Project Special Provisions Intelligent Transportation Systems Prepared By: Mohd A. Aslamı, PE March 2011 # **Contents** | 1. GF | ENERAL REQUIREMENTS | 5 | |------------|--|---| | 1 1 | DESCRIPTION | 5 | | A. | General | | | В. | Scope | | | <i>C</i> . | Construction Phasing | 6 | | D | Real World Coordinates | | | E. | Qualified Products | | | 2. W | OOD POLE | 7 | | 2.1 | DESCRIPTION | 7 | | 2.2 | MATERIALS | 7 | | 2.3 | CONSTRUCTION METHODS | | | 2.4 | MEASUREMENT AND PAYMENT | | | 3. El | LECTRICAL EQUIPMENT | 8 | | 3 1 | DESCRIPTION | 8 | | 3.2 | MATERIAL | 8 | | A. | | 8 | | В. | 3-Wire THWN # 12 AWG Copper Feeder Conductors | 8 | | С. | . 4-Wire THWN # 6 AWG Copper Feeder Conductors | 8 | | D | 4-Wire THWN # 8 AWG Copper Feeder Conductors | 8 | | E. | Grounding System | 9 | | 3.3 | CONSTRUCTION METHODS | 9 | | A. | . Equipment Cabinet Disconnect | 9 | | B. | <u> </u> | | | C | | | | D | | | | E. | | | | 3 4 | MEASUREMENT AND PAYMENT | , | | 4. | CO | ONDUIT AND JUNCTION BOXES | 10 | |----|------------|---|----| | | 4.1 | DESCRIPTION | 10 | | | 4.2 | MATERIALS | 11 | | | 4.3 | CONSTRUCTION METHODS | 11 | | | 4.4 | MEASUREMENT AND PAYMENT | 11 | | 5. | BR | ROADBAND RADIO SYSTEM | 12 | | | 5.1 | DESCRIPTION | 12 | | | | MATERIALS | | | | A. | Broadband Radio | | | | 5.3 | CONSTRUCTION METHODS | 12 | | | 5.4 | MEASUREMENT AND PAYMENT | 13 | | 6. | CC | CTV FIELD EQUIPMENT | 13 | | | | DESCRIPTION | | | | 6.2 | MATERIAL | | | | A. | General | | | | В. | Camera and Lens | | | | <i>C</i> . | Camera Housing | | | | D. | Pan and Tilt Unit | | | | E. | Control Receiver/Driver | | | | F. | CCTV Camera Attachment to Pole | 15 | | | G. | Surge Suppression | | | | Н. | Digital Video Encoder | 15 | | | I. | Field Ethernet Switch | 16 | | | 6.3 | CONSTRUCTION METHODS | 17 | | | A . | General | 17 | | | В. | Digital Video Encoder | 17 | | | <i>C</i> . | Field Ethernet Switch | 17 | | | D. | | | | | 6.4 | MEASUREMENT AND PAYMENT | 17 | | 7 | . M | ICROWAVE VEHICLE DETECTOR FIELD EQUIPMENT | 18 | | | 7.1 | DESCRIPTION | 18 | | | 7.2 | MATERIALS | | | | A. | Microwave Vehicle Detector (MVD) | 18 | | | В. | Power and Communications Cables | 19 | | | <i>C</i> . | | | | | 7.3 | | | | | A. | | | | | В. | | | | | <i>C</i> . | | | | | 7.4 | MEASUREMENT AND PAYMENT | 19 | | 8 | 3. C | CTV AND MVD FIELD EQUIPMENT CABINET | 19 | | | 8.1 | DESCRIPTION | | | | 8.2 | MATERIALS | 20 | | | 1 | Shelves | 21 | | В. | Cabinet Light | .20 | |---------------|--|-------------| | <i>C</i> . | Surge Protection for System Equipment | . <i>20</i> | | | CONSTRUCTION METHODS | | | 8.4 | MEASUREMENT AND PAYEMENT | .22 | | 9. D Y | NAMIC MESSAGE SIGN (DMS) | .22 | | | DESCRIPTION | | | | Materials | | | <i>A</i> . | Environmental Requirements | .23 | | В. | Full Matrix LED Dynamic Message Sign (DMS) | .23 | | <i>C</i> . | DMS Enclosure Structure Mounting | .28 | | D | DMS / DMS Controller Interconnect | | | <i>E</i> . | Photo-Electric Sensors | | | F. | Equipment List | | | <i>G</i> . | Physical Description | | | Н. | Parts List | | | I. | Character Set Submittal | | | J. | Wiring Diagrams | | | <i>K</i> . | Routine of Operation | | | L. | Maintenance Procedures | | | <i>M</i> . | Repair Procedures | | | N. | Field TrialCONSTRUCTION METHODS | | | 9.3 | Description | | | A.
B. | LayoutLayout | | | В.
С. | Construction Submittal | | | D. | Conduit | | | E. | Wiring Methods | | | F. | Equipment and Cabinet Mounting | | | G. | Work Site Clean-Up | 39 | | 9.4 | MEASUREMENT AND PAYMENT | | | | CCIP REQUIREMENTS | 40 | | | REFERENCES | | | 10.1
A. | General Requirements | | | B. | NTCIP Acceptance Testing | | | | MEASUREMENT AND PAYMENT | | | 11. Di | MS TESTING REQUIREMENTS | 49 | | | GENERAL TEST PROCEDURE | | | | DESIGN APPROVAL TESTS | | | | OPERATIONAL FIELD TEST (ON-SITE COMMISSIONING) | | | A. | | | | В. | Continuity Tests | | | <i>C</i> . | | | | 11.4 | MEASUREMENT AND PAYMENT | 52 | | 12 D | MS ASSEMBLIES | 52 | | 12.1 | DESCRIPTION | 52 | |---------------------------|---|----| | 12.2 | MATERIAL | 52 | | 12.3 | CONSTRUCTION METHODS | 53 | | A. | General | 53 | | <i>B</i> . | Shop Drawing | 53 | | <i>C</i> . | Design and Fabrication | 54 | | 12.4 | MEASUREMENT AND PAYMENT | 59 | | 13. DN | MS FOUNDATION | 60 | | 13.1 | DESCRIPTION | 60 | | 13.2 | MATERIAL | 60 | | 13.3 | CONSTRUCTION METHODS | 60 | | <i>A</i> . | General | 60 | | В. | Subsurface Investigation | 61 | | <i>C</i> . | Foundation Construction | 62 | | D. | Drilled Pier Construction | 62 | | <i>E</i> . | Scheduling and Restrictions | 67 | | 13.4 | MEASUREMENT AND PAYMENT | 67 | | 14. CI | ENTRAL SYSTEM EQUIPMENT AND INTEGRATION | 67 | | 14.1 | DESCRIPTION | 67 | | 14.2 | MATERIAL | 68 | | <i>A</i> . | Central Ethernet Switch | 68 | | В. | Video Processing Unit (VPU) | 68 | | C. | Video Server Unit (VSU) | 68 | | D | Video Monstor | 71 | | E. | Equipment Rack | 71 | | 14.3 | CONSTRUCTION METHODS | 72 | | A. | Equipment Rack | 72 | | В. | Central Ethernet Switch | 72 | | <i>C</i> . | Video Processing Unit (VPU) | | | D. | . Video Server Unit (VSU) | | | E. | Video Monitor | | | $\boldsymbol{\mathit{F}}$ | System Integration | | | 14.4 | MEASUREMENT AND PAYMENT | 72 | | 15. T | RAINING | 73 | | 15.1 | DESCRIPTION | 73 | | | MEASUREMENT AND PAYMENT | | | 16. S | YSTEM OPERATION TEST | 74 | | 16.1 | DESCRIPTION | 74 | | A. | | | | B. | | | | C | | | | D | | | | E. | | | | | MEASIDEMENT AND PAYMENT | | ## 1. GENERAL REQUIREMENTS #### 1.1 DESCRIPTION ## A. General Conform to these Project Special Provisions, Project Plans, and the 2006 Standard Specifications for Roads and Structures (also referred to hereinafter as the "Standard Specifications"). The current edition of these specifications and publications in effect on the date of advertisement will apply. In the event of a conflict between these Project Special Provisions and the Standard Specifications, these Project Special Provisions govern. ## B. Scope The scope of this project includes the following major tasks: - 1. Furnish and install new Dynamic Message Signs (DMS), CCTV camera assembly and Microwave Vehicle Detector (MVD) assemblies at the following locations along I-40 and US 70 Bypass in Burke County, North Carolina: - I-40 WB east of Jamestown Road (exit 100), one new CCTV Camera assembly (CCTV-1) on a 60' wood pole. Use existing electrical service to provide power to the device. - I-40 west of exit 103, one new MVD assembly (MVD-1) and Broadband Radio assembly on a 40' wood pole on the westbound side, and one new DMS (DMS-1) on a pedestal structure on the eaststbound side. Use existing electrical service to provide power to these devices. - I-40 WB just west of Burkemont Avenue. (US 64), one new CCTV Camera assembly (CCTV-2) and one Broadband Radio assembly on a 60' wood pole. Use existing electrical service to provide power to these devices. - I-40 WB just east of S. Sterling Street (NC 18), one new CCTV Camera assembly (CCTV-3) and one Broadband Radio assembly on a 60' wood pole. Use existing electrical service to provide power to these devices. - I-40 EB just west of Bethel Road (exit 105), one new MVD assembly (MVD-2), one new CCTV Camera assembly (CCTV-4), and one Broadband Radio assembly on a 60' wood pole. Use existing electrical service to provide power to these devices. - I-40 west of exit 108, one new DMS (DMS-2) on a pedestal structure. Use existing electrical service to provide power to these devices. - Burkemont Avenue (US 64) and Fleming Drive (US 70 Bypass) intersection, one new CCTV Camera assembly (CCTV-5) on a 60' wood pole. Use existing electrical service to provide power to the device. - Fleming Drive (US 70 Bypass) and College Street intersection, one new CCTV Camera assembly (CCTV-6) on a 60' wood pole. Use existing electrical service to provide power to the device. - **Intelligent Transportation Systems** - 2. Integrate all devices with the Division 13 Transportation Management Center's (TMC) Traffic Management System located at 11 Old Charlotte Highway, Asheville, NC 28802. Contact Traffic Services at (828) 298-0094 to coordinate device integration work. - 3. Perform unit and system tests. <u>Determine the exact location of all devices and obtain Engineer's approval prior to starting any</u> work at these locations. ## C. Construction Phasing All the devices except CCTV-3 will be furnished, installed, and made operational prior to any major roadway construction activities beginning under this project. These devices will be used for traffic management and motorist information during the project construction period. CCTV Camera assembly (CCTV-3) and the Broadband Radio assembly at I-40 and NC 18 will be furnished and installed after all major construction activities are concluded or when feasible to install without risk of damage to the equipment. See Traffic Management Plans for details of construction phases, intermediate contract times, and liquidated damages. #### D. Real World Coordinates Provide real world coordinates for all junction boxes and field devices installed under this project. Provide the coordinates in feet units using the North Carolina State Plane coordinate system (1983 North American Datum also known as NAD '83). Furnish coordinates that do not deviate more than 1.7 feet in the horizontal plane and 3.3 feet in the vertical plane. Global positioning system (GPS) equipment able to obtain the coordinate data within these tolerances may be used. Submit cut sheets on the GPS unit proposed to collect the data for approval by the Engineer. For equipment cabinets, obtain and provide the location of the cabinet. Provide both a digital copy and hard copy of all information regarding the location (including to but not limited to manufacturer, model number, and NCDOT inventory number) in
the Microsoft spreadsheet provided by the Department, shown by example below. | NCDOT
Inv# | Name | Location | Latitude | Longitude | Manufacturer | Model # | Comm
Media | Destination | |---------------|-------------------------|----------------------------|----------|-----------|--------------|---------------|---------------|-------------| | 05-7009 | Cam 1 | I-540/I-40 | 35,8625 | -78.8123 | Pelco | Spectravision | 60 SMFO | TRTMC | | 05-7010 | Cam 2 | NC 54/I-40 | 35.8523 | -78.7631 | Pelco | Spectravision | 60 SMFO | TRTMC | | 05-7030 | HAR 1 –
Johnston Co. | I-40 at NC 42 (mp
312) | 35.2456 | -77.952 | property of | | Dial-up | TRTMC | | 05-7001 | DMS # 1 | I-85 N/I-40 E, mp
159.1 | | | Mark IV | | Dial-Up | TRTMC | | 05-7003 | DMS#3 | I-40 W, mp 307.7 | | | Mark IV | | Dial-Up | TRTMC | | 05-7004 | DMS # 4 | I-40 E, mp 286.0 | | | Mark IV | | 60 SMFO | TRTMC | ## E. Qualified Products Furnish new equipment, materials, and hardware unless otherwise required. Inscribe manufacturer's name, model number, serial number, and any additional information needed for proper identification on each piece of equipment housed in a case or housing. Furnish factory assembled cables without adapters, unless otherwise approved by the Engineer, for all cables required to interconnect any field or central equipment. Certain equipment listed in these Project Special Provisions must be pre-approved on the Department's ITS & Signals Qualified Products List (QPL) by the date of installation. Equipment, material, and hardware not pre-approved when required will not be allowed for use on the project. The OPL is available on the Department's website. The QPL website is: http://www.ncdot.org/doh/preconstruct/traffic/ITSS/SMS/qpl/ #### 2. WOOD POLE #### 2.1 DESCRIPTION Furnish and install wood poles at locations shown in the plans and in accordance with these Project Special Provisions. #### 2.2 MATERIALS Furnish 40-foot Class IV wood poles for MVDs. Furnish 60-foot Class III wood poles for CCTV Camera installation. Comply with the Standard Specifications: Page 10-272, Article 1098-6, "Wood Poles" #### 2.3 CONSTRUCTION METHODS Install wood poles as shown in the Plans. Comply with the Standard Specifications: Page 17-15, Section 1720, "Wood Poles" #### 2.4 MEASUREMENT AND PAYMENT Wood Pole will be measured and paid as the actual number of 40' Class IV wood poles furnished, installed and accepted. Wood Pole (60') will be measured and paid as the actual number of Class III wood poles furnished, installed and accepted. No measurement will be made for installing grounding system as these will be considered incidental to furnishing and installing wood poles. Payment will be made under: #### Pay Item | Vood PoleEa | ıch | |-----------------|-----| | Vood Pole (60') | ich | ## 3. ELECTRICAL EQUIPMENT #### 3.1 DESCRIPTION Use existing electrical services as shown on the Plans. Furnish and install feeder circuit conductors and equipment disconnects for the proposed ITS devices as shown in the Plans. Comply with the National Electrical Code (NEC), the National Electrical Safety Code (NESC), the NCDOT 2006 Standard Specifications, the Project Special Provisions and all local ordinances. All work involving electrical service must be coordinated with the appropriate utility company and the Engineer or his designated representative. #### 3.2 MATERIAL ## A. Equipment Cabinet Disconnect At DMS-1 location, furnish and install a new equipment cabinet disconnect with a 50 ampere double pole circuit breaker with a minimum of 10,000 RMS symmetrical amperes short circuit current rating in a lockable NEMA 3R enclosure. Ensure equipment cabinet disconnects are listed as meeting UL Standard UL-489. Fabricate enclosure from galvanized steel and electrostatically apply dry powder pain finish, light gray in color, to yield a minimum thickness of 2.4 mils. All exterior surfaces must be powder coated steel. Provide ground bus and neutral bus with a minimum of four terminals with minimum wire capacity range of number 14 through number 4 AWG. ## B. 3-Wire THWN # 12 AWG Copper Feeder Conductors Furnish 3 #12 AWG stranded copper conductors with THWN rating for feeder conductors. Provide conductors with black, white and green insulation. Provide conductors intended for power circuits at 600 Volts or less and complies with the following: - Listed as meeting UL Standard UL-83 - Meets ASTM B-3 and B-8 or B-787 standards. ## C. 4-Wire THWN # 6 AWG Copper Feeder Conductors At DMS-1 location, furnish 4 #6 AWG stranded copper conductors with THWN rating for feeder conductors. Provide conductors with red, black, white and green insulation. Provide conductors intended for power circuits at 600 Volts or less and complies with the following: - Listed as meeting UL Standard UL-83 - Meets ASTM B-3 and B-8 or B-787 standards. ## D. 4-Wire THWN # 8 AWG Copper Feeder Conductors At DMS-2 location, furnish 4 #8 AWG stranded copper conductors with THWN rating for feeder conductors. Provide conductors with red, black, white and green insulation. Provide conductors intended for power circuits at 600 Volts or less and complies with the following: - Listed as meeting UL Standard UL-83 - Meets ASTM B-3 and B-8 or B-787 standards. # E. Grounding System Furnish 5/8"x10' copper clad steel grounding electrodes (ground rods), #4 AWG solid bare copper conductors, and exothermic welding kits for grounding system installation. Comply with the NEC, Standard Specifications, these Project Special Provisions, and the Plans. ## 3.3 CONSTRUCTION METHODS ## A. Equipment Cabinet Disconnect At DMS-1 location, furnish and install an equipment cabinet disconnect. Bond the equipment cabinet disconnect in accordance with the NEC. Route the conductors from the equipment cabinet disconnect to the DMS field equipment cabinet in rigid galvanized steel conduit. Ensure that the grounding system complies with the grounding requirements of these Project Special Provisions, the Standard Specifications and the Plans. # B. 3-Wire THWN #12 AWG Copper Feeder Conductors At locations shown in the Plans, furnish and install 3 THWN #12 AWG copper feeder conductors to supply 120 VAC to the CCTV/MVD field equipment cabinet. Comply with the Standard Specifications and Standard Drawings and all applicable electrical codes. Splicing of conductors is not allowed. ## C. 4-Wire THWN #6 AWG Copper Feeder Conductors At DMS-1 location, furnish and install 4 THWN #6 AWG copper feeder conductors to supply 240/120 VAC to the DMS field equipment cabin and equipment cabinet disconnect. Comply with the Standard Specifications and Standard Drawings and all applicable electrical codes. Splicing of conductors is not allowed. # D. 4-Wire THWN #8 AWG Copper Feeder Conductors At DMS-2 location, furnish and install 4 THWN #8 AWG copper feeder conductors to supply 240/120 VAC to the DMS field equipment cabinet. Comply with the Standard Specifications and Standard Drawings and all applicable electrical codes. Splicing of conductors is not allowed. ## E. Grounding System Connect the #4 AWG grounding conductor to ground rods using an exothermic welding process. Test the system to ensure a ground resistance of 20-ohms or less is achieved. Drive additional ground rods as necessary or as directed by the Engineer to achieve the proper ground resistance. #### 3.4 MEASUREMENT AND PAYMENT Equipment cabinet disconnect will be measured and paid as the actual number of complete and functional equipment cabinet disconnect locations furnished, installed and accepted. Breakers, exposed vertical conduit runs to the cabinet, ground rods, ground wire and any remaining hardware and conduit to connect the equipment cabinet disconnect to the cabinet will be considered incidental to the equipment cabinet disconnect. 3-Wire #12 AWG copper feeder conductors will be measured and paid as the actual linear feet of 3-wire #12 AWG copper feeder conductors furnished, installed and accepted. Payment is for all three conductors. Measurement will be for the actual linear footage of combined conductors after all terminations are complete. No separate payment will be made for each individual conductor. No payment will be made for excess wire in the cabinets. 4-Wire #6 AWG copper feeder conductors will be measured and paid as the actual linear feet of 4-wire #6 AWG copper feeder conductors furnished, installed and accepted. Payment is for all four conductors. Measurement will be for the actual linear footage of combined conductors after all terminations are complete. No separate payment will be made for each individual conductor. No payment will be made for excess wire in the cabinets. 4-Wire #8 AWG copper feeder conductors will be measured and paid as the actual linear feet of 4-wire #8 AWG copper feeder conductors furnished, installed and accepted. Payment is for all four conductors. Measurement will be for the actual linear footage of combined conductors after all terminations are complete. No separate payment will be made for each individual conductor. No payment will be made for excess wire in the cabinets. 5/8" X 10' grounding electrode (ground rod) will be measured and paid as the actual number of 5/8" copper clad steel ground rods furnished, installed and accepted. No separate payment will be made for exothermic welding kit as they will be considered incidental to the installation of the ground rod. #4 solid bare grounding conductors will be measured and paid as the actual linear feet of #4 AWG solid bare copper grounding conductor furnished, installed and accepted. Measurement will be along the approximate centerline from the base of the electrical service disconnect to the last grounding electrode. All cables shall be permanently labeled at all access points. Label identification shall be stamped or engraved on metal tags, or neatly and legibly lettered with permanent ink on nylon tags. Each cable shall have a unique identifier. Cables shall be labeled immediately
upon installation. Use component name and labeling scheme approved by the Engineer. Payment will be made under: ## Pay Item | Equipment Cabinet Disconnect | Each | |--|-------------| | 3-Wire #12 AWG Copper Feeder Conductors | Lınear Feet | | 4-Wire #6 AWG Copper Feeder Conductors | Linear Feet | | 4-Wire #8 AWG Copper Feeder Conductors | Linear Feet | | 5/8"X10' Grounding Electrode | Each | | #4 Solid Bare Copper Grounding Conductor | Linear Foot | ## 4. CONDUIT AND JUNCTION BOXES ## 4.1 DESCRIPTION Furnish and install rigid hot dipped galvanized steel conduit (RGC) that meets UL Standard 6 at locations shown in the Plans and in accordance with these Project Special Provisions. Furnish and install high-density polyethylene conduit (HDPE) at locations shown in the Plans and in accordance with these Project Special Provisions. Install standard size junction boxes at the location shown in the Plans for the installation of electrical conductors. Furnish and install junction box cover with "NCDOT Electric" logo. #### 4.2 MATERIALS Comply with the Standard Specifications: Page 10-270, Article 1098-4, "Conduit" Page 10-271, Article 1098-5, "Junction Boxes" #### **4.3 CONSTRUCTION METHODS** Install HDPE conduit and junction boxes as noted in the Plans. Comply with the Standard Specifications: Page 17-9, Section 1715, "Underground Conduit" Page 17-15, Section 1716, "Junction Boxes" Install and secure RGC as shown in the Plans. ## 4.4 MEASUREMENT AND PAYMENT Unpaved trenching (qty) (size) will be measured horizontal linear feet of trenching for underground conduit installation furnished, installed, and accepted. Measurement will be along the approximate centerline of the conduit system. Payment will be in linear feet. Directional Drill (qty) (size) will be measured horizontal linear feet of trenching for underground conduit installation furnished, installed, and accepted. Measurement will be along the approximate centerline of the conduit system. Payment will be in linear feet. Junction box (______) will be measured and paid in actual number of junction boxes of each size and type furnished, installed, and accepted. No separate measurement will be made for seeding, mulching, excavation of rock, conduit duct plugs, mechanical sealing devices, graded stone, paving materials, nuts and bolts or any other hardware or materials required for installation of underground conduit, tracer wire, and junction boxes as these will be considered incidental to the items listed above. Payment will be made under: ## Pay Item | Unpaved Trenching (2)(1.25") | Linear Foot | |------------------------------|-------------| | Directional Drill (2)(1.25") | Linear Foot | | Junction Box (standard size) | Each | ## 5. Broadband Radio System #### 5.1 DESCRIPTION At the locations shown in the Plans, install a broadband radio assembly consisting of 5.8GHz radios with throughput of at least 54 Mbps to establish a bidirectional communications link between two line-of-sight points using unlicensed spread spectrum frequencies. The link will carry IP encoded video/PTZ, MVD, and or DMS data simultaneously. Furnish and install power, data, and antenna cables rated for outdoor application. Obtain these cables from the radio manufacturer. #### 5.2 MATERIALS ## A. Broadband Radio Furnish and install broadband radios in accordance with the Plans and these Project Special Provisions. The wireless units must meet the following minimum functional requirements: | RF Interface | 802.11a / 802.11g | |-----------------------------------|---| | Frequency | Multi-Band; supports 2.4GHz & 5GHz bands | | Modulation | OFDM (Orthogonal Frequency Division Multiplexing) | | Power Supply | 120 volt input, 12, 24 or 48 volt DC, Power Over Ethernet to unit | | Output Power | 17dBm (minimum) | | System Gain | 118 dB – 139 dB (depending on antenna) | | • Range | 3 miles minimum (Line of Sight) | | Data Rate | Up to 54 Mbps | | Channels | 11 (user-selectable, non-interfering) | | Encryption | 128-bit AES with auto key rotation | | Security | SSL-based authentication | | Protocols | RTP/IP, UDP/IP, TCP/IP, multicast IP DNS and DHCP client | | Video Output | Ethernet, weatherproof 10/100Base-T (RJ-45) connector | | Serial Port | Autolevel sensing RS-232 or RS-422/485 | | | Supports any asynchronous PTZ serial protocol | | Enclosure | NEMA 4X / IP 66 | | Environment | -22°F to 122°F | | Humidity | 100% at 122°F | | Configuration | Supports automatic, remote and local configuration | #### **5.3 CONSTRUCTION METHODS** Prior to installing the radios, conduct a field survey to determine the optimum locations yielding maximum signal strength and data throughput. The Engineer or a representative will participate in the field survey. Submit the result of the survey to the Engineer and obtain approval for the radio locations. Install the radio, power, data, and antenna cables per the manufacturer recommendations. 199 #### 5.4 MEASUREMENT AND PAYMENT Broadband Radio Assembly will be measured and paid as the actual number of 5.8GHz broadband radios including antennas furnished, installed and accepted. No measurement will be made for field survery, cables, riser assemblies, mounting hardware, nuts, bolts, brackets, connectors, antennas as these will be considered incidental to furnishing and installing of the 5.8GHz broadband Radio. Payment will be made under: ## Pay Item Broadband Radio Assembly Each # 6. CCTV FIELD EQUIPMENT #### **6.1 DESCRIPTION** Furnish and install CCTV field equipment described in this Section. Furnish equipment that is compatible, interoperable, and completely interchangeable with existing Pelco Spectra IV high-performance dome equipment currently in use by NCDOT in this region. #### 6.2 MATERIAL #### A. General Furnish and install new CCTV camera assemblies at the locations shown on the Plans. Each assembly consists of the following: - One Dome CCTV camera that contains in a single enclosed unit the following functionality and accessories: - 1. CCTV color digital signal processing camera unit with zoom lens, filter, control circuit, and accessories - 2. Motorized pan, tilt, and zoom - 3. Pole-mount camera attachment assembly - 4. All necessary cable, connectors and incidental hardware to make a complete and operable system - A lightning arrestor installed in-line between the CCTV camera and the equipment cabinet components. - A NEMA Type 4 enclosure constructed of aluminum with a clear acrylic dome or approved equal Camera Unit housing. #### B. Camera and Lens #### 1. Cameras Furnish new charged-coupled device (CCD) color cameras. Furnish cameras with automatic gain control (AGC) for clear images in varying light levels. The camera must meet the following minimum requirements: • Video signal format: NTSC composite color video output, 1 volt peak to peak - Automatic Gain Control (AGC): 0-20 dB, peak-average adjustable - Automatic focus: Automatic with manual override - White balance: Automatic through the lens with manual override - Electronic-Shutter: dip-switch selectable electronic shutter with speed range from 1/60 of a second (off) to 1/30,000th of a second - Overexposure protection: The camera must have built-in circuitry or a protection device to prevent any damage to the camera when pointed at strong light sources, including the sun - Sensitivity: 1.5 lux at 90% scene reflectance - Signal to noise ratio: Greater than 48-dB - Video output Connection: 1-volt peak to peak, 75 ohms terminated, BNC connector - Power: 24 VAC or less #### 2. Zoom Lens Furnish each camera with a motorized zoom lens that is high performance integrated dome system or approved equivalent with automatic iris control with manual override and neutral density spot filter. Furnish lenses that meet the following optical specifications: - Focal length: 0.16" 3.45", 35X optical zoom, and 12X electronic zoom - Preset positioning: 64 Presets The lens must be capable of both automatic and remote manual control iris and focus override operation. The lens must be equipped for remote control of zoom and focus, including automatic movement to any of the preset zoom and focus positions. Mechanical or electrical means must be provided to protect the motors from overrunning in extreme positions. The operating voltages of the lens must be compatible with the outputs of the camera control. ## C. Camera Housing Furnish new dome style enclosure for the CCTV assemblies. Equip each housing unit with mounting assemblies for attachment to the CCTV camera pole. The enclosures must be equipped with a sunshield and be fabricated from corrosion resistant aluminum and finished in a neutral color of weather resistant enamel. The enclosure must meet or exceed NEMA 4X ratings. The viewing area of the enclosure must be tempered glass. #### D. Pan and Tilt Unit Equip each new dome style assembly with a pan and tilt unit. The pan and tilt unit must be integral to the high performance integrated dome system. The pan and tilt unit must be rated for outdoor operation, provide dynamic braking for instantaneous stopping, prevent drift, and have minimum backlash. The pan and tilt units must meet or exceed the following specifications: - Pan: continuous 360 Degrees - Tilt: up/down 180 degrees minimum - Input voltage: 24 VAC 50/60Hz - Motors: Two-phase induction type, continuous duty, instantaneous reversing - Preset Positioning: 64 PTZ presets per camera #### E. Control Receiver/Driver Provide each new camera unit with a control receiver/driver that is integral to the CCTV dome assembly. The
control receiver/driver will receive serial asynchronous data initiated from a camera control unit, decode the command data, perform error checking, and drive the pan/tilt unit, camera controls, and motorized lens. As a minimum, the control receiver/drivers must provide the following functions: - Zoom in/out - Automatic focus with manual override - Tilt up/down - Automatic iris with manual override - Pan right/left - Minimum 64 preset positions for pan, tilt, and zoom In addition, each control receiver/driver must accept status information from the pan/tilt unit and motorized lens for preset positioning of those components. The control receiver/driver will relay pan, tilt, zoom, and focus positions from the field to the remote camera control unit. The control receiver/driver must accept "goto" preset commands from the camera control unit, decode the command data, perform error checking, and drive the pan/tilt and motorized zoom lens to the correct preset position. The preset commands from the camera control unit will consist of unique values for the desired pan, tilt, zoom, and focus positions. ## F. CCTV Camera Attachment to Pole At locations shown in the Plans where new CCTV cameras are to be installed on new CCTV pole,s furnish an attachment assembly for the CCTV camera unit. Use stainless steel banding approved by the Engineer. Submit shop drawings for review and approval by the Engineer prior to installation. Furnish CCTV attachments that allow for the removal and replacement of the CCTV enclosure as well as providing a weatherproof, weather tight, seal that does not allow moisture to enter the enclosure. Furnish a CCTV Camera attachment assembly that is able to withstand wind loading at the maximum wind speed and gust factor called for in these Special Provisions and can support a minimum camera unit dead load of 45 pounds (20.4 kg). ## G. Surge Suppression Protect all equipment at the top of the pole grounded metal oxide varistors connecting each power conductor to ground. Protect coaxial cable from each camera by a surge protector at each end of the cable. ## H. Digital Video Encoder Furnish and install a digital video encoder to allow video-over-IP transmission. The encoder units may be shelf or rack mounted. Furnish encoders with the following features: • Network Interface Ethernet 10/100Base-T (RJ-45 connector) Protocols RTP/IP, UDP/IP, TCP/IP, multicast IP DNS and DHCP client Security SSL-based authentication Video Output 1 composite (NTSC/PAL), 1 Vpp, 75 ohms, BNC connector • Compression MPEG-4 | • | Resolution | Scalable; 176x128 to 704x480 NTSC (176x144 to 704x576 | |---|--------------|---| | | | PAL) | | • | Frame Rate | 1-30 FPS programmable (full motion) | | • | Bandwidth | 30 kbps – 6 Mbps configurable | | • | Serial Ports | 1 RS-232, 1 RS-422/485; Supports any asynchronous PTZ serial protocol | | • | Environment | 32°F to 122°F, 95% non-condensing humidity at 122°F | | • | Connectors | 5 position terminal strip | ## I. Field Ethernet Switch Furnish and install a field hardened managed Ethernet switch with the following minimum requirements: - Four (4) Fast Ethernet ports (10/100BaseTx) - Management port - 24-48 VDC or 120VAC Power Supply, 10 Watts max. - -40 185 OF temperature range - Galvanized steel enclosure - DIN rail or panel mounted - Store & Forward switching mode with $\leq 10 \mu$ Sec. latency - ≥5 Gbps switching bandwidth - 128, 256, 512 kbps, 4, 8 Mbps port rate limiting - ≥32 kbytes MAC table - ≥2 Mbit Frame buffer memory - ≥4 Priority queues - ≥255 Vlans - Network management through graphical web-base HTTP with SSL 128-bit encryption, SNMP v3 with 56-bit encryption, Telnet, VT100, SSH/SFTP with 128-bit encryption, Command Line Interface, RSA Key Management with 1024 bit key - TACACS+, RADIUS client, PPP Authentication and Accounting Ensure the switch complies with all applicable IEEE networking standards, including but not limited to: - IEEE 802.3 - IEEE 802.3u, .3x, .3z - IEEE 802.3ab, .ad - IEEE 802.1d MAC Bridges, and STP - IEEE 802.1p, .1w, .1x - IEEE 802.1Q, .1Q-2005 Ensure the switch complies with the following IETF RFCs: - RFC768, 783, 791, 792, 793, 826, 854, 894, 1112, 1519, 1541, 2030, 2068, 2236, 2284, 2475, 2865, 3414, 3415 - RFC1493, 1907, 2012, 2013, 2578, 2579, 2819, 2863 **6.3 CONSTRUCTION METHODS** # A. General Mount CCTV camera units at a height sufficient to adequately see traffic in all directions and as approved by the Engineer. The minimum attachment height is 45 feet above ground level. Mount the CCTV camera units such that a minimum 5 feet of clearance is maintained between the camera and the top of the pole. Install CCTV assemblies at the locations shown on the Plans. Mount CCTV cameras on the side of poles nearest intended field of view. Avoid occluding the view with the pole. Obtain approval of camera orientation from the Engineer. # **B.** Digital Video Encoder Install and integrate the video encoder at the CCTV camera sites shown in the Plans. Connect the video output of the CCTV camera to the input of the video encoder. Use standard coax cable with BNC (gold-plated center pin) connectors. Connect the PTZ control wires from the camera to the video encoder in accordance with manufacturer's recommended instructions. #### C. Field Ethernet Switch Install an Ethernet switch at the CCTV camera and/or MVD site. Connect the video encoder to one of the 10/100 port of the switch using outdoor rated CAT 5e LAN cable. If present, connect the MVD to a second port. ## D. Electrical and Mechanical Requirements Ground all equipment as called for in the Standard Specifications, these Special Provisions, and the Plans. Install surge protectors on all ungrounded conductors entering the CCTV enclosure. House the protectors in a small, ventilated weatherproof cabinet attached near the CCTV attachment point in a manner approved by the Engineer. ## **6.4 MEASUREMENT AND PAYMENT** CCTV Assembly will be measured and paid as the actual number of CCTV assemblies furnished, installed, integrated, and accepted. No separate measurement will be made for power and video cables, connectors, CCTV camera attachment assemblies, riser assemblies, conduit, condulets, grounding equipment, lightning and surge protectors, or any other equipment or labor required to install the CCTV assembly. Digital Video Encoder will be measured and paid as the actual number of digital video encoders furnished, installed, integrated, and accepted. No separate measurement will be made for cabling, connectors or any other equipment or labor required to install the digital video encoders. Field Ethernet Switch will be measured and paid as the actual number of field Ethernet switches furnished, installed, integrated, and accepted. No separate measurement will be made for cabling, connectors or any other equipment or labor required to install the switch. Payment will be made under: ## **Pay Item** | CCTV Assembly | Each | |-----------------------|------| | Digital Video Encoder | Each | | Field Ethernet Switch | Each | # 7. MICROWAVE VEHICLE DETECTOR FIELD EQUIPMENT ## 7.1 DESCRIPTION Furnish and install non-intrusive microwave or radar vehicle detectors (MVD) in accordance with the Plans and these Project Special Provisions. Provide MVD units with RS-232/485 and TCP/IP ports and lead-in cable. The MVD devices will collect traffic data such as traffic volume, vehicle speed, average speed, lane occupancy, vehicle classification and presence. Furnish new equipment and component parts, of the latest design and manufacture, and in operable condition at the time of delivery and installation. No part or attachment can be substituted or applied contrary to the manufacturer's recommendations and standard practices. Provide equipment design that prevents reversed assembly or improper installation of connectors, fasteners, etc. Design each item of equipment to protect personnel from exposure to high voltage during equipment operation, adjustments, and maintenance. #### 7.2 MATERIALS MTBF ## A. Microwave Vehicle Detector (MVD) Furnish equipment that is compatible, interoperable, and completely interchangeable with existing EIS RTMS equipment and software currently in use by NCDOT in this region. Furnish MVDs with all necessary hardware, mounting brackets and outdoor rated cabling to provide a complete, integrated and fully functional system. The MVD must meet the following minimum functional requirements: | • | Measured Quantities | Volume, speed, occupancy, classification | |---|-----------------------|--| | • | Detection Zone | Up to 12 traffic lanes | | • | Zone Width | 7 – 20 feet | | • | Detection Range | 0 to 250 feet | | • | Zone Resolution | 1.5 feet or less | | • | Communications | TCP/IP and RS-232 / RS-485 | | • | Configuration | Automatic | | • | Management | Supports local and remote management | | • | Storage | 8 Mb built-in memory, min. | | • | Power | 12 – 24 VAC or DC | | • | Operating Temperature | -40°C to 75°C | | • | Humidity | Up to 95%, relative | | • | Vibration | 0.5 g up to 300MHz | | • | Enclosure | NEMA 4X IP-65 polycarbonate | | | | | 10 years min. ## **B.** Power and Communications Cables Furnish and install power and data cable as recommended by the MVD manufacturer. Provide outdoor rated power and communications cable adequate for underground installation in conduit. #### C. Field Ethernet Switch Refer to CCTV Camera section for details. ## 7.3 CONSTRUCTION METHODS ## A. Microwave Vehicle Detector Mount the MVDs in a side-fired configuration on the wood poles at the locations shown in the Plan using the manufacturer supplied mounting brackets. Attach with stainless steel bands. Install the MVDs at a height above the road surface so that the masking of vehicles is minimized and that all detection zones are contained within the specified elevation angle as suggested by the
manufacturer. In locations where two detector units are mounted on the same pole, one detector unit will monitor traffic on the eastbound US-64 and the other unit will monitor traffic on the westbound US-64. A manufacturer's representative should determine the height of each detector unit to ensure best performance. Set up each MVD detection zone using configuration software and a Notebook PC to collect and report vehicle count, speed, occupancy, and four vehicle classifications. Install grounding system for the stand-alone MVD assemblies according to the CCTV Camera Typical Grounding System shown in the Plans. ## **B.** Power and Communications Cables Install outdoor rated power and communications cables per the manufacture recommendation. #### C. Field Ethernet Switch Refer to CCTV Camera section for details. #### 7.4 MEASUREMENT AND PAYMENT MVD assembly will be measured and paid as the actual number of MVD assemblies furnished, installed, integrated, and accepted. No separate measurement will be made for power and communications cables, connectors, attachment assemblies, riser assemblies, conduit, condulets, grounding equipment, surge protectors, or any other equipment or labor required to install the MVD assembly. Field Ethernet switch will be paid for as described in CCTV Camera section. Payment will be made under: ## Pay Item MVD Assembly..... Each ## 8. CCTV AND MVD FIELD EQUIPMENT CABINET #### **8.1 DESCRIPTION** Furnish 336 stretch cabinets to house CCTV and MVD control and transmission equipment. The 336 stretch field cabinet must consist of a cabinet housing, 19-inch EIA mounting cage, and power distribution assembly (PDA #3 as described in the CALTRANS TSCES). The cabinet housing must conform to sections 6.2.2 (Housing Construction), 6.2.3 (Door Latches and Locks), 6.2.4 (Housing Ventilation), and 6.2.5 (Hinges and Door Catches of the CALTRANS TSCES. Do not equip the cabinet housings with a police panel. The cabinet cage must conform to section 6.3 of the CALTRANS TSCES. Terminal blocks on the PDA #3 Assembly have internal wiring for the Model 200 switch pack sockets. Do not use terminal blocks on PDA #3 as power terminals for cabinet devices. Do not furnish cabinet with "Input Panels" described in section 6.4.7.1 of the TSCES. Do furnish cabinet with "Service Panels" as described in section 6.4.7.1 of the TSCES and as depicted on drawing TSCES-9 in the TSCES. Use service panel #2. Furnish terminal blocks for power for CCTV, MVD, and communications devices as needed to accommodate the number of devices in the cabinet. Do not furnish cabinets with C1, C5, or C6 harnesses, input files, output files, monitor units, model 208 units, model 430 units, or switch packs. Furnish all conduits, shelving, mounting adapters, and other equipment as necessary to route cabling, mount equipment, and terminate conduit in equipment cabinet. Obtain the Engineer's approval of all cabinets prior to furnishing for use on this project. #### 8.2 MATERIALS #### A. Shelves Provide one fixed and one a pull out, hinged-top drawer, having sliding tracks, with lockout and quick disconnect feature in the equipment cabinet. Furnish a pullout drawer that extends a minimum of 14 inches that is capable of being lifted to gain access to the interior of the drawer. Minimum interior dimensions of the drawer are to be 1 inch high, 13 inches deep, and 16 inches wide. Provide drawers capable of supporting a 40-pound device or component when fully extended. ## B. Cabinet Light Include two (2) fluorescent lighting fixtures (one front, one back) mounted horizontally inside the top portion of the cabinet. The fixtures should include a cool white lamp, and must be operated by normal power factor UL-listed ballast. Install a door-actuated switch to turn on the applicable cabinet light when the front door or back door is opened. Mount the lights not to interfere with the upper door stay. ## C. Surge Protection for System Equipment Provide each cabinet with devices to protect the CCTV, MVD, and communications equipment from electrical surges and over voltages as described below. ## 1. Main AC Power Input Furnish and install each cabinet with a hybrid-type, power line surge protection device mounted inside the power distribution assembly. Install the protector between the applied line voltage and earth ground. The surge protector must be capable of reducing the effect of lightning transient voltages applied to the AC line. Mount the protector inside the Power Distribution Assembly housing facing the rear of the cabinet. The protector must include the following features and functions: - Maximum AC line voltage: 140 VAC. - Twenty pulses of peak current, each of which must rise in 8 microseconds and fall in 20 microseconds to ½ the peak: 20000 Amperes. - The protector must be provided with the following terminals: - Main Line (AC Line first stage terminal). - Main Neutral (AC Neutral input terminal). - Equipment Line Out (AC line second state output terminal, 19 amps). - Equipment Neutral Out (Neutral terminal to protected equipment). - GND (Earth connection). - The Main AC line in and the Equipment Line out terminals must be separated by a 200 Microhenry (minimum) inductor rated to handle 10 AMP AC Service. - The first stage clamp must be between Main Line and Ground terminals. - The second stage clamp must be between Equipment Line Out and Equipment Neutral. - The protector for the first and second stage clamp must have an MOV or similar solid state device rated at 20 KA and must be of a completely solid state design (i.e., no gas discharge tubes allowed). - The Main Neutral and Equipment Neutral Out must be connected together internally and must have an MOV similar solid state device or gas discharge tube rated at 20 KA between Main Neutral and Ground terminals. - Peak Clamp Voltage: 350 volts at 20 KA. (Voltage measured between Equipment Line Out and Equipment Neutral Out terminals. Current applied between Main Line and Ground Terminals with Ground and Main Neutral terminals externally tied together). - Voltage must never exceed 350 volts. - The Protector must be epoxy-encapsulated in a flame-retardant material. - Continuous service current: 10 Amps at 120 VAC RMS. - The Equipment Line Out must provide power to cabinet CCTV and communications equipment and to the 24V power supply. #### 2. Ground Bus Provide a neutral bus that is not connected to the earth ground bus or the logic ground bus anywhere within the cabinet. Ensure that the earth ground bus and the neutral ground bus each have ten compression type terminals, each of which can accommodate wires ranging from number 14 through number 4. ## **8.3 CONSTRUCTION METHODS** For each field cabinet installation use stainless steel banding or other methods approved by the Engineer to fasten cabinet to pole. Install all conduits, condulets, and attachments to equipment cabinets in a manner that preserves the minimum bending radius of cables and creates waterproof connections and seals. #### **8.4 MEASUREMENT AND PAYEMENT** Field equipment cabinet will be measured and paid as the actual number of field equipment cabinets furnished, installed and accepted. No payment will be made for cabling, connectors, cabinet attachment assemblies, conduit, condulets, grounding equipment, surge protectors, or any other equipment or labor required to install the field equipment cabinet as these are considered incidental to field equipment cabinet installation. Payment will be made under: ## Pay Item Field Equipment Cabinet ______ Each ## 9. DYNAMIC MESSAGE SIGN (DMS) #### 9.1 DESCRIPTION DMSs used on the State Highway System shall be preapproved on the current NCDOT ITS & Signals Qualified Products List (QPL) by the date of installation. DMSs not preapproved will not be allowed for use on the project. To ensure compatibility with the existing DMS Control Software deployed in the State, furnish NTCIP compliant DMSs that are fully compatible with Daktronics, Inc. Vanguard software (also referred to hereinafter as the "Control Software." The QPL is available on the Department's website. The QPL website is: http://www.ncdot.org/doh/preconstruct/traffic/ITSS/SMS/qpl/ Furnish and install DMSs compliant with UL standards 48, 50, 879, and 1433. Add and configure the new DMSs in the system using the Control Software and computer system. Furnish, install, test, integrate and make fully operational the new DMSs at locations shown in the Plans. Furnish operating DMS systems consisting of, but not limited to, the following: - Full Matrix, 27 pixel high and 90 pixels wide LED DMS - Pedestal type DMS support structures and mounting hardware - DMS controllers, Uninterruptible Power Supplies (UPS), cabinets and accessories with interconnect and power cabling and conduit - Branch circuit conductors and related equipment - All other equipment and incidentals required for furnishing, installing, and testing the DMS system and system components Use only UL listed and approved electronic and electrical components in the DMS system. #### 9.2 MATERIALS ## A. Environmental Requirements Construct the DMS and DMS controller cabinet so the equipment within is protected against moisture, dust, corrosion, and vandalism. Design the DMS system to comply with the requirements of Section 2.1 (Environmental and Operating Standards) of NEMA TS 4-2005. ## B. Full Matrix LED Dynamic Message Sign (DMS) Construct the DMS to display at least three lines of text that, when installed, are clearly visible and legible to a person with 20/20 corrected vision from a distance of 900 feet in advance of the DMS at an eye height of 3.5 feet along the axis. When displaying three lines, each line must display at least 15 equally spaced and equally sized alphanumeric individual characters. Each character must be at least 18 inches in height and composed from a luminous dot matrix. Provide an
entire LED matrix that is a minimum of 27 pixels high and 90 pixels wide. #### 1. DMS Enclosure Comply with the requirements of Section 3 (Sign Mechanical Construction) of NEMA TS 4-2005 as it applies to walk-in enclosures. The following requirements complement TS 4-2005. Construct the DMS with a metal walk-in enclosure excluding the face. Provide an aluminum walking platform inside the enclosure that is at least 28 inches wide. Ensure the width of the walking platform is free of obstructions to a height of 7 feet. Construct the enclosure of welded aluminum type 6061-T6, 5052-H38, 5052-H34, or of an Engineer approved alternate at least 1/8-inch thick. Perform all welding of aluminum and aluminum alloys in accordance with the latest edition of AWS D1.2, Structural Welding Code - Aluminum. Continuously weld the seams using Gas Metal Arc Welding (GMAW). Provide all exterior and interior DMS enclosure surfaces with natural, mill-finish aluminum. Remove all grind marks and discoloration from the surfaces. Provide corrosion resistant nuts, bolts, washers, and other mounting and bonding parts and components used on the exterior of the DMS enclosure and ensure they are sealed against water intrusion. Provide one key lockable, hinged, gasket-sealed inspection door for service and maintenance along each side of the enclosure. Install one appropriately sized fire extinguisher within 12 inches of each maintenance door. Equip the DMS enclosure with internal fluorescent lighting controlled by timers installed close to each inspection door. Make certain no light emitted from the fluorescent tubes or any other light source inside the enclosure not comprising the display is leaked to the outside of the enclosure. Equip the door with a door-hold-open device. Install GFCI duplex utility receptacles every 6 feet along the width of the DMS in convenient locations for powered service tools. Do not place a manufacturer name, logo, or other information on the front face of the DMS or shield visible to the motorist. Provide power supply monitoring circuitry to detect power failure in the DMS and to automatically report this fault to the Control Software. This requirement is in addition to reporting power failure at the controller cabinet. Do not paint the stainless steel bolts on the Z-bar assemblies used for mounting the enclosure. #### 2. DMS Interior Environment Control Design the local field controller to monitor and control the interior DMS environment. Design environmental control to maintain the internal DMS temperature within +/- 10° F of the outdoor ambient temperature. Provide the DMS environmental control system with four primary subsystems as follows: - Internal Temperature Sensors Provide the DMS with two internally mounted temperature sensors which are equipped with external thermocouples and which the field controller continuously monitors. Design the field controller to use this temperature information to determine when to activate and deactivate the environmental control systems described herein. Locate sensors on opposite ends of the upper 1/3 of the LED display matrix with their external thermocouples attached to and making contact with an LED pixel circuit board. Design the thermocouple and LED board to be easily detachable, in the event that one of the units requires removal and replacement. Provide sensors capable of measuring temperatures from -40° F to +185° F. Design the field controller to automatically shut down the LED display whenever one or both sensors indicates that LED board temperature has exceeded +140° F, and to automatically restart the LED display whenever the temperature falls below +130° F. Design both shutdown and re-start temperature thresholds to be user-programmable. Design the field controller to report sensor temperatures and DMS shutdown/re-start events to the DMS Control Software. - Housing Cooling System Provide the DMS housing with a cooling system that circulates outside air into the DMS housing whenever the LED board temperature exceeds a user-programmable threshold. Provide this system with enough ventilation fans to exchange the internal DMS housing air volume at a minimum rate of 4 times per minute. Provide steel ball-bearing type fans. Mount fans in a line across the upper rear wall of the DMS housing to direct air out of the cabinet. Provide one filtered air intake port for each exhaust fan. Locate intake ports in a line across the lower rear wall of the DMS housing. Provide intake ports with a removable filter that will remove airborne particles measuring 500 microns in diameter and larger. Provide a filter that is of a size and style that is commercially readily available. Program the field controller to activate the DMS housing cooling system whenever the LED board temperature exceeds +90° F and to turn the cooling system off whenever LED board temperature falls below +85° F. On the DMS housing rear exterior wall, cover all air intake and exhaust ports on their top, front, and sides by an aluminum shroud fabricated from 0.090-inch aluminum sheeting. Taper the shrouds at the top. Securely fasten shrouds to the DMS housing, and provide gaskets at the interface to prevent water from entering the DMS. Design all air filters and fans to be removable from inside the DMS housing. Provide the DMS housing cooling system with an adjustable timer that will turn fans off after the set time has expired. Provide a timer that is adjustable to at least 4 hours, and locate it just inside the DMS housing door, within easy reach of a maintenance technician standing outside the DMS doorway. - <u>LED Display Cooling System</u> Provide the DMS with an LED display cooling system which directs air across the LED display modules whenever LED board temperature exceeds a user-programmable threshold. Direct fan-forced air vertically across the backside of the entire LED display matrix using multiple ball-bearing fans. Program the field controller to activate the LED cooling fan system whenever LED board temperature exceeds +90° F and to deactivate the system whenever LED board temperature falls to +85° F. Locate cooling fans so as not to hinder removal of LED display modules and driver boards. - Front Face Panel Defog/Defrost System Provide the DMS with a defog/defrost system which circulates warm, fan-forced air across the inside of the polycarbonate front face whenever LED board temperature falls below a user-programmable threshold. Provide multiple steel ball-bearing fans that provide uniform airflow across the face panel. Program the field controller to activate the defog/defrost system whenever LED board temperature falls below +40° F and to deactivate the defog/defrost system whenever LED board temperature exceeds +106° F. Mount a 100-watt pencil-style heating element in front of each defog/defrost fan to warm the air directed across the DMS face. Design heating elements to be on only when the defog/defrost fans are on. Install additional fans and/or heaters as needed to maintain the temperature inside the DMS enclosure within the operating temperature range of the equipment within the DMS enclosure as recommended by the equipment manufacturer(s). #### 3. Front Panel Protect the DMS face with contiguous, weather-tight, removable panels. Manufacture these panels of sheets of polycarbonate, methacrylate, GE Lexan Type SG300 or equivalent that are ultraviolet protected, have an antireflection coating, and are a minimum of 1/8- inch thick. For substitutes, submit one 12" x 12" sample of the proposed material together with a description of the material attributes to the Engineer for review and approval. Install a .09" aluminum mask on the front of the panel (facing the motorists) that contains a circular opening for each LED pixel. Prime and coat the front side of the aluminum mask, which faces the viewing motorists, with automotive-grade flat black acrylic enamel paint or an approved equivalent. Guarantee all painted surfaces provide a minimum outdoor service life of 20 years. Design the panels so they will not warp nor reduce the legibility of the characters. Differential expansion of the DMS housing and the front panel must not cause damage to any DMS component or allow openings for moisture or dust. Glare from sunlight, roadway lighting, commercial lighting, or vehicle headlights must not reduce the legibility or visibility of the DMS. Install the panels so that a maintenance person can easily remove or open them for cleaning. ## 4. Display Modules Manufacture each display module with a standard number of pixels, not to exceed an array of 9 x 5, which can be easily removed. Assemble the modules onto the DMS assemblies contiguously to form a continuous matrix to display the required number of lines, characters, and character height. Design display modules that are interchangeable and replaceable without using special tools. Provide plug-in type power and communication cables to connect to a display module. Construct each display module as a rectangular array of 5 horizontal pixels by 7 to 9 vertical pixels. Provide the module with an equal vertical and horizontal pitch between pixels, and columns that are perpendicular to the rows (i.e., no slant). Design each module to display: - All upper and lower case letters. - All punctuation marks. - All numerals 0 to 9. - Special user-created characters. Display upper-case letters and numerals over the complete height of the module. Optimize the LED grouping and mounting angle within a pixel for maximum readability. #### 5. Discrete LEDs Provide discrete LEDs with a nominal viewing cone of **30 degrees** with a half-power angle of 15 degrees measured from the longitudinal axis of the LED. Make certain, the viewing cone tolerances are as specified in the LED manufacturer's product specifications and do not exceed +/- 3 degrees half-power viewing angle of 30 degrees. Provide LEDs that are untinted, non-diffused, high output solid state lamps utilizing indium
gallium aluminum phosphide (InGaAlP) technology manufactured by Toshiba or Hewlett-Packard. No substitutions will be allowed. Provide T1 3 4, 0.2 inch size LEDs that emit a true amber color at a wavelength of 590 \pm 5 nm. Provide LEDs with a MTBF (Mean Time Before Failure) of at least 100,000 hours of permanent use at an operating point of 140° F or below at a specific forward current of 20mA. Discrete LED failure is defined as the point at which the LED's luminous intensity has degraded to 50% or less of its original level. Obtain the LEDs used in the display from a single LED manufacturer that have a single part number. Obtain them from batches sorted for luminous output, where the highest luminosity LED is not more than fifty percent more luminous than the lowest luminosity LED when the LEDs are driven at the same forward current. Do not use more than two successive and overlapping batches in the LED display. Document the procedure to be used to comply with this requirement as part of the material submittal. Individually mount the LEDs on circuit boards that are at least 1/16"thick FR-4 fiberglass, flat black printed circuit board in a manner that promotes cooling. Protect all exposed metal on both sides of the LED pixel board (except the power connector) from water and humidity exposure by a thorough application of acrylic conformal coating. Design the boards so bench level repairs to individual pixels, including discrete LED replacement and conformal coating repair is possible. Operate the LED display at a low internal DC voltage not to exceed 24 Volts. Design the LED display operating range to be -20° F to $+140^{\circ}$ F at 95% relative humidity, non-condensing. Supply the LED manufacturer's technical specification sheet with the material submittals. ## 6. LED Power Supplies Power the LED Display by means of multiple regulated switching DC power supplies that operate from 120 volts AC input power and have an output of 48 volts DC or less. Wire the supplies in a redundant parallel configuration that uses multiple power supplies per display. Provide the supplies with current sharing capability that allows equal amounts of current to their portion of the LED display. Provide power supplies rated such that if one supply fails the remaining supplies will be able to operate their portion of the display under full load conditions (i.e. all pixels on at maximum brightness) and at a temperature of 140° F. Provide power supplies to operate within a minimum input voltage range of +90 to +135 volts AC and within a temperature range of -22° F to 140° F. Power supply output at 140° F must not deteriorate to less than 65% of its specified output at 70° F. Provide power supplies that are overload protected by means of circuit breakers, that have an efficiency rating of at least 75%, a power factor rating of at least .95, and are UL listed. Provide all power supplies from the same manufacturer and with the same model number. Design the power driver circuitry to minimize power consumption. Design the field controller to monitor the operational status (normal or failed) of each individual power supply and be able to display this information on the Client Computer screen. ## 7. LED Pixels A pixel is defined as the smallest programmable portion of a display module that consists of a cluster of closely spaced discrete LEDs. Design each pixel to be a maximum of 2 inches in diameter. Construct the pixels with two strings of LEDs. It is the manufacturer's responsibility to determine the number of LEDs in each string to produce the candela requirement as stated herein. Ensure each pixel produces a luminous intensity of 40 Cd when driven with an LED drive current of 20 mA per string. Power the LEDs in each pixel in strings. Use a redundant design so that the failure of an LED in one string does not affect the operation of any other string within the pixel. Provide the sign controller with the ability to detect the failure of any LED string and identify which LED string has failed. Submit a complete schematic of the LED power and driver circuits with the material submittals. ## 8. Character Display Design display modules to be easily removable without the use of tools. Position cooling fans so they do not prevent removal of an LED pixel board or driver board. Use continuous current to drive the LEDs at the maximum brightness level. Design the light levels to be adjustable for each DMS / controller so the Engineer may set levels to match the luminance requirements at each installation site. Design the controller to automatically detect failed LED strings or drivers and initiate a report of the event to the Control Software. Design the controller to be able to read the internal temperature of the DMS enclosure and the ambient temperature outside the DMS enclosure and report these to the Control Software. ## 9. Display Capabilities Design the DMS with at least the following message displays: Static display - **Intelligent Transportation Systems** - Flashing display with Dynamic flash rates - At least two alternating Static and / or Flashing sequences (multi-page messages) #### 10. DMS Mini Controller Furnish and install a mini controller inside the DMS that is interconnected with the main controller using a fiber optic cable, CAT-5 cable, or an approved alternate. The mini controller will enable a technician to perform all functions available from the main controller. Provide the mini controller with an LCD/keypad interface. Size the LCD display screen to allow preview of an entire one-page message on one screen. Provide a 4 X 4 keypad. Alternatively, install an EIA/TIA-232E port inside the DMS enclosure to enable a maintenance technician to communicate with the DMS main controller and obtain access to and perform all functions of the main controller using a laptop computer. # C. DMS Enclosure Structure Mounting Mount the DMS enclosure and interconnect system securely to the supporting structures of the type specified in the Plans. Design the DMS enclosure supports and structure to allow full access to the DMS enclosure inspection door. On existing structures, ensure the walkway does not interfere with full access to the DMS enclosure inspection door. Furnish and install U-bolt connections of hanger beams to overhead assembly truss chords with a double nut at each end of the U-bolt. Bring the double nuts tight against each other by the use of two wrenches. Submit plans for the DMS enclosure, structure, mounting description and calculations to the Engineer for approval. Have such calculations and drawings approved by a Professional Engineer registered in the state of North Carolina, and bear his signature, seal, and date of acceptance. Provide removable lifting eyes or the equivalent on the DMS enclosure rated for its total weight to facilitate handling and mounting the DMS enclosure. Design the DMS structure to conform to the applicable requirements of the Standard Specifications for Structural Supports for Highway Signs, Luminaires, and the section titled "DMS Assemblies" of these Project Special Provisions. ## D. DMS / DMS Controller Interconnect Furnish and install all necessary cabling, conduit, and terminal blocks to connect the DMS and the DMS controller. Use approved manufacturer's specifications and the Plans for cable and conduit types and sizes. Use fiber optic cable to interconnect sign and controller. Install fiber optic interconnect centers in the sign enclosure and cabinet to securely install and terminate the fiber optic cable. Submit material submittal cut sheets for the interconnect center. Furnish and install one DMS controller with accessories per DMS in a protective cabinet. Mount the controller cabinet on the DMS support structure. Install cabinet so that the height to the middle of the cabinet is 4 feet. Ensure a minimum of 3 feet level working surface under each cabinet that provides maintenance technicians with a safe working environment. Provide the DMS controller as a software-oriented microprocessor and with resident software stored in non-volatile memory. The Control Software, controller and communications must comply with the NTCIP Standards identified in these Project Special Provisions. Provide sufficient nonvolatile memory to allow storage of at least 500 multi-page messages and a test pattern program. Furnish the controller cabinet with, but not limited to, the following: - Power supply and distribution assemblies - Power line filtering hybrid surge protectors - Radio Interference Suppressor - Communications surge protection devices - Industrial-Grade UPS system and local disconnect - Microprocessor-based controller - Display driver and control system (unless integral to the DMS) - Industrial-grade dial-up modem and interface cable - Industrial-grade telephone line surge and lightning protector - Serial interface port for local laptop computer - Local user interface - Interior lighting and duplex receptacle - Adjustable shelves as required for components - Temperature control system - All interconnect harnesses, connectors, and terminal blocks - All necessary installation and mounting hardware Furnish the DMS controller and associated equipment completely housed in a NEMA 3R cabinet made from 5052-H32 sheet aluminum at least 1/8" thick. Use natural aluminum cabinets. Perform all welding of aluminum and aluminum alloys in accordance with the latest edition of AWS D1.2, Structural Welding Code - Aluminum. Continuously weld the seams using Gas Metal Arc Welding (GMAW). Slant the cabinet roof away from the front of the cabinet to prevent water from collecting on it. Do not place a manufacturer name, logo, or other information on the faces of the controller cabinet visible to the motorist. Provide cabinets capable of housing the components and sized to fit space requirement. Design the cabinet layout for ease of maintenance and operation, with all components easily accessible. Submit a
cabinet layout plan for approval by the Engineer. Locate louvered vents with filters in the cabinet to direct airflow over the controller and auxiliary equipment, and in a manner that prevents rain from entering the cabinet. Fit the inside of the cabinet, directly behind the vents, with a replaceable, standard-size, commercially available air filter of sufficient size to cover the entire vented area. Provide a torsionally rigid door with a continuous stainless steel hinge on the side that permits complete access to the cabinet interior. Provide a gasket as a permanent and weather resistant seal at the cabinet door and at the edges of the fan / exhaust openings. Use a non-absorbent gasket material that will maintain its resiliency after long-term exposure to the outdoor environment. Construct the **Burke County** doors so that they fit firmly and evenly against the gasket material when closed. Provide the cabinet door with louvered vents and air filters near the bottom as described in the paragraph above. Provide a Plexiglas rack of appropriate size at a convenient location on the inside of the door to store the cabinet wiring diagrams and other related cabinet drawings. Provide a Corbin #2 main door lock made of non-ferrous or stainless steel material. Key all locks on the project alike, and provide 10 keys to the Engineer. In addition, design the handle to permit pad-locking. Provide the interior of the cabinet with ample space for housing the controller and all associated equipment and wiring; use no more than 75% of the useable space in the cabinet. Provide ample space in the bottom of the cabinet for the entrance and exit of all power, communications, and grounding conductors and conduit. Arrange the equipment so as to permit easy installation of the cabling through the conduit so that they will not interfere with the operation, inspection, or maintenance of the unit. Provide adjustable metal shelves, brackets, or other support for the controller unit and auxiliary equipment. Leave a 3 inch minimum clearance from the bottom of the cabinet to all equipment, terminals, and bus bars. Provide power supply monitoring circuitry to detect power failure and to automatically report the occurrence to the Control Software. Install two 15-watt fluorescent light strips with shields, one in the top of the cabinet and the other under the bottom shelf. Design both lights to automatically turn on when the cabinet door is opened and turn off when the door closes. Mount and wire a 120V (±10%) GFCI duplex receptacle of the 3-wire grounding type in the cabinet in a location that presents no electrical hazard when used by service personnel for the operation of power tools and work lights. No cabinet resident equipment may utilize the GFCI receptacle. Furnish one spare non-GFCI receptacle for future equipment. Mount a bug-proof and weatherproof thermostatically controlled fan and safety shield in the top of the cabinet. Size the fan to provide at least for two air exchanges per minute. Fuse the fan at 125% of the capacity of the motor. The magnetic field of the fan motor must not affect the performance of the control equipment. Use a fan thermostat that is manually adjustable to turn on between 80°F and 160°F with a differential of not more than 10°F between automatic turn-on and turn-off. Mount it in an easily accessible location, but not within 6 inches of the fan. Install additional fans and/or heaters as needed to maintain the temperature inside the cabinet within the operating temperature range of the equipment within the cabinet as recommended by equipment manufacturer(s). #### 1. Wiring The requirements stated herein apply wherever electrical wiring is needed for any DMS system assemblies and subassemblies such as controller cabinet, DMS enclosure, electrical panel boards and etc. Neatly arrange and secure the wiring inside the cabinet. Where cable wires are clamped to the walls of the control cabinet, provide clamps made of nylon, metal, plastic with rubber or neoprene protectors, or similar. Lace and jacket all harnesses, or tie them with nylon tie wraps spaced at 6 inches maximum to prevent separation of the individual conductors. Individually and uniquely label all conductors. Ensure all conductor labels are clearly visible without moving the conductor. Connect all terminal conductors to the terminal strip in right angles. Remove excess conductor before termination of the conductor. Mold the conductor in such a fashion as to retain its relative position to the terminal strip if removed from the strip. Do not run a conductor across a work surface with the exception of connecting to that work surface. No conductor bundles can be support by fasteners that support work surfaces. Install all connectors, devices and conductors in accordance to manufactures guidelines. Comply with the latest NEC guideline in effect during installation. No conductor or conductor bundle may hang loose or create a snag hazard. Protect all conductors from damage. Ensure all solder joints are completed using industry accepted practices and will not fail due to vibration or movement. Protect lamps and control boards from damage. No splicing will be allowed for feeder conductors and communication cables from the equipment cabinet to the DMS enclosure. Insulate all conductors and live terminals so they are not hazardous to maintenance personnel. Route and bundle all wiring containing line voltage AC and / or shield it from all low voltage control circuits. Install safety covers to prevent accidental contact with all live AC terminals located inside the cabinet. Use industry standard, keyed-type connectors with a retaining feature for connections to the controller. Label all equipment and equipment controls clearly. Supply each cabinet with one complete set of wiring diagrams that identify the color-coding or wire tagging used in all connections. Furnish a water-resistant packet adequate for storing wiring diagrams, operating instructions, and maintenance manuals with each cabinet. ## 2. Power Supply and Circuit Protection Design the DMS and controller for use on a system with a line voltage of $120V \pm 10\%$ at a frequency of 60 Hz ± 3 Hz. Under normal operation, do not allow the voltage drop between no load and full load of the DMS and its controller to exceed 3% of the nominal voltage. Blackout, brownout, line noise, chronic over-voltage, sag, spike, surge, and transient effects are considered typical AC voltage defects. Protect the DMS system equipment so that these defects do not damage the DMS equipment or interrupt their operation. Equip all cabinets with devices to protect the equipment in the cabinet from damage due to lightning and external circuit power and current surges. #### 3. Circuit Breakers Protect the DMS controller, accessories, and cabinet utilities with thermal magnetic circuit breakers. Provide the controller cabinet with a main circuit breaker sized according to the NEC. Use appropriately sized branch circuit breakers to protect the controller and accessories and for servicing DMS equipment and cabinet utilities. # 4. Surge Suppressor Install and clearly label filtering hybrid power line surge protectors on the load side of the branch circuit breakers in a manner that permits easy servicing. Ground and electrically bond the surge protector to the cabinet within 2 inches. Provide power line surge protector that meets the following requirements: | Peak surge current occurrences | 20 minimum | |--|------------------------| | Peak surge current for an 8 x 20 microsecond waveshape | 50,000 amperes | | Energy Absorption | > 500 Joules | | Clamp voltage | 240 volts | | Response time | <1 nanosecond | | Minimum current for filtered output | 15 amperes for 120VAC* | | Temperature range | -40°F to +158°F | • *Capable of handling the continuous current to the equipment ## 5. Radio Interference Suppressor Provide each controller cabinet with sufficient electrical and electronic noise suppression to enable all equipment in it to function properly. Provide one or more radio interference suppressors (RIS) connected between the stages of the power line surge suppressor that minimize interference generated in the cabinet in both the broadcast and the aircraft frequencies. Each RIS must provide a minimum attenuation of 50 decibels over a frequency range of 200 KHz to 75 MHz. Clearly label the suppressor(s) and size them at least at the rated current of the main circuit breaker but not less than 50 amperes. Provide RIS that are hermetically sealed in a substantial metal case which is filled with a suitable insulating compound and have nickel-plated 10/24 brass stud terminals of sufficient external length to provide space to connect #8 AWG wires. Mount them so that the studs cannot be turned in the case. Properly insulate ungrounded terminals from each other, and maintain a surface linkage distance of not less than $\frac{1}{4}$ " between any exposed current conductor and any other metallic parts. The terminals must have an insulation factor of $100-200 \text{ M}\Omega$, dependent on external circuit conditions. Use RIS designed for $120 \text{ VAC} \pm 10\%$, 60 Hz, and which meet the standards of UL and the Radio Manufacturers Association. ## 6. Communications Surge Protector Equip the cabinet with properly labeled hybrid data line surge protectors that meet the following general requirements: | Surge current occurrences at 2000 ampere, 8 x 20 microsecond waveform | > 80 | |---|------------------------| | Surge current occurrences at 400 ampere, 10x700 microsecond waveform | > 80 | | Peak surge current for 8 x 20 microsecond waveform | 10,000 A (2500 A/line) | | Peak surge current for 10x700 microsecond waveform | 500 A/line | |--
---| | Response time | < 1 nanosecond | | Series resistance | <15 Ω | | Average capacitance | 1500 pF | | Temperature range | -10°F to 150°F | | Clamp Voltage | As required to match equipment in application | ## 7. Lightning Arrester Protect the system with an UL-approved lightning arrester installed at the main service disconnect that meets the following requirements: | Type of design | Silicon Oxıde Varistor | |--|-------------------------------| | Voltage | 120/240 Single phase, 3 wires | | Maximum current | 100,000 amps | | Maximum energy | 3000 joules per pole | | Maximum number of surges | Unlimited | | Response time one milliamp test | 5 nanoseconds | | Response time to clamp 10,000 amps | 10 nanoseconds | | Response time to clamp 50,000 amps | 25 nanoseconds | | Leak current at double the rated voltage | None | | Ground Wire | Separate | # 8. Uninterruptible Power Supply (UPS) Provide the cabinet with an industrial grade power conditioning UPS unit to supply continuous power to operate the equipment connected to it if the primary power fails. The UPS must detect a power failure and provide backup power within 20 milliseconds. Transition to the UPS source from primary power must not cause loss of data or damage to the equipment being supplied with backup power. Provide an UPS with at least three outlets for supplying conditioned AC voltage to the DMS controller and modem. Provide a unit to meet the following requirements: Input Voltage Range: 120VAC +12%, -25% Power Rating: 1000 VA, 700 Watts • Input Frequency: 45 to 65 Hz • Input Current: 7.2A Output Voltage: 120VAC +/- 3% Output Frequency: 50/60 +/-1 Hz | U-2550B | 220 | Burke County | |------------------------------------|-----|---------------------| | Intelligent Transportation Systems | | | • Output Current: 8.3A • Output Crest Factor Ration: @50% Load Up to 4.8:1 @75% Load Up to 3.2:1 @100% Load Up to 2.4:1 • Output THD: 3% Max. (Linear) 5% Max. (Non-Linear) • Output Overload: 110% for 10 min; 200% for 0.05 sec. • Output Dynamic Response: +/- 4% for 100% Step Load Change 0.5 ms Recovery Time. • Output Efficiency @ 100% Load:90% (Normal Mode) • Operating Temperature: -40 °F to +165 °F • Humidity: 0% to 95% Non-condensing Remote Monitoring Interface: RS-232 • Protection: Input/Output Short Circuit Input/Output Overload **Excessive Battery Discharge** • Specifications: UL1778, FCC Class A, IEEE 587 Provide the UPS unit capable of supplying 30 minutes of continuous backup power to the equipment connected to it when the equipment is operating at full load. ## 9. Controller Communications Interface Provide the controller with the following interface ports: - An EIA/TIA-232E port for remote communication using NTCIP - An 10/100 Ethernet port for remote communication using NTCIP - An EIA/TIA-232E port for onsite access using a laptop - An EIA/TIA-232E auxiliary port for communication with a field device such as a UPS - Fiber Optic ports for communication with the sign - RJ45 ports for communication with the sign using CAT-5 cable - RJ45 ports for communication with mini-controller located inside the sign enclosure ## 10. Controller Local User Interface Provide the controller with a Local User Interface (LUI) for at least the following functions: • On / Off Switch: controls power to the controller. - Control Mode Switch: for setting the controller operation mode to either remote or local mode. - LCD Display and Keypad: Allow user to navigate through the controller menu for configuration (display, communications parameter, etc) running diagnostics, viewing peripherals status, message creation, message preview, message activation, and etc. Furnish a LCD display with a minimum size of 240x64 dots with LED back light. # 11. Controller Address Assign each DMS controller a unique address. Preface all commands from the Control Software with a particular DMS controller address. The DMS controller compares its address with the address transmitted; if the addresses match, then the controller processes the accompanying data. ## 12. Controller Functions Design the DMS controller to continuously control and monitor the DMS independent of the Control Software. Design the controller to display a message on the sign sent by the Control Software, a message stored in the sign controller memory, or a message created on-site by an operator using the controller keypad. Provide the DMS controller with a watchdog timer to detect controller failures and to reset the microprocessor, and with a battery backed-up clock to maintain an accurate time and date reference. Set the clock through an external command from the Control Software or the Local User Interface. # 13. DMS Controller Memory Furnish each DMS controller with non-volatile memory. Use the non-volatile memory to store and reprogram at least one test pattern sequence and 500 messages containing a minimum of two pages of 45 characters per page. The Control Software can upload messages into and download messages from each controller's non-volatile memory remotely. Messages uploaded and stored in the controller's non-volatile memory may be erased and edited using the Control Software and the controller. New messages may be uploaded to and stored in the controller's non-volatile memory using the Control Software and the controller. ## 14. Telephone Modem Furnish and install industrial-grade modems with a data rate of 56 kbps. The modem must have a watchdog circuitry to continuously monitor the power supply, internal hardware, and operational software. In the event of a hardware or software problem, provide a modem that automatically resets itself. ## 15. Telephone Line Surge and Lightning Protector Provide telephone line surge and lightning protectors that are UL rated for industrial use and meet the following specifications: | Technology | Solid state with fast acting fuses and resistors | | |-----------------|--|--| | Usage | Telephone Line | | | Ports Protected | 1 (2 lines per port) | | | Connectors | RJ11/12 | |-----------------------|--------------------------------------| | Surge Capacity | 1.9 kA / line | | Clamp & Rated Voltage | 270 V and 200 V | | Max Frequency | 50 MHz | | Operating Temperature | -40° F to 185° F | | Max Inline Resistance | 22 Ohms | | Ratings | UL 497A, IEC801-5, CCITT (ITU-T) K17 | ## E. Photo-Electric Sensors Install three photoelectric sensors with ½ inch minimum diameter photosensitive lens inside the DMS enclosure. Use sensors that will operate normally despite continual exposure to direct sunlight. Place the sensors so they are accessible and field adjustable. Point one sensor north or bottom of the sign. Place the other two, one on the back wall and one on the front wall of the sign enclosure. Alternate designs maybe accepted, provided the sensor assemblies are accessible and serviceable from inside the sign enclosure. Provide controls so that the Engineer can field adjust the following: - The light level emitted by the pixels elements in each Light Level Mode. - The ambient light level at which each Light Level Mode is activated. # F. Equipment List Provide a general description of all equipment and all information necessary to describe the basic use or function of the major system components. Include a general "block diagram" presentation. Include tabular charts listing auxiliary equipment, if any is required. Include the nomenclature, physical and electrical characteristics, and functions of the auxiliary equipment unless such information is contained in an associated manual; in this case include a reference to the location of the information. Include an itemized list of equipment costs. Include a table itemizing the estimated average and maximum power consumption for each major piece of equipment. ## G. Physical Description Provide a detailed physical description of size, weight, center of gravity, special mounting requirements, electrical connections, and all other pertinent information necessary for proper installation and operation of the equipment. ## H. Parts List Provide a parts list that contains all information needed to describe the characteristics of the individual parts, as required for identification. Include a list of all equipment within a group and a list of all assemblies, sub-assemblies, and replacement parts of all units. Arrange this data in a table, in alpha-numerical order of the schematic reference symbols, which gives the associated description, manufacturer's name, and part number, as well as alternate manufacturers and part numbers. Provide a table of contents or other appropriate grouping to identify major components, assemblies, etc. #### I. Character Set Submittal Submit an engineering drawing of the DMS character set including 26 upper case and lower case letters, 10 numerals, an asterisk (*), a dash, a plus sign (+), a designated lane diamond, a slash, an ampersand, and arrows at 0, 45, 90, 135, 180, 225, 270, and 315 degrees. # J. Wiring Diagrams Provide a wiring diagram for each DMS and each controller cabinet, as well as interconnection wiring diagrams for the system as a whole. Provide complete and detailed schematic diagrams to component level for all DMS assemblies and subassemblies such as driver boards, control boards, DMS controller, power supplies, and etc. Ensure that each schematic enables an electronics technician to successfully identify any component on a board or assemblies and trace its incoming and outgoing signals. # K. Routine of Operation Describe the operational routine, from necessary preparations for placing the equipment into operation to securing the equipment after operation. Show appropriate illustrations with the sequence of operations presented in tabular form wherever applicable. Include in this section a total list of the test instruments, aids and tools required to perform necessary
measurements and measurement techniques for each component, as well as set-up, test, and calibration procedures. ### L. Maintenance Procedures Specify the recommended preventative maintenance procedures and checks at pre-operation, monthly, quarterly, semi-annual, annual, and "as required" periods to assure equipment operates reliably. List specifications (including tolerances) for all electrical, mechanical, and other applicable measurements and / or adjustments. ### M. Repair Procedures Include in this section all data and step-by-step procedures necessary to isolate and repair failures or malfunctions, assuming the maintenance technicians are capable of analytical reasoning using the information provided in the section titled "Wiring Diagrams and Theory of Operation." Describe accuracy, limits, and tolerances for all electrical, physical, or other applicable measurements. Include instructions for disassemblies, overhaul, and re-assemblies, with shop specifications and performance requirements. Give detailed instructions only where failure to follow special procedures would result in damage to equipment, improper operation, danger to operating or maintenance personnel, etc. Include such instructions and specifications only for maintenance that specialized technicians and engineers in a modern electromechanical shop would perform. Describe special test set-up, component fabrication, and the use of special tools, jigs, and test equipment. #### N. Field Trial At the request of the Engineer, supply a three character demonstration module with characters of the size and type specified for the project, an appropriate control device and power supply to allow character display within 30 working days of the request. Perform a field trial on this module at a time and location selected by the Engineer. This trial will allow the Engineer or his selected representatives to test the readability of the DMS at the maximum distance required for specified character size. Test the module with the sun directly above the DMS, and near the horizon in front of and behind the DMS (washout and back-lit conditions). #### 9.3 CONSTRUCTION METHODS ## A. Description This article establishes practices and procedures and gives minimum standards and requirements for the installation of Dynamic Message Sign systems, auxiliary equipment and the construction of related structures. Provide electrical equipment described in this specification that conforms to the standards of NEMA, UL, or Electronic Industries Association (EIA), wherever applicable. Provide connections between controllers and electric utilities that conform to NEC standards. Express wire sizes according to the American Wire Gauge (AWG). Provide stainless steel screws, nuts, and locking washers in all external locations. Do not use self-tapping screws unless specifically approved by the Engineer. Use parts made of corrosion-resistant materials, such as plastic, stainless steel, brass, or aluminum. Use construction materials that resist fungus growth and moisture deterioration. Separate dissimilar metals by an inert dielectric material. ## B. Layout The Engineer will establish the actual location of each Dynamic Message Sign assemblies. It is the Contractor's responsibility to ensure proper elevation, offset, and orientation of all DMS assemblies. The location of service poles as well as conduit lengths shown in the Plans, are approximate based on available project data. Make actual field measurements to place conduit and equipment at the required location. Submit a drawing showing all underground conduits and cables dimensioned from fixed objects or station marks. #### C. Construction Submittal When the work is complete, submit "as built" plans, inventory sheets, and any other data required by the Engineer to show the details of actual construction and installation and any modifications made during installation. The "as built" plans will show: the DMS, controller, and service pole locations; DMS enclosure and controller cabinet wiring layouts; and wire and conduit routing. Include detailed drawings that identify the routing of all conductors in the system by cable type, color code, and function. Clearly label all equipment in the DMS system, controller cabinet, and DMS enclosure. ### D. Conduit Install the conduit system in accordance with section 1097 of Standard Specification and NEC requirements for an approved watertight raceway. Make bends in the conduit so as not to damage it or change its internal diameter. Install watertight and continuous conduit with as few couplings as standard lengths permit. Clean conduit before, during, and after installation. Install conduit in such a manner that temperature changes will not cause elongation or contraction that might damage the system. Attach the conduit system to and install along the structural components of the DMS structure assemblies with beam clamps or stainless steel strapping. Install strapping according to the strapping manufacturer's recommendations. Do not use welding or drilling to fasten conduit to structural components. Space the fasteners at no more than 4 feet for conduit 1.5 inches and larger or 6 feet for conduit smaller than 1.25 inches. Place fasteners no more than 3 feet from the center of bends, fittings, boxes, switches, and devices. Flexible conduit will only be allowed when the conduits transition from the horizontal structure segment to the horizontal truss segment and from the horizontal truss segment to the rear entrance of the DMS when installing the DMS communications and feeder cables. The maximum length of flexible conduit allowed at each transition will be 5 feet. Locate underground conduit as shown in the Plans in a manner consistent with these Project Special Provisions. Do not exceed the appropriate fill ratio on all cable installed in conduit as specified in the NEC. # E. Wiring Methods Do not pull permanent wire through a conduit system until the system is complete and has been cleaned. Color-code all conductors per the NEC. Use approved marking tape, paint, sleeves or continuous colored conductors for No.8 AWG and larger. Do not mark a white conductor in a cable assemblies any other color. Bury underground circuits at the depth shown in the Plans and surround it with at least 3 inches of sand or earth back-fill free of rocks and debris. Compact backfill in 6 inch layers. Do not splice underground circuits unless specifically noted in the Plans. # F. Equipment and Cabinet Mounting Mount equipment securely at the locations shown in the Plans, in conformance with the dimensions shown. Install fasteners as recommended by the manufacturer and space them evenly. Use all mounting holes and attachment points for attaching DMS enclosures and controller cabinets to the structures. Drill holes for expansion anchors of the size recommended by the manufacturer of the anchors and thoroughly clean them of all debris. Provide one key-operated, pin tumbler, dead bolt padlock, with brass or bronze shackle and case, conforming to Military Specification MIL-P-17802E (Grade I, Class 2, Size 2, Style A) for each electrical panel and switch on the project. Key all padlocks alike, and provide 10 keys to the Engineer. Provide cabinets with all mounting plates, anchor bolts, and any other necessary mounting hardware in accordance with these Project Special Provisions and the Plans. Seal all unused conduit installed in cabinets at both ends to prevent water and dirt from entering the conduit and cabinet with approved sealing material. Install a ground bushing attached inside the cabinet on all metal conduits entering the cabinet. Connect these ground bushings to the cabinet ground bus. #### G. Work Site Clean-Up Clean the site of all debris, excess excavation, waste packing material, wire, etc. Clean and clear the work site at the end of each workday. Do not throw waste material in storm drains or sewers. ### 9.4 MEASUREMENT AND PAYMENT DMS will be measured and paid as the actual number of DMS furnished, installed, and accepted. Each DMS consists of a LED Dynamic Message Sign, communications equipment, strapping hardware, controller, UPS, controller cabinet, conduit, fittings, couplings, sweeps, conduit bodies, wire, flexible conduit, power conductors and communications cable between the controller cabinet and the DMS enclosure, connectors, circuit protection equipment, photo-electric sensors, tools, materials, all related testing, cost of labor, cost of transportation, incidentals, and all other equipment necessary to furnish and install the DMS system. Payment will be made under: | Pay Item | | |----------|------| | DMS | Each | # 10. NTCIP REQUIREMENTS This section defines the detailed NTCIP requirements for the DMSs covered by these Project Special Provisions and Plans. ### 10.1 REFERENCES This specification references several standards through their NTCIP designated names. The following list provides the full reference to the current version of each of these standards. Implement the most recent version of the standard including any and all Approved or Recommended Amendments to these standards for each NTCIP Component covered by these project specifications. **Table 1: NTCIP Standards** | Abbreviated
Number | Full Number | Title | |-----------------------|-----------------|---| | NTCIP 1101 | | Simple Transportation
Management Framework | | NTCIP 1201 | NTCIP 1201:1997 | Global Object Definitions | | NTCIP 1203 | NTCIP 1203:1997 | Object Definitions for
Dynamıc Message Signs | | NTCIP 2001 | NTCIP 2001:1997 | Class B Profile | | NTCIP 2101 | NTC1P 2101 | SP-PMPP/232
Subnet Profile for PMPP | | | | over RS-232 | |------------|------------|--| | NTCIP 2102 | NTCIP 2102 | SP-PMPP/FSK
Subnet Profile for PMPP
over FSK Modem | | NTCIP 2103 | NTCIP 2103 | SP-PPP/232
Subnetwork Profile
for
PPP over RS232 (Dial Up) | | NTCIP 2104 | NTCIP 2104 | SP-Ethernet
Subnet Profile for Ethernet | | NTCIP 2201 | NTCIP 2201 | TP-Null
Transport Profile | | NTCIP 2202 | NTCIP 2202 | TP-Internet Internet Transport Profile (TCP/IP and UDP/IP) | | NTCIP 2301 | NTCIP 2301 | AP-STMF AP for Simple Transportation Management Framework | # A. General Requirements # 1. Subnet Level Ensure each serial port on each NTCIP Component supports NTCIP 2103 over a dial-up connection with a contractor provided external modem with data rates of 28.8 kbps, 19.2 kbps, 14.4 kbps, 9600 bps, 4800 bps, 2400 bps, 1200 bps, 600 bps, and 300 bps. Enable the NTCIP Component to make outgoing and receive incoming calls as necessary and support the following modem command sets: - Hayes AT Command Set - MNP5 - MNP10 - V.42bis Ensure each serial port on each NTCIP Component supports NTCIP 2103 over a null-modem connection with data rates of 19.2 kbps, 14.4 kbps, 9600 bps, 4800 bps, 2400 bps, 1200 bps, 600 bps, and 300 bps. Ensure each serial port on each NTCIP Component supports NTCIP 2101 with data rates of 9600 bps, 4800 bps, 2400 bps, 1200 bps, 600 bps, and 300 bps. Ensure NTCIP components support NTCIP 2102 and NTCIP 2104. **Burke County** NTCIP Components may support additional Subnet Profiles at the manufacturer's option. At any one time, make certain only one Subnet Profile is active on a given serial port of the NTCIP Component. Ensure the NTCIP Component can be configured to allow the field technician to activate the desired Subnet Profile and provide a visual indication of the currently selected Subnet Profile. # 2. Transport Level Ensure each NTCIP Component complies with NTCIP 2201 and 2202. NTCIP Components may support additional Transport Profiles at the manufacturer's option. Ensure Response datagrams use the same Transport Profile used in the request. Ensure each NTCIP Component supports the receipt of datagrams conforming to any of the identified Transport Profiles at any time. # 3. Application Level Ensure each NTCIP Component complies with NTCIP 1101 and 2301 and meets the requirements for Conformance Level 1 (NOTE - See Amendment to standard). Ensure each NTCIP Component supports SNMP traps. An NTCIP Component may support additional Application Profiles at the manufacturer's option. Ensure Responses use the same Application Profile used by the request. Ensure each NTCIP Component supports the receipt of Application data packets at any time allowed by the subject standards. ### 4. Information Level Guarantee each NTCIP Component provides Full, Standardized Object Range Support of all objects required by these Special Provisions unless otherwise indicated below. Make certain the maximum Response Time for any object or group of objects is 200 milliseconds. Design the DMS to support all mandatory objects of all mandatory Conformance Groups as defined in NTCIP 1201 and NTCIP 1203. Table 2 indicates the modified object requirements for these mandatory objects. Table 2: Modified Object Ranges for Mandatory Objects | Object | Reference | Project Requirement | |-------------------|-------------------------|--| | ModuleTableEntry | NTCIP 1201 Clause 2.2.3 | Contains at least one row with moduleType equal to 3 (software). The moduleMake specifies the name of the manufacturer, the moduleModel specifies the manufacturer's name of the component and the modelVersion indicates the model version number of the component. | | MaxGroupAddresses | NTCIP 1201 Clause 2.7.1 | At least 1 | | CommunityNamesMax | NTCIP 1201 Clause 2.8.2 | At least 3 | |-------------------------|----------------------------------|---| | iii)mcNumPermanentMca | NTCIP 1203 Clause
2.6.1.1.1.1 | At least 1* | | al mcMay('hangeahleMcg | NTCIP 1203 Clause
2.6.1.1.1.3 | At least 21 | | DmsFreeChangeableMemory | NTCIP 1203 Clause
2.6.1.1.1.4 | At least 20 when no messages are stored. | | DmsMessageMultiString | B | The DMS supports any valid MULTI string containing any subset of those MULTI tags listed in Table 4 | | DmsControlMode | NTCIP 1203 Clause
2.7.1.1.1.1 | Support at least the following modes: Local External central CentralOverride | ^{*} Ensure the Permanent Messages display the content shown in Table 3. Ensure the sign blanks if a command to display a message contains an invalid Message CRC value for the desired message. **Table 3: Content of Permanent Messages** | Perm. Msg. Num. | <u>Description</u> | |-----------------|--| | | Permanent Message #1 blanks the display (i.e., consist | | 1 | of and empty MULTI string). It has a run-time priority | | | of one (1). | **Table 4: Required MULTI Tags** | Code | Feature | |------|------------------------| | fl | field 1 - time (12hr) | | f2 | field 2 - time (24hr) | | f8 | field 8 – day of month | | f9 | field 9 – month | | f10 | field 10 - 2 digit year | | |--------------|--|--| | fi1 | field 11 - 4 digit year | | | fl (and /fl) | flashing text on a line by line basis with flash rates controllable in 0.5 second increments. | | | fo | Font | | | j12 | Justification – line – left | | | j13 | Justification – line – center | | | j14 | Justification – line – right | | | j15 | Justification – line – full | | | jp2 | Justification – page – top | | | jp3 | Justification – page – middle | | | jp4 | Justification – page – bottom | | | Mv | moving text | | | NI | new line | | | Np | new page, up to 2 instances in a message (i.e., up to 3 pages/frames in a message counting first page) | | | Pt | page times controllable in 0.5 second increments. | | The NTCIP Component implements all mandatory and optional objects of the following optional conformance groups with FSORS. # 5. Test Heading # a. Time Management As defined in NTCIP 1201 # b. Timebase Event Schedule As defined in NTCIP 1201. The following list indicates the modified object requirements for this conformance group. **Table 5: Modified Object Ranges for the Timebase Event Schedule Conformance Group** | Object | Reference | Project Requirement | |----------------------------|---------------------------|---------------------| | MaxTimeBaseScheduleEntries | NTCIP 1201 Clause 2.4.3.1 | At least 28 | | maxDayPlans | NTCIP 1201 Clause 2.4.4.1 | At least 14 | |------------------|---------------------------|-------------| | maxDayPlanEvents | NTCIP 1201 Clause 2.4.4.2 | At least 10 | # c. Report As defined in NTCIP 1201. The following list indicates the modified object requirements for this conformance group. Table 6: Modified Object Ranges for the Report Conformance Group | Object | Reference | Project Requirement | |------------------------|-------------------------|--| | maxEventLogConfigs | NTCIP 1201 Clause 2.5.1 | At least 50 | | eventConfigurationMode | | The NTCIP Component supports the following Event Configuration Modes: onChange greaterThanValue smallerThanValue | | MaxEventLogSize | NTCIP 1201 Clause 2.5.3 | At least 200 | | MaxEventClasses | NTCIP 1201 Clause 2.5.5 | At least 16 | ### d. PMPP # e. Font Configuration As defined in NTCIP 1203. The following list indicates the modified object requirements for this conformance group. Table 7: Modified Object Ranges for the Font Configuration Conformance Group | Object | Reference | Project Requirement | |-------------------|----------------------------------|---------------------| | INIIMHONIC | NTCIP 1203 Clause
2.4.1.1.1.1 | At least 4* | | MaxFontCharacters | NTCIP 1203 Clause
2.4.1.1.1.3 | At least 127** | ^{*}Upon delivery, the first font is a standard 18" font. The second font is a double-stroke 18" font. The third font is a 28" font. The fourth font is empty. • "A" thru "Z"- All upper case letters. ^{**}Upon delivery, the first three font sets are configured in accordance with the ASCII character set for the following characters: - **Intelligent Transportation Systems** - "0" thru "9"- All decimal digits. - Space (i.e., ASCII code 0x20). - Punctuation marks shown in brackets [.,!?- ''"/()] - Special characters shown in brackets [# & * +<>] # f. DMS Configuration As defined in NTCIP 1203. # g. MULTI Configuration As defined in NTCIP 1203. The following list indicates the modified object requirements for this conformance group. Table 8: Modified Object Ranges for the MULTI Configuration Conformance Group | Object | Reference | Project Requirement | |--------------------------|----------------------------------|---| | DefaultBackgroundColor | NTCIP 1203 Clause
2.5.1.1.1.1 | The DMS supports the following background colors: black | | DefaultForegroundColor | NTCIP 1203 Clause
2.5.1.1.1.2 | The DMS supports the following foreground colors: amber | | DefaultJustıficatıonLine | NTCIP 1203 Clause
2.5.1.1.1.6 | The DMS supports the following forms of line justification: left center right | | defaultJustificationPage | NTCIP 1203 Clause
2.5.1.1.1.7 | The DMS supports the following forms of page justification: top middle bottom | | defaultPageOnTime | NTCIP 1203 Clause
2.5.1.1.1.8 | The DMS supports the full range of these objects with step sizes no larger than 0.5 seconds | | defaultPageOffTime | NTCIP 1203 Clause
2.5.1.1.1.9 | The DMS supports the full range of these objects with step sizes no larger than 0.5 | | | | seconds | |----------------------
-----------------------------------|---| | IdefaultCharacterSet | NTCIP 1203 Clause
2 5 1 1 1 10 | The DMS supports the following character sets: eightBit | - h. Default Message Control as defined in NTCIP 1203 - i. Pixel Service Control as defined in NTCIP 1203 - i. MULTI Error Control as defined in NTCIP 1203 - k. Illumination/Brightness Control As defined in NTCIP 1203. The following list indicates the modified object requirements for this conformance group. Table 9: Modified Object Ranges for the Illumination/Brightness Control Conformance Group | Object | Reference | Project Requirement | |-------------------------|----------------------------------|---| | dmsIllumControl | NTCIP 1203 Clause
2.8.1.1.1.1 | The DMS supports the following illumination control modes: photocell timer manual | | dmsIllumNumBrightLevels | NTCIP 1203 Clause
2.8.1.1.1.4 | At least 16 | # l. Auxiliary I/O # m. Scheduling As defined in NTCIP 1203. The following list indicates the modified object requirements for this conformance group. Table 10: Modified Object Ranges for the Scheduling Conformance Group | Object | Reference | Project Requirement | |--------------------------|----------------------------------|---------------------| | Num Action Table Entries | NTCIP 1203 Clause
2.9.1.1.1.1 | At least 21 | - n. Sign Status as defined in NTCIP 1203 - o. Status Error as defined in NTCIP 1203 - p. Pixel Error Status as defined in NTCIP 1203 - q. Fan Error Status as defined in NTCIP 1203 - r. Power Status as defined in NTCIP 1203 - s. Temperature Status as defined in NTCIP 1203 Install necessary hardware for the support of items q, r, and s above. **Table 11: Some Optional Object Requirements** | Object | Reference | Project Requirement | |-------------------------------|----------------------------------|--| | DefaultFlashOn | NTCIP 1203 Clause
2.5.1.1.1.3 | The DMS supports the full range of these objects with step sizes no larger than 0.5 seconds | | DefaultFlashOff | NTCIP 1203 Clause
2.5.1.1.1.4 | The DMS supports the full range of these objects with step sizes no larger than 0.5 seconds | | DmsMultiOtherErrorDescription | | If the vendor implements any vendor-specific MULTI tags, the DMS shall provide meaningful error messages within this object whenever one of these tags generates an error. | #### 6. Documentation Supply software with full documentation, including a CD-ROM containing ASCII versions of the following MIB files in Abstract Syntax Notation 1 (ASN.1) format: - The relevant version of each official standard MIB Module referenced by the device functionality. - If the device does not support the full range of any given object within a Standard MIB Module, a manufacturer specific version of the official Standard MIB Module with the supported range indicated in ASN.1 format in the SYNTAX and/or DESCRIPTION fields of the associated OBJECT TYPE macro. Name this file identical to the standard MIB Module, except that it will have the extension ".man". - A MIB Module in ASN.1 format containing any and all manufacturer-specific objects supported by the device with accurate and meaningful DESCRIPTION fields and supported ranges indicated in the SYNTAX field of the OBJECT-TYPE macros. - A MIB containing any other objects supported by the device. Allow the use of any and all of this documentation by any party authorized by the Department for systems integration purposes at any time initially or in the future, regardless of what parties are involved in the systems integration effort. ## **B. NTCIP Acceptance Testing** Test the NTCIP requirements outlined above by a third party testing firm. Submit to the Engineer for approval a portfolio of the selected firm. Include the name, address, and a history of the selected firm in performing NTCIP testing along with references. Also provide a contact person's name and phone number. Submit detailed NTCIP testing plans and procedures, including a list of hardware and software, to the Engineer for review and approval 10 days in advance of a scheduled testing date. Develop test documents based on the NTCIP requirements of these Project Special Provisions. The acceptance test will use the NTCIP Exerciser, and/or other authorized testing tools and will follow the guidelines established in the ENTERPRISE Test Procedures. Conduct the test in North Carolina on the installed system in the presence of the Engineer. Document and certify the results of the test by the firm conducting the test and submit the Engineer for review and approval. In case of failures, remedy the problem and have the firm retest in North Carolina. Continue process until all failures are resolved. The Department reserves the right to enhance these tests as deemed appropriate to ensure device compliance. #### 10.2 MEASUREMENT AND PAYMENT There will be no direct payment for the work covered by this section. Payment for this work will be covered in the applicable sections of these Project Special Provisions at the contract unit price for "DMS" and will be full compensation for all work listed above. # 11. DMS TESTING REQUIREMENTS ### 11.1 GENERAL TEST PROCEDURE Test the DMS system in a series of design approval and functional tests. The results of each test must meet the specified requirements. These tests should not damage the equipment. The Engineer will reject equipment that fails to fulfill the requirements of any test. Resubmit rejected equipment after correcting non-conformities and re-testing; completely document all diagnoses and corrective actions. Modify all equipment furnished under this contract, without additional cost to the North Carolina Department of Transportation, to incorporate all design changes necessary to pass the required tests. Provide 4 copies of all test procedures and requirements to the Engineer for review and approval at least 30 days prior to the testing start date. Only use approved procedures for the tests. Include the following in the test procedures: - A step-by-step outline of the test sequence, showing a test of every function of the equipment or system tested - A description of the expected nominal operation, output, and test results, and the pass / fail criteria - An estimate of the test duration and a proposed test schedule - A data form to record all data and quantitative results obtained during the test - A description of any special equipment, setup, manpower, or conditions required by the test Provide all necessary test equipment and technical support. Use test equipment calibrated to National Institute of Standards and Technology (NIST) standards. Provide calibration documentation upon request. Conform to these testing requirements and the requirements of these specifications. The Engineer will reject all equipment not tested according to these requirements. It is the Contractor's responsibility to ensure the DMS system functions properly even after the Engineer accepts the DMS test results. Provide 4 copies of the quantitative test results and data forms containing all data taken, highlighting any non-conforming results and remedies taken, to the Engineer for approval. An authorized representative of the manufacturer must sign the test results and data forms. #### 11.2 DESIGN APPROVAL TESTS Design Approval Tests are applicable to DMS systems not currently on the QPL. The Design Approval Tests consists of all tests described in Section 2.2 "DMS Equipment Tests" of NEMA TS 4-2005 (Hardware Standards for Dynamic Message Signs with NTCIP Requirements). Perform all tests and submit certified results for review and approval. PROTOTYPE – Manufacture a prototype DMS and controller of the type and size described in the Project Special Provisions. In the presence of the Engineer, test the prototype according to the Design Approval and Operational Tests. When all corrections and changes (if any) have been made, the Department may accept the prototype DMS and controller as the physical and functional standard for the system furnished under this contract. You may use the prototype units on this project if, after inspection and rework (if necessary), they meet all physical and functional specifications. In the case of standard product line equipment, if the Contractor can provide test results certified by an independent testing facility as evidence of prior completion of successful design approval tests, then the Engineer may choose to waive these tests. In each Design Approval Test, successfully perform the Functional Tests described below. Apply the extreme conditions to all associated equipment unless stated otherwise in these Project Special Provisions. # 11.3 OPERATIONAL FIELD TEST (ON-SITE COMMISSIONING) Conduct an Operational Field Test of the DMS system installed on the project to exercise the normal operational functions of the equipment. The Operational Field Test will consist of the following tests as a minimum: # A. Physical Examination Examine each piece of equipment to verify that the materials, design, construction, markings, and workmanship comply with the mechanical, dimensional, and assemblies requirements of these Project Special Provisions. Perform the following tests as a minimum: - Verify that all surfaces are free of dents, scratches, weld burns, or abrasions. Round sharp edges and corners. - Verify bend radius of cables is not excessive or could potentially cause damage. - Verify all modules, lamps, and components are properly secured. - Verify that there are no exposed live terminals. # **B.** Continuity Tests Check the wiring to assure it conforms to the requirements of these Project Special Provisions. #### C. Functional Tests Perform the following
functional tests: - Start-up and operate the DMS locally using a laptop computer. - Use automatic (photo-electric sensor controlled) DMS Control Software to switch between "dim", "normal", and "bright" light levels. - Operate the DMS with all display elements flashing continuously for 10 minutes at the maximum flash rate. - Exercise the DMS by displaying static messages, flashing messages, and alternating static and flashing message sequences. - Automatic poll the DMS by the Control Software at various intervals and verify the data received by Control Software from DMS. - Download and edit messages using Control Software. - Execute status request on the DMS controller. - Observe normal operations during uploading and downloading messages. - Input and select messages from the sign controller's local user interface. - Test sequence activation at chosen intervals. - Display and verify all stored messages. - Verify resumption of standard operation upon interruption of electrical power. - Demonstrate detected failures and response functions. - Demonstrate proper operation of the Failure Log. - Set controller clock using the Control Software. - Execute system shutdown using the Control Software and local user interface. - Verify detection of a power failure in the DMS enclosure and the report feature of the failure to the Control Software. Approval of Operational Field Test results does not relieve the Contractor to conform to the requirements in these Project Special Provisions. If the DMS system does not pass these tests, document a correction or substitute a new unit as approved by the Engineer. Re-test the system until it passes all requirements. ### 11.4 MEASUREMENT AND PAYMENT There will be no direct payment for the work covered in this section. Payment for this work will be covered in the applicable sections of these Project Special Provisions at the contract unit price for "DMS" and will be full compensation for all work covered in this section. #### 12. DMS ASSEMBLIES #### 12.1 DESCRIPTION This section includes all design, fabrication, furnishing, and erection of the DMS assemblies; ladders and walkways for access to the DMS inspection door and attachment of the DMS enclosures to the structures in accordance with the requirements of these Project Special Provisions and the Plans. Fabricate the supporting DMS assemblies from tubular steel. Furnish pedestal or span type DMS assemblies as shown in the Plans. Mount DMS on four (4) chord (box) truss. Cantilevered and Monotube (horizontal truss) DMS structures will not be allowed. Provide the pedestal structure with a minimum of 25 feet and span structure with a minimum of 20 feet clearance from the high point of the road to the bottom of the DMS enclosure. The DMS assembly must allow for field adjustment (horizontal & vertical tilting) of the DMS enclosure to ensure optimum legibility from all travel lanes. Design the new DMS assemblies and walkway, including footings, and submit shop drawings for approval. Design new walkways for existing DMS structures and submit shop drawings for approval. A Professional Engineer that is registered in the state of North Carolina will prepare such computations and drawings. These must bear his signature, seal, and date of acceptance. The provisions of Section 900 of the Standard Specifications apply to all work covered by this section. ### 12.2 MATERIAL Use materials that meet the following requirements of the Standard Specifications: Structural Steel Section 1072 Overhead Sign Structures Section 1096 Signing Materials Section 1092 Organic-Zinc Repair Paint Article 1080-9 Reinforcing Steel Sub-article 1070 Direct Tension Indicators Sections 440 and 1072 ### 12.3 CONSTRUCTION METHODS #### A. General Fabricate the new DMS assemblies, ladder and walkway in accordance with the details shown in the approved shop drawings and the requirements of these Project Special Provisions. No welding, cutting, or drilling in any manner will be permitted in the field, unless approved by the Engineer. Drill bolt holes and slots to finished size. Holes may also be punched to finished size, provided the diameter of the punched holes are at least twice the thickness of the metal being punched. Flame cutting of bolt holes and slots is not permitted. Erect DMS in accordance with the requirements indicated on the plans and in these Project Special Provisions. Field drill two holes per connection in the Z bars for attaching DMS to structures. Use two bolts at each connection. Provide two (2) U-bolts at each U-bolt connection such as 1) each truss chord to sign hanger, or 2) each truss chord to walkway support. Provide two (2) U-bolts at each U-bolts connection where ends of truss chords are supported. Minimum diameter of all U-bolts is to be ½ inch. Use two coats of a zinc-rich paint to touch up minor scars on all galvanized materials. See Standard Specifications for Roads and Structures Section 1076-6. For high strength bolted connections, provide direct tension indicator washer. # **B.** Shop Drawing Submit to the Engineer for approval a complete design for the DMS assemblies, including footings, DMS assembly hardware, brackets for supporting the DMS, ladder, access platform, and the maintenance walkway. Base design upon the revised structure line drawings, wind load area and the wind speed shown on the plans, and in accordance with the "Standard Specifications for Structural Structures for Highway Signs, Luminaires and Traffic Signals." The manufacturer of the DMS assembly must ensure that design of the assembly is compatible with the DMSs for mounting and attachment. Submit six copies of complete detailed shop drawings and one copy of the design computations for the DMS assemblies to the Engineer for approval prior to fabrication. Show in the shop drawings complete design and fabrication details including foundations, provisions for attaching the DMS, ladder, access platform, and maintenance walkway to supporting structures, applicable material specifications, and any other information necessary for procuring and replacing any part of the complete DMS assemblies. Allow a minimum of 40 working days for shop drawing approval after the Engineer receives them. If revised drawings are necessary, allow appropriate additional time for review and approval of final shop drawings. Approval of shop drawings by the Engineer will not relieve the Contractor of his responsibility for the correctness of drawings, or for the fit of all shop and field connections and anchors, including but not limited to the installation of new walkways and existing structures. C. Design and Fabrication # 1. Dynamic Message Sign Assembly The following criteria govern the design of overhead DMS assemblies: - Design must be in accordance with the <u>Standard Specifications for Structural Supports for Highway Signs</u>, <u>Luminaires and Traffic Signals</u>, <u>4th Edition</u>, <u>2001</u>, and the latest Interim <u>Specifications</u>. - The wind pressure map that is developed from the 3-second gust speeds, as provided in Article 3.8, shall be used. - The natural wind gust speed in North Carolina shall be assumed to be 5 meters per second or 11.6 mph for inland areas, and 7 meters per second or 15.7 mph for coastal areas. The coastal area shall be defined as any area within 2 miles from the waterfront facing the ocean or sound and all area where the design basic wind speed is above 120 mph, as shown in Figure 3-2. - The fatigue importance category used in the design, for each type of structure, as provided for in Article 11.6, Fatigue Importance Factors, shall be Category II unless otherwise shown on the contract plans. - Wind drag coefficient for Dynamic Message Sign enclosures shall be 1.7. The following Specification interpretations or criteria shall be used in the design of overhead sign assemblies: - For design of supporting upright posts or columns, the effective length factor for columns "K", as provided for in Appendix B, Section B.5, shall be taken as the following, unless otherwise approved by the Engineer: - Case 1 For a single upright post of span type overhead sign structure, the effective column length factor, "K", shall be taken as 2.0. - Case 2 For twin post truss-type upright post with the post connected to one chord of a horizontal truss, the effective column length factor for that column shall be taken as 2.0. - Case 3 For twin post truss-type upright post with the post connected to two truss chords of a horizontal tri-chord or box truss, the effective column length factor for that column shall be taken as 1.65. - For twin post truss-type upright post, the unbraced length shall be from the chord to post connection to the top of base plate. - For twin post truss-type upright post that is subject to axial compression, bending moment, shear, and torsion the post shall satisfy <u>Standard Specifications for Structural Supports for Highway Signs, Luminaries and Traffic Signals</u> Equations 5-17, 5-18 and 5-19. To reduce the effects of secondary bending, in lieu of Equation 5-18, the following equation may be used: $$\frac{f_a}{F_a} + \frac{f_b}{\left(1 - \frac{0.6f_a}{F_e}\right)} + \left(\frac{f_v}{F_v}\right)^2 \le 1.0$$ Where fa = Computed axial compression stress at base of post - The base plate thickness for all uprights and poles shall be a minimum of 2" but not less than that determined by the following criteria and design. - Case 1 Circular or rectangular solid base plates with the upright pole welded to the top surface of base plate with full penetration butt weld, and where no stiffeners are provided. A base plate with a small center hole, which is less than 1/5 of the upright diameter, and located concentrically with the upright pole, may be considered as a solid base plate. The magnitude of bending moment in the base plate, induced by the anchoring force of each anchor bolt shall be calculated using equation $M = (P \times D_1)/2$. Case 2 Circular or
rectangular base plate with the upright pole socketed into and attached to the base plate with two lines of fillet weld, and where no stiffeners are provided, or any base plate with a center hole that is larger in diameter than 1/5 of the upright diameter. The magnitude of bending moment induced by the anchoring force of each anchor bolt shall be calculated using equation $M = P \times D_2$. - M, bending moment at the critical section of the base plate induced by one anchor bolt - P, anchoring force of each anchor bolt - D₁, horizontal distance between the center of the anchor bolt and the outer face of the upright, or the difference between the radius of the bolt circle and the outside radius of the upright - D₂, horizontal distance between the face of the upright and the face of the anchor bolt nut - The critical section shall be located at the face of the anchor bolt and perpendicular to the radius of the bolt circle. The overlapped part of two adjacent critical sections shall be considered ineffective. - The thickness of base plate of Case 1 shall not be less than that calculated based on formula for Case 2. - Uprights, foundations, and trusses shall be designed in accordance with the DMS Foundation Special Provision for the effects of torsion. Torsion shall be considered from dead load eccentricity of these attachments, as well as for attachments such as walkways, supporting brackets, etc., that add to the torsion in the assembly. Truss vertical and horizontal truss diagonals in particular and any other assembly members shall be appropriately sized for these loads. - Uprights, foundations, and trusses shall be designed for the proposed sign wind area and future wind areas. The design shall consider the effect of torsion induced by the eccentric force location of the center of wind force above (or below) the center of the supporting truss. Truss vertical and horizontal truss diagonals in particular and any other assembly members shall be appropriately sized for these loads. Fabricate the supporting structures using tubular members of either aluminum or steel, using only one type of material throughout the project. Horizontal components of the supporting structures for overhead DMS must be of a truss design to support the DMS. Truss centerline must coincide with centerline of DMS design area shown on the structure line drawing. Provide permanent camber in addition to dead load camber in accordance with the "Standard Specifications for Structural Supports for Highway Signs, Luminaires, and Traffic Signals." Indicate on the shop drawings the amount of camber provided and the method employed in the fabrication of the support to obtain the camber. For all U-bolt connections of hanger beams to overhead assembly truss chords, provide all U-bolts with a flat washer, a lock washer and double nuts at each end of the U-bolts. All double nuts that are on any U-bolt shall be the same thickness and weight. When assembled, the double nuts shall be brought tight against each other by the use of two wrenches. .Fabricate attachment assemblies for mounting DMSs in a manner that allows easy removal of the sign. #### 2. DMS Access Platform for Pedestal Structure Provide an access platform, a minimum of three feet wide with open skid-resistant surface and safety railing on <u>pedestal structure</u> for access to the DMS inspection door. Provide platforms with fixed safety railings along both sides from the beginning of the platform to the inspection door. Ensure the design, fabrication and installation of the access platforms on new DMS structures complies with the following: - 1. The top of the platform grading surface is vertically aligned with the bottom of the DMS door. - 2. The DMS door will open 90-degrees from its closed position without any obstruction from the platform or safety handrails. - 3. The platform is rigidly and directly connected to the walkway brackets and there is no uneven surface between sections. - 4. Install a 4" x 4" safety angle parallel to and along both sides of the platform and extend it the entire length of the platform. Design the safety angle to withstand loading equivalent to the platform. 5. Ensure the platform design allows full access to the DMS enclosure inspection door with no interference or obstructions. # 3. DMS Walkway for Span Structure Provide a maintenance walkway on <u>span structures</u>, a minimum of three feet wide, with open skid-resistant surface and safety railings on the DMS assemblies for access to the DMS inspection door. Provide a maintenance walkway that extends from the DMS inspection door to three feet over the edge of the shoulder. Provide new walkways with fixed safety railings along both sides from the beginning of the walkway to the inspection door. Ensure the maintenance walkway complies with the following: - 1. The top of the walkway grading surface is vertically aligned with the bottom of the DMS door with no gap between the end of the walkway and the DMS door. - 2. The DMS door will open 90-degrees from its closed position without any obstruction from the walkway or safety handrails. - 3. The walkway is rigidly and directly connected to the walkway brackets and there is no uneven surface between sections. - 4. Install a 4" x 4" safety angle parallel to and along both sides of the platform and extend it the entire length of the platform. Design the safety angle to withstand loading equivalent to the platform. - 5. Ensure the walkway design allows full access to the DMS enclosure inspection door with no interference or obstructions. # 4. DMS Access Ladder Provide a fixed ladder, of the same material as the <u>pedestal structure</u>, leading to the access platform. Equip the ladder with a security cover (ladder guard) and lock to prohibit access by unauthorized persons. Start the first ladder rung no more than 18 inches above finished ground and end it at the access platform. Design the rungs on 12-inch center to center typical spacing. Attach the security cover approximately 6 feet above the finished ground. Design the ladder and security cover as a permanent part of the DMS assembly and include complete design details in the DMS assembly shop drawings. Fabricate the ladder and cover to meet all OSHA requirements and applicable state and local codes, including but not limited to providing a ladder cage. Attached the bottom of the ladder to a concrete pad a minimum of 4 inches deep, 24 inches wide, and 36 inches long. ### 5. Anchor Rod Assembly Attach the DMS structure to concrete foundations by the use of straight galvanized anchor rods with galvanized heavy hex nuts and flat washers. The rods, nuts and flat washers shall be galvanized in accordance with AASHTO M232. Provide anchor rods that have an anchor plate or flat washers with nut at the end to be embedded in concrete. For pedestal structure use a minimum of eight anchor rods. Ensure material used in steel anchor rods conforms to AASHTO M 314 or ASTM F1554, and the specified yield strength does not exceed 55,000 psi. Compute the required projection of the anchor rod above the foundation top. Compute the total projection based on the following: - Provide between 3 and 5 threads of anchor rod projection above the top nut after tightening is complete. Avoid any additional projection, or a normal depth socket torque wrench shall not be used on top nuts. - Include the sum of the thickness of top nut, top nut flat washer or top nut beveled washers, base plate, leveling nut flat washer or leveling nut beveled washers, leveling nut. - Set the maximum distance between the bottom of the leveling nut and the foundation top to one nut height to avoid excessive bending stresses in the anchor rod under service conditions. - Do not use lock washers. # 6. Anchor Rod Nut Tightening Requirements for Metal Poles #### a. Prior to installation Protect the anchor rod threads from damage prior to installation and during installation. Prior to installation of the rods in the foundation, turn nuts onto and off the rods, well past the elevation of the bottom of the leveling nuts. Turn by the effort of one worker using an ordinary wrench without a cheater bar. Report any thread damage to the Engineer. ## b. During installation - 1. Place leveling nuts (bottom nuts) on the anchor rods. - 2. Place leveling nut washers on top of the anchor rod leveling nuts. - 3. Place a rigid template on top of the leveling nuts to check the level of the nuts. Use beveled washers if the anchor nut and washer cannot be brought into firm contact with the template. - 4. Verify that the distance between the bottom of the leveling nut and the top of the concrete foundation is no more than one anchor rod diameter. If an upright is required to be back-raked, then the distance between the bottom of the leveling nut and the top of the concrete foundation should be no more than one anchor rod diameter, averaged over the anchor rod group. - 5. Place the base plate and structural element to which it is attached. However, do not attach to the upright element, during tightening of the anchor nuts, cantilever beams or arms with span in excess of 10 feet. - 6. Place top nut washers. - 7. Do not use lock washers. - 8. Lubricate threads and bearing surfaces of top nuts with beeswax, stick paraffin, or other approved lubricant. - 9. Place top nuts. Use beveled washers if the anchor nut and washer cannot be brought into firm contact with the base plate. - 10. Tighten top nuts to snug tight. A snug-tight condition is defined as the washer and nut being in full contact with the base plate, and the application of the full effort of a workman on a 12-in wrench. Turn top nuts in increments following a star pattern (using at least two full tightening cycles). **Burke County** **Intelligent Transportation Systems** - 11. To ensure proper pre-tensioning, after all top nuts have been brought to snug-tight condition, repeat the procedure on the leveling nuts. Turn leveling nuts
in increments following a star pattern (using at least two full tightening cycles). - 12. At this point, verify if beveled washers are required. Beveled washers are necessary under the leveling nut or top nut if any face of the base plate has a slope greater than 1:20 and/or any nut can not be brought into firm contact with the base plate. - 13. Before further nut turning, make the reference position of the nut in the snug-tight condition with a suitable making (ink or paint that is not water-soluble). Mark on the corner at the intersection of two flats with a corresponding reference mark on the plate at each nut. After tightening, verify the nut rotation. - 14. Achieve pre-tensioning by turn-of-nut method. Turn the top nuts to 1/6 of a turn. Do so in a star pattern using at least two full-tightening cycles. - 15. After installation, ensure that firm contact exists between the anchor rod nuts, washers, and base plate on any anchor rod installed. - 16. For overhead DMS assemblies: The span type truss may be placed on the uprights or attached to the upright at this time. - 17. After a period of no less than 4 days, and no more than 2 weeks, and in the presence of the Engineer, use a torque wrench to verify that a torque at least equal to 600 foot-pounds is provided on each top nut. For DMS pedestal structures, verify the torque after erection of the remainder of the structure and attaching the DMS to the structure. - 18. If any top nut torque reveals less than 600 foot-pounds of effort is required to move the nut, then tighten the nut to no less than 600 foot-pounds. - 19. Calibrate the torque indicator on the wrench used for tightening the nuts annually if the project construction extends over a 12 month period. Provide the Engineer with certification of the calibration. - 20. Do not place grout under the base plate. ## 12.4 MEASUREMENT AND PAYMENT DMS Structure (type) will be measured and paid as the actual number of dynamic message sign assemblies furnished, installed, and accepted. Payment includes all design, fabrication, construction, transportation, and attachment of the complete dynamic message sign assemblies, supporting structure, hardware, access platform or walkway, direct tension indicators, preparing and furnishing shop drawings, additional documentation, incidentals, and all other equipment and features necessary to furnish the system described above. DMS Access Ladder will be measured and paid as the actual number of DMS access ladders furnished, installed and accepted. Payment includes design, fabrication, transportation, and attachment to the DMS assembly as described above. Payment will be made under: # Pay Item DMS Structure (Pedestal) Each 246 Intelligent Transportation Systems DMS Access Ladder Each **Burke County** #### 13. DMS FOUNDATION ### 13.1 DESCRIPTION U-2550B This section consists of the design and construction of DMS foundations in accordance with the submitted, approved plans and the requirements of these Project Special Provisions. Design and construct either spread footing type foundations and/or drilled pier type foundations for each DMS unless otherwise directed by the Engineer. ## 13.2 MATERIAL | Portland Cement Concrete Production and Delivery | Section 1000 | |--|-----------------------| | Reinforcing Steel | Section 1070 | | Anchor Bolts | Article 1072-6 | | Structural Steel and Overhead Sign Structures | Section 1072 and 1096 | #### 13.3 Construction Methods ### A. General A North Carolina Licensed Professional Engineer must seal all design calculations, drawings and recommendations. Design foundations for the effects of dead, wind and ice loads in accordance with the wind zone load shown in the Plans and Section 3 of the AASHTO Standard Specifications for Structural Supports for Highway Signs, Luminaries and Traffic Signals (including interims). Use either spread footing or drilled pier foundations. In some instances, conflicts with drainage structures may dictate a certain type of foundation. Spread footings or dual drilled pier foundations are required for full span overhead signs (no single drilled pier foundations). When designing dual drilled pier foundations, a rectangular grade beam with a moment of inertia approximately equal to either of the drilled piers is required to connect the pier tops. Provide reinforced concrete design in accordance with either Section 13.7.2 or 13.6.2 (whichever is applicable), allowable stress design method, of the AASHTO Standard Specifications for Structural Supports for Highway Signs, Luminaries and Traffic Signals (including interims). Consider sloping ground in the design, if applicable. Do not exceed an allowable bearing pressure of 3 ksf for spread footings. For drilled pier foundations, do not exceed an allowable lateral soil pressure of 4 ksf for AASHTO Group II Loading. Use the following default soil parameters and groundwater elevation for foundation design in the absence of a site-specific subsurface investigation in accordance with this provision. Total Unit Weight = 120 pcf Friction Angle = 30 degrees Cohesion = 0 psf Assume the groundwater elevation is at a depth of 7 feet below the ground surface. If the groundwater is encountered at a depth shallower than 7 feet, the overhead sign foundation must be redesigned based upon the actual field conditions. The default soil parameters and allowable pressures do not apply to very soft or loose soil, muck (generally, SPT blow counts per foot less than 4), weathered rock or hard rock (generally, SPT refusal). If soft or loose soil, muck, weathered rock or hard rock conditions are present, a site-specific subsurface investigation and foundation design is required in accordance with this provision. Design spread footings in accordance with Sections 4.4.1 through 4.4.10, allowable stress design method, of the AASHTO Standard Specifications for Highway Bridges (including interims). Restrict uplift due to the eccentricity of the loading to one corner of the footing and the tension area may not exceed 25% of the total bearing area of the spread footing. Design drilled piers in accordance with Sections 4.6.1 through 4.6.5, allowable stress design method, of the AASHTO Standard Specifications for Highway Bridges (including interims). If drilled piers are designed for skin friction only, increase the required length of each drilled pier a minimum of 6 inches to allow for sediment. If drilled piers are designed for end bearing, no additional length is required; however, the drilled piers will be subject to the cleanliness requirements in Section B under "Drilled Pier Construction:" below. Clearly state in the Plans whether end bearing was accounted for in the foundation design. Calculate expected vertical, lateral and torsional movements for single drilled pier foundations. Provide drilled pier foundations that result in a horizontal lateral movement of less than 1 inch at the top of the pier and a horizontal rotational movement of less than 1 inch at the edge of the pier. Also, use a factor of safety of 2.0 for lateral and torsion failure. Preliminary design methods described in Section 13.6.1.1 of the AASHTO Standard Specifications for Structural Supports for Highway Signs, Luminaries and Traffic Signals (including interims) may be used to incorporate a factor of safety in foundation design for lateral failure. Wings are required to increase torsion resistance for cantilever signs supported by a single drilled pier. If a site-specific subsurface investigation is performed, use only a NCDOT Pre-Qualified Geotechnical Engineering Firm to provide a site specific foundation design. # **B.** Subsurface Investigation If the default soil parameters or allowable pressures referenced above are not applicable for a given overhead sign foundation site, the Engineer may require a site-specific subsurface investigation. If the Engineer requires a site-specific subsurface investigation, the Department will perform the borings and provide the data to the Contractor. The subsurface investigation will be provided within two weeks of being notified by the Contractor that the site is at rough grade and accessible to a drill rig. The Contractor may elect to conduct a site specific subsurface investigation at each proposed overhead sign foundation location in accordance with the requirements listed below, in lieu of using the default soil parameters and allowable pressures referenced above. If the Contractor elects to conduct a site-specific subsurface investigation, the costs of the investigation will be considered incidental to the "Footings for DMS-_Structure" pay item. Perform a boring at each overhead sign foundation location and provide boring data on an NCDOT Standard Boring Log form. Download this form from the NCDOT site at http://www.ncdot.org/doh/preconstruct/highway/geotech/contractserv/investigation/Documents/BoringLogs.zip. A licensed geologist or a professional engineer registered in the State of North Carolina and employed by an NCDOT Highway Design Branch pre-qualified Geotechnical Engineering Firm must seal each boring log. Use only an NCDOT Highway Design Branch pre-qualified Geotechnical Engineering Firm to conduct the subsurface investigation. Perform the investigation only after rough grade (within 3 feet of final grade) is achieved. Locate each boring within 3 feet of the center of the overhead sign foundation. Drill the boring to a minimum depth of 10 feet below the required spread footing bearing or drilled pier tip elevation, whichever is deeper. Conduct Standard Penetrating Tests at 1 ft, 2.5 ft, 5 ft, 7.5 ft, 10 ft, and every 5-ft after 10 ft below the rough grade in accordance with ASTM D-1586. A boring may be terminated above the minimum depth required (10 ft below the foundation elevation) if one
of the following conditions occur: (a) a total of 100 blows have been applied in any 2 consecutive 6-in.intervals; (b) a total of 50 blows have been applied with less than 3" penetration. #### C. Foundation Construction Excavate footings for overhead sign structures in accordance with the applicable provisions of Section 410 of the Standard Specifications. Construct footings for overhead sign structures in accordance with Section 825 of the Standard Specifications. Construct all footings with Class A concrete. Where rectangular forms are used, use forms that have a chamfer strip at all corners for at least that distance protruding above finished ground. Use chamfers, which measure 1 inch along the diagonal face. Securely brace anchor bolts positioned in the form and hold in proper position and alignment. Provide a rubbed finish on concrete surfaces to be exposed above finished ground in accordance with Section 825-6 (D) of the 2006 Standard Specifications. Do not erect overhead sign structures on foundations until the concrete has reached a minimum compressive strength of 3000 psi. Determine concrete compressive strength by nondestructive test methods or compressive strength tests made in accordance with AASHTO T22 and T23. Furnish equipment used for nondestructive tests and obtain Engineer's approval before performing the tests. ### **D.** Drilled Pier Construction #### 1. Excavation Perform excavations for drilled piers to the required dimensions and lengths including all miscellaneous grading and excavation necessary to install the drilled pier. Depending on the subsurface conditions encountered excavation in hard rock, weathered rock or removal of boulders and debris may be required. Dispose of drilling spoils as directed by the Engineer and in accordance with Section 802 of the 2006 Standard Specifications. Drilling spoils consist of all material excavated including water or slurry removed from the excavation either by pumping or with augers. Construct drilled piers within the tolerances specified herein. If tolerances are exceeded, provide additional construction as approved by the Engineer to bring the piers within the tolerances specified. Construct drilled piers such that the axis at the top of the piers is no more than 3 inches in any direction from the specified position. Build drilled piers within 1% of the plumb deviation for the total length of the piers. When a grade beam is not required at the top of a pier, locate the top of pier elevation between 18 inches above and 6 inches above the finished grade elevation. Form the top of the pier such that the concrete is smooth and level. If unstable, caving or sloughing soils are anticipated or encountered, stabilize drilled pier excavations with steel casing and/or polymer slurry. Steel casing may be either the sectional type or one continuous corrugated or non-corrugated piece. All steel casings should consist of clean watertight steel of ample strength to withstand handling and driving stresses and the pressures imposed by concrete, earth or backfill. Use steel casings with an outside diameter equal to the specified pier size and a minimum wall thickness of 1/4 inch. Extract all temporary casings during concrete placement in accordance with this provision unless the Contractor chooses to leave the casing in place in accordance with the requirements below. Any steel casing left in place will be considered permanent casing. When installing permanent casing do not drill or excavate below the tip of the permanent casing at any time such that the permanent casing is against undisturbed soil. The Contractor may excavate a hole with a minimum diameter of 12 inches smaller than the specified size of the pier in order to facilitate permanent casing installation provided the sides of the excavation do not slough during drilling such that the hole diameter becomes larger than the inside diameter of the casing. Permanent steel casings are only allowed for full span overhead signs as approved by the Engineer and prohibited for cantilever overhead signs. No additional compensation will be paid for permanent casing. If the Contractor chooses to use permanent steel casing, include all casing costs in the "Footings for DMS- Structure" pay item. If the Contractor elects to use polymer slurry to stabilize the excavation, use one of the polymers listed in the table below: | PRODUCT | MANUFACTURER | |---------------|----------------------------------| | SlurryPro EXL | KB Technologies Ltd | | | 3648 FM 1960 West | | | Suite 107 | | | Houston, TX 77068 | | | (800) 525-5237 | | Super Mud | PDS Company | | | 105 West Sharp Street | | | El Dorado, AR 71730 | | | (800) 243-7455 | | Shore Pac GCV | CETCO Drilling Products
Group | | | 1500 West Shure Drive | | | Arlington Heights, IL 60004 | | | (800) 527-9948 | Use slurry in accordance with the manufacturer's guidelines and recommendations unless approved otherwise by the Engineer. The Contractor should be aware that polymer slurry might not be appropriate for a given site. Polymer slurry should not be used for excavations in very soft or loose soils. If the excavation can not be stabilized with polymer slurry, the Engineer may require a site-specific subsurface investigation (if not done during design) and the use of steel casing. No additional time or compensation will be provided if both steel casing and polymer slurry are required to stabilize the excavation. Construct all drilled piers such that the piers are cast against undisturbed soil. If a larger casing and drilled pier are required as a result of unstable or caving material during drilling, backfill the excavation before removing the casing to be replaced. No additional time or compensation will be provided for substituting a larger diameter drilled pier in order to construct a drilled pier cast against undisturbed soil. Any temporary steel casing that becomes bound or fouled during pier construction and cannot be practically removed may constitute a defect in the drilled pier. Improve such defective piers to the satisfaction of the Engineer by removing the concrete and enlarging the drilled pier, providing a replacement pier or other approved means. All corrective measures including redesign as a result of defective piers will not be cause for any claims or requests for additional time or compensation. ### 2. Bottom Cleanliness After a drilled pier excavation is complete and immediately before concrete placement, demonstrate acceptable bottom cleanliness of the drilled pier excavation to the Engineer for approval if the plans indicate end bearing was used in the design. Provide any equipment, personnel and assistance required for the Engineer to inspect the drilled pier excavation. The pier excavation bottom is considered clean if no portion of the bottom area has more than 3 inches of sediment as determined by the Engineer. # 3. Reinforcing Steel Completely assemble a cage of reinforcing steel consisting of longitudinal and spiral bars and place cage in the drilled pier excavation as a unit immediately upon completion of drilling unless the excavation is entirely cased. If the drilled pier excavation is entirely cased down to the tip, immediate placement of the reinforcing steel and the concrete is not required. Lift the cage so racking and cage distortion does not occur. Keep the cage plumb during concrete placement operations and casing extraction. Check the position of the cage before and after placing the concrete. Securely crosstie the vertical and spiral reinforcement at each intersection with double wire. Support or hold down the cage so that the vertical displacement during concrete placement and casing extraction does not exceed 2 inches. Do not set the cage on the bottom of the drilled pier excavation. Place plastic bolsters under each vertical reinforcing bar that are tall enough to raise the rebar cage off the bottom of the drilled pier excavation a minimum of 3 inches. In order to ensure a minimum of 3 inches of concrete cover and achieve concentric spacing of the cage within the pier, the plastic spacer wheels at five points around the cage perimeter. Use spacer wheels that provide a minimum of 3 inches "blocking" from the outside face of the spiral bars to the outermost surface of the drilled pier. The spacer wheels that snap together with wire and allow them to rotate. Use spacer wheels that span at least two adjacent vertical bars. Start placing spacer wheels at the bottom of the cage and continue up along its length at maximum 10-foot intervals. Supply additional peripheral spacer wheels at closer intervals as necessary or as directed by the Engineer. #### 4. Concrete Begin concrete placement immediately after inserting reinforcing steel into the drilled pier excavation. #### a. Concrete Mix Provide the mix design for drilled pier concrete for approval and, except as modified herein, meeting the requirements of Section 1000 of the 2006 Standard Specifications. Designate the concrete as Drilled Pier Concrete with a minimum compressive strength of 4500 psi at 28 days. The Contractor may use a high early strength mix design as approved by the Engineer. Make certain the cementitious material content complies with one of the following options: - Provide a minimum cement content of 640 lbs/yd³ and maximum cement content of 800 lbs/yd³; however, if the alkali content of the cement exceeds 0.4%, reduce the cement content by 20% and replace it with fly ash at the rate of 1.2 LB of fly ash per LB of cement removed. - If Type IP blended cement is used, use a minimum of 665 lbs/yd³ Type IP blended cement and a maximum of 833 lbs/yd³ Type IP blended cement in the mix. Limit the water-cementitious material ratio to a maximum of 0.45. Do not air-entrain drilled pier concrete. Produce a workable mix so that vibrating or prodding is not required to consolidate the concrete. When placing the concrete, make certain the slump is between 5 and 7 inches for dry
placement of concrete or 7 and 9 inches for wet placement of concrete. Use Type I or Type II cement or Type IP blended cement and either No. 67 or No. 78M coarse aggregate in the mix. Use an approved water-reducer, water-reducing retarder, high-range water-reducer or high-range water-reducing retarder to facilitate placement of the concrete if necessary. Do not use a stabilizing admixture as a retarder in Drilled Pier Concrete without approval of the Engineer. Use admixtures that satisfy AASHTO M194 and add admixtures at the concrete plant when the mixing water is introduced into the concrete. Redosing of admixtures is not permitted. Place the concrete within 2 hours after introducing the mixing water. Ensure that the concrete temperature at the time of placement is 90°F or less. ### b. Concrete Placement Place concrete such that the drilled pier is a monolithic structure. Temporary casing may be completely removed and concrete placement may be temporarily suspended when the concrete level is within 42 to 48 inches of the ground elevation to allow for placement of anchor bolts and construction of grade beam or wings. Do not pause concrete placement if unstable caving soils are present at the ground surface. Remove any water or slurry above the concrete and clean the concrete surface of all scum and sediment to expose clean, uncontaminated concrete before inserting the anchor bolts and conduit. Resume concrete pouring within 2 hours. Do not dewater any drilled pier excavations unless the Engineer approves the dewatering and the excavation is entirely cased down to tip. Do not begin to remove the temporary casing until the level of concrete within the casing is in excess of 10 feet above the bottom of the casing being removed. Maintain the concrete level at least 10 feet above the bottom of casing throughout the entire casing extraction operation except when concrete is near the top of the drilled pier elevation. Maintain a sufficient head of concrete above the bottom of casing to overcome outside soil and water pressure. As the temporary casing is withdrawn, exercise care in maintaining an adequate level of concrete within the casing so that fluid trapped behind the casing is displaced upward and discharged at the ground surface without contaminating or displacing the drilled pier concrete. Exerting downward pressure, hammering or vibrating the temporary casing is permitted to facilitate extraction. Keep a record of the volume of concrete placed in each drilled pier excavation and make it available to the Engineer. After all the pumps have been removed from the excavation, the water inflow rate determines the concrete placement procedure. If the inflow rate is less than 6 inches per half-hour, the concrete placement is considered dry. If the water inflow rate is greater than 6 inches per half-hour, the concrete placement is considered wet. - Dry Placement: Before placing concrete, make certain the drilled pier excavation is dry so the flow of concrete completely around the reinforcing steel can be certified by visual inspection. Place the concrete by free fall with a central drop method where the concrete is chuted directly down the center of the excavation. - Wet Placement: Maintain a static water or slurry level in the excavation before placing concrete. Place concrete with a tremie or a pump in accordance with the applicable parts of Sections 420-4 and 420-5 of the 2006 Standard Specifications. Use a tremie tube or pump pipe made of steel with watertight joints. Passing concrete through a hopper at the tube end or through side openings as the tremie is retrieved during concrete placement is permitted. Use a discharge control to prevent concrete contamination when the tremie tube or pump pipe is initially placed in the excavation. Extend the tremie tube or pump pipe into the concrete a minimum of 5 feet at all times except when the concrete is initially introduced into the pier excavation. If the tremie tube or pump pipe pulls out of the concrete for any reason after the initial concrete is placed, restart concrete placement with a steel capped tremie tube or pump pipe. Once the concrete in the excavation reaches the same elevation as the static water level, placing concrete with the dry method is permitted. Before changing to the dry method of concrete placement, remove any water or slurry above the concrete and clean the concrete surface of all scum and sediment to expose clean, uncontaminated concrete. Vibration is only permitted, if needed, in the top 10 feet of the drilled pier or as approved by the Engineer. Remove any contaminated concrete from the top of the drilled pier and wasted concrete from the area surrounding the drilled pier upon completion. ### c. Concrete Placement Time Place concrete within the time frames specified in Table 1000-2 of the 2006 Standard Specifications for Class AA concrete except as noted herein. Do not place concrete so fast as to trap air, water, fluids, soil or any other deleterious materials in the vicinity of the Burke County reinforcing steel and the annular zone between the rebar cage and the excavation walls. Should a delay occur because of concrete delivery or other factors, reduce the placement rate to maintain some movement of the concrete. No more than 45 minutes is allowed between placements. # E. Scheduling and Restrictions If caving or sloughing occurs, no additional compensation will be provided for additional concrete to fill the resulting voids. During the first 16 hours after a drilled pier has achieved its initial concrete set as determined by the Engineer, do not drill adjacent piers, do not install adjacent piles and do not allow any heavy construction equipment loads or "excessive" vibrations to occur at any point within a 20 foot radius of the drilled pier. In the event that the procedures described herein are performed unsatisfactorily, the Engineer reserves the right to shut down the construction operations or reject the drilled piers. If the integrity of a drilled pier is in question, use core drilling, sonic or other approved methods at no additional cost to the Department and under the direction of the Engineer. Dewater and backfill core drill holes with an approved high strength grout with a minimum compressive strength of 4500 psi. Propose remedial measures for any defective drilled piers and obtain approval of all proposals from the Engineer before implementation. No additional time or compensation will be provided for losses or damage due to remedial work or any investigation of drilled piers found defective or not in accordance with these Project Special Provisions or the Plans. #### 13.4 MEASUREMENT AND PAYMENT Footings for DMS Structure will be measured and paid as the actual number of cubic yards of concrete that has been incorporated into the completed and accepted footing. Computing the number of cubic yards of concrete will be done from the dimensions shown in the Plans or from revised dimensions authorized by the Engineer, calculated to the nearest 0.01 of a cubic yard. Payment will be made under: ### Pay Item # 14. CENTRAL SYSTEM EQUIPMENT AND INTEGRATION # 14.1 **DESCRIPTION** Furnish and install new central equipment and software for the display and PTZ control of new CCTV cameras installed under this project. Integrate the new MVDs and DMSs using the existing application software for each device type. Modify the GUIs (map view, list view, and etc.) to show the new devices. **Burke County** #### 14.2 MATERIAL #### A. Central Ethernet Switch Furnish and install a 24-port Ethernet switch (24 Fast Ethernet 10/100BaseTx RJ-45 ports) in the TMC that meet the requirements listed in CCTV Field Equipment Section of these Project Special Provisions. # B. Video Processing Unit (VPU) Furnish and install high-performance VPU to convert multiple MPEG-4 and H.264 streams into video signal to be viewed on a VGA or analog monitor. VPU must allow for up 64 streams to be decoded and displayed simultaneously, and it must allow for video to be displayed on NTSC composite, NTSC S-video, or VGA monitors (maximum VGA resolution 1024 x 768). Every output option must display a single image, four images (2x2), nine images (3x3), or sixteen images (4x4). When multiple images are displayed, the VPU should automatically provide the best video display frame rate for the selected cameras. When the VPU is used with a keyboard controller, it must allow a user to operate the unit like a traditional matrix, using the joystick, and keypad to control the video display. Provide the VPU with a user-friendly semitransparent on-screen menus displayed in a graphical overlay on the monitor screen allowing the user to turn the overlay on and off with a single button push from the keyboard controller. The VPU will have an on-screen PTZ display. Provide the VPU with the following minimum features: | • User Interface | Semitransparent on-screen | |---|--| | Video Standards | NTSC composite, S-video, VGA (1024x768) | | Decoding | MPEG-4, H.264 baseline, main, and high profiles | | • Resolution | 4CIF (704 x 480), 2CIF (704 x 240), CIF (352 x 240), QCIF (176 x 120) | | • Frame Rate | Up to 30 IPS | | Display Mode | Single image, 2x2, 3x3, and 4x4 | | Video Cards | Four | | Video Output | With each video output card: one BNC, NTSC/PAL, 75 ohms, 1 Vp-p, one S-video, NTSC/PAL and one VGA | | PTZ Interface | On-screen or through keyboard | | Interface | Gigabit Ethernet RJ-45 port (1000BaseT) | | USB Ports | Three USB 2.0 ports (one front, two rear) | | Operating temperature | 50° to 95°F at unit air intake | | Certification | CE, Class A, UL Listed, FCC Class A |
Provide all cables, rack-mounting kit, and system CD. Provide VPU and keyboard with PTZ control that is compatible with the existing Pelco Spectra IV CCTV Camera system deployed in the region. #### C. Video Server Unit (VSU) The Department will furnish one (1) Mid-Range Desktop II computer described below as the Video Server Unit base hardware. The Contractor will be required to send a written request to the Department 120 working days prior to the required computer deployment. In the request, the Contractor will describe and identify all special features required of the computer equipment. The Department furnished computer will meet the following requirements: | • | Туре | Microsoft Windows 7 Professional class 64-bit desktop | |---|-----------|--| | • | Processor | Intel Core 2 Duo E8400 (3 GHz, 1333FSB, 6MB) or AMD | | | | Phenom II X4 B95 (3GHz); both Intel & AMD must support | Virtualization Memory 4GB DDR3 Non-ECC SDRAM 667MHz, expandable to 8GB • Video Card PCIe 256MB DVI and VGA compatible Dual Monitor capable, support for Direct x9 and WDDM 1.0 • Cable/Connector Includes Y-adapter and/or other connectors as necessary to support dual monitor configuration DVI Hard Drive 250GB SATA 3GB/s, 7200RPM • Floppy Drive None Optical Drive 16x DVD +/-RW PCI Slots Two (2) Free Slots • USB Ports Five total: 2 front, 3 back. USB v2.0 • Integrated NIC Gigabit Ethernet (10/100/1000) Card, Wake on LAN Keyboard Enhanced USB • Mouse USB, 2-button, optical mouse with scroll • Audio Internal 16-bit Stereo Resource CD None Expansion Bays One availableForm Factor Minitower • Hardware Warranty 3 Years, Next Business Day, On-Site Upon receipt of the computer, the Contractor will be required to install all additional computer hardware, firmware, and software not supplied by the Department to meet the requirements of the Video Server Unit described herein. The Contractor must provide written documentation of all software installed on the computers. All Contractor installed software licenses must be transferred to the Department prior to the end of the Observation Period. One (1) copy of the system software must be provided on compact disks with install and setup instructions. VSU will use a graphical user interface and keyboard/mouse for monitoring live and recorded video, and virtual matrix functionality that will allow operators to see any camera on the network as well as direct any camera to any monitor on the network. The VSU will allow administrators to configure devices, set up users and adjust network settings. Permission to access these functions and all other system services will be configured to a fine level of detail including the ability to restrict cameras from viewers, restrict PTZ operation, allow or restrict digital zoom, operations, or the ability to configure maps. In addition, user permissions will allow for designated users to receive and respond to alarm and system diagnostic messages. The VSU will have advanced search capabilities, event logging, and alarm interface displays. The unit will allow to export video and still images in multiple formats, including Pelco Native, QuickTime[®] MPEG-4, H.264, AVI, BMP, and JPG. The unit will have front panel USB port and DVD/CD-RW drive to make it capable of exporting video clips and still images to external media. The unit will allow authorized users to monitor content from standard resolution and megapixel resolution cameras and encoders throughout the network and display content encoded in MPEG-4 and H.264 baseline, main, and high profiles and support cameras from multiple manufacturers. Provide the unit with capability to decode up to 16 simultaneous 4CIF resolution, 30 images per second (ips) video streams encoded in MPEG-4; or 12 simultaneous 4CIF resolution, 30 ips video streams encoded in H.264 baseline profile; or 2 simultaneous 1080p video streams encoded in H.264 baseline profile. Provide the unit with support for CCTV-style (joystick) keyboard control of pan/tilt/zoom (PTZ) cameras and camera call-up. The VSU must detect the monitor's native resolution; provide users with single, 2 x 2, 3 x 3, 4 x 4, 1+5, 1+12, 2+8 displays for 4:3 aspect ratio monitors, and provide 3 x 2 and 4 x 3 displays for 16:9 aspect ratio monitors. The VSU application will provide the ability to control and program any camera equipped with PTZ and provide the following operations: - Manually control the PTZ - Set the pan/tilt home positions for manual or alarm activation - Automatically control the cameras through an alarm trigger - Ability to set multiple preset positions - Ability to set multiple tours - Remotely set and clear the movement limits of the pan/tilt mechanism from the control room, through a telemetry unit at an outdoor camera site - Adjust the zoom lens - Ability to control the camera menu and set up the camera through the IP video security system ### Provide the VSU with the following features: | • User Interface | Graphical User Interface, advanced system management software with Map-Based Extension | |-----------------------------------|--| | Video System | 2560 x 1600 display resolution, and DirectX [®] 9 API; true color (32-bit), 2 dual-link DVI outputs NTSC composite, S-video, VGA (1024x768) | | Decoding | MPEG-4, H.264 baseline, main, and high profiles | | Decoding Performance | 4CIF, 2CIF, & CIF (16 streams at 30 ips ea) MPEG-4 | | • | 4CIF, 2CIF, & CIF (12 streams at 30 ips ea) H.264, Megapixel 2, 1080p streams at 30 ips ea. | | • Frame Rate | Up to 30 IPS | | Display Mode | Single image, 2×2 , 3×3 , 4×4 , $1 + 5$, $1 + 12$, $2 + 8$ and 3×2 and 4×3 for 16:9 aspect ratio monitors | | PTZ Interface | On-screen | Provide rack-mounting kit for the Department furnished computer. Provide VSU and applications software that is compatible with the existing Pelco Spectra IV CCTV Camera system deployed in the region. ### D. Video Monitor Furnish and install two (2) 42-inch flat panel LED color monitors with all cable and wall-mounting hardware. Ensure the LED video monitors meet the following minimum specifications: Diagonal Viewable Size: 42 inch Contract Ratio: 600:1 Aspect: 16:9 Glass Surface: Anti-glare • Viewing Angle: 170 degrees both Horizontal and Vertical Response Time: 5 to 8 msBrightness: 450 cd/m2 • Input Signals: Analog RGB, DVI Digital Link, CVBS, S-Video, Composite Video • Input connector/cable: 15pin D-Sub, DVI-D, S-Video, BNC (composite video), BNC (component) Maximum resolution: 1280 x 768 Power: 150 Watts Colors: 16.7 million • Audio: 2 internal speakers w/ Hi-Fi stereo, 40 watt output Remote Functions: Wireless, multi-function remote w/ on-screen programming Certifications UL, FCC Part 15 Class A or B, Bellcore GR-1089-CORE Provide a monitor that operates on 120 VAC ($\pm 10\%$) at 60 Hz. Provide a monitor that operates in a +32 degree to +132 degree Fahrenheit environment at 95 percent humidity. # E. Equipment Rack Furnish and install one (1) 19-inch Equipment Rack Cabinet in TMC to house the above referenced equipment in an organized manner plus 50% spare rack space. Furnish a rack cabinet with minimum external dimensions of 48" (H) X 24" (W) X 32" (D). Cabinets should be composed of extruded aluminum frame with dye cast corners and be charcoal metallic in color. Furnish cabinets with a vented top, quick-release locking sides, four (4) shelf rails, a locking glass door and a locking steel door. Equip the cabinet with a cable access base and a raised top panel. Ensure the cabinet is equipped with a power panel with surge protection (12 outlets, 15A-120V). The cabinet should be comprised of a sufficient number of slide shelving's to neatly house the equipment specified such that the equipment can be removed and replaced with ease. Ensure the cabinet is equipped with a Rack Unit cable management panels. The cabinet will be equipped with a set of four (4) casters with breaks. Provide UL listed all metal rack with zinc coating according to ASTM B633. ### 14.3 CONSTRUCTION METHODS ## A. Equipment Rack The Engineer will determine the location where the Equipment Rack will be placed in the TMC. Install the equipment rack to house the above referenced equipment and all cables and other hardware necessary to provide a complete and operational system. Install according to manufacturer's recommended instructions. #### **B.** Central Ethernet Switch Install the Ethernet switch in the equipment rack. Furnish and install the required number of Ethernet patch cords to interconnect all network equipment including, but not limited to, broadband modems, existing DMS and MVD Servers, VPU, and VSU. # C. Video Processing Unit (VPU) Install the VPU in the equipment rack and connect it to the Ethernet switch using CAT 6 cable as recommended by the VPU manufacturer. Connect the video output ports to the **exiting** monitors using composited video cable. Connect the keyboard/PTZ control unit to the VPU. ## D. Video Server Unit (VSU) Install the VSU in the equipment rack and connect it to the network through the Ethernet switch. Set the keyboard and mouse at the operator desk and connect them to the VSU. Provide additional length of cable if required to connect keyboard and mouse to the VSU. Connect the video output port to the **new** LED monitors. ### E. Video Monitor Mount the LED Monitors on the TMC wall below the existing monitor as directed by the Engineer. Provide the mounting hardware and all necessary coaxial cable and power cable to make the monitors operational. Ensure all cabling and hardware is installed neatly. Install surge protection as needed to protect each piece of equipment. Install according to manufacturer's recommended instructions. # F. System Integration
After the successful installation of the new hardware and software, configure the VPU and VSU to view, control (PTZ), and manage the new and existing CCTV Cameras. Configure the VSU software to show each camera on a compatible map-file using appropriate icon types. Modify the existing DMS and MVD servers and related data bases and maps to integrate the new devices. #### 14.4 MEASUREMENT AND PAYMENT Equipment Rack will be measured and paid as the actual number of equipment racks furnished, installed and accepted. Central Ethernet Switch will be measured and paid as the actual number of Ethernet switches furnished, installed, integrated, and accepted. Video Processing Unit Integration will be measured and paid as the actual number of Video Processing Units modified, installed, integrated, and accepted. No separate measurement will be **Intelligent Transportation Systems** made for keyboard/PTZ control unit, cabling, rack-mounting hardware, and all other labor and material required for the successful installation of the video processing unit. Video Server Unit will be measured and paid as the actual number of Video Server Units furnished, installed, integrated, and accepted. No separate measurement will be made for the modification and upgrade of Department furnished computer's hardware and software, video management software, map-based extension, application software site licensing, cabling, rack-mounting hardware, and all other labor and material required for the successful installation of the video server unit. Video Monitor will be measured and paid as the actual number of Video Monitors furnished, installed, integrated, and accepted. No separate measurement will be made for wall-mounting hardware, video and power cabling, and all other labor and material required for the successful installation of the video monitors. No separate measurement will be made system integration, Ethernet patch cords, signal and electrical cables, mounting hardware, nuts, bolts, brackets, connectors, and all other work and labor required to complete the work described in this section as these will be considered incidental to the equipment pay items listed above. Payment will be made under: # Pay Item | Equipment Rack | Each | |-------------------------------|------| | Central Ethernet Switch | Each | | Video Processing Unit | Each | | Video Server Unit Integration | Each | | Video Monitor | Each | # 15. TRAINING #### 15.1 DESCRIPTION Provide eighteen (18) hours of training in three six (6) hour sessions to fifteen (15) Department personnel at a location designated by the Department in Asheville, NC. Provide training on the following items: - Video Processing Unit - Video Server Application Software - Keyboard/PTZ Control Unit - Detector Unit - Field and Central Ethernet Switches - Broadband Radio System The training must cover the following three major topics: **Intelligent Transportation Systems** - 1. Configuration (equipment & communications network) - 2. Operation - 3. Maintenance & Troubleshooting Provide detailed training manuals for each topic on each item listed above. The manuals should be written in simple English and should contain diagrams, schematics, illustrations and other helpful tools to ease learning and comprehension for the targeted audience. Products' manuals will not be considered training manuals. Include hands-on training during each training session. Provide training outlines, agendas, manuals and instructors' resume forty (40) days in advance of anticipated training date to the Engineer for review and approval. Provide all audiovisual equipment needed for the training. #### 15.2 MEASUREMENT AND PAYMENT Training will be measured and paid as the actual number of training conducted and accepted as described above. Payment will be made as a lump sum price. No separate measurement will be made for training manuals, travel and lodging, training equipment, and all other work and labor required to complete the training as described in this section as these will be considered incidental to the equipment pay items listed above. Payment will be made under # Pay Item TrainingLump Sum #### 16. SYSTEM OPERATION TEST #### 16.1 DESCRIPTION Once all hardware has been installed and the system integration is complete, perform a System Operational Test, which fully exercises all functions of the system. Submit a test plan a minimum of thirty (30) days prior to the scheduled start of the test to the Engineer for review and approval. The Engineer will review the test plans and reply within twenty (20) working-days from the receipt of the test plan. #### A. CCTV Camera Field Test Verify that each CCTV camera can be controlled locally at the camera site. The test should exercise all camera functionality as noted below: - Pan 360 degrees left and right - Tilt 180 degrees up and down - Zoom In / Zoom Out - Focus near / Focus far - Auto-focus - Iris open / Iris close - Auto-iris - Record and run presets The Contractor should supply a Laptop or PDA loaded with the appropriate CCTV control software and a portable color monitor for use during this test. In addition, the field test will include inspection of the cabinets, electrical connections, grounding system, wire & cabling, and all other components installed at the CCTV site. # **B.** MVD Field Equipment Testing All microwave vehicle detector (MVD) equipment and materials will be subject to monitoring and testing to determine conformance with all applicable requirements and to ensure proper operation of the MVD assemblies. Supply all required test equipment. Provide forms to be used for documenting test results as an integral part of the testing procedures. These forms must specify the acceptable results of the MVD assemblies' tests, and be submitted for review and approval by the Engineer. As a minimum, provide testing procedures including the necessary documentation and satisfy the testing requirements for the MVD assembly components discussed below. Each MVD assembly furnished and installed will be subject to the following tests: - Verification of installation (cables and connections) between the MVD unit and the cabinet. - Verification of detector zone setup and detector zone response including estimated speed, volume, long vehicle detection, and occupancy. - For each MVD unit, conduct a minimum of three (3) count-test by manually counting traffic in each lane and comparing the count against the MVD unit count. The difference between manual and MVD count must be lower than 5% in 2 of the three runs to declare the test successful. If the difference is more than 5%, adjust the configuration and conduct another three rounds of testing. Whenever any unit of equipment fails to pass the assembly tests, correct the deficiencies, either by repair or replacement (at no additional costs to the Department), as required to comply with the testing requirements. Upon notification that the deficiencies have been corrected, the equipment will be re-tested. All MVD assembly testing and re-testing will be performed in the presence of the Engineer or his designated representative. All equipment required to conduct the tests will be incidental and not paid for separately # C. DMS Field Test Refer to DMS section of these Project Special Provisions. # D. Software / Central System Test Demonstrate that all equipment and software furnished has been installed properly and operates as specified in these Project Special Provisions. Demonstrate that all existing and new CCTV cameras have been integrated with the new central hardware and software. Demonstrate GUI controls and features of the Video Processing and Video Server units as described in these project special provisions. Exercise all CCTV functionality and **Intelligent Transportation Systems** PTZ control for each CCTV unit. Demonstrate selection and display of each CCTV video to available monitors from VPU and VSU. Demonstrate that the new DMSs are fully integrated with Vanguard DMS software by posting test messages and conducting diagnostic function and pixel tests. Demonstrate that the new MVDs have been integrated with existing MVD software, and users have the ability to add, delete, modify and configure all parameters of each detector. Demonstrate ability to view and monitor real time traffic data and speed information from each detector assembly. #### E. 30-Day Observation Period Upon completion of all project work, the successful completion of the System Operational Test and the correction of all known deficiencies, including minor installation items, a 30-day Observation Period will commence. This Observation Period will consist of a 30-day period of normal operation without any failures. The purpose of this period is to ensure that all components of the system function in accordance with these Project Special Provisions over an extended length of time. Respond to system or component failures (or reported failures) that occur during the 30-day Observation Period within 48 hours. Correct said failures within 72 hours. Failures that can not be corrected within 72 hours will suspend the timing of the 30-day Observation Period beginning at the time when the failure occurred. After the cause of such failures has been corrected, timing of the 30day Observation Period will resume. Failures that necessitate a redesign of any major component will terminate the Observation Period. Once the components have been redesigned or replaced, the 30-Day Observation Period will be restarted from zero. Failures in any of the components exceeding a total of three (3) occurrences will terminate the 30-day Observation Period. Once the failures have been corrected, the 30-day Observation Period will be restarted from zero. All documentation must be completed prior to the end of the 30-day Observation Period. Final acceptance will occur upon the successful completion of the 30-day Observation Period and after all documentation requirements have been fully
satisfied. The system major components are: - DMS character module - DMS power supplies - DMS communications and driver boards - DMS mini controller - DMS Field controller - DMS UPS system (inverter, battery pack, etc.) - **CCTV** Camera Assembly excluding cables - MVD Assembly, excluding cables, - Encoder, - Video Processing Unit and Video Server Unit, - **Broadband Radio** **Burke County** **Intelligent Transportation Systems** • Field and Central Ethernet Switches # 16.2 MEASUREMENT AND PAYMENT There will be no direct payment for work covered in this section. Payment at contract unit prices for the various items in the contract will be full compensation for all work covered in this section. # **Project Special Provisions** (Version 06.7) # Signals and Intelligent Transportation Systems Prepared By: JY 11-Mar-11 # **Contents** | 2006 S1 | TANDARD SPECIFICATIONS FOR ROADS & STRUCTURES | 3 | |---------|---|----| | 1.1. | GENERAL REQUIREMENTS (1098-1) | 3 | | 1.2. | | | | 1.3. | LOOP LEAD-IN CABLE (1098-8) | 4 | | 1.4. | PEDESTALS (1098-13) | 4 | | 1.5. | | | | 1.6. | JUNCTION BOXES - CONSTRUCTION METHODS (1716-3) | 4 | | 1.7 | RISER ASSEMBLIES – CONSTRUCTION METHODS (1722-3) | 5 | | 1.8. | | | | 1.9 | LOOP LEAD-IN CABLE – MEASUREMENT AND PAYMENT (1726-4) | 5 | | 2. E | ELECTRICAL REQUIREMENTS | 5 | | 3. S | SIGNAL HEADS | 6 | | 3.1. | MATERIALS | 6 | | A | 4. General: | 6 | | В | B. Vehicle Signal Heads: | | | C | C. Pedestrian Signal Heads: | | | L | D. Signal Cable: | 11 | | 3.2. | . CONSTRUCTION METHODS | 11 | | A | A. Modify Existing Vehicle Signal Heads: | 11 | | 4. N | MICROWAVE VEHICLE DETECTOR | 12 | | 4.1. | | | | 4.2. | | | | A | A. Pulse Detection: | | | E | B. Presence Detection: | | | 4.3. | | | | 4.4. | . MEASUREMENT AND PAYMENT | 12 | | 5. (| COMMUNICATIONS SYSTEM SUPPORT EQUIPMENT | | | 5.1. | | | | 5.2. | | | | 1 | A. General: | | | 1 | B. Wireless Radio Support Equipment | | | 5.3. | . MEASUREMENT AND PAYMENT | 13 | | 6. | SPREAD SPECTRUM WIRELESS RADIO | 13 | | 6.1. | | | | 6.2. | MATERIALS | 14 | | 1 | A. 900MHz Wireless Radio System: | | | j | B. Software: | | | | - | | # U-2550B # Signals & Intelligent Transportation Systems | <i>C</i> . | Directional Antenna (Yagi): | 15 | |------------|--|----| | D | Antenna Mounting Hardware Kit: | 16 | | E. | Coaxial Cable: | 17 | | F | Standard N-Type Male Connector | 17 | | G. | Coaxial Cable Shield Grounding and Weatherproofing Kits: | 17 | | H. | Lightning Arrestor: | 18 | | I. | Disconnect Switch: | 18 | | J | Warning Signs(s) and Decal(s): | 19 | | 6.3. | CONSTRUCTION METHODS | 19 | | A. | General: | 19 | | B. | Disconnect Switch: | 20 | | С. | Warning Sign(s) and Decal(s): | 20 | | 6.4. | WARRANTY | | | 6.5. | MEASURMENT AND PAYMENT | 20 | | 7. TI | RAFFIC SIGNAL SUPPORTS | 21 | | 7.1. | METAL TRAFFIC SIGNAL SUPPORTS – ALL POLES | 21 | | A. | | | | В. | | | | C. | | | | D. | | | | 7.2. | METAL STRAIN POLE | | | 7.2.
A. | | | | В. | | | | 7.3. | METAL POLE WITH MAST ARM | | | A. | | | | B | | | | 74. | DRILLED PIER FOUNDATIONS FOR METAL TRAFFIC SIGNAL POLES | | | <i>A</i> . | | | | В | • | | | C | | | | D | | | | 7.5. | | | | A | | | | В | | | | C | | | | 7.6. | | | | A | | | | B | | | | 77 | REUSED POLE SHAFTS AND/OR MAST ARMS | 39 | | 7.8. | MEASUREMENT AND PAYMENT | 39 | | 8. C | CONTROLLERS WITH CABINETS | 40 | | 8.1. | MATERIALS – TYPE 2070L CONTROLLERS | | | 8.2. | MATERIALS – GENERAL CABINETS | | | 8.3. | MATERIALS – TYPE 170E CABINETS | 41 | | A | | | | В | 7 E | | | Č | - | | | Ĺ | · · · · · · · · · · · · · · · · · · · | | | 9. P | PROTECTIVE GREEN COATING FOR METAL POLES AND MAST ARMS | 50 | | 9.1. | DESCRIPTION | | | 9.2. | | | | 9.3. | | | | 9 4 | | | #### 2006 STANDARD SPECIFICATIONS FOR ROADS & STRUCTURES The 2006 <u>Standard Specifications</u> are revised as follows: ## 1.1. General Requirements (1098-1) Page 10-268, Subarticle 1098-1(H) In the first paragraph, revise the second sentence to "Ensure service disconnects are listed as meeting UL Standard UL-489 and marked as being suitable for use as service equipment." In the second paragraph, revise the first sentence to "Furnish NEMA Type 3R meter base rated 100 Ampere minimum that meets the requirements of the local utility. Provide meter base with sockets' ampere rating based on sockets being wired with minimum of 167 degrees F insulated wire." In the second paragraph, last item on page, revise to "With or without horn bypass." Page 10-269, Subarticle 1098-1(H) Revise the second line to "Listed as meeting UL Standard UL-414." In the first full paragraph on page, remove the first sentence. Revise the last paragraph to "If meter base and electrical service disconnect are supplied in the same enclosure, ensure assembly is marked as being suitable for use as service equipment. Ensure combination meter and disconnect mounted in a pedestal for underground service is listed as meeting UL Standard UL-231. Otherwise, ensure combination meter and disconnect is listed as meeting UL Standard UL-67. Page 10-269, Subarticle 1098-1 (J) # ADD new Subarticle 1098-1 (J) Performance of Warranty Repair and Maintenance Provide authorization to the Traffic Electronics Center of the North Carolina Department of Transportation (NCDOT) to perform all warranty repairs after project acceptance. The decision to perform warranty work at the Traffic Electronics Center by NCDOT electronics technicians or to have warranty work performed by the vendor shall be at the discretion of the State. Provide any training required by the manufacturer to authorize the Traffic Electronics Center to perform warranty work and ensure manufacturer will furnish parts to the Traffic Electronics Center for all warranty repairs at no cost to the State. In addition, ensure the manufacturer agrees to provide prompt technical support to the NCDOT electronics technicians for a period of one year after the end of the warranty period at no cost to the State. Defective parts replaced under warranty by the Traffic Electronics Center will be returned to the vendor at the vendor's request. Provide schematics, part lists, and other documentation to perform bench repair to the Traffic Electronics Center within two weeks upon request. The Department agrees not to divulge any proprietary information in the schematics, part lists, and other documentation upon request from the vendor. After project acceptance and at the request of the State, manufacturer shall perform warranty repairs to equipment which fails during the warranty period at no cost to the State including freight costs to ship repaired equipment back to the Traffic Electronics Center. Ensure all equipment is repaired and returned to the Traffic Electronics Center within twenty-one calendar days of receipt by the manufacturer. Page 10-269, Subarticle 1098-1 (K) ADD new Subarticle 1098-1 (K) Maintenance and Repair of Materials Version 06.7 3 print date: 03/11/11 Perform maintenance (testing) on all Traffic Signal Conflict Monitors every twelve (12) months for the life of the project beginning with the initial test and every twelve (12) months thereafter. Provide the initial test date via the manufacturer's certification or via testing prior to installation of the conflict monitor at an intersection. Use the ATSI Incorporated Model PCMT-2600 Conflict Monitor Tester, or an Engineer approved equivalent. Ensure that the Conflict Monitor Tester is maintained and calibrated per the manufacturer's recommendation. Provide to the Engineer a copy of the manufacturer's certification that the Conflict Monitor Tester is in proper working order before testing the Traffic Signal Conflict Monitors. Perform the test on the Traffic Signal Conflict Monitor tested, provide two (2) dated copies of the test results: one (1) copy for the Engineer and one (1) copy for the traffic signal cabinet. #### 1.2. Wood Poles (1098-6) Page 10-272, Delete article. Refer to Subarticles 1082 –3(F) and 1082-4(G). # 1.3. Loop Lead-in Cable (1098-8) Page 10-274, Delete article and replace with the following: Furnish lead-in cable with two conductors of number 14 AWG fabricated from stranded tinned copper that complies with IMSA Specification 50-2 except as follows: Ensure conductor is twisted with a maximum lay of 2.0 inches, resulting in a minimum of 6 turns per foot. Provide a ripcord to allow cable jacket to be opened without using a cutter. Provide length markings in a contrasting color showing sequential feet and within one percent of actual cable length. Ensure character height of the markings is approximately 0.10 inch. # 1.4. Pedestals (1098-13) Page 10-279, Subarticle 1098-13, Replace the last paragraph with the following: For each pedestal, provide four anchor bolts in accordance with ASTM F 1554 Grade 55 with outside diameter of 3/4" and length of 18" each having two heavy hex nuts with two washers at the top and two heavy hex nuts with one washer at the bottom. Provide anchor bolts with coarse threads at 10 threads per inch for a minimum length of 4 inches from each end of the bolt. Ensure anchor bolts are hot-dipped galvanized in accordance with ASTM A 153 with completely galvanized nuts and washers. Provide hex nuts with coarse threads. Ensure hex nuts are in accordance with ASTM A 563 Grade DH, ASTM A 194 Grade 2H, or equivalent. Ensure washers are in accordance with ASTM F 436 or equivalent. As a minimum, provide standard size washers. ## 1.5. Underground Conduit – Construction Methods (1715-3) Page 17-10, Subarticle 1715-3(B) Section (1), Revise 1st paragraph, 2nd sentence to: Install rigid metallic conduit for all underground runs located inside railroad right-of-way # 1.6. Junction Boxes – Construction Methods (1716-3) Page 17-15, Subarticle 1716-3, add the following information at the end of the subarticle: Provide real world coordinates for all junction boxes and equipment
cabinets installed or utilized under this project. Provide the coordinates in feet units using the North Carolina State Plane coordinate system (1983 North American Datum also known as NAD '83). Furnish coordinates that do not deviate more than 1.7 feet in the horizontal plane and 3.3 feet in the vertical plane. Version 06.7 4 print date: 03/11/11 U-2550B **268** Signals & Intelligent Transportation Systems Global positioning system (GPS) equipment able to obtain the coordinate data within these tolerances may be used. Submit cut sheets on the GPS unit proposed to collect the data for approval by the Engineer. Provide both a digital copy and hard copy of all information regarding the location (including to but not limited to manufacturer, model number, and NCDOT inventory number) in the Microsoft spreadsheet provided by the Department, shown by example below. | NCDOT
Inv# | Name | Location | Latitude | Longitude | Manufacturer | Model # | |---------------|------------------------------------|---|----------|-----------|--------------|-------------------------------------| | 05-0134 | 4 4 | US 70 at Raynor Rd./
Auburn-Knightdale | -78.5500 | 35.6873 | McCain | Type-332 | | 05-0134 | Junction Box # 1
(Phase 2 Side) | US 70 at Raynor Rd./
Auburn-Knightdale | -78.5516 | 35.6879 | Quazıte | PG1118BA12(Box)
PG118HA00(Cover) | | 05-0134 | | US 70 at Raynor Rd./
Auburn-Knightdale | -78.5506 | 35.6876 | Quazite | PG1118BA12(Box)
PG118HA00(Cover) | | 5-0134 | | US 70 at Raynor Rd./
Auburn-Knightdale | -78.5501 | 35.6873 | Quazite | PG1118BA12(Box)
PG118HA00(Cover) | | 05-0134 | Junction Box # 4
(Phase 6 Side) | US 70 at Raynor Rd./
Auburn-Knightdale | -78.5486 | 35.6873 | Quazite | PG1118BA12(Box)
PG118HA00(Cover) | | 05-0134 | Junction Box # 5
(Phase 6 Side) | US 70 at Raynor Rd./
Auburn-Knightdale | -78.5493 | 35.6876 | Quazite | PG1118BA12(Box)
PG118HA00(Cover) | | 05-0134 | Junction Box # 6
(Phase 4 Side) | US 70 at Raynor Rd./
Auburn-Knightdale | -78.5503 | 35.6879 | Quazite | PG1118BA12(Box)
PG118HA00(Cover) | #### 1.7. Riser Assemblies – Construction Methods (1722-3) Page 17-18, Subarticle 1722-3, Add the following: Transition from the rigid galvanized steel risers to underground PVC conduits using an approved rigid galvanized steel sweeping elbow with PVC female adaptor. #### 1.8. Inductive Detection Loops – Construction Methods (1725-3) Page 17-20, Subarticle 1725-3, In the first paragraph, revise the first sentence to: "Between where loop conductor pairs leave saw cut in pavement and junction boxes, twist loop conductor pairs a minimum of 5 turns per foot." #### 1.9. Loop Lead-in Cable – Measurement and Payment (1726-4) Page 17-20, Delete first paragraph and replace with the following: Lead-in cable will be measured and paid as the actual linear feet of lead-in cable furnished, installed, and accepted. Measurement will be made by calculating the difference in length markings located on outer jacket from start of run to end of run for each run. Terminate all cables before determining length of cable run. # 2. ELECTRICAL REQUIREMENTS Ensure that an IMSA certified, or equivalent, Level II traffic qualified signal technician is standing by to provide emergency maintenance services whenever work is being performed on traffic signal controller cabinets and traffic signal controller cabinet foundations. Stand by status is defined as being able to arrive, fully equipped, at the work site within 30 minutes ready to provide maintenance services. Version 06.7 5 print date: 03/11/11 #### 3. SIGNAL HEADS #### 3.1. MATERIALS #### A. General: Fabricate vehicle signal head housings and end caps from die-cast aluminum. Fabricate 12-inch and 16-inch pedestrian signal head housings and end caps from die-cast aluminum. Fabricate 9-inch pedestrian signal head housings, end caps, and visors from virgin polycarbonate material. Provide visor mounting screws, door latches, and hinge pins fabricated from stainless steel. Provide interior screws, fasteners, and metal parts fabricated from stainless steel or corrosion resistant material. Fabricate tunnel and traditional visors from sheet aluminum. Paint all surfaces inside and outside of signal housings and doors. Paint outside surfaces of tunnel and traditional visors, messenger cable mounting assemblies, pole and pedestal mounting assemblies, and pedestrian pushbutton housings. Have electrostatically-applied, fused-polyester paint in highway yellow (Federal Standard 595C, Color Chip Number 13538) a minimum of 2.5 to 3.5 mils thick. Do not apply paint to the latching hardware or rigid vehicle signal head mounting brackets for mast-arm attachments. Have the interior surfaces of tunnel and traditional visors painted an alkyd urea black synthetic baking enamel with a minimum gloss reflectance and meeting the requirements of MIL-E-10169, "Enamel Heat Resisting, Instrument Black." For pole mounting, provide side of pole mounting assemblies with framework and all other hardware necessary to make complete, watertight connections of the signal heads to the poles and pedestals. Fabricate the mounting assemblies and frames from aluminum with all necessary hardware, screws, washers, etc. to be stainless steel. Provide mounting fittings that match the positive locking device on the signal head with the serrations integrally cast into the brackets. Provide upper and lower pole plates that have a 1 ¼-inch vertical conduit entrance hubs with the hubs capped on the lower plate and 1 ½-inch horizontal hubs. Ensure that the assemblies provide rigid attachments to poles and pedestals so as to allow no twisting or swaying of the signal heads. Ensure that all raceways are free of sharp edges and protrusions, and can accommodate a minimum of ten Number 14 AWG conductors. For pedestal mounting, provide a post-top slipfitter mounting assembly that matches the positive locking device on the signal head with serrations integrally cast into the slipfitter. Provide stainless steel hardware, screws, washers, etc. Provide a minimum of six 3/8 X 3/4-inch long square head bolts for attachment to pedestal. Provide a center post for multi-way slipfitters. For light emitting diode (LED) traffic signal modules, provide the following requirements for inclusion on the Department's Qualified Products List for traffic signal equipment. - 1. Sample submittal, - 2. Third-party independent laboratory testing results for each submitted module with evidence of testing and conformance with all of the Design Qualification Testing specified in section 6.4 of each of the following Institute of Transportation Engineers (ITE) specifications: - Vehicle Traffic Control Signal Heads Light Emitting Diode (LED) Circular Signal Supplement - Vehicle Traffic Control Signal Heads Light Emitting Diode (LED) Vehicle Arrow Traffic Signal Supplement - Pedestrian Traffic Control Signal Indications Part 2: Light Emitting Diode (LED) Pedestrian Traffic Signal Modules. (Note: The Department currently recognizes two approved independent testing laboratories. They are Intertek ETL Semko and Light Metrics, Incorporated with Garwood Laboratories. Independent laboratory tests from other laboratories may be considered as part of the QPL submittal at the discretion of the Department, - 3. Evidence of conformance with the requirements of these specifications, - 4. A manufacturer's warranty statement in accordance with the required warranty, and - 5. Submittal of manufacturer's design and production documentation for the model, including but not limited to, electrical schematics, electronic component values, proprietary part numbers, bill of materials, and production electrical and photometric test parameters. - 6. Evidence of approval of the product to bear the Intertek ETL Verified product label for LED traffic signal modules. In addition to meeting the performance requirements for the minimum period of 60 months, provide a written warranty against defects in materials and workmanship for the modules for a period of 60 months after installation of the modules. During the warranty period, the manufacturer must provide new replacement modules within 45 days of receipt of modules that have failed at no cost to the State. Repaired or refurbished modules may not be used to fulfill the manufacturer's warranty obligations. Provide manufacturer's warranty documentation to the Department during evaluation of product for inclusion on Qualified Products List (QPL). # **B.** Vehicle Signal Heads: Comply with the ITE standard "Vehicle Traffic Control Signal Heads". Provide housings with provisions for attaching backplates. Provide visors that are 8 inches in length for 8-inch vehicle signal head sections. Provide visors that are 10 inches in length for 12-inch vehicle signal heads. Provide a termination block with one empty terminal for field wiring for each indication plus one empty terminal for the neutral conductor. Have all signal sections wired to the termination block. Provide barriers between the terminals that have terminal screws with a minimum Number 8 thread size and that will accommodate and secure spade lugs sized for a Number 10 terminal screw. Mount termination blocks in the yellow signal head sections on all in-line vehicle signal heads. Mount the termination block in the red section on five-section vehicle signal heads. Furnish vehicle signal head interconnecting brackets. Provide one-piece aluminum brackets less than 4.5 inches in height and with no threaded pipe connections. Provide hand holes on the bottom of the brackets to aid in installing wires to the signal heads. Lower brackets that carry no wires and are used only for connecting the bottom signal sections together may be flat in construction. For messenger cable mounting, provide messenger cable hangers, wire outlet bodies, balance adjusters, bottom caps, wire entrance fitting brackets, and all other
hardware necessary to make complete, watertight connections of the vehicle signal heads to the messenger cable. Fabricate mounting assemblies from malleable iron or steel and provide serrated rings made of aluminum. Provide messenger cable hangers and balance adjusters that are galvanized before being painted. Fabricate balance adjuster eyebolt and eyebolt nut from stainless steel or galvanized malleable iron. Provide messenger cable hangers with U-bolt clamps. Fabricate washers, screws, bolts, clevis pins, cotter pins, nuts, and U-bolt clamps from stainless steel. For mast-arm mounting, provide rigid vehicle signal head mounting brackets and all other hardware necessary to make complete, watertight connections of the vehicle signal heads to the mast arms and to provide a means for vertically adjusting the vehicle signal heads to proper alignment. Version 06.7 7 print date: 03/11/11 Fabricate the mounting assemblies from malleable iron or aluminum, and provide serrated rings made of aluminum. Provide LED vehicular traffic signal modules (hereafter referred to as modules) that consist of an assembly that uses LEDs as the light source in lieu of an incandescent lamp for use in traffic signal sections. Use LEDs that are aluminum indium gallium phosphorus (AlInGaP) technology for red and yellow indications and indium gallium nitride (InGaN) for green indications. Install the ultra bright type LEDs that are rated for 100,000 hours of continuous operation from -40°F to +165°F. Design modules to have a minimum useful life of 60 months and to meet all parameters of this specification during this period of useful life. For the modules, provide spade terminals crimped to the lead wires and sized for a #10 screw connection to the existing terminal block in a standard signal head. Do not provide other types of crimped terminals with a spade adapter. Ensure the power supply is integral to the module assembly. On the back of the module, permanently mark the date of manufacture (month & year) or some other method of identifying date of manufacture. Tint the red, yellow and green lenses to correspond with the wavelength (chromaticity) of the LED. Transparent tinting films are unacceptable. Provide a lens that is integral to the unit with a smooth outer surface. #### 1. LED Circular Signal Modules: Provide modules in the following configurations: 12-inch circular sections, and 8-inch circular sections. All makes and models of LED modules purchased for use on the State Highway System shall appear on the current NCDOT Traffic Signal Qualified Products List (QPL). Provide the manufacturer's model number and the product number (assigned by the Department) for each module that appears on the 2006 or most recent Qualified Products List. In addition, provide manufacturer's certification in accordance with Article 106-3 of the Standard Specifications, that each module meets or exceeds the ITE "Vehicle Traffic Control Signal Heads - Light Emitting Diode (LED) Circular Signal Supplement" dated June 27, 2005 (hereafter referred to as VTCSH Circular Supplement) and other requirements stated in this specification. Provide modules that meet the following requirements when tested under the procedures outlined in the VTCSH Circular Supplement: | Module Type | Max. Wattage at 165° F | Nominal Wattage at 77° F | |------------------------|------------------------|--------------------------| | 12-inch red circular | 17 | 11 | | 8-inch red circular | 13 | 8 | | 12-inch green circular | 15 | 15 | | 8-inch green cırcular | 12 | 12 | For yellow circular signal modules, provide modules tested under the procedures outlined in the VTCSH Circular Supplement to insure power required at 77° F is 22 Watts or less for the 12-inch circular module and 13 Watts or less for the 8-inch circular module. Note: Use a wattmeter having an accuracy of $\pm 1\%$ to measure the nominal wattage and maximum wattage of a circular traffic signal module. Power may also be derived from voltage, current and power factor measurements. Version 06.7 8 print date: 03/11/11 #### 2. LED Arrow Signal Modules Provide 12-inch omnidirectional arrow signal modules. All makes and models of LED modules purchased for use on the State Highway System shall appear on the current NCDOT Traffic Signal Qualified Products List (QPL). Provide the manufacturer's model number and the product number (assigned by the Department) for each module that appears on the 2006 or most recent Qualified Products List. In addition, provide manufacturer's certification in accordance with Article 106-3 of the *Standard Specifications*, that each module meets or exceeds the requirements for 12-inch omnidirectional modules specified in the ITE "Vehicle Traffic Control Signal Heads – Light Emitting Diode (LED) Vehicle Arrow Traffic Signal Supplement" dated July 1, 2007 (hereafter referred to as VTCSH Arrow Supplement) and other requirements stated in this specification. Provide modules that meet the following requirements when tested under the procedures outlined in the VTCSH Arrow Supplement: | Module Type | Max. Wattage at 165° F | Nominal Wattage at 77° F | |---------------------|------------------------|--------------------------| | 12-inch red arrow | 12 | 9 | | 12-inch green arrow | 11 | 11 | For yellow arrow signal modules, provide modules tested under the procedures outlined in the VTCSH Arrow Supplement to insure power required at 77° F is 12 Watts or less. Note: Use a wattmeter having an accuracy of $\pm 1\%$ to measure the nominal wattage and maximum wattage of an arrow traffic signal module. Power may also be derived from voltage, current and power factor measurements. # C. Pedestrian Signal Heads: Provide pedestrian signal heads with international symbols that meet the MUTCD. Do not provide letter indications. Comply with the ITE standard for "Pedestrian Traffic Control Signal Indications" and the following sections of the ITE standard for "Vehicle Traffic Control Signal Heads" in effect on the date of advertisement: - Section 3.00 "Physical and Mechanical Requirements" - Section 4.01 "Housing, Door, and Visor: General" - Section 4.04 "Housing, Door, and Visor: Materials and Fabrication" - Section 7.00 "Exterior Finish" Provide a double-row termination block with three empty terminals and number 10 screws for field wiring. Provide barriers between the terminals that accommodate a spade lug sized for number 10 terminal screws. Mount the termination block in the hand section. Wire all signal sections to the terminal block. Where required by the plans, provide 16-inch pedestrian signal heads with traditional three-sided, rectangular visors, 6 inches long. Where required by the plans, provide 12-inch pedestrian signal heads with traditional three-sided, rectangular visors, 8 inches long. Design the LED pedestrian traffic signal modules (hereafter referred to as modules) for installation into standard pedestrian traffic signal sections that do not contain the incandescent signal section reflector, lens, eggcrate visor, gasket, or socket. Provide modules that consist of an assembly that uses LEDs as the light source in lieu of an incandescent lamp. Use LEDs that are of the latest aluminum indium gallium phosphorus (AlInGaP) technology for the Portland Orange hand and countdown displays. Use LEDs that are of the latest indium gallium nitride (InGaN) technology for Version 06.7 9 print date: 03/11/11 the Lunar White walking man displays. Install the ultra bright type LEDs that are rated for 100,000 hours of continuous operation from -40°F to +165°F. Design modules to have a minimum useful life of 60 months and to meet all parameters of this specification during this period of useful life. Provide modules in the following configuration: 16-inch displays which have the solid hand/walking man overlay on the left and the countdown on the right, and 12-inch displays which have the solid hand/walking man module as an overlay All makes and models of LED modules purchased for use on the State Highway System shall appear on the current NCDOT Traffic Signal Qualified Products List (QPL). Provide the manufacturer's model number and the product number (assigned by the Department) for each module that appears on the 2006 or most recent Qualified Products List. In addition, provide manufacturer's certification in accordance with Article 106-3 of the *Standard Specifications*, that each module meets or exceeds the ITE "Pedestrian Traffic Control Signal Indications – Part 2: Light Emitting Diode (LED) Pedestrian Traffic Signal Modules" dated March 19, 2004 (hereafter referred to as PTCSI Pedestrian Standard) and other requirements stated in this specification. Design all modules to operate using a standard 3 - wire field installation. Provide spade terminals crimped to the lead wires and sized for a #10 screw connection to the existing terminal block in a standard pedestrian signal housing. Do not provide other types of crimped terminals with a spade adapter. Ensure the power supply is integral to the module assembly On the back of the module, permanently mark the date of manufacture (month & year) or some other method of identifying date of manufacture. Provide module lens that is hard coated or otherwise made to comply with the material exposure and weathering effects requirements of the Society of Automotive Engineers (SAE) J576. Ensure all exposed components of the module are suitable for prolonged exposure to the environment, without appreciable degradation that would interfere with function or appearance. Design the walking man and hand as a solid display. Ensure the hand/walking man symbols for the 16-inch display module meet the dimension requirements cited in PTCSI Pedestrian Standard Table 1 "Dimensions of Signal Sizes" for Class 3 or Class 4. Ensure the hand/walking man symbols for the 12-inch display module meet the dimension requirements cited in PTCSI Pedestrian Standard Table 1 "Dimensions of Signal Sizes" for
Class 2. Provide the countdown number display that is at least 9 inches high by 6 inches wide. Ensure the minimum luminance value for the countdown number display is 1,400 cd/m². Provide the countdown number display that will conform to the chromaticity requirements of the hand symbol as specified by section 4.2 (Chromaticity) of the PTCSI Pedestrian Standard. Furnish the countdown display to continuously monitor the traffic controller to automatically learn the pedestrian phase time and update for subsequent changes to the pedestrian phase time. Design the countdown display as a double row of LEDs or with a minimum thickness of 0.5 inch. Ensure the countdown display blanks-out during the initial cycle while it records the countdown time. Ensure that the countdown display is operational only during the flashing don't walk, clearance interval. Blank-out the countdown indication after it reaches zero and until the beginning of the next flashing don't walk indication. Design the controlling circuitry to prevent the timer from being triggered during the solid hand indication. Ensure the countdown display discontinues and goes dark immediately upon activation of a preemption transition. Ensure the countdown display begins normal operation upon the completion of the preemption sequence and no more than one pedestrian clearance cycle. Version 06.7 10 print date: 03/11/11 # U-2550B 274 Signals & Intelligent Transportation Systems Provide modules that meet the following requirements when tested under the procedures outlined in the PTCSI Pedestrian Standard: | Module Type | Max. Wattage at 165° F | Nominal Wattage at 77° F | |------------------------|------------------------|--------------------------| | Hand Indication | 16 | 13 | | Walking Man Indication | 12 | 9 | | Countdown Indication | 16 | 13 | Note: Use a wattmeter having an accuracy of $\pm 1\%$ to measure the nominal wattage and maximum wattage of a pedestrian signal module. Power may also be derived from voltage, current and power factor measurements. Provide 2-inch diameter pedestrian push-buttons with weather-tight housings fabricated from die-cast aluminum and threading in compliance with the NEC for rigid metal conduit. Provide a weep hole in the housing bottom and ensure that the unit is vandal resistant. Provide push-button housings that are suitable for mounting on flat or curved surfaces and that will accept 1/2-inch conduit installed in the top. Provide units that have a heavy duty push-button assembly with a sturdy, momentary, normally-open switch. Have contacts that are electrically insulated from the housing and push-button. Ensure that the push-buttons are rated for a minimum of 5 mA at 24 volts DC and 250 mA at 12 volts AC. Provide standard R10-3 signs with mounting hardware that comply with the MUTCD in effect on the date of advertisement. Provide R10-3E signs for countdown pedestrian heads and R10-3B for non-countdown pedestrian heads. # D. Signal Cable: Furnish 16-4 and 16-7 signal cable that complies with IMSA specification 20-1 except provide the following conductor insulation colors: - For 16-4 cable: white, yellow, red, and green - For 16-7 cable: white, yellow, red, green, yellow with black stripe tracer, red with black stripe tracer, and green with black stripe tracer. Apply continuous stripe tracer on conductor insulation with a longitudinal or spiral pattern. Provide a ripcord to allow the cable jacket to be opened without using a cutter. IMSA specification 19-1 will not be acceptable. Provide a cable jacket labeled with the IMSA specification number and provide conductors constructed of stranded copper. #### 3.2. CONSTRUCTION METHODS #### A. Modify Existing Vehicle Signal Heads: Modify existing vehicle signal heads by removing existing red arrow indications and replacing with new LED circular red indications. #### 3.3 MEASUREMENT AND PAYMENT Actual number of existing vehicle signal heads modified and accepted. Payment will be made under: Version 06.7 11 print date: 03/11/11 #### 4. MICROWAVE VEHICLE DETECTOR #### 4.1. DESCRIPTION Furnish and install a microwave vehicle detection unit and manufacturer recommended cables and hardware in accordance with the plans and specifications. #### 4.2. MATERIALS #### A. Pulse Detection: Furnish Microwave Sensors, Model TC-26B Vehicle Detector Unit, or approved equivalent, providing the following features: - Senses vehicles in motion at a range of at least 200 feet for cars and 350 feet for semi-trucks or other large vehicles. - Provides an operating frequency of 10.525 GHz +/- 25MHz. #### **B.** Presence Detection: Furnish Naztec Accuwave Model 150LX Microwave Detector, or approved equivalent, providing the following features: - True vehicle presence detection with a minimum detection zone of 6 x 12 feet at a 20 foot mounting height and an effective range of at least 75 feet from the detector unit to the aim point on the road surface. - Programmable delay time of up to 25 seconds. - Self tuning capability to auto-adjust to changing environmental conditions. - Monitoring circuit for the unit that will put out a constant call in the event of a component failure or loss of power - 120 (95 to 135) VAC input power, or power supply or step down transformer, if other than 120 VAC. - Operating temperature from -20 to 150 degrees F. - Water resistant housing. If a laptop is used to adjust detector settings, ensure that software is licensed for use by the Department and by any other agency responsible for maintaining or operating the microwave detection system. Provide the Department with a license to duplicate and distribute the software as necessary for design and maintenance support. #### 4.3. CONSTRUCTION METHODS Install the microwave vehicle detector in accordance with the manufacturer's recommendations. Monitor and maintain the detector unit during construction to ensure microwave vehicle detector is functioning properly and aimed for the detection zone shown in the plans. Refer to Subarticle 1700-3 (D) Maintenance and Repair of Materials of the *Standard Specifications* for failure to maintain the microwave detection system. #### 4.4. MEASUREMENT AND PAYMENT Actual number of microwave vehicle detector units furnished, installed, and accepted. No measurement will be made of cables or hardware, as these will be considered incidental to furnishing and installing microwave vehicle detectors. Payment will be made under: Microwave Vehicle Detector Each Version 06.7 12 print date: 03/11/11 # 5. COMMUNICATIONS SYSTEM SUPPORT EQUIPMENT #### 5.1. DESCRIPTION Furnish communications system support equipment with all necessary hardware in accordance with the plans and specifications. #### 5.2. MATERIALS #### A. General: Furnish equipment with test probes/leads, batteries (for battery-operated units), line cords (for AC-operated units), and carrying cases. Provide operating instructions and maintenance manuals with each item. Before starting any system testing or training, furnish all communications system support equipment. # **B.** Wireless Radio Support Equipment #### **B.1 Wireless Radio Modem** Furnish wireless radio modem identical to the type installed in the traffic signal controller cabinets to be used for emergency restoration of the system and the wireless communications system. # **B.2 Lightening Arrestor** Furnish wireless radio lightning arrestors identical to the type installed in the traffic signal controller cabinets to be used for emergency restoration of the transient voltage suppression equipment. #### 5.3. MEASUREMENT AND PAYMENT Actual number of wireless radio modems furnished and accepted. Actual number of wireless radio lightening arrestors furnished and accepted. Payment will be made under: | Furnish Wireless Radio Modems | Each | |--------------------------------------|------| | Furnish Wireless Lightning Arrestors | Each | #### 6. SPREAD SPECTRUM WIRELESS RADIO #### 6.1. DESCRIPTION Furnish and install a spread spectrum wireless radio system with all necessary hardware and signage in accordance with the plans and specifications to provide a data link between field devices (i.e. Traffic Signal Controllers, Dynamic Message Signs, etc.). Provide a radio system with a bidirectional, full duplex communications channel between two "line-of-sight" antennas using license free, spread spectrum technology operating in the 902-928 MHz frequency band. Furnish material and workmanship conforming to the *National Electrical Code* (NEC), the *National Electrical Safety Code* (NESC), Underwriter's Laboratories (UL) or a third-party listing agency accredited by the North Carolina Department of Insurance, and all local safety codes in effect on the date of advertisement. Comply with all regulations and codes imposed by the owner of affected utility poles. Version 06.7 13 print date: 03/11/11 #### 6.2.MATERIALS #### A. 900MHz Wireless Radio System: Furnish license free 902 – 928 MHz radio modem with antennas, coaxial cable and mounting hardware, and configuration software. Design radio modem to work in "point-to-point", "point-to-multipoint", "multipoint-to-point", and "multipoint-to-multipoint" configurations. Ensure the spread spectrum wireless radio meets the following minimum requirements: - License free (ISM) Spread Spectrum radio band (902 928 MHz) - Frequency Hopping Technology (Direct Sequence Spread Spectrum Technology is not acceptable) - B1-D1rectional, Full Duplex - Provide a minimum of three (3) Programmable Radio Frequency (RF) output levels ranging from 1mW up to 1 Watt - Provide user-selectable radio frequency channels (Min. 50) and hopping patterns (Min. 50) that will allow the user to adjust operating characteristics in order to avoid interference within the intended 902-928 MHz frequency range. - RS-232 interface capable of operating from 1200 bps to 115.2 Kbps, with 8 or 9 bit - DB9-F connector for RS-232 port - Maximum of 8 mSec. end-to-end latency - 16 bit Cyclic Redundancy
Check (CRC) error checking with auto re-transmit - Built-in store-and-forward (single radio repeater back to back radio set-ups are not allowed to accomplish this function) - 32 Bit encryption - Receiver Sensitivity of –108dBm @ 10^-6 BER - Antenna port: Threaded Connector (Nickel and/or Silver Plated Brass) - Front panel LED indicators (at a minimum): - Power - Transmit Data - Receive Data - Data Port Indicators consisting of a minimum of 3 LED's grouped together representing a Low, Medium or High Signal Strength with regards to the communications link with another targeted radio. (Software running on a laptop is not considered acceptable in meeting this requirement for front panel LED Data Port Indicators.) - Operating temperature of -40 to +165 degrees F at 0 to 95% Humidity - Power supply requirements: - Wall Adapter: Input Voltage (120 VAC UL/CSA) wall cube plug-in module. Output Voltage (6VDC to 24VDC). - Typical current draw of no greater than 400 mA when powered with 12 VDC input, and transmitting 1 Watt of RF output power. - Radio Sleep mode with a maximum current draw of <1 µA. - Shelf mounted design Version 06.7 14 print date: 03/11/11 U-2550B 278 Signals & Intelligent Transportation Systems Furnish a Radio Frequency Signal Jumper constructed of an RG-58 Coaxial Cable. On one end of the cable supply a RF Threaded Connector that is compatible with the radio supplied and on the other end supply a Standard N-Type Male Connector to mate with the lightning arrestor. Provide the jumper in 6 foot lengths. Ensure that the cable is assembled by a manufacturing facility. Contractor and/or Vendor assembled cables are not acceptable. Furnish an RS-232 data interface cable to be installed between the radio modem and the field device's RS-232 interface. Ensure that the cable is compatible with all 1999 and 2002 and greater Transportation Electrical Equipment Specifications "TEES", and 2070L compliant controllers. Ensure cable is a minimum of 6 feet long. Ensure that the cable is assembled by a manufacturing facility. Contractor and/or Vendor assembled cables are not acceptable. Ensure that installing the wireless radio system with a fully functional field device (i.e. controller) does not require any field device modifications with regards to hardware or software. #### B. Software: Furnish units with a Window Based™ software program that uses a GUI (Graphical User Interface) to provide "remote programming, radio configuration, remote maintenance, diagnostics and spectrum analyzer" features. Ensure the software will operate on all past and current Microsoft ® Windows Operating Platforms: Windows 98, Windows 2000, Windows NT, or Windows XP, Windows Vista. Provide configuration software that can be upgraded in the future at no additional charge. Ensure the radio modem is configurable from a single location (i.e. master radio location) via supplied software (no extra cost). Furnish software supplied with drivers to allow easy set-up with all industry standard traffic signal controllers, including 2070 controllers containing custom software written specifically for the North Carolina Department of Transportation. Ensure the supplied software contains pre-written drivers for industry standard radar packages and Dynamic Message Sign controllers. # C. Directional Antenna (Yagi): Furnish a directional antenna that will allow the system to function as designed. Furnish a 8.5 dBd Gain or 13 dBd Gain antenna that meets the following minimum specifications: Version 06.7 15 print date: 03/11/11 (8.5 dBd Gain) | 896 – 940 MHz | |--| | 8.5 dBd | | 18 dB | | 65 degree | | 55 degree | | 200 Watts | | DC Ground | | Coaxial pigtail with a Standard N-Type | | Female Connector | | 50 ohms | | 24" | | 125 mph | | 100 mph | | 0.26 ftsq. | | 6 | | | | 9" | | | | 6.5' | | | | | | | Furnish mounting hardware with the antenna that will secure the antenna to a mounting pipe that has a 1.5" Nominal Pipe Size (approximately 2" OD pipe diameter), as recommended by the manufacturer of the antenna and as approved by the Engineer. # D. Antenna Mounting Hardware Kit: Furnish an antenna mounting kit to support the antenna when attached to a metal pole, mast arm, or wood pole. Furnish PELCO – "Antenna Mount, Cable Astro-Brac for Yagi Antenna" or an approved equivalent. Ensure the Antenna Mounting Hardware Kit includes a minimum of a 96" galvanized cable with stainless steel bolt with a nut and lock washer assembly on each end. Ensure the pole base plate accepts a 1 ½" NPT aluminum pipe, and provides a surface that is a minimum of 6 ¾ inch long by 4 ¼" to provide contact with the pole. Ensure the pole base plate is designed to allow both ends of the 96" galvanized cable to be secured and tightened to the base plate. Proved a 90 degree elbow with internal treads on both ends to accommodate 1 ½" NPT aluminum pipes. Provide a 1 ½" * 18" long aluminum pipe threaded on both ends and a 1 ½" * 24" aluminum pipe threaded on 1 end with an end cap. | PELCO
PART #'s | DESCRIPTION | QUANTITY | |-------------------|--|----------| | AB-3034-96-PNC | Astro-Brac Clamp Kit, 1 ½" NPS, Galv Cable, Alum | 1 | | AB-0260 | TUBE CAP, PLASTIC | 1 | | SE-0436-18 | NIPPLE, 1 ½" x 18" LONG, ALUM, THREADED ON BOTH | 1 | | | ENDS | | |----------------|--|---| | SE-0457-DS-PNC | ELL, SERRATED, 1 ½", DOUBLE SET SCREW, DIE CAST
ALUM | 1 | | SE-0326-24 | SUPPORT TUBE, SCH 40, 1 ½" NPS x 24" LONG, ALUM, THREADED ON ONE END | 1 | 280 #### E. Coaxial Cable: Furnish 400 Series coaxial cable to provide a link between the antenna and the lightning arrestor that meets the following minimum specifications: | Attenuation (dB per 100 feet) @ 900 MHz | 3.9 dB | |---|--| | Power Rating @ 900 Mhz | 0.58 kW | | Center Conductor | 0.108" Copper Clad Aluminum | | Dielectric: Cellular PE | 0.285" | | Shield | Aluminum Tape – 0.291" | | | Tinned Copper Braid – 0.320" | | Jacket | Black UV protected polyethylene | | Bend Radius | 1" with less than 1 ohm impedance change at bend | | Impedance | 50 ohms | | Capacitance per foot | 23.9 pf/ft | | End Connectors | Standard N-Type Male Connectors on both ends | # F. Standard N-Type Male Connector: Furnish Standard N-Type Male Connector(s) of proper sizing to mate with the 400 series coaxial cable and utilize a crimping method to secure the connector to the coaxial cable. Furnish a connector that meets the following minimum specifications: - Center Contact: Gold Plated Beryllium Copper-(spring loaded Non-solder) - Outer Contact: Silver Plated Brass - Body: Silver Plated Brass - Crimp Sleeve: Silver Plated Copper - Dielectric: Teflon PTFE - Water Proofing Sleeve: Adhesive Lined Polyolefin Heat Shrink - Attachment Size: Crimp Size 0.429" (minimum) hex #### **Electrical Properties:** - Impedance: 50 ohms - Working Voltage: 1000 vrms (max) - Insertion loss: $0.1 \times \sqrt{\text{Fghz}}$ - VSWR: 1.25·1 (max) up to 3GHz Provide instructions on properly installing the connector. # G. Coaxial Cable Shield Grounding and Weatherproofing Kits: Furnish a Coaxial Cable Shield Grounding Kit containing components that will adequately bond and ground the cable shield to the pole ground. Ensure the grounding kit complies with MIL-STD-188-124A Specifications "Military Standard for Grounding, Bonding and Shielding" for coaxial Version 06.7 17 print date: 03/11/11 U-2550B **281** Signals & Intelligent Transportation Systems cable and protects the cable from lightning currents in excess of 200kA. Ensure each kit is supplied, as a minimum, with the following: - Preformed Strap: 24 Gauge copper strap that is a minimum of 1 5/8 inch long and is sized to mate with the 400 series coaxial cable - Tensioning Hardware: Copper nuts and lock washers - Grounding Lead Cable: #6 AWG, stranded, insulated copper wire - Instructions on properly installing the shield grounding system Furnish a Weatherproofing Kit containing components that will protect the coaxial cable shield grounding system against the ingress of moisture and prevent vibrations from loosening the connections. Ensure the weatherproofing kit is supplied, as a minimum, with the following: - Butyl Mastic Tape: 3 3/4 inches wide by 24 inches long (approximately) - Electrical Tape: 2 inch wide by 20 inches long (approximately) - Instructions on properly installing the weatherproofing system # H. Lightning Arrestor: Furnish a lightning arrestor installed in line between each antenna and its designated radio modem inside the equipment cabinet. Furnish a Polyphaser Model # DSXL-BF lightning arrestor or an approved equivalent that meets the following minimum specifications: - Filter Type DC Block (None gas tube design) - Surge: 20kA, 800MHz to 2.0GHz ≤ 1.1 : 1 VSWR 18kA, 800MHz to 2.3GHz ≤ 1.1 : 1 VSWR 700MHz to 2.7GHz < 1.2 : 1 VSWR - Insertion Loss: ≤0.1 dB over frequency range - Max Power: 500 w @ 920MHz (750 W @ at 122° F) - RF Power: 300 Watts - Let Through Voltage: ≤+/- 3 Volts for 3kA @ 8/20 μs Waveform - Throughput energy: $\leq 0.5 \, \mu J$ for $3kA \, @.8/20 \, \mu s$ Waveform - Temperature: -40 to 185° F Storage/Operating 122° F - Vibration: 1G at 5 Hz up to 100Hz - Unit Impedance: 50Ω - VSWR: 1.1:1 - Frequency Range: 800 MHz to 2200 MHz - Multistrike capability - Low strike throughput energy - Flange mount and bulkhead mount options - Standard N-Type Female Connector on both the surge side and protected side connectors #### I. Disconnect Switch: Furnish a double pole, single throw snap switch in a <u>weatherproof</u> outlet box with cover, suitable for use in wet locations. Ensure outlet box and cover supports a lockout tag device. Ensure outlet box includes one ½-inch hole in back of box. Furnish mounting hardware, sealing gaskets and lockout tag. (NOTE. On NCDOT owned
poles the "Disconnect Switch" can be omitted.) Version 06.7 18 print date: 03/11/11 # J. Warning Signs(s) and Decal(s): Furnish "RF Warning Sign" and "Decal" at locations called for in the plans. Furnish mounting hardware to secure the Sign to either metal or wood poles. Secure the sign to the pole using 'Band-It' brackets or a method approved by the engineer. (NOTE: On NCDOT owned poles the "RF Warning Sign" and "Decal" can be omitted.) #### 6.3.CONSTRUCTION METHODS #### A. General: Perform a radio path Site Survey test before installing any equipment. Ensure the test evaluates the Signal Strength (dBm), Fade Margin (dB), Signal-to-Noise Ratio, Data Integrity (poll test), and a complete frequency spectrum scan. Ensure the radio path site survey test is performed using the supplied brand of radio equipment to be deployed. During the initial radio path signal strength test it may be determined that a repeater station may be necessary to complete the intended link. Provide the test results to the Engineer for review and approval. Submit copies of the test results and colored copies of the frequency spectrum scan along with an electronic copy of this information. The Engineer will approve final locations of antennas and any necessary repeater stations. Install a coaxial cable – power divider, antenna splitter cable and additional antenna at locations where it is determined that a dual antenna configuration is necessary to accommodate communications in multiple directions. Install the antenna in such a manner that avoids conflicts with other utilities (separation distances in accordance with the guidelines of the NESC) and as specified in the antenna manufacturer's recommendations. Secure the antenna mounting hardware to the pole and route the coaxial cable such that no strain is placed on the N-Type Male coaxial connectors. On wood pole installations, bond the antenna mounting hardware to the pole ground using # 6 AWG bare copper wire using split bolt or compression type fitting. Install the coaxial cable shield grounding system by carefully removing the outer jacket of the coaxial cable without damaging the cable shield. Install the shield grounding system following the cable manufacturer's recommendations. Install and weatherproof the connection using the appropriate weatherproofing materials and following the manufacturer's recommendations. On wood poles, secure the #6 AWG grounding lead cable to the pole ground using split bolt or compression type fitting or an Engineer approved method. On metal poles, secure the #6 AWG grounding lead cable to the pole using an Engineer approved method. Do not exceed the 1-inch bend radius of the coaxial cable as it traverses from the cabinet to the antenna assembly Connect the lightning arrestor to the coaxial cable in the equipment cabinet. Properly ground and secure the arrestor in the cabinet. Permanently label all cables entering the cabinet. Ensure the power supply for the radio system is **NOT** connected to the GFCI receptacle circuit located in the cabinet. Place a copy of all manufacturer equipment specifications and instruction and maintenance manuals in the equipment cabinet. At certain locations it may be necessary to integrate the radio system with a fiber optic system. Follow the details shown in the fiber optic splice plans. Version 06.7 19 print date: 03/11/11 #### **B.** Disconnect Switch: At all locations, where the antenna is mounted on a joint use pole, install a double pole, snap switch to remove power from the spread spectrum wireless radio system. Do not mount weatherproof box on the traffic signal cabinet door. Drill a hole in the side of the traffic signal cabinet. Mount the outlet box over the hole using a ½-inch chase nipple and bushings. Ensure sealing gaskets are in place and no water can enter the cabinet. Securely mount the weatherproof outlet box with additional mounting screws. Bond the outlet box to the equipment ground bus. See plans for approximate mounting height. Run the power supply cord of the spread spectrum radio unit into the outlet box and connect to switch. Securely attach power supply cord to equipment rack. Install disconnect switch with lockout tag cover. (NOTE. If the antenna is mounted on an NCDOT owned pole the "Disconnect Switch" can be omitted.) Do not install power supply for the radio in a GFCI protected outlet. #### C. Warning Sign(s) and Decal(s): At all locations, where the antenna is mounted on a joint use pole, secure a Warning Sign to pole. Mount Warning Sign(s) at locations called for on the plans. Ensure there are no conflicts between the warning sign and surrounding utilities. Mount Warning Sign to be easily viewed. Do not mount Warning Sign under pole grounds or conduit. (NOTE: If the antenna is mounted on an NCDOT owned pole the "RF Warning Sign" can be omitted.) Clean and remove any dirt or oil on traffic cabinet before placing Decal. Place decal adjacent to the disconnect switch located on the outside of traffic cabinet. (NOTE: If the antenna is mounted on an NCDOT owned pole the "Decal" can be omitted.) #### 6.4. WARRANTY Provide a minimum two-year warranty with each radio and antenna assembly to ensure the products are free of manufacturing defects in material and workmanship. The warranty commences on the date the radio system is accepted by the Engineer. # 6.5. MEASURMENT AND PAYMENT Actual number of 900MHz wireless radio furnished, installed and accepted. This item includes the appropriate sized antenna(s), radio, power supplies, disconnect/snap switch, signs, decals, data interface cable/serial cable, coaxial cable, lightning arrestor, radio frequency signal jumper, coaxial cable power divider (Splitter), coaxial cable connectors, coaxial cable shield grounding system with weatherproofing, labeling and any integration between the wireless radio system and a fiber optic network if necessary, installation materials and configuration software necessary to complete this work, including the radio path Site Survey test and warranties, will be incidental. Version 06.7 20 print date: 03/11/11 284 #### U-2550B Signals & Intelligent Transportation Systems #### 7. TRAFFIC SIGNAL SUPPORTS #### 7.1. METAL TRAFFIC SIGNAL SUPPORTS – ALL POLES #### A. General: Furnish and install metal poles with mast arms, grounding systems, and all necessary hardware. The work covered by this special provision includes requirements for the design, fabrication, and installation of both standard and custom/site specifically designed metal traffic signal supports and associated foundations. Provide metal traffic signal support systems that contain no guy assemblies, struts, or stay braces. Provide designs of completed assemblies with hardware that equals or exceeds AASHTO Standard Specifications for Structural Supports for Highway Signs, Luminaires and Traffic Signals 4th Edition, 2001 (hereafter called 4th Edition AASHTO), including the latest interim specifications. Provide assemblies with a round or near-round cross-sectional design consisting of no less than six sides. The sides may be straight, convex, or concave. Heights of the metal signal poles shown on the plans are estimated from available data for bid purposes. Prior to furnishing metal signal poles, use field measurements and adjusted cross-sections to determine if pole heights are sufficient to obtain required clearances. If pole heights are not sufficient, contractor should immediately notify the Engineer of the required revised pole heights. Ensure that metal signal poles permit cables to be installed inside poles and any required mast arms. For holes in the poles and arms used to accommodate cables, provide full-circumference grommets. Arm flange plate wire access hole should be debarred, non grommeted and oversized to fit around the 2" dia. grommeted shaft flange plate wire access hole. After fabrication, have steel poles, required mast arms, and all parts used in the assembly hot-dip galvanized per section 1076. Design structural assemblies with weep holes large enough and sufficiently located to drain molten zinc during galvanization process. Provide hot-dip galvanizing on structures that meets or exceeds ASTM Standard A-123. Provide galvanizing on hardware that meets or exceeds ASTM Standard A-153. Ensure that threaded material is brushed and retapped as necessary after galvanizing. Perform repair of damaged galvanizing that complies with the following: Repair of Galvanizing Article 1076-6 Standard Drawings for Metal Poles are available that supplement these project special provisions. These drawings are located on the Department's website: http://www.ncdot.gov/doh/preconstruct/traffic/ITSS/ws/mpoles/poles.html Comply with Sub article 1098-1B "General Requirements" of the 2006 STANDARD SPECIFICATIONS FOR ROADS & STRUCTURES, hereinafter referred to as the *Standard Specifications* for submittal requirements. Furnish shop drawings for approval. Provide the copies of detailed shop drawings for each type of structure as summarized below. Ensure that shop drawings include material specifications for each component and identify welds by type and size on the drawing details, not in table format. Do not release structures for fabrication until shop drawings have been approved by NCDOT. Provide an itemized bill of materials for all structural components and associated connecting hardware on the drawings. Version 06.7 21 print date: 05/03/11 Comply with Sub article 1098-1A "General Requirements" of the *Standard Specifications* for QPL submittals. All shop drawings must include project location description, signal inventory number(s) and a project number or work order number on the drawings. Summary of information required for metal pole review submittal: | Item | Hardcopy
Submittal | Electronic
Submittal | Comments / Special Instructions | |---|---|-------------------------
--| | Sealed, Approved Signal
Plan/Loading Diagram | 1 | 1 | All structure design information needs to reflect the latest approved signal plans | | Custom Pole Shop Drawings | 4 sets | 1 set | Submit drawings on 11" x 17" format media | | | | | Show NCDOT inventory number(s) in or above the title block | | Standard Pole Shop Drawings | 4 sets | 1 set | Submit drawings on 11" x 17" format media | | (from the QPL) | | | Show NCDOT inventory number(s) in or above the title block | | Structure Calculations | 1 set | 1 set | Not required for Standard QPL Poles | | Standard Pole Foundation
Drawings | Will vary
with
number of
poles | 1 set | Submit drawings on 11" x 17" format media. Submit a completed Standard Foundation Selection form for each pole using foundation table on Metal Pole Drawing M-8. | | Custom Foundation Drawings | 4 sets | 1 set | Submit drawings on 11" x 17" format media. If QPL Poles are used, include the corresponding QPL pole shop drawings with this submittal. | | Foundation Calculations | 1 | 1 | Not required for Standard QPL Poles | | Soil Boring Logs and Report | 1 | 1 | Report should include a location plan and a soil classification report including soil capacity, water level, etc. for each pole. | NOTE – All shop drawings and custom foundation design drawings must be sealed by a Professional Engineer licensed in the State of North Carolina. All geotechnical information must be sealed by either a Professional Engineer or Geologist licensed in the State of North Carolina. Include a title block and revision block on the shop drawings and foundation designs showing the NCDOT inventory number. Shop drawings and foundation drawings may be submitted together or separately for approval. However, shop drawings must be approved before foundations can be reviewed. Foundation designs will be returned without review if the associated shop drawing has not been approved. Incomplete submittals will be returned without review. #### **B.** Materials: Fabricate metal pole and arm shaft from coil or plate steel that conforms to ASTM A 595 Grade A. For structural steel shapes, plates and bars use A572 Gr 55 or Gr 65. Provide pole and arm shafts that are round in cross section or multisided tubular shapes and have a uniform linear taper of 0.14 in/ft. Construct shafts from one piece of single ply plate or coil so there are no circumferential weld splices. Galvanize in accordance with AASHTO M 111 and or ASTM A 123. Use the submerged arc process to continuously weld pole shafts and arm shafts along their entire length. Ground smooth exposed welds until flush with the base metal. Ensure shafts have no circumferential welds except at the lower end joining the shaft to the pole base and arm base. Provide welding that conforms to Article 1072-20 of the *Standard Specifications*, except that no field welding on any part of the pole will be permitted unless approved by a qualified engineer. Refer to Metal Pole Standard Drawing Sheets M2 thru M5 for metal poles for fabrication details. Fabricate anchor bases from plate steel meeting as a minimum the requirements of ASTM A 36M Version 06.7 22 print date: 03/11/11 U-2550B 286 Signals & Intelligent Transportation Systems or cast steel meeting the requirements of ASTM A 27M Grade 485-250, AASHTO M270 grade 36 or an approved equivalent. Conform to the applicable bolt pattern and orientation specified by the design as shown on Metal Pole Standard Drawing Sheet M2. Capacity of tapped flange plate must be sufficient to develop the full capacity of the connecting bolts. In all incidences the flange plate both arm and shaft must be at least as thick as the arm connecting bolts are in diameter. Ensure all hardware is galvanized steel or stainless steel. The contractor is responsible for ensuring that his designer/fabricator specifies connecting hardware and/or materials that do not create a dissimilar metal corrosive reaction. Ensure material used in steel anchor bolts conforms to AASHTO M 314 or equivalent. Unless otherwise required by the design, ensure each anchor bolt is 2" in diameter and 60" in length. Provide 10" minimum thread projection at the top of the bolt, and 8" minimum at the bottom of the bolt. Galvanize full length of the anchor bolt. For each structural bolts and other steel hardware, hot deep galvanizing shall conform to the requirements of AASHTO M 232 (ASTM A 153). Provide a circular anchor bolt lock plate that will be secured to the anchor bolts at the embedded end with 2 washers and 2 nuts. Provide a base plate template that matches the bolt circle diameter of the anchor bolt lock plate. Construct plates and templates from ½" minimum thick steel with a minimum width of 4". Galvanizing is not required. Provide 4 heavy hex nuts and 4 flat washers for each anchor bolt. For nuts, use AASHTO M291 grade 2H, DH, or DH3 or equivalent material. For flat washers, use AASHTO M293 or equivalent material. Ensure end caps for poles or mast arms are constructed of cast aluminum conforming to Aluminum Association Alloy 356.0F. #### C. Construction Methods: Erect signal supports poles only after concrete has attained a minimum allowable compressive strength of 3000 psi. Follow anchor nut-tightening procedures below to complete the installation of the upright. For further construction methods, see construction methods for Metal Strain Poles, or Metal Pole with Mast Arm. Connect poles to grounding electrodes and bond them to the electrical service grounding electrodes. For holes in the poles used to accommodate cables, install grommets before wiring pole or arm. Do not cut or split grommets. Attach the terminal compartment cover to the pole by a sturdy chain or cable. Ensure the chain or cable is long enough to permit the cover to hang clear of the compartment opening when the cover is removed, and is strong enough to prevent vandals from being able to disconnect the cover from the pole. Ensure the chain or cable will not interfere with service to the cables in the pole base. Attach cap to pole with a sturdy chain or cable. Ensure the chain or cable is long enough to permit the cap to hang clear of the opening when the cap is removed. Perform repair of damaged galvanizing that complies with the *Standard Specifications*, Article 1076-6 "Repair of Galvanizing." # D. Anchor Nut Tightening Procedure: #### Prior to installation Version 06.7 23 print date: 03/11/11 Protect the anchor rod threads from damage prior to installation and during installation. Prior to installation of the rods in the foundation, turn nuts onto and off the rods, well past the elevation of the bottom of the leveling nuts. Turn by the effort of one worker using an ordinary wrench without a cheater bar. Report to the Engineer any thread damage that requires a significant amount of extra effort to turn any nut. #### **During installation** - 1. Place leveling nuts (bottom nuts) on the anchor rods. - 2. Place leveling nut washers on top of the anchor rod leveling nuts. - 3. Place a rigid template on top of the leveling nuts to check the level of the nuts. If the anchor nut and washer cannot be brought into firm contact with the template, then use beveled washers. - 4. Verify that the distance between the bottom of the leveling nut and the top of the concrete foundation is no more than one anchor rod diameter. If an upright is required to be backraked, then the distance between the bottom of the leveling nut and the top of the concrete foundation should be no more than one anchor rod diameter, averaged over the anchor rod group. - 5. Place the base plate and structural element to which it is attached. However, do not attach to the upright element, during tightening of the anchor nuts, cantilever beams or arms with span in excess of 10 feet. Luminaire arms and fixtures may be attached prior to standing the pole on the foundation. - 6. Place top nut washers. - 7. Do not use lock washers. - 8. Lubricate threads and bearing surfaces of top nuts. Lubricant shall be beeswax, stick paraffin, or other approved lubricant. - 9. Place top nuts. If the anchor nut and washer cannot be brought into firm contact with the base plate, then use beveled washers. - 10. Tighten top nuts to snug tight. A snug-tight condition is defined as the washer and nut being in full contact with the base plate, and the application of the full effort of a workman on a 12-inch wrench. Turn top nuts in increments following a star pattern (using at least two full tightening cycles). - 11. To ensure proper pretension, after all top nuts have been brought to snug-tight condition, repeat the procedure on the leveling nuts. Turn leveling nuts in increments following a star pattern (using at least two full tightening cycles). - 12. At this point, verify if beveled washers are required. Beveled washers are necessary under the leveling nut or top nut if any face of the base plate has a slope greater than 1:20 and / or any nut can not be brought into firm contact with the base plate. - 13. Before further nut turning, mark the reference position of the nut in the snug-tight condition with a suitable marking (ink or paint that is not water-soluble). Mark on the corner at the intersection of two flats with a corresponding reference mark on the base plate at each nut. After tightening, verify the nut rotation. - 14. Achieve pretension by turn-of-nut method. Turn the top nuts to 1/6 of a turn. Do so in a star pattern using at least two full-tightening cycles. - After installation, ensure that firm contact exists between the anchor rod nuts, washers, and base plate on any anchor rod installed. - 16. The messenger cable (span wires) or mast arms may be attached to the upright at this time. Version 06.7 24 print date: 03/11/11 - 17. After a period of no less than 4 days, and no more than 2
weeks, and in the presence of the Engineer, use a torque wrench to verify that a torque at least equal to 600 foot-pounds is provided on each top nut. For cantilever structures, verify the torque after erection of the remainder of the structure and any heavy attachments to the structure. - 18. If any top nut torque reveals less than 600 foot-pounds of effort is required to move the nut, then tighten the nut to no less than 600 foot-pounds. - 19. Calibrate, at least annually, the torque indicator on the wrench used for tightening the nuts. Provide the Engineer a certification of such calibration. - 20. Because inspection or re-tightening of the leveling nuts would be prevented, and to reduce moisture retention and associated corrosion, do <u>not</u> place grout under the base plate. #### 7.2. METAL STRAIN POLE #### A. Materials: Provide either steel or aluminum poles as indicated on the plans. # Comply with the following for Aluminum Poles: - Have poles fabricated from Aluminum Association Alloy 6061-T6, 6063-T6, or approved equivalent. The structural requirement does not pertain to castings that are decorative only. - Have shafts tapered by spinning and cold-working a seamless extruded tube of the aluminum alloy. - Have shafts with no circumferential welds except at the lower end joining the shaft to the base. - Ensure Aluminum poles are properly protected from damage prior to shipment. - Have bases of the shaft fabricated in accordance with the Aluminum Association Alloy 356.0-T6, and of adequate strength, shape and size, and capable of withstanding the design load of the shaft. - Have aluminum surfaces in contact with concrete or dissimilar metal coated with bituminous paint. #### Comply with the following for Steel Poles: - Have shafts of the tapered tubular type and fabricated of steel conforming to ASTM A-595 Grade A or an approved equivalent. - Have galvanization in accordance with AASHTO M 111 (ASTM A 123). - Have shafts that are continuously welded for the entire length by the submerged arc process, and with exposed welds ground or rolled smooth and flush with the base metal. Provide welding that conforms to Article 1072-20 per Standard Specification except that no field welding on any part of the pole will be permitted. - Have anchor bases for steel poles fabricated from plate steel meeting as a minimum the requirements of ASTM A 36M or cast steel meeting the requirements of ASTM A 27M Grade 485-250 or an approved equivalent. Version 06.7 25 print date: 03/11/11 For each strain pole, provide 2 messenger cable (span wire) clamps and associated hardware for attachment of support cable of the messenger cable suspension. Ensure that diameter of the clamp is appropriate to its location on the pole and that the diameter of the clamps is appropriately designed to be adjustable from 1'-6" below the top, down to 6'-6" below the top of the pole. Do not attach more than one support cable to a messenger cable clamp. For strain poles, provide a minimum of three (3) 2 inch (50 mm) holes equipped with an associated coupling and weatherhead on the messenger cable load side of the pole to accommodate passage of signal cables from inside the pole to the suspension. Provide galvanized threaded plugs for all unused couplings at pole entrance points. Refer to Metal Pole Standard Drawing Sheet M3 for fabrication details. Provide a grounding lug(s) in the approximate vicinity of the messenger cable clamp for bonding and grounding messenger cable. Lugs must accept #4 or #6 AWG wire to bond messenger cables to the pole in order to provide an effective ground fault circuit path. Refer to Metal Pole Standard Drawing Sheet M6 for construction details. Have poles permanently stamped above the hand holes with the identification tag details as shown on Metal Pole Standard Drawing Sheet M2. Provide liquidtight flexible metal conduit (Type LFMC), liquidtight flexible nonmetallic conduit (Type LFNC), high density polyethylene conduit (Type HDPE), or approved equivalent to isolate conductors feeding luminaires. Fabricate poles from a single piece of steel or aluminum with single line seam weld with no transverse butt welds. Fabrication of two ply pole shafts is not acceptable except for fluted shafts. Provide tapers for all shafts that begin at base and that have diameters which decrease uniformly at the rate of not more than 0.14 inch per foot (11.7 millimeters per meter) of length. Ensure that allowable pole deflection does not exceed that allowed by AASHTO Specifications. For messenger cable poles (with primarily transverse loads), ensure that maximum deflection at the top of the pole does not exceed 2.5 percent of the pole height. For mast arm poles (with primarily moment loads), ensure that maximum angular rotation of the top of the pole does not exceed 1° 40'. Provide four anchor nuts and four washers for each anchor bolt. Have anchor bolts fabricated from steel per AASHTO M 314 or equivalent. Ensure that anchor bolts have required diameters, lengths, and positions, and will develop strengths comparable to their respective poles. Provide a terminal compartment with cover and screws in each pole that encompasses the hand hole and contains a 12-terminal barrier type terminal block. Provide two terminal screws with a removable shorting bar between them for each termination. Furnish terminal compartment covers attached to the pole by a sturdy chain or cable approved by the Engineer. Ensure that the chain or cable is long enough to permit the cover to hang clear of the compartment opening when the cover is removed, and is strong enough to prevent vandals from being able to disconnect the cover from the pole. Ensure that the chain or cable will not interfere with service to the cables in the pole base. Install grounding lugs that will accept #4 or #6 AWG wire to electrically bond messenger cables to the pole. Refer to Metal Pole Standard Drawing Sheet M6 for construction details. For each pole, provide a 1/2 inch minimum thread diameter, coarse thread stud and nut for grounding which will accommodate Number 6 AWG ground wire. Ensure that the lug is electrically bonded to the pole and is conveniently located inside the pole at the hand hole. Version 06.7 26 print date: 03/11/11 Provide a removable pole cap with stainless steel attachment screws for the top of each pole. Ensure that the cap is cast aluminum conforming to Aluminum Association Alloy 356.0F. Furnish cap attached to the pole with a sturdy chain or cable approved by the Engineer. Ensure that the chain or cable is long enough to permit the cap to hang clear of the pole-top opening when the cap is removed. When required by the plans, furnish couplings 42 inches above the bottom of the base for mounting of pedestrian pushbuttons. Provide mounting points consisting of 1-1/2 inch internally threaded half-couplings that comply with the NEC and that are mounted within the poles. Ensure that couplings are essentially flush with the outside surfaces of the poles and are installed before any required galvanizing. Provide a threaded plug in each mounting point. Ensure that the surface of the plug is essentially flush with the outer end of the mounting point when installed and has a recessed hole to accommodate a standard wrench. #### **B.** Construction Methods: Install metal poles, hardware, and fittings as shown on the manufacturer's installation drawings. Install metal poles so that when the pole is fully loaded it is within 2 degrees of vertical. Install poles with the manufacturer's recommended "rake." Use threaded leveling nuts to establish rake if required. #### 7.3. METAL POLE WITH MAST ARM Provide signal support mast arm assemblies. Comply with Section 7.2 except as noted herein. Provide pole plates and associated gussets and fittings for attachment of required mast arms. As part of each mast arm attachment, provide a cable passage hole in the pole to allow passage of signal cables from the pole to the arm. Ensure that allowable mast arm deflection does not exceed that allowed by AASHTO Specifications. Also when arm is fully loaded, tip of the arm shall not go below the arm attachment point with the pole for all load condition per the 4th edition AASHTO Code. Furnish all arm plates and necessary attachment hardware, including bolts and brackets. Provide two extra bolts for each arm. Provide grommet holes on the arms to accommodate cables for the signals. Provide arms with weatherproof connections for attaching to the shaft of the pole. Provide hardware that is galvanized steel, stainless steel, or corrosive-resistant aluminum. Provide a removable end cap with stainless steel attachment screws for the end of each mast arm. Ensure that the cap is cast aluminum conforming to Aluminum Association Alloy 356.0F. Furnish cap attached to the arm with a sturdy chain or cable approved by the Engineer. Ensure that the chain or cable is long enough to permit the cap to hang clear of the arm end opening when the cap is removed. #### Comply with the following for Aluminum Arms: - Conform to Aluminum Association Alloy 6061-T6, 6063-T6 or approved equivalent. - Conform to the welding requirements of the aluminum poles. - Have satin brush finished and furnish individually wrapped. Version 06.7 27 print date: 03/11/11 # Comply with the following for Steel Luminaire Arms: - In addition to taper tube Luminaire arms may be standard weight black steel pipe conforming to ASTM A 53-90a, Type E or Type S, Grade B or an approved equivalent. - Conform to the welding requirements of the steel poles. - After all fabricating, cutting, punching, and welding are completed, be hot-dipped galvanized inside and outside. - In accordance with the National Electrical Code (NEC) Article 230.2(E), provide identification of the electrical source provider for the luminaire feeder circuit with contact information on a permanent label located in the pole hand hole in the vicinity of the feeder circuit raceway #### A.
Materials: Fabrication of two ply pole shafts and arms is not acceptable except for fluted members. After all fabricating, cutting, punching, and welding are completed, hot-dip galvanize the structure in accordance with the 4th Edition AASHTO M 111 or equivalent. #### **B.** Construction Methods: Install horizontal-type arms with sufficient manufactured rise to keep arm from deflecting below horizontal. Attach cap to the mast arm with a sturdy chain or cable. Ensure that the chain or cable is long enough to permit the cap to hang clear of the arm opening when the cap is removed. For mast arm poles use full penetration welds with back-up ring at the pole base and at the arm base connection. #### 7.4. DRILLED PIER FOUNDATIONS FOR METAL TRAFFIC SIGNAL POLES Analysis procedures and formulas shall be based on AASHTO, ACI code and per FHWA manuals. Design methods based on Engineering publications or research papers needs to have prior approval from NCDOT. The Department reserves the right to accept or disapprove any method used for the analysis. Use a Factor of Safety of 1.33 for Torsion and 2.5 for bending for the foundation design. Foundation design for lateral load shall not to exceed 0.9" lateral deflection at top of foundation. #### A. Description: Furnish and install foundations for NCDOT metal poles with all necessary hardware in accordance with the plans and specifications. Metal Pole Standards have been developed and implemented by NCDOT for use at signalized intersections in North Carolina. If the plans call for a standard pole, then a standard foundation may be selected from the plans. However, the Contractor is not required to use a standard foundation. If the Contractor chooses to design a non-standard site-specific foundation for a standard pole or if the plans call for a non-standard site-specific pole, design the foundation to conform to the applicable provisions in the NCDOT Metal Pole Standards and Section B4 (Non-Standard Foundation Design) below. If non-standard site specific foundations are designed for standard QPL approved strain poles, the foundation designer must use the design moment specified by load case on Metal Pole U-2550B 292 Signals & Intelligent Transportation Systems Standard Drawing Sheet M8. Failure to conform to this requirement will be grounds for rejection of the design. If the Contractor chooses to design a non-standard foundation for a standard pole and the soil test results indicate a standard foundation is feasible for the site, the Contractor will be paid the cost of the standard foundation (drilled pier and wing wall, if applicable). Any additional costs associated with a non-standard site-specific foundation including additional materials, labor and equipment will be considered incidental to the cost of the standard foundation. All costs for the non-standard foundation design will also be considered incidental to the cost of the standard foundation. #### **B.** Soil Test and Foundation Determination: #### 1. General: Drilled piers are reinforced concrete sections, cast-in-place against in situ, undisturbed material. Drilled piers are of straight shaft type and vertical. Some standard drilled piers for supporting poles with mast arms may require wing walls to resist torsional rotation. Based upon this provision and the results of the required soil test, a drilled pier length and wing wall requirement may be determined and constructed in accordance with the plans. For non-standard site-specific poles, the contractor-selected pole fabricator will determine if the addition of wing walls is necessary for the supporting foundations. #### 2. Soil Test: Perform a soil test at each proposed metal pole location. Complete all required fill placement and excavation at each signal pole location to finished grade before drilling each boring. Soil tests performed that are not in compliance with this requirement may be rejected and will not be paid. Drill one boring to a depth of 26 feet within a 25 foot radius of each proposed foundation. Perform standard penetration tests (SPT) in accordance with ASTM D 1586 at depths of 1, 2.5, 5, 7.5, 10, 15, 20 and 26 feet. Discontinue the boring if one of the following occurs: - A total of 100 blows have been applied in any 2 consecutive 6-in. intervals. - A total of 50 blows have been applied with < 3-in. penetration. Describe each intersection as the "Intersection of (Route or SR #), (Street Name) and (Route or SR #), (Street Name), ______ County, Signal Inventory No. _____ ". Label borings with "B- N, S, E, W, NE, NW, SE or SW" corresponding to the quadrant location within the intersection. Pole numbers should be made available to the drill contractor. Include pole numbers in the boring label if they are available. If they are not available, ensure the boring labels can be cross-referenced to corresponding pole numbers. For each boring, submit a legible (hand written or typed) boring log signed and sealed by a licensed geologist or professional engineer registered in North Carolina. Include on each boring the SPT blow counts and N-values at each depth, depth of the boring, and a general description of the soil types encountered. #### 3. Standard Foundation Determination: Use the following method for determining the Design N-value: $$N_{AVG} = \underbrace{(N@1' + N@2.5' + \dots N@Deepest Boring Depth)}_{Total Number of N-values}$$ $$Y = (N@1')^2 + (N@2.5')^2 + \dots (N@Deepest Boring Depth)^2$$ $$Z = (N@1' + N@2.5' + \dots N@Deepest Boring Depth)$$ Version 06.7 29 print date: 03/11/11 $$N_{STD \ DEV} = \frac{(Total \ Number \ of \ N-values \ x \ Y) - Z^2}{(Total \ Number \ of \ N-values) \ x \ (Total \ Number \ of \ N-values - 1)}$$ Design N-value equals lesser of the following two conditions: $N_{AVG} - (N_{STD \ DEV} \ x \ 0.45)$ Or Average of First Four N-Values = $(N@1' + N@2.5' + N@5' + N@7.5')$ Note: If less than 4 N-values are obtained because of criteria listed in Section 2 above, use average of N-values collected for second condition. Do not include the N-value at the deepest boring depth for above calculations if the boring is discontinued at or before the required boring depth because of criteria listed in Section 2 above. Use N-value of zero for weight of hammer or weight of rod. If N-value is greater than 50, reduce N-value to 50 for calculations. If standard NCDOT strain poles are shown on the plans and the Contractor chooses to use standard foundations, determine a drilled pier length, "L," for each signal pole from the Standard Foundations Chart (sheet M 8) based on the Design N-value and the predominant soil type. For each standard pole location, submit a completed "Metal Pole Standard Foundation Selection Form" signed by the contractor's representative. Signature on form is for verification purposes only Include the Design N-value calculation and resulting drilled pier length, "L," on each form. If non-standard site-specific poles are shown on the plans, submit completed boring logs collected in accordance with Section 2 (Soil Test) above along with pole loading diagrams from the plans to the contractor-selected pole fabricator to assist in the pole and foundation design. If one of the following occurs, the Standard Foundations Chart shown on the plans may not be used and a non-standard foundation may be required. In such case, contact the Engineer. - The Design N-value is less than 4. - The drilled pier length, "L", determined from the Standard Foundations Chart, is greater than the depth of the corresponding boring. In the case where a standard foundation cannot be used, the Department will be responsible for the additional cost of the non-standard foundation. Foundation designs are based on level ground around the traffic signal pole. If the slope around the edge of the drilled pier is steeper than 8:1 (H:V) or the proposed foundation will be less than 10 feet from the top of an embankment slope, the contractor is responsible for providing slope information to the foundation designer and to the Engineer so it can be considered in the design. The "Metal Pole Standard Foundation Selection Form" may be found at: http://www.ncdot.gov/doh/preconstruct/highway/geotech/formdet/misc/MetalPole.pdf If assistance is needed, contact the Engineer. #### 4. Non-Standard Foundation Design: Design non-standard foundations based upon site-specific soil test information collected in accordance with Section 2 (Soil Test) above. Provide a drilled pier foundation for each pole with a length and diameter that result in a horizontal lateral movement of less than 1 inch at the top of the pier and a horizontal rotational movement of less than 1 inch at the edge of the pier. Contact the Engineer for pole loading diagrams for standard poles to be used for non-standard foundation designs. Submit any non-standard foundation designs including plans, calculations, and soil boring Version 06.7 30 print date: 03/11/11 logs to the Engineer for review and approval before construction. A Professional Engineer registered in the state of North Carolina must seal all plans and calculations. #### C. Drilled Pier Construction: #### 1. Excavation: Perform excavations for drilled piers to the required dimensions and lengths including all miscellaneous grading and excavation necessary to install the drilled pier. Depending on the subsurface conditions encountered, excavation in weathered rock or removal of boulders may be required. Dispose of drilling spoils as directed and in accordance with Section 802 of the *Standard Specifications*. Drilling spoils consist of all material excavated including water or slurry removed from the excavation either by pumping or with augers. Construct all drilled piers such that the piers are cast against undisturbed soil. If a larger casing and drilled pier are required as a result of unstable or caving material during drilling, backfill the excavation before removing the casing to be replaced. No additional payment will be made for
substituting a larger diameter drilled pier in order to construct a drilled pier cast against undisturbed soil. Construct drilled piers within the tolerances specified herein. If tolerances are exceeded, provide additional construction as approved by the Engineer to bring the piers within the tolerances specified. Construct drilled piers such that the axis at the top of the piers is no more than 3 inches in any direction from the specified position. Build drilled piers within 1% of the plumb deviation for the total length of the piers. Construct the finished top of pier elevation between 5 inches to 3 inches above the finished grade elevation. Form the top of the pier such that the concrete is smooth and level. If unstable, caving, or sloughing soils are anticipated or encountered, stabilize drilled pier excavations with either steel casing or polymer slurry. Steel casing may be either the sectional type or one continuous corrugated or non-corrugated piece. Ensure all steel casings consist of clean watertight steel of ample strength to withstand handling and driving stresses and the pressures imposed by concrete, earth or backfill. Use steel casings with an outside diameter equal to the specified pier size and a minimum wall thickness of 1/4 inches. Extract all temporary casings during concrete placement in accordance with this special provision unless the Contractor chooses to leave the casing in place in accordance with the requirements below. Any temporary steel casing that becomes bound or fouled during pier construction and cannot be practically removed may constitute a defect in the drilled pier. Improve such defective piers to the satisfaction of the Engineer by removing the concrete and enlarging the drilled pier, providing a replacement pier or other approved means. All corrective measures including redesign as a result of defective piers will not be cause for any claims or requests for additional compensation. Any steel casing left in place will be considered permanent casing. Permanent steel casings are only allowed for strain poles. When installing permanent casing, do not drill or excavate below the tip of the permanent casing at any time so that the permanent casing is against undisturbed soil. The Contractor may excavate a hole smaller than the specified pier size to facilitate permanent casing installation. Ensure the sides of the excavation do not slough during drilling. Ensure the hole diameter does not become larger than the inside diameter of the casing. No additional compensation will be paid for permanent casing. If polymer slurry is chosen to stabilize the excavation, use one of the following polymers listed in the table below: Version 06.7 31 print date: 03/11/11 | PRODUCT | MANUFACTURER | |-----------------|---| | SlurryPro CDP | KB Technologies Ltd
3648 FM 1960 West, Suite 107
Houston, TX 77068
(800) 525-5237 | | Super Mud | PDS Company
105 West Sharp Street
El Dorado, AR 71730
(800) 243-7455 | | Shore Pac GCV | CETCO Drilling Products Group
1500 West Shure Drive
Arlington Heights, IL 60004
(800) 527-9948 | | Novagel Polymer | Geo-Tech Drilling Fluids 220 North Zapata Hwy, Suite 11A Laredo, TX 78043 (210) 587-4758 | Use slurry in accordance with the manufacturer's guidelines and recommendations unless approved otherwise by the Engineer. The Contractor should be aware that polymer slurry may not be appropriate for a given site. Polymer slurry should not be used for excavations in soft or loose soils as determined by the Engineer. In wet pour conditions, advise and gain approval from the Engineer as to the planned construction method intended for the complete installation of the drilled pier before excavating. ## 2. Reinforcing Steel: Completely assemble a cage of reinforcing steel consisting of longitudinal and spiral / hoop bars and place cage in the drilled pier excavation as a unit immediately upon completion of drilling unless the excavation is entirely cased. If the drilled pier excavation is entirely cased down to the tip, immediate placement of the reinforcing steel is not required. Lift the cage so racking and cage distortion does not occur. Keep the cage plumb during concrete operations and casing extraction. Check the position of the cage before and after placing the concrete. Securely cross-tie the vertical and spiral / hoops reinforcement at each intersection with double wire. Support or hold down the cage so that the vertical displacement during concrete placement and casing extraction does not exceed 2 inches. Do not set the cage on the bottom of the drilled pier excavation. Place plastic bolsters under each vertical reinforcing bar that are tall enough to raise the rebar cage off the bottom of the drilled pier excavation a minimum of 3 inches. In order to ensure a minimum of 3 inches of concrete cover and achieve concentric spacing of the cage within the pier, tie plastic spacer wheels at five points around the cage perimeter. Use spacer wheels that provide a minimum of 3 inches "blocking" from the outside face of the spiral / hoop bars to the outermost surface of the drilled pier. Tie spacer wheels that snap together with wire and allow them to rotate. Use spacer wheels that span at least two adjacent vertical bars. Start placing spacer wheels at the bottom of the cage and continue up along its length at maximum 10-foot intervals. Supply additional peripheral spacer wheels at closer intervals as necessary or as directed by the Engineer. No welding of or to reinforcement is permitted. No welding of or to Anchor Bolt is permitted. #### 3. Concrete: Begin concrete placement immediately after inserting reinforcing steel into the drilled pier excavation. If the drilled pier excavation is entirely cased down to the tip, immediately placement of the concrete is not required. ### a) Concrete Mix Provide the mix design for drilled pier concrete for approval and, except as modified herein, meeting the requirements of Section 1000 of the *Standard Specifications*. Designate the concrete as NCDOT AA mix or better with a minimum compressive strength of 4500 psi at 28 days. The Contractor may use a high early strength mix. Make certain the cementitious material content complies with one of the following options: - Provide a minimum cement content of 640 lbs/yd³ and a maximum cement content of 800 lbs/yd³; however, if the alkali content of the cement exceeds 0.4%, reduce the cement content by 20% and replace it with fly ash at the rate of 1.2 lb of fly ash per lb of cement removed. - If Type IP blended cement is used, use a minimum of 665 lbs/yd³ Type IP blended cement and a maximum of 833 lbs/yd³ Type IP blended cement in the mix. Limit the water-cementitious material ratio to a maximum of 0.45. Air-entrain the concrete mix in accordance with Section 1000-3 (B) of the *Standard Specifications*. Produce a workable mix so that vibrating or prodding is not required to consolidate the concrete. When placing the concrete, make certain the slump is between 5 and 7 inches for dry placement of concrete or 7 and 9 inches for wet placement of concrete. Use Type I or Type II cement or Type IP blended cement and either No. 67 or No. 78M coarse aggregate in the mix. Use an approved water-reducer, water-reducing retarder, high-range water-reducer or high-range water-reducing retarder to facilitate placement of the concrete if necessary. Do not use a stabilizing admixture as a retarder in Drilled Pier Concrete without approval of the Engineer. Use admixtures that satisfy AASHTO M194 and add admixtures at the concrete plant when the mixing water is introduced into the concrete. Redosing of admixtures is not permitted. Place the concrete within 2 hours after introducing the mixing water. Ensure that the concrete temperature at the time of placement is 90°F or less. ## b) Concrete Placement Place concrete such that the drilled pier is a monolithic structure. Temporary casing may be completely removed and concrete placement may be temporarily stopped when the concrete level is within 45 to 50 inches of the ground elevation to allow for placement of anchor bolts and conduit. Do not pause concrete placement if unstable caving soils are present at the ground surface. Remove any water or slurry above the concrete and clean the concrete surface of all scum and sediment to expose clean, uncontaminated concrete before inserting the anchor bolts and conduit. Resume concrete pouring within 2 hours. Do not dewater any drilled pier excavations unless the excavation is entirely cased down to tip. Do not begin to remove the temporary casing until the level of concrete within the casing is in excess of 10 feet above the bottom of the casing being removed. Maintain the concrete level at least 10 feet above the bottom of casing throughout the entire casing extraction operation except when concrete is near the top of the drilled pier elevation. Maintain a sufficient head of concrete above the bottom of casing to overcome outside soil and water pressure. As the temporary casing is withdrawn, exercise care in maintaining an adequate level of concrete within the casing so that fluid trapped behind the Version 06.7 33 print date: 03/11/11 297 casing is displaced upward and discharged at the ground surface without contaminating or displacing the drilled pier concrete. Exerting downward pressure, hammering, or vibrating the temporary casing is permitted to facilitate extraction. Keep a record of the volume of concrete placed in each drilled pier excavation and make it available to the Engineer. After all the pumps have been removed from the excavation, the water inflow rate determines the concrete placement procedure. If the inflow rate is less than 6 inches per half hour, the concrete placement is considered dry. If the water inflow rate is greater than 6 inches per half hour, the concrete
placement is considered wet. - Dry Placement: Before placing concrete, make certain the drilled pier excavation is dry so the flow of concrete completely around the reinforcing steel can be certified by visual inspection. Place the concrete by free fall with a central drop method where the concrete is chuted directly down the center of the excavation. In wet conditions, dewatering of a drill shaft prior to concrete placement does not change the placement method to a "Dry placement" method without approval. - Wet Placement: Maintain a static water or slurry level in the excavation before placing concrete. Place concrete with a tremie or a pump in accordance with the applicable parts of Sections 420-6 and 420-8 of the Standard Specifications. Use a tremie tube or pump pipe made of steel with watertight joints. Passing concrete through a hopper at the tube end or through side openings as the tremie is retrieved during concrete placement is permitted. Use a discharge control to prevent concrete contamination when the tremie tube or pump pipe is initially placed in the excavation. Extend the tremie tube or pump pipe into the concrete a minimum of 5 feet at all times except when the concrete is initially introduced into the pier excavation. If the tremie tube or pump pipe pulls out of the concrete for any reason after the initial concrete is placed, restart concrete placement with a steel capped tremie tube or pump pipe. At no circumstances may concrete mix free fall through water. Once the concrete in the excavation reaches the same elevation as the static water level, placing concrete with the dry method is permitted. Before changing to the dry method of concrete placement, remove any water or slurry above the concrete and clean the concrete surface of all scum and sediment to expose clean, uncontaminated concrete. Vibration is only permitted, if needed, in the top 10 feet of the drilled pier or as approved by the Engineer. Remove any contaminated concrete from the top of the drilled pier and wasted concrete from the area surrounding the drilled pier upon completion. Permanently mark the top of each foundation with a stamp or embedded plate to identify the depth of the foundation, size and number of vertical reinforcements and the concrete strength. ### 4. Concrete Placement Time: Place concrete within the time frames specified in Table 1000-2 of the *Standard Specifications* for Class AA concrete except as noted herein. Do not place concrete so fast as to trap air, water, fluids, soil or any other deleterious materials in the vicinity of the reinforcing steel and the annular zone between the rebar cage and the excavation walls. Should a delay occur because of concrete delivery or other factors, reduce the placement rate to maintain some movement of the concrete. No more than 45 minutes is allowed between placements. Version 06.7 34 print date: 03/11/11 ## 5. Scheduling and Restrictions: During the first 16 hours after a drilled pier has achieved its initial concrete set as determined by the Engineer, do not drill adjacent piers, install adjacent piles, or allow any heavy construction equipment loads or "excessive" vibrations to occur at any point within a 20 foot radius of the drilled pier. The foundation will be considered acceptable for loading when the concrete reaches a minimum compressive strength of 3000 psi. This provision is intended to allow the structure to be installed on the foundation in a shorter time frame, and does not constitute full acceptance of the drilled pier. Full acceptance will be determined when the concrete meets its full strength at 28 days. In the event that the procedures described herein are performed unsatisfactorily, the Engineer reserves the right to shut down the construction operations or reject the drilled piers. If the integrity of a drilled pier is in question, use core drilling, sonic or other approved methods at no additional cost to the Department and under the direction of the Engineer. Dewater and backfill core drill holes with an approved high strength grout with a minimum compressive strength of 4500 psi. Propose remedial measures for any defective drilled piers and obtain approval of all proposals from the Engineer before implementation. No additional compensation will be paid for losses or damage due to remedial work or any investigation of drilled piers found defective or not in accordance with these special provision or the plans. # D. Drilled Pier Foundations with Wing Walls: ### 1. General: Wing walls are reinforced concrete sections, rectangular in shape that protrudes horizontally out from two sides of a drill pier shaft. They are cast-in-place together with a drilled pier in a monolithic pour. They are used to eliminate torsional rotation of a foundation designed for supporting poles with mast arms. NCDOT Metal Pole Standards provide design details for two types of wing walls based on their size and concrete volume: - TYPE 1: 1'-6" long by 1'-0" wide by 3'-0" deep (.4 cubic yards) - TYPE 2: 3'-0" long by 1'-0" wide by 5'-0" deep (1.2 cubic yards) The type of wing wall to be used, if required, is determined when a standard foundation is selected from the Standard Foundations Chart shown on the plans. For non-standard site-specific pole designs, the contractor-selected pole fabricator will determine whether wings are needed for the pole foundation. Contact the Engineer for assistance in resolving constructability issues if wing walls for a foundation are required, but can not be installed because: - of unforeseen difficulties such as underground utility obstructions, - the construction of the wings may compromise a roadway base, - the soil conditions are so unstable that construction of the wings may compromise the integrity of the drill pier shaft, or - underground rock formations make excavation impractical. ### 2. Excavation: Excavate for wing walls after boring of the drill pier shaft is complete. Follow excavation procedure as necessary per Section C1 (Drilled Pier Construction – Excavation). If unstable, caving or sloughing soils are anticipated or encountered, stabilize excavation for wings using temporary Version 06.7 35 print date: 03/11/11 shoring during excavation and through concrete placement. In wet pour conditions, advise and gain approval from the Engineer as to the planned construction method intended for the complete installation of the drilled pier before performing any excavation of the drill pier or its wings. ## 3. Reinforcing Steel: Completely assemble the wing wall cage along with the drill pier cage. Install horizontal bars in one continuous length so they extend completely through the drill shaft cage, out to each wing tip. Follow details described in Section C2 (Drilled Pier Construction – Reinforcing Steel). If a drilled pier casing has been installed to construct the drill shaft to stabilize the shaft walls, installation of the wing wall reinforcing steel may not be possible until the drill shaft casing has been extracted. Constructability issues must be resolved and construction methods approved to the satisfaction of the Engineer before assembly of the reinforcing cage. ### 4. Concrete Placement: Place concrete such that the drilled pier and wing walls are a monolithic structure. Follow provisions described in Section C3 (Drilled Pier Construction – Concrete). No construction joints or keys will be allowed. ### 7.5. CUSTOM DESIGN OF TRAFFIC SIGNAL SUPPORTS ### A. General: Design traffic signal supports with foundations consisting of metal strain poles or metal poles with mast arms. The lengths of the metal signal poles shown on the plans are estimated from available data for bid purposes. Determine the actual length of each pole from field measurements and adjusted cross-sections. Furnish the revised pole heights to the Engineer. Use all other dimensional requirements shown on the plans. Ensure each pole includes an identification tag with information and location positions as defined on Metal Pole Standard Drawing Sheets M2, M3 and M4. All pole shaft tags must include the NCDOT Inventory number followed by the pole number shown on the traffic signal or ITS (non-signalized locations) plan. Design all traffic signal support structures using the following 4th Edition AASHTO specifications: - Design for a 50 year service life as recommended by Table 3-3 per the 4th Edition AASHTO. - Use the wind pressure map developed from 3-second gust speeds, as provided in Article 3.8. - Ensure signal support structures include natural wind gust loading and truck-induced gust loading in the fatigue design, as provided for in Articles 11 7.3 and 11 7.4, respectively. Designs need not consider periodic galloping forces. - Assume the natural wind gust speed in North Carolina is 11.2 mph. - Design for Category II fatigue, as provided for in Article 11.6, unless otherwise specified. - Calculate all stresses using applicable equations from Section 5 The Maximum allowable stress ratios for all signal support designs are 0.9. - Conform to article 10.4.2 and 11.8 for all deflection requirements. Ensure that the design permits cables to be installed inside poles and mast arms. Unless otherwise specified by special loading criteria, the computed surface area for ice load on signal heads is: • 3-section, 12-inch, Surface area: 26.0 ft² Version 06.7 36 print date: 03/11/11 • 4-section, 12-inch, Surface area: 32.0 ft² • 5-section, 12-inch, Surface area: 42.0 ft² The 1ce loading for signal heads defined above includes the additional surface area that back plates will induce. Special loading criteria may be specified in instances where back plates will not be installed on signal heads. Refer to the Loading Schedule on each Metal Pole Loading Diagram for revised signal head surface areas. The pole designer should revise ice loads accordingly in this instance. Careful examination of the plans when this is specified is important as this may impact sizing of the
metal support structure and foundation design which could affect proposed bid quotes. All maximum stress ratios of 0.9 still apply. Assume the combined minimum weight of a messenger cable bundle (including messenger cable, signal cable and detector lead-in cables) is 1.3 lbs/ft. Assume the combined minimum diameter of this cable bundle is 1.3 inches. Ensure that designs provide a removable pole cap with stainless steel attachment screws for each pole top and mast arm end. #### **B.** Metal Poles: Submit design drawings for approval including pre-approved QPL poles. Show all the necessary details and calculations for the metal poles including the foundation and connections. Include signal inventory number on design drawings. Include as part of the design calculations the ASTM specification numbers for the materials to be used. Provide the types and sizes of welds on the design drawings. Include a Bill of Materials on design drawings. Ensure design drawings and calculations are signed, dated, and sealed by the responsible Professional Engineer licensed in the State of North Carolina. Immediately bring to the attention of the Engineer any structural deficiency that becomes apparent in any assembly or member of any assembly as a result of the design requirements imposed by these Specifications, the plans, or the typical drawings. Said Professional Engineer is wholly responsible for the design of all poles and arms. Review and acceptance of these designs by the Department does not relieve the said Professional Engineer of his responsibility. Do not fabricate the assemblies until receipt of the Department's approval of the design drawings. For mast arm poles, provide designs with provisions for pole plates and associated gussets and fittings for mast arm attachment. As part of each mast arm attachment, provide a grommeted 2" diameter hole on the shaft side of the connection to allow passage of the signal cables from the pole to the arm. For strain poles, where ice is present, assume wind loads as shown in Figure 3-5 of the 4th Edition AASHTO Specification for Group III loading. For each strain pole, provide two messenger cable clamps and associated hardware to attach the messenger support cable. Ensure that the diameter of the clamps is appropriately designed to be adjustable from 18 inches below the top, down to 6'-6" below the top of the pole. Do not attach more than one messenger support cable to a messenger cable clamp. Provide a grounding lug(s) in the approximate vicinity of the messenger cable clamp for bonding and grounding messenger cable. Lugs must accept #4 or #6 AWG wire to bond messenger cables to the pole in order to provide an effective ground fault circuit path. Refer to Metal Pole Standard Drawing Sheet M6 for construction details. Design tapers for all pole shafts that begin at the base with diameters that decrease uniformly at the rate of 0.14 inch per foot of length. Version 06.7 37 print date: 03/11/11 Design a base plate on each pole. The minimum base plate thickness for all poles is determined by the following criteria: <u>Case 1</u> Circular or rectangular solid base plate with the upright pole welded to the top surface of base plate with full penetration butt weld, and where no stiffeners are provided. A base plate with a small center hole, which is less than 1/3 of the upright diameter, and located concentrically with the upright pole, may be considered as a solid base plate. The magnitude of bending moment in the base plate, induced by the anchoring force of each anchor bolt is $M = (P \times D_1) / 2$, where M = bending moment at the critical section of the base plate induced by one anchor bolt P = anchoring force of each anchor bolt D_1 = horizontal distance between the anchor bolt center and the outer face of the upright, or the difference between the bolt circle radius and the outside radius of the upright Locate the critical section at the face of the anchor bolt and perpendicular to the bolt circle radius. The overlapped part of two adjacent critical sections is considered ineffective. <u>Case 2</u> Circular or rectangular base plate with the upright pole socketed into and attached to the base plate with two lines of fillet weld, and where no stiffeners are provided, or any base plate with a center hole that is larger in diameter than 1/3 of the upright diameter. The magnitude of bending moment induced by the anchoring force of each anchor bolt is $M = P \times D_2$, where P = anchoring force of each anchor bolt D_2 = horizontal distance between the face of the upright and the face of the anchor bolt nut Locate the critical section at the face of the anchor bolt top nut and perpendicular to the radius of the bolt circle. The overlapped part of two adjacent critical sections is considered ineffective. If the base plate thickness calculated for Case 2 is less than Case 1, use the thickness calculated for Case 1. The following additional owner requirements apply concerning pole base plates. - Ensure that whichever case governs as defined above, the anchor bolt diameter is set to match the base plate thickness. If the minimum diameter required for the anchor bolt exceeds the thickness required for the base plate, set the base plate thickness equal to the required bolt diameter. - For dual mast arm supports, or for single mast arm supports 50' or greater, use a minimum 8 bolt orientation with 2" diameter anchor bolts, and a 2" thick base plate. - For all metal poles with mast arms, use a full penetration groove weld with a backing ring to connect the pole upright component to the base. Refer to Metal Pole Standard Drawing Sheet M4. Ensure that designs have anchor bolt holes with a diameter 1/4 inch larger than the anchor bolt diameters in the base plate. Ensure that the anchor bolts have the required diameters, lengths, and positions, and will develop strengths comparable to their respective poles. Provide designs with a 6 x 12-inch hand hole with a reinforcing frame for each pole. Provide designs with a terminal compartment with cover and screws in each pole that encompasses the hand hole and contains provisions for a 12-terminal barrier type terminal block. Version 06.7 38 print date: 03/11/11 For each pole, provide designs with provisions for a 1/2 inch minimum thread diameter, coarse thread stud and nut for grounding which will accommodate a Number 6 AWG ground wire. Ensure the lug is electrically bonded to the pole and is conveniently located inside the pole at the hand hole. Where required, design couplings on the pole for mounting pedestrian pushbuttons at a height of 42 inches above the bottom of the base. Provide mounting points consisting of 1-1/2 inch internally threaded half-couplings that comply with the NEC that are mounted within the poles. Ensure the couplings are essentially flush with the outside surfaces of the poles and are installed before any required galvanizing. Provide a threaded plug for each half coupling. Ensure that the surface of the plug is essentially flush with the outer end of the mounting point when installed and has a recessed hole to accommodate a standard wrench. ## C. Mast Arms: Design all arm plates and necessary attachment hardware, including bolts and brackets as required by the plans. Design for grommeted holes on the arms to accommodate the cables for the signals if specified. Design arms with weatherproof connections for attaching to the shaft of the pole. Always use a full penetration groove weld with a backing ring to connect the mast arm to the pole. Refer to Metal Pole Standard Drawing Sheet M5. ## 7.6. POLE NUMBERING SYSTEM ## A. New Poles Attach an identification tag to each pole shaft and mast arm section as shown on Metal Pole Standard Drawing Sheet M2 "Typical Fabrication Details Common To All Metal Poles". ### **B.** Reused Poles Do not remove the original identification tag(s) from the pole shaft and/or mast arm sections. Add a new identification tag based on the new location for any reused poles and/or mast arms. ### 7.7. REUSED POLE SHAFTS AND/OR MAST ARMS Provide shop drawings along with new foundation designs for review and approval prior to furnishing and/or installing any reused metal poles and/or mast arms. Use the same requirements as specified for new materials as stated above in these Special Provisions. For reused pole shaft and mast arm combinations, it is preferable to use the original shafts and arms that were used together at the time of original installation. ## 7.8. MEASUREMENT AND PAYMENT Actual number of metal poles with single mast arms furnished, installed, and accepted. Actual number of metal poles with dual mast arms furnished, installed, and accepted. Actual number of soil tests with SPT borings drilled furnished and accepted. Actual volume of concrete poured in cubic yards of drilled pier foundation furnished, installed and accepted. Actual number of designs for mast arms with metal poles furnished and accepted. Version 06.7 39 print date: 03/11/11 No measurement will be made for foundation designs prepared with metal pole designs, as these will be considered incidental to designing signal support structures. ## Payment will be made under: | Metal Pole with Single Mast Arm | Each | |---------------------------------|------------| | Metal Pole with Dual Mast Arm | | | Soil Test | Each | | Drilled Pier Foundation | Cubic Yard | | Mast Arm with Metal Pole Design | Each | ### 8. CONTROLLERS WITH CABINETS ### 8.1. MATERIALS – TYPE 2070L CONTROLLERS Conform to CALTRANS *Transportation Electrical Equipment Specifications* (TEES) (dated August 16, 2002, plus Errata 1 dated October 27, 2003 and Errata 2 dated June 08, 2004) except as required herein. Furnish Model 2070L controllers. Ensure that removal of the CPU module from the controller will place the intersection into flash. The Department will provide software at the beginning of the burning-in period. Contractor shall give 5 working days notice before
needing software. Program software provided by the Department. Provide model 2070L controllers with the latest version of OS9 operating software and device drivers, composed of the unit chassis and at a minimum the following modules and assemblies: - MODEL 2070 1B, CPU Module, Single Board - MODEL 2070-2A, Field I/O Module (FI/O) - MODEL 2070-3B, Front Panel Module (FP), Display B (8x40) - MODEL 2070-4A, Power Supply Module, 10 AMP - MODEL 2070-7A, Async Serial Com Module (9-pin RS-232) Furnish one additional MODEL 2070-7A, Async Serial Com Module (9-pin RS-232) for all master controller locations. For each master location and central control center, furnish a U.S. Robotics V.92 or approved equivalent auto-dial/auto-answer external modem to accomplish the interface to the Department-furnished microcomputers. Include all necessary hardware to ensure telecommunications. #### 8.2. MATERIALS – GENERAL CABINETS Provide a moisture resistant coating on all circuit boards. Provide one V150LA20 MOV or equal protection on each load switch field terminal. Provide a power line surge protector that is a two-stage device that will allow connection of the radio frequency interference filter between the stages of the device. Ensure that a maximum continuous current is at least 10A at 120V. Ensure that the device can withstand a minimum of 20 peak surge current occurrences at 20,000A for an 8x20 microsecond waveform. Provide a maximum clamp voltage of 280V at 20,000A with a nominal series inductance of 200µh. Ensure that the voltage does not exceed 280V. Provide devices that comply with the following: P44 Version 06.7 40 print date: 03/11/11 | Frequency (Hz) | Minimum Insertion Loss (dB) | |----------------|-----------------------------| | 60 | 0 | | 10,000 | 30 | | 50,000 | 55 | | 100,000 | 50 | | 500,000 | 50 | | 2,000,000 | 60 | | 5,000,000 | 40 | | 10,000,000 | 20 | | 20,000,000 | 25 | ### 8.3. MATERIALS – TYPE 170E CABINETS ## A. Type 170 E Cabinets General: Conform to CALTRANS *Traffic Signal Control Equipment Specifications* except as required herein. Furnish CALTRANS Model 336S pole mounted cabinets configured for 8 vehicle phases with power distribution assemblies (PDAs) number 2, and 4 pedestrian phases or overlaps. Furnish CALTRANS Model 332A base mounted cabinets with PDAs #2 and configured for 8 vehicle phases, 4 pedestrian phases, and 4 overlaps. When overlaps are required, provide auxiliary output files for the overlaps. Do not reassign load switches to accommodate overlaps unless shown on electrical details. Provide a mercury contactor or solid state relay (normally closed) in the PDAs #2 that is rated at a minimum of 50A, 120VAC. # B. Type 170 E Cabinet Electrical Requirements: Provide a cabinet assembly designed to ensure that upon leaving any cabinet switch or conflict monitor initiated flashing operation, the controller starts up in the programmed start up phases and start up interval. Furnish two sets of non-fading cabinet wiring diagrams and schematics in a paper envelope or container and placed in the cabinet drawer. Provide surge suppression in the cabinet for each type of cabinet device. Provide surge protection for the full capacity of the cabinet input file. All AC+ power is subject to radio frequency signal suppression. If additional surge protected power outlets are needed to accommodate fiber transceivers, modems, etc., install a UL listed, industrial, heavy-duty type power outlet strip with a minimum rating of 15 A / 125 VAC, 60 Hz. Provide a strip that has a minimum of 3 grounded outlets. Ensure the power outlet strip plugs into one of the controller unit receptacles located on the rear of the PDA. Ensure power outlet strip is mounted securely; provide strain relief if necessary Connect detector test switches for cabinets as follows: Version 06.7 41 print date: 03/11/11 | 336S Cabinet | | 332A Cabinet | | |------------------------|-----------|-----------------------------|------| | Detector Call Switches | Terminals | Detector Call Switches Term | | | Phase 1 | I1-F | Phase 1 | I1-W | | Phase 2 | I2-F | Phase 2 | I4-W | | Phase 3 | I3-F | Phase 3 | I5-W | | Phase 4 | I4-F | Phase 4 | I8-W | | Phase 5 | I5-F | Phase 5 | J1-W | | Phase 6 | I6-F | Phase 6 | J4-W | | Phase 7 | I7-F | Phase 7 | J5-W | | Phase 8 | I8-F | Phase 8 | J8-W | Provide a terminal mounted loop surge suppresser device for each set of loop terminals in the cabinet. For a 10x700 microsecond waveform, ensure that the device can withstand a minimum of 25 peak surge current occurrences at 100A, in both differential and common modes. Ensure that the maximum breakover voltage is 170V and the maximum on-state clamping voltage is 30V. Provide a maximum response time less than 5 nanoseconds. Ensure that off-state leakage current is less than $10 \,\mu A$. Provide a nominal capacitance less than 220pf for both differential and common modes. Provide surge suppression on each communications line entering or leaving a cabinet. Ensure that the communications surge suppresser can withstand at least 80 occurrences of an 8x20 microsecond wave form at 2000A and a 10x700 microsecond waveform at 400A. Ensure that the maximum clamping voltage is suited to the protected equipment. Provide a maximum response time less than 1 nanosecond. Provide a nominal capacitance less than 1500pf and a series resistance less than $15\,\Omega$. Provide surge suppression on each DC input channel in the cabinet. Ensure that the DC input channel surge suppresser can withstand a peak surge current of at least 10,000 amperes in the form of an 8x20 microsecond waveform and at least 100 occurrences of an 8x20 microsecond wave form at 2000 A. Ensure that the maximum clamping voltage is 30V. Provide a maximum response time less than 1 nanosecond and a series resistance less than 15 Ω per line. Provide protection for each preemption or 120 Vrms single phase signal input by an external stud mounted surge protector. Ensure that a minimum stud size of 1/3 inch, and Number 14 AWG minimum sized wire leads with 1 foot minimum lengths. Ensure that a peak surge trip point less than 890 volts nominal for a 600 volt rise per microsecond impulse, and 950 volts nominal for a 3000 volt per microsecond rise impulse. Provide a maximum surge response time less than 200 nanoseconds at 10 kV per microsecond. Ensure that the AC isolation channel surge suppresser can withstand at least 25 occurrences of a 8x20 waveform of 10,000 amperes and a peak single pulse 8x20 microsecond wave form of 20,000 amperes. Provide a maximum clamping voltage of 30V. Provide a maximum response time less than 1 nanosecond. Ensure that the discharge voltage is under 200 volts at 1000 amperes and the insulation resistance is 100 megaohms. Provide an absolute maximum operating line current of one ampere at 120 Vrms. Provide conductors for surge protection wiring that are of sufficient size (ampacity) to withstand maximum overcurrents which could occur before protective device thresholds are attained and current flow is interrupted. Furnish a fluorescent fixture in the rear across the top of the cabinet and another fluorescent fixture in the front across the top of the cabinet at a minimum. Ensure that the fixtures provide sufficient light to illuminate all terminals, labels, switches, and devices in the cabinet. Conveniently Version 06.7 42 print date: 03/11/11 locate the fixtures so as not to interfere with a technician's ability to perform work on any devices or terminals in the cabinet. Provide a protective diffuser to cover exposed bulbs. Furnish all bulbs with the cabinet. Provide door switch actuation for the fixtures. Furnish a police panel with a police panel door. Ensure that the police panel door permits access to the police panel when the main door is closed. Ensure that no rainwater can enter the cabinet even with the police panel door open. Provide a police panel door hinged on the right side as viewed from the front. Provide a police panel door lock that is keyed to a standard police/fire call box key. In addition to CALTRANS Specifications, provide the police panel with a toggle switch connected to switch the intersection operation between normal stop-and-go operation (AUTO) and manual operation (MANUAL). Ensure that manual control can be implemented using inputs and software such that the controller provides full programmed clearance times for the yellow clearance and red clearance for each phase while under manual control. Provide a 1/4-inch locking phone jack in the police panel for a hand control to manually control the intersection. Provide sufficient room in the police panel for storage of a hand control and cord. Provide detector test switches inside the cabinet on the door or other convenient location which may be used to place a call on each of eight phases based on standard CALTRANS input file designation for detector racks. Provide three positions for each switch: On (place call), Off (normal detector operation), and Momentary On (place momentary call and return to normal detector operation after switch is released). Ensure that the switches are located such that the technician can read the controller display and observe the intersection. Provide a shorting jack inside cabinet that functions exclusively to call the controller and cabinet assembly into the automatic diagnostics functions. Ensure shorting jack will mate with a Switchcraft Model 190 plug or equivalent. Place jack in a convenient, unobstructed location inside cabinet. When the mating plug is inserted into the jack, ensure controller enters the diagnostic test mode and a controller generated monitor reset signal is placed on Pin C1-102 (monitor external reset) of the model 210 conflict monitor which causes the monitor to automatically reset. Equip cabinet with a connector and terminal assembly designated as P20 (Magnum P/N 722120 or equivalent) for monitoring the absence of any valid AC+ signal display (defined here as
red, yellow, or green) input on any channel of the conflict monitor. Connect the terminal through a 3 1/2 feet 20 wire ribbon cable which mates on the other end to a connector (3M-3428-5302 or equivalent) installed in the front of the Type 2010 enhanced conflict monitor. Ensure that the female connector which mates with the connector on the conflict monitor has keys to ensure that proper connection. Ensure that the cabinet enters the flash mode if the ribbon cable is not properly connected. Provide a P20 connector and terminal assembly that conforms to Los Angeles City DOT "Traffic Signal Specification DOT 170 ATSAC Universal and Related Equipment #54-053-02". Terminate ribbon cable at the P20 connector and terminal assembly. Ensure the P20 connector and mating ribbon cable connector is keyed to prevent cable from being improperly installed. Wire the P20 connector to the traffic signal red displays to provide inputs to conflict monitor as shown: Version 06.7 43 print date: 03/11/11 | Pin# | Function | Pin# | Function | |------|--------------------|------|---------------| | 1 | Channel 15 Red | 11 | Channel 9 Red | | 2 | Channel 16 Red | 12 | Channel 8 Red | | 3 | Channel 14 Red | 13 | Channel 7 Red | | 4 | GND | 14 | Channel 6 Red | | 5 | Channel 13 Red | 15 | Channel 5 Red | | 6 | Special Function 2 | 16 | Channel 4 Red | | 7 | Channel 12 Red | 17 | Channel 3 Red | | 8 | Special Function 1 | 18 | Channel 2 Red | | 9 | Channel 10 Red | 19 | Channel 1 Red | | 10 | Channel 11 Red | 20 | Red Enable | Provide a convenient means to jumper 120 VAC from the signal load switch AC+ supply bus to any channel Red input to the P20 connector in order to the unused red inputs high. Ensure that easy access is provided to the jumper connecting terminals on the back side of cabinet. Locate the jumper terminals connecting to all 16 channel Red inputs in the same terminal block. For each channel Red input terminal, provide a companion terminal supplying AC+ from the signal bus. Provide one of the following two methods for providing Signal AC+ to the channel red input: - Place a commercially available jumper plug between the channel Red input and its companion Signal Bus AC+ terminal. - Place a jumper wire between a channel red input screw terminal and its companion Signal Bus AC+ screw terminal. Connection between channel Red input terminal and its companion Signal Bus AC+ terminal must not require a wire greater than 1/2 inch in length. Conform to the following Department wiring requirements: - Wire the Red Enable monitor input to the Signal Bus AC+ terminal TB01-1. - Do not connect either the special function 1 or the special function 2 monitor input to the red monitor card. - Ensure that removal of the P-20 ribbon cable will cause the monitor to recognize a latching fault condition and place the cabinet into flashing operation and that this is implemented in the conflict monitor software. Ensure that removal of the conflict monitor from the cabinet will cause the cabinet to revert to flashing operation. Provide Model 200 load switches and Model 204 flashers. ## C. Type 170 E Cabinet Physical Requirements: Provide a surge protection panel with 16 loop protection devices and designed to allow sufficient free space for wire connection/disconnection and surge protection device replacement. Provide an additional three slots protected with six AC+ interconnect surge devices and two protected by four DC surge protection devices. Provide no protection devices on slot 14. Attach flash sense and stop time to the upper and lower slot as required. i) For pole mounted cabinets, mount surge protection devices for the AC+ interconnect cable inputs, inductive loop detector inputs, and low voltage DC inputs on a fold down panel assembly on the rear side of the input files. Fabricate the surge protection devices from sturdy aluminum and incorporate a swing down back panel to which the surge protection devices are attached. Attach the swing down panel to the assembly using thumb screws. Have the surge Version 06.7 44 print date: 03/11/11 protection devices mounted horizontally on the panel and soldered to the feed through terminals of four 14 position terminal blocks with #8 screws mounted on the other side. ii) For base mounted cabinets, attach separate surge protection termination panels to each side of the cabinet rack assembly. Mount the surge protection termination panel for AC isolation devices on the same side of the cabinet as the AC service inputs. Install the surge protection termination panel for DC terminals and loop detector terminals on the opposite side of the cabinet from the AC service inputs. Attach each panel to the rack assembly using bolts and make it easily removable. Mount the surge protection devices in horizontal rows on each panel and solder to the feed through terminals of 14 position terminal blocks with #8 screws mounted on the other side. Wire the terminals to the rear of a standard input file using spade lugs for input file protection. Provide permanent labels that indicate the slot and the pins connected to each terminal that may be viewed from the rear cabinet door. Label and orient terminals so that each pair of inputs is next to each other. Ensure the top row of terminals is connected to the upper slots and the bottom row of terminals is connected to the bottom slots. Indicate on the labeling the slot number (1-14) and the terminal pins of the input slots (either D & E for upper or J & K for lower). Terminate all grounds from the surge protection on a 15 position copper equipment ground bus attached to the rear swing down panel. Ensure that a Number 4 AWG green wire connects the surge protection panel assembly ground bus to the main cabinet equipment ground. Provide a standard input file and surge protection panel assembly that fits outside and behind the input file. Ensure the fold down panel allows for easy removal of the input file without removing the surge protection panel assembly or its parts. Provide a minimum 14 x 16 inch pull out, hinged top shelf located immediately below controller mounting section of the cabinet. Ensure the shelf is designed to fully expose the table surface outside the controller at a height approximately even with the bottom of the controller. Ensure the shelf has a storage bin interior which is a minimum of 1 inch deep and approximately the same dimensions as the shelf. Provide an access to the storage area by lifting the hinged top of the shelf. Fabricate the shelf and slide from aluminum or stainless steel and ensure the assembly can support the 170E controller plus 15 pounds of additional weight. Ensure shelf has a locking mechanism to secure it in the fully extended position and does not inhibit the removal of the 170E controller or removal of cards inside the controller when fully extended. Provide a locking mechanism that is easily released when the shelf is to be returned to its non-use position directly under the controller. ## D. Type 170 E Model 2010 Enhanced Conflict Monitor: Furnish Model 2010 Enhanced Conflict Monitors that provide monitoring of 16 channels. Ensure each channel consists of a green, yellow, and red field signal input. Ensure that the conflict monitor meets or exceeds CALTRANS Transportation Electrical Equipment Specifications dated August 16, 2002 with Erratum 1 and 2 (hereafter referred to as CALTRANS's 2002 TEES) for a model 210 monitor unit and other requirements stated in this specification. Ensure the conflict monitor is provided with a 16 channel conflict programming card. Pin 16 and Pin T of the programming card shall be connected together. Ensure that the absence of the conflict programming card will cause the conflict monitor to trigger (enter into fault mode), and remain in the triggered state until the programming card is properly inserted and the conflict monitor is reset. Provide a conflict monitor that incorporates LED indicators into the front panel to dynamically display the status of the monitor under normal conditions and to provide a comprehensive review of field inputs with monitor status under fault conditions. Ensure that the monitor indicates the Version 06.7 45 print date: 03/11/11 channels that were active during a conflict condition and the channels that experienced a failure for all other per channel fault conditions detected. Ensure that these indications and the status of each channel are retained until the Conflict Monitor is reset. Furnish LED indicators for the following: - AC Power - VDC Failed - WDT Error - Conflict - Red Fail - Dual Indication - Short Yellow/Sequence Failure - Program Card/PC Ajar - Monitor Fail/Diagnostic Failure - Channel Indicators (One indicator for each green, yellow, and red field signal input for each channel) In addition to the connectors required by CALTRANS's 2002 TEES, provide the conflict monitor with a red interface connector mounted on the front of the monitor (3M-3428-5302 or equivalent with polarizing keys) which ensures proper mating with a 20 pin ribbon cable connector that conducts the signals from the P20 connector on the cabinet assembly. Keying of the connector shall be between pins 3 and 5, and between 17 and 19. The odd numbered pins are on one side, and the even pins are on the other. Provide connector pins on the monitor with the following functions: | Pin# | Function | Pin # | Function | |------|----------------|-------|--------------------| | 1. | Channel 15 Red | 2 | Channel 16 Red | | 3 | Channel 14 Red | 4 | Chassis Ground | | 5 | Channel 13 Red | 6 | Special Function 2 | | 7 | Channel 12 Red | 8 | Special Function 1 | | 9 | Channel 10 Red | 10 | Channel 11 Red | | 11 | Channel 9 Red | 12 | Channel 8 Red | | 13 | Channel 7 Red | 14 | Channel 6 Red | | 15 | Channel 5 Red | 16 | Channel 4 Red | | 17 | Channel 3 Red | 18 | Channel 2 Red | | 19 | Channel 1 Red | 20 | Red Enable | Ensure that the removal of the P-20 red interface ribbon cable will cause the monitor to
recognize a latching fault condition and place the cabinet into flashing operation. Provide Special Function 1 and Special Function 2 inputs to the unit which shall disable only Red Fail Monitoring when either input is sensed active. A Special Function input shall be sensed active when the input voltage exceeds 70 Vrms with a minimum duration of 550 ms. A Special Function input shall be sensed not active when the input voltage is less than 50 Vrms or the duration is less than 250 ms. A Special Function input is undefined by these specifications and may or may not be sensed active when the input voltage is between 50 Vrms and 70 Vrms or the duration is between 250 ms and 550 ms. Ensure the conflict monitor recognizes field signal inputs for each channel that meet the following requirements: Version 06.7 46 print date: 03/11/11 - consider a Red input greater than 70 Vrms and with a duration of at least 500 ms as an "on" condition; - consider a Red input less than 50 Vrms or with a duration of less than 200 ms as an "off" condition (no valid signal); - consider a Red input between 50 Vrms and 70 Vrms or with a duration between 200 ms and 500 ms to be undefined by these specifications; - consider a Green or Yellow input greater than 25 Vrms and with a duration of at least 500 ms as an "on" condition; - consider a Green or Yellow input less than 15 Vrms or with a duration of less than 200 ms as an "off" condition; and - consider a Green or Yellow input between 15 Vrms and 25 Vrms or with a duration between 200 ms and 500 ms to be undefined by these specifications. Provide a conflict monitor that recognizes the faults specified by CALTRANS's 2002 TEES and the following additional faults. Ensure the conflict monitor will trigger upon detection of a fault and will remain in the triggered (in fault mode) state until the unit is reset at the front panel or through the external remote reset input for the following failures: - 1. Red Monitoring or Absence of Any Indication (Red Failure): A condition in which no "on" voltage signal is detected on any of the green, yellow, or red inputs to a given monitor channel. If a signal is not detected on at least one input (R, Y, or G) of a conflict monitor channel for a period greater than 1000 ms when used with a 170 controller and 1500 ms when used with a 2070L controller, ensure monitor will trigger and put the intersection into flash. If the absence of any indication condition lasts less that 750 ms when used with a 170 controller and 1200 ms when used with a 2070L controller, ensure conflict monitor will not trigger. Have red monitoring occur when both the following input conditions are in effect: - a) Red Enable input to monitor is active (Red Enable voltages are "on" at greater than 70 Vrms, off at less than 50 Vrms, undefined between 50 and 70 Vrms), and - b) neither Special Function 1 nor Special Function 2 inputs are active. - 2. Short/Missing Yellow Indication Error (Sequence Error): Yellow indication following a green is missing or shorter than 2.7 seconds (with ± 0.1-second accuracy). If a channel fails to detect an "on" signal at the Yellow input for a minimum of 2.7 seconds (± 0.1 second) following the detection of an "on" signal at a Green input for that channel, ensure that the monitor triggers and generates a sequence/short yellow error fault indication. This fault shall not occur when the channel is programmed for Yellow Inhibit or when the Red Enable signal is inactive. - 3. **Dual Indications on the Same Channel:** In this condition, more than one indication (R,Y,G) is detected as "on" at the same time on the same channel. If dual indications are detected for a period greater than 500 ms, ensure that the conflict monitor triggers and displays the proper failure indication (Dual Ind fault). If this condition is detected for less than 200 ms, ensure that the monitor does not trigger. G-Y-R dual indication monitoring shall be enabled on a per channel basis by use of switches located on the conflict monitor. G-Y dual indication monitoring shall be enabled for all channels by use of a switch located on the conflict monitor. - 4. **Configuration Settings Change:** The configuration settings are comprised of (as a minimum) the permissive diode matrix, dual indication switches, yellow disable jumpers, any option switches, any option jumpers, and the Watchdog Enable switch. Ensure the conflict Version 06.7 47 print date: 03/11/11 monitor compares the current configuration settings with the previous stored configuration settings on power-up, on reset, and periodically during operation. If any of the configuration settings are changed, ensure that the conflict monitor triggers and causes the program card indicator to flash. Ensure that configuration change faults are only reset by depressing and holding the front panel reset button for five seconds. Ensure the external remote reset input does not reset configuration change faults. Ensure the conflict monitor will trigger and the AC Power indicator will flash at a rate of 2 Hz \pm 20% with a 50% duty cycle when the AC Line voltage falls below the "drop-out" level. Ensure the conflict monitor will resume normal operation when the AC Line voltage returns above the "restore" level. Ensure the AC Power indicator will remain illuminated when the AC voltage returns above the "restore" level. The "drop-out" level is at 98 Vrms and the "restore" level is at 103 Vrms with timing at 400 ms. Should an AC Line power interruption occur while the monitor is in the fault mode, then upon restoration of AC Line power, the monitor will remain in the fault mode and the correct fault and channel indicators will be displayed. Provide a flash interval of at least 6 seconds and at most 10 seconds in duration following a power-up, an AC Line interruption, or a brownout restore. Ensure the conflict monitor will suspend all fault monitoring functions, close the Output relay contacts, and flash the AC indicator at a rate of $4 \text{ Hz} \pm 20\%$ with a 50% duty cycle during this interval. Ensure the termination of the flash interval after at least 6 seconds if the Watchdog input has made 5 transitions between the True and False state and the AC Line voltage is greater than the "restore" level. If the watchdog input has not made 5 transitions between the True and False state within 10 ± 0.5 seconds, the monitor shall enter a WDT error fault condition. Ensure to monitor an intersection with up to four approaches using the four-section Flashing Yellow Arrow (FYA) vehicle traffic signal as outlined by the NCHRP 3-54 research project for protected-permissive left turn signal displays. Ensure the conflict monitor will operate in the FYA mode and FYAc (Compact) mode as specified below to monitor each channel for the following fault conditions: Conflict, Red Fail, Dual Indication, and Clearance. Provide a switch to select between the FYA mode and FYAc mode. Provide a switch to select each FYA phase movement for monitoring. ### FYA mode | FYA Signal | Phase 1 | Phase 3 | Phase 5 | Phase 7 | |--------------------------|------------------|-------------------|-------------------|-------------------| | Head | | | | | | Red Arrow | Channel 9 Red | Channel 10 Red | Channel 11 Red | Channel 12 Red | | Yellow Arrow | Channel 9 Yellow | Channel 10 Yellow | Channel 11 Yellow | Channel 12 Yellow | | Flashing
Yellow Arrow | Channel 9 Green | Channel 10 Green | Channel 11 Green | Channel 12 Green | | Green Arrow | Channel 1 Green | Channel 3 Green | Channel 5 Green | Channel 7 Green | ### FYAc mode | Ī | FYA Signal | Phase 1 | Phase 3 | Phase 5 | Phase 7 |] | |---|------------|---------|---------|---------|---------|---| | | Head | | | | | 1 | Version 06.7 48 print date: 03/11/11 | Red Arrow | Channel 1 Red | Channel 3 Red | Channel 5 Red | Channel 7 Red | |--------------------------|------------------|------------------|------------------|-------------------| | Yellow Arrow | Channel 1 Yellow | Channel 3 Yellow | Channel 5 Yellow | Channel 7 Yellow | | Flashing
Yellow Arrow | Channel 1 Green | Channel 3 Green | Channel 5 Green | Channel 7 Green | | Green Arrow | Channel 9 Green | Channel 9 Yellow | Channel 10 Green | Channel 10 Yellow | Ensure that the conflict monitor will log at least nine of the most recent events detected by the monitor in non-volatile EEPROM memory (or equivalent). For each event, record at a minimum the time, date, type of event, status of each field signal indication with RMS voltage, and specific channels involved with the event. Ensure the conflict monitor will log the following events: monitor reset, configuration, previous fault, and AC line. Furnish the signal sequence log that shows all channel states (Greens, Yellows, and Reds) and the Red Enable State for a minimum of 2 seconds prior to the current fault trigger point. Ensure the display resolution of the inputs for the signal sequence log is not greater than 50 ms. Provide a RS-232C/D compliant port (DB-9 female connector) on the front panel of the conflict monitor in order to provide communications from the conflict monitor to the 170/2070L controller or to a Department-furnished laptop computer. Electrically isolate the port interface electronics from all monitor electronics, excluding Chassis Ground. Ensure that the controller can receive all event log information through a controller Asynchronous Communications Interface Adapter (Type 170E) or Async Serial Comm Module (2070L). Provide a Windows based graphic user interface software to communicate directly through the same monitor RS-232C/D compliant port to retrieve and view all event log information to a Department-furnished laptop computer. The RS-232C/D compliant port on the monitor shall allow the monitor to function as a DCE device with pin connections as follows: | Conflict M | Conflict Monitor RS-232C/D (DB-9 Female) Pinout | | | | |------------|---|-----|--|--| |
Pin Number | Function | I/O | | | | 1 | DCD | 0 | | | | 2 | TX Data | 0 | | | | 3 | RX Data | I | | | | 4 | DTR | I | | | | 5 | Ground | - | | | | 6 | DSR | 0 | | | | 7 | CTS | I | | | | 8 | RTS | 0 | | | | 9 | NC | - | | | U-2550B 313 Signals & Intelligent Transportation Systems ## 9. PROTECTIVE GREEN COATING FOR METAL POLES AND MAST ARMS ### 9.1.DESCRIPTION Provide protective green coating for all mast arms with metal signal poles and all necessary hardware for the signalized intersections in accordance with the plans and specifications. ## 9.2.MATERIALS Furnish metal poles and mast arms that have a high density, low gloss finish that is green in color applied over a hot-dipped galvanized surface. Furnish removable pole caps that have a high density, low gloss finish that is green in color applied over a hot-dipped galvanized surface. Comply with applicable provisions of Section 442-10 of the 2006 Standard Specifications for Roads and Structures. The color selected for green protective coating for metal poles and mast arms must match those used in the downtown and historic districts of Morganton. All colors must be approved by Morganton's City Engineer prior to fabrication. ### 9.3.METHOD OF MEASUREMENT Actual number of protective green coatings for single mast arm assemblies furnished, installed, and accepted. Actual number of protective green coating for double mast arm assemblies furnished, installed, and accepted. ## 9.4.BASIS OF PAYMENT The quantity of protective green coating for single mast arm with metal pole assemblies will be paid for at the contract price for "Protective Green Coating for Single Mast Arm with Metal Pole." The quantity of protective green coating for double mast arms with metal pole assemblies will be paid for at the contract unit price each for "Protective Green Coating for Double Mast Arm with Metal Pole." Payment will be made under: | Protective Green Coating for Single Mast Arm with Metal Pole | Each | |--|------| | Protective Green Coating for Double Mast Arm with Metal Pole | Each | Version 06.7 50 print date: 03/11/11