

Environmental Investigations, Inc. 2101 Gateway Centre Boulevard, Suite 200 Morrisville, NC 27560 PH (919) 657-7500 FAX (919) 657-7551

May 2006

LIMITED PRELIMINARY SITE ASSESSMENT (PSA)

Conducted on

Parcel 196
Ed Gouge Property
Heritage Tire
2044 East US Highway 19E
Burnsville, NC 28714
State Project No. R-2519A
WBS Element No. 35609.1.1
EI Project No. ENMO060029.00

For

Mr. Gregory A. Smith State of North Carolina Department of Transportation Geotechnical Engineering Unit GeoEnvironmental Section 1589 Mail Service Center Raleigh, NC 27699-1589

Issue Date: May 12, 2006

Signature

ignature

nature

D. Sterling Turner Environmental Scientist

Robert M. Shaut Project Geologist/Manager

David C. Brewster, P.G. Principal Geologist

Prepared By:

Environmental Investigations, Inc. (EI) 2101 Gateway Centre Blvd., Suite 200 Morrisville, North Carolina 27560 (919) 657-7500 FAX (919) 657-7551

TABLE OF CONTENTS

1.0	INTRO	DDUCTION	1
	1.1	Report Organization	1
	1.2	Background	1
	1.3	Site History	1
	1.4	Objectives	2
2.0	SCOPI	E OF WORK & ENVIORNMENTAL SERVICES	
	2.1	Requested Scope of Work	
	2.2	Scope of Services	
3.0	SITE C	CHARACTERIZATION	5
	3.1	Site Location	
	3.2	Physical Setting	
		3.2.1 Number and UST Capacities	
	3.3	Site Topography	
	3.4	Land Use & Surrounding Properties	
4.0	SUBSU	RFACE INVESTIGATION	
	4.1	Geophysical Survey	
	4.2	Geophysical Survey Results	
	4.3	Subsurface Soils Investigation	
	4.4	Soil Test Boring Methodology	
	4.5	Soil Sample Collection Procedures	
	4.6	Backfill Activities	
	4.7	Subsurface Soil Lithology	8
	4.8	Groundwater Investigation	8
		4.8.1 Temporary Monitoring Well Installation	
		4.8.2 Monitoring Well Sampling	
5.0	LABOI	RATORY ANALYTICAL METHODS, TESTING AND RESULTS	10
	5.1	Subsurface Soil Analytical Methods	
	5.2	Soil Laboratory Analysis Results	
	5.3	Groundwater Analytical Methods	
	5.4	Groundwater Analysis Results	
6.0	SUMM	ARY OF FINDINGS	12
7.0	CONCI	LUSIONS AND RECOMMENDATIONS	13

LIST OF TABLES

Table 1:

Summary of Soil Analytical Results

Table 2:

Groundwater Analytical Results

LIST OF FIGURES

Figure 1:

Site Location Map

Figure 2:

Site Map

Figure 3:

Impacted Soils Map

LIST OF APPENDICES

Appendix A:

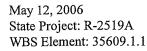
Site Photographs

Appendix B:

Standard Operating Procedures

Appendix C:

Soil Boring Logs

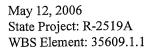

Appendix D:

Laboratory Analytical Results Report

Appendix E:

Geophysical Report

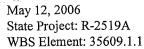
1.0 INTRODUCTION


Environmental Investigations, Inc. (EI) conducted a *Limited Preliminary Site Assessment* (PSA) within the existing and/or proposed North Carolina Department of Transportation (NCDOT) *right-of-way* (ROW) adjacent to a parcel (identified by the NCDOT as Parcel 196) located at 2044 East US Highway 19E, Burnsville, North Carolina 28714. A two-level building with a two-bay attached garage containing a retail tire/auto parts store and service station, Heritage Tire, currently is located on the adjacent parcel. According to background information, the site formerly was occupied by Windom Produce. The report presented herein documents the findings of the PSA that was conducted within the described ROW. For purposes of this report, the terms subject site and/or site include the existing NCDOT ROW and the proposed ROW, and/or the abutting property/parcel.

1.1 Report Organization

Field activities were conducted by Mr. Sterling Turner, an Environmental Scientist with EI, on March 29, 2006. The report presented herein summarizes the scope of work conducted, discusses sampling procedures, and presents our findings, conclusions and recommendations. A table entitled "Summary of Soil Analytical Results" is presented in **Table 1**, and a table entitled "Summary of Groundwater Analytical Results", is presented in **Table 2**. A "Site Location Map", a "Site Map" and "Impacted Soils Map" are presented in **Figures 1**, **2**, and **3**, respectively. A compilation of "Site Photographs" are presented in **Appendix A**, the "Standard Field Operating Procedures (SOP)" are presented in **Appendix B**, "Soil Boring Logs" are included in **Appendix C**, the "Analytical Laboratory Reports" is presented in **Appendix D** and Geophysical Report conducted by Schnabel Engineering South is presented in **Appendix E**.

1.2 Background

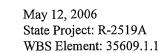

Mr. Eugene Tarascio, GeoEnvironmental Project Manager with the NCDOT GeoTechnical Engineering Unit submitted to EI a "Request for Supplemental Technical and Cost Proposal" (RFP), dated February 24, 2006. The RFP solicited a technical and cost proposal to perform Limited PSAs on a total of 18 Parcels located within a NCDOT Highway Project, identified as WBS Element #35609.1.1, State Project #R-2519A, located in Burnsville, NC. The RFP outlined site information on each of the 18 parcels, some site photographs and NCDOT Figures (Plan Sheets) were attached to the RFP. Mr. Gregory A. Smith, LG, PE, GeoEnvironmental Supervisor with the NCDOT, GeoTechnical Engineering Unit, GeoEnvironmental Section authorized EI to perform the PSAs, as documented in a "Notice to Proceed" (NTP) dated March 13, 2006.

1.3 Objectives

The objective of performing the PSA was to determine if a current gasoline station has impacted the subsurface of the existing and/or proposed ROW. The study (PSA) on the referenced parcel (Parcel 196 – Ed Gouge Property) included herein was performed with a reasonable effort to investigate and quantify potentially petroleum-hydrocarbon residual impacted subsurface soils. However, findings documented in the report do not constitute a guarantee that all potential sources of environmental contamination have been assessed and subsequently analyzed.

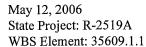
This report is provided for the sole use of the NCDOT on the project for which it was prepared. All materials and information used for this project were obtained by EI, Inc. Use of this report by any third parties other than the NCDOT will be at such party's sole risk. EI Inc. disclaims liability for any use of or reliance on this report by third parties.

2.0 SCOPE OF WORK & ENVIRONMENTAL SERVICES


2.1 Requested Scope of Work

Documented in the RFP, dated February 24, 2006, the NCDOT requested the following scope of work:

- Determine if contaminated soils are present around any underground storage tanks (UST) identified that are within the existing and/or the proposed ROW;
- in addition, collect soil samples every 15.24 meters (50 feet) to a maximum depth of 2.44 meters (8 feet) along the proposed drainage (if there is no proposed drainage, collect samples at same interval along the edge of existing and/or proposed ROW within the "area of investigation");
- delineate and estimate the quantity of impacted soils and indicate the approximate area of soil contamination on a site map for each site;
- if groundwater is encountered and the project manager suspects the possibility of groundwater contamination, obtain a sample for analysis by converting one (1) of the borings to a temporary monitoring well;
- for each groundwater sample collected, also obtain a 24-hour groundwater depth;
- if a groundwater sampled is collected for proposed drainage, perform aquifer testing to determine the recharge rate and use this to provide an estimated quantity of contaminated water that will have to be disposed of when de-watering occurs to install the proposed drainage;
- prepare a report including field activities, findings, and recommendations for the site and submit in quadruplet to the NCDOT office.


2.2 Scope of Services

To accomplish the scope-of-services, a field reconnaissance was performed to identify general site conditions, and Direct Push Technology (DPT) was utilized to collect soil samples on the subject parcel.

To perform the requested Limited PSA, EI personnel supervised, oversaw and performed site reconnaissance activities and collected appropriate samples to complete the project objectives. To complete the study on the subject parcel, EI performed the following scope of services:

- Limited oversight and supervision of a geophysical survey conducted within the existing and/or proposed ROW.
- Supervision and oversight of the advancement of eight (8) soil test borings utilizing DPT methods to depths ranging from 3.05 meters (10.0 feet) to 4.27 meters (14.0 feet) bls within the existing and/or the proposed NCDOT ROW, in the vicinity of former UST systems.
- Collection and submittal of eight (8) soil samples for laboratory analyses of total petroleum hydrocarbons (TPH) in the gasoline and diesel ranges. Collection and submittal of one (1) soil sample for risk-based laboratory analyses of volatile organic compounds (VOC), semi-volatile organic compounds (SVOC), volatile petroleum hydrocarbons (VPH), and extractable petroleum hydrocarbons (EPH).
- Installation of one (1) temporary monitoring well (piezometer).
- Collection and submittal of one (1) groundwater sample for laboratory analyses of VOCs, SVOCs, VPH, and EPH.
- Photo documentation of pertinent site features.
- Preparation of this *Limited PSA Report*, presenting our findings and conclusions along with our recommendations.

3.0 SITE CHARACTERIZATION

3.1 Site Location

A commercial tire/auto parts store and service station known as Heritage Tire currently is located on the south side of US 19E, approximately 25.5 meters (84 feet) from the centerline. The specific address for the property is 2044 East US Highway 19E in Burnsville, North Carolina 28714 (**Figure 1**). The subject property is currently located immediately adjacent to the NCDOT ROW (**Photograph 1**) as identified in NCDOT's R-2519A Plan Sheet 32. Copies of digital site photographs are presented in **Appendix A**.

3.2 Physical Setting

The subject site parcel contains a two-level masonry building with an attached two-bay garage comprising the Heritage Tire business (**Photographs 1 & 2**). The remaining portions of the parcel consist of a fuel pump dispenser island with canopy cover, asphalt access/parking areas, grass and/or shrubbery. See **Figure 2** for pertinent site features.

3.2.1 Number and Capacities of USTs

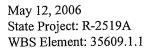
Three (3) USTs formerly were located on the subject property and reportedly were removed in 1995. The following details concerning the former USTs were obtained from a NCDENR file review:

- 1. 15,142-liter (4,000-gallon) gasoline
- 2. 22,712-liter (6,000-gallon) gasoline
- 3. 15,142-liter (4,000-gallon) gasoline

The USTs formerly were located adjacent to the east side of the subject building, in the location of an existing car port canopy (**Photograph 3**). The former pump dispenser island formerly was located north of the former USTs adjacent to the proposed NCDOT ROW. (**Photograph 4**).

3.3 Site Topography

Site observations and review of the Burnsville, NC United States Geological Survey (USGS) Topographic Quadrangle Map (July 1, 1984), revealed that the subject site is located at an elevation of approximately 799 meters (2,620 feet) above mean sea level (msl) (**Figure 1**). Topographically, the site slopes moderately the north and northwest. Surface water runoff appears to flow northwest to a drainage culvert located along the western border of the subject property (**Photograph 3**).


May 12, 2006 State Project: R-2519A

WBS Element: 35609.1.1

Limited Preliminary Site Assessment
Parcel 196 – Ed Gouge
Heritage Tire
2044 East US Highway 19E
Burnsville, NC 28714

3.4 Land Use & Surrounding Properties

The subject property is located inside the city limits of Burnsville, NC. Land use in the immediate vicinity of the site is characterized by residential and commercial properties. The site is bounded on the north by Highway 19E (**Photograph 4**), to the east and south by residential properties, and to the west by George's Fork Road, beyond which is a vacant lot.

4.0 SUBURFACE INVESTIAGTION

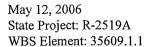
4.1 Geophysical Survey

Schnabel Engineering South, locally based in Greensboro, North Carolina, was subcontracted to provide geophysical services on the subject site. The purpose of the geophysical survey was to locate potential UST systems within the existing and/or proposed ROW.

The contractor conducted an electromagnetic (EM) induction survey utilizing a Geonics EM61-MK2 instrument. "The early time gate results show a number of small, isolated anomalies probably caused by relatively small, insignificant buried metal objects, several linear anomalies apparently caused by buried utilities, culverts and a number of anomalies caused by known site features". Ground penetrating radar (GPR) investigations of selected EM61 anomalies were conducted using a Geophysical Surveys System SIR-2000 system equipped with a 400 MHz antenna. The geophysical contractor surveyed an estimated 1,069 square meters (11,507 square feet) located on the subject site.

4.2 Geophysical Survey Results

A detailed report documenting the geophysical survey activities and results of the study is included in **Appendix E**.


4.3 Subsurface Soils Investigation

American Environmental Drilling (AED), based in Pinehurst, North Carolina, was selected and subcontracted to provide DPT services. On March 30, 2006, EI directed and supervised the advancement of eight (8) soil test borings ("GP-1" through "GP-8") in the area of investigation in the vicinity of the former UST systems.

In general, the borings were advanced in order to evaluate the absence/presence of potential subsurface soil (vadose zone) impact and/or subsurface groundwater (petroleum smearing) impact associated with potential petroleum releases associated with either former and/or present UST system spills and/or releases into the subsurface. Soil boring "GP-1" was advanced to the investigative depth of 4.27 meters (14 feet) bls. Soil borings "GP-2" through "GP-8" were advanced to investigative depth of 3.05 meters (10.0 feet) bls.

4.4 Soil Test Boring Methodology

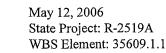
A complete descriptive explanation of EI's *Standard Field Operating Procedures* that discusses specific sampling methodology is presented in **Appendix B**.

4.5 Soil Sample Collection Procedures

A total of eight (8) soil samples were collected for laboratory analysis. Soil samples retained for laboratory analysis were shipped to Paradigm Analytical Laboratory for laboratory analytical testing. Dates and times of sample shipment may be referenced in the analytical Chain-of Custodies (COC) presented in **Appendix D**.

4.6 Backfill Activities

At the completion of the exploratory subsurface advancement activities, the test borings were backfilled to surface grade. A complete descriptive explanation of EI's *Standard Field Operating Procedures* that discusses backfill procedures is presented in **Appendix B**.


4.7 Subsurface Soil Lithology

During boring advancement activities, soil samples were classified in the field by an EI scientist utilizing the Unified Soil Classification System (USCS). Subsurface soils encountered in the area of study were fairly consistent. The on-site geology consists of grass or asphalt pavement with surficial topsoil from the surface to approximately 0.15 meters (0.5 foot) below grade. A layer of red silty CLAY fill material was encountered to a depth of approximately 0.63 meters (2.0 feet) bls. A layer of soil consisting of grey to tan, slightly indurated, clayey SILT was encountered to a depth of approximately 3.05 meters (10.0 feet) bls, with groundwater evident between 2.44 meters (8.0 feet) and 2.74 meters (9.0 feet) bls. Saturated, SILT and GRAVEL, comparable to the adjacent creek bed, was encountered from 3.05 meters (10.0 feet) to 4.27 meters (14.0 feet) in soil boring "GP-1". Detailed descriptions are presented in Soil Boring Logs presented in Appendix C. The boring logs include an interpretation of subsurface conditions based on field samples.

4.8 Groundwater Investigation

4.8.1 Temporary Monitoring Well Installation

During the field study (March 30, 2006), soil test boring "GP-1", located approximately 2.0 meters (6.56 feet) north of the former pump dispenser island (**Photograph 4**), was converted into a Type I (temporary) 2.54 cm (1.0 inch) diameter groundwater monitoring well (piezometer). The approximate location of the groundwater monitoring well is depicted in **Figure 2**. The well location was selected in the field by the EI field scientist (Sterling Turner) based on the potential impact from the current and/or former UST systems within the area of investigation. The well was installed to a depth of 4.27 meters (14.0 feet) bls.

4.8.2 Monitoring Well Sampling

On March 30, 2006, EI personnel collected a groundwater sample from the referenced temporary monitoring well ("TMW-1/GP-1") for purposes of analytical testing. The sample was shipped to Prism Laboratories, Inc. for analytical laboratory testing. Groundwater sampling procedures are discussed in more detail in the *Standard Operating Procedures* presented in **Appendix C**.

The groundwater table was measured in the temporary monitoring well ("GP-3") on April 12, 2006. Groundwater was measured at approximately 2.99 meters (9.81 feet) below the top of casing (TOC). The TOC was approximately 0.43 meter (1.40 feet) above the ground surface indicating the depth to groundwater is approximately 2.56 meters (8.41 feet) bls.

May 12, 2006 State Project: R-2519A

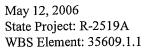
Limited Preliminary Site Assessment Parcel 196 - Ed Gouge WBS Element: 35609.1.1 2044 East US Highway 19E Burnsville, NC 28714

5.0 LABORATORY TESTING AND RESULTS

Heritage Tire

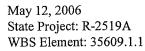
Subsurface Soil Analytical Methods 5.1

A total of eight (8) soil samples ("196-1-3", "196-2-3", "196-3-4", "196-4-3", "196-5-3", "196-6-3", "196-7-6", and "196-8-3") were submitted for TPH analyses by Method 8015B with preparation methods for the analysis of Diesel Range Organics (DRO) by GC-FID and Gasoline Range Organics (GRO) by GC-FID. The GRO method is utilized to extract volatile fuels such as gasoline, while the DRO method is utilized to extract less volatile petroleum products such as diesel fuel, No. 2 fuel oil, kerosene, and varsol. Soil sample "196-2-3", also was submitted for risk-based laboratory analyses of VOCs by Method 8260, SVOCs by Method 8270, as well as VPH and EPH by MADEP methodology.

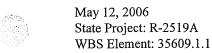

5.2 Soil Laboratory Analyses Results

Laboratory analyses showed TPH concentrations at or above the method detection limit in five (5) of the eight (8) samples collected. A maximum GRO concentration of 50.9 milligrams per kilogram (mg/kg) was detected in the soil sample collected from "GP-6", located along the proposed DOT ROW, approximately 10 meters (32.8 feet) northeast of the former UST systems. A maximum DRO concentration of 44.9 mg/kg was detected in the soil sample collected from "GP-2", located along the proposed NCDOT ROW, approximately 15 meters (49.2 feet) northwest of the former UST systems. The risk-based analyses of the same soil sample collected from "GP-2" revealed detectable concentrations of ten (10) SVOC analytes and one range of EPH constituents. No other risk-based analytes were detected at or above the method detection limit. The specific results of the analytical testing of the soil samples are tabulated and presented in The complete laboratory results and Chain-of-Custody Records are presented in Table 1. Appendix D.

5.3 **Groundwater Laboratory Analysis**


Groundwater sample "196-TMW-1" collected from the referenced temporary well installed in the location of "GP-1" was submitted for VOCs analysis for aromatic and halogenated volatiles by GC/PID-ELCD for EPA Method 6230D + IPE & MTBE, for SVOCs by GC/MS for EPA Method 625 and the top ten (10) peaks identified, as well as for VPH and EPH by MADEP methodology.

5.4 Groundwater Laboratory Analyses Results


Analysis of the groundwater sample collected from a temporary monitoring well ("TMW-1/GP-11") showed the presence of detectable concentrations of ten (10) VOC analytes, one (1) SVOC analyte, as well as multiple ranges of VPH and EPH constituents. A summary of the analytical results is tabulated in **Table 2**.

6.0 SUMMARY OF FINDINGS

EI has reviewed information gathered during the Limited PSA study including the site reconnaissance activities, review of NCDOT plan sheets, review of the site investigation including soil collection activities, and review of a laboratory analysis report. Compiled below is a summarized list of the significant findings.

- Three (3) gasoline UST systems formerly were located at the subject property adjacent to the proposed ROW line, and reportedly were removed in 1995.
- Groundwater was encountered beneath the site, at a location approximately 5.0 meters (16.4 feet) north of the former USTs, at a depth of approximately 2.56 meters (8.41 feet) bls.
- Laboratory analyses of the soil samples collected from the borings within the area of investigation, immediately northeast, north, and northwest of the former UST systems, at depths of approximately 2.13 meters (7.0 feet) to 2.44 meters (8.0 feet), showed the presence of moderate TPH concentrations with maximums of 50.9 mg/kg GRO and 44.9 mg/kg DRO. The detected concentrations are above the NCDENR action limit of 10.0 mg/kg.
- The risk-based analyses of one soil sample within the proposed DOT ROW revealed detectable concentrations of ten (10) SVOC analytes and one range of EPH constituents. No other risk-based analytes were detected at or above the laboratory method detection limit.
- Laboratory analysis of the groundwater sample collected from a temporary monitoring well ("TMW-1/GP-11") revealed detectable concentrations of ten (10) VOC analytes, one (1) SVOC analyte, as well as multiple ranges of VPH and EPH constituents, nearly all of which exceed the current North Carolina Groundwater Standards (15A NCAC 2L .0202).

7.0 CONCLUSIONS AND RECOMMENDATIONS

Based on field and laboratory analytical data, it appears that a release of petroleum from the former UST systems on the subject site, have impacted the adjacent area of investigation within the existing and/or proposed DOT ROW. Moderate concentrations of residual-phase petroleum hydrocarbons were identified within the vadose zone, at depths of approximately 2.13 meters (7.0 feet) to 2.44 meters (8.0 feet) bls, throughout the area of investigation located immediately northwest, north, and northeast of the former UST systems. Field screening indicated petroleum hydrocarbon vapors were present in soils at these locations at depths as shallow as 1.52 meters (5.0 feet) bls.

Dissolved-phase petroleum hydrocarbons also were identified in a groundwater sample collected from a temporary monitoring well approximately 5.0 meters (16.4 feet) north of the former UST systems within the area of investigation. The depth to groundwater at this location is approximately 2.56 meters (8.41 feet) bls. Based on the depth to groundwater throughout the area of investigation, the identified soil contamination likely is the result of petroleum smearing due to fluctuations in the groundwater table. Based on the relative location of Little Crabtree Creek, as well as review of prior investigations, groundwater flow is estimated to the southeast.

Based on data collected within the scope of this assessment, a lateral area of approximately 600 square meters (6,458 square feet), located adjacent to the former UST systems within the area of investigation, is estimated to contain petroleum contaminated soils. Based on an estimated average extent of vertical impact between 1.52 meters (5 feet) and 3.05 meters (10 feet) bls, an estimated volume of 912 cubic meters (1,193 cubic yards) of petroleum-impacted soil is present within the proposed NCDOT ROW.

Based on the detection of residual and dissolved-phase contaminant concentrations above regulatory reportable levels, the property owner should be notified of this finding. Based on the findings of this investigation, EI does not recommend any further assessment at this time.

Note: This report does not constitute a guarantee that all potential sources of environmental contamination have been assessed and subsequently analyzed.

TABLES

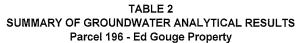
TABLE 1 SUMMARY OF SOIL ANALYTICAL RESULTS Parcel 196 Ed Gouge Property 2044 East US Highway 19E Burnsville, NC 28714 State Project No. R-2519A WBS Element No. 35609.1.1

		Labora Hya	All Remair	Pyrene	Phenanthrene	Indeno(123-	Elioranthe	d Chloropt	Benzo(g,h	Benzo(b)fl	Benzo(a)pyrene	Benzo(a)anthracene	2-methyl nani		Semi	All Remain	Methyl Ten	Total Xvienes	loluene	Benzene		٧٥														
Diesel Range Organics	Gasoline Range Organics	Laboratory Analysis (Total Petroleum Hydrocarbons by GC/FID 8016)	All Remaining Analytes		ene	ndeno(1 2 3-c d)pyrene	4-Cilioranthene	ouranmene	Benzo(g,h,i)perylene	Benzo(b)flouranthene	yrene	nthracene	Napritrialerie Napritrialerie	SW846-8270C	Semivolatile Organic Compounds	All Remaining Analytes	Methyl Tert-butyl Ether (MTBE)	STO STO			Method 8260B/6036	Volatile Organic Compounds	C11-C22 Aromatics	C19-C36 Allphatics	C9-C18 Aliphatics	MADEP EPH	C9-C10 Aromatics	C9-C12 Aliphatics	C5-C8 Aliphatics	Laboratory Analysis	Field Screening Results-PID (ppm)	Samp	Sample D	Sample	Boring Id	Sample Id
	***************************************	NCDENR ¹ Cone	NA	469	469	0.88	620	No.	469	0.88	0.088	0.88	63	Clea		NA S	156	32000	3200	22	Clea		93860	469	9386	Clear	469	9386	939	Residential MSCC (mg/kg)	Results-PID (p	Sample Date	Sample Depth Meters (Feet)	Sample Depth (Meters)	Boring Identification	Sample Identification
	10	NR ¹ (Volume II) Reportable Concentration (mg/kg)	NA	12264	12264	8	16400	NS /o	12264	8	0.78	8	1635	Cleanup Standards (MSCC)		NA	4088	200000	00000	200	Cleanup Standards (MSCC)		*	12264	245280	Cleanup Standards (MSCC)	12264	245280	24528	Cleanup Standards (MSCC) Industrial Soil Commercial Soil Commercial MSCC (mg/kg) MSCC	pm)		Feet)	(s.		
		Reportable Ig/kg)	NA	286	60	3	276	20.2	6/20		0.091	0.34	300	(MSCC)		NA	0.92	5.64	0 /	0.0056	(MSCC)		Immobile	34	3255	(MSCC)	34	3255	72	up Standards (MSCC) Industrial Soil-to-GW Commercial Soil-to-GW MSCC (mg/kg) MSCC (mg/kg)						
44.9	BQL		BQL	1810.00	719.00	1000.00	2030-00	1050.00	949.00	1530.00	1250.00	1020.00	BOL F	Laboratory Results (mg/kg)		BQL	BQL	BO	פטער	BOL	Results (mg/kg)	Laboratory	18.0	<10	<10	Laboratory Results (mg/kg)	<10	<10	<10	Laboratory)) Results (mg/kg)	310.0		5.0-7.5	1.52-2.29	B-2	196-2-3
7.83	BQL																														700.0		5.0-7.5	1.52-2.29	GP-1	196-1-3
BQL	BQL																														0.0		7.5-10.0	2.29-3.05	Bå	196-3-4
BQL	BQL	Laboratory																													600.0		5.0-7.5	1.52-2.29	84	196-4-3
BQL	BQL	Laboratory Results (mg/kg)																													200.0	3/30/2006	5.0-7.5	1.52-2.29	B-5	196-5-3
26.3	6.03																														>1,000		5.0-7.5	1.52-2.29	B-6	196-6-3
25.8	BQL																														650.0		5.0-7.5	1.52-2.29	B-7	196-7-3
23.8	24.7																														150.0		5.0-7.5	1.52-2.29	B-8	196-8-3

NOTE:

NS = No Standard

MS = No Standard


MS/Kg denotes parts per million

MSCC = No Standard

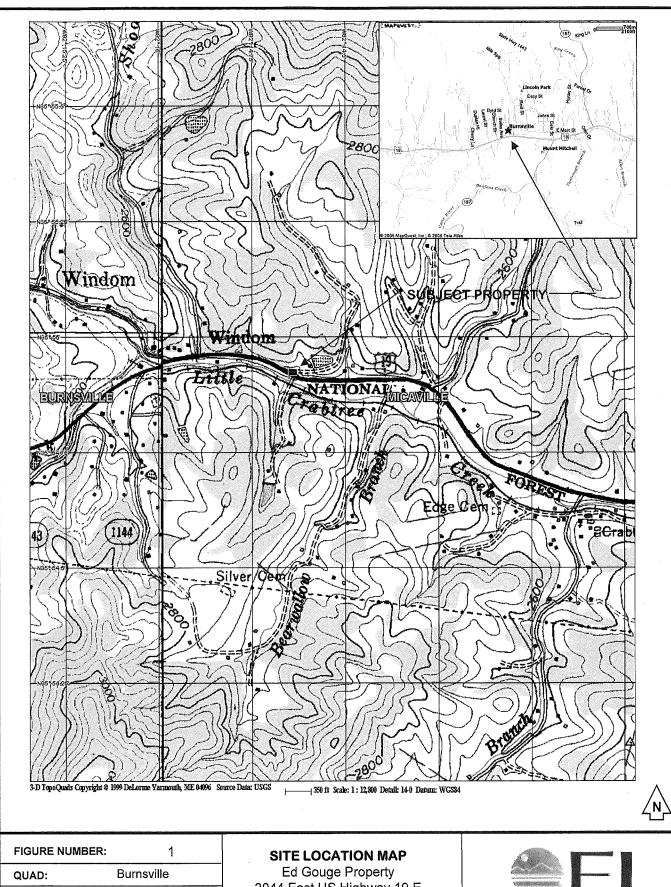
MSCC = No

2044 East US Hwy 19E Burnsville, NC 28714 State Project: R-25190A WBS Element: 35609.1.1

Sample Identifica	196-TMW-1						
Groundwater Depth From top of	2.99m (9.81)						
Sample Date	3/30/2006						
Volatiles GC 6230D	2L Groundwater Standards (ug/L)	Laboratory Results (ug/L)					
Benzene	1	220					
Ethylbenzene	29	2,200					
Toluene	1,000	230					
Total Xylenes	530	7,900					
Methyl-tert butyl ether (MTBE)	200	BQL					
Isopropylbenzene	70	130					
Naphthalene	21	460					
1,2,4-Trimethylbenzene	350	2,100					
1,3,5-Trimethylbenzene	350	740					
n-Propylbenzene	70	340					
All remaining analytes	NA .	BQL					
MADEP VPH	2L GW Standards (ug/L)	Laboratory Results (ug/L)					
C5-C8 Aliphatics	420	12,000					
C9-C12 Aliphatics	4200	4,800					
C9-C10 Aromatics	210	6,100					
MADEP EPH	2L GW Standards (ug/L)	Laboratory Results (ug/L)					
C9-C18 Aliphatics	4200	1400					
C19-C36 Aliphatics	42000	BQĻ					
C11-C22 Aromatics	210	900					
Semivolatiles - GCMS Method 625	2L GW Standards (ug/L)	Laboratory Results (ug/L)					
Naphthalene	21	210					
All remaining analytes	NA	BQL					

Legend:

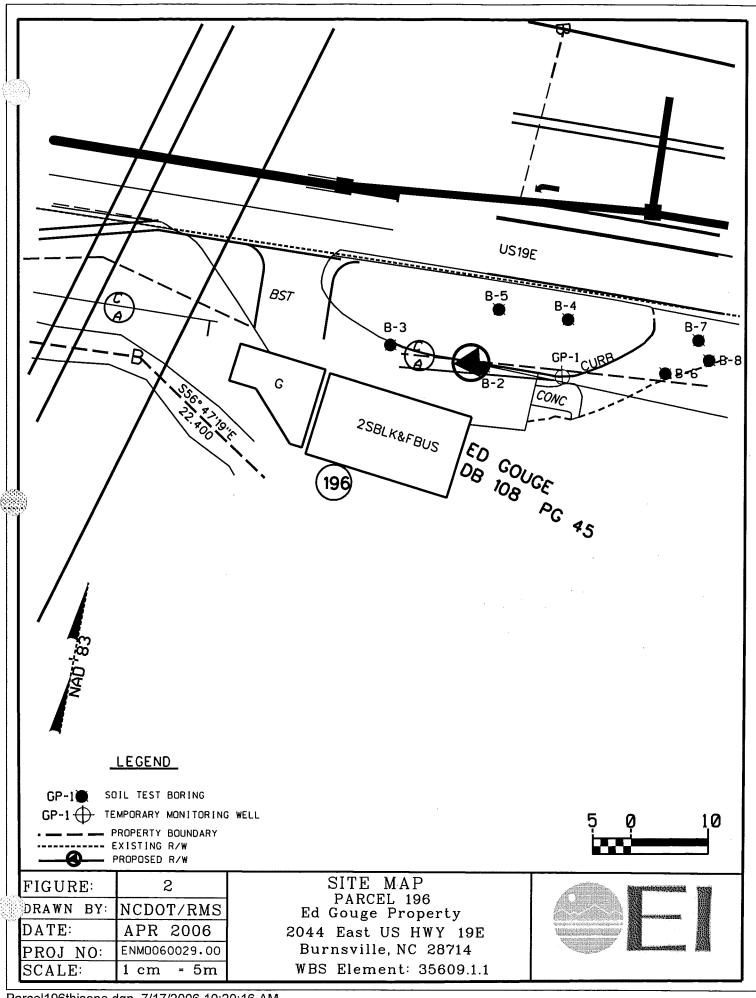
Italics / Bold Font = In Excess of NCAC 2L Class GA Standards

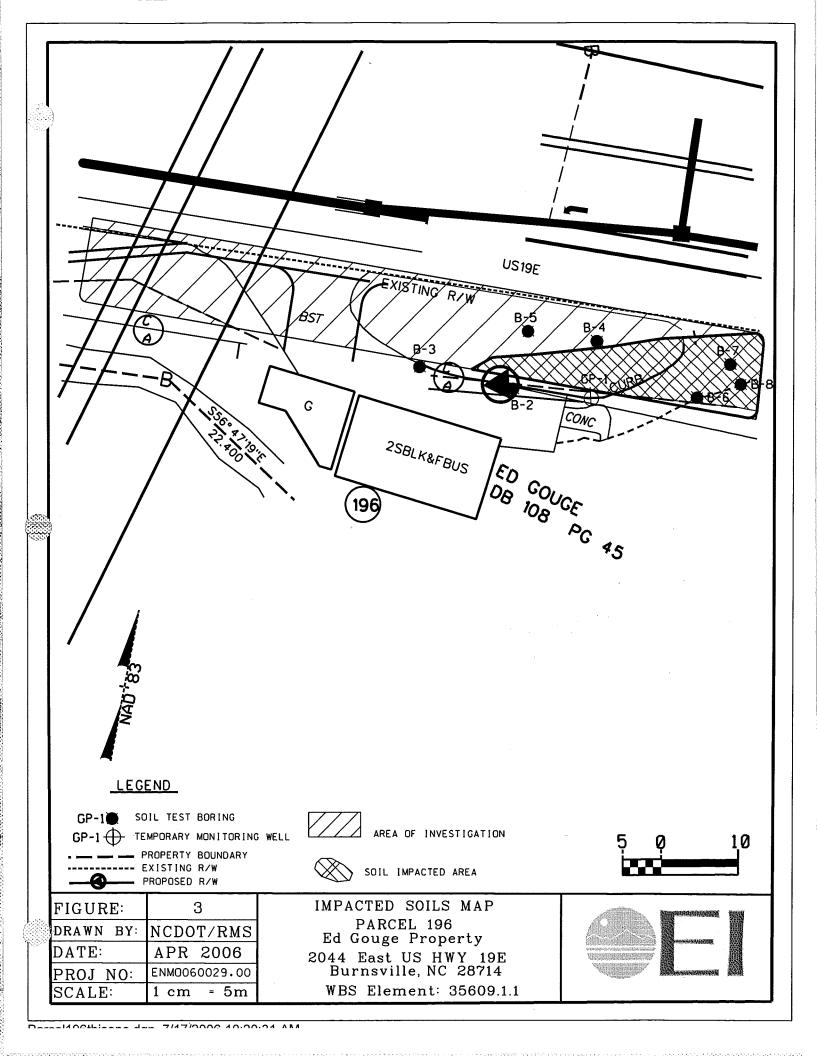

BQL = Below Quantitation Limit

NA = Not Applicable
NS = No Standard

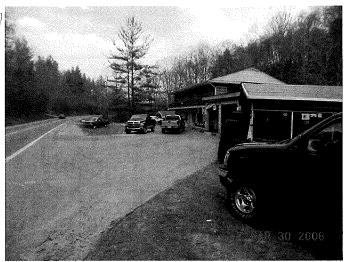
FIGURES

PROJECT NUMBER: ENMO060029

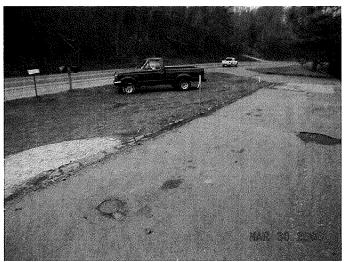

SCALE:


As Shown

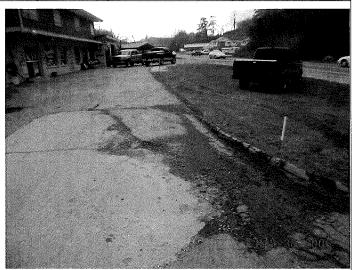
2044 East US Highway 19 E Parcel 196 Burnsville, North Carolina



ENVIRONMENTAL INVESTIGATIONS, INC



APPENDIX A SITE PHOTOGRAPHS


Photograph 1: View of subject property area of investigation adjacent to Heritage Tire building.

Photograph 2: View of NCDOT proposed ROW stake on subject property.

Photograph 3: Area of former gasoline USTs adjacent to eastern side of subject property building beneath car port.

Photograph 4: Area of former pump dispenser island adjacent to proposed ROW.

Photograph 5: Little Crabtree Creek along souther/southeastern border of subject property.

Photograph 6: Subject property fronting south side of US Highway 19E.

APPENDIX B STANDARD OPERATING PROCEDURES

STANDARD OPERATING PROCEDURES Subsurface Assessment Methodology And Sampling Protocol

Parcel 196
Ed Gouge Property
Heritage Tire
2044 East US Highway 19E
Burnsville, NC 28714

WBS Element # 35609.1.1 State Project # R-2519A EI Project No. ENMO060029.00

Prepared For:

Gregory A. Smith
State of North Carolina
Department of Transportation
Geotechnical Unit
GeoEnvironmental Section
1589 Mail Service Center
Raleigh, NC 27699-1589

Prepared by:

Environmental Investigations, Inc. 2101 Gateway Centre Boulevard, Suite 200 Morrisville, NC 27560 PH (919) 544-7500 FAX (919) 544-2199

(Subsurface Assessment Methodology And Sampling Protocol

INTRODUCTION

Environmental Investigations, Inc. (EI) has prepared this <u>STANDARD OPERATING PROCEDURES</u> - <u>Subsurface Assessment Methodology and Sampling Protocol Plan (SPP)</u> for a residential property owned by Ed Gouge located at 2044 East US Highway 19E, Burnsville, Yancey County, North Carolina.

The document presented herein describes the methodology and protocol that was utilized during the *Limited Preliminary Site Assessment* conducted at the above referenced project "site".

SAMPLING DESIGN

Prior to conducting a subsurface assessment, a sampling strategy was developed by EI based on the objectives of the investigation. After designing our soil sampling strategy, the appropriate equipment and techniques were selected to conduct the investigation. Our sampling strategy was based upon the premise of accomplishing the following performance objectives:

- collect soil samples that are representative of conditions as they exist at the study site;
- selecting the appropriate sampling device(s);
- taking measures to avoid introducing contamination as a result of poor sampling and/or poor handling techniques;
- reducing the potential of cross contamination between samples;
- defining sampling site selections and collection procedures for the appropriate individual media;
- defining the quality control assurance procedures;
- analytical requirements and limitations; and
- Data interpretation and assessment.

The sampling plan for this study was developed using the non-probabilistic (directed sampling designs) in nature. The location and frequency was based on this approach, to allow for the flexibility of the field coordinator (Geologist) to determine the number of samples collected for analysis. This approach allowed for the study objectives, properties of the matrix, resource constraints and access to sampling points to be adequately performed. Provision for access, use of sampling equipment, was also pre-determined.

The following section of the SPP discusses the sampling equipment available and collection methods which have been utilized to be technically appropriate.

STANDARD OPERATING PROCEDURES Subsurface Assessment Methodology And Sampling Protocol Parcel 196 – Ed Gouge Property

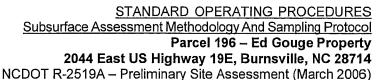
2044 East US Highway 19E, Burnsville, NC 28714 NCDOT R-2519A – Preliminary Site Assessment (March 2006)

SITE ORIENTATION

Prior to conducting any soil sampling procedures, the EI Project Geologist/Manager reviewed and presented the Site and Safety Health Plan to all participants involved with the project which was developed based on the EI Safety and Health program. All monitoring, protective equipment (latex gloves, Tyvek® suits, etc.), potential hazards associated with the site and general health and safety standards were discussed.

Site Survey

Prior to conducting specific sampling activities, EI personnel will conduct a limited site survey of the target and surrounding areas. Information discovered during the survey will be utilized to better perform the sampling activities and will provide more insight into establishment of the conclusions of this study. The site survey will consist of the following:


- General site layout (UST system layouts, overhead canopies, dispensers, etc.);
- Site access;
- Soil types and depths;
- Surface water drainage pathways;
- Existing site conditions;
- Visible staining of surface soil;
- Vegetation stress, and
- Possible offsite or non-site related sources.

FIELD INVESTIGATIVE PROCEDURES

Sampling Objectives

The general objective of sampling for this project was to collect a sample representative of subsurface and/or groundwater to reduce the potential bias caused by the sampling equipment used to obtain the sample.

The chosen sample locations were evaluated as discrete samples. A discrete sample is defined as "a discrete aliquot representative of a specific location at a given point in time."

Areas of Environmental Concern

The objectives of choosing the proper sampling methods to collect appropriate samples that are representative of the conditions as they exist at the site were as follows:

- Selecting the appropriate sampling device.
- Taking measures to avoid introducing contamination as a result of poor sampling and/or handling techniques.
- Reducing the potential of cross contamination between samples.

The areas of environmental concern consisted of an existing heating oil UST.

SOIL SAMPLING ACTIVITIES

Manual techniques and equipment, such as hand augers, are usually used for surface or shallow, subsurface soil sampling. Power operated equipment is usually associated with collecting deep samples, but this equipment can also be used for collecting shallow samples when the auger hole begins to collapse, or when the soil is so tight that manual auguring is not practical. Based on the request of the property owner, EI mainly used hand augers and to a lesser extent we utilized Direct Push Technology (DPT). The following section discusses the DPT methods employed during the site study.

Soil Sampling Collection Methods

Soil samples were collected utilizing Direct Push Technology (DPT) methods.

Direct Push Technology Methodology

DPT refers to tools and sensors that are inserted into the subsurface without the use of drilling to remove soil and make a path for the tool. To perform the DPT activities, the contractor utilized a GeoProbe® 6600 machine. The GeoProbe® 6600 is a hydraulically-powered probing machine designed, which uses static force and a percussion hammer to advance small diameter sampling tools into the subsurface to collect soil cores, groundwater samples, and or soil gas samples. A GeoProbe relies on a relatively small amount of static (vehicle) weight combined with percussion as the energy for advancement of a tool string.

Subsurface Assessment Methodology And Sampling Protocol

Parcel 196 - Ed Gouge Property

2044 East US Highway 19E, Burnsville, NC 28714

NCDOT R-2519A – Preliminary Site Assessment (March 2006)

The advantages of utilizing DPT drilling methods are described as follows:

- avoids the use of drilling fluids and lubricants during drilling;
- the equipment is highly mobile;
- disturbance of geochemical conditions during installation is minimized; and
- The drilling process does not produce drill cuttings.

DPT Soil Sample Collection Methods

Soil samples utilizing DPT methods were collected from the advanced DPT soil borings continuously in 5.0-foot increments using acetate liners contained in a nickel plated macro sampling tubes. Each soil-filled liner was split for field screening and soil sample collection purposes. Soil samples were collected from the liners with disposable vinyl gloves and utilized for soil vapor screening testing and/or laboratory retention. This sampling method allows for continuous soil sampling from the ground surface to the desired depth. Soil samples selected for analyses are referenced in the text section.

Soil Sample Collection Protocol

The following soil sampling collection procedures were utilized during this study:

- Ensured that all equipment, samplers and tools that will come in contact with the sample media was thoroughly decontaminated.
- Informed driller of sample interval (s) for borehole and oversaw the sampling process.
- Prepared and labeled all sample containers. Samples collected for the analytes of volatiles (if applicable) were sampled first.
- Labeled the containers including the location, depth, analyte, date and time of sampling.
- Delegated the driller to prepare the sample liner by cutting the liner in half.
- Placed liners on a clean sheet of plastic.
- Cut the soil core with a clean decontaminated knife to allow of visual soil classification.
- Sniffed the soil core with a PID/FID and recorded instrument readings volatile organics (VOCs) in a logbook (discussed further below).
- Logged the soil core in a logbook, including borehole identification (ID), sample number, date, time and any pertinent data.

Subsurface Assessment Methodology And Sampling Protocol

Parcel 196 – Ed Gouge Property

2044 East US Highway 19E, Burnsville, NC 28714

NCDOT R-2519A - Preliminary Site Assessment (March 2006)

- Logged soil classification including: recording percent recovery, color, description
 of major constituent, soil texture/structure, grading/sorting/plasticity, relative
 density or hardness consistency, clay, sand, silt, gravel content, grain size,
 moisture content, odor, staining and the Unified Soil Classification System
 (USCS) identifier and symbol;
- Physically collected the selected soil samples and placed these samples into laboratory prepared containers.
- Ensured the soil sample did not contain twigs, stones, and other debris from the soil.
- Packed soil samples for shipment, prepared chain-of-custody records and shipping documentation

Soil Vapor Screening

An important tool in performing this study is performing the soil vapor screening or sniffing activities. Field screening is generally performed for a variety of reasons. The technique conducted during this study was used to screen soil samples for measurable levels of volatile organics. The results obtained from this procedure are not quantitative; however the results from several soil samples are relative and allowed the Field Geologist/Project Manager to select samples that are the most contaminated with the contaminated media. Generally, the presence of little or no organic vapor is possibly indicative of non-contaminated soils. Soil samples collected for purposes of soil headspace screening were tested by the following procedures:

- the field instrument was calibrated, prior to use;
- soil samples were collected directly from the DPT soil liners and placed into sealable plastic bags;
- soil samples within the bags were allowed to equilibrate for approximately five minutes;
- the headspace of each bagged sample was screened with the instrument probe for the presence of volatile organic compound (VOCs) with a Mini-RAE Photo-ionization Detector (PID);
- recording the instrument readings (VOCs) in a field logbook; and
- Verified that the FID/PID was reading background levels prior to exposing the probe into another sample.

Subsurface Assessment Methodology And Sampling Protocol

Parcel 196 – Ed Gouge Property 2044 East US Highway 19E, Burnsville, NC 28714

NCDOT R-2519A - Preliminary Site Assessment (March 2006)

Collection of Grab Soil Samples

Soil samples may provide two (2) types of soil contamination representation including grab and composite. Samples may be generally collected in random locations from a grid pattern or selected areas believed to be contaminated as evidenced by field indicators (staining, odors and/or measurable volatile organic readings).

For this study, grab samples selected from areas showing field indicators or confirmation soil samples chosen to confirm the absence of volatile organic readings were chosen. The technical definition for a grab sample is as follows: A grab sample is a discrete aliquot representative of a specific location at a given point in time. The sample is collected at one time and at one particular sampling point and depth. Refer to the text or Chain-of-Custody in this study for soil sample selection, date, time and depths of each sample chosen for laboratory analyses.

Sample Handling Procedures

The sample handling procedures were conducted as follows:

- 1) Disposable surgical latex gloves were used to avoid cross contamination of samples. Gloves were discarded in a designated "waste bag after each sample was collected.
- 2) Each confirmation sample upon collection was immediately stored in a cooler containing ice. During the sample collection process, care was taken to insure the samples were not collected in direct sunlight. In addition, during the collection process, no parts of the body without gloves touched any part of the sample.
- Once placed into the cooler, each sample was protected with bubble wrap® and foam was inserted in the base, sides and top of the cooler.

Soil Boring Abandonment Procedures

Due to the fact that holes in the subsurface may act as a conduit for contamination migration, proper sealing of holes is essential for ensuring that a site assessment does not contribute to the spread of contaminants. The objective of hole-sealing is to prevent preferential migration of contaminants through the bore hole. To seal the boreholes advanced during this study, the contractor utilized a method known as surface pouring. Surface pouring entails sealing the boreholes with dry products (e.g., bentonite granules, chips and/or pellets). Once the DPT drive rods have been withdrawn, dry products are physically poured into the bottom of the

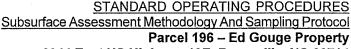
STANDARD OPERATING PROCEDURES
Subsurface Assessment Methodology And Sampling Protocol
Parcel 196 – Ed Gouge Property
2044 East US Highway 19E, Burnsville, NC 28714
NCDOT R-2519A – Preliminary Site Assessment (March 2006)

borehole and filled vertically up the column to at least two (2) feet from the base of the borehole. Once the dry products have seated into the borehole, the product is hydrated to expand the clay material. After the hydration process has been performed, the remaining portions of the boreholes are backfilled with the soil cores. Due to the nature of DPT, no soil cuttings were generated during soil boring exploration assessment work.

GROUNDWATER INVESTIGATION

The purpose of a monitoring well is to provide an access point for measuring groundwater levels and to collect groundwater samples representing actual in-situ groundwater conditions at that point of access. For the purpose of this investigation, based on the scope of work, EI chose to install temporary groundwater monitoring wells (Type I).

WELL DEVELOPMENT AND GROUNDWATER SAMPLE COLLECTION


Water Development

The groundwater monitor well was purged with a Peristaltic[™] pump. Well development allows fresh water from the formation to enter the well and the groundwater samples will more accurately represent actual groundwater conditions. The well was purged of approximately three (3) to five (5) well volumes of water or until dry prior to sampling.

Groundwater Sampling Procedures

After well development activities were performed, groundwater samples were collected from the well(s) with the referenced pump. During the collection process, samples were poured directly from the bailer into the laboratory supplied containers which were placed into an ice chest filled with ice. Under no circumstances were any intermediate sample containers used, i.e. jar, beaker, etc., and then transferred to the sample container. In addition, water samples were not field filtered.

Prior to collecting the water sample, the containers were labeled accordingly. This procedure was performed prior to sampling because sample containers have a tendency to "sweat" when filled with groundwater; this makes it difficult to affix a label to the container after sampling. The sample label also was covered with a clear piece of tape, which was wrapped around the sample container. This procedure prevented the label from detaching from the container during sample storage and shipment.

2044 East US Highway 19E, Burnsville, NC 28714 NCDOT R-2519A – Preliminary Site Assessment (March 2006)

Each sample container was labeled indicating the sample location (i.e. GP-1, or MW-1, etc.), date and time of collection, sample location, collector, project site, and analysis identification. Other pertinent information was recorded in the field book.

After the groundwater sample(s) was collected, the containers were immediately placed in a sample cooler containing ice. Upon completion, the samples were transported to Paradigm Analytical Laboratories, located in Wilmington, NC using chain-of-custody documentation.

Soil Boring Abandonment Procedures

Due to the fact that holes in the subsurface may act as a conduit for contamination migration, proper sealing of holes is essential for ensuring that a site assessment does not contribute to the spread of contaminants. The objective of hole-sealing is to prevent preferential migration of contaminants through the bore hole. To seal the boreholes advanced during this study, the contractor utilized a method known as surface pouring. Surface pouring entails sealing the boreholes with dry products (e.g., bentonite granules, chips and/or pellets). Once the DPT drive rods have been withdrawn, dry products are physically poured into the bottom of the borehole and filled vertically up the column to at least two (2) feet from the base of the borehole. Once the dry products have seated into the borehole, the product is hydrated to expand the clay material. After the hydration process has been performed, the remaining portions of the boreholes are backfilled with the soil cores. Due to the nature of DPT, no soil cuttings were generated during soil boring exploration assessment work.

LABORATORY ANALYTICAL METHODS

Soil Analytical Methods

Based upon verbal information provided by NCDOT personnel (Eugene Tarascio), EI selected to analyze the chosen soil samples for total petroleum hydrocarbons (TPH) analyses by Method 8015B with preparation methods for the analysis of Diesel Range Organics (DRO) by GC-FID and Gasoline Range Organics (GRO) by GC-FID. The GRO method is utilized to extract volatile fuels such as gasoline, while the DRO method is utilized to extract less volatile petroleum products such as diesel fuel, fuel oil #2, kerosene, and varsol.

One (1) soil sample from the site was analyzed for volatile organics by SW-846 Method 8260 (5035 Prep), for semi-volatiles (SVOCs) by SW-846 Method 8270, and for aliphatics and aromatics by Massachusetts Department of Environmental Protection's (MADEP) method for volatile petroleum hydrocarbons (VPH) and MADEP's method for extractable

STANDARD OPERATING PROCEDURES

Subsurface Assessment Methodology And Sampling Protocol

Parcel 196 – Ed Gouge Property

2044 East US Highway 19E, Burnsville, NC 28714

NCDOT R-2519A - Preliminary Site Assessment (March 2006)

petroleum hydrocarbons (EPH), respectively.

These laboratory analytical methods were utilized as required in the *Guidelines* in order to compare results to the DWM's maximum soil contaminant concentration (MSCC) cleanup standards. The MSCC concentrations are also published in the *Guidelines*.

SAMPLE PACKAGING AND SHIPPING

This section discusses the sample packaging and shipping protocol that shall be used to transport collected samples to the laboratories for analytical testing. Samples collected, prepared, preserved and stored must then be readied for packaging and shipping. It is important that the presented protocol be followed to ensure that the samples reach their destination in sound condition. In addition, the samples must be under strict COC from the time they are sampled until the analysis is complete.

Samples collected for this project were classified as environmental materials samples and were not considered hazardous. In addition, the samples collected for this study were not classified as "dangerous goods".

Environmental samples collected for this field study were packed prior to shipment using the following procedures:

- 1. Secure drain plug on cooler with tape.
- 2. Place cushioned layer on bottom of cooler (vermiculite or "bubble-wrap" plastic).
- 3. Line cooler with large heavy duty plastic bag.
- 4. Place all sample containers in large plastic bag within the cooler. Be sure the lids on all bottles are tight (will not leak).
- 5. Cushion containers to prevent breakage.
- 6 Put ice that has been "double bagged" in heavy duty polyethylene bags and placed on top of and/or between the samples within the large plastic bag. Fill all remaining space between the containers with cushion materials.
- 7 Securely fasten the top of the large plastic bag with tape or tie.
- 8. Place the Chain-of-Custody Record into a plastic bag, and tape the bag to the inner side of the cooler lid.
- 9. Close the cooler and securely tape (preferably with fiber tape) the top of the cooler shut. Custody seals should be affixed to the top and sides of the cooler within the securing tape so that the cooler cannot be opened without breaking the seal.
- 10. Shipping containers (ice cooler) must be marked "THIS END UP", and arrow labels which indicate the proper upward position of the container should be affixed to the container. A label containing the name and address of the shipper should be placed on the containers exterior. Labels

STANDARD OPERATING PROCEDURES Subsurface Assessment Methodology And Sampling Protocol Parcel 196 – Ed Gouge Property 2044 East US Highway 19E, Burnsville, NC 28714 NCDOT R-2519A – Preliminary Site Assessment (March 2006)

used in the shipment of hazardous materials (e.g., Cargo Only Air Craft, Flammable Solids, etc.) are not permitted to be on the outside of containers used to transport environmental samples.

STANDARD OPERATING PROCEDURES

Subsurface Assessment Methodology And Sampling Protocol

Parcel 196 – Ed Gouge Property

2044 East US Highway 19E, Burnsville, NC 28714

NCDOT R-2519A - Preliminary Site Assessment (March 2006)

Shipping Note:

"When samples are to be shipped by common carrier or sent through the United States mail, it must comply with the Department of Transportation Hazardous Materials Regulations (49 CFR 172). The person offering such material for transportation is responsible or ensuring such compliance. For the preservation requirements of 40 CFR, Part 136, Table II, the Office of Hazardous Materials Transportation Bureau, Department of Transportation has determined that the Hazardous Materials Regulations do not apply to the following materials: Hydrochloric Acid (HCL) in water solutions at concentrations of 0.04% by weight or less (pH about 1.96 or greater); Nitric acid (HN03) in water solutions at concentrations of 0.-15% by weight or less (pH about 1.62 or greater); Sulfuric acid (H2SO4) in water solutions at concentrations of 0.35% by weight or less (pH about 1.15 or greater); and Sodium Hydroxide (Na OH) in water solutions at concentrations of 0.08% by weight or less (pH about 12.30 or less). This footnote is wholly reproduced from 40 CFR 136.3, which is definitive".

Sample Transportation

The cooler(s) containing the collected soil samples was shipped overnight via Federal Express, with COC documentation, to SGS Paradigm Laboratories, Inc. in Wilmington, NC. The following protocol was used for sample handling and transportation:

- 1) The lids on all bottles were tightened to reduce the potential for leakage.
- 2) The sample identification label on each individual laboratory container was covered with a clear piece of plastic tape. Each container was then placed within an appropriately sized polyethylene bag and sealed.
- 3) The containers were placed into a bubble-wrap® lined rectangular ice chest (cooler).
- 4) Ice was placed on top and surrounding bubble-wrap® sample containers. Some of the remaining spaces between the containers were filled with bubble-wrap® and/or ice.
- 5) The cooler drain plug was secured with clear tape.
- 6) The COC's was double plastic bagged and was taped to the inner side of the cooler lid.
- 7) The cooler was closed and securely taped.
- 8) A label with adhesive tape containing the name and address of the shipper and the address of the laboratory was placed on top of the cooler.

STANDARD OPERATING PROCEDURES Subsurface Assessment Methodology And Sampling Protocol Parcel 196 – Ed Gouge Property 2044 East US Highway 19E, Burnsville, NC 28714

NCDOT R-2519A - Preliminary Site Assessment (March 2006)

DECONTAMINATION PROCEDURES

Decontamination is the process of washing, rinsing and removing contaminants from exposed surfaces of equipment. Decontamination helps prevent the spread of contamination off-site, and avoids cross-contamination to other samples. The decontamination procedures were performed as follows:

1) Disposable surgical latex gloves were used in lieu of decontamination procedures to collect soil samples.

The soil samples retained for laboratory analyses were placed in the appropriate clean laboratory prepared containers, labeled and subsequently delivered with chain-of-custody documentation (COC) for analysis. Dates and times of sampling may be referenced on the COC's. Specific laboratory analysis methods are referenced in the text of this Study.

QUALITY ASSURANCE PROTOCOL

Field and Laboratory Control Samples

The purpose of this section is to describe the standard control sampling program that supported the data quality objectives for this site. These control samples will included field control Quality Assurance (QA) samples used to assess sources of error. To minimize or consider the impact these errors have on the resulting data, a combination of unique field QA/QC protocols and control samples were developed to meet the QA overall objectives.

Field Control Samples

The elements of the sampling and field QA/QC strategy included the following:

- (1) El developed a well thought out sampling strategy for the site. The plan adequately and sufficiently outlined the different types of environmental media and protocol to sample the media.
- (2) Sampling methodologies to obtain true representative samples.
- (3) Used decontamination procedures in order to reduce cross-contamination potential between sampling points.
- (4) Used the proper sample containers, and preservation requirements.
- (5) Used the proper storage, and shipping of samples protocol.

Techniques to verify the inclusion of the QA/QC program included scheduled field control samples consisting of field blanks (trip and temperature). The field control samples were

STANDARD OPERATING PROCEDURES Subsurface Assessment Methodology And Sampling Protocol Parcel 196 – Ed Gouge Property 2044 East US Highway 19E, Burnsville, NC 28714 NCDOT R-2519A – Preliminary Site Assessment (March 2006)

handled similarly as the environmental samples.

STANDARD OPERATING PROCEDURES

Subsurface Assessment Methodology And Sampling Protocol

Parcel 196 – Ed Gouge Property

2044 East US Highway 19E, Burnsville, NC 28714

NCDOT R-2519A – Preliminary Site Assessment (March 2006)

Quality Control Samples

A trip and temperature blank were collected during this study.

Laboratory QA/QC Procedures

Laboratory QA/QC procedures are implemented in order to prevent, detects, and corrects potential errors during the analytical process. The reliability and credibility of analytical laboratories are corroborated by the development and performance of their respective QA/QC programs. For this project, the NCDOT contracted laboratory provided and performed their program as they see fit. Standard practices used by the selected laboratory included the following quality control sample information in their generated reports:

- (a) laboratory method blanks;
- (b) temperature blanks.

INVESTIGATION DERIVED WASTE MANAGEMENT PROTOCOL

The investigation derived waste (IDW) generated during the sampling activities were placed on site. These wastes include any derivative investigative soils leftover from the sampling and backfilling protocol, decontamination water (cleaning of field equipment), bailers, bailer haul-line and PPE equipment, if applicable. The management of IDW for this project complies with applicable or relevant and appropriate requirements (ARAs). The site specific ARAs were followed in consensus with the EPA Standard Operating Procedures (SOP) and Quality Assurance Manual, Region 4 and the *Guidelines For Assessment And Corrective Action*, drafted by the North Carolina Underground Storage Tank Section, effective July 1, 2001.

APPENDIX C SOIL BORING LOGS

le, North Carolina D 919-544-7500

Boring No. GP-1/TMW-1

SOIL BORING LOG

Date Drilled: 03/30/06

DST

DPT

ENVIRONMENTAL INVESTIGATIONS, INC.

Client: Project Name: NCDOT

Boring Diameter:

Project/Site Location: Project Number: Parcel #196

2044 Highway 19E, Burnsville, NC 28714 ENMO060029.00 Logged By:

Drilling Company: Ar

American Environmental

Drill Device:
Drill Method:

GeoProbe 6600

Surface Elevation:

Total Boring Depth: 3.05 m Weather Conditions: Warm

Boring Location: grass median by former pump island

				Diameter.	4.0		Boring Location. grass median by former pump island	
	Depth	Depth	Time		Recovery		Lithological Description	Sample
Ш	Feet)	(meters)		Analyzed		Profile		PID (ppm)
- -	2.50	0.76			100%		Brown to grey clayey SILT (ML)	0.0
	5.00	1.52			10076	(ML)	slight petroleum odor at 1.52 meters (5.0 feet)	120.0
		:	14:00	х		(14117)	Slight petroleum ouor at 1.52 meters (5.0 teet)	700.0
	7.50	2.29			80%		saturated at 2.44 meters (8.0 feet)	>1,000
	10.00	3.05						
	12.50	3.81						
	15.00	4.57					Boring terminated at 4.27m (14.0') bls. x denotes soil sample at 1.52m - 2.29m (5-7.5') bls interval collected for laboratory retention.	
	17.50	5.33						
	20.00	6.10						
					۸	terdemant to the control of the cont	,	

2101 Gateway Centre Boulevard, Suite 200 Boring No.

Morrisville, North Carolina 919-544-7500

SOIL BORING LOG

GP-2

03/30/06 Date Drilled:

ENVIRONMENTAL INVESTIGATIONS, INC.

Client: Project Name:

Project Number:

NCDOT

Parcel #196

Project/Site Location:

2044 Highway 19E, Burnsville, NC 28714 ENMO060029.00

Logged By:

DST

Drilling Company:

American Environmental

Drill Device:

GeoProbe 6600

Drill Method:

DPT

Total Boring Depth: 3.05 m

Weather Conditions: Warm

Surface Elevation:

Boring Diameter: Boring Location: delineation boring in grass median at ROW marker

Ηī	Depth	Depth	Time	Sample	Recovery	Soil	Lithological Description	Sample
	Feet)	(meters)		Analyzed		Profile		PID (ppm)
	2.50	0.76			4000/		Brown to grey clayey SILT (ML)	0.0
	5.00	1.52			100%	(ML)		25.0
			14:20	х		(11112)		310.0
Ĺ	7.50	2.29			80%		saturated at 2.74 meters (9.0 feet)	0.0
	10.00	3.05					Boring terminated at 3.05m (10.0') bls. x denotes soil sample at 1.52m - 2.29m (5-7.5') bls interval collected for laboratory retention.	
	12.50	3.81				-		
	15.00	4.57						
_	17.50	5.33						
	20.00	6.10						

SOIL BORING LOG

2101 Gateway Centre Boulevard, Suite 200 Morrisville, North Carolina

Boring No.

GP-3

919-544-7500

Date Drilled:

03/30/06

Client: Project Name: NCDOT

Logged By:

DST

Project/Site Location:

Parcel #196

Drilling Company:

American Environmental GeoProbe 6600

Project Number:

2044 Highway 19E, Burnsville, NC 28714 ENMO060029.00

Drill Device: Drill Method:

DPT

Total Boring Depth: 3.05 m

Weather Conditions: Warm

Surface Elevation:

Boring Diameter: Boring Location: upgradient of former UST systems 4.0"

L	Depth Depth Time Sample Recovery Soil						Borning Location. upgratient of former CS1 systems	
1	Depth	Depth	Time				Lithological Description	Sample
L	(Feet)	(meters)		Analyzed		Profile		PID (ppm)
	- - 2.50	0.76			100%		Brown to grey clayey SILT (ML)	0.0
	- - - 5.00	1.52			10076	(ML)	·	0.0
	- - - 7.50	2.29			90%			0.0
L	10.00	3.05	14:40	x	9076		wet at 2.74 meters (9.0 feet)	0.0
	-						Boring terminated at 3.05m (10.0') bls.	
	-						x denotes soil sample at 2.29m to 3.05m (5-7.5') bls interval collected	
	12.50	3.81					for laboratory retention.	
	15.00	4.57						·
	- 17.50 -	5.33						
	20.00	6.10						
	- - -						·	
E	-							

919-544-7500

SOIL BORING LOG

Boring No.

GP-4

Date Drilled:

03/30/06

ENVIRONMENTAL INVESTIGATIONS, INC.

Client: Project Name: Project/Site Location:

Project Number:

NCDOT

Parcel #196

2044 Highway 19E, Burnsville, NC 28714 ENMO060029.00

Logged By:

Drilling Company:

DST American Environmental

Drill Device:

GeoProbe 6600

Drill Method:

DPT

Total Boring Depth: 3.05 m

Weather Conditions: Warm

Surface Elevation:

Boring Diameter: 4.0"

Boring Location: by US 19E north of GP-1

l	Depth (Feet)	Depth (meters)	Time	Sample Analyzed	Recovery	Soil Profile	Lithological Description	Sample PID (ppm)
-	2.50	0.76			100%		Brown to grey clayey SILT (ML)	0.0
	5.00	1.52	84.		10078	(ML)		100.0
	7.50	2.29	15:00	X	90%		wet at 1.83 meters (6.0 feet)	600.0
L	10.00	3.05			3070			200.0
	12.50	3.81					Boring terminated at 3.05m (10.0') bls. x denotes soil sample at 2.29m to 3.05m (5-7.5') bls interval collected for laboratory retention.	·
	15.00	4.57						
	17.50	5.33			·	·		
-	20.00	6.10						244742100-1-24481
	- - -							
Ė	<u>-</u> -							

SOIL BORING LOG 2101 Gateway Centre Boulevard, Suite 200 GP-5 Boring No.

Morrisville, North Carolina 919-544-7500

Date Drilled: 03/30/06

ENVIRONMENTAL INVESTIGATIONS, INC.

Client:

Project Name:

Project Number:

Project/Site Location:

NCDOT

ENMO060029.00

Parcel #196 2044 Highway 19E, Burnsville, NC 28714 Logged By: Drilling Company:

DST

American Environmental

Drill Device:

GeoProbe 6600

Drill Method:

DPT

Total Boring Depth:

3.05 m

Weather Conditions: Warm

Surface Elevation:

Boring Diameter: 4.0" Boring Location: by US 19E north of GP-2

Γ	Depth	Depth	Time	Sample	Recovery	Soil	Lithological Description	Sample
	(Feet)	(meters)		Analyzed		Profile		PID (ppm)
	2.50	0.76			100%		Brown to grey clayey SILT (ML)	0.0
	5.00	1.52				(ML)		30.0
	7.50	2.29	15:20	x	90%		wet at 1.83 meters (6.0 feet)	200.0
<u> </u>	10.00	3.05					saturated at 2.74 meters (9.0 feet) Boring terminated at 3.05m (10.0') bls.	20.0
	12.50	3.81					x denotes soil sample at 2.29m to 3.05m (5-7.5') bls interval collected for laboratory retention.	·
	15.00	4.57						
	17.50	5.33						
	20.00	6.10						
	• • •			·			·	
Ė								į.

919-544-7500

SOIL BORING LOG

Boring No.

GP-6

Date Drilled:

03/30/06

ENVIRONMENTAL INVESTIGATIONS, INC.

Project Name:

NCDOT Parcel #196 Logged By:

DST

Project/Site Location:

2044 Highway 19E, Burnsville, NC 28714

Drilling Company:

American Environmental

Project Number:

ENMO060029.00

Drill Device: Drill Method: GeoProbe 6600 DPT

Total Boring Depth: 3.05 m

Weather Conditions: Warm

Surface Elevation:

Boring Diameter: 4.0" Boring Location: asphalt access at ROW line

Γ	Depth	Depth	Time		Recovery		Lithological Description	Sample
F	(Feet)	(meters)		Analyzed		Profile		PID (ppm)
	- - 2.50	0.76			100%		Brown to grey clayey SILT (ML)	10.0
	- - - 5.00	1.52			20070	(ML)		450.0
	- - - 7.50	2.29	15:30	X	000/		wet at 1.83 meters (6.0 feet)	>1,000
L	- 10.00	3.05			90%		saturated at 2.74 meters (9.0 feet)	>1,000
	12.50	3.81					Boring terminated at 3.05m (10.0') bls. x denotes soil sample at 2.29m to 3.05m (5-7.5') bls interval collected for laboratory retention.	
	- - - 15.00	4.57						
	- - 17.50	5.33						
	- - - 20.00	6.10	·	·				
	-							
	- - -							

919-544-7500

SOIL BORING LOG

Boring No.

GP-7

Date Drilled:

03/30/06

ENVIRONMENTAL INVESTIGATIONS, INC.

Client: Project Name:

Project/Site Location: Project Number:

NCDOT

Parcel #196

ENMO060029.00

2044 Highway 19E, Burnsville, NC 28714

Logged By:

DST

Drilling Company:

American Environmental

Drill Device:

GeoProbe 6600

Drill Method:

DPT

Total Boring Depth: 3.05 m Boring Diameter:

Weather Conditions: Warm

Surface Elevation:

		1		Diameter:	4.0"		Boring Location: asphalt access by US 19E north of GP-6	
L			_					
l	Depth		Time		Recovery	Soil	Lithological Description	Sample
L	(Feet)	(meters)		Analyzed		Profile		PID (ppm)
	2.50	0.76			100%		Brown to grey clayey SILT (ML)	25.0
F	5.00	1.52		- -		(ML)		350.0
	7.50	2.29	15:50	x	90%		wet at 1.83 meters (6.0 feet)	650.0
	10.00	3.05			9070		saturated at 2.74 meters (9.0 feet)	120.0
	12.50	3.81					Boring terminated at 3.05m (10.0') bls. x denotes soil sample at 2.29m to 3.05m (5-7.5') bls interval collected for laboratory retention.	
	15.00	4.57						
	17.50	5.33	·					
	20.00	6.10						
	• • •							
-	-	-						

919-544-7500

SOIL BORING LOG

Boring No.

Date Drilled:

03/30/06

Client:

NCDOT

Logged By:

DST

Project Name:

Parcel #196

Drilling Company:

American Environmental

Project/Site Location: Project Number:

2044 Highway 19E, Burnsville, NC 28714 ENMO060029.00

Drill Device: Drill Method:

GeoProbe 6600 DPT

Total Boring Depth: 3.05 m

Weather Conditions: Warm

Surface Elevation:

Boring Diameter: 4.0" Boring Location: grass east of asphalt access

ľ	Depth (Feet)	Depth (meters)	Time	Sample Analyzed	Recovery	Soil Profile	Lithological Description	Sample PID (ppm)
	2.50	0.76		T			Brown to grey clayey SILT (ML)	0.0
	5.00	1.52			100%	(ML)		100.0
	7.50	2.29	16:10	X		()	wet at 1.83 meters (6.0 feet)	150.0
	10.00	3.05			90%		saturated at 2.74 meters (9.0 feet)	>1000
	-						Boring terminated at 3.05m (10.0') bls. x denotes soil sample at 2.29m to 3.05m (5-7.5') bls interval collected for laboratory retention.	
	12.50	3.81						
	15.00	4.57						
	17.50	5.33						
	20.00	6.10						THE RESIDENCE OF THE PROPERTY
	·)							
E								

APPENDIX D LABORATORY RESULTS

Mr. Sterling Turner Environmental Investigations 5500-E Cox Rd Glen Allen VA 23060

Report Number: G106-587

Client Project: Yancy DOT

Dear Mr. Turner:

Enclosed are the results of the analytical services performed under the referenced project. The samples are certified to meet the requirements of the National Environmental Laboratory Accreditation Conference Standards. Copies of this report and supporting data will be retained in our files for a period of five years in the event they are required for future reference. Any samples submitted to our laboratory will will be retained for a maximum of thirty (30) days from the date of this report unless other arrangements are requested.

If there are any questions about the report or the services performed during this project, please call SGS/Paradigm at (910) 350-1903. We will be happy to answer any questions or concerns which you may have.

Thank you for using SGS/Paradigm Analytical Labs for your analytical services. We look forward to working with you again on any additional analytical needs which you may have.

Sincerely,

S Paradigm Analytical Laboratories, Inc.

Laboratory Director

J. Natrick Weaver

1 of 19

Client Sample ID: 196-1-3

Client Project ID: Yancy DOT

Lab Sample ID: G106-587-1

Lab Project ID: G106-587

Report Basis: Dry Weight

Analyzed By: MJC

Date Collected: 3/30/2006 14:00

Date Received: 4/5/2006

Matrix: Soil

Solids 84.35

Analyte	Result	RL	Prep	Dilution	Date
	MG/KG	MG/KG	Method	Factor	Analyzed
Gasoline Range Organics	BQL	7.14 '	5035	1	04/06/06
Diesel Range Organics	7.83	7.12	3541	1	04/14/06

Client Sample ID: 196-2-3

Client Project ID: Yancy DOT

Lab Sample ID: G106-587-2

Lab Project ID: G106-587

Report Basis: Dry Weight

Analyzed By: MJC

Date Collected: 3/30/2006 14:20

Date Received: 4/5/2006

Matrix: Soil

Solids 83.66

Analyte	Result	RL	Prep	Dilution	Date
	MG/KG	MG/KG	Method	Factor	Analyzed
Gasoline Range Organics	BQL	6.46	5035	1	04/06/06
Diesel Range Organics	44.9	7.28	3541	1	04/14/06

Client Sample ID: 196-3-4

Client Project ID: Yancy DOT

Lab Sample ID: G106-587-3

Lab Project ID: G106-587

Report Basis: Dry Weight

Analyzed By: MJC

Date Collected: 3/30/2006 14:40

Date Received: 4/5/2006

Matrix: Soil

Solids 84.94

Analyte	Result	RL	Prep	Dilution	Date
	MG/KG	MG/KG	Method	Factor	Analyzed
Gasoline Range Organics	BQL	7.06	5035	1	04/06/06
Diesel Range Organics	BQL	6.92	3541		04/14/06

Client Sample ID: 196-4-3

Client Project ID: Yancy DOT

Lab Sample ID: G106-587-4

Lab Project ID: G106-587

Report Basis: Dry Weight

Analyzed By: MJC

Date Collected: 3/30/2006 15:00

Date Received: 4/5/2006

Matrix: Soil

Solids 82.25

Analyte	Result	RL	Prep	Dilution	Date
	MG/KG	MG/KG	Method	Factor	Analyzed
Gasoline Range Organics	BQL	6.49	5035	1	04/07/06
Diesel Range Organics	BQL	7.39	3541	1	04/14/06

Client Sample ID: 196-5-3

Client Project ID: Yancy DOT

Lab Sample ID: G106-587-5

Lab Project ID: G106-587

Report Basis: Dry Weight

Analyzed By: MJC

Date Collected: 3/30/2006 15:20

Date Received: 4/5/2006

Matrix: Soil

Solids 78.73

Analyte	Result	RL	Prep	Dilution	Date
	MG/KG	MG/KG	Method	Factor	Analyzed
Gasoline Range Organics	BQL	7.99	5035	1	04/07/06
Diesel Range Organics	BQL	7.75	3541	1	04/14/06

Client Sample ID: 196-6-3

Client Project ID: Yancy DOT

Lab Sample ID: G106-587-6

Lab Project ID: G106-587

Report Basis: Dry Weight

Analyzed By: MJC

Date Collected: 3/30/2006 15:30

Date Received: 4/5/2006

Matrix: Soil

Solids 81.20

Analyte	Result	RL	Prep	Dilution	Date
	MG/KG	MG/KG	Method	Factor	Analyzed
Gasoline Range Organics Diesel Range Organics	50.9	7.19	5035	1	04/07/06
	25.3	7.56	3541	1	04/14/06

Client Sample ID: 196-7-3

Client Project ID: Yancy DOT

Lab Sample ID: G106-587-7

Lab Project ID: G106-587

Report Basis: Dry Weight

Analyzed By: MJC

Date Collected: 3/30/2006 15:50

Date Received: 4/5/2006

Matrix: Soil

Solids 80.51

Analyte	Result	RL	Prep	Dilution	Date
	MG/KG	MG/KG	Method	Factor	Analyzed
Gasoline Range Organics	BQL	6.77	5035	1	04/11/06
Diesel Range Organics	25.8	7.40	3541		04/14/06

Client Sample ID: 196-8-3

Client Project ID: Yancy DOT

Lab Sample ID: G106-587-8

Lab Project ID: G106-587

Report Basis: Dry Weight

Analyzed By: MJC

Date Collected: 3/30/2006 16:10

Date Received: 4/5/2006

Matrix: Soil

Solids 83.82

Analyte	Result	RL	Prep	Dilution	Date
	MG/KG	MG/KG	Method	Factor	Analyzed
Gasoline Range Organics	24.7	7.23	5035	1	04/07/06
Diesel Range Organics	23.8	7.38	3541	1	04/14/06

Results for Volatiles by GCMS 8260-5035

Client Sample ID: 196-2-3 Client Project ID: Yancy DOT Lab Sample ID G679-9-1a

Lab Sample ID G679-9-1a Lab Project ID: G106-587 Report Basis: Dry Weight Analyzed By: JTF

Date Collected: 03-30-2006 14:20

Date Received: 4/5/2006 Matrix: Soil

%Solids: 83.7

	Report Name	Result	Quantitation	Dilution	Date	
	Compound	UG/KG	Limit UG/KG	Factor	Analyzed	
	Acetone	BQL	58.7	•	4/10/2006	
	Benzene	BQL	5.87	1 .	4/10/2006	
	Bromobenzene	BQL	5.87	1	4/10/2006	
	Bromochloromethane	BQL	5.87	1	4/10/2006	
	Bromodichloromethane	BQL	5.87	1	4/10/2006	
	Bromoform	BQL	5.87	1	4/10/2006	
	Bromomethane	BQL	5.87	1	4/10/2006	
	2-Butanone	BQL	29.4	1	4/10/2006	
	n-Butylbenzene	BQL	5.87	1	4/10/2006	
	sec-Butylbenzene	BQL	5.87	1	4/10/2006	
	tert-Butylbenzene	BQL	5.87	1	4/10/2006	
	Carbon disulfide	BQL	5.87	1	4/10/2006	2
	Carbon tetrachloride	BQL	5.87	1	4/10/2006	
	Chlorobenzene	BQL	5.87	1	4/10/2006	
5.	Chloroethane	BQL	5.87	1	4/10/2006	
4	Chloroform	BQL	5.87	1	4/10/2006	
•	Chloromethane	BQL	5.87	1	4/10/2006	
	2-Chlorotoluene	BQL	5.87	1	4/10/2006	
	4-Chlorotoluene	BQL	5.87	1	4/10/2006	
	Dibromochloromethane	BQL	5.87	1	4/10/2006	
	1,2-Dibromo-3-chloropropane	BQL	5.87	1 .	4/10/2006	
	Dibromomethane	BQL	5.87	. 1	4/10/2006	
	1,2-Dibromoethane (EDB)	BQL	5.87	1	4/10/2006	
	1,2-Dichlorobenzene	BQL	5.87	·1	4/10/2006	
	1,3-Dichlorobenzene	BQL	5.87	1	4/10/2006	
	1,4-Dichlorobenzene	BQL	5.87	1	4/10/2006	
	trans-1,4-Dichloro-2-butene	BQL	5.87	1	4/10/2006	
	1,1-Dichloroethane	BQL	5.87	1	4/10/2006	
	1,1-Dichloroethene	BQL	5.87	1	4/10/2006	
	1,2-Dichloroethane	BQL	5.87	1	4/10/2006	
	cis-1,2-Dichloroethene	BQL	5.87		4/10/2006	
	trans-1,2-dichloroethene	BQL	5.87	1	4/10/2006	
	1,2-Dichloropropane	BQL	5.87	1	4/10/2006	
	1,3-Dichloropropane	BQL	5.87	1	4/10/2006	
	2,2-Dichloropropane	BQL	5.87	1	4/10/2006	
	1,1-Dichloropropene	BQL	5.87	1	4/10/2006	
	cis-1,3-Dichloropropene	BQL	5.87	1	4/10/2006	
	trans-1,3-Dichloropropene	BQL	5.87	1	4/10/2006	
	Dichlorodifluoromethane	BQL	5.87	1	4/10/2006	
	Diisopropyl ether (DIPE)	BQL	5.87	1	4/10/2006	
	Ethylbenzene	BQL	5.87	1	4/10/2006	
	Hexachlorobutadiene	BQL	5.87	1	4/10/2006	

Results for Volatiles by GCMS 8260-5035

Client Sample ID: 196-2-3 Client Project ID: Yancy DOT

Lab Sample ID G679-9-1a Lab Project ID: G106-587 Report Basis: Dry Weight Analyzed By: JTF

Date Collected: 03-30-2006 14:20

Date Received: 4/5/2006 Matrix: Soil

%Solids: 83.7

Report Name	Result	Quantitation		Dilution	Date
Compound	UG/KG	Limit UG/KG		Factor	Analyzed
2-Hexanone	BQL	5.87		1	4/10/2006
lodomethane	BQL	5.87		1	4/10/2006
Isopropylbenzene	BQL	5.87		1	4/10/2006
4-Isopropyltoluene	BQL	5.87		1	4/10/2006
Methylene chloride	BQL	23.5		1	4/10/2006
4-Methyl-2-pentanone	BQL	5.87		1	4/10/2006
Methyl-tert-butyl ether (MTBE)	BQL	5.87		1	4/10/2006
Naphthalene	BQL	5.87		1	4/10/2006
n-Propyl benzene	BQL	5.87		1	4/10/2006
Styrene	BQL	5.87		1	4/10/2006
1,1,1,2-Tetrachloroethane	BQL	5.87		1	4/10/2006
1,1,2,2-Tetrachloroethane	BQL	5.87		1	4/10/2006
Tetrachloroethene	BQL	5.87		1	4/10/2006
Toluene	BQL	5.87		1	4/10/2006
1,2,3-Trichlorobenzene	BQL	5.87		1	4/10/2006
1,2,4-Trichlorobenzene	BQL	5.87		1	4/10/2006
Trichloroethene	BQL	5.87		1	4/10/2006
1,1,1-Trichloroethane	BQL	5.87		1	4/10/2006
1,1,2-Trichloroethane	BQL	5.87		1	4/10/2006
Trichlorofluoromethane	BQL	5.87		1	4/10/2006
1,2,3-Trichloropropane	BQL	5.87		1	4/10/2006
1,2,4-Trimethylbenzene	BQL	5.87		. 1	4/10/2006
1,3,5-Trimethylbenzene	BQL	5.87		1	4/10/2006
Vinyl chloride	BQL	5.87		-1	4/10/2006
m-,p-Xylene	BQL	11.7		1	4/10/2006
o-Xylene	BQL	5.87		1	4/10/2006
		Spike	Spike F	Percent	

Added

50

50

50

Result

51.1

73.5

52.3

Comments:

Toluene-d8

Flags:

BQL = Below Quantitation Limits.

4-Bromofluorobenzene

1,2-Dichloroethane-d4

Reviewed By: _g__/

Recovered

102

147

105

Results for Semivolatiles by GCMS 8270

Client Sample ID: 196-2-3 Client Project ID: Yancy DOT Lab Sample ID: G106-587-2K Lab Project ID: G106-587

Report Basis: Dry weight

Analyzed By: MRC Date Collected: 3/30/2006 14:20

Date Received: 4/5/2006 Date Extracted: 4/10/2006

Matrix: Soil % Solids: 83.66

	Result	RL	Dilution	Date	
Compound	u g/Kg	ug/Kg	Factor	Analyzed	
Acenaphthene	BQL	371	1	4/13/2006	
Acenaphthylene	BQL	371	1	4/13/2006	
Anthracene	BQL	371	1	4/13/2006	
Benzo[a]anthracene	1020	371	1	4/13/2006	
Benzo[a]pyrene	1250	371	1	4/13/2006	
Benzo[b]fluoranthene	1530	371	1	4/13/2006	
Benzo[g,h,i]perylene	949	371	1	4/13/2006	
Benzo[k]fluoranthene	500	371	1	4/13/2006	
Benzoic Acid	BQL	741	1	4/13/2006	
Bis(2-chloroethoxy)methane	BQL	371	1	4/13/2006	
Bis(2-chloroethyl)ether	BQL	371	1	4/13/2006	
Bis(2-chloroisopropyl)ether	BQL	371	1	4/13/2006	
Bis(2-ethylhexyl)phthalate	BQL	371	1	4/13/2006	
4-bromophenyl phenyl ether	BQL	371	1	4/13/2006	
Butylbenzylphthalate	BQL	371	1	4/13/2006	
2-Chloronaphthalene	BQL	371	1	4/13/2006	
2-Chlorophenol	BQL	371	1	4/13/2006	
4-Chloro-3-methylphenol	BQL	371	1	4/13/2006	
4-Chloroanifine	BQL	1850	1	4/13/2006	
4-Chlorophenyl phenyl ether	BQL	371	1	4/13/2006	
Chrysene	1050	371	1	4/13/2006	
Dibenzo[a,h]anthracene	BQL	371	1	4/13/2006	
Dibenzofuran	BQL	371	1	4/13/2006	
Di-n-Butylphthalate	BQL	371	1 • • •	4/13/2006	
1.2-Dichlorobenzene	BQL	371	1	4/13/2006	
1,3-Dichlorobenzene	BQL	371	1	4/13/2006	
1,4-Dichlorobenzene	BQL	371	· 1	4/13/2006	
3,3'-Dichlorobenzidine	BQL	741	1	4/13/2006	
2,4-Dichlorophenol	BQL	371	1	4/13/2006	
Diethylphthalate	BQL	371	1	4/13/2006	
Dimethylphthalate	BQL	371	1	4/13/2006	
2,4-Dimethylphenol	BQL	371	1	4/13/2006	
Di-n-octylphthalate	BQL	371	. 1	4/13/2006	
4,6-Dinitro-2-methylphenol	—BQL	1850		4/13/2006	
2,4-Dinitrophenol	BQL	1850	1	4/13/2006	
2,4-Dinitrotoluene	BQL	371	1	4/13/2006	
2,6-Dinitrotoluene	BQL	371	1	4/13/2006	
Diphenylamine *	BQL	371	1	4/13/2006	
Fluoranthene	2030	371	. 1	4/13/2006	
Fluorene	BQL	371	1	4/13/2006	
Hexachlorobenzene	BQL	371	1	4/13/2006	
Hexachlorobutadiene	BQL	371	1	4/13/2006	
Hexachlorocyclopentadiene	BQL	741	1	4/13/2006	
Hexachloroethane	BQL	371	1	4/13/2006	

Results for Semivolatiles by GCMS 8270

Client Sample ID: 196-2-3 Client Project ID: Yancy DOT

Lab Sample ID: G106-587-2K Lab Project ID: G106-587 Report Basis: Dry weight Analyzed By: MRC

Date Collected: 3/30/2006 14:20

Date Received: 4/5/2006 Date Extracted: 4/10/2006

Matrix: Soil % Solids: 83.66

	Result	RL	Dilution	Date
Compound	ug/Kg	ug/Kg	Factor	Analyzed
Indeno(1,2,3-c,d)pyrene	1000	371	1	4/13/2006
Isophorone	BQL	371	1	4/13/2006
2-Methylnaphthalene	BQL	371	1	4/13/2006
2-Methylphenol	BQL	371	1	4/13/2006
3- & 4-Methylphenol	BQL	371	1	4/13/2006
Naphthalene	BQL	371	1	4/13/2006
2-Nitroaniline	BQL	371	1	4/13/2006
3-Nitroaniline	BQL	1850	1	4/13/2006
4-Nitroaniline	BQL	1850	1	4/13/2006
Nitrobenzene	BQL	371	1	4/13/2006
2-Nitrophenol	BQL	371	1	4/13/2006
4-Nitrophenol	BQL	1850	1	4/13/2006
N-Nitrosodi-n-propylamine	BQL	371	1	4/13/2006
Pentachlorophenol	BQL	1850	1	4/13/2006
Phenanthrene	719	371	1	4/13/2006
Phenol	BQL	371	1	4/13/2006
Pyrene	1810	371	1	4/13/2006
1,2,4-Trichlorobenzene	BQL	371	1	4/13/2006
2,4,5-Trichlorophenol	BQL	371	1	4/13/2006
2,4,6-Trichlorophenol	BQL	371	1	4/13/2006

	Spike Added	Spike Result	Percent Recovered
2-Fluorobiphenyl	10	11.1	110
2-Fluorophenol	10	11.4	114
Nitrobenzene-d5	10	11.3	113
Phenol-d6	10	11.4	114
2,4,6-Tribromophenol	10	10.7	107
4-Terphenyl-d14	10	11.7	117

Comments:

Flags:

BQL = Below Quantitation Limits.

Reviewed By: ______

^{*} N-Nitrosodiphenylamine is reported as the breakdown product Diphenylamine.

VPH (Aliphatics/Aromatics) Laboratory Reporting Form

Client Name: Environmental Investigations

Project Name: Yancy DOT

Sample Information and	Sample information and Analytical Results				
Sample Identification	196-2-3				
Sample Matrix	Soil				
Collection Option (for Soil)*	2				
Date Collected	03/30/06				
Date Received	04/05/06				
Date Extracted	03/30/06				
Date Analyzed	04/06/06				
Dry Weight	84				
Dilution Factor	1				
C ₅ -C ₈ Aliphatics**	< 10 (mg/Kg)				
C ₉ -C ₁₂ Aliphatics**	< 10 (mg/Kg)				
C ₉ -C ₁₀ Aromatics**	< 10 (mg/Kg)				
Surrogate % Recovery - PID	100				
Surrogate % Recovery - FID	110				

^{* =} Option 1 = Established fill line on vial, Option 2 = Sampling Device/Brand, or Option 3 = Field weight of soil.

Lab Info: g106-587-2d

Reviewed By: Pri

^{** =} Excludes any surrogates or internal standards.

Attachment 2 VPH Laboratory Reporting Form

Calibration and QA/QC Information

FID Initial Calibration Date:

02/11/06

PID Initial Calibration Date:

02/11/06

Calibration Ranges and Limits

	MDL (07/15/2004)	ML		RL
Range	(μg/L)	(µg/L)	(µg/L)	(mg/Kg)
C ₅ -C ₈ Aliphatics	4.4	14	100	10
C ₉ -C ₁₂ Aliphatics	3.4	11	100	10
C ₉ -C ₁₀ Aromatics	0.13	0.41	100	10

Calibration Concentration Levels

Range	Levels	(µg/L)	%RSD or CCC	Method of Quantitation
	40			
C ₅ -C ₈	1000			1
Aliphatics	2000		10.8	Calibration Factor
·	3000			
	4000			
	10			
C ₉ -C ₁₂ Aliphatics	250			
Aliphatics	500		0.99	Linear Regression
	750			
	1000			, , , , , , , , , , , , , , , , , , ,
	10			
C ₉ -C ₁₀	250			
Aromatics	500		19.30	Calibration Factor
	750			
	1000			

Calibration Check Date:

04/06/06

Calibration Check

Range	Levels (mg	(μg/L) /Kg)	RPD
C ₅ -C ₈ Aliphatics	2000	200	7.7
C ₉ -C ₁₂ Aliphatics	500	50	-1.1
C ₉ -C ₁₀ Aromatics	500	50	10.0

MDL = Method Detection Limit

ML = Minimum Limit

RL = Reportable Limit

RPD = Relative Percent Difference

%RSD = Percent Relative Standard Deviation

CCC = Correlation Coefficient of Curve

EPH (Aliphatics/Aromatics) Results by MDEP-EPH

Client Name: Environmental Investigations

Project Name: Yancy DOT

Sample Information and Analytical Results				
Sample Identification	196-2-3			
Sample Matrix	Soil			
Date Collected	03/30/06			
Date Received	04/05/06			
Date Extracted	04/06/06			
Date Analyzed	04/11/06			
Dry Weight	83.7			
Dilution Factor	1:1			
C ₉ -C ₁₈ Aliphatics*	< 10 (mg/Kg)			
C ₁₉ -C ₃₆ Aliphatics*	< 10 (mg/Kg)			
C ₁₁ -C ₂₂ Aromatics*	18 (mg/Kg)			
Aliphatic Surrogate % Recovery	97			
Aromatic Surrogate % Recovery	59			
Fractionation Surrogate 1 % Recovery	56			

Comments:

Lab info: G106-587-2J

Reviewed By: Pr

^{* =} Excludes any surrogates or internal standards.

Attachment 3 EPH Laboratory Reporting Form

Calibration and QA/QC Information

Initial Calibration Date:

12/28/05

Calibration Ranges and Limits

	MDL (2/2004)	ML	RL	
Range	(µg/L)	(µg/L)	(µg/L)	(mg/Kg)
C ₉ -C ₁₈ Aliphatics	3.84	12.2	100	10
C ₁₉ -C ₃₆ Aliphatics	0.57	1.8	100	10
C ₁₁ -C ₂₂ Aromatics	4.54	14.4	100	10

Calibration Concentration Levels

Range	Levels (µg/mL)	%RSD or CCC	Method of Quantitation
	6		
C ₉ -C ₁₈	30		
Aliphatics	60	24.90	Calibration Factor
·	120		1
	240		
	8		
C ₁₉ -C ₃₆	40		į
Aliphatics	80	15.4	Calibration Factor
	160		1
	320		
	17		
C ₁₁ -C ₂₂	85		1
Aromatics	170	9.8	Calibration Factor
	340		1
	680		

Calibration Check Date:

04/10/06

Calibration Check

Range	Levels (µg/mL)	RPD
C ₉ -C ₁₈ Aliphatics	120	12.7
C ₁₉ -C ₃₆ Aliphatics	160	5.4
C ₁₁ -C ₂₂ Aromatics	340	0.1

MDL = Method Detection Limit

ML = Minimum Limit

RL = Reportable Limit

RPD = Relative Percent Difference

%RSD = Percent Relative Standard Deviation

CCC = Correlation Coefficient of Curve

List of Reporting Abbreviations and Data Qualifiers

B = Compound also detected in batch blank

BQL = Below Quantitation Limit (RL or MDL)

DF = Dilution Factor

Dup = Duplicate

D = Detected, but RPD is > 40% between results in dual column method.

E = Estimated concentration, exceeds calibration range.

J = Estimated concentration, below calibration range and above MDL

LCS(D) = Laboratory Control Spike (Duplicate)

MDL = Method Detection Limit

MS(D) = Matrix Spike (Duplicate)

PQL = Practical Quantitation Limit

RL = Reporting Limit

RPD = Relative Percent Difference

mg/kg = milligram per kilogram, ppm, parts per million

ug/kg = micrograms per kilogram, ppb, parts per billion

mg/L = milligram per liter, ppm, parts per million

ug/L = micrograms per liter, ppb, parts per billion

% Rec = Percent Recovery

% soilds = Percent Solids

Special Notes:

- Metals and mercury samples are digested with a hot block, see the standard operating procedure document for details.
- 2) Uncertainty for all reported data is less than or equal to 30 percent.

MI34.030606.3

FLEW ALLEN , NA 23060 FAXNO: (BLY) 320 -9302 CLIENT: LAB NO. REPORTS TO: PROJECT: Relinquished, By: (2) CONTACT: STERLING [JEWING PHONE NO: 1897 - 96 13 EI INC 6 By: (4) By: (3) LODOL YANCE DOT 5500-R Cax 67 196-1-3 96-2-3 96-3-4 SAMPLE IDENTIFICATION 16-4-3 96-5-3 - 96 96-6-3 2-4-36 19/5/14 1/1/ac Date Date Date P.O. NUMBER SITE/PWSID#: QUOTE # 1600 10.30 Time Time Time Time DATE 7016 PARCEL 196 1400 Received By: Received By: Received By: Received By: 1700 50 25 न ५ 1530 142 1470 SGS Environmental Services Inc. TIME **CHAIN OF CUSTODY RECORD** MATRIX **[23**] SGS Reference: S ٩ 02MZ->-Z00 SAMPLE ္ရွိဂူ ଜୁନ 5 Analysis Required 35-9015 Shipping Carrier: Requested Turnaround Time and Special Instructions: Special Deliverable Requirements: Shipping Ticket No. GRO TPH ARO 3 8260 X 8270 80 X NOH EPH 3 New Jersey
 West Virginia Alaska
 Louisia INTAC Chain of Custody Seal: (Circle) Samples Received Cold? (Circle)(YES Temperature (C: www.us.sgs.com PAGE No Van's -BROKEN HawaiiMarylandNorth Carolina 056738 REMARKS <u>유</u> かんかんろ ABSENT Z O 19 of 19

424

☐ 1258 Greenbrier Street Charleston, WV 25311 Tel: (304) 346-0725 Fax: (304) 346-0781

© 200 W. Pottor Drive Anchorage, AK 99518 Tel: (907) 562-2343 Fax: (907) 561-5301 © 5500 Business Drive Wilmington, NC 28465 Tel: (910) 350-1903 Fax: (910) 350-1557

White - Retained by Lab Yellow - Returned : nort Pink - Retained : Her

Sase Narrative

Date: 04/22/06

Company: NC Dept. of Transportation

Contact: c/o EI / Bob Shaut

Address: Suite 200

2101 Gateway Centre Blvd. Morrisville, NC 27560 Client Project ID: Parcel 196/NCDOT-Burnsville NC

Client Project Name or No: WBS# 35609.1.1

Prism COC Group No: G0406104 Collection Date(s): 03/30/06 Lab Submittal Date: 04/05/06

This data package contains the analytical results for the project identified above and includes a Case Narrative, Laboratory Report and Quality Control Data totaling 20 pages. A chain-of-custody is also attached for the samples submitted to Prism for this project.

Data qualifiers are flagged individually on each sample. A Key Reference for the data qualifiers appears at the bottom of this page. Quality control statements and/or sample specific remarks are included in the sample comments section of the laboratory report for each sample affected.

Please call if you have any questions relating to this analytical report.

Data Reviewed by: Robbi A. Jones

Signature: Kell a Gres

Review Date: 04/22/06

Project Manager: Angela D. Overcash

Signature: Koff a Constor Angela Overcash

Approval Date: 04/22/06

Data Qualifier Key Reference:

#: Result outside of QC Limits

B: Compound also detected in the method blank

DO: Compound diluted out.

E: Estimated concentration, calibration range exceeded

J: The analyte was positively identified but the value is estimated below the reporting limit

JH: Estimated concentration with a high bias

JL: Estimated concentration with a low bias

M: A matrix effect is present

T: Tentatively identified compound. The concentration is estimated.

Notes: This report should not be reproduced, except in its entirety, without the written consent of Prism Laboratories, Inc.
The results in this report relate only to the samples submitted for analysis.

449 Springbrook Road, P. O. Box 240543, Charlotte, NC 28224-0403 Phone: 704/529-6364 Toll Free: 800/529-6364 Fax: 704/525-0409

F:\common\casenarrative Revised 8/25/05

Laboratory Report

04/22/06

ارگی. Department of Transportation

Attn: Bob Shaut/EI

c/o Environmental Investigations, Inc

2101 Gateway Centre Blvd. Ste 200

Morrisville, NC 27560

Project Name: Burnsvile, NC

Client Sample ID: 196-TMW-1 Parcel 196

Project ID:

NCDOT- Parcel 144, 167, Prism Sample ID: 146851 196

COC Group:

G0406104

Project No.:

WBS #356091.1

Time Collected:

03/30/06 16:00

Sample Matrix: Water

04/05/06

10:00 Time Submitted:

Parameter	Result	Units	Report Limit	MDL	Dilution Factor	Method	Analysis Date/Time	Analyst	Batch ID
Aromatic and Halogenated Volati	iles by GC/PID- BRL	ELCD µg/L	5.0	1.7	10	6230D	04/12/06 19:05	erussell	Q13927
1,1,1-Trichloroethane	BRL	μg/L	5.0	0.80	10	6230D	04/12/06 19:05	erussell	Q13927
1,1,2,2-Tetrachloroethane	BRL	μg/L	5.0	1.1	10	6230D	04/12/06 19:05	erussell	Q13927
1,1,2-Trichloroethane	BRL	μg/L	5.0	0.80	10	6230D	04/12/06 19:05	erussell	Q13927
1,1-Dichloroethane	BRL	μg/L	5.0	1.1	10	6230D	04/12/06 19:05	erussell	Q13927
1,1-Dichloroethene	BRL	μg/L	5.0	1.3	10	6230D	04/12/06 19:05	erussell	Q13927
1,1-Dichloropropene	BRL	μg/L	5.0	0.90	10	6230D	04/12/06 19:05	erussell	Q13927
1,2,3-Trichlorobenzene	BRL	μg/L	5.0	1.2	10	6230D	04/12/06 19:05	erussell	Q13927
1,3,3-Trichloropropane	BRL	μg/L	5.0	1.1	10	6230D	04/12/06 19:05	erussell	Q13927
-Trichlorobenzene	BRL	µg/L	5.0	0.40	10	6230D	04/12/06 19:05	erussell	Q13927
1.2.4-Trimethylbenzene	2100	μg/L	50	10	100	6230D	04/12/06 19:57	erussell	Q13927
1,2-Dibromo-3-chloropropane	BRL	μg/L	5.0	1.4	10	6230D	04/12/06 19:05	erussell .	Q13927
1,2-Dibromoethane (EDB)	BRL	μg/L	5.0	1.2	10	6230D	04/12/06 19:05	erussell	Q13927
1,2-Dichlorobenzene	BRL	μg/L	5.0	1.2	10	6230D	04/12/06 19:05	erussell	Q13927
1,2-Dichloroethane	BRL	μg/L	5.0	0.70	10	6230D	04/12/06 19:05	erussell	Q13927
1,2-Dichloropropane	BRL	μg/L	5.0	1.2	10	6230D	04/12/06 19:05	erussell ·	Q13927
1,3,5-Trimethylbenzene	740	μg/L	5.0	1.0	10	6230D	04/12/06 19:05	erussell	Q13927
1,3-Dichlorobenzene	BRL	μg/L	5.0	0.50	10	6230D	04/12/06 19:05	erussell	Q13927
1,3-Dichloropropane	BRL	μg/L	5.0	0.70	10	6230D	04/12/06 19:05	erussell	Q13927
1,4-Dichlorobenzene	BRL	μg/L	5.0	0.60	10	6230D	04/12/06 19:05	erussell	Q13927
2,2-Dichloropropane	BRL	μg/L	5.0	1.3	10	6230D	04/12/06 19:05	erussell	Q13927
, ,	BRL	μg/L	5.0	2.1	10	6230D	04/12/06 19:05	erussell	Q13927
2-Chlorotoluene	BRL	μg/L	5.0	0.90	10	6230D	04/12/06 19:05		Q13927
4-Chlorotoluene	220	μg/L	5.0	0.60	10	6230D	04/12/06 19:05		Q13927
Benzene	BRL	μg/L	5.0	1.3	10	6230D	04/12/06 19:05		Q13927
Bromobenzene			5.0	0.90	10	6230D	04/12/06 19:05		Q13927
Promochloromethane	BRL	μg/L		0.90	10	6230D	04/12/06 19:05		Q13927
hodichloromethane	BRL	μg/L	5.0	0.90	10	ひとうひひ	UH12100 19.00	3,400011	Q 10021

Laboratory Report

04/22/06

Department of Transportation

Attn: Bob Shaut/EI

c/o Environmental Investigations, Inc

2101 Gateway Centre Blvd. Ste 200

Morrisville, NC 27560

Project ID:

Project Name: Burnsvile, NC

Client Sample ID: 196-TMW-1 Parcel 196

NCDOT- Parcel 144, 167, Prism Sample ID: 146851

COC Group:

G0406104

Project No.: Sample Matrix: Water

WBS #356091.1

Time Collected:

03/30/06 16:00

Time Submitted: 04/05/06

10:00

Parameter	Result	Units	Report Limit	MDL	Dilution Factor	Method	Analysis Date/Time	Analyst	Batch ID
Bromoform	BRL	μg/L	5.0	0.50	10	6230D	04/12/06 19:05	erussell	Q13927
Bromomethane	BRL	μg/L	5.0	2.7	10	6230D	04/12/06 19:05	erussell	Q13927
Carbon Tetrachloride	BRL	μg/L	5.0	0.60	10	6230D	04/12/06 19:05	erussell	Q13927
Chlorobenzene	BRL	μg/L	5.0	1.7	10	6230D	04/12/06 19:05	erusseli	Q13927
Chloroethane	BRL	μg/L	5.0	4.1	10	6230D	04/12/06 19:05	erussell	Q13927
Chloroform	BRL	μg/L	5.0	0.60	10	6230D	04/12/06 19:05	erussell	Q13927
Chloromethane	BRL	μg/L	5.0	1.4	10	6230D	04/12/06 19:05	erussell	Q13927
cis-1,2-Dichloroethene	BRL	μg/L	5.0	1.3	10	6230D	04/12/06 19:05	erussell	Q13927
cis-1,3-Dichloropropene	BRL	μg/L	5.0	1.4	10	6230D	04/12/06 19:05	erussell	Q13927
mochloromethane	BRL	μg/L	5.0	0.80	10	6230D	04/12/06 19:05	erussell	Q13927
ம் என்னை ethane	BRL	μg/L	5.0	1.3	10	6230D	04/12/06 19:05	erussell	Q13927
Dichlorodifluoromethane	BRL	μg/L	5.0	1.4	10	6230D	04/12/06 19:05	erussell	Q13927
Ethylbenzene	2200	μg/L	50	16	100	6230D	04/12/06 19:57	erussell	Q13927
Hexachlorobutadiene	BRL	μg/L	5.0	1.7	10	6230D	04/12/06 19:05	erussell	Q13927
Isopropyl ether (IPE)	BRL	μg/L	5.0	2.4	10	6230D	04/12/06 19:05	erussell	Q13927
Isopropylbenzene	130	μg/L	5.0	1.0	10	6230D	04/12/06 19:05	erussell	Q13927
m,p-Xylenes	4600	μg/L	100	43	100	6230D	04/12/06 19:57	erussell	Q13927
Methyl t-butyl ether (MTBE)	BRL	μg/L	5.0	1.4	10	6230D	04/12/06 19:05	erussell	Q13927
Methylene chloride	BRL	μg/L	20	7.5	10	6230D	04/12/06 19:05	erussell	Q13927
n-Butylbenzene	BRL	μg/L	5.0	1.9	10	6230D	04/12/06 19:05	erussell	Q13927
n-Propylbenzene	340	μg/L	5.0	1.0	10	6230D	04/12/06 19:05	erussell	Q13927
Naphthalene	460	μg/L	5.0	1.0	10	6230D	04/12/06 19:05	erussell	Q13927
o-Xylene	3300	μg/L	50	16	100	6230D	04/12/06 19:57	erussell	Q13927
p-isopropyltoluene	BRL	μg/L	5.0	1.7	10	6230D	04/12/06 19:05	erussell	Q13927
sec-Butylbenzene	BRL	μg/L	5.0	1.2	10	6230D	04/12/06 19:05	erussell	Q13927
Styrene	BRL	μg/L	5.0	0.50	10	6230D	04/12/06 19:05	erussell	Q13927
utylbenzene	BRL	µg/L	5.0	1.3	10	6230D	04/12/06 19:05	erussell	Q13927
i eaachloroethene	BRL	μg/L	5.0	1.1	10	6230D	04/12/06 19:05	erussell	Q13927

Laboratory Report

04/22/06

Department of Transportation

Attn: Bob Shaut/El

c/o Environmental Investigations, Inc

2101 Gateway Centre Blvd. Ste 200

Morrisville, NC 27560

Project Name: Burnsvile, NC

Client Sample ID: 196-TMW-1 Parcel 196

Project ID:

NCDOT- Parcel 144, 167, Prism Sample ID: 146851 196

COC Group:

WBS #356091.1

G0406104

Project No.:

Sample Matrix: Water

Time Collected:

03/30/06 16:00

Time Submitted: 04/05/06

10:00

Parameter .	Result	Units	Report Limit	MDL	Dilution Factor	Method	Analysis Date/Time	Analyst	Batch ID
Toluene	230	μg/L	5.0	1.1	10	6230D	04/12/06 19:05	erussell	Q13927
trans-1,2-Dichloroethene	BRL	μg/L	5.0	2.7	10	6230D	04/12/06 19:05	erussell	Q13927
trans-1,3-Dichloropropene	BRL	μg/L	5.0	0.70	10	6230D	04/12/06 19:05	erussell	Q13927
Trichloroethene	BRL	μg/L	5.0	1.0	10	6230D	04/12/06 19:05	erussell	Q13927
Trichlorofluoromethane	BRL	μg/L	5.0	1.9	10	6230D	04/12/06 19:05	erussell	Q13927
Vinyl chloride	BRL	μg/L	5.0	2.4	10	6230D	04/12/06 19:05	erussell	Q13927

One surrogate recovery was outside of the control limits. The analysis was repeated at a 100x dilution with acceptable recovery (124%). Matrix interference is suspected.

					Surrogat	e	% Re	covery	,	Control Limits
					Bromochl	orobenzene-ELC	D	121		60 - 144
			1		1,4-Difluo	robenzene-PID		142 ;	#	50 - 141
Semivolatile Organic Compound	ds by GC/MS									
1,2,4-Trichlorobenzene	BRL	μg/L	10	2.5	1	625	04/12/06	16:32	kelliot	Q13955
1,2-Dichlorobenzene	BRL	μg/L	10	2.7	1	625	04/12/06	16:32	kelliot	Q13955
1,3-Dichlorobenzene	BRL	μg/L	10	1.9	1	625	04/12/06	16:32	kelliot	Q13955
1,4-Dichlorobenzene	BRL	µg/L	10	2.4	1	625	04/12/06	16:32	kelliot	Q13955
2,4-Dinitrotoluene	BRL	µg/L	10	0.84	1	625	04/12/06	16:32	kelliot	Q13955
2,6-Dinitrotoluene	BRL	μg/L	10	1.6	1	625	04/12/06	16:32	kelliot	Q13955
2-Chloronaphthalene	BRL	μg/L	10	2.2	1	625	04/12/06	16:32	kelliot	Q13955
3,3'-Dichlorobenzidine	BRL	μg/L	50	9.4	1	625	04/12/06	16:32	kelliot	Q13955
4-Bromophenylphenylether	BRL	μg/L	10	2.0	1	625	04/12/06	16:32	kelliot	Q13955
4-Chlorophenylphenylether	BRL	μg/L	10	1.6	1	625	04/12/06	16:32	kelliot	Q13955
Acenaphthene	BRL	μg/L	10	1.9	1	625	04/12/06	16:32	kelliot	Q13955
Acenaphthylene	BRL	μg/L	10	2.1	1	625	04/12/06	16:32	kelliot	Q13955
Anthracene	BRL	μg/L	10	0.98	1	625	04/12/06	16:32	kelliot	Q13955
o(a)anthracene	BRL	µg/L	10	0.94	1	625	04/12/06	16:32	kelliot	Q13955

Laboratory Report

04/22/06

Department of Transportation

Attn: Bob Shaut/El

c/o Environmental Investigations, Inc

2101 Gateway Centre Blvd. Ste 200

Morrisville, NC 27560

Project Name: Burnsvile, NC

Client Sample ID: 196-TMW-1 Parcel 196

Project ID:

NCDOT- Parcel 144, 167, Prism Sample ID: 146851

COC Group:

G0406104

Project No.:

WBS #356091.1

Time Collected:

03/30/06 16:00

Sample Matrix: Water

Time Submitted: 04/05/06

10:00

Parameter	Result	Units	Report Limit	MDL	Dilution Factor	Method	Analysis Date/Time	Analyst	Batch ID
Benzo(a)pyrene	BRL	µg/L	10	1.0	1	625	04/12/06 16:32	kelliot	Q13955
Benzo(b)fluoranthene	BRL	μg/L	10	1.7	1	625	04/12/06 16:32	kelliot	Q13955
Benzo(g,h,i)perylene	BRL	µg/L	10	2.1	1	625	04/12/06 16:32	kelliot	Q13955
Benzo(k)fluoranthene	BRL	µg/L	10	1.9	1	625	04/12/06 16:32	kelliot	Q13955
Bis(2-chloroethoxy)methane	BRL	μg/L	10	2.2	1	625	04/12/06 16:32	kelliot	Q13955
Bis(2-chloroethyl)ether	BRL	µg/L	10	2.1	1	625	04/12/06 16:32	kelliot	Q13955
Bis(2-chloroisopropyl)ether	BRL	μg/L	10	2.4	1	625	04/12/06 16:32	kelliot	Q13955
Bis(2-ethylhexyl)phthalate	BRL	μg/L	10	0.71	1	625	04/12/06 16:32	kelliot	Q13955
Butylbenzylphthalate	BRL	μg/L	10	0.70	1	625	04/12/06 16:32	kelliot	Q13955
<u></u>	BRL	μg/L	10	0.57	1	625	04/12/06 16:32	kelliot	Q13955
દેસ્તા-butylphthalate	BRL	μg/L	10	1.4	1	625	04/12/06 16:32	kelliot	Q13955
Di-n-octylphthalate	BRL	μg/L	10	2.2	1 .	625	04/12/06 16:32	kelliot	Q13955
Dibenzo(a,h)anthracene	BRL	μg/L	10	1.1	1	625	04/12/06 16:32	kelliot	Q13955
Dibenzofuran	BRL	μg/L	10	2.2	1	625	04/12/06 16:32	kelliot	Q13955
Diethylphthalate	BRL	μg/L	10	1.1	1	625	04/12/06 16:32	kelliot	Q13955
Dimethylphthalate	BRL	μg/L	10	1.4	1	625	04/12/06 16:32	kelliot	Q13955
Fluoranthene	BRL	μg/L	10	0.94	1	625	04/12/06 16:32	kelliot	Q13955
Fluorene	BRL	μg/L	10	1.4	1	625	04/12/06 16:32	kelliot	Q13955
Hexachlorobenzene	BRL	μg/L	10	1.3	1	625	04/12/06 16:32	kelliot	Q13955
Hexachlorobutadiene	BRL	μg/L	10	2.2	1	625	04/12/06 16:32	kelliot	Q13955
Hexachlorocyclopentadiene	BRL	μg/L	10	2.4	1	625	04/12/06 16:32	kelliot	Q13955
Hexachloroethane	BRL	μg/L	10	1.8	1	625	04/12/06 16:32	kelliot	Q13955
Indeno(1,2,3-cd)pyrene	BRL	μg/L	10	1.7	1	625	04/12/06 16:32	kelliot	Q13955
Isophorone	BRL	μg/L	10	1.6	1	625	04/12/06 16:32	kelliot	Q13955
N-Nitrosodi-n-propylamine	BRL	μg/L	10	2.2	1	625	04/12/06 16:32	kelliot	Q13955
Naphthalene	210	μg/L	50	11	5	625	04/13/06 10:14	kelliot	Q13955
benzene	BRL	μg/L	10	1.9	1	625	04/12/06 16:32	kelliot	Q13955
Firenanthrene	BRL	μg/L	10	0.90	1	625	04/12/06 16:32	kelliot	Q13955

Laboratory Report

04/22/06

. Department of Transportation

Attn: Bob Shaut/El

c/o Environmental Investigations, Inc

2101 Gateway Centre Blvd. Ste 200

Morrisville, NC 27560

Project Name: Burnsvile, NC

Project ID:

Project No.:

Sample Matrix: Water

WBS #356091.1

Client Sample ID: 196-TMW-1 Parcel 196

NCDOT- Parcel 144, 167, Prism Sample ID: 146851

COC Group:

G0406104

03/30/06 Time Collected:

Time Submitted: 04/05/06 10:00

16:00

Parameter	Result	Units	Report Limit	MDL	Dilution Factor	Method	Analysis Date/Time	Analyst	Batch ID
Pyrene	BRL	μg/L	10	0.91	1	625	04/12/06 16:32	kelliot	Q13955

Surrogate recovery was outside of the control limits. Matrix interference is suspected.

Sample Preparation:

1000 mL / 1 mL

625BN

04/06/06 14:00 smanivanh P15068

Surrogate	% Recovery	Control Limits
Terphenyl-d14	93	10 - 154
Phenol-d5	7 #	10 - 48
Nitrobenzene-d5	79	22 - 103
2-Fluorophenol	20	10 - 59
2-Fluorobiphenyl	83	29 - 112
2,4,6-Tribromophenol	69	27 - 125

Everaciable	Detroloum	Hydrocarbons	hy CC FID

C11-C22 Aromatics	900	µg/L	110	79	1	MADEP EPH	04/19/06 16:14	grappaccioli	Q13970
C19-C36 Aliphatics	BRL	μg/L	110	34	1	MADEP EPH	04/19/06 16:14	grappaccioli	Q13970
C9-C18 Aliphatics	1400	μg/L	110	83	1	MADEP EPH	04/19/06 16:14	grappaccioli	Q13970

Analysis Note for C11-C22 Aromatics: Adjusted value.

Sample Preparation:

900 mL / 2 mL

EPH

04/10/06 8:00

smanivanh

P15099

Surrogate	% Recovery	Control Limits
o-Terphenyl	110	40 - 140
2-Fluorobiphenyl	119	40 - 140
2-Bromonaphthalene	95	. 40 - 140
1-Chloro-octadecane	112	40 - 140

Volatile Petroleum Hydrocarbone by GC-PID/FID

Volatile i etioleulti liyarocarbons	Dy CO-1 1D// 1D							
C5-C8 Aliphatics	12000	µg/L	400	200	4	MADEP VPH	04/06/06 23:23 jvogel	Q13860
C9-C10 Aromatics	6100	μg/L	400	140	4	MADEP VPH	04/06/06 23:23 jvogel	Q13860
C9-C12 Aliphatics	4800	μg/L	400	200	4	MADEP VPH	04/06/06 23:23 jvogel	Q13860

Laboratory Report

04/22/06

Department of Transportation

Attn: Bob Shaut/El

c/o Environmental Investigations, Inc 2101 Gateway Centre Blvd. Ste 200

Morrisville, NC 27560

Project Name: Burnsvile, NC

Client Sample ID: 196-TMW-1 Parcel 196

NCDOT- Parcel 144, 167, Prism Sample ID: 146851

196

WBS #356091.1

COC Group:

G0406104 03/30/06

Project No.: Sample Matrix: Water

Project ID:

MDL

Time Collected:

Time Submitted: 04/05/06

16:00 10:00

Result

Units Report

Dilution

Method

Analysis

Analyst

Batch

Parameter

Limit

Factor

Date/Time

ID

Analysis Note for C5-C8 Aliphatics: Adjusted value.

Analysis Note for C9-C12 Aliphatics: Adjusted value.

Surrogate	% Recovery	Control Limits
2,5-Dibromotoluene-PID	112	70 - 130
2,5-Dibromotoluene-FID	97	70 - 130

Sample Comment(s):

BRL = Below Reporting Limit

Estimated value between the Reporting Limit and the MDL

esults in this report relate only to the samples submitted for analysis and meet state certification requirements other than NELAC certification except for those instances indicated in the case narrative and/or test comments.

Angela D. Overcash, V.P. Laboratory Services

Laboratory Report

04/22/06

. Department of Transportation

Attn: Bob Shaut/El

c/o Environmental Investigations, Inc

2101 Gateway Centre Blvd. Ste 200

Morrisville, NC 27560

Project Name: Burnsvile, NC Project ID:

Project No.:

Sample Matrix: Water

WBS #356091.1

NCDOT- Parcel 144, 167, Prism Sample ID: 146852

Client Sample ID: TRIP BLANK

COC Group:

G0406104 03/30/06

Time Collected:

Time Submitte	1: 04/05/06	10:00
---------------	-------------	-------

Parameter	Result	Units	Report Limit	MDL	Dilution Factor	Method	Analysis Date/Time	Analyst	Batch ID
Volatile Petroleum Hydrocarl	oons by GC-PID/FIE	<u>)</u>							
C5-C8 Aliphatics	BRL	μg/L	100	50	1	MADEP VPH	04/06/06 19:54	jvogel	Q13860
C9-C10 Aromatics	BRL	μg/L	100	35	1	MADEP VPH	04/06/06 19:54	jvogel	Q13860
C9-C12 Aliphatics	BRL	μg/L	100	50	1	MADEP VPH	04/06/06 19:54	jvogel	Q13860

Analysis Note for C5-C8 Aliphatics: Adjusted value.

Analysis Note for C9-C12 Aliphatics: Adjusted value.

Surrogate	% Recovery	Control Limits
2,5-Dibromotoluene-PID	75	70 - 130
2,5-Dibromotoluene-FID	98	70 - 130

Sample Comment(s):

BRL = Below Reporting Limit

J = Estimated value between the Reporting Limit and the MDL

The results in this report relate only to the samples submitted for analysis and meet state certification requirements other than NELAC certification except for those instances indicated in the case narrative and/or test comments.

Angela D. Overcash, V.P. Laboratory Services

Level II QC Report

4/22/2006

N. C. Department of Transportation

Attn: Bob Shaut/EI

c/o Environmental Investigations, Inc 2101 Gateway Centre Blvd. Ste 200

Morrisville, NC 27560

Project Name:

Burnsvile, NC

COC Group Number: G0406104

Project ID:

NCDOT- Parcel 144, 1 Date/Time Submitted: 4/5/2006 10:00

Project No.:

WBS #356091.1

Volatile Petroleum Hydrocarbons by GC-PID/FID, method MADEP VPH

Method BI	ank			Control					OC D-4-5
		Result	RL	Limit	Units				QC Batch ID
	C5-C8 Aliphatics	ND	100	<50	μg/L				Q13860
	C9-C10 Aromatics	ND	100	<50	μg/L				Q13860
	C9-C12 Aliphatics	ND	100	<50	μg/L	**			Q13860
Laborator	y Control Sample	,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	C-11		_	Recovery			
		Result	Spike Amount	Units	Recovery %	Range %			QC Batch ID
	C5-C8 Aliphatics	139	150	µg/L	93	70 - 130			Q13860
	C9-C10 Aromatics	38.4	50	μg/L	77	70 - 130			Q13860
	C9-C12 Aliphatics	83.5	100	μg/L.	84	70 - 130			Q13860
Matrix Spi	ke		Spike			Recovery			00.0.1.1
Sample ID:		Result	Amount	Units	Recovery %	Range %			QC Batch ID
146456	C5-C8 Aliphatics	147.000	150	μg/L	98	70 - 130			Q13860
	C9-C10 Aromatics	38.100	50	μg/L	76	70 - 130			Q13860
	C9-C12 Aliphatics	98.600	100	μg/L	99	70 - 130			Q13860
Matrix Spi	ke Duplicate	, , , , , , , , , , , , , , , , , , , ,	Spike		_	Recovery Range		RPD	
Sample ID:		Result	Amount	Units	Recovery %	Kange %	RPD %	Range %	QC Batch ID
146456	C5-C8 Aliphatics	179	150	μg/L	119	70 - 130	20	0 - 25	Q13860
	C9-C10 Aromatics	36.6	50	μg/L	73	70 - 130	4	0 - 25	Q13860
	C9-C12 Aliphatics	126	100	μg/L	126	70 - 130	24	0 - 25	Q13860

Level II QC Report

4/22/2006

N. C. Department of Transportation

Project Name: Burnsvile, NC

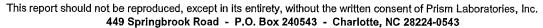
COC Group Number: G0406104

Attn: Bob Shaut/El

Project ID:

NCDOT- Parcel 144, 1 Date/Time Submitted: 4/5/2006 10:00

c/o Environmental Investigations, Inc 2101 Gateway Centre Blvd. Ste 200


Project No.:

196 WBS #356091.1

Morrisville, NC 27560

Aromatic and Halogenated Volatiles by GC/PID-ELCD, method 6230D

etho	d Blank	Result	RL	Control Limit	Units	QC Batch ID
	1,1,1,2-Tetrachloroethane	ND	0.5	<0.25	µg/L	Q13927
	1,1,1-Trichloroethane	ND	0.5	<0.25	μg/L	Q13927
	1,1,2,2-Tetrachloroethane	ND	0.5	< 0.25	μg/L	Q13927
	1,1,2-Trichloroethane	ND	0.5	<0.25	μg/L	Q13927
	1,1-Dichloroethane	ND	0.5	<0.25	μg/L	Q13927
	1,1-Dichloroethene	ND	0.5	<0.25	µg/L	Q13927
	1,1-Dichloropropene	ND	0.5	< 0.25	μg/L	Q13927
	1,2,3-Trichlorobenzene	ND	0.5	<0.25	μg/L.	Q13927
	1,2,3-Trichloropropane	ND	0.5	<0.25	μg/L	Q13927
	1,2,4-Trichlorobenzene	ND	0.5	<0.25	μg/L	Q13927
	1,2,4-Trimethylbenzene	ND	0.5	<0.25	μg/L	Q13927
	1,2-Dibromo-3-chloropropane	ND	0.5	<0.25	μg/L	Q13927
	1,2-Dibromoethane (EDB)	ND	0.5	<0.25	μg/L	Q13927
	1,2-Dichlorobenzene	ND	0.5	<0.25	μg/L	Q13927
	1,2-Dichloroethane	ND	0.5	<0.25	μg/L	Q13927
	1,2-Dichloropropane	ND	0.5	<0.25	μg/L	Q13927
	1,3,5-Trimethylbenzene	ND	0.5	<0.25	μg/L	Q13927
	1,3-Dichlorobenzene	ND	0.5	<0.25	μg/L	Q13927
	1,3-Dichloropropane	ND	0.5	<0.25	μg/L	Q13927
	1,4-Dichlorobenzene	ND	0.5	<0.25	μg/L	Q13927
	2,2-Dichloropropane	ND	0.5	<0.25	μg/L	Q13927
	2-Chlorotoluene	ND	0.5	<0.25	µg/L	Q13927
	4-Chlorotoluene	ND	0.5	<0.25	μg/L	Q13927
	Benzene	ND	0.5	<0.25	μg/L	Q13927
	Bromobenzene	ND	0.5	< 0.25	μg/L	Q13927
	Bromochloromethane	ND	0.5	<0.25	µg/L	Q13927
	Bromodichloromethane	ND	0.5	< 0.25	μg/L	Q13927
	Bromoform	ND	0.5	<0.25	μg/L	Q13927
	Bromomethane	ND	0.5	<0.25	μg/L	Q13927
	Carbon Tetrachloride	ND	0.5	<0.25	μg/L	Q13927
	Chlorobenzene	ND	0.5	<0.25	μg/L	Q13927
	Chloroethane	ND	0.5	<0.25	μg/L	Q13927
	Chloroform	ND	0.5	<0.25	μg/L	Q13927
	Chloromethane	ND	0.5	<0.25	μg/L	Q13927
	cis-1,2-Dichloroethene	ND	0.5	<0.25	μg/L	Q13927
	cis-1,3-Dichloropropene	ND	0.5	<0.25	µg/L	Q13927
	Dibromochloromethane	ND	0.5	<0.25	μg/L	Q13927
	Dibromomethane	ND	0.5	<0.25	μg/L	Q13927
	Dichlorodifluoromethane	ND	0.5	<0.25	μg/L	Q13927
	Ethylbenzene	ND	0.5	<0.25	μg/L	Q13927
	Hexachlorobutadiene	ND	0.5	<0.25	μg/L	Q13927
	Isopropyl ether (IPE)	ND	0.5	<0.25	µg/L	Q13927

Level II QC Report

4/22/2006

N. C. Department of Transportation

Attn: Bob Shaut/El

c/o Environmental Investigations, Inc 2101 Gateway Centre Blvd. Ste 200

Morrisville, NC 27560

Project Name: Burnsvile, NC

Project ID:

COC Group Number: G0406104

NCDOT- Parcel 144, 1 Date/Time Submitted: 4/5/2006 10:00

Project No.: WBS #356091.1

ethod Blank	Result	RL	Control Limit	Units	QC Batch ID
Isopropylbenzene	ND	0.5	<0.25	μg/L	Q13927
m,p-Xylenes	ND	1	<0.5	μg/L	Q13927
Methyl t-butyl ether (MTBE)	ND	0.5	<0.25	μg/L	Q13927
Methylene chloride	ND	2	<1	μg/L	Q13927
n-Butylbenzene	ND	0.5	<0.25	μg/L	Q13927
n-Propylbenzene	ND	0.5	<0.25	µg/L_	Q13927
Naphthalene	ND	0.5	<0.25	μg/L	Q13927
o-Xylene	ND	0.5	<0.25	μg/L	Q13927
p-Isopropyltoluene	ND	0.5	<0.25	µg/L	Q13927
sec-Butylbenzene	ND	0.5	<0.25	μg/L	Q13927
Styrene	ND	0.5	<0.25	μg/L	Q13927
tert-Butylbenzene	ND	0.5	<0.25	µg/L	Q13927
Tetrachloroethene	ND	0.5	<0.25	µg/L	Q13927
Toluene	ND	0.5	<0.25	μg/L	Q13927
trans-1,2-Dichloroethene	ND	0.5	<0.25	μg/L	Q13927
trans-1,3-Dichloropropene	ND	0.5	<0.25	μg/L	Q13927
Trichloroethene	ND	0.5	<0.25	μg/L	Q13927
Trichlorofluoromethane	ND	0.5	<0.25	μg/L.	Q13927
Vinyl chloride	ND	0.5	<0.25	μg/L	Q13927

_abora	atory Control Sample	Result	Spike Amount	Units	Recovery %	Recovery Range %	QC Batch ID
	1,1,1,2-Tetrachloroethane	45.3	40	μg/L	113	70 - 139	Q13927
	1,1,1-Trichloroethane	22.5	20	μg/L	112	60 - 140	Q13927
	1,1,2,2-Tetrachloroethane	21.4	20	μg/L	107	60 - 140	Q13927
	1,1,2-Trichloroethane	20.5	20	µg/L	103	60 - 140	Q13927
	1,1-Dichloroethane	20.6	20	μg/L	103	60 - 140	Q13927
	1,1-Dichloroethene	22.6	20	μg/L	113	60 - 140	Q13927
	1,1-Dichloropropene	21.2	20	μg/L	106	62 - 140	Q13927
	1,2,3-Trichlorobenzene	17.2	20	μg/L	86	72 - 119	Q13927
	1,2,3-Trichloropropane	19.3	20	μg/L	97	68 - 131	Q13927
	1,2,4-Trichlorobenzene	17.2	20	μg/L	86	58 - 133	Q13927
	1,2,4-Trimethylbenzene	17.3	20	µg/L	87	72 - 125	Q13927
	1,2-Dibromo-3-chloropropane	15.7	20	μg/L	79	50 - 135	Q13927
	1,2-Dibromoethane (EDB)	24.7	20	µg/L	124	66 - 130	Q13927
	1,2-Dichlorobenzene	17.6	20	μg/L	88	64 - 137	Q13927
	1,2-Dichloroethane	23.4	20	µg/L	117	72 - 137	Q13927
	1,2-Dichloropropane	22.5	20	μg/L	112	70 - 139	Q13927
	1,3,5-Trimethylbenzene	17.3	20	μg/L	87	73 - 124	Q13927
	1,3-Dichlorobenzene	16.8	20	μg/L .	84	60 - 137	Q13927
	1,3-Dichloropropane	21.5	20	μg/L	108	67 - 131	Q13927
	1,4-Dichlorobenzene	16.2	20	μg/L	81	64 - 139	Q13927
	2,2-Dichloropropane	47.0	40	μg/L	117	62 - 138	Q13927
	2-Chlorotoluene	17.1	20	µg/L	85	59 - 140	Q13927

This report should not be reproduced, except in its entirety, without the written consent of Prism Laboratories, Inc. 449 Springbrook Road - P.O. Box 240543 - Charlotte, NC 28224-0543

Level II QC Report

4/22/2006

N. C. Department of Transportation

Attn: Bob Shaut/El

c/o Environmental Investigations, Inc 2101 Gateway Centre Blvd. Ste 200

Morrisville, NC 27560

Project Name: Burnsvile, NC

COC Group Number: G0406104

Project ID:

NCDOT- Parcel 144, 1¹ Date/Time Submitted: 4/5/2006 10:00

WBS #356091.1 Project No.:

Labora	atory Control Sample	Result	Spike Amount	Units	Recovery %	Recovery Range %	QC Batch ID
	4-Chlorotoluene	18.7	20	μg/L	93	67 - 140	Q13927
	Benzene	22.3	20	μg/L	111	68 - 130	Q13927
	Bromobenzene	16.3	20	μg/L	81	62 - 133	Q13927
	Bromochloromethane	22.3	20	µg/L	111	69 - 131	Q13927
	Bromodichloromethane	21.4	20	μg/L	107	72 - 130	Q13927
	Bromoform	20.9	20	μg/L	104	59 - 126	Q13927
	Bromomethane	21.1	20	μg/L	105	55 - 138	Q13927
	Carbon Tetrachloride	23.5	20	μg/L	118	70 - 144	Q13927
	Chlorobenzene	17.2	20	μg/L	86	75 - 122	Q13927
	Chloroethane	20.2	20	μg/L	101	63 - 145	Q13927
	Chloroform	22,9	20	μg/L	114	71 - 137	Q13927
	Chloromethane	19.5	20	μg/L	97	50 - 144	Q13927
	cis-1,2-Dichloroethene	23.6	20	μg/L	118	62 - 138	Q13927
	cis-1,3-Dichloropropene	22.1	20	μg/L	111	67 - 133	Q13927
	Dibromochloromethane	22.6	20	μg/L	113	65 - 133	Q13927
	Dibromomethane	23.5	20	μg/L	117	71 - 133	Q13927
	Dichlorodifluoromethane	24.0	20	μg/L	120	52 - 152	Q13927
	Ethylbenzene	16.7	20	μg/L	83	74 - 130	Q13927
	Hexachlorobutadiene	16.4	20	μg/L	82	52 - 149	Q13927
	Isopropyl ether (IPE)	23.2	20	μg/L	116	70 - 121	Q13927
	Isopropylbenzene	· 17.7	20	μg/L	89	71 - 130	Q13927
	m,p-Xylenes	33.9	40	μg/L	85	74 - 128	Q13927
	Methyl t-butyl ether (MTBE)	21.6	20	μg/L	108	75 - 119	Q13927
	Methylene chloride	20.6	20	μg/L	103	68 - 133	Q13927
	n-Butylbenzene	17.8	20	μg/L	89	70 - 135	Q13927
	n-Propylbenzene	17.3	20	μg/L	87	75 - 128	Q13927
	Naphthalene	16.8	20	μg/L	84	71 - 114	Q13927
	o-Xylene	17.2	20	μg/L	86	65 - 130	Q13927
	p-Isopropyltoluene	17.5	20	μg/L	88	59 - 138	Q13927
	sec-Butylbenzene	16.5	20	μg/L	83	66 - 136	Q13927
	Styrene	16.8	20	µg/L	84	78 - 122	Q13927
	tert-Butylbenzene	17.8	20	μg/L	89	65 - 133	Q13927
	Tetrachloroethene	19.4	20	μg/L	97	66 - 145	Q13927
	Toluene	18.5	20	µg/L	92	69 - 129	Q13927
	trans-1,2-Dichloroethene	25.2	20	µg/L	126	59 - 144	Q13927
	trans-1,3-Dichloropropene	20.5	20	µg/L	103	67 - 130	Q13927
	Trichloroethene	20.9	20	μg/L	104	52 - 152	Q13927
	Trichlorofluoromethane	22.5	20	μg/L	113	52 - 153	Q13927
	Vinyl chloride	21.2	20	μg/L	106	48 - 144	Q13927

Matrix Spike			Spike		Recovery	Recovery Range	QC Batch
Sample ID:		Result	Amount	Units	%	%	ID
147242	1,1,1,2-Tetrachloroethane	163.200	160	µg/L	102	60 - 134	Q13927
	1,1,1-Trichloroethane	90.744	80	μg/L	113	60 - 133	Q13927

This report should not be reproduced, except in its entirety, without the written consent of Prism Laboratories, Inc. 449 Springbrook Road - P.O. Box 240543 - Charlotte, NC 28224-0543

Level II QC Report

4/22/2006

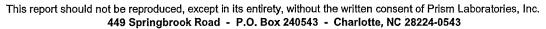
N. C. Department of Transportation

Attn: Bob Shaut/El

c/o Environmental Investigations, Inc 2101 Gateway Centre Blvd. Ste 200

Morrisville, NC 27560

Project Name: Burnsvile, NC COC Group Number: G0406104


Project ID:

NCDOT- Parcel 144, 1 Date/Time Submitted: 4/5/2006 10:00

Project No.:

WBS #356091.1

latrix Sp Sample II		Result	Spike Amount	Units	Recovery %	Recovery Range %	QC Batch ID
p 1-	1,1,2,2-Tetrachloroethane	87.508	80	µg/L	109	58 - 143	Q13927
	1,1,2-Trichloroethane	79.420	80	μg/L	99	58 - 138	Q13927
	1,1-Dichloroethane	95.000	80	μg/L	119	57 - 131	Q13927
	1,1-Dichloroethene	90.864	80	μg/L	114	53 - 141	Q13927
	1,1-Dichloropropene	86.528	80	µg/L	108	53 - 135	Q13927
	1,2,3-Trichlorobenzene	72.320	80	μg/L	90	53 - 129	Q13927
	1,2,3-Trichloropropane	79.420	80	μg/L	99	63 - 135	Q13927
	1,2,4-Trichlorobenzene	70.336	80	μg/L	88	51 - 129	Q13927
	1,2,4-Trimethylbenzene	71.328	80	μg/L	89	70 - 121	Q13927
	1,2-Dibromo-3-chloropropane	56.832	80	μg/L	71	46 - 137	Q13927
	1,2-Dibromoethane (EDB)	85.320	80	μg/L	107	60 - 133	Q13927
	1,2-Dichlorobenzene	73.028	80	μg/L	91	64 - 130	Q13927
	1,2-Dichloroethane	103.932	80	μg/L	130	66 - 136	Q13927
	1,2-Dichloropropane	85.500	80	μg/L	107	64 - 133	Q13927
	1,3,5-Trimethylbenzene	72.692	80	μg/L	91	66 - 121	Q13927
	1,3-Dichlorobenzene	69.824	80	μg/L	87	58 - 130	Q13927
	1,3-Dichloropropane	87.228	80	μg/L	109	62 - 130	Q13927
	1,4-Dichlorobenzene	66,932	80	µg/L	84	59 - 136	Q13927
	2,2-Dichloropropane	183.120	160	μg/L	114	58 - 127	Q13927
	2-Chlorotoluene	67.588	80	μg/L	84	56 - 134	Q13927
	4-Chlorotoluene	76.436	80	µg/L	96	56 - 141	Q13927
	Benzene	90.892	80	μg/L	114	69 - 122	Q13927
	Bromobenzene	66.472	80	μg/L	83	61 - 128	Q13927
	Bromochloromethane	89.756	80	μg/L	112	62 - 128	Q13927
	Bromodichloromethane	84.740	80	μg/L	106	63 - 127	Q13927
	Bromoform	87.856	80	μg/L	110	56 - 127	Q13927
	Bromomethane	83.648	80	μg/L	105	57 - 134	Q13927
	Carbon Tetrachloride	95.504	80	μg/L	119	64 - 133	Q13927
	Chlorobenzene	70.684	80	μg/L	- 88	72 - 117	Q13927
,	Chloroethane	87.684	80	μg/L	110	57 - 143	Q13927
	Chloroform	92.128	80	μg/L	115	65 - 133	Q13927
	Chloromethane	84.732	80	μg/L	106	45 - 142	Q13927
	cis-1,2-Dichloroethene	95.852	80	μg/L	120	58 - 127	Q13927
	cis-1,3-Dichloropropene	80.208	80	μg/L	100	62 - 129	Q13927
	Dibromochloromethane	86.768	80	μg/L.	108	59 - 132	Q13927
	Dibromomethane	98.120	80	μg/L	123	64 - 134	Q13927
	Dichlorodifluoromethane	95.800	80	μg/L	120	52 - 138	Q13927
	Ethylbenzene	68.960	80	μg/L	86	71 - 122	Q13927
	Hexachlorobutadiene	67.136	80	μg/L	84	54 - 134	Q13927
	Isopropyl ether (IPE)	94.272	80	μg/L	118 #	73 - 115	Q13927
	Isopropylbenzene	73.488	80	μg/L.	92	69 - 121	Q13927
	m,p-Xylenes	140.056	160	µg/L	88	69 - 122	Q13927
	Methyl t-butyl ether (MTBE)	88.556	80	μg/L	111	75 - 116	Q13927
	Methylene chloride	88.660	80	μg/L	111	58 - 137	Q13927

Level II QC Report

4/22/2006

N. C. Department of Transportation

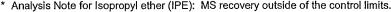
Attn: Bob Shaut/El

c/o Environmental Investigations, Inc 2101 Gateway Centre Blvd. Ste 200

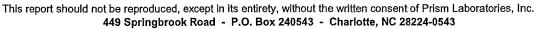
Morrisville, NC 27560

Project Name: Burnsvile, NC

COC Group Number: G0406104


Project ID:

NCDOT- Parcel 144, 1 Date/Time Submitted: 4/5/2006 10:00


196

Project No.: WBS #356091.1

atrix Spike Sample ID:		Result	Spike Amount	Units	Recovery %	Recovery Range %	QC Batch ID
	Butylbenzene	74.216	80	μg/L	93	71 - 121	Q13927
n-F	Propylbenzene	71.868	80	μg/L	90	73 - 119	Q13927
Na	phthalene	71.268	80	μg/L	89	64 - 118	Q13927
o-X	(ylene	72.708	80	μg/L	91	66 - 124	Q13927
p-ls	sopropyltoluene	73.088	80	μg/L	91	61 - 127	Q13927
sec	-Butylbenzene	68.748	80	μg/L	86	65 - 126	Q13927
Sty	rene	68.940	80	μg/L	86	64 - 124	Q13927
tert	t-Butylbenzene	74.656	80	μg/L	93	63 - 123	Q13927
Tet	trachloroethene	78.904	80	μg/L	99	62 - 135	Q13927
Tol	uene	75.392	80	μg/L	94	71 - 120	Q13927
traı	ns-1,2-Dichloroethene	101.956	80	μg/L	127	62 - 133	Q13927
· traı	ns-1,3-Dichloropropene	78.736	80	μg/L	98	58 - 129	Q13927
Tric	chloroethene	80.868	80	μg/L	101	56 - 128	Q13927
Trio	chlorofluoromethane	96.592	80	μg/L	121	49 - 147	Q13927
Vin	yl chloride	83.892	80	μg/L	105	53 - 135	Q13927

Matrix Spi	ke Duplicate		Spike		Recovery	Recovery Range	RPD	RPD Range	QC Batch
Sample ID:		Result	Amount	Units		%	<u>%</u>	%	ID
147242	1,1,1,2-Tetrachloroethane	147	160	μg/L.	92	60 - 134	11	0 - 20	Q13927
	1,1,1-Trichloroethane	85.8	80	μg/L.	107	60 - 133	6	0 - 20	Q13927
	1,1,2,2-Tetrachloroethane	80.5	80	μg/L	101	58 - 143	8	0 - 20	Q13927
	1,1,2-Trichloroethane	73.2	80	μg/L.	92	58 - 138	8	0 - 20	Q13927
	1,1-Dichloroethane	89.5	80	μg/L	112	57 - 131	6	0 - 20	Q13927
	1,1-Dichloroethene	80.7	80	μg/L	101	53 - 141	12	0 - 20	Q13927
	1,1-Dichloropropene	80.9	80	μg/L	101	53 - 135	7	0 - 20	Q13927
	1,2,3-Trichlorobenzene	71.7	80	µg/L	90	53 - 129	1	0 - 20	Q13927
	1,2,3-Trichloropropane	73.5	80	μg/L	92	63 - 135	8	0 - 20	Q13927
	1,2,4-Trichlorobenzene	71.4	80	µg/L	89	51 - 129	1	0 - 20	Q13927
	1,2,4-Trimethylbenzene	71.0	80	µg/L	89	70 - 121	0	0 - 20	Q13927
	1,2-Dibromo-3-chloropropane	63.5	80	µg/L	79	46 - 137	11	0 - 20	Q13927
	1,2-Dibromoethane (EDB)	76.1	80	µg/L	95	60 - 133	11	0 - 20	Q13927
	1,2-Dichlorobenzene	73.6	80	µg/L	92	64 - 130	1	0 - 20	Q13927
	1,2-Dichloroethane	102	80	μg/L	127	66 - 136	2	0 - 20	Q13927
	1,2-Dichloropropane	81.9	80	µg/L	102	64 - 133	4	0 - 20	Q13927
	1,3,5-Trimethylbenzene	70.5	80	µg/L	88	66 - 121	3	0 - 20	Q13927
	1,3-Dichlorobenzene	69.8	80	μg/L	87	58 - 130	0	0 - 20	Q13927
	1,3-Dichloropropane	77.7	80	μg/L	97	62 - 130	12	0 - 20	Q13927
	1,4-Dichlorobenzene	67.0	80	μg/L	84	59 - 136	0	0 - 20	Q13927
	2,2-Dichloropropane	176	160	μg/L .	110	58 - 127	4	0 - 20	Q13927
	2-Chlorotoluene	65.5	80	μg/L	82	56 - 134	3	0 - 20	Q13927
	4-Chlorotoluene	72.5	80	µg/L	91	56 - 141	5	0 - 20	Q13927
	Benzene	86.0	80	µg/L	107	69 - 122	6	0 - 20	Q13927
	Bromobenzene	63.6	80	µg/L	80	61 - 128	4	0 - 20	Q13927

Level II QC Report

4/22/2006

N. C. Department of Transportation

Attn: Bob Shaut/El

c/o Environmental Investigations, Inc 2101 Gateway Centre Blvd. Ste 200

Morrisville, NC 27560

Project Name: Burnsvile, NC

Project ID:

COC Group Number: G0406104

NCDOT- Parcel 144, 1 Date/Time Submitted: 4/5/2006 10:00

Project No.: WBS #356091.1

Matrix Sample	Spike Duplicate	Result	Spike Amount	Units	Recovery %	Recovery Range %	RPD %	RPD Range %	QC Batch ID
Jampie	Bromochloromethane	87.4		µg/L	109	62 - 128	3	0 - 20	Q13927
	Bromodichloromethane	80.1	80	μg/L	100	63 - 127	6	0 - 20	Q13927
	Bromoform	77.4	80	μg/L	97	56 - 127	13	0 - 20	Q13927
	Bromomethane	74.0	80	μg/L	93	57 - 134	12	0 - 20	Q13927
	Carbon Tetrachloride	89.6	80	μg/L	112	64 - 133	6	0 - 20	Q13927
	Chlorobenzene	68.2	80	μg/L	85	72 - 117	4	0 - 20	Q13927
	Chloroethane	79.1	80	μg/L	99	57 - 143	10	0 - 20	Q13927
	Chloroform	87.8	80	μg/L	110	65 - 133	5	0 - 20	Q13927
	Chloromethane	76.7	80	μg/L	96	45 - 142	10	0 - 20	Q13927
	cis-1,2-Dichloroethene	88.0	80	μg/L	110	58 - 127	9	0 - 20	Q13927
	cis-1,3-Dichloropropene	73.2	80	μg/L	91	62 - 129	9	0 - 20	Q13927
	Dibromochloromethane	79.3	80	μg/L	99	59 - 132	9	0 - 20	Q13927
	Dibromomethane	94.7	80	μg/L	118	64 - 134	4	0 - 20	Q13927
	Dichlorodifluoromethane	84.2	80	μg/L	105	52 - 138	13	0 - 20	Q13927
	Ethylbenzene	66.7	80	µg/L	83	71 - 122	3	0 - 20	Q13927
	Hexachlorobutadiene	71.8	80	μg/L	90	54 - 134	7	0 - 20	Q13927
	Isopropyl ether (IPE)	88.3	80	μg/L	110	73 - 115	7	0 - 20	Q13927
	Isopropylbenzene	71.1	80	μg/L	89	69 - 121	3	0 - 20	Q13927
	m,p-Xylenes	136	160	μg/L	85	69 - 122	3	0 - 20	Q13927
	Methyl t-butyl ether (MTBE)	84.1	80	μg/L	105	75 - 116	5	0 - 20	Q13927
	Methylene chloride	86.1	80	μg/L	108	58 - 137	3	0 - 20	Q13927
	n-Butylbenzene	71.4	80	μg/L	89	71 - 121	4	0 - 20	Q13927
	n-Propylbenzene	70.1	80	μg/L	88	73 - 119	3	0 - 20	Q13927
	Naphthalene	70.7	80	µg/L	88	64 - 118	1	0 - 20	Q13927
	o-Xylene	69.9	80	μg/L	87	66 - 124	4	0 - 20	Q13927
	p-lsopropyltoluene	71.9	80	μg/L	90	61 - 127	2	0 - 20	Q13927
	sec-Butylbenzene	68.3	80	μg/L	85	65 - 126	1	0 - 20	Q13927
	Styrene	66.7	80	µg/L	83	64 - 124	3	0 - 20	Q13927
	tert-Butylbenzene	71.5	80	µg/L	89	63 - 123	4	0 - 20	Q13927
	Tetrachloroethene	75.0	80	μg/L	94	62 - 135	5	0 - 20	Q13927
	Toluene	73.3	80	μg/L	92	71 - 120	3	0 - 20	Q13927
	trans-1,2-Dichloroethene	92.0	80	µg/L	115	62 - 133	10	0 - 20	Q13927
•	trans-1,3-Dichloropropene	71.4	80	µg/L	89	58 - 129	10	0 - 20	Q13927
	Trichloroethene	77.1	80	µg/L	96	56 - 128	5	0 - 20	Q13927
	Trichlorofluoromethane	80.6	80	µg/L	101	49 - 147	18	0 - 20	Q13927
	Vinyl chloride	76.7	80	μg/L	96	53 - 135	9	0 - 20	Q13927

Level II QC Report

4/22/2006

N. C. Department of Transportation

Attn: Bob Shaut/El

c/o Environmental Investigations, Inc 2101 Gateway Centre Blvd. Ste 200

Morrisville, NC 27560

Project Name: Burnsvile, NC

COC Group Number: G0406104

Project ID:

NCDOT- Parcel 144, 1 Date/Time Submitted: 4/5/2006 10:00

Project No.:

WBS #356091.1

Semivolatile Organic Compounds by GC/MS, method 625

od E	Blank 	Result	RL	Control Limit	Units		QC Batch ID
	1,2,4-Trichlorobenzene	ND	10	<5	μg/L		Q13955
	1,2-Dichlorobenzene	ND	10	<5	μg/L		Q13955
	1,3-Dichlorobenzene	ND	10	<5	μg/L		Q13955
	1,4-Dichlorobenzene	ND	10	<5	μg/L		Q13955
	2,4-Dinitrotoluene	ND	10	<5	μg/L		Q13955
Ť	2,6-Dinitrotoluene	ND	10	<5	μg/L		Q13955
	2-Chloronaphthalene	ND	10	<5	μg/L		Q13955
	3,3'-Dichlorobenzidine	ND	50	<25	μg/L		Q13955
	4-Bromophenylphenylether	ND	10	<5	μg/L		Q13955
	4-Chlorophenylphenylether	ND	10	<5	μg/L		Q13955
	Acenaphthene	ND	10	<5	μg/L		Q13955
	Acenaphthylene	ND	10	<5	μg/L	•	Q13955
	Anthracene	ND	10	<5	μg/L		Q13955
	Benzo(a)anthracene	ND	10	<5	μg/L		Q13955
	Benzo(a)pyrene	ND	10	<5	μg/L		Q13955
	Benzo(b)fluoranthene	ND	10	<5	μg/L		Q13955
	Benzo(g,h,i)perylene	ND	10	<5	μg/L		Q13955
	Benzo(k)fluoranthene	ND	10	<5	μg/L		Q13955
	Bis(2-chloroethoxy)methane	ND	10	<5	μg/L		Q13955
	Bis(2-chloroethyl)ether	ND	10	<5	μg/L		Q13955
	Bis(2-chloroisopropyl)ether	ND	10	<5	μg/L		Q13955
	Bis(2-ethylhexyl)phthalate	ND	10	<5	μg/L		Q13955
	Butylbenzylphthalate	ND	10	<5	μg/L		Q13955
	Chrysene	ND	10	<5	μg/L		Q13955
	Di-n-butylphthalate	ND	10	<5	μg/L		Q13955
	Di-n-octylphthalate	ND	10	<5	μg/L		Q13955
	Dibenzo(a,h)anthracene	ND	10	<5	μg/L		Q13955
	Diethylphthalate	ND	10	<5	μg/L		Q13955
	Dimethylphthalate	ND	10	<5	μg/L		Q13955
	Fluoranthene	ND	10	<5	μg/L		Q13955
	Fluorene	ND	10	<5	μg/L		Q13955
	Hexachlorobenzene	ND	10	<5	μg/L		Q13955
	Hexachlorobutadiene	ND	10	<5	μg/L		Q13955
	Hexachlorocyclopentadiene	ND	10	<5	μg/L	•	Q13955
	Hexachloroethane	ND	10	<5	μg/L		Q13955
	Indeno(1,2,3-cd)pyrene	ND	10	<5	μg/L		Q13955
	Isophorone	ND	10	<5	µg/L		Q13955
	N-Nitrosodi-n-propylamine	ND	10	<5	μg/L		Q13955
	Naphthalene	ND	10	<5	μg/L		Q13955
	Nitrobenzene	ND	10	<5	μg/L		Q13955
	Phenanthrene	ND	10	<5	μg/L		Q13955
	Pyrene	ND	10	<5	µg/L		Q13955

This report should not be reproduced, except in its entirety, without the written consent of Prism Laboratories, Inc. 449 Springbrook Road - P.O. Box 240543 - Charlotte, NC 28224-0543

Level II QC Report

4/22/2006

N. C. Department of Transportation

Attn: Bob Shaut/El

c/o Environmental Investigations, Inc 2101 Gateway Centre Blvd. Ste 200

Morrisville, NC 27560

Project Name: Burnsvile, NC

Project ID:

COC Group Number: G0406104

NCDOT- Parcel 144, 1 Date/Time Submitted: 4/5/2006 10:00

Project No.: WBS #356091.1

.abora	tory Control Sample	Result	Spike Amount	Units	Recovery %	Recovery Range %	QC Batch ID
	1,2,4-Trichlorobenzene	77.3	100	μg/L	77	44 - 142	Q13955
	1,2-Dichlorobenzene	70.6	100	μg/L	71	32 - 129	Q13955
	1,3-Dichlorobenzene	70.8	100	μg/L	71	20 - 124	Q13955
	1,4-Dichlorobenzene	74.5	100	μg/L	74	20 - 124	Q13955
	2,4-Dinitrotoluene	96.6	100	µg/L	97	39 - 139	Q13955
	2,6-Dinitrotoluene	99.8	100	μg/L	100	50 - 158	Q13955
	2-Chloronaphthalene	81.7	100	μg/L	82	60 - 118	Q13955
	3,3'-Dichlorobenzidine	104	100	μg/L	104	10 - 262	Q13955
	4-Bromophenylphenylether	84.0	100	hg/r	84	53 - 127	Q13955
	4-Chlorophenylphenylether	88.8	100	µg/L	89	25 - 158	Q13955
	Acenaphthene	83.7	100	µg/L	84	47 - 145	Q13955
	Acenaphthylene	84.7	100	µg/L	85	33 - 145	Q13955
	Anthracene	86.2	100	μg/L	86	27 - 133	Q13955
	Benzo(a)anthracene	93.1	100	μg/L	93	33 - 143	Q13955
	Benzo(a)pyrene	92.5	100	μg/L	93	17 - 163	Q13955
	Benzo(b)fluoranthene	104	100	μg/L	104	24 - 159	Q13955
	Benzo(g,h,i)perylene	98.2	100	μg/L	98	10 - 219	Q13955
	Benzo(k)fluoranthene	66.1	100	μg/L	66	11 - 162	Q13955
	Bis(2-chloroethoxy)methane	77.9	100	μg/L	78	33 - 184	Q13955
	Bis(2-chloroethyl)ether	72.1	100	μg/L	72	12 - 158	Q13955
	Bis(2-chloroisopropyl)ether	77.9	100	μg/L	78	36 - 166	Q13955
	Bis(2-ethylhexyl)phthalate	96.2	100	μg/L	96	10 - 158	Q13955
	Butylbenzylphthalate	95.0	100	μg/L	95	10 - 152	Q13955
	Chrysene	85.1	100	µg/L	85	17 - 168	Q13955
	Di-n-butylphthalate	92.2	100	μg/L	92	10 - 118	Q13955
	Di-n-octylphthalate	98.4	100	µg/L	98	10 - 146	Q13955
	Dibenzo(a,h)anthracene	94.3	100	μg/L	94	10 - 227	Q13955
	Diethylphthalate	96.3	100	μg/L	96	10 - 114	Q13955
	Dimethylphthalate	91.0	100	μg/L	91	10 - 112	Q13955
	Fluoranthene	86.4	100	μg/L	86	26 - 137	Q13955
	Fluorene	85.5	100	μg/L	85	59 - 121	Q13955
	Hexachlorobenzene	86.1	100	μg/L	86	10 - 152	Q13955
	Hexachlorobutadiene	77.2	100	μg/L	77	24 - 116	Q13955
	Hexachlorocyclopentadiene	91.5	100	µg/L	91	32 - 103	Q13955
	Hexachloroethane	68.6	100	μg/L	69	40 - 113	Q13955
	Indeno(1,2,3-cd)pyrene	106	100	μg/L	106	10 - 171	Q13955
	Isophorone	88.1	100	μg/L	88	21 - 196	Q13955
	N-Nitrosodi-n-propylamine	83.1	100	μg/L	83	10 - 230	Q13955
	Naphthalene	81.6	100	µg/L	82	21 - 133	Q13955
	Nitrobenzene	83.9	100	μg/L	84	35 - 180	Q13955
	Phenanthrene	87.9	100	μg/L	. 88	54 - 120	Q13955
	Pyrene	91.5	100	µg/L	91	52 - 115	Q13955
Matrix :	Spike		Spika			Recovery	OC Potob

Level II QC Report

4/22/2006

N. C. Department of Transportation

Attn: Bob Shaut/El

c/o Environmental Investigations, Inc 2101 Gateway Centre Blvd. Ste 200

Morrisville, NC 27560

Project Name: Burnsvile, NC COC Group Number: G0406104

Project ID:

NCDOT- Parcel 144, 1 Date/Time Submitted: 4/5/2006 10:00

Project No.:

WBS #356091.1

atrix Spil	Ke	D. "	Spike		Recovery %	Recovery Range	QC Batch
Sample ID:	40474-1	Result	Amount	Units		% 44 440	iD
146738	1,2,4-Trichlorobenzene	144.176	196.08	μg/L	74 77	44 - 142	Q13955
	1,2-Dichlorobenzene	150.353	196.08	µg/L	77 	32 - 129	Q13955
	1,3-Dichlorobenzene	150.353	196.08	μg/L	77	20 - 124	Q13955
	1,4-Dichlorobenzene	143.686	196.08	μg/L "	73	20 - 124	Q13955
	2,4-Dinitrotoluene	179.588	196.08	μg/L	92	39 - 139	Q13955
	2,6-Dinitrotoluene	179.490	196.08	μg/L "	92	50 - 158	Q13955
	2-Chloronaphthalene	151.549	196.08	μg/L 	77	60 - 118	Q13955
	3,3'-Dichlorobenzidine	201.941	196.08	μg/L	103	10 - 262	Q13955
	4-Bromophenylphenylether	156.627	196.08	µg/L	80	53 - 127	Q13955
	4-Chlorophenylphenylether	168.882	196.08	µg/L	86	25 - 158	Q13955
	Acenaphthene	167.039	196.08	µg/L	85	47 - 145	Q13955
	Acenaphthylene	157.922	196.08	μg/L	81	33 - 145	Q13955
	Anthracene	163.765	196.08	μg/L	84	27 - 133	Q13955
	Benzo(a)anthracene	173.314	196.08	µg/L	88	33 - 143	Q13955
	Benzo(a)pyrene	169.902	196.08	µg/L	87	17 - 163	Q13955
	Benzo(b)fluoranthene	204.196	196.08	µg/L	104	24 - 159	Q13955
	Benzo(g,h,i)perylene	172.353	196.08	μg/L	88	10 - 219	Q13955
	Benzo(k)fluoranthene	137.569	196.08	μg/L	70	11 - 162	Q13955
	Bis(2-chloroethoxy)methane	153.000	196.08	µg/L	78	33 - 184	Q13955
	Bis(2-chloroethyl)ether	131.157	196.08	µg/L	67	12 - 158	Q13955
	Bis(2-chloroisopropyl)ether	156.353	196.08	μg/L	80	36 - 166	Q13955
	Bis(2-ethylhexyl)phthalate	182.235	196.08	μg/L	93	10 - 158	Q13955
	Butylbenzylphthalate	184.353	196.08	µg/L	94	10 - 152	Q13955
	Chrysene	164.667	196.08	µg/L	84	17 - 168	Q13955
	Di-n-butylphthalate	167.863	196.08	µg/L	86	10 - 118	Q13955
	Di-n-octylphthalate	183.784	196.08	µg/L	94	10 - 146	Q13955
	Dibenzo(a,h)anthracene	175.824	196.08	µg/L	90	10 - 227	Q13955
	Diethylphthalate	171.020	196.08	µg/L	87	10 - 114	Q13955
	Dimethylphthalate	169.784	196.08	μg/L	87	10 - 112	Q13955
	Fluoranthene	160.451	196.08	µg/L	82	26 - 137	Q13955
	Fluorene	161.353	196.08	µg/L	82	59 - 121	Q13955
•	Hexachlorobenzene	163.137	196.08	μg/L	83	10 - 152	Q13955
	Hexachlorobutadiene	139.529	196.08	µg/L	71	24 - 116	Q13955
	Hexachlorocyclopentadiene	180.137	196.08	μg/L	92	48 - 94	Q13955
	Hexachloroethane	140.686	196.08	µg/L	72	40 - 113	Q13955
	Indeno(1,2,3-cd)pyrene	189.745	196.08	μg/L	97	10 - 171	Q13955
	Isophorone	163.510	196.08	µg/L	83	21 - 196	Q13955
	N-Nitrosodi-n-propylamine	165.314	196.08	μg/L	84	10 - 230	Q13955
	Naphthalene	144.000	196.08	μg/L	73	21 - 133	Q13955
	Nitrobenzene	197.725	196.08	μg/L	101	35 - 180	Q13955
	Phenanthrene	171.039	196.08	μg/L	87	54 - 120	Q13955
	Pyrene	171.333	196.08	μg/L	90	52 - 115	Q13955

Level II QC Report

4/22/2006

N. C. Department of Transportation

Attn: Bob Shaut/El

c/o Environmental Investigations, Inc 2101 Gateway Centre Blvd. Ste 200

Morrisville, NC 27560

Project Name: Burnsvile, NC

COC Group Number: G0406104

Project ID: NCDOT- Parcel 144, 1 Date/Time Submitted: 4/5/2006 10:00

Vlatrix Spik Sample ID:	e Duplicate	Result	Spike Amount	Units	Recovery %	Recovery Range %	RPD RPD Range % %		QC Batch ID
146738	1,2,4-Trichlorobenzene	150	196.08	µg/L	77	44 - 142	4	0 - 36	Q13955
	1,2-Dichlorobenzene	144	196.08	μg/L	73	32 - 129	4	0 - 38	Q13955
	1,3-Dichlorobenzene	148	196.08	µg/L	75	20 - 124	2	0 - 41	Q13955
	1,4-Dichlorobenzene	148	196.08	µg/L	75	20 - 124	3	0 - 36	Q13955
	2,4-Dinitrotoluene	201	196.08	μg/L	102	39 - 139	11	0 - 29	Q13955
	2,6-Dinitrotoluene	199	196.08	μg/L	101	50 - 158	10	0 - 15	Q13955
	2-Chloronaphthalene	157	196.08	√ μg/L	80	60 - 118	3	0 - 21	Q13955
	3,3'-Dichlorobenzidine	208	196.08	μg/L	106	10 - 262	3	0 - 50	Q13955
	4-Bromophenylphenylether	160	196.08	μg/L	82	53 - 127	2	0 - 18	Q13955
	4-Chlorophenylphenylether	170	196.08	μg/L	87	25 - 158	0	0 - 19	Q13955
	Acenaphthene	167	196.08	µg/L	85	47 - 145	0	0 - 20	Q13955
	Acenaphthylene	164	196.08	μg/L	84	33 - 145	4	0 - 24	Q13955
	Anthracene	173	196.08	µg/L	88	27 - 133	5	0 - 30	Q13955
	Benzo(a)anthracene	188	196.08	μg/L	96	33 - 143	8	0 - 26	Q13955
	Benzo(a)pyrene	. 187	196.08	μg/L	95	17 - 163	9	0 - 25	Q13955
	Benzo(b)fluoranthene	203	196.08	μg/L	103	24 - 159	1	0 - 29	Q13955
	Benzo(g,h,i)perylene	191	196.08	μg/L	97	10 - 219	10	0 - 27	Q13955
	Benzo(k)fluoranthene	137	196.08	μg/L	70	11 - 162	0	0 - 11	Q13955
	Bis(2-chloroethoxy)methane	153	196.08	µg/L	78	33 - 184	0	0 - 31	Q13955
	Bis(2-chloroethyl)ether	148	196.08	μg/L	76	12 - 158	12	0 - 36	Q13955
	Bis(2-chloroisopropyl)ether	159	196.08	μg/L	81	36 - 166	2	0 - 40	Q13955
	Bis(2-ethylhexyl)phthalate	196	196.08	μg/L	100	10 - 158	7	0 - 17	Q13955
	Butylbenzylphthalate	193	196.08	µg/L	98	10 - 152	4	0 - 15	Q13955
	Chrysene	178	196.08	μg/L	91	17 - 168	8	0 - 25	Q13955
	Di-n-butylphthalate	187	196.08	µg/L	95	10 - 118	11	0 - 27	Q13955
	Di-n-octylphthalate	200	196.08	μg/L	102	10 - 146	8	0 - 17	Q13955
	Dibenzo(a,h)anthracene	187	196.08	µg/L	95	10 - 227	6	0 - 28	Q13955
	Diethylphthalate	193	196.08	μg/L	99	10 - 114	12	0 - 16	Q13955
	Dimethylphthalate	174	196.08	μg/L	89	10 - 112	3	0 - 15	Q13955
	Fluoranthene	174	196.08	µg/L	89	26 - 137	8	0 - 24	Q13955
	Fluorene	174	196.08	μg/L	89	59 - 121	7	0 - 15	Q13955
	Hexachlorobenzene	167	196.08	μg/L	85	10 - 152	3	0 - 18	Q13955
	Hexachlorobutadiene	146	196.08	µg/L	75	24 - 116	5	0 - 34	Q13955
	Hexachlorocyclopentadiene	184	196.08	μg/L	94	48 - 94	2	0 - 30	Q13955
	Hexachloroethane	143	196.08	μg/L	73	40 - 113	1	0 - 38	Q13955
	Indeno(1,2,3-cd)pyrene	211	196.08	μg/L	107	10 - 171	10	0 - 29	Q13955
	Isophorone	173	196.08	μg/L	88	21 - 196	5	0 - 32	Q13955
	N-Nitrosodi-n-propylamine	170	196.08	μg/L	87	10 - 230	3	0 - 36	Q13955
	Naphthalene	155	196.08	μg/L	79	21 - 133	7	0 - 42	Q13955
	Nitrobenzene	176	196.08	μg/L	90	35 - 180	11	0 - 25	Q13955
	Phenanthrene	171	196.08	μg/L		54 - 120	0	0 - 29	Q13955
	Pyrene	184	196.08	μg/L	94	52 - 115	. 4	0 - 15	Q13955

Level II QC Report

4/22/2006

N. C. Department of Transportation

Attn: Bob Shaut/El

c/o Environmental Investigations, Inc 2101 Gateway Centre Blvd. Ste 200

Morrisville, NC 27560

Project Name: Burnsvile, NC

COC Group Number: G0406104

Project ID:

NCDOT- Parcel 144, 1 Date/Time Submitted: 4/5/2006 10:00

Project No.:

WBS #356091.1

Extractable Petroleum Hydrocarbons by GC-FID, method MADEP EPH

Method BI	ank			Control					QC Batch
		Result	RL	Limit	Units			 	ID
	C11-C22 Aromatics	ND	100	<50	μg/Ľ				Q13970
	C19-C36 Aliphatics	ND	100 -	<50	μg/L				Q13970
	C9-C18 Aliphatics	ND	100	<50	μg/ L				Q13970
Laboratory	y Control Sample	Result	Spike Amount	Units	Recovery %	Recovery Range %			QC Batch ID
	C11-C22 Aromatics	1830	1700	μg/L	108	40 - 140			Q13970
	C19-C36 Aliphatics	529	800	μg/L	66	40 - 140			Q13970
	C9-C18 Aliphatics	386	600	μg/L	64	40 - 140			Q13970
Vlatrix Spi	ke	Result	Spike Amount	Units	Recovery %	Recovery Range %			QC Batch ID
146849	C11-C22 Aromatics	1505.200	1700	μg/L	89	40 - 140			Q13970
	C19-C36 Aliphatics	683.800	800	μg/L	85	40 - 140			Q13970
	C9-C18 Aliphatics	470.600	600	µg/L	78	40 - 140			Q13970
Matrix Spi	ke Duplicate	Result	Spike Amount	Units	Recovery %	Recovery Range %	RPD %	RPD Range %	QC Batch ID
146849	C11-C22 Aromatics	1330	1700	µg/L	78	40 - 140	12	0 - 50	Q13970
	C19-C36 Aliphatics	537	800	μg/L	67	40 - 140	24	0 - 50	Q13970
	C9-C18 Aliphatics	390	600	μg/L	65	40 - 140	19	0 - 50	Q13970

VPH (Aliphatics/Aromatics) Laboratory Reporting Form

Client Name:	Environmental Investigations, Inc.	Laboratory Name:	Prism Laboratories, Inc.
Project Name:	NCDOT Parcel 196	NC Certification # (Lab):	402
Site Location:	Burnsville, NC	Sample Matrix:	Water

***	Samı	ole Information	on and Analy	tical Results			
Method fo	r Ranges: MADEP VPH						
	ogate Standards: Aliphatic	- 2,5-Dibrom	otoluene / Ar	omatic - 2,5-	Dibromotolu	ene	
Sample Id	entification:		146851	146852	NA	NA	NA
Collection	Option (for soil*):		NA	Trip Blank			
Date Colle	ected:		3/30/06	3/30/06			
Date Rece	eived:		4/5/06	4/5/06			
Date Extra	acted:	90	NA	NA			
Date Anal	yzed:		4/6/06	4/6/06			
% Dry Sol	ids:		NA	NA			
Dilution Fa	actor:		4	1			
Hydrocarb	oon Ranges in ug/L:		Sample Results	Sample Results	Sample Results	Sample Results	Sample Result
C5-C8 A	Aliphatics ***		12000	<100			
C9-C12	Aliphatics ***	4.5	4800	<100	<u> </u>		
C9-C10	Aromatics **		6100	<100			
Blank:	C5-C8 Aliphatics		<100	<100	<100	<100	<100
	C9-C12 Aliphatics	11111	<100	<100	<100	<100	<100
	C9-C10 Aromatics	177	<100	<100	<100	<100	<100
RL:	C5-C8 Aliphatics		400	100			
	C9-C12 Aliphatics		400	100			
	C9-C10 Aromatics		400	100			
MDL:	C5-C8 Aliphatics		200	50			
	C9-C12 Aliphatics		200	50			
	C9-C10 Aromatics		140	35			
Surrogate	Acceptance Range:	Blank	70-130 %	70-130 %	70-130 %	70-130 %	70-130 %
Aliphatic	Surrogate % Rec FID:	97	97	98			
Aromatic	Surrogate % Rec PID:	75	112	75			

^{*} Option 1 = Established fill line on vial

MDL = Method Detection Limit RL = Reporting Limit Blank = Laboratory Method Blank or Trip Blank
(whichever is higher - indicate type)

Were all performance/acceptance standards for required QA/QC

Were all performance/acceptance standards for required QA/QC procedures achieved?

Were any significant modifications to the VPH method made?

YES No - Details Attached Yes - Details Attached

Comments:

^{*} Option 2 = Sampling device (indicate brand, e.g., EnCore TM)

^{*} Option 3 = Field weight of soil

^{**} Unadjusted value - should exclude the concentration of any surrogate(s), internal standards and/or concentrations of other ranges that elute within the specified range.

^{***} Adjusted value

EPH (Aliphatics/Aromatics) Laboratory Reporting Form

Client Name:	Environmental Investigations, Inc.	Laboratory Name:	Prism Laboratories, Inc.
Project Name:	NCDOT Parcel 196	NC Certification # (Lab):	402
Site Location:	Burnsville, NC	Sample Matrix:	Water

	Sami	alo Informati	on and Analy	tical Paculte				
Mothod for	Ranges: MADEP EPH	Jie illioitilau	on and Analy	ucai ivesuits				
	gate Standards: Aliphatic	1 Chloro o	otodooono / /	\romatic o	Tornhonyl			
								
EPH Fractionation Surrogates: #1 - 2-Bromonaphthalene / #2 - Fluorobiphenyl Sample Identification: 146851 NA NA NA NA NA								
Date Collec			3/30/06	101	1471	1	177	
Date Recei			4/5/06					
Date Extra			4/10/06					
Date Analy			4/19/06					
% Dry Solid			NA					
Dilution Fa			1					
Hydrocarbo	on Ranges in ug/L:		Sample Results	Sample Results	Sample Results	Sample Results	Sample Result	
C9-C18 Aliphatics *			1400					
C19-C36 Aliphatics *			<110					
C11-C22 Aromatics **			900					
Blank:	C9-C18 Aliphatics		<100	<100	<100	<100	<100	
	C19-C36 Aliphatics		<100	<100	<100	<100	<100	
	C11-C22 Aromatics		<100	<100	<100	<100	<100	
RL:	C9-C18 Aliphatics		110					
	C19-C36 Aliphatics		110					
	C11-C22 Aromatics		110					
MDL:	C9-C18 Aliphatics		83					
	C19-C36 Aliphatics		34					
*****	C11-C22 Aromatics		79					
Surrogate /	Acceptance Range:	Blank	40-140 %	40-140 %	40-140 %	40-140 %	40-140 %	
	Surrogate % Rec.:	98	112					
Aromatic	Surrogate % Rec.:	87	110					
Fractionation Surrogate Accep. Range:		Blank	40-140 %	40-140 %	40-140 %	40-140 %	40-140 %	
	rogate #1 % Rec.:	54	95					
Frac. Sur	rogate #2 % Rec.:	71	119					

^{*} Unadjusted value - should exclude the concentration of any surrogate(s), internal standards and/or concentrations of other ranges that elute within the specified range.

MDL = Method Detection Limit

RL = Reporting Limit

Blank = Laboratory Method Blank

Were all performance/acceptance standards for required QA/QC procedures achieved?

Was blank correction applied as a significant modification of the method?

Were any significant modifications to the EPH method made?

Comments:

YES No - Details Attached

Yes NO

Yes - Details Attached

^{**} Adjusted value

CHAIN OF CUNTODY RECORD

PAGE ___ OF ___ QUOTE # TO E RE PROPER BILL

	Ê	specif
	(Yes) (KG)	project
Project Name:	Short Hold Analysis:	*Please ATTACH anv project specif
1643 + Charlette NC 28224 0642	- Oldflotte, NO 20224-0045 9	,
573	0409	ί

Email (Fes) (No) Email Address STUR NERREET 1 Site Location Physical Address: פים איליורנצ'יאר 23060 CTERLING Phone: 824-397-9613 Fax (Yes) (No) Other GLEN ALER HERMOND , VA Site Location Name: YANCK NOT Reporting Address: 5500 - E 449 Springbrook Road • P.O. Box 240 Phone; 704/529-6364 • Fax: 704/525-Excel Report To/Contact Name: ___ Client Company Name: __ EDD Type: LYDF

R BILLING:	Samples:INTACT upon arrival?
UST Project: (Res) (No)	Hacewed ON WELLICE? Temps PROPER PRESERVATIVES indicated?
rting (QC LEVEL I II III IV)	Received WITHIN HOLDING TIMES? CUSTODY: SEALS INTACT?
	VOLATILES rec'd W/OUT HEADSPACE?
	PROPER CONTAINERS used?

Address: Maintenance Main	CUSTODY SEALS INTACT? VOLATILES rec'd W/OUT HEADSPACE? PROPER CONTAINERS used?	TO BE FILLED IN BY CLIENT/SAMF Certification: NELAC USACE	SC OTHER Water Chlorinated: YES NO Sample Iced Upon Collection: YES	CITOTION OF CHANGE
		LUDS 35609. [.] Requested Due Date 01 Day 02 Days 04 Days 05 D.	"Working Days"	

I/SAMPLING PERSONNEL

N/A ႕

olie Eucaliuli Filysicai Audi ess	igea inni			(SEE REVERSE FOR RENDERED BY PRIS	SEE REVERSE FOR TERMS & CONDITIONS REGARDING RENDERED BY PRISM LABORATORIES, INC. TO CLIENT)	TERMS & CONDITIONS REGARDING SERVICES SM LABORATORIES, INC. TO CLIENT)	RVICES	Sample Iced	Sample Iced Upon Collection: YES	YES V NO	
CLIENT	DATE	TIME	MATRIX (SOIL.	SAMPLE CONT	E CONTAINER	PRESERVA-	V	ANALYSES REQUES	TED /		PRISM
NOLLAIS	COLLECTED	MILITARY HOURS	WATER OR SLUDGE)	*TYPE SEE BELOW	NO. SIZE	TIVES	250	102 HOV 150 150		REMARKS	ID NO.
[m-j	3 30 06	1800	7	(b) VO.A	(H) A L	AS PROWING	×	×			146849
167-TMW-1	1	1700			<u>, </u>		,			A CONTRACTOR OF THE CONTRACTOR	146850
196-TMW-1	\rightarrow	1600	→	->	/		→	\\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\			14685(
				,	-		•	•			
									VPH	- Trip Blank	146852
							\		•	-	
					\bigwedge	\setminus			-		
							\int				
				·							
Sampler's Signature	用式		Sampled By	Sampled By (Print Name)	STERLING	ERLING [JENER Affliation.	Affiliation		PRESS	PRESS DOWN FIRMLY - 3 COPIES	- 3 COPIES
Upon relinquishing, this Chain of Custody is your authorization for Prism to proceed with the analyses as requested above. Any changes must be submitted in writing to the Prism Project Manager. There will be charges for any changes after analyses have been initialized.	Chain of Custo Prism Proje	dy is your auth ct Manager. The	orization for l ere will be ch	Prism to proce arges for any	ed with the analyse changes after analy	es as requested aborses have been initia	ve. Any chang ilized.	es must be		PRISM (PRISM USE ONLY
Relinq Shed By (Signature)	\\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\	1	Receiv	Received By: (Signature)			Date	Military/Hours	Additional Comments:	*128.121	Tie.
Relinquished By: (Signature)		***************************************	Receiv	Received By: (Signature)			Date		>	Site Departure Time:	a Time:

SEE REVERSE FOR TERMS & CONDITIONS

GOHOGION

ON TO THE LABORATORY.

Field Tech Fee.

Mileage:

ORIGINAL

DRINKING WATER:

Method of Shipment: NOTE: ALL SAMPLE COOLERS SHOULD BE TAPED SHUT WITH CK SAMPLES ARE NOT ACCEPTED AND VERIFIED AGAINST COC UNZ

Relinquished By: (Signature)

¥ Fed Ex □ UPS □ Hand-delivered □ Prism Field Service NPDES: UST: GROUNDWATER:

APPENDIX E GEOPHYSICAL REPORT

Schnabel Engineering South

Phone (336) 274-9456 Fax (336) 274-9486 www.schnabel-eng.com

May 8, 2006

Mr. Robert M. Shaut EI, Inc. 2101 Gateway Centre Boulevard, Suite 200 Morrisville, NC 27560

Via email (pdf)

RE:

State Project: R-2519A, WBS Element 35609.1.1, Yancey County

US 19E from east of SR 1336 (Jacks Creek Road) to SR 1186 (Old US 19)

SUBJECT:

Report on Geophysical Surveys for Locating Possible UST's on 14 Parcels

Schnabel Engineering Project No. 05211014.01-07

Dear Mr. Shaut:

This letter contains our report on the geophysical surveys we conducted on the subject properties. This letter report includes one 8.5x11 color figure and thirty-two 11x17 color figures.

1.0 INTRODUCTION

The work described in this report was conducted by Schnabel Engineering under our contract with the NCDOT. The work was conducted at the locations indicated by EI to support their environmental assessment of the subject parcels. The purpose of the geophysical surveys was to locate possible metal underground storage tanks (UST's) and associated metal product lines in the accessible areas of the sites.

Schnabel Engineering conducted geophysical surveys on March 13 through 17, 2006, in the accessible areas of the proposed right-of-way (ROW) sections of the parcels: 040, 042, 088, 099, 114, 115, 117, 134, 144, 167, 177, 194, 196 and 214. Photographs of these properties are included on Figures 1 through 4. Photographs of UST locations as marked in the field are included on Figure

The geophysical investigation consisted of electromagnetic (EM) induction surveys using a Geonics EM61-MK2 instrument. The EM61 metal detector is used to locate metal objects buried up to about eight feet below ground surface. Ground-penetrating radar (GPR) investigations of selected EM61 anomalies were conducted using a Geophysical Survey Systems SIR-2000 system equipped with a 400 MHz antenna. A Fisher Gemini-3 was used in the conduction mode to trace exposed vent pipes and product lines. Photographs of these instruments are shown in Figure 6.

2.0 FIELD METHODOLOGY

2.1 Location Control

Locations of geophysical data points and site features were obtained using a sub-meter Trimble Pro-XRS DGPS system on Parcels 40, 42, 88, 99, 114, 115, 117, 134, 144, 167, 177, 194, and 214. An X-Y survey grid was set up on Parcel 196. References to direction and location in this report for Parcel 196 are based on this local site grid. References to direction and location in this report for Parcels 40, 42, 88, 99, 114, 115, 117, 134, 144, 167, 177, 194, and 214 are based on the US State Plane 1983 System, North Carolina 3200 Zone, using the NAD 83 datum, with units in meters. The locations of existing site features (building, curbs, signs, etc.) were recorded for later correlation with the geophysical data and for location references to the NCDOT drawings.

2.2 Data Collection

The EM61 data were collected in the accessible portions of the parcels along parallel survey lines spaced approximately one meter apart. The EM61 and DGPS data were recorded digitally using a field computer and later transferred to a desktop computer for data processing. The GPR data were collected along survey lines spaced one-half to one meter apart in orthogonal directions over areas of reinforced concrete and over anomalous EM readings not attributed to cultural features. The GPR

data were reviewed in the field to evaluate the possible presence of USTs. The GPR data also were recorded digitally and later transferred to a desktop computer for further review.

Preliminary results were sent to Bob Shaut of EI on March 20, 2006.

3.0 DISCUSSION OF RESULTS

The contoured EM61 data are shown on Figures 7 through 34. The EM61 early time gate results are plotted on Figures 7, 9, 11, 13, 15, 17, 19, 21, 23, 25, 27, 29, 31, and 33. The early time gate data provide the most sensitive detection of metal object targets, regardless of size. Figures 8, 10, 12, 14, 16, 18, 20, 22, 24, 26, 28, 30, and 32 show the difference between the response of the top and bottom coils of the EM61 instrument (differential response). The difference is taken to remove the effect of surface and very shallowly buried metallic objects. Typically, the differential response emphasizes anomalies from deeper and larger objects such as USTs.

3.1 Parcel 040 - Andrew E. Brown Property (Andy's, Inc.)

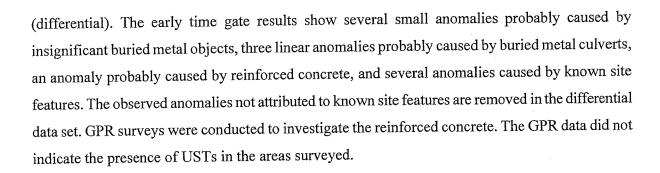
The parcel owned by Andrew E. Brown is located approximately 61 meters east of NCSR 1375 on the north side of US Highway 19E. The EM61 results are shown on Figure 7 (early time gate) and Figure 8 (differential). Two vehicles could not be moved at the time of our surveys. The early time gate results show anomalies probably due to reinforced concrete, several small anomalies probably caused by insignificant buried metal objects, several anomalies caused by known site features, and a large linear anomaly probably caused by a buried utility. The observed anomalies not attributed to known site features are removed in the differential data set. GPR surveys were conducted over three areas of reinforced concrete. The GPR data did not indicate the presence of USTs in the areas surveyed.

3.2 Parcel 042 - Danny Hensley Property (Burnsville Independent)

The parcel owned by Danny Hensley is located approximately 244 meters to the east of NCSR 1196

on the south side of US Highway 19E. The EM61 results are shown on Figure 9 (early time gate) and Figure 10 (differential). Several vehicles and trailers could not be moved at the time of our surveys. The early time gate results show several small anomalies probably caused by insignificant buried metal objects, and several anomalies caused by known site features. The observed anomalies not attributed to known site features are removed in the differential data set. GPR surveys were not conducted on the site.

3.3 Parcel 088 - Bill Riddle Property (Riddle Fuel Oil Company)

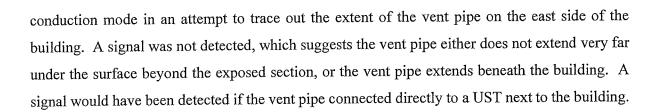

The parcel owned by Bill Riddle is located approximately 488 meters to the west of NC Highway 197 on the north side of US Highway 19E. The EM61 results are shown on Figure 11 (early time gate) and Figure 12 (differential). The early time gate results show several small anomalies probably caused by insignificant buried metal objects, linear anomalies probably caused by buried utilities, two linear anomalies probably caused by buried metal culverts, and several anomalies caused by known site features. The observed anomalies not attributed to known site features are removed in the differential data set. GPR surveys were not conducted on the site.

3.4 Parcel 099 - Charles Dellinger Property (Texaco)

The parcel owned by Charles Dellinger is located at the southwestern quadrant of the intersection of US Highway 19E and NC 197. The EM61 results are shown on Figure 13 (early time gate) and Figure 14 (differential). The early time gate results show several small anomalies probably caused by insignificant buried metal objects, linear anomalies probably caused by buried utilities, and several anomalies caused by known site features. The observed anomalies not attributed to known site features are removed in the differential data set. GPR surveys were not conducted on the site.

3.5 Parcel 114 - Arlene Ray, Inc. Property (Burnsville Gas, Inc.)

The parcel owned by Arlene Ray, Inc. is located at the southwest quadrant of US Highway 19E and NCSR 1140. The EM61 results are shown on Figure 15 (early time gate) and Figure 16



3.6 Parcel 115 - Tom Morgan Property (Convenience King 22)

The parcel owned by Tom Morgan is located at the intersection of Main Street and US Highway 19E. The EM61 results are shown on Figure 17 (early time gate) and Figure 18 (differential). The early time gate results show several small anomalies probably caused by insignificant buried metal objects, several anomalies probably caused by buried metal culverts, and several anomalies caused by known site features. Some of the observed anomalies not attributed to known site features are removed in the differential data set. GPR surveys were conducted to investigate several EM61 differential anomalies on the site. The GPR data did not indicate the presence of USTs in the areas surveyed.

3.7 Parcel 117 - Samuel S. Styles Property (Former Sam's Oil Company)

The parcel owned by Samuel S. Styles is located on the north side of US 19 East Business (East Main Street) just west of SR 1436. The EM61 results are shown on Figure 19 (early time gate) and Figure 20 (differential). The early time gate results show several small anomalies probably caused by insignificant buried metal objects, an anomaly probably caused by a buried metal culvert, and several anomalies caused by known site features. The observed anomalies not attributed to known site features are removed in the differential data set. GPR surveys were conducted to investigate several EM61 differential anomalies on the site. GPR surveys were not conducted behind the building in the area of the observed fill port because of the presence of large metallic obstructions and debris, and because this area was not within the intended survey area indicated by EI. The GPR data did not indicate the presence of USTs in the areas surveyed. The Gemini-3 was used in the

3.8 Parcel 134 - Keith Presnell Property (Austin Automotive)

The parcel owned by Keith Presnell is located at the northeast quadrant of the intersection of US Highway 19E and NCSR 1329. The EM61 results are shown on Figure 21 (early time gate) and Figure 22 (differential). Several vehicles and trailers could not be moved at the time of our surveys. The early time gate results show several small anomalies probably caused by insignificant buried metal objects, linear anomalies probably caused by utilities, and several anomalies caused by known site features. The observed anomalies not attributed to known site features are removed in the differential data set. GPR surveys were not conducted on the site.

3.9 Parcel 144 - Peggy Jones Property (Prives & Perches)

The parcel owned by Peggy Jones is located approximately 305 meters west of NCSR 1141 on the south side of US Highway 19E. The EM61 results are shown on Figure 23 (early time gate) and Figure 25 (differential). The early time gate results show several small anomalies probably caused by insignificant buried metal objects, two linear anomalies probably caused by buried metal culverts, an anomaly probably caused by a partially buried metal conduit pipe, and several anomalies caused by known site features. The observed anomalies not attributed to known site features are removed in the differential data set. GPR surveys were not conducted on the site. The Gemini-3 was used in the conduction mode to trace out the extent of the metal conduit pipe that was visible in the area of the former pump island, which was then marked out on the ground surface. The conduit pipe was traced to the front of the building, and the owner of the property informed our representative that on the wall inside the building a switch existed that was used to turn the pump off and on. The owner also informed our representative that the USTs and product lines were removed at the same time as the pump island, but the conduit pipe for the electrical was left in place.

3.10 Parcel 167 - Edd Cassida Property (Edd's Independent Station)

The parcel owned by Edd Cassida is located at the southwest quadrant of the intersection of US Highway 19E and NCSR 1142. The EM61 results are shown on Figure 25 (early time gate) and Figure 26 (differential). The early time gate results show several small anomalies probably caused by insignificant buried metal objects, two linear anomalies probably caused by buried metal culverts, and several anomalies caused by known site features. The observed anomalies not attributed to known site features are removed in the differential data set. GPR surveys were not conducted on the site.

3.11 Parcel 177 - Johnnie Bennett Property (Former BP Gas Station)

The parcel owned by Johnnie Bennett is located at the southwest quadrant of the intersection of US Highway 19E and NCSR 1143. The EM61 results are shown on Figure 27 (early time gate) and Figure 28 (differential). The early time gate results show several small anomalies probably caused by insignificant buried metal objects, an anomaly probably caused by reinforced concrete, and several anomalies caused by known site features. The observed anomalies not attributed to known cultural features are removed in the differential data set. GPR surveys were conducted to investigate the reinforced concrete. The GPR data did not indicate the presence of USTs in the areas surveyed.

3.12 Parcel 194 - William Ira Young Property (Former Gas Station)

The parcel owned by William Ira Young is located at the northwest quadrant of the intersection of SR 1323 and US Highway 19E. The EM61 results are shown on Figure 29 (early time gate) and Figure 30 (differential). Three site visits were required in order to survey the areas of concern because the site owner could only move obstructing trailers around at specific times. The early time gate results show several small anomalies probably caused by insignificant buried metal objects, an anomaly probably caused by a buried metal culvert, a linear anomaly probably caused by a buried utility, vent pipe line, or product line, and several anomalies caused by known site features. Some of

the observed anomalies not attributed to known site features are removed in the differential data set. Information provided by EI indicated a vent pipe at the southwest corner of the building, and three fill ports located southwest of the building. These features could not be located at the time of our surveys. GPR surveys were conducted to investigate the linear anomaly extending from the southwest corner of the building, as well as the areas occupied by trailers to the southwest of the building. The GPR data indicated the presence of one probable UST as shown on Figures 29 and 30, which was marked out on the ground surface as shown on Figure 5. The GPR data indicate that the UST is approximately 1.0 meter in diameter and about 1.5 meters in length, with an approximate capacity of 1100-1200 liters. It appears to be buried 1.0 to 1.5 meters below the ground surface.

3.13 Parcel 196 - Ed Gouge Property (Heritage Tire)

The parcel owned by Ed Gouge is located on the south side of US Highway 19E approximately 60 meters east of SR 1144. A local X-Y site grid was laid out for positioning of the geophysical surveys at this parcel because the steep valley walls at this location did not allow enough satellite visuals to provide a reliable GPS signal to be used for positioning. The EM61 results are shown on Figure 31 (early time gate) and Figure 32 (differential). The early time gate results show several small anomalies probably caused by insignificant buried metal objects, an anomaly probably caused by a buried metal culvert, and several anomalies caused by known site features. Some of the observed anomalies not attributed to known cultural features are removed in the differential data set. GPR surveys were conducted to investigate three EM61 differential anomalies on the site. The GPR data did not indicate the presence of USTs in the areas surveyed.

3.14 Parcel 214 - Charles R. Dellinger

The parcel owned by Charles Dellinger is located at the southwest corner of the intersection of US Highway 19E and SR 1146 (Cane Bridge Road). The EM61 results are shown on Figure 33 (early time gate). A malfunction with the top coil of the EM61 caused it to record random erroneous data, which influenced the differential data set. The differential data set was not used and has not been included in this report. The early time gate results show several small anomalies probably caused by

insignificant buried metal objects, an anomaly probably caused by a reinforced concrete bridge, and several anomalies caused by known site features. GPR surveys were conducted to investigate two EM61 early time gate anomalies on the site. The GPR data did not indicate the presence of USTs in the areas surveyed.

4.0 CONCLUSIONS

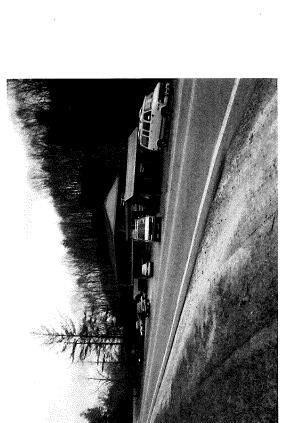
Our evaluation of the geophysical data collected on 14 Parcels on State Project R-2519A in Yancey County, NC indicate the following:

- The geophysical data indicate the presence of one possible UST on parcel 194. The possible UST is about 1.0 meter in diameter and about 1.5 meters in length, with an approximate capacity of 1100 to 1200 liters.
- The geophysical data do not indicate the presence USTs in the areas surveyed on parcels 040, 042, 088, 099, 114, 115, 117, 134, 144, 167, 177, 196, and 214.

5.0 LIMITATIONS

These services have been performed and this report prepared for the North Carolina Department of Transportation in accordance with generally accepted guidelines for conducting geophysical surveys. It is generally recognized that the results of geophysical surveys are non-unique and may not represent actual subsurface conditions.

Thank you for the opportunity to serve you on this project. Please call if you need additional information or have any questions.


Sincerely,

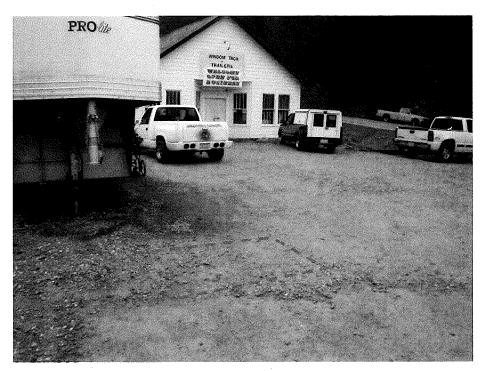
Jeremy S. Strohmeyer, L.G.

Project Manager

JS/RC

Attachment: Figures (1-33)

Parcel 196 - Ed Gouge Property, looking southeast


Parcel 214 - Charles R. Dellinger Property, looking southeast

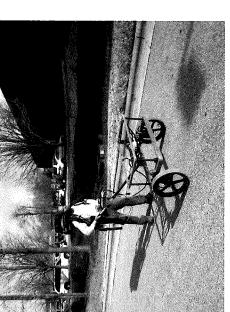
NC Department of Transportation Geotechnical Engineering Unit State Project No. R-2519A Yancey County, North Carolina

SITE PHOTOS

FIGURE 4

Location of possible UST as marked on site, looking northeast

Location of possible UST as marked on site, looking west



NC Department of Transportation Geotechnical Engineering Unit


State Project No. R-2519A Yancey County, North Carolina PHOTOS OF POSSIBLE UST LOCATION

FIGURE 5

Geonics EM61-MK2

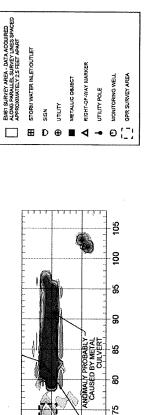
Geophysical Survey Systems SIR-2000 with 400 MHz antenna

Fisher Gemini-3 used in conduction mode

NC Department of Transportation Geotechnical Engineering Unit

State Project No. R-2519A Yancey County, North Carolina

PHOTOS OF GEOPHYSICAL EQUIPMENT


MENT FIGURE 6

APPROXIMATE NORTH

EXPLANATION

361 SD

2

9

8

33

2

3

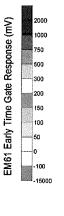
8

33-28

ဓ္ဌ

52

2


35

2

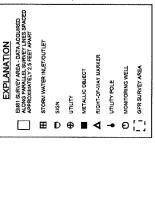
UTILE ORABITEE CREEK

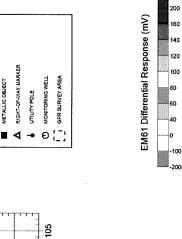
ry (meters) Y

X (meters)

Note: The contour plot shows the earliest and most sensitive time gate of the EM61 bottom coil/channel in millivolts (m/V). The EM data were collected on March 17, 2006, using a Geonics EM61-MK2 instrument. An X-Y survey grid was set up across this parcel as location control for the geophysical surveys. GPR data were acquired on March 17, 2006, using a Geophysical Survey Systems, Inc. SIR-2000 equipped with a 400 MHz antenna.

Schnabel Engineering


NC Department of Transportation Geotechnical Engineering Unit


State Project No. R-2519A Yancey County, North Carolina

PARCEL 196 EM61 EARLY TIME GATE RESPONSE FIGURE 31

APPROXIMATE NORTH

8

8

8

8

8

2

2

9

8

2

2

5

8

33

읈

22

8

5

2

5

UTILE CRABINEE CREEK

10 Y (meters)

361 SO

X (meters)

ANOMALY PROBABLY — CAUSED BY METAL CULVERT

Note: The contour plot shows the difference, in millivolts (mV), between the readings from the top and bottom coils of the EM61. The difference is taken to reduce the effect of shallow metal objects and emphasize anomalies caused by deeper metallic objects, such as pipes and tanks. The EM data were collected on March 17, 2006, using a Geonics EM61-MK2 instrument. An X-Y survey grid was set up across this parcel as location control for the geophysical surveys. GPR data were acquired on March 17, 2006, using a Geophysical Survey Systems, Inc. SIR-2000 equipped with a 400 MHz antenna.

Schnabel Schnabel Engineering

NC Department of Transportation Geotechnical Engineering Unit

State Project No. R-2519A Yancey County, North Carolina

PARCEL 196 EM61 DIFFERENTIAL RESPONSE

FIGURE 32