the seal plus 1/4" (6 mm) above the top of the seal plus approximately 1" (25 mm) below the bottom of the seal. An irregular bottom of sawed joint is permitted as indicated on the plans. Grind exposed corners on saw cut edges to a 1/4" (6 mm) chamfer. Saw cut a straight joint, centered over the formed opening and to the desired width specified in the plans. Prevent any chipping or damage to the sawed edges of the joint. Remove any staining or deposited material resulting from sawing with a wet blade to the satisfaction of the Engineer. ### 5.0 Preparation of Sawed Joint for Seal Installation After sawing the joint, the Engineer will thoroughly inspect the sawed joint opening for spalls, popouts, cracks, etc. All necessary repairs will be made by the Contractor prior to blast cleaning and installing the seal. Clean the joints by sandblasting with clean dry sand immediately before placing the bonding agent. Sandblast the joint opening to provide a firm, clean joint surface free of curing compound, loose material and any foreign matter. Sandblast the joint opening without causing pitting or uneven surfaces. The aggregate in the elastomeric concrete may be exposed after sandblasting. After blasting, either brush the surface with clean brushes made of hair, bristle or fiber, blow the surface with compressed air, or vacuum the surface until all traces of blast products and abrasives are removed from the surface, pockets, and corners. If nozzle blasting is used to clean the joint opening, use compressed air that does not contain detrimental amounts of water or oil. Examine the blast cleaned surface and remove any traces of oil, grease or smudge deposited in the cleaning operations. Bond the seal to the blast cleaned surface on the same day the surface is blast cleaned. ### **6.0 SEAL INSTALLATION** Install the joint seal according to the manufacturer's procedures and recommendations and as recommended below. Do not install the joint seal if the ambient air or surface temperature is below 45°F (7°C). Have a manufacturer's certified trained factory representative present during the installation of the first seal of the project. Before installing the joint seal, check the uninstalled seal length to insure the seal is the same length as the deck opening. When the joint seal requires splicing, use the heat welding method by placing the joint material ends against a teflon heating iron of 425-475°F (218-246°C) for 7 - 10 seconds, then pressing the ends together tightly. Do not test the welding until the material has completely cooled. Begin installation by protecting the top edges of the concrete deck adjacent to the vertical walls of the joint as a means to minimize clean up. After opening both cans of the bonding agent, stir each can using separate stirring rods for each component to prevent premature curing of the bonding agent. Pour the two components, at the specified mixing ratio, into a clean mixing bucket. Mix the components with a low speed drill (400 rpm max.) until a uniform gray color is achieved without visible marbling. Apply bonding agent to both sides of the elastomeric concrete as well as both sides of the joint seal, making certain to completely fill the grooves with epoxy. With gloved hands, compress the joint seal and with the help of a blunt probe, push the seal into the joint opening until the seal is recessed approximately 1/4" (6 mm) below the surface. When pushing down on the joint seal, apply pressure only in a downward direction. Do not push the joint seal into the joint opening at an angle that would stretch the material. Seals that are stretched during installation shall be removed and rejected. Once work on placing a seal begins, do not stop until it is completed. Clean the
excess epoxy from the top of the joint seal immediately with a trowel. Do not use solvents or any cleaners to remove the excess epoxy from the top of the seal. Remove the protective cover at the joint edges and check for any excess epoxy on the surface. Remove excess epoxy with a trowel, the use of solvents or any cleaners will not be allowed. The installed system shall be watertight and will be monitored until final inspection and approval. ### 7.0 BASIS OF PAYMENT Payment for all evazote joint seals will be at the lump sum contract price bid for "Evazote Joint Seals". Prices and payment will be full compensation for furnishing all material, including elastomeric concrete, labor, tools and equipment necessary for installing these units in place and accepted. ### **ELASTOMERIC CONCRETE** (1-27-10) ### 1.0 DESCRIPTION Elastomeric concrete is a mixture of a two-part polymer consisting of polyurethane and/or epoxy and kiln-dried aggregate. Provide an elastomeric concrete and binder system that is preapproved. Use the concrete in the blocked out areas on both sides of the bridge deck joints as indicated on the plans. ### 2.0 MATERIALS Provide materials that comply with the following minimum requirements at 14 days (or at the end of the specified curing time). | ELASTOMERIC CONCRETE
PROPERTIES | TEST METHOD | MINIMUM
REQUIREMENT | |--------------------------------------|-------------------|------------------------| | Compressive Strength, psi (MPa) | (a)
STM D695 | 2000 (13.8) | | 5% Deflection Resilience | ASTM D695 | 95 | | Splitting Tensile Strength | ASTM D3967 | 625 (4.31) | | Bond Strength to Concrete, psi (MPa) | ASTM D882 (D882M) | 450 (3.10) | | Durometer Hardness | ASTM D2240 | 50 | | BINDER PROPERTIES (without aggregate) | TEST METHOD | MINIMUM
REQUIREMENT | |---------------------------------------|-------------|------------------------| | Tensile Strength, psi (MPa) | ASTM D638 | 1000 (6.89) | | Ultimate Elongation | ASTM D638 | 150% | | Tear Resistance, lb/in (kN/m) | ASTM D624 | 200 (34.9) | In addition to the requirements above, the elastomeric concrete must be resistant to water, chemical, UV and ozone exposure and withstand temperature extremes. Elastomeric concrete systems requiring preheated aggregates are not allowed. ### 3.0 PREQUALIFICATION Manufacturers of elastomeric concrete materials shall submit samples (including aggregate, primer and binder materials) and a Type 4 certification in accordance with article 106-3 (F) of the Standard Specifications for prequalification to: North Carolina Department of Transportation Materials and Tests Unit 1801 Blue Ridge Road Raleigh, NC 27607 Prequalification will be determined for the system. Individual components will not be evaluated, nor will individual components of previously evaluated systems be deemed prequalified for use. The submitted binder (a minimum volume of 1 gallon) and corresponding aggregate samples will be evaluated for compliance with the Materials requirements specified above. Systems satisfying all of the Materials requirements will be prequalified for a one year period. Before the end of this period new product samples shall be resubmitted for prequalification evaluation. If, at any time, any formulation or component modifications are made to a prequalified system that system will no longer be approved for use. ### 4.0 MATERIAL CERTIFICATION AND INSTALLATION Provide a Type 5 certification in accordance with article 106-3 (F) of the Standard Specifications, verifying that the materials satisfy the above requirements and proof of NCDOT pregualification. Prior to placing the elastomeric concrete, thoroughly clean and dry all concrete surfaces. Sandblast the concrete surface in the blockout and clear the surface of all loose debris. Provide a manufacturer's representative at the bridge site during the installation of the elastomeric concrete to ensure that all steps being performed comply with all manufacturer installation requirements including, but not limited to weather conditions (ambient temperature, relative humidity, precipitation, wind, etc), concrete deck surface preparation, binder and aggregate mixing, primer application, elastomeric concrete placement, curing conditions and minimum curing time before joint exposure to traffic. ### 5.0 FIELD SAMPLING Provide additional production material to allow freshly mixed elastomeric concrete to be sampled for acceptance. A minimum of six 2 inch cube molds and three 3x6 inch cylinders will be taken by the Department for each day's production. Compression, splitting tensile, and durometer hardness testing will be performed by the Department to determine acceptance. Materials failing to meet the requirements listed above are subject to removal and replacement at no cost to the Department. ### 6.0 BASIS OF PAYMENT No separate payment will be made for elastomeric concrete. The lump sum contract price bid for "Evazote Joint Seals" will be full compensation for furnishing and placing the Elastomeric Concrete. ### **FALSEWORK AND FORMWORK** (4-1-11) ### 1.0 DESCRIPTION Use this Special Provision as a guide to develop temporary works submittals required by the Standard Specifications or other provisions; no additional submittals are required herein. Such temporary works include, but are not limited to, falsework and formwork. Falsework is any temporary construction used to support the permanent structure until it becomes self-supporting. Formwork is the temporary structure or mold used to retain plastic or fluid concrete in its designated shape until it hardens. Access scaffolding is a temporary structure that functions as a work platform that supports construction personnel, materials, and tools, but is not intended to support the structure. Scaffolding systems that are used to temporarily support permanent structures (as opposed to functioning as work platforms) are considered to be falsework under the definitions given. Shoring is a component of falsework such as horizontal, vertical, or inclined support members. Where the term "temporary works" is used, it includes all of the temporary facilities used in bridge construction that do not become part of the permanent structure. Design and construct safe and adequate temporary works that will support all loads imposed and provide the necessary rigidity to achieve the lines and grades shown on the plans in the final structure. #### 2.0 MATERIALS Select materials suitable for temporary works; however, select materials that also ensure the safety and quality required by the design assumptions. The Engineer has authority to reject material on the basis of its condition, inappropriate use, safety, or nonconformance with the plans. Clearly identify allowable loads or stresses for all materials or manufactured devices on the plans. Revise the plan and notify the Engineer if any change to materials or material strengths is required. ### 3.0 DESIGN REQUIREMENTS ### A. Working Drawings Provide working drawings for items as specified in the contract, or as required by the Engineer, with design calculations and supporting data in sufficient detail to permit a structural and safety review of the proposed design of the temporary work. On the drawings, show all information necessary to allow the design of any component to be checked independently as determined by the Engineer. When concrete placement is involved, include data such as the drawings of proposed sequence, rate of placement, direction of placement, and location of all construction joints. Submit the number of copies as called for by the contract. When required, have the drawings and calculations prepared under the guidance of, and sealed by, a North Carolina Registered Professional Engineer who is knowledgeable in temporary works design. If requested by the Engineer, submit with the working drawings manufacturer's catalog data listing the weight of all construction equipment that will be supported on the temporary work. Show anticipated total settlements and/or deflections of falsework and forms on the working drawings. Include falsework footing settlements, joint take-up, and deflection of beams or girders. Falsework hangers that support concentrated loads and are installed at the edge of thin top flange concrete girders (such as bulb tee girders) shall be spaced so as not to exceed 75% of the manufacturer's stated safe working load. Use of dual leg hangers (such as Meadow Burke HF-42 and HF-43) are not allowed on concrete girders with thin top flanges. Design the falsework and forms supporting deck slabs and overhangs on girder bridges so that there will be no differential settlement between the girders and the deck forms during placement of deck concrete. When staged construction of the bridge deck is required, detail falsework and forms for screed and fluid concrete loads to be independent of any previous deck pour components when the mid-span girder deflection due to deck weight is greater than 34". Note on the working drawings any anchorages, connectors, inserts, steel sleeves or other such devices used as part of the falsework or formwork that remains in the permanent structure. If the plan notes indicate that the structure contains the necessary corrosion protection required for a Corrosive Site, epoxy coat, galvanize or metalize these devices. Electroplating will not be allowed. Any coating required by the Engineer will be considered incidental to the various pay items requiring temporary works. Design falsework and formwork requiring submittals in accordance with the 1995 AASHTO Guide Design Specifications for Bridge Temporary Works except as noted herein. ### 1. Wind Loads Table 2.2 of Article 2.2.5.1 is modified to include wind velocities up to 110 mph (177 km/hr). In addition, Table 2.2A is included to provide the maximum wind speeds by county in North Carolina. **Table 2.2 - Wind Pressure Values** | Height Zone | Pressure, lb/ft² (kPa) for Indicated Wind Velocity, mph
(km/hr) | | | | | | |--------------------------|--|--------|--------|--------|--------|--| | feet (m) above ground | 70 80 90 100 110 (112.7) (128.7) (144.8) (160.9) (177.0) | | | | | | | 0 to 30 (0 to 9.1) | 15 | 20 | 25 | 30 | 35 | | | | (0.72) | (0.96) | (1.20) | (1.44) | (1.68) | | | 30 to 50 (9.1 to 15.2) | 20 | 25 | 30 | 35 | 40 | | | | (0.96) | (1.20) | (1.44) | (1.68) | (1.92) | | | 50 to 100 (15.2 to 30.5) | 25 | 30 | 35 | 40 | 45 | | | | (1.20) | (1.44) | (1.68) | (1.92) | (2.15) | | | over 100 (30.5) | 30 | 35 | 40 | 45 | 50 | | | | (1.44) | (1.68) | (1.92) | (2.15) | (2.39) | | ### 2. Time of Removal The following requirements replace those of Article 3.4.8.2. Do not remove forms until the concrete has attained strengths required in Article 420-16 of the Standard Specifications and these Special Provisions. Do not remove forms until the concrete has sufficient strength to prevent damage to the surface. Table 2.2A - Steady State Maximum Wind Speeds by Counties in North Carolina | COUNTY | 25 YR
(mph)
(km/hr) | COUNTY | 25 YR
(mph)
(km/hr) | COUNTY | 25 YR
(mph)
(km/hr) | |------------|---------------------------|-------------|---------------------------|--------------|---------------------------| | Alamance | 70 (112.7) | Franklin | 70 (112.7) | Pamlico | 100 (160.9) | | Alexander | 70 (112.7) | Gaston | 70 (112.7) | Pasquotank | 100 (160.9) | | Alleghany | 70 (112.7) | Gates | 90 (144.8) | Pender | 100 (160.9) | | Anson | 70 (112.7) | Graham | 80 (128.7) | Perquimans | 100 (160.9) | | Ashe | 70 (112.7) | Granville | 70 (112.7) | Person | 70 (112.7) | | Avery | 70 (112.7) | Greene | 80 (128.7) | Pitt | 90 (144.8) | | Beaufort | 100 (160.9) | Guilford | 70 (112.7) | Polk | 80 (128.7) | | Bertie | 90 (144.8) | Halifax | 80 (128.7) | Randolph | 70 (112.7) | | Bladen | 90 (144.8) | Harnett | 70 (112.7) | Richmond | 70 (112.7) | | Brunswick | 100 (160.9) | Haywood | 80 (128.7) | Robeson | 80 (128.7) | | Buncombe | 80 (128.7) | Henderson | 80 (128.7) | Rockingham | 70 (112.7) | | Burke | 70 (112.7) | Hertford | 90 (144.8) | Rowan | 70 (112.7) | | Cabarrus | 70 (112.7) | Hoke | 70 (112.7) | Rutherford | 70 (112.7) | | Caldwell | 70 (112.7) | Hyde | 110 (177.0) | Sampson | 90 (144.8) | | Camden | 100 (160.9) | Iredell | 70 (112.7) | Scotland | 70 (112.7) | | Carteret | 110 (177.0) | Jackson | 80 (128.7) | Stanley | 70 (112.7) | | Caswell | 70 (112.7) | Johnston | 80 (128.7) | Stokes | 70 (112.7) | | Catawba | 70 (112.7) | Jones | 100 (160.9) | Surry | 70 (112.7) | | Cherokee | 80 (128.7) | Lee | 70 (112.7) | Swain | 80 (128.7) | | Chatham | 70 (112.7) | Lenoir | 90 (144.8) | Transylvania | 80 (128.7) | | Chowan | 90 (144.8) | Lincoln | 70 (112.7) | Tyrell | 100 (160.9) | | Clay | 80 (128.7) | Macon | 80 (128.7) | Union | 70 (112.7) | | Cleveland | 70 (112.7) | Madison | 80 (128.7) | Vance | 70 (112.7) | | Columbus | 90 (144.8) | Martin | 90 (144.8) | Wake | 70 (112.7) | | Craven | 100 (160.9) | McDowell | 70 (112.7) | Warren | 70 (112.7) | | Cumberland | 80 (128.7) | Mecklenburg | 70 (112.7) | Washington | 100 (160.9) | | Currituck | 100 (160.9) | Mitchell | 70 (112.7) | Watauga | 70 (112.7) | | Dare | 110 (177.0) | Montgomery | 70(112.7) | Wayne | 80 (128.7) | | Davidson | 70 (112.7) | Moore | 70 (112.7) | Wilkes | 70 (112.7) | | Davie | 70 (112.7) | Nash | 80 (128.7) | Wilson | 80 (128.7) | | Duplin | 90 (144.8) | New Hanover | 100 (160.9) | Yadkin | 70 (112.7) | | Durham | 70 (112.7) | Northampton | 80 (128.7) | Yancey | 70 (112.7) | | Edgecombe | 80 (128.7) | Onslow | 100 (160.9) | | | | Forsyth | 70 (112.7) | Orange | 70 (112.7) | | | ### B. Review and Approval The Engineer is responsible for the review and approval of temporary works' drawings. Submit the working drawings sufficiently in advance of proposed use to allow for their review, revision (if needed), and approval without delay to the work. The time period for review of the working drawings does not begin until complete drawings and design calculations, when required, are received by the Engineer. Do not start construction of any temporary work for which working drawings are required until the drawings have been approved. Such approval does not relieve the Contractor of the responsibility for the accuracy and adequacy of the working drawings. ### 4.0 CONSTRUCTION REQUIREMENTS All requirements of Section 420 of the Standard Specifications apply. Construct temporary works in conformance with the approved working drawings. Ensure that the quality of materials and workmanship employed is consistent with that assumed in the design of the temporary works. Do not weld falsework members to any portion of the permanent structure unless approved. Show any welding to the permanent structure on the approved construction drawings. Provide tell-tales attached to the forms and extending to the ground, or other means, for accurate measurement of falsework settlement. Make sure that the anticipated compressive settlement and/or deflection of falsework does not exceed 1 inch (25 mm). For cast-in-place concrete structures, make sure that the calculated deflection of falsework flexural members does not exceed 1/240 of their span regardless of whether or not the deflection is compensated by camber strips. ### A. Maintenance and Inspection Inspect and maintain the temporary work in an acceptable condition throughout the period of its use. Certify that the manufactured devices have been maintained in a condition to allow them to safely carry their rated loads. Clearly mark each piece so that its capacity can be readily determined at the job site. Perform an in-depth inspection of an applicable portion(s) of the temporary works, in the presence of the Engineer, not more than 24 hours prior to the beginning of each concrete placement. Inspect other temporary works at least once a month to ensure that they are functioning properly. Have a North Carolina Registered Professional Engineer inspect the cofferdams, shoring, sheathing, support of excavation structures, and support systems for load tests prior to loading. ### B. Foundations Determine the safe bearing capacity of the foundation material on which the supports for temporary works rest. If required by the Engineer, conduct load tests to verify proposed bearing capacity values that are marginal or in other high-risk situations. The use of the foundation support values shown on the contract plans of the permanent structure is permitted if the foundations are on the same level and on the same soil as those of the permanent structure. Allow for adequate site drainage or soil protection to prevent soil saturation and washout of the soil supporting the temporary works supports. If piles are used, the estimation of capacities and later confirmation during construction using standard procedures based on the driving characteristics of the pile is permitted. If preferred, use load tests to confirm the estimated capacities; or, if required by the Engineer conduct load tests to verify bearing capacity values that are marginal or in other high risk situations. The Engineer reviews and approves the proposed pile and soil bearing capacities. ### 5.0 REMOVAL Unless otherwise permitted, remove and keep all temporary works upon completion of the work. Do not disturb or otherwise damage the finished work. Remove temporary works in conformance with the contract documents. Remove them in such a manner as to permit the structure to uniformly and gradually take the stresses due to its own weight. ### 6.0 METHOD OF MEASUREMENT Unless otherwise specified, temporary works will not be directly measured. ### 7.0 BASIS OF PAYMENT Payment at the contract unit prices for the various pay items requiring temporary works will be full compensation for the above falsework and formwork. ### SUBMITTAL OF WORKING DRAWINGS (4-1-11) ### 1.0 GENERAL Submit working drawings in accordance with Article 105-2 of the *Standard Specifications* and this provision. For this provision, "submittals" refers to only those listed in this provision. The list of submittals contained herein does not represent a list of required submittals for the project. Submittals are only necessary for those items as required by the contract. Make submittals that are not specifically noted in this provision directly to the Resident Engineer. Either the Structure Design Unit or the Geotechnical Engineering Unit or both units will jointly review submittals. If a submittal contains variations from plan details or specifications or significantly affects project cost, field construction or operations, discuss the submittal with and submit all copies to the Resident Engineer. State the reason for the proposed variation in the submittal. To minimize review time, make sure all submittals are complete when initially submitted. Provide a contact name and information with each submittal. Direct any questions regarding submittal requirements to the Resident Engineer, Structure Design Unit contacts or the Geotechnical Engineering Unit contacts noted below. In order to facilitate in-plant inspection by NCDOT and approval of working drawings, provide the name, address and telephone number of the facility where fabrication will actually be done if different than shown on the title block of the submitted working drawings. This includes, but is not limited to, precast concrete items, prestressed concrete items and fabricated steel or aluminum items. #### 2.0 ADDRESSES AND CONTACTS For submittals to the Structure Design Unit, use the following addresses: Via US mail: Mr. G. R. Perfetti, P. E. State Bridge Design Engineer North Carolina Department of Transportation Structure Design Unit 1581 Mail Service Center Raleigh, NC 27699-1581 Attention: Mr. P. D. Lambert, P. E. Submittals may also be made via email. Send submittals to: <u>plambert@ncdot.gov</u>
(Paul Lambert) Send an additional e-copy of the submittal to the following address: <u>igaither@ncdot.gov</u> (James Gaither) Via other delivery service: Mr. G. R. Perfetti, P. E. State Bridge Design Engineer North Carolina Department of Transportation Structure Design Unit 1000 Birch Ridge Drive Raleigh, NC 27610 Attention: Mr. P. D. Lambert, P. E. For submittals to the Geotechnical Engineering Unit, use the following addresses: For projects in Divisions 1-7, use the following Eastern Regional Office address: Via US mail: Via other delivery service: Mr. K. J. Kim, Ph. D., P. E. Eastern Regional Geotechnical Manager North Carolina Department of Transportation Geotechnical Engineering Unit Eastern Regional Office 1570 Mail Service Center Raleigh, NC 27699-1570 Mr. K. J. Kim, Ph. D., P. E. **Eastern Regional Geotechnical** Manager North Carolina Department of Transportation Geotechnical Engineering Unit Eastern Regional Office 3301 Jones Sausage Road, Suite 100 Garner, NC 27529 For projects in Divisions 8-14, use the following Western Regional Office address: Via US mail: Via other delivery service: Mr. John Pilipchuk, L. G., P. E. Western Regional Geotechnical Manager North Carolina Department of Transportation Geotechnical Engineering Unit Western Regional Office 5253 Z Max Boulevard Harrisburg, NC 28075 Mr. John Pilipchuk, L. G., P. E. Western Region Geotechnical Manager North Carolina Department of Transportation Geotechnical Engineering Unit Western Regional Office 5253 Z Max Boulevard Harrisburg, NC 28075 The status of the review of structure-related submittals sent to the Structure Design Unit can be viewed from the Unit's web site, via the "Contractor Submittal" link. Direct any questions concerning submittal review status, review comments or drawing markups to the following contacts: **Primary Structures Contact:** Paul Lambert (919) 250 - 4041 (919) 250 - 4082 facsimile plambert@ncdot.gov **Secondary Structures Contacts:** James Gaither (919) 250 - 4042 David Stark (919) 250 - 4044 Eastern Regional Geotechnical Contact (Divisions 1-7): K. J. Kim (919) 662 - 4710 (919) 662 - 3095 facsimile kkim@ncdot.gov Western Regional Geotechnical Contact (Divisions 8-14): John Pilipchuk (704) 455 – 8902 (704) 455 – 8912 facsimile ipilipchuk@ncdot.gov ### 3.0 SUBMITTAL COPIES Furnish one complete copy of each submittal, including all attachments, to the Resident Engineer. At the same time, submit the number of hard copies shown below of the same complete submittal directly to the Structure Design Unit and/or the Geotechnical Engineering Unit. The first table below covers "Structure Submittals". The Resident Engineer will receive review comments and drawing markups for these submittals from the Structure Design Unit. The second table in this section covers "Geotechnical Submittals". The Resident Engineer will receive review comments and drawing markups for these submittals from the Geotechnical Engineering Unit. Unless otherwise required, submit one set of supporting calculations to either the Structure Design Unit or the Geotechnical Engineering Unit unless both units require submittal copies in which case submit a set of supporting calculations to each unit. Provide additional copies of any submittal as directed. ### **STRUCTURE SUBMITTALS** | Submittal | Copies
Required by
Structure
Design Unit | Copies Required by Geotechnical Engineering Unit | Contract Reference
Requiring Submittal ¹ | |--|---|--|--| | Arch Culvert Falsework | 5 | 0 | Plan Note, SN Sheet & "Falsework and Formwork" | | Box Culvert Falsework ⁷ | 5 | 0 | Plan Note, SN Sheet & "Falsework and Formwork" | | Cofferdams | 6 | 2 | Article 410-4 | | Evazote Joint Seals ⁶ | 9 | 0 | "Evazote Joint Seals" | | Expansion Joint Seals (hold down plate type with base angle) | 9 | 0 | "Expansion Joint Seals" | | Expansion Joint Seals (modular) | 2, then 9 | 0 | "Modular Expansion Joint Seals" | | Expansion Joint Seals (strip seals) | 9 | 0 | "Strip Seals" | | Falsework & Forms ² (substructure) | 8 | 0 | Article 420-3 & "Falsework and Formwork" | | Falsework & Forms (superstructure) | 8 | 0 | Article 420-3 & "Falsework and Formwork" | | Girder Erection over Railroad | 5 | 0 | Railroad Provisions | | Maintenance and Protection of
Traffic Beneath Proposed
Structure | 8 | 0 | "Maintenance and
Protection of Traffic
Beneath Proposed Structure
at Station" | | Metal Bridge Railing | 8 | 0 | Plan Note | | Metal Stay-in-Place Forms | 8 | 0 | Article 420-3 | | Metalwork for Elastomeric
Bearings ^{4,5} | 7 | 0 | Article 1072-10 | |--|---------------------------|---|---| | Miscellaneous Metalwork ^{4,5} | 7 | 0 | Article 1072-10 | | Optional Disc Bearings 4 | 8 | 0 | "Optional Disc Bearings" | | Overhead Signs | 13 | 0 | Article 903-3(C) & Applicable Provisions | | Placement of Equipment on Structures (cranes, etc.) | 7 | 0 | Article 420-20 | | Pot Bearings ⁴ | 8 | 0 | "Pot Bearings" | | Precast Concrete Box Culverts | 2, then
1 reproducible | 0 | "Optional Precast Reinforced Concrete Box Culvert at Station" | | Precast Retaining Wall Panels | 10 | 1 | Article 1077-2 | | Prestressed Concrete Cored Slab (detensioning sequences) 3 | 6 | 0 | Article 1078-11 | | Prestressed Concrete Deck Panels | 6 and
1 reproducible | 0 | Article 420-3 | | Prestressed Concrete Girder (strand elongation and detensioning sequences) | 6 | 0 | Articles 1078-8 and 1078-
11 | | Removal of Existing Structure over Railroad | 5 | 0 | Railroad Provisions | | Revised Bridge Deck Plans (adaptation to prestressed deck panels) | 2, then
1 reproducible | 0 | Article 420-3 | | Revised Bridge Deck Plans (adaptation to modular expansion joint seals) | 2, then
1 reproducible | 0 | "Modular Expansion Joint Seals" | | Sound Barrier Wall Casting Plans | 10 | 0 | Article 1077-2 & "Sound Barrier Wall" | | Sound Barrier Wall Steel
Fabrication Plans ⁵ | 7 | 0 | Article 1072-10 & "Sound Barrier Wall" | | Structural Steel ⁴ | 2, then 7 | 0 | Article 1072-10 | |-------------------------------------|-----------|---|---| | Temporary Detour Structures | 10 | 2 | Article 400-3 & "Construction, Maintenance and Removal of Temporary Structure at Station" | | TFE Expansion Bearings ⁴ | 8 | 0 | Article 1072-10 | ### **FOOTNOTES** - 1. References are provided to help locate the part of the contract where the submittals are required. References in quotes refer to the provision by that name. Articles and subarticles refer to the *Standard Specifications*. - 2. Submittals for these items are necessary only when required by a note on plans. - 3. Submittals for these items may not be required. A list of pre-approved sequences is available from the producer or the Materials & Tests Unit. - 4. The fabricator may submit these items directly to the Structure Design Unit. - 5. The two sets of preliminary submittals required by Article 1072-10 of the *Standard Specifications* are not required for these items. - 6. Submittals for Fabrication Drawings are not required. Submittals for Catalogue Cuts of Proposed Material are required. See Section 5.A of the referenced provision. - 7. Submittals are necessary only when the top slab thickness is 18" or greater. ### **GEOTECHNICAL SUBMITTALS** | Submittal | Copies Required by Geotechnical Engineering Unit | Copies
Required by
Structure
Design Unit | Contract Reference
Requiring Submittal ¹ | |---|--|---|---| | Drilled Pier Construction Plans ² | 1 | 0 | "Drilled Piers" | | Crosshole Sonic Logging (CSL)
Reports ² | 1 | 0 | "Crosshole Sonic Logging" & "Drilled Piers" | | Pile Driving Equipment Data
Form ^{2,3} | 1 | 0 | Article 450-5 & "Piles" | | Pile Driving Analyzer (PDA)
Reports ² | 1 | 0 | "Pile Driving Analyzer" & "Piles" | | Retaining Walls ⁴ | 8 | 2 | Applicable Provisions | | Contractor Designed Shoring ⁴ | 7 | 2 | "Temporary Shoring", "Anchored Temporary Shoring" & "Temporary Soil Nail Walls" | ### **FOOTNOTES** - 1. References are provided to help locate the part of the contract where the submittals are required. References in quotes refer to the provision by that name. Articles refer to the Standard Specifications. - 2. Submit one hard copy of submittal to the Resident or Bridge Maintenance Engineer. Submit a second copy of submittal electronically (PDF via email) or by facsimile, US mail or other delivery service to the Geotechnical Engineering Unit. Electronic submission is preferred. - 3. Download Pile Driving Equipment Data Form from the following link: www.ncdot.org/doh/preconstruct/highway/geotech/formdet/ See second page of form for submittal instructions. - 4. Electronic copies of submittal are required. See referenced provision. CRANE SAFETY (8-15-05) Comply with the manufacturer specifications and limitations applicable to the operation of any and all cranes and derricks. Prime contractors, sub-contractors, and fully operated rental companies shall comply with the current Occupational Safety and Health Administration regulations (OSHA). Submit all items listed below to the Engineer prior to beginning crane operations involving critical lifts. A critical lift is defined as any lift that exceeds 75 percent of the manufacturer's crane chart capacity for
the radius at which the load will be lifted or requires the use of more than one crane. Changes in personnel or equipment must be reported to the Engineer and all applicable items listed below must be updated and submitted prior to continuing with crane operations. ### **CRANE SAFETY SUBMITTAL LIST** - A. <u>Competent Person:</u> Provide the name and qualifications of the "Competent Person" responsible for crane safety and lifting operations. The named competent person will have the responsibility and authority to stop any work activity due to safety concerns. - B. <u>Riggers:</u> Provide the qualifications and experience of the persons responsible for rigging operations. Qualifications and experience should include, but not be limited to, weight calculations, center of gravity determinations, selection and inspection of sling and rigging equipment, and safe rigging practices. - C. <u>Crane Inspections:</u> Inspection records for all cranes shall be current and readily accessible for review upon request. - D. <u>Certifications:</u> By July 1, 2006, crane operators performing critical lifts shall be certified by NC CCO (National Commission for the Certification of Crane Operators), or satisfactorily complete the Carolinas AGC's Professional Crane Operator's Proficiency Program. Other approved nationally accredited programs will be considered upon request. All crane operators shall also have a current CDL medical card. Submit a list of anticipated critical lifts and corresponding crane operator(s). Include current certification for the type of crane operated (small hydraulic, large hydraulic, small lattice, large lattice) and medical evaluations for each operator. ### SHIPPING STEEL STRUCTURAL MEMBERS (7-18-06) ### Section 1072-23 Marking and Shipping Add the following paragraphs after the third paragraph of the Section. Load and ship steel beams and girders in accordance with the Figure below for all types of transportation. Below is the sketches provided to Materials and Tests Unit on May 8, 1991. When the contractor wishes to place members on trucks not in accordance with these limits, to ship by rail, to attach shipping restraints to the members, to ship horizontally curved steel members, or to invert members, he shall submit a shipping plan prior to shipping. See also Article 1072-11. ### LIMITS FOR PLACEMENT OF BEAMS AND GIRDERS DURING SHIPMENT WHEN 'C' = 15' (4.6m) OR LESS WHEN 'C' = OVER 15' (4.6m) THRU 30' (9.1m) | | L | MIN. 'C' | | | | MAX 'C' | |-----|---------|----------|-----|--------|-------|------------| | 75 | (22.9m) | | 15 | (4.6m) | (| 22½(6.9m) | | | (24.4m) | | 16 | (4.9m) | | 24 (7.3m) | | | (25.9m) | | 17 | (5.2m) | 0.3L< | 25½(7.8m) | | | (27.4m) | | 18 | (5.5m) | | 27 (8.2m) | | 95 | (29.Om) | 0.2L< | 19 | (5.8m) | | 28½(8.7m) | | | (30.5m) | | 20 | (6.1m) | , | _30 (9.1m) | | | (32.Om) | | 21 | (6.4m) | | 30 (9.1m) | | | (33.5m) | | 22 | (6.7m) | | 30 (9.1m) | | 115 | (35.1m) | | 23 | (7.Om) | | 30 (9.1m) | | 120 | (36.6m) | | _24 | (7.3m) | | 30 (9.1m) | NOTES: ALL DIMENSIONS ARE IN FEET (METERS). TRUCK LOADING SHOWN FOR SIMPLICITY DIMENSIONS APPLY TO ALL TYPES OF SHIPMENTS. ### **GROUT FOR STRUCTURES** (7-12-07) ### 1.0 DESCRIPTION This special provision addresses grout for use in structures, including continuous flight auger (CFA) piles, micropiles, soil nail and anchored retaining walls and backfilling crosshole sonic logging (CSL) tubes or grout pockets, shear keys, dowel holes and recesses for cored slabs and box beams. This provision does not apply to grout placed in post-tensioning ducts for bridge beams, girders, or decks. Provide grout composed of portland cement, water and at the Contractor's option, fine aggregate and/or pozzolan. If necessary, use set controlling admixtures. Proportion, mix and place grout in accordance with the plans, the applicable section of the *Standard Specifications* or special provision for the application and this provision. ### 2.0 MATERIALS Refer to Division 10 of the Standard Specifications: | Item | Article | |--------------------------------------|---------| | Portland Cement | 1024-1 | | Water | 1024-4 | | Fine Aggregate | 1014-1 | | Fly Ash | 1024-5 | | Ground Granulated Blast Furnace Slag | 1024-6 | | Admixtures | 1024-3 | At the Contractor's option, use an approved packaged grout in lieu of the materials above with the exception of the water. Contact the Materials and Tests (M&T) Unit for a list of approved packaged grouts. Consult the manufacturer to determine if the packaged grout selected is suitable for the application and meets the compressive strength and shrinkage requirements. ### 3.0 REQUIREMENTS Unless required elsewhere in the Contract, provide non-metallic grout with minimum compressive strengths as follows: | Property | Requirement | |--------------------------------|---------------------| | Compressive Strength @ 3 days | 2500 psi (17.2 MPa) | | Compressive Strength @ 28 days | 4500 psi (31.0 MPa) | For applications other than micropiles, soil nails and ground anchors, use non-shrink grout with shrinkage of less than 0.15%. When using approved packaged grout, a grout mix design submittal is not required. Submit grout mix designs in terms of saturated surface dry weights on M&T Form 312U in accordance with the applicable section of the *Standard Specifications* or special provision for the structure. Use an approved testing laboratory to determine the grout mix proportions. Adjust proportions to compensate for surface moisture contained in the aggregates at the time of mixing. Changes in the saturated surface dry mix proportions will not be permitted unless a revised grout mix design submittal is accepted. For each grout mix design, provide laboratory test results for compressive strength, density, flow and if applicable, aggregate gradation and shrinkage. Submit compressive strength for at least 3 cube and 2 cylinder specimens at the age of 3, 7, 14 and 28 days for a total of at least 20 specimens tested. Perform laboratory tests in accordance with the following: | Property | Test Method | |---|-------------------------------| | Compressive Strength | AASHTO T106 and T22 | | Density | AASHTO T133 | | Flow for Sand Cement Grout | ASTM C939 (as modified below) | | Flow for Neat Cement Grout | Marsh Funnel and Cup | | (no fine aggregate) | API RP 13B-1, Section 2.2 | | Aggregate Gradation for Sand Cement Grout | AASHTO T27 | | Shrinkage for Non-shrink Grout | ASTM C1090 | When testing grout for flow in accordance with ASTM C939, modify the flow cone outlet diameter from ½ to ¾ inch (13 to 19 mm). When grout mix designs are submitted, the Engineer will review the mix designs and notify the Contractor as to their acceptability. Do not use grout mix designs until written acceptance has been received. Acceptance of grout mix designs or use of approved packaged grouts does not relieve the Contractor of responsibility to furnish a product that meets the Contract requirements. Upon written request from the Contractor, a grout mix design accepted and used satisfactorily on a Department project may be accepted for use on other projects. ### 4.0 SAMPLING AND PLACEMENT The Engineer will determine the locations to sample grout and the number and type of samples collected for field and laboratory testing. Use API RP 13B-1 for field testing grout flow and density of neat cement grout. The compressive strength of the grout will be considered the average compressive strength test results of 3 cube or 2 cylinder specimens at 28 days. Do not place grout if the grout temperature is less than 50°F (10°C) or more than 90°F (32°C) or if the air temperature measured at the location of the grouting operation in the shade away from artificial heat is below 40°F (4°C). Provide grout at a rate that permits proper handling, placing and finishing in accordance with the manufacturer's recommendations unless directed otherwise by the Engineer. Use grout free of any lumps and undispersed cement. Agitate grout continuously before placement. Control grout delivery so the interval between placing batches in the same component does not exceed 20 minutes. Place grout before the time between adding the mixing water and placing the grout exceeds that in the table below. | ELAPSED TIME FOR PLACING GROUT (with continuous agitation) | | | | |--|---------------------------------------|------------------------------------|--| | Maximum Elapsed Time | | | | | Air or Grout Temperature
Whichever is Higher | No Set Retarding
Admixture
Used | Set Retarding
Admixture
Used | | | 90°F (32°C) or above | 30 min. | 1 hr. 15 min. | | | 80°F (27°C) through 89°F (31°C) | 45 min. | 1 hr. 30 min. | | | 79°F (26°C) or below | 60 min. | 1 hr. 45 min. | | ### 5.0 MISCELLANEOUS Comply with Articles 1000-9 through 1000-12 of the *Standard Specifications* to the extent applicable for grout in lieu of concrete. ### **HIGH STRENGTH BOLTS** (5-25-10) The 2006 Standard Specifications shall be revised as follows: In Section 440-8(A) - General, revise the third paragraph and insert a new paragraph four, respectively, as follows: Make sure that plain bolts and washers have a thin coat of lubricant at the time of installation. Use nuts that are pre-waxed by the producer/supplier prior to shipping to the project. In Section 440-8(D) – Inspection replace the first sub-paragraph under the third paragraph with the following: At least once each working day, place 3 calibration sample bolts of the same grade, size, representative length, and conditions as those under inspection in a tension indicating calibration device. Furnish a tension indicating calibration device certified by an approved independent testing lab within 12 calendar months prior to testing the bolts under inspection. The calibration device should be in good working order and provide accuracy within plus or minus 10 percent
for the range of loads between 25,000 and 40,000 pounds. Place a washer under the part turned in tightening for each bolt if washers are so used in the structure. If no washer is used make sure that the material abutting the part turned is the same as that used in the structure. ### ADHESIVELY ANCHORED ANCHOR BOLTS OR DOWELS (6-11-07) ### 1.0 GENERAL Installation and Testing of Adhesively anchored anchor bolts and dowels shall be in accordance with Section 420-13, 420-21 and 1081-1 of the Standard Specifications except as modified in this provision. ### 2.0 Installation Installation of the adhesive anchors shall be in accordance with manufacturer's recommendations and shall occur when the concrete is above 40 degrees Fahrenheit and has reached its 28 day strength. The anchors shall be installed before the adhesive's initial set ('gel time'). ### 3.0 FIELD TESTING Replace the third paragraph of Section 420-13 (C) with the following: "In the presence of the Engineer, field test the anchor bolt or dowel in accordance with the test level shown on the plans and the following:. Level One Field testing: Test a minimum of 1 anchor but not less than 10% of all anchors to 50% of the yield load shown on the plans. If less than 60 anchors are to be installed, install and test the required number of anchors prior to installing the remaining anchors. If more than 60 anchors are to be installed, test the first 6 anchors prior to installing the remaining anchors, then test 10% of the number in excess of 60 anchors. Level Two Field testing: Test a minimum of 2 anchors but not less than 10% of the all anchors to 80% of the yield load shown on the plans. If less than 60 anchors are to be installed, install and test the required number of anchors prior to installing the remaining anchors. If more than 60 anchors are to be installed, test the first 6 anchors prior to installing the remaining anchors, then test 10% of the number in excess of 60 anchors. Testing should begin only after the Manufacturer's recommended cure time has been reached. For testing, apply and hold the test load for three minutes. If the jack experiences any drop in gage reading, the test must be restarted. For the anchor to be deemed satisfactory, the test load must be held for three minutes with no movement or drop in gage reading." ### 4.0 REMOVAL AND REPLACEMENT OF FAILED TEST SPECIMENS: Remove all anchors and dowels that fail the field test without damage to the surrounding concrete. Redrill holes to remove adhesive bonding material residue and clean the hole in accordance with specifications. For reinstalling replacement anchors or dowels, follow the same procedures as new installations. Do not reuse failed anchors or dowels unless approved by the Engineer. ### 5.0 USAGE The use of adhesive anchors for overhead installments is not permitted without written permission from the Engineer. ### 6.0 BASIS OF PAYMENT No separate measurement or payment will be made for furnishing, installing, and testing anchor bolts/dowels. Payment at the contract unit prices for the various pay items will be full compensation for all materials, equipment, tools, labor, and incidentals necessary to complete the work. ### **DIRECT TENSION INDICATORS** (6-12-09) The 2006 Standard Specifications shall be revised as follows: Replace Section 440-8(C)(6) - Direct Tension Indicators with the following: Supply direct tension indicators in accordance with the requirements of ASTM F959 and Article 1072-7. Furnish the Engineer with at least one metal feeler gage for each container of direct tension indicators shipped before beginning installation. Make sure that the lot number on the containers of direct tension indicators is for the same lot number tested as indicated on the test documents. Furnish to the Engineer three samples of load indicating washers from each lot number, each size and type for tests and two each of the metal feeler gages required for performing the tests. Install the direct tension indicator under the bolt head. If it is necessary to install the direct tension indicator under the nut, or if the bolt head shall be turned, install additional hardened washers between the nut or bolt head and the direct tension indicator. Provide a tension indicating device on the project for determining the tension imposed on a fastener when the protrusions on direct tension indicator are properly compressed. Test 3 samples from each lot of direct tension indicators in the presence of the Engineer. Achieve a minimum bolt tension of 5% greater than that required by Table 440-1 of Article 440-8. Do not substitute direct tension indicators for hardened steel washers required with short slotted or oversized holes. If desired, use direct tension indicators in conjunction with hardened steel washers. Install direct tension indicators initially to a snug tight condition as specified in Subarticle 440-8(C)(3). After initial tightening, fully tighten beginning at the most rigid part of the joint and continuing toward its free edges. For tightening fasteners containing direct tension indicators, use a clean and lubricated wrench. Maintain air supply and hoses in good condition and provide air pressure of at least 100 psi at the wrench. When tightening the fasteners, ensure that the part of the fastener being restrained from turning does not rotate during the tightening process. Ensure that no portion of the direct tension indicator protrusions is accidentally partially flattened before installing in the structural steel joints. Do not reuse direct tension indicators. If it is necessary to loosen a bolt previously tensioned, discard and replace the direct tension indicator. ### CURING CONCRETE (6-12-09) The 2006 Standard Specifications shall be revised as follows: Replace the first paragraph of Section 420-15(A) – Curing Concrete – General with the following: Unless otherwise specified in the contract, use any of the following methods except for membrane curing compounds on bridge deck and approach slab, or on concrete which is to receive epoxy protective coating in accordance with 420-18. Advise the Engineer in advance of the proposed method. Have all material, equipment, and labor necessary to promptly apply the curing on the site before placing any concrete. Cure all patches in accordance with this article. Improperly cured concrete is considered defective. Replace the third paragraph of Section 420-15(C) – Curing Concrete – Membrane Curing Compound Method with the following: Seal the surface with a single uniform coating of the specified type of curing compound applied at the rate of coverage recommended by the manufacturer or as directed, but not less than 1 gallon per 150 square feet of surface area. ### PLACING LOAD ON STRUCTURE MEMBERS (8-4-09) The 2006 Standard Specifications shall be revised as follows: Replace the fifth paragraph of Section 420-20 – Placing Load on Structure Members with the following: Do not place vehicles or construction equipment on a bridge deck until the deck concrete develops the minimum specified 28 day compressive strength and attains an age of at least 14 curing days. The screed may be rolled across a previously cast bridge deck if the entire pour has not achieved initial set. If any portion of the deck concrete has achieved initial set, the screed can not be rolled across the bridge deck until the concrete develops a compressive strength of at least 1,500 psi. Construction equipment is allowed on bridge approach slabs after the slab concrete develops a compressive strength of at least 3,000 psi and attains an age of at least 7 curing days. A curing day is defined in Subarticle 420-15(A). ### REHABILITATION OF EXISTING STRUCTURE (SPECIAL) ### 1.0 Scope of Work This work consists of furnishing all labor, materials and equipment to clean and paint all structural steel on the existing structure including the complete truss system, steel bearings and any other miscellaneous structural steel on the bridge. Work includes: removing, containment and disposal of the existing paint system; preparation of the surface to be painted and applying the new paint system; removal and replacement of the existing bridge rails; providing under structure work platform and all incidental items necessary to complete the project as specified herein and shown on the plans. The Contractor, at his option, may remove the existing truss and rehabilitate the truss off-site. Prior to removing the existing truss, provide adequate shoring to protect the existing substructure. The existing truss shall be match-marked, disassembled, cleaned, painted, and reerected. If it is required for the Contractor to remove the bridge deck in order to lift the truss, the deck will be restored in-kind after the truss is re-erected. The Contractor is responsible for fulfilling all requirements of the NCDOT Standard Specifications, the applicable permits, and these Special Provisions. ### 2.0 Work Plan Submittals Prior to beginning work, submit a work plan to the Engineer detailing a method of rehabilitating the existing structure for approval. On-site rehabilitation requires the following submittals: Under structure work platform and enclosure drawings, Containment Plan, Wash Water Sampling and Disposal Plan, Waste Disposal Plan, Health & Safety Plan, Spill Response Plan, Environmental Compliance Plan, and Quality Control Plan (including, Personnel Qualifications, Product Data sheets for blast media and paint, Coating MSDS and test reports for each batch of paint to be used on the project, and paint repair procedures). Off-site rehabilitation requires the following submittals: Shoring plans for the existing substructure, Method of disassembly and re-erecting the truss, Containment Plan, Wash Water Sampling and Disposal Plan, Waste Disposal Plan, Health & Safety Plan, Environmental Compliance Plan, and Quality Control Plan (including, Personnel Qualifications, Product Data sheets for blast media and paint,
Coating MSDS and test reports for each batch of paint to be used on the project, and paint repair procedures). Approval time for bridge rehabilitation submittals shall be 40 days. The first submittal may be made via email. Provide a contact name and information with each submittal. Direct any questions regarding submittal requirements to the Resident Engineer. For off-site rehabilitation, shoring plan submittal shall be sent to the Geotechnical Unit in accordance with the special provisions for *Submittal of Working Drawings*. All bridge rehabilitation submittals such as Under Structure Work Platform and Enclosure drawings, Containment Plan, Spill Response Plan, Wash Water Sampling and Disposal Plan, etc. shall be submitted to the State Bridge Management Unit and the Materials & Tests Unit. ### **Addresses and Contacts** | Addresses and Contacts | | |--|-------------------------------| | Mr. Rick Nelson, PE | Mr. Aaron Dacey | | Asst. State Bridge Management Engineer | Coatings & Corrosion Engineer | | NC Dept. of Transportation | NC Dept. of Transportation | | State Bridge Management Unit | Materials & Tests Unit | | 4809 Beryl Drive | 1563 Mail Service Center | | Raleigh, NC 27606 | Raleigh, NC 27699-1563 | | Fax: 919.733.2348 | Fax: 919.733.8742 | | Ph: 919.733.4362 | Ph: 919.329.4090 | | Email: enelson@ncdot.gov | Email: adacey@ncdot.gov | | | | Furnish one complete copy of each submittal, including all attachments, to the Resident Engineer. At the same time, submit the number of copies shown below of the same complete submittal directly to the State Bridge Management Unit and the Materials & Tests Unit. The Resident Engineer will receive review comments and drawing markups for these submittals from the State Bridge Management Unit. Unless otherwise required, submit one set of supporting calculations to the State Bridge Management Unit. Provide additional copies of any submittal as directed by the Engineer. ### **SUBMITTALS** | Submittal | Copies
Required by
SBMU | Copies Required by Materials &Tests Unit | Contract Reference
Requiring Submittal | |--|---------------------------------------|--|---| | Bridge Rehabilitation Submittals (Under Structure Work Platform, Containment Plan, Product Data, Health & Safety, QC Plan, etc.) | 1 via email,
Then 5 hard
copies | 1 via email | Rehabilitation of Existing
Structure | ### 3.0 Payment All work described above is included in the lump sum price bid for **Rehabilitation of Existing Structure**. This price is full compensation for furnishing all necessary materials, labor, equipments, all required inspection, access and staging areas, pollution control, disposal of debris and wash water, replacing bridge rails, and any measures necessary to complete the rehabilitation work of the existing structure and to ensure conformance to all safety and environmental regulations as directed by the Engineer. Payment will be made under: Pay Item Rehabilitation of Existing Structure Pay Unit Lump Sum ### UNDER STRUCTURE WORK PLATFORM (SPECIAL) ### 1.0 Description Prior to any partial structure removal or on-site painting operations on the existing structure, design and install an understructure work platform which will be used to provide access to the work to be done as well as serve as containment for the cleaning and painting of the bridge and to prevent debris from falling into the river during removal operations. Determine the capacity of the platform which will be required, but the capacity shall not be less than that required by State or Federal regulations. Platform shall be constructed of materials capable of withstanding damage from any of the work required on this project. The platform shall be fireproof. Drawings of the platform and loads supported by the platform shall be sealed by a Registered North Carolina Professional Engineer. Submit drawings to the Engineer for approval prior to beginning work on the platform. Platform shall be cleaned after each work day to prevent materials from falling or washing into the river. ### 2.0 Payment No separate payment will be made for the design, installation, maintenance, and removal of the under structure work platform. All cost associated with this work shall be included in the lump sum bid price for Rehabilitation of Existing Structure. ### **CLEANING AND PAINTING EXISTING STRUCTURE** (SPECIAL) ### 1.0 General This work consists of furnishing all labor, equipment, and materials to clean and paint the structural steel of the existing bridge. Work includes: removing, containment and disposal of the existing paint system; preparation of the surfaces to be painted; and applying the new paint system. Paint on the existing bridge contains red lead and other hazardous constituents. All cleaning and surface preparation activities must prevent dispersion of debris into the environment. Surface preparation and painting are performed in accordance with Sections 442 and 1080 except otherwise noted in these Special Provisions. ### 2.0 **Specialty Items** Work Schedule – Prior to beginning work, submit a work schedule to the Engineer. Schedule shall be kept up to date, with a copy of the revised schedule being provided to the Engineer in a timely manner. SSPC QP-2 Certification - The existing paint systems include toxic substances such as red lead oxide, which are considered hazardous if improperly removed. Only contractors or subcontractors who are currently SSPC QP-2, Category A certified, and have successfully completed lead paint removal on similar structures within 18 months prior to this bid, may perform this work. The Contractor or subcontractor must complete and submit a "Lead Abatement Affidavit" to the Engineer prior to performing this work. This form may be downloaded from: http://www.ncdot.gov/projects/ncbridges/#stats Twelve-month Observation Period - Maintain responsibility for the coating system for a twelve (12) month observation period beginning upon the satisfactory completion of all the work required in the plans or as directed by the Engineer. The coating system must be guaranteed under the payment and performance bond in accordance with Section 109-10. To successfully complete the observation period, the coating system must meet the following requirements after twelve (12) months service: - No visible rust, contamination or application defect is observed in any coated area. - Painted surfaces have a uniform color and gloss. - Painted surfaces have an adhesion that meets an ASTM D-3359, 3A rating. Final acceptance is made only after the paint system meets the above requirements. Containment Plan - Prior to beginning work, furnish the Engineer with a containment plan for surface preparation and coating operations for review and approval. Such plan must meet or exceed the requirements of Class 2A containment in accordance with SSPC Guide 6. For on-site rehabilitation, enclosure drawings and loads supported by the structure must be prepared, signed and sealed by a Registered North Carolina Professional Engineer. 31 ¹ Successfully: Lead abatement work completed in accordance with contract specifications, free of citation from safety or environmental agencies. Lead abatement work shall include but not be limited to: abrasive blasting; waste handling, storage and disposal; worker safety during lead abatement activities (fall protection, PPE, etc.); and containment. This requirement is in addition to the contractor pre-qualification requirements covered by NCDOT Std. Specification, Section 102-2. In the containment plan, describe how debris are contained and collected. Describe the type of tarpaulin and bracing materials and the maximum designed wind load. Describe the dust collection system and how a negative pressure of 0.03 inches of water column is maintained inside the enclosure while blasting operations are being conducted. Describe how the airflow inside the containment structure is designed to meet all applicable OSHA Standards. Describe how water run-off from rain will be routed by or through the enclosure. Describe how wash water will be contained and paint chips separated. Describe what physical containment will be provided during painting application to protect areas not to be painted. Wash water Sampling and Disposal Plan - Prior to beginning work, submit a Wash Water and Disposal Plan to the Engineer for approval. All wash water shall be collected and sampled prior to disposal. Representative sampling and testing methodology shall conform to 15A NCAC 02B.0103, "Analytical Procedures". Wash water shall be tested for pollutants listed in 15A NCAC 02B.0211 (3), 15A NCAC 02T.0505 (b) (1) and 15A NCAC 2T.0905 (h) (See link below for NCDOT Guidelines for Managing Bridge Wash Water). Depending on the test results, wash water disposal methods shall be described in the disposal plan. Wash water shall be disposed of in accordance with all current state and federal regulations and the "NCDOT Guidelines for Managing Bridge Wash Water" available at the below link. http://www.ncdot.gov/projects/ncbridges/#stats Waste Handling of Paint and Abrasives – Comply with the Resource Conservation and Recovery Act (RCRA – 40 CFR 261 - 265) and the Occupational Safety and Health Act (OSHA - 29 CFR 1910 - 1926) regulations for employee training, and for the handling, storage, labeling, recordkeeping, reporting, inspections and disposal of all hazardous waste generated during paint removal. Quantities of waste by weight and dates of waste generation must be recorded. Waste stored at the project site must be properly labeled. A summary of Generator Requirements which cites the specific regulations for each Generator category is listed as follows: (on next page). # 156 Summary of
Generator Requirements | Regulatory
Provision | Conditionally Exempt Small
Quantity Generator (CESQG) | Small Quantity Generator
(SQG) | Large Quantity Generator (LQG) | |--|--|---|---| | Hazardous Waste Generation Rate | ≤220 lbs (100 kg) non acute
HW | > 220 lbs (100 kg) but <2200 lbs
(1000kg) | ≥ 2200 lbs (1000 kg) non-acute HW | | | ≤2.2 lbs (1 kg) acute HW | ≤ 2.2 lbs (1 kg) acute HW | >2.2 lbs (1 kg) acute HW | | Notify EPA/State of HW activity and obtain EPA ID number | No
40 CFR 261.5(b) | Yes
40 CFR 262.12(a-b) | Yes
40 CFR 262.12 (a-b) | | Maximum storage time | No time limit | 180 days (270 days is waste is shipped
200 miles or more)
40 CFR 262.34(d-e) | 90 days
40 CFR 262.34(a) | | Maximum on-site waste accumulation | 2200 lbs (1000 kg)
40 CFR 261.5(g)(2) | 13,2000 lbs (6000 kg)
40 CFR 262.34(f) | No quantity limit | | Allowable accumulation units | Any (as long as none is placed on the land) | Containers per 40 CFR Part 265 Tanks per 40 CFR 265.201 | Containers per 40 CFR Part 265,
Subpart I;
Tanks per 40 CFR 265, Subpart J;
Drip pads per 40 CFR 265 Subpart
W;
Containment Bldgs per 40 CFR 265
Subpart DD | | "Hazardous Waste" label | No labeling requirement | Required on each container and tank
40 CFR 262.34(d)(4) | Required on each container and tank
40 CFR 262.34(a)(3) | | Accumulation start date marking | No marking requirement | Date appears on each container; recorded in facility log for tanks 40 CFR 262.34(d)(4) | Date appears on each container;
recorded in facility log for tanks,
drip pads, and containment bldgs
40 CFR 262.34(a)(2) | | Container location standards | None
40 CFR 261.5(b) | None
40 CFR 262.34(d)(2) | At least 50 feet from property line
for ignitable and reactive wastes
40 CFR 265.176 | | Use Manifest to ship waste off-site | No
40 CFR 261.5(b) | Yes
40 CFR 262.20 - 262.23 | Yes
40 CFR 262.20 – 262.23 | | Use transporters with EPA ID numbers | No
40 CFR 261.5(b) | Yes
40 CFR 262.1(c) | Yes
40 CFR 262.12(c) | | Prepare LDR notifications/certifications | No
40 CFR 261.5(b) | Yes
40 CFR 268.1(b) | Yes
40 CFR 268.1(b) | | Allowable classes of facilities to receive off-site shipment | Permitted or interim status HW facilities HW recycling facilities State-permitted, licensed, or registered municipal or industrial waste facilities 40 CFR 261.5(g)(3) | Permitted or interim status HW facilities HW recycling facilities 40 CFR 260.10 "Designated Facility" | Permitted or interim status HW facilities HW recycling facilities 40 CFR 260.10 "Designated facility" | | Personnel training | No
40 CFR 261.5(b) | Yes
40 CFR 262.34(d)(5)(iii) | Yes
40 CFR 262.34(a)(4) | | Preparedness and prevention | No
40 CFR 261.5(b) | Yes
40 CFR 262.34(d)(4) | Yes
40 CFR 262.34(a)(4) | | Contingency Plan and emergency procedures | No
40 CFR 261.5(b) | Yes
40 CFR 262.34(d)(5) | Yes
40 CFR 262.34(a)(4) reference 40
CFR 265, Subpart D | | Weekly Inspections | No
40 CFR 261.5(b) | Yes
40 CFR 262.34(d)(2) reference 40 CFR
265.174 | Yes
40 CFR 262.34(a)(1)(i) reference 40
CFR 265.174 | | Prepare/file records | No regulatory requirements but
should keep hazardous waste
identification records and
manifests | Yes
40 CFR 262.40(a, c-d), 262.42(b),
262.43, 262.44 | Yes
40 CFR 262.40, 262.41, 262.42(a),
262.43 | | Meet Subparts AA-CC organic air emission standards | No
40 CFR 261.5(b) | No
40 CFR 262.34(d)(2) reference 40 CFR
265.201 | Yes for tanks 40 CFR 265.202 Yes for containers 40 CFR 265.178 | The North Carolina Department of Environment and Natural Resouces (NCDENR) has adopted RCRA as the North Carolina Hazardous Waste Management Rules and is responsible for enforcement. The "Hazardous Waste Compliance Manual for Generators of Hazardous Waste" is published by the Compliance Branch of the Division of Waste Management of NCDENR, and can be found at ### http://www.wastenotnc.org/HWHOME/WEBRules/NCHWRule.html Prior to beginning work, arrange for waste containers, transportation and disposal of all waste, and submit a written waste disposal plan to the Engineer for approval. Any alternative method for handling waste must be pre-approved by the Engineer. Use a company from the below list of approved waste management companies: Southern Logistics, Inc. – 312 Orvil Wright Blvd, Greensboro, NC 27409 (Ph. 336-662-0292) A&D Environmental – P O Box 484, Highpoint, NC 27261 (Ph. 336-434-7750) Poseidon Environmental Services, Inc. – 837 Boardman- Canfield Rd #209, Youngstown, OH (Ph. 330-726-1560) All removed paint and spent abrasive media shall be tested for lead following the SW-846 TCLP Method 1311 Extraction, as required in 40 CFR 261, Appendix 11, to determine whether it must be disposed of as hazardous waste. Random sampling using composite samples of at least 20% (minimum of 2 composite samples) of the waste is required for characterization of the waste. A composite sample consists of equal mass samples from 3 to 4 drums. Provide certified test reports to the Engineer, showing TCLP results of the paint chips stored on site, with disposal being in accordance with "Flowchart on Lead Waste Identification and Disposal". ### www.wastenotnc.org/hwhome/guidance/guidance.htm Until test results are received, all waste shall be stored and labeled as "NCDOT Bridge Paint Removal Waste-Pending Analysis" and include the date generated and contact information. Waste containers shall be stored in a covered and secured storage container. Once test results are received and characterized, waste shall be labeled as either "Hazardous Waste-Pending Disposal" or "Paint Waste Pending Disposal". Once the waste has been collected, and the quantity determined, prepare the appropriate shipping documents and manifests and present them to the Engineer for waste shipment and disposal. The Engineer will verify the type and quantity of waste and obtain a Provisional EPA ID number from the NC Hazardous Waste Section. North Carolina Department of Environment & Natural Resources 1646 Mail Service Center Raleigh, NC 27699 Phone (919) 508-8400 Fax (919) 715-4061 At the time of shipping, the Engineer will sign, date and add the ID number in the appropriate section on the manifest. The cost for waste disposal (including any lab fees) is included in the bid price for this contract. Note NC Hazardous Waste Management Rules (15A NCAC 13A) for more information. Provisional EPA ID numbers may be obtained at this link: www.wastenotnc.org/HWHOME/ProvisionalIDRequirements.pdf Testing labs shall be certified in accordance with North Carolina State Laboratory Public Health Environmental Sciences. List of certified laboratories may be obtained at this link: http://slphreporting.ncpublichealth.com/EnvironmentalSciences/Certification/CertifiedLaboratory.asp All test results shall be documented on the lab analysis as follows: - 1. For leachable lead - a. Soils/Solid/Liquid- EPA 1311/200.7/6010 All sampling shall be done in presence of the Engineer's representative. **Spill Response Plan -** For on-site rehabilitation, provide the Engineer with a spill response plan prior to beginning work. In the spill response plan, describe the planning and control measures to minimize impacts resulting from spills of red lead paint debris and other hazardous substances, and to quickly and successfully clean up a spill should one occur. ### 3.0 Subletting of Contract Only subcontractors certified to meet SSPC QP-2, Category A, and have successfully completed lead paint removal on similar structures within 18 months prior to this bid are qualified for this work. ### 4.0 Preparation of Surfaces - **A.** Before any other surface preparation is conducted, all surfaces shall be power washed with low pressure water to remove dust, salts, and other contaminants. - B. Blasting is done with recyclable steel grit meeting the requirements of Section 1080-15. The profile must be between 1.0 and 3.0 mils when measured on a smooth steel surface. A minimum of 5 random tests shall be conducted and documented. - C. Before the Contractor departs from the work site at the end of the work day, all debris generated during surface preparation are collected in approved containers. - **D.** Clean a two square foot area on the structure to demonstrate the specified finish and the inspector preserves this area by covering it with tape, plastic or some other suitable means so that it can be retained as a site standard. - E. Any area of corroded steel (steel which has lost more than 50% of its original thickness) must not be painted until the Engineer observes its condition. - **F.** All parts of the bridges not to be painted shall be protected from overspray. - G. Minimum surface chloride levels for painting are 7 µg/cm2 or below. ### 5.0 Painting of Steel Paint System 1, as specified in these special provisions and Section 442 of NCDOT Standard Specifications, is to be used for this work except **the top coat shall be brown**. System 1 is an inorganic zinc primer and acrylic topcoats used over blast cleaned surfaces in accordance to SSPC-SP-10 (Near White Blast). Any area where newly applied paint fails to meet the specifications must be repaired or replaced. The Engineer approves all repair processes before the repair is made. Repaired areas must meet the specifications. Apply an additional finish coat of paint to areas where the tape
adhesion test is conducted. ### 6.0 Materials Only paint suppliers that have a NCDOT qualified inorganic zinc primer may furnish paints for this project. All paints applied to a structure must be from the same supplier. Before any paints are applied, provide the Engineer a manufacturer's certification that each batch of paint meets the requirements of the applicable Section 1080 of NCDOT Standard Specifications. The inspector randomly collects a one pint sample of each paint product used on the project. Additional samples may be collected as needed to verify compliance to the specifications. ### 7.0 Inspection Quality Assurance Inspection - Furnish all necessary apparatus such as ladders, scaffolds and platforms as required for the inspector to have reasonable and safe access to all parts of the work. Illuminate the surfaces to be inspected to a minimum of 50-foot candles of light. Insure that chloride levels on the surfaces prior to each coat of paint are below 7 µg/cm2 using an acceptable sample method in accordance with SSPC Guide 15. A minimum of 2 tests shall be conducted after all surface preparation has been completed immediately prior to painting. Test areas selected shall represent the greatest amount of corrosion as determined by the Engineer. NCDOT reserves the right for ongoing QA (Quality Assurance) inspection to include but not limited to surface contamination testing, adhesion pull testing and DFT readings as necessary to assure quality. Inform the Engineer of all scheduled and unannounced inspections from SSPC, OSHA, EPA and/or others that come on site and furnish the Engineer a copy of all inspection reports. Inspection Instruments - Furnish at least the following calibrated instruments at site and conducts the quality control testing: > Sling Psychrometer - ASTM E-337 – bulb type Surface Temperature Thermometer Wind Speed Indicator Tape Profile Tester – ASTM D-4417 Method C Surface Condition Standards – SSPC VIS-1 and VIS-3 Wet Film Thickness Gage – ASTM D-4414 Dry Film Thickness Gage - SSPC-PA2 Modified Solvent Rub Test Kit – ASTM D-4752 Adhesion Test Kit – ASTM D-3359 Method A (Tape Test) Adhesion Pull Test - ASTM D-4541 Surface Contamination Analysis Kit or (Chloride Level Test Kit) Maintain a daily quality control record in accordance with Section 442-12 and such records must be available at the job site for review by the inspector and be submitted to the Engineer as directed. In addition to the information required on M&T-610, submit all DFT readings as required on M&T611. A. The dry film thickness is measured at each spot as indicated on the attached diagram at no less than three random locations along each girder and each truss member of the structures. Each spot is an average of three to five readings in accordance with SSPC PA-2. Randomly select one A, one C, and one D spot along with B, E and F. - **B.** Two random adhesion tests (1 test=3 dollies) are conducted on interior surfaces in accordance with ASTM D-4541 after the prime coat has been properly cured in accordance with ASTM D-4752 with no less than a 4 resistance rating, and will be touched up by the Contractor. The required minimum average adhesion is 400psi. - C. Cure of the intermediate and stripe coats shall be accessed by utilizing the thumb test prior to the application of any successive layers of paint. - **D.** One random Cut Tape adhesion test is conducted on interior surface in accordance with ASTM D-3359 after the finish coat is cured, and will be touched up by the Contractor. ### 8.0 Safety and Environmental Compliance Plan Personnel access boundaries are delineated for each work site using signs, tape, cones or other approved means. Submit copies of safety and environmental compliance plans that comply with SSPC QP-2 Certification requirements. ### 9.0 Environmental Monitoring Comply with Section 442–13(B) of NCDOT Standard Specifications. A "Competent Person²" is on site during all surface preparation activities and monitors the effectiveness of containment and dust collection systems. Any visible emissions outside the containment enclosure or pump monitoring results exceeding the level of 30 μ g/m3 TWA is justification to suspend the work. Before any work begins, provides a written summary of the responsible person's safety training. ### 10.0 Health and Safety Responsibility Comply with Section 442-13(C) of NCDOT Standard Specifications. Insure employee blood sampling test results are less than 50 micrograms per deciliter. Remove employees with a blood sampling test of 50 or more micrograms per deciliter from work activities involving any lead exposure. An employee who has been removed with a blood level of 50 micrograms per deciliter or more shall have two consecutive blood sampling tests indicating that the employee's blood lead level is at or below 40 micrograms per deciliter before returning to work activities involving any lead exposure. ² Competent Person as defined in OSHA 29 CFR 1926.62 is one who is capable of identifying existing and predictable hazards in the surroundings or working conditions which are unsanitary, hazardous, or dangerous to employees, and who have authorization to take prompt corrective measures to eliminate them. ### 11.0 Storage of Paint and Equipment Provide a location for materials, equipment and waste storage. Tarpaulins are spread over all pavements and surfaces underneath equipment utilized for abrasive recycling and other lead handling equipment or containers. ### 12.0 Pay ment No separate payment will be made for the cost of inspection, surface preparation and repainting the existing structure. All cost associated with furnishing all inspection equipment, all paint, cleaning abrasives, cleaning solvents and all other materials; preparing and cleaning surfaces to be painted; applying paint in the field; and furnishing blast cleaning equipment, paint spraying equipment, brushes, rollers and any other hand or power tools and any other equipment shall be included in the lump sum bid price for **Rehabilitation of Existing Structure**. No separate payment will be made for pollution control. All collection, handling and disposal of debris and wash water, all personal protective equipment, and all personal hygiene requirements, and all equipment, material and labor necessary to fully contain the blast debris; daily collection of the blast debris into specified containers; and any measures necessary to ensure conformance to all safety and environments regulations as directed by the Engineer shall also be included in the lump sum bid price for *Rehabilitation of Existing Structure*. ### **MANAGING BRIDGE WASH WATER** (SPECIAL) ### 1.0 Description Collect and properly dispose of bridge wash water associated with bridge paint removal particularly when red lead oxide paint is present. ### 2.0 Wash Water and Disposal Plan Prepare a written bridge wash water management plan in accordance with the Guidelines for Managing Bridge Wash Water available at http://www.ncdot.org/doh/preconstruct/ps/contracts/letting.html. Submit plan and obtain approval from the Engineer prior to beginning of the bridge cleaning operation. ### 3.0 Documentation Furnish a complete record for each load of wash water, with information on the point of generation, including the County name, Bridge number, Contract Number, the volume transported, and the name and location of the licensed disposal facility, or the location of the permitted disposal site. Submit completed records to the Engineer prior to final payment ### 4.0 Measurement and Payment No separate measurement or payment will be made for collecting, sampling, testing, pH adjustment, monitoring, handling, discharging, hauling, disposing of the bridge wash water, documentation, record keeping, obtaining any necessary permits, and any other work required to manage the bridge wash water in accordance with this provision. All costs associated with this work shall be included in the lump sum pay item for **Rehabilitation of Existing Structure**. ### **PILE EXCAVATION** (7-18-06) ### 1.0 GENERAL This special provision governs installing piles using pile excavation in accordance with the plans and as directed by the Engineer. Pile excavation is necessary when piles can not be installed to the required bearing capacity and tip elevation with conventional driving equipment due to vibration concerns or the presence of rock, boulders, debris or very dense soils. Install piles in accordance with Section 450 of the Standard Specifications and this provision. ### 2.0 PILE EXCAVATION Perform pile excavation to the required elevation shown on the plans or otherwise required by the Engineer. Excavate a hole with a diameter that will result in at least 3 in (75 mm) of clearance around the entire pile. Use equipment of adequate capacity and capable of drilling through soil and non-soil including rock, boulders, debris, man-made objects and any other materials encountered. Blasting is not permitted to advance the excavation. Blasting for core removal is only permitted when approved by the Engineer. Dispose of drilling spoils in accordance with Section 802 of the Standard Specifications and as directed by the Engineer. Drilling spoils consist of all excavated material including water removed from the excavation either by pumping or drilling tools. If unstable, caving or sloughing soils are anticipated or encountered, the Engineer may require the Contractor to stabilize the excavation with steel casing. Steel casing may be either the sectional type or one continuous corrugated or non-corrugated piece. Steel casings should consist of clean watertight steel of ample strength to withstand handling and driving stresses and the pressures imposed by concrete, earth or backfill. Use steel casings with an outside diameter equal to the hole size and a minimum wall thickness of 1/4 in (7 mm). #### 3.0 CONCRETE PLACEMENT Before placing concrete, center the pile in the excavation and
drive to the required bearing capacity and specified tip elevation, if applicable, as shown on the plans or as directed by the Engineer. Check the water inflow rate in the excavation after any pumps have been removed. If the inflow rate is less than 6 in (150 mm) per half hour, remove any water and free fall the concrete into the excavation. Ensure that concrete flows completely around the pile. If the water inflow rate is greater than 6 in (150 mm) per half hour, propose a concrete placement procedure to the Engineer. The Engineer shall approve the concrete placement procedure before placing concrete. Fill the excavation with Class A concrete in accordance with Section 1000 of the Standard Specifications except as modified herein. Provide concrete with a slump of 6 to 8 in (150 to 200 mm). Use an approved high-range water reducer to achieve this slump. Place concrete in a continuous manner and remove all casings. #### 4.0 MEASUREMENT AND PAYMENT ### A. Method of Measurement ### 1. Pile Excavation in Soil The quantity of "Pile Excavation in Soil" to be paid for will be the linear feet (meters) of pile excavation exclusive of the linear feet (meters) of "Pile Excavation Not in Soil" computed from elevations and dimensions as shown on the plans or from revised dimensions authorized by the Engineer. ### 2. Pile Excavation Not in Soil The quantity of "Pile Excavation Not in Soil" to be paid for will be the linear feet (meters) of pile excavation in non-soil as determined by the Engineer. Non-soil is defined as material that can not be cut with a rock auger and requires excavation by coring, air tools, hand removal or other acceptable methods. Top of non-soil elevation is that elevation where the rock auger penetration rate is less than 2 in (50 mm) per 5 minutes of drilling at full crowd force and coring, air tools, etc. are used to advance the excavation. For pay purposes, after non-soil is encountered, earth seams, rock fragments and voids in the excavation less than 3 ft (0.9 m) in total length will be considered "Pile Excavation Not in Soil". If the non-soil is discontinuous, payment will revert to "Pile Excavation in Soil" at the elevation where non-soil is no longer encountered. ### B. Basis of Payment ### 1. Pile Excavation in Soil Payment will be made at the contract unit price per linear foot (meter) for "Pile Excavation in Soil". Such payment will include, but is not limited to, furnishing all labor, tools, equipment, materials including concrete complete and in place and all incidentals necessary to excavate and complete the work as described in this provision. The cost for the pile will be paid for separately in accordance with the Standard Specifications and will not be part of the unit bid price for "Pile Excavation in Soil". ### 2. Pile Excavation Not in Soil Payment will be made at the contract unit price per linear foot (meter) for "Pile Excavation Not in Soil". Such payment will include, but is not limited to, furnishing all labor, tools, equipment, materials including concrete complete and in place and all incidentals necessary to excavate and complete the work as described in this provision. The cost for the pile will be paid for separately in accordance with the Standard Specifications and will not be part of the unit bid price for "Pile Excavation Not in Soil". <u>PILES</u> (8-4-09) Refer to Section 450 of the Standard Specifications. ### **STRUCTURAL TIMBER AND LUMBER** (SPECIAL) ### 1.0 GENERAL All new timber and lumber shall be treated and shall be in accordance with Section 1082 of the Standard Specifications and this special provision. Unless otherwise shown on the plans, provide new timber railing to the same size, post spacing, and lengths as the existing bridge rail or as directed by the Engineer. For offsite rehabilitation, if the bridge deck is removed, provide new timber decking to the same size dimensions as the existing deck. All timber shall remain unpainted. ### 2.0 MATERIALS All lumber shall be Southern Pine, dressed and meet the grading rules of the Southern Pine Inspection Bureau for Structural Joists and Planks, Grade No. 1 Dense. Preservative Treatment shall be in accordance with Section 1082-4 of the Standard Specifications. Timber railing shall be treated to retain a minimum of 0.25 pounds of Chromated Copper Arsenate (CCA) per cubic foot of material. Timber decking, nailing joists and diaphragms shall be treated to a minimum retention rate of 0.60 pounds CCA per cubic foot material. At a minimum, provide new 60D galvanized spikes, %" Ø high strength galvanized anchor bolts and any other miscellaneous items necessary to properly secure and connect the new timber rail to the existing bridge. Connections shall be similarly spaced as existing or as directed by the Engineer. ### 3.0 MEASUREMENT AND PAYMENT No separate measurement or payment will be made for furnishing and installing the timber bridge rails or timber deck. All cost associated with this work is included in the lump sum price bid for *Rehabilitation of Existing Structure*. This price is full compensation for furnishing all B-3187 166 necessary materials, labor, equipment and testing (as necessary) galvanized spikes, anchor bolts and incidentals necessary to complete the work. These prices and payments will be full compensation for all items require to construct the timber portions of the bridge. Payment will be made under: Pay Item Rehabilitation of Existing Structure Pay Unit Lump Sum