PRELIMINARY SITE ASSESSMENT VALUE MART, INC. PROPERTY 229 NORTH WATER STREET ELIZABETH CITY, NORTH CAROLINA STATE PROJECT: U-4438 WBS ELEMENT: 35742.1.1

Prepared for:

NC Department of Transportation

Geotechnical Engineering Unit GeoEnvironmental Section 1589 Mail Service Center Raleigh, North Carolina 27699-1589

Prepared by:

Solutions-IES

1101 Nowell Road Raleigh, North Carolina 27607

Solutions-IES Project No. 3946.10A3.NDOT

September 13, 2010

Jody Overmyer, P.E. Project Engineer

Sheri L. Knox Senior Project Manager

Shui LKX

TABLE OF CONTENTS

1.0	INTROL	DUCTION1
2.0	BACKG	ROUND AND SITE DESCRIPTION1
3.0	FIELD A	ACTIVITIES1
4.0	LABOR	ATORY RESULTS3
5.0	DISCUS	SION/CONCLUSIONS3
TAB	LES	
Table Table Table	2	Summary of Field Screening Results For Soil Summary of Soil Analytical Results Summary of Groundwater Analytical Results
FIGU	URES	
Figure Figure	e 2	Site Location Map Site Map Soil and Groundwater Sample Location Map
APP	ENDICE	ZS .
Appe Appe Appe Appe	ndix A ndix B ndix C ndix D ndix E ndix F	1948 Sanborn Map Photographs Geophysical Report GPS Coordinates Boring Logs Laboratory Analytical Report

1.0 INTRODUCTION

The Value Mart, Inc. property in Pasquotank County, located at 229 North Water Street, Elizabeth City, North Carolina, is currently a gravel lot used for parking. The location of the property is shown on **Figures 1** and **2**. The North Carolina Department of Transportation (NCDOT) plans to acquire the proposed easement at this property due to the planned widening of Elizabeth Street in downtown Elizabeth City. This report summarizes the results of field and laboratory activities conducted during the Preliminary Site Assessment (PSA) of the subject property. The scope of work executed at the site was performed in general accordance with Solutions-IES proposal NC101099 revised June 16, 2010, and was initiated based on a Notice to Proceed issued by the NCDOT Geotechnical Engineering Unit on June 24, 2010, under contract 7000010453, dated June 25, 2009.

2.0 BACKGROUND AND SITE DESCRIPTION

The Value Mart, Inc. property is located in the southwest quadrant of East Elizabeth Street and North Water Street. The original building on site was torn down in 2004. A historic 1948 Sanborn map indicates this property formerly operated as a gas station (**Appendix A**). According to the North Carolina Department of Environment and Natural Resources (NCDENR) underground storage tank (UST) registry, there are no known Facility IDs or Groundwater Incidents associated with this property. The PSA was performed along the proposed easement which stretched west to east along the south side of East Elizabeth Street continuing on a north to south trend along North Water Street. Work was not performed in areas outside of the proposed easement. Photographs of the site are included in **Appendix B**.

3.0 FIELD ACTIVITIES

Prior to mobilizing to the site to conduct work, Solutions-IES contacted North Carolina One Call and contracted Accumark to locate underground utilities at the site. Pyramid Environmental & Engineering, P.C. (Pyramid) was contracted to perform a geophysical survey, and mobilized to the study area July 7 and July 8, 2010. The geophysical investigation consisted of electromagnetic (EM) induction-metal detection surveys using a Geonics EM61-MK1 metal detection instrument and ground penetrating radar (GPR) surveys using a GSSI SIR-2000 unit equipped with a 400 MHz antenna. Results of the survey suggested that the surveyed portion within the proposed easement does not contain metallic USTs. Images of the EM and GPR findings are included in the geophysical report included as **Appendix C**. After a review of the geophysical report, Solutions-IES mobilized to the site on August 3 and August 4,

2010, to collect soil and groundwater samples. Four soil borings were advanced using a Geoprobe[®] to a depth of 4 feet below ground surface (ft bgs). The approximate locations of the soil borings are displayed in **Figure 3**. The GPS coordinates of the boring locations are included in **Appendix D**. Boring 229-2 was advanced to a depth of 8 ft bgs to install a temporary well. Other borings were not advanced below 4 ft bgs due to soil saturation.

A Macro-Core® sampler fitted with a 4-foot dedicated polyvinyl chloride (PVC) liner was used to collect soil samples with a Geoprobe. The Macro-Core® liner was divided and sampled in 2 foot intervals. Each aliquot was placed in a separate resealable plastic bag. One bag was placed on ice for possible laboratory analysis, while the other bag was sealed and placed at ambient temperature for field screening with a flame ionization detector (FID). After approximately 20 minutes to allow accumulation of volatile organic compounds (VOCs) in the headspace of the bag, each bag was scanned with the FID. The FID measurements were entered into the field logbook along with the soil description and any indications of staining or odor. That information was subsequently transferred onto boring logs. The boring logs are provided in **Appendix E** and the field screening results are summarized in **Table 1**. The field screening results are also shown on the boring logs.

The subsurface at the site generally consisted of gray to tan sands and gravel (Unified Soil Classification SP and GP). Groundwater was measured at approximately 4 ft bgs in a representative borehole by lowering a decontaminated water level probe into the borehole soon after the boring was opened.

Table 1 shows the FID field screening results of the soils were below detectable concentrations. One soil sample was collected from each boring interval identified in **Table 1** and analyzed for total petroleum hydrocarbons gasoline range organics and diesel range organics (TPH GRO/DRO) by EPA Methods 5035/3545/8015. Each collected sample was placed in laboratory-supplied jars and stored on ice pending courier service to Prism Laboratories in Charlotte, NC. Two soil samples collected at borings 229-1 and 229-2 were also analyzed for fecal coliform by method SM9221E. Each collected sample was placed in laboratory-supplied jars and stored on ice pending courier service to Environment 1 in Greenville, NC. Sample information was recorded on the chain-of-custody form.

Due to the shallow water table, a temporary groundwater monitoring wells was installed and sampled. Upon completion of boring 229-2, a 5-foot section of 1-inch diameter PVC slotted well screen, joined with an approximate 3-foot section of 1-inch diameter PVC riser, was introduced into the boring. Natural

formation caved in around the well screen to approximately 3 to 4 ft bgs. Washed #2 well sand was introduced into the annulus of the boring, forming a sand pack around the screen from the top of the natural formation to within 1.5-foot of surface grade. The temporary wells were allowed to equilibrate for approximately 30 minutes before sampling and promptly abandoned once sampling was complete.

Appendix E contains the boring log and well construction information for 229-2. The stabilized water level was measured at 4.6 feet bgs. The well was then sampled with a peristaltic pump, utilizing 3/8-inch diameter disposable polyethylene tubing. Prior to sample collection field parameters including pH, temperature, dissolved oxygen (DO), oxidation-reduction potential (ORP), turbidity and conductivity were allowed to stabilize then recorded. Groundwater samples obtained from the well were submitted for analysis of VOCs by EPA Method 8260, semivolatile organic compounds (SVOCs) by EPA Method 8270 and fecal coliform by method SM9221E. Samples were placed in laboratory-supplied jars then stored on ice pending courier service to Prism Laboratories in Charlotte, NC (VOCs/SVOCs analysis) or Environment 1 in Greenville, NC (fecal coliform). Sample information was recorded on the chain-of-custody form.

4.0 LABORATORY RESULTS

The laboratory analytical results for the groundwater sample collected from temporary well 229-2 indicate the presence of the VOC methyl *tert*-butyl ether (MTBE) and fecal coliform bacteria above the laboratory reporting limits. The concentration of MTBE was detected at 0.72 micrograms per liter (µg/L) which is below the NCAC 15A 2L.0200 (NC 2L) groundwater standard of 20 µg/L, as specified in. Fecal coliform analysis was reported at 13 most probable number of cells per 100 milliliters (MPN/100 mL) which is above the NC 2L standard of 1 MPN/100 mL. The analytical results are summarized in **Tables 2** and **3**, and the laboratory report is included in **Appendix F**. TPH and fecal coliform bacteria were not detected above the laboratory reporting limit in soil samples, and SVOCs were not detected above the laboratory reporting limits in the groundwater sample from temporary well 229-2.

5.0 DISCUSSION/CONCLUSIONS

The geophysical survey conducted at the site suggested that no buried metallic objects such as a UST are present within the surveyed portion of the proposed easement. Solutions-IES advanced 4 soil borings at

¹ North Carolina Administrative Code Title 15A DENR Division of Water Quality (DWQ) Subchapter 2L Classifications and Water Quality Standards Applicable to the Groundwaters of North Carolina (Last Amended on January 1, 2010)

Preliminary Site Assessment – Value Mart Inc. Property State Project: U-4438, WBS Element: 35742.1.1

the study area to a depth of 4 ft bgs for soil characterization. Boring 229-2 was further advanced to a depth of 8 ft bgs for the installation of a temporary monitoring well. FID readings collected from the soil sample intervals were not detected for samples indicating the absence of volatile vapors. TPH and fecal coliform bacteria were not detected above the laboratory reporting limit in the soil samples submitted for analysis from the Value Mart, Inc. property. Therefore, TPH (GRO and DRO) soil concentrations were below the NCDENR action levels². One VOC (MTBE) was detected above the laboratory detection limit but below the NC 2L standard, while no SVOCs were detected above the laboratory detection limits in the groundwater samples collected from the site. However, fecal coliform bacteria were detected above the NC 2L standard for groundwater in well 229-2 Therefore, Solutions-IES recommends that NCDOT consider exposure of workers to impacted groundwater when planning construction activities at the site. However, additional assessment would be necessary to identify the source of the fecal coliform impact.

-

 $^{^2}$ UST Section Guidelines for the Investigation and Remediation of Contamination from Non-UST Petroleum Releases ([NCDENR, Division of Waste Management [DWM], UST Section, July 1, 2007).

TABLE 1

Summary of Field Screening Results for Soil Value Mart, Inc.

229 N. Water Street

Elizabeth City, North Carolina

WBS Element: 35742.1.1; State Project: U-4438 Sample Collection Date: August 3, 2010

Sample Donth Polovy		Soil E	Boring	
Sample Depth Below Ground Surface	229-1	229-2	229-3	229-4
Ground Surface		FID Read	ing (ppm)	
0 - 2 feet	0.0	0.0	0.0	0.0
2 - 4 feet	0.0	0.0	0.0	0.0

Notes:

Samples denoted by shaded cells were submitted for laboratory analysis.

FID readings were obtained with a Photovac MicroFID Flame Ionization Detector.

ppm = parts per million

TABLE 2

Summary of Soil Analytical Results Value Mart, Inc. 229 N. Water Street

Elizabeth City, North Carolina

WBS Element: 35742.1.1; State Project: U-4438 Sample Collection Date: August 3, 2010

Sample Informa	tion	Total Petroleum		
Boring Number	Depth (ft bgs)	Gasoline Range ¹ (mg/kg)	Diesel Range ² (mg/kg)	Fecal Coliform ³ (MPN/g)
229-1	2-4	<6.4	<9.2	NA
229-2	2-4	< 5.0	<7.8	<2
229-3	2-4	<5.3	< 7.9	NA
229-4	2-4	<6.3	< 9.0	<2
Action Level		10	40	NE

Notes:

- 1. Total Petroleum Hydrocarbons (TPH) Method 5035/8015MOD Gasoline Range Hydrocarbons
- 2. Total Petroleum Hydrocarbons (TPH) Method 3545/8015MOD Diesel Range Hydrocarbons
- 3. Fecal Coliform SM9221 E

ft bgs = feet below ground surface

mg/kg = milligram per kilogram

 $MPN/g = most \ probable \ number \ per \ gram$

NA = Not analyzed

NE = Not established

TABLE 3

Summary of Groundwater Analytical Results Value Mart, Inc.

229 N. Water Street

Elizabeth City, North Carolina

WBS Element: 35742.1.1; State Project: U-4438 Sample Collection Date: August 4, 2010

Sample In	formation	VOCs (μg/L) (8260)	SVOCs (μg/L) (8270)	
Sample ID	Sample Date	Methyl <i>tert</i> -butyl ether	All Analytes	Fecal Coliform (MPN/100 mL)
229-2	8/4/2010	0.72 J	BRL	13
NC 2L Groundwate	20	NA	1	

Notes:

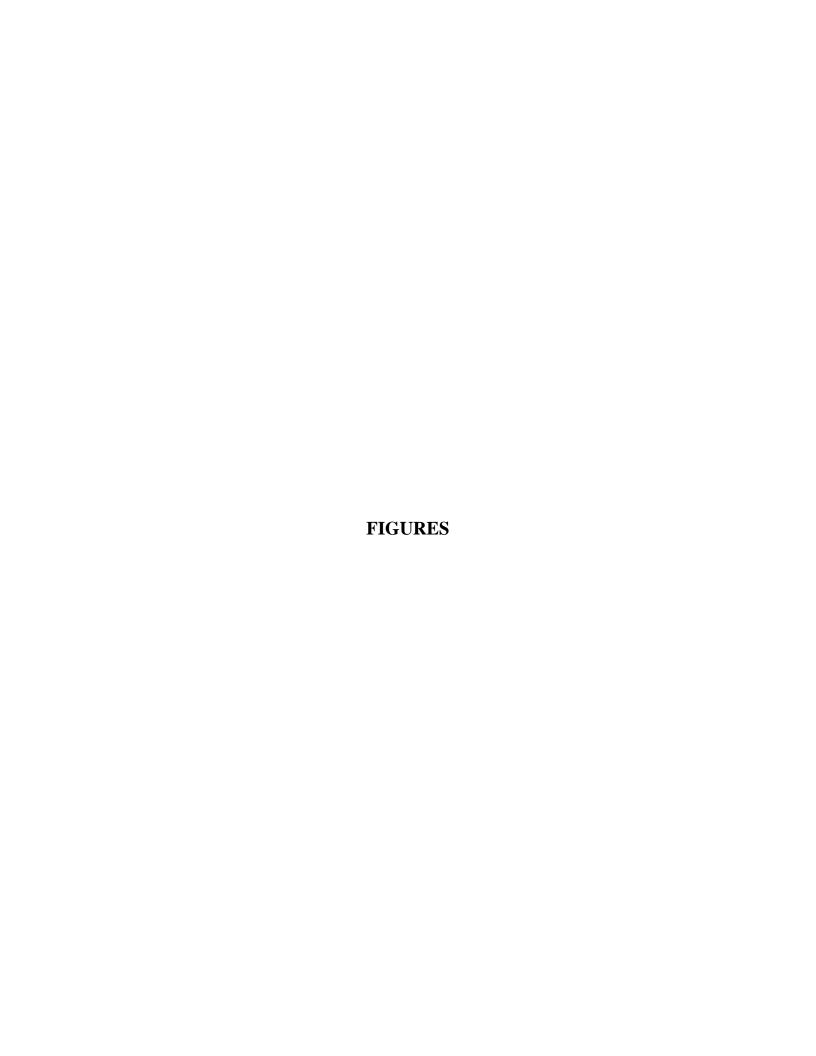
VOCs = Volatile organic compounds by EPA Method 8260

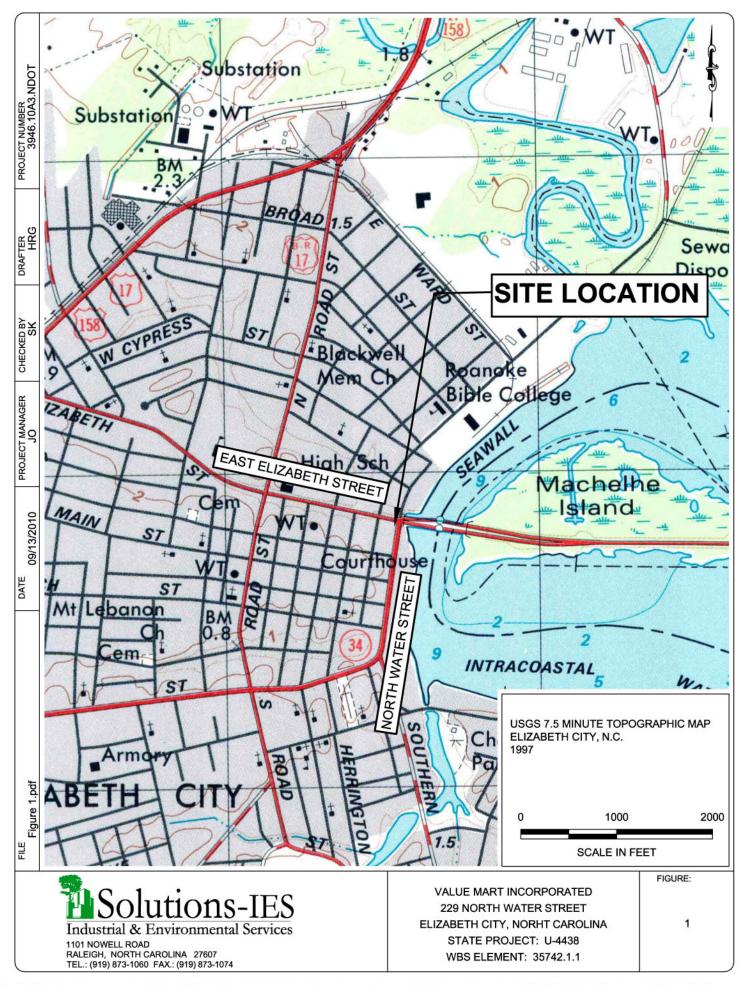
SVOCs = Semivolatile organic compounds by EPA Method 8270

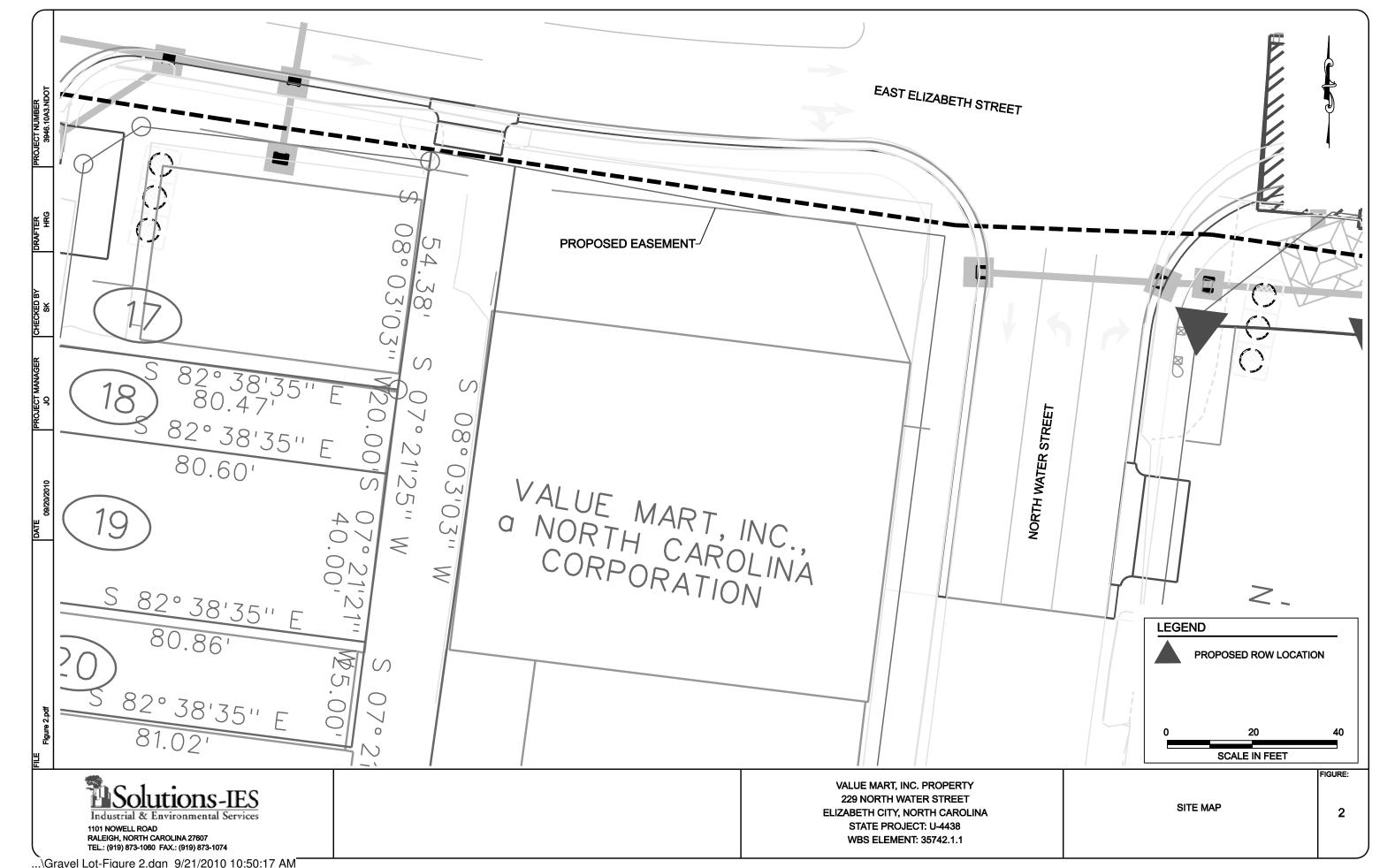
Fecal Coliform by SM9221 E

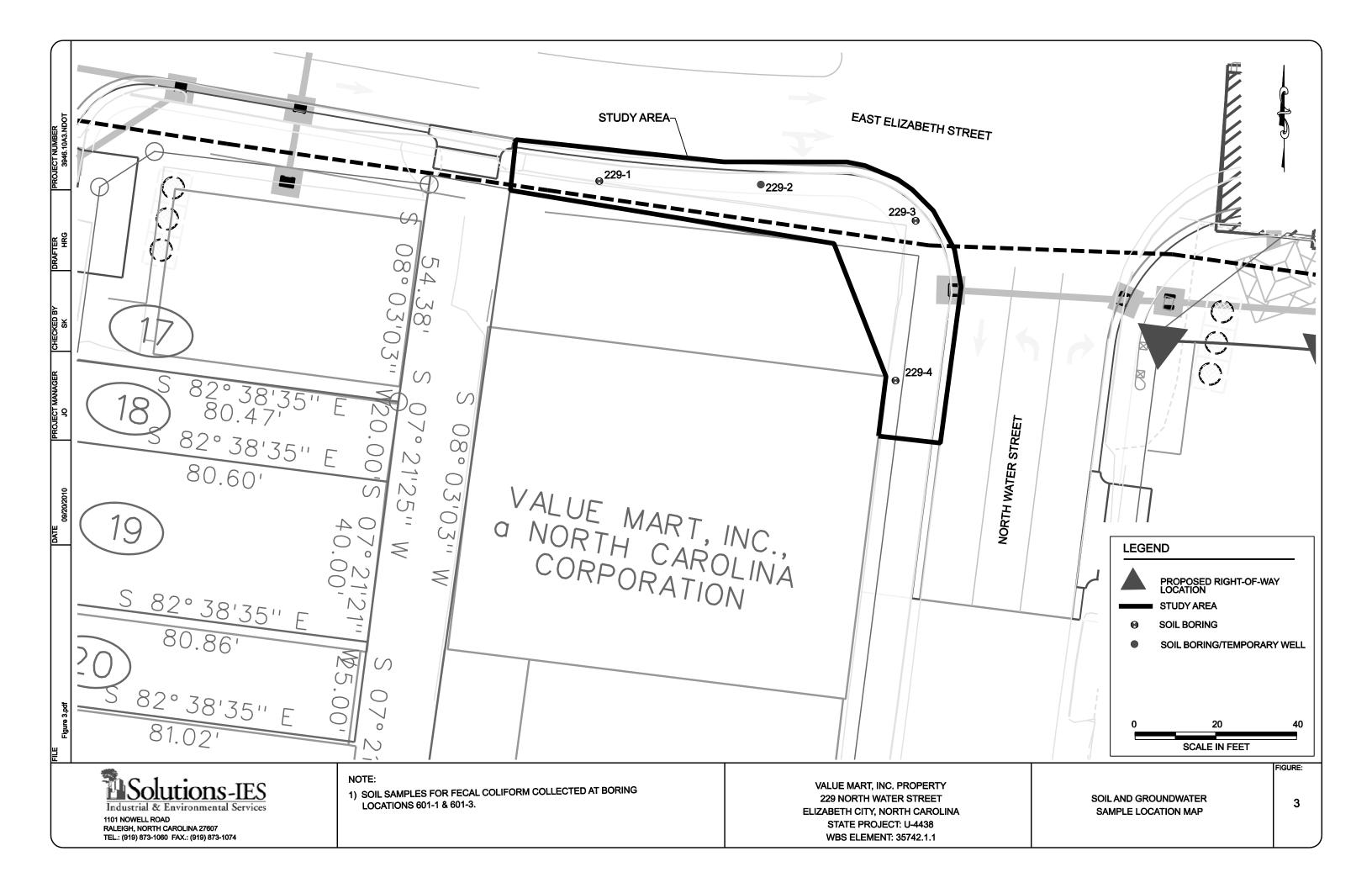
 $\mu g/L = Micrograms \ per \ liter$

MPN/100 mL = Most probable number cells per 100 milliliters

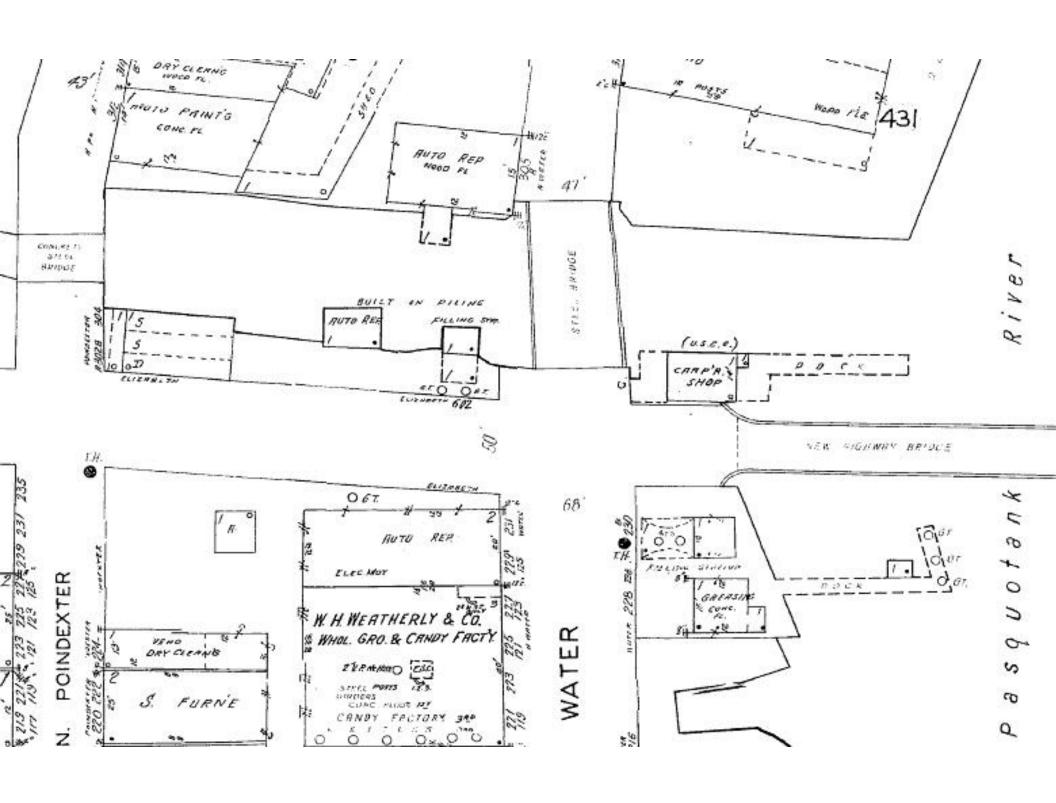

Bold indicates value exceeds laboratory reporting limit.


J = The analyte was positively identified but the value is estimated below the reporting limit


 $BRL = Below \ the \ laboratory \ reporting \ limit$


Shaded values exceed NC 2L Groundwater Quality Standards (January, 2010).

 $NA = Not \ analyzed/Not \ applicable$



APPENDIX A

1948 SANBORN MAP

APPENDIX B

PHOTOGRAPHS

Photograph 1 – View of Value Mart, Inc. property, looking southeast from East Elizabeth Street.

Photograph 2 – View of Value Mart, Inc. property, look east along the former storefront.

APPENDIX C

GEOPHYSICAL REPORT

GEOPHYSICAL INVESTIGATION REPORT

EM61 & GPR SURVEYS

229 NORTH WATER STREET SITE Elizabeth City, North Carolina

August 18, 2010

Report prepared for:

Jody L. Overmyer, P.E.

Solutions-IES

1101 Newell Road

Raleigh, North Carolina 27607

Prepared by:

Mark Denil. ÞG

Reviewed by:

Douglas Canavello, PG

PYRAMID ENVIRONMENTAL & ENGINEERING, P.C. P.O. Box 16265 GREENSBORO, NC 27416-0265 (336) 335-3174

Solutions-IES GEOPHYSICAL INVESTIGATION REPORT 229 NORTH WATER STREET SITE Elizabeth City, North Carolina

	<u>TABLE OF CONTENTS</u> <u>PAG</u>	<u> </u>
1.0	INTRODUCTION1	
2.0	FIELD METHODOLOGY	
3.0	DISCUSSION OF RESULTS	
4.0	SUMMARY & CONCLUSIONS	
5.0	LIMITATIONS 4	
	<u>FIGURES</u>	
Figu	re 1 Geophysical Equipment & Site Photographs	
Figu	re 2 Geophysical Survey Line Locations	
Figu	re 3 EM61 Metal Detection Results	

1.0 INTRODUCTION

Pyramid Environmental conducted geophysical investigations for Solutions-IES across the proposed Right-of-Way (ROW) area of the 229 North Water Street site (Value Mart Inc. property) located at the intersection of East Elizabeth Street and North Water Street in Elizabeth City, North Carolina. The property consists of an occupied warehouse/manufacturing building with a gravel-covered parking area located along the north side of the building. The proposed ROW area (geophysical survey area) was limited to the parking area and a short segment of the concrete sidewalk that runs along North Water Street.

Conducted on July 7 and 8, 2010 the geophysical investigation was performed as part of the North Carolina Department of Transportation (NCDOT) preliminary site assessment project to determine if unknown, metallic underground storage tanks (UST's) were present beneath the area of interest at the 229 North Water Street site. Solutions-IES representative, Ms. Jody Overmyer, P.G. provided site maps that identified the geophysical survey area perimeter to Pyramid Environmental personnel. The survey area has a maximum length and width of 120 feet and 65 feet, respectively. Photographs of the geophysical equipment used in this investigation and the geophysical survey area at the 229 North Water Street site are shown in **Figure 1**.

2.0 FIELD METHODOLOGY

Prior to conducting the geophysical investigation, a 10-foot by 10-foot survey grid was established across the geophysical survey area using measuring tapes and water-based marking paint. These grid marks were used as X-Y coordinates for location control when collecting the geophysical data and establishing base maps for the geophysical results.

The geophysical investigation consisted of electromagnetic (EM) induction-metal detection surveys and ground penetrating radar (GPR) surveys. The EM survey was performed on July 7, 2010 using a Geonics EM61-MK1 metal detection instrument. According to the instrument specifications, the EM61 can detect a metal drum down to a maximum depth of approximately 8 feet. Smaller objects

(1-foot or less in size) can be detected to a maximum depth of 4 to 5 feet. All of the EM61 data were digitally collected at approximately 0.8 foot intervals along northerly-southerly, parallel survey lines spaced five feet apart. All of the data were downloaded to a computer and reviewed in the field and office using the Geonics DAT61W and Surfer for Windows Version 7.0 software programs.

GPR surveys were conducted on July 8, 2010 across a significant portion of the site using a GSSI SIR-2000 unit equipped with a 400 MHz antenna. Data were digitally collected in a continuous mode along X-axis and/or Y-axis survey lines, spaced 5.0 feet apart using a vertical scan of 512 samples, at a rate of 48 scans per second. A 70 MHz high pass filter and an 800 MHz low pass filter were used during data acquisition with the 400 MHz antenna. GPR data were collected down to a maximum depth of approximately 5 feet, based on an estimated two-way travel time of 8 nanoseconds per foot. All of the GPR data were downloaded to a field computer and reviewed in the field and office using Radprint software.

Locations of the EM61 metal detection survey lines and the GPR survey lines acquired across the geophysical survey area are shown as red dots and purple lines, respectively in **Figure 2**. Each red dot represents an EM61 data point.

Contour plots of the EM61 bottom coil and differential results are presented in **Figure 3**. The bottom coil results represent the most sensitive component of the EM61 instrument and detect metal objects regardless of size. The bottom coil response can be used to delineate metal conduits or utility lines, small, isolated metal objects, and areas containing insignificant metal debris. The differential results are obtained from the difference between the top and bottom coils of the EM61 instrument. The differential results focus on the larger metal objects such as drum and UST-size objects and ignore the smaller insignificant metal objects.

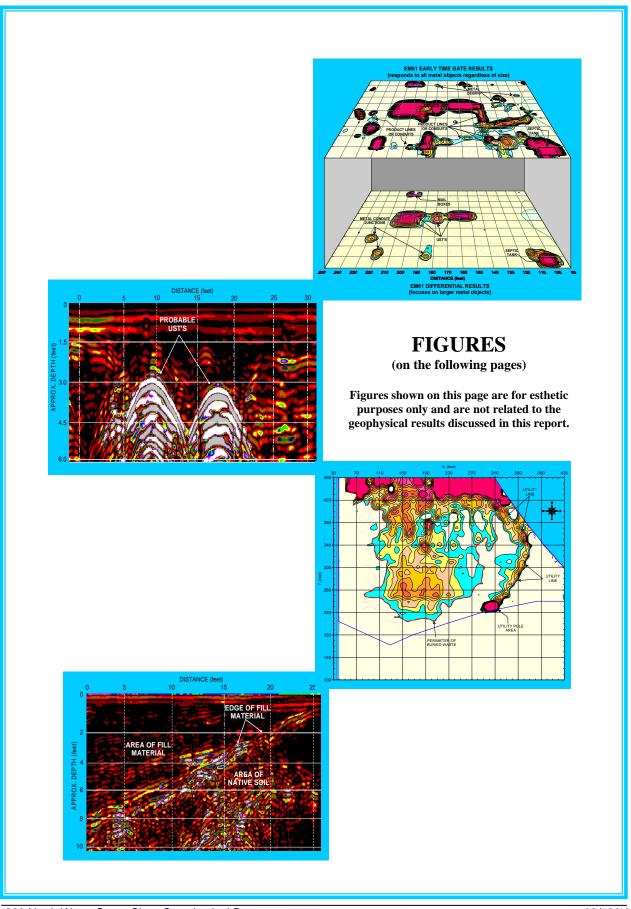
Preliminary contour plots of the EM61 bottom coil and EM61 differential results obtained from the survey area were emailed to Ms. Overmyer on July 19, 2010.

3.0 <u>DISCUSSION OF RESULTS</u>

The linear, high-amplitude EM61 metal detection anomalies (contours shaded in red) intersecting grid coordinates X=180 Y=95 and X=237 Y=80 are probably in response to buried utility lines that run along the edge of East Elizabeth Street and North Water Street. GPR data suggest the linear, EM61 anomalies intersecting grid coordinates X=140 Y=80, X=202 Y=85, X=210 Y=80, and X=217 Y=80 are probably in response to buried, utility lines or conduits. GPR data suggest the EM61 differential anomalies intersecting grid coordinates X=230 Y=23, X=230 Y=40 and X=235 Y=52 are in response to the building, utility line-related equipment and/or buried lines.

GPR data suggest the EM61 differential anomalies intersecting grid coordinates X=157 Y=60, X=205 Y=60 and X=227 Y=65 are probably in response to parked vehicles, building and other known surface objects. The geophysical investigation suggests that the proposed ROW area (survey area) at the 229 North Water Street site does not contain buried metallic UST.

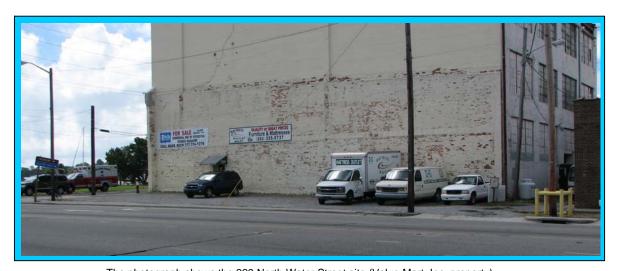
4.0 SUMMARY & CONCLUSIONS


Our evaluation of the EM61 and GPR data collected across the proposed ROW area at the 229 North Water Street site (Value Mart Inc. property) located in Elizabeth City, North Carolina, provides the following summary and conclusions:

- The EM61 and GPR surveys provided reliable results for the detection of metallic USTs within the surveyed portion of the site.
- The linear, high-amplitude EM61 metal detection anomalies (contours shaded in red) intersecting grid coordinates X=140 Y=80, X=180 Y=95, X=202 Y=85, X=210 Y=80, X=217 Y=80, and X=237 Y=80 are probably in response to buried utility lines or conduits.
- GPR data suggest the remaining EM61 differential anomalies are probably in response to parked vehicles, building and other known surface objects.

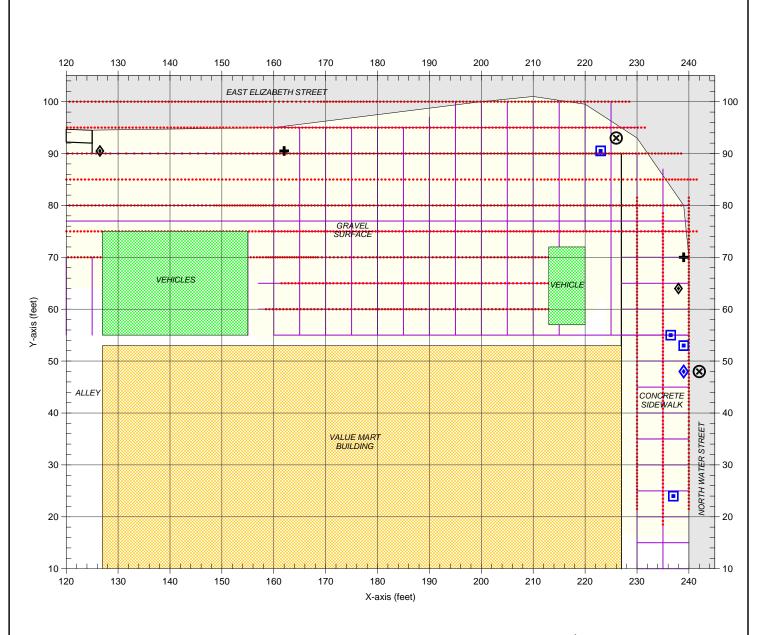
The geophysical investigation suggests that the proposed ROW area (survey area) at the 229
 North Water Street site does not contain buried metallic UST.

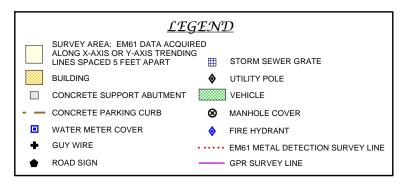
5.0 <u>LIMITATIONS</u>


EM61 and GPR surveys have been performed and this report prepared for Solutions-IES in accordance with generally accepted guidelines for EM61 and GPR surveys. It is generally recognized that the results of the EM61 and GPR are non-unique and may not represent actual subsurface conditions. The EM61 and GPR results do not conclusively determine that the proposed ROW area does not contain unknown, metallic USTs, but that none were detected.

The photograph shows the Geonics EM61 metal detector that was used to conduct the metal detection survey across the 229 North Water Street site (Value Mart, Inc. property) on July 7, 2010.

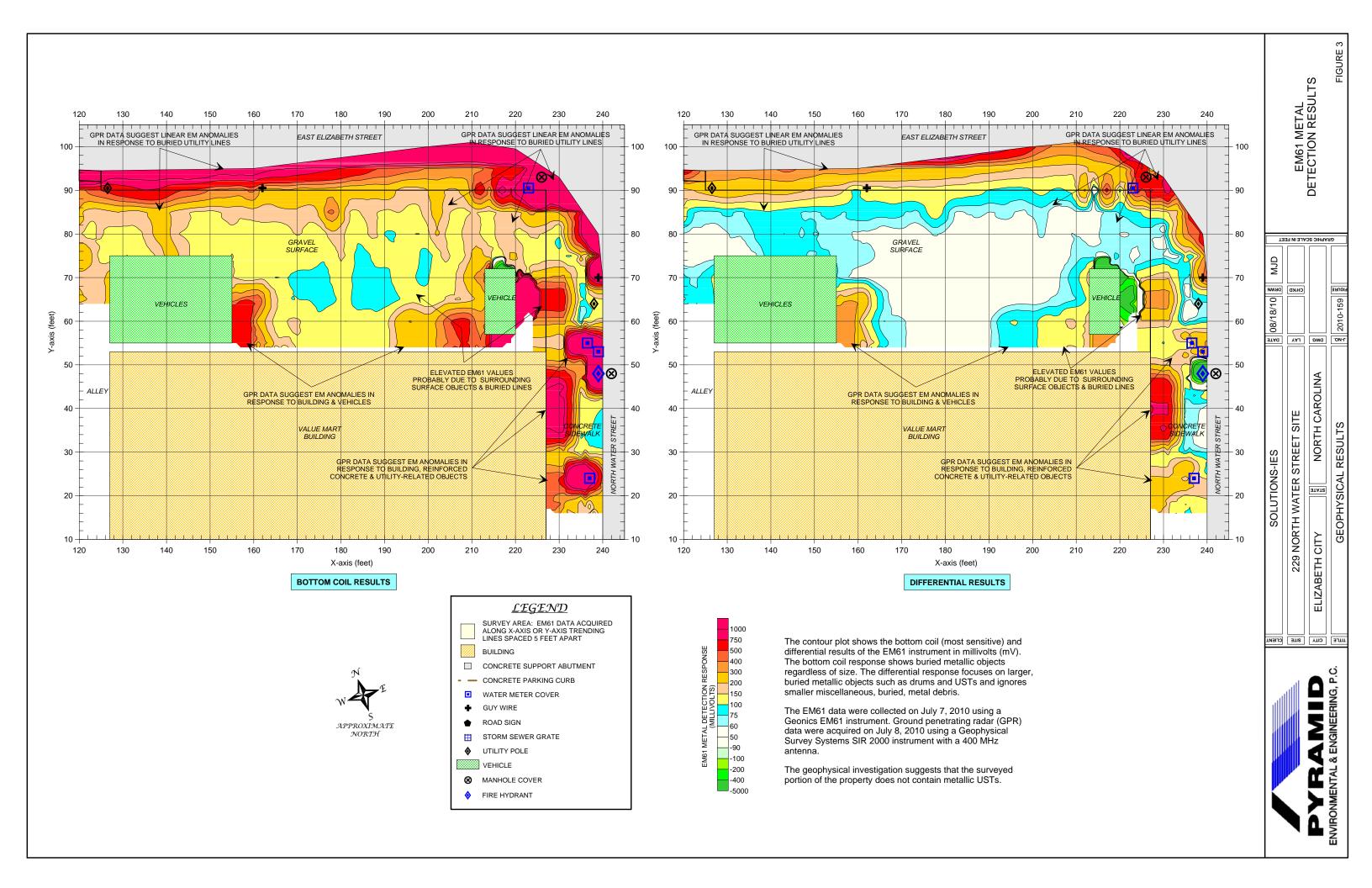
The photographs show the SIR-2000 GPR system equipped with a 400 MHz antenna that were used to conduct the ground penetrating radar investigation at the 229 North Water Street site on July 8, 2010.




The photograph shows the 229 North Water Street site (Value Mart, Inc. property) located at the intersection of East Elizabeth Street and North Water Street in Elizabeth City, North Carolina. The photograph is viewed in a southeasterly direction.

CLIEN	SOLUTIONS-IES	DATE	08/16/10	MJD	
SITE	229 NORTH WATER STREET SITE	¥	QH'KD		
СШУ	ELIZABETH CITY	DWG			
TILLE	GEOPHYSICAL RESULTS	J-NO.	2010-159		

GEOPHYSICAL EQUIPMENT & SITE PHOTOGRAPHS


Note: The map shows the geophysical survey area at the 229 North Water Street site (Parcel 17). The red dots represent the EM61 metal detection survey lines that were acquired on July 7, 2010 using a Geonics EM61 metal detection instrument. Each dot represents an EM61 data point.

The solid purple lines represent the GPR survey lines. The GPR investigation was conducted on July 8, 2010 using a Geophysical Survey Systems SIR-2000 unit with a 400 MHz antenna.

CLIENT	SOLUTIONS-IES	08/16/10 MJD
SITE	229 NORTH WATER STREET SITE	GH'KD GH'KD
CIT	ELIZABETH CITY	A 🕍
TH.E	GEOPHYSICAL RESULTS	2010-159 BB

GEOPHYSICAL SURVEY LINE LOCATIONS

APPENDIX D

GPS COORDINATES

APPENDIX D

Boring Locations GPS Coordinates Value Mart, Inc. Property 229 East Elizabeth Street Elizabeth City, North Carolina

WBS Element: 35742.1.1; State Project: U-4438

Boring Identification	Latitude	Longitude
229-1	36.301341	76.219005
229-2	36.301254	76.218786
229-3	36.301206	76.218610
229-4	36.301145	76.218600

APPENDIX E

BORING LOGS

Log of Soil Boring: 229-1 Project Name: Elizabeth City PSAs

Solutions-IES Project Number: 3946.10A3.NDOT

Client: NCDOT

Northing: 940590.13

State: NC

Project Location: Elizabeth City Site or Area: 229 N. Water Street County: Pasquotank Date Started: 8/2/10

Drilling Method: Direct push

Initial Water Level: ~4' bgs

Easting: 2819477.4 City: Elizabeth City Date Completed: 8/2/10

Page: 1 of 1

Sample Method: Macrocore

Final Water Level: Date & Time (f):

Logged by: KD

Checked by:

Date & Time (i): 8/3/10 0745 WBS #: 35742.1.1

State Project #: U-4438

De	epth		Lithology Sample Information	1			Labo In	rator	y Sample nation	Well Information
Depth	Elevation	USCS Symbol	Description	Sample Interval	Recovery %	Blows / 0.5 FT	Field Screen	Sample Interval	Sample ID	Well Const.
0-	0.00		Ground Surface							
			SW asphalt surface, gray sandy fill with gravel		00		0.0		229-1-0-2	
2-			SW tan sand, moist		20		0.0		229-1-2-4	
4-			End of Boring							
6 1 1 1 1 6										
-	Notes					,	,			
		screen i in fee	in conducted with FID. Results in parts t.	s per mi	llion	(ppm).			
8-										
			Well Construction Details	_						

Well Construction Details

Drilling Contractor: Solutions-IES, Inc.

TOC Elevation: NA

Size of Borehole: 3.75"

Completion:

Total Depth:

Casing Diameter:

Screen Interval:

Casing Material:

Screen Material:

Slot Size:

Solutions -IES Industrial & Environmental Services

1101 Nowell Road

Raleigh, North Carolina 27607

Tel.: 919.873.1060 Fax.: 919.813.1074

Log of Soil Boring: 229-2

Page: 1 of 1

Project Name: Elizabeth City PSAs

Client: NCDOT

Project Location: Elizabeth City

Site or Area: **229 N. Water Street**Drilling Method: **Direct push**Sample Method: **Macrocore**

Logged by: KD

Checked by:

State: NC

Solutions-IES Project Number: 3946.10A3.NDOT

Northing: 940034.21

County: Pasquotank
Date Started: 8/3/10

Initial Water Level: ~4' bgs

Date & Time (i): 8/3/10 0745

WBS #: 35742.1.1

Easting: 2819641.57

City: Elizabeth City

Date Completed: 8/3/10

Final Water Level: 4.6' bgs

Date & Time (f): 8/4/10 0750

State Project #: U-4438

De	pth		Lithology Sample Information				Labo Ir	rator	y Sample nation	Well Information
Depth	Elevation	USCS Symbol	Description	Sample Interval	Recovery %	Blows / 0.5 FT	Field Screen	Sample Interval	Sample ID	Well Const.
0-	0.00		Ground Surface							
-			SW tan sand, fill, with gravel				0.0		229-2-0-2	
2			SW sand, fill, with brick pieces and seashell fragments		20		0.0		229-2-2-4	
4										Y
-		s: I scree th in fe	n in conducted with FID. Results in parts	per n	nillior	n (pp	m).			
-					T	T				
8-										

Well Construction Details

Drilling Contractor: Solutions-IES, Inc.

Size of Borehole: 3.75" TOC Elevation: NA

Completion: Temporary Casing Diameter: 1"

Total Depth: 8.1'

Casing Material: PVC

Screen Interval: 8.1' - 3.1' bgs

Screen Material: PVC

Slot Size: 0.01

industrial & Environmental Service

1101 Nowell Road

Raleigh, North Carolina 27607

Tel.: 919.873.1060 Fax.: 919.813.1074

Log of Soil Boring: 229-3

Solutions-IES Project Number: 3946.10A3.NDOT

Project Name: Elizabeth City PSAs Client: NCDOT

Northing: 940033.22

State: NC

Project Location: Elizabeth City

County: Pasquotank

Site or Area: 229 N. Water Street

Date Started: 8/3/10

Drilling Method: Direct push

Initial Water Level: ~4' bgs

Easting: 2819554.33 City: Elizabeth City Date Completed: 8/3/10

Page: 1 of 1

Sample Method: Macrocore

Date & Time (i): 8/3/10 0745

Final Water Level: Date & Time (f):

Logged by: KD

Checked by:

WBS #: 35742.1.1

State Project #: U-4438

De	pth		Lithology Sample Information	n			Laboi In	rator forn	y Sample nation	Well Informatio
Depui	Elevation	USCS Symbol	Description	Sample Interval	Recovery %	Blows / 0.5 FT	Field Screen	Sample Interval	Sample ID	Well Const.
0	0.00		Ground Surface							
			SW tan sand, fill, with gravel				0.0		229-3-0-2	
2			SW tan sand, fill, with brick pieces and gravel		20		0.0		229-3-2-4	
6										
		screen	in conducted with FID. Results in part	s per mi	llion	(ppm)).			

Well Construction Details

Drilling Contractor: Solutions-IES, Inc.

Size of Borehole: 3.75" TOC Elevation: NA

Casing Diameter:

Screen Interval: Screen Material:

Slot Size:

1101 Nowell Road

Raleigh, North Carolina 27607 Tel.: 919.873.1060 Fax.: 919.813.1074

Completion: Total Depth:

Casing Material:

Log of Soil Boring: 229-4

Solutions-IES Project Number: 3946.10A3.NDOT

Page: 1 of 1

Project Name: Elizabeth City PSAs

Client: NCDOT

State: NC

Northing: 940011.1

Easting: 2819557.9

Project Location: Elizabeth City Site or Area: 229 N. Water Street County: Pasquotank

City: Elizabeth City Date Completed: 8/3/10

Drilling Method: Direct push

Date Started: 8/3/10 Initial Water Level: ~4' bgs

Final Water Level:

Sample Method: Macrocore

Date & Time (i): 8/2/10 1733

Date & Time (f):

Logged by: KD

Checked by:

WBS #: 35742.1.1

State Project #: U-4438

Depth		Lithology Sample Information	on			Labor In	rator form	y Sample nation	Well Informatio
Elevation	USCS Symbol	Description	Sample Interval	Recovery %	Blows / 0.5 FT	Field Screen	Sample Interval	Sample ID	Well Const.
0.00		Ground Surface							
-		SW tan sand, fill				0.0		229-4-0-2	
		SW tan sand, fill, with brick peices		25		0.0		229-4-2-4	
	1000000	End of Boring							
- Notes:	:								
1	in feet	in conducted with FID. Results in pa	rts per mi	llion	(ppm).			

Well Construction Details

Drilling Contractor: Solutions-IES, Inc.

Size of Borehole: 3.75"

TOC Elevation: NA Casing Diameter:

Screen Interval:

Completion: Total Depth:

Casing Material:

Screen Material:

Slot Size:

1101 Nowell Road

Raleigh, North Carolina 27607 Tel.: 919.873.1060 Fax.: 919.813.1074

APPENDIX F LABORATORY ANALYTICAL REPORT

NC Certification No. 402 SC Certification No. 99012 NC Drinking Water Cert No. 37735

Case Narrative

08/20/2010

Solutions IES (NCDOT Project) Jody Overmyer 1101 Nowell Road Raleigh, NC 27607 Project: NCDOT Elizabeth City PSA's - 229 Water St.

Project No.: WBS# 35742.1.1 Lab Submittal Date: 08/04/2010 Prism Work Order: 0080136

This data package contains the analytical results for the project identified above and includes a Case Narrative, Sample Results and Chain of Custody. Unless otherwise noted, all samples were received in acceptable condition and processed according to the referenced methods.

Data qualifiers are flagged individually on each sample. A key reference for the data qualifiers appears at the end of this case narrative.

Please call if you have any questions relating to this analytical report.

Respectfully,

PRISM LABORATORIES, INC.

VP Laboratory Services

Reviewed By

Rossia. In

Data Qualifiers Key Reference:

BRL Below Reporting Limit
MDL Method Detection Limit
RPD Relative Percent Difference

* Results reported to the reporting limit. All other results are reported to the MDL with values between MDL and

reporting limit indicated with a J.

Sample Receipt Summary

08/20/2010

Prism Work Order: 0080136

Client Sample ID	Lab Sample ID	Matrix	Date Sampled	Date Received
229-1-2-4	0080136-01	Solid	08/03/10	08/04/10
229-2-2-4	0080136-02	Solid	08/03/10	08/04/10
229-3-2-4	0080136-03	Solid	08/03/10	08/04/10
229-4-2-4	0080136-04	Solid	08/03/10	08/04/10

Samples received in good condition at 3.8 degrees C unless otherwise noted.

Project: NCDOT Elizabeth City PSA's

- 229 Water St.

Project No.: WBS# 35742.1.1

Sample Matrix: Solid

Client Sample ID: 229-1-2-4 Prism Sample ID: 0080136-01 Prism Work Order: 0080136 Time Collected: 08/03/10 10:35 Time Submitted: 08/04/10 16:10

Parameter	Result	Units	Report	MDL	Dilution	Method	Analysis	Analyst	Batch
			Limit		Factor		Date/Time		ID
Diesel Range Organics by GC/FID									
Diesel Range Organics	BRL	mg/kg dry	9.2	1.5	1	*8015C	8/12/10 16:3	0 JMV	P0H0245
			Surrogate			Recov	very	Control	Limits
			o-Terphenyl			71	1 %	49-124	
Gasoline Range Organics by GC/FID									
Gasoline Range Organics	BRL	mg/kg dry	6.4	0.83	50	*8015C	8/10/10 0:10) HPE	P0H0204
			Surrogate			Recov	very	Control	Limits
			a,a,a-Trifluoi	rotoluene		69	9 %	55-129	
General Chemistry Parameters									
% Solids	76.2	% by Weight	0.100	0.100	1	*SM2540 G	8/9/10 14:00	JAB	P0H0208

Project: NCDOT Elizabeth City PSA's

- 229 Water St.

Project No.: WBS# 35742.1.1

Sample Matrix: Solid

Client Sample ID: 229-2-2-4 Prism Sample ID: 0080136-02 Prism Work Order: 0080136 Time Collected: 08/03/10 10:37 Time Submitted: 08/04/10 16:10

Parameter	Result	Units	Report Limit	MDL	Dilution Factor	Method	Analysis Date/Time	Analyst	Batch ID
Diesel Range Organics by GC/FID									
Diesel Range Organics	BRL	mg/kg dry	7.8	1.3	1	*8015C	8/12/10 17:42	2 JMV	P0H0245
			Surrogate			Recov	very	Control	Limits
			o-Terphenyl			75	5 %	49-124	
Gasoline Range Organics by GC/FID)								
Gasoline Range Organics	BRL	mg/kg dry	5.0	0.66	50	*8015C	8/10/10 0:44	HPE	P0H0204
			Surrogate			Recov	very	Control	Limits
			a,a,a-Trifluo	rotoluene		89	9 %	55-129	
General Chemistry Parameters									
% Solids	89.2	% by Weight	0.100	0.100	1	*SM2540 G	8/9/10 14:00	JAB	P0H0208

Project: NCDOT Elizabeth City PSA's

- 229 Water St.

Project No.: WBS# 35742.1.1

Sample Matrix: Solid

Client Sample ID: 229-3-2-4
Prism Sample ID: 0080136-03
Prism Work Order: 0080136
Time Collected: 08/03/10 10:40
Time Submitted: 08/04/10 16:10

Parameter	Result	Units	Report Limit	MDL	Dilution Factor	Method	Analysis Date/Time	Analyst	Batch ID
Diesel Range Organics by GC/FID									
Diesel Range Organics	BRL	mg/kg dry	7.9	1.3	1	*8015C	8/12/10 17:06	3 JMV	P0H0245
			Surrogate			Recov	very	Control	Limits
			o-Terphenyl			72	2 %	49-124	
Gasoline Range Organics by GC/FID)								
Gasoline Range Organics	BRL	mg/kg dry	5.3	0.69	50	*8015C	8/10/10 1:17	HPE	P0H0204
			Surrogate			Recov	very	Control	Limits
			a,a,a-Trifluoi	rotoluene		90) %	55-129	
General Chemistry Parameters									
% Solids	88.9	% by Weight	0.100	0.100	1	*SM2540 G	8/9/10 14:00	JAB	P0H0208

Project: NCDOT Elizabeth City PSA's

- 229 Water St.

Project No.: WBS# 35742.1.1 Sample Matrix: Solid Client Sample ID: 229-4-2-4 Prism Sample ID: 0080136-04 Prism Work Order: 0080136 Time Collected: 08/03/10 10:42 Time Submitted: 08/04/10 16:10

Parameter	Result	Units	Report Limit	MDL	Dilution Factor	Method	Analysis Date/Time	Analyst	Batch ID
Diesel Range Organics by GC/FID									
Diesel Range Organics	BRL	mg/kg dry	9.0	1.5	1	*8015C	8/12/10 18:5	4 JMV	P0H0245
			Surrogate			Recov	very	Control	Limits
			o-Terphenyl			65	5 %	49-124	
Gasoline Range Organics by GC/FID)								
Gasoline Range Organics	BRL	mg/kg dry	6.3	0.81	50	*8015C	8/10/10 1:50) HPE	P0H0204
			Surrogate			Recov	very	Control	Limits
			a,a,a-Trifluo	rotoluene		59	9 %	55-129	
General Chemistry Parameters									
% Solids	77.3	% by Weight	0.100	0.100	1	*SM2540 G	8/9/10 14:00	JAB	P0H0208

Raleigh, NC 27607

Project: NCDOT Elizabeth City PSA's -

229 Water St.

Project No: WBS# 35742.1.1

Prism Work Order: 0080136

Time Submitted: 8/4/10 4:10:00PM

Gasoline Range Organics by GC/FID - Quality Control

		Reporting		Spike	Source		%REC		RPD	
Analyte	Result	Limit	Units	Level	Result	%REC	Limits	RPD	Limit	Notes
Batch P0H0204 - 5035										
Blank (P0H0204-BLK1)			F	Prepared	& Analyze	d: 08/09/1	0			
Gasoline Range Organics	BRL	5.0	mg/kg wet							
Surrogate: a,a,a-Trifluorotoluene	4.90		mg/kg wet	5.00		98	55-129			
LCS (P0H0204-BS1)			F	Prepared	& Analyze	d: 08/09/1	0			
Gasoline Range Organics	44.6	5.0	mg/kg wet	50.0		89	67-116			
Surrogate: a,a,a-Trifluorotoluene	5.50		mg/kg wet	5.00		110	55-129			
LCS Dup (P0H0204-BSD1)			F	repared	& Analyze	d: 08/09/1	0			
Gasoline Range Organics	46.1	5.0	mg/kg wet	50.0		92	67-116	3	200	
Surrogate: a,a,a-Trifluorotoluene	5.55		mg/kg wet	5.00		111	55-129			

Project: NCDOT Elizabeth City PSA's -

229 Water St.

Project No: WBS# 35742.1.1

Danamina

Prism Work Order: 0080136

Time Submitted: 8/4/10 4:10:00PM

Diesel Range Organics by GC/FID - Quality Control

		Reporting		Spike	Source		%REC		RPD	
Analyte	Result	Limit	Units	Level	Result	%REC	Limits	RPD	Limit	Notes
Batch P0H0245 - 3545A										
Blank (P0H0245-BLK1)			I	Prepared	: 08/10/10	Analyzed	: 08/12/10			
Diesel Range Organics	BRL	7.0	mg/kg wet							
Surrogate: o-Terphenyl	1.23		mg/kg wet	1.60		77	49-124			
LCS (P0H0245-BS1)			1	Prepared	: 08/10/10	Analyzed	: 08/12/10			
Diesel Range Organics	62.0	7.0	mg/kg wet	80.0		78	55-109			
Surrogate: o-Terphenyl	1.76		mg/kg wet	1.60		110	49-124			
LCS Dup (P0H0245-BSD1)			I	Prepared	: 08/10/10	Analyzed	: 08/12/10			
Diesel Range Organics	65.7	7.0	mg/kg wet	80.0		82	55-109	6	200	
Surrogate: o-Terphenyl	1.76		mg/kg wet	1.60		110	49-124			

Sample Extraction Data

Prep Method: 3545A

Lab Number	Batch	Initial	Final	Date	
0080136-01	P0H0245	25.03 g	1 mL	08/10/10	
0080136-02	P0H0245	25.07 g	1 mL	08/10/10	
0080136-03	P0H0245	25 g	1 mL	08/10/10	
0080136-04	P0H0245	25.13 g	1 mL	08/10/10	

Prep Method: 5035

Lab Number	Batch	Initial	Final	Date	
0080136-01	P0H0204	5.16 g	5 mL	08/09/10	
0080136-02	P0H0204	5.56 g	5 mL	08/09/10	
0080136-03	P0H0204	5.32 g	5 mL	08/09/10	
0080136-04	P0H0204	5.16 g	5 mL	08/09/10	

NO PREP

Lab Number	Batch	Initial	Final	Date
0080136-01	P0H0208	30 g	30 mL	08/09/10
0080136-02	P0H0208	30 g	30 mL	08/09/10
0080136-03	P0H0208	30 g	30 mL	08/09/10
0080136-04	P0H0208	30 g	30 mL	08/09/10

LABORATORIES, INC. Project Name: NCDOT Elizabeth City - 729 Walk S Add Springbrook Road • P.O. Box 240543 • Charlotte, NC 28224-0543 Short Hold Analysis: (Yes) (No) UST Project: (Yes) (No) PROPER PRESERVATIVES indicated? PROPER PRESERVATIVES indicated?								
Phone: 704/529-6364 • Fax: 704/525-0409 Short Hold Analysis: (Yes) (No) UST Project: (Yes) (No) Received WITHIN HOLDING TIMES?	nort Hold Analysis: (Yes) (No) UST Project: (Yes) (No) Received WITHIN HOLDING TIMES?							
lient Company Name:	- 6							
Report To/Contact Name: Joby Nev Wyel Invoice To: WOUT HEADSPACE?								
PROPER CONTAINERS used?								
thone: $49.873.40(40)$ Fax (Yes) (No):	\sim							
mail (Yes) (No) Email Address #VC///(Yes) (No) Email Address #	_ NC							
Step Location Name: NCVU \ \-\\7.0 \\ \7.0 \\ \\7.0 \\ \\7.0 \\ \\7.0 \\ \7.0 \\								
Turnaround time is based on business days, excluding weekends and holidays. (SEE REVERSE FOR TERMS & CONDITIONS REGARDING SERVICES RENDERED BY PRISM LABORATORIES, INC. TO CLIENT) Sample Iced Upon Collection: YES NO								
TIME MATRIX SAMPLE CONTAINER ANALYSES REQUESTED (SOIL COLLECTED (SOIL)	PRISM LAB							
SAMPLE DESCRIPTION COLLECTED MILITARY HOURS SLUDGE) SEE BELOW NO. SIZE TIVES *TYPE SEE BELOW NO. SIZE	ID NO.							
229-1-2-4 8/3/10 1035 5 WAG 4 HOMY, 1202 X	_01							
229-2-2-4 8/3/10 1037 5 VOAG 4	DZ							
779-3-2-4 813/10 1040 S VOAG 4	03							
229-4-2-4 8 3 10 1042 S VOA, 6 4 V	04							
PRESS DOWN FIRMLY	3 COPIE							
Sampler's Signature Parlier Ord Sampled By (Print Name) Kathyn Doll Affiliation Solutions - IES								
submitted in writing to the Prism Project Manager. There will be charges for any changes after analyses have been initialized.	ISE ONLY							
1055 0 10	Tarrier and Control of the Control							
Relinquished By (Signature) Received By: (Signature) Received By: (Signature) Date OBO 3 10 1400 up) and Main Field tech Fe	200 ES 25 ES							
Reinquisted By Organius Date 8-410 1250 8-416 1670 Mileage:								
Method of Shipment: NOTE: ALL SAMPLE COOLERS SHOULD BE TAPED SHUT WITH CUSTODY SEALS FOR TRANSPORTATION TO THE LABORATORY. COC Group No. SAMPLES ARE NOT ACCEPTED AND VERIFIED AGAINST COC UNTIL RECEIVED AT THE LABORATORY.								
So to Supple Bland delivered Review Sield Sentine Souther	VEDSE EAD							

CHAIN OF CUSTODY RECORD

Page 9 of 9

LANDFILL

DNC DSC DNC DSC DNC DSC DNC DS

CERCLA

DRINKING WATER:

□NC □SC

Q

GROUNDWATER:

i 🛮

NPDES: UST:

_____O...

DINC DSC DNC DSC DNC DSC

SOLID WASTE:

□NC □SC

l 🛛

*CONTAINER TYPE CODES: A = Amber C = Clear G = Glass P = Plastic; TL = Teflon-Lined Cap VOA = Volatile Organics Analysis (Zero Head Space)

RCRA:

-

OTHER:

ORIGINAL

NC Certification No. 402 SC Certification No. 99012 NC Drinking Water Cert No. 37735

Case Narrative

08/24/2010

Solutions IES (NCDOT Project) Jody Overmyer 1101 Nowell Road Raleigh, NC 27607 Project: NCDOT Elizabeth City PSA's - 222 Water St.

Project No.: WBS# 35742.1.1 Lab Submittal Date: 08/05/2010 Prism Work Order: 0080167

This data package contains the analytical results for the project identified above and includes a Case Narrative, Sample Results and Chain of Custody. Unless otherwise noted, all samples were received in acceptable condition and processed according to the referenced methods.

Data qualifiers are flagged individually on each sample. A key reference for the data qualifiers appears at the end of this case narrative.

Please call if you have any questions relating to this analytical report.

Respectfully,

PRISM LABORATORIES, INC.

VP Laboratory Services

Reviewed By

Korri a.

Data Qualifiers Key Reference:

Aa

Α	Compound recovered outside established QC limits in the LCS Dt	JP. Acceptable recovery was obtained in the LCS.
	No further action was taken.	

Sample analyzed out of hold.

D RPD value outside of the control limits.

J Detected but below the Reporting Limit; therefore, result is an estimated concentration (CLP J-Flag).

MI Matrix spike outside of the control limits. Matrix interference suspected.

P Recovery outside of the QC limits due to inconsistency during extraction and chromatographic performance of this

compound.

SR Surrogate recovery outside the QC limits.

BRL Below Reporting Limit
MDL Method Detection Limit
RPD Relative Percent Difference

* Results reported to the reporting limit. All other results are reported to the MDL with values between MDL and reporting limit indicated with a J.

Sample Receipt Summary

08/24/2010

Prism Work Order: 0080167

Client Sample ID	Lab Sample ID	Matrix	Date Sampled	Date Received	
222-1-2-4	0080167-01	Solid	08/04/10	08/05/10	
222-2-2-4	0080167-02	Solid	08/04/10	08/05/10	
222-3-0-2	0080167-03	Solid	08/04/10	08/05/10	
222-3	0080167-04	Water	08/04/10	08/05/10	
601-1	0080167-05	Water	08/04/10	08/05/10	
229-2	0080167-06	Water	08/04/10	08/05/10	
S07-4-1-4	0080167-07	Solid	08/04/10	08/05/10	

Samples received in good condition at 3.1 degrees C unless otherwise noted.

Project: NCDOT Elizabeth City PSA's

- 222 Water St.

Project No.: WBS# 35742.1.1

Sample Matrix: Solid

Client Sample ID: 222-1-2-4
Prism Sample ID: 0080167-01
Prism Work Order: 0080167
Time Collected: 08/04/10 08:20
Time Submitted: 08/05/10 18:05

Parameter	Result	Units	Report Limit	MDL	Dilution Factor	Method	Analysis Date/Time	Analyst	Batch ID
Diesel Range Organics by GC/FID									
Diesel Range Organics	22	mg/kg dry	8.8	1.4	1	*8015C	8/16/10 17:55	5 JMV	P0H0282
			Surrogate			Reco	very	Control	Limits
			o-Terphenyl			8	1 %	49-124	
Gasoline Range Organics by GC/F	ID								
Gasoline Range Organics	19	mg/kg dry	4.9	0.64	50	*8015C	8/10/10 17:25	HPE	P0H0224
			Surrogate			Reco	very	Control	Limits
			a,a,a-Trifluo	rotoluene		94	4 %	55-129	
General Chemistry Parameters									
% Solids	78.9	% by Weight	0.100	0.100	1	*SM2540 G	8/11/10 14:45	5 JAB	P0H0272

08/24/2010

Solutions IES (NCDOT Project) Attn: Jody Overmyer 1101 Nowell Road Raleigh, NC 27607 Project: NCDOT Elizabeth City PSA's

- 222 Water St.

Project No.: WBS# 35742.1.1

Sample Matrix: Solid

Client Sample ID: 222-2-2-4 Prism Sample ID: 0080167-02 Prism Work Order: 0080167 Time Collected: 08/04/10 08:30 Time Submitted: 08/05/10 18:05

General Chemistry Parameters % Solids	75.9	% by	0.100	0.100		*SM2540 G	8/11/10 14:45		P0H0272
			a,a,a-Trifluor	otoluene		94	1 %	55-129	
			Surrogate			Recov	very	Control	Limits
Gasoline Range Organics	BRL	mg/kg dry	6.3	0.82	50	*8015C	8/10/10 17:59) HPE	P0H0224
Gasoline Range Organics by GC/FID			2 · 2 · p · · o · · y ·				- <i>,</i> -		
			o-Terphenyl			98	3 %	49-124	
			Surrogate			Recov	very	Control	Limits
Diesel Range Organics	BRL	mg/kg dry	9.2	1.5	1	*8015C	8/13/10 18:1	5 JMV	P0H0282
Diesel Range Organics by GC/FID									
Parameter	Result	Units	Report Limit	MDL	Dilution Factor	Method	Analysis Date/Time	Analyst	Batch ID

08/24/2010

Solutions IES (NCDOT Project) Attn: Jody Overmyer 1101 Nowell Road Raleigh, NC 27607 Project: NCDOT Elizabeth City PSA's

- 222 Water St.

Project No.: WBS# 35742.1.1

Sample Matrix: Solid

Client Sample ID: 222-3-0-2 Prism Sample ID: 0080167-03 Prism Work Order: 0080167 Time Collected: 08/04/10 08:35 Time Submitted: 08/05/10 18:05

% Solids	76.7	% by Weight	0.100	0.100	1	*SM2540 G	8/11/10 14:45	JAB	P0H0272
General Chemistry Parameters			a,a,a-Trifluor	otoluene		93	3 %	55-129	
			Surrogate			Recov	/ery	Control	Limits
Gasoline Range Organics	BRL	mg/kg dry	7.1	0.92	50	*8015C	8/10/10 18:33	HPE	P0H0224
Gasoline Range Organics by GC/FID	1		o-Terphenyl			10	2 %	49-124	
			Surrogate			Recov	/ery	Control	Limits
Diesel Range Organics	BRL	mg/kg dry	9.1	1.5	1	*8015C	8/13/10 18:50) JMV	P0H0282
Diesel Range Organics by GC/FID									
Parameter	Result	Units	Report Limit	MDL	Dilution Factor	Method	Analysis Date/Time	Analyst	Batch ID

Solutions IES (NCDOT Project)
Attn: Jody Overmyer

1101 Nowell Road Raleigh, NC 27607 Project: NCDOT Elizabeth City PSA's

- 222 Water St.

Project No.: WBS# 35742.1.1 Sample Matrix: Water Client Sample ID: 222-3 Prism Sample ID: 0080167-04 Prism Work Order: 0080167 Time Collected: 08/04/10 09:00 Time Submitted: 08/05/10 18:05

Parameter	Result	Units	Report Limit	MDL	Dilution Factor	Method	Analysis A Date/Time	nalyst	Batch ID
Semivolatile Organic Compour	nds by GC/MS								
1,2,4-Trichlorobenzene	BRL	ug/L	10	2.2	1	8270D	8/12/10 23:50	CGP	P0H0259
1,2-Dichlorobenzene	BRL	ug/L	10	1.8	1	8270D	8/12/10 23:50	CGP	P0H0259
1,3-Dichlorobenzene	BRL	ug/L	10	1.8	1	8270D	8/12/10 23:50	CGP	P0H0259
1,4-Dichlorobenzene	BRL	ug/L	10	2.0	1	8270D	8/12/10 23:50	CGP	P0H0259
2,4,5-Trichlorophenol	BRL	ug/L	10	2.5	1	8270D	8/12/10 23:50	CGP	P0H0259
2,4,6-Trichlorophenol	BRL	ug/L	10	2.3	1	8270D	8/12/10 23:50	CGP	P0H0259
2,4-Dichlorophenol	BRL	ug/L	10	2.4	1	8270D	8/12/10 23:50	CGP	P0H0259
2,4-Dimethylphenol	BRL	ug/L	10	2.4	1	8270D	8/12/10 23:50	CGP	P0H0259
2,4-Dinitrophenol	BRL	ug/L	10	2.4	1	8270D	8/12/10 23:50	CGP	P0H0259
2,4-Dinitrotoluene	BRL	ug/L	10	0.95	1	8270D	8/12/10 23:50	CGP	P0H0259
2,6-Dinitrotoluene	BRL	ug/L	10	1.6	1	8270D	8/12/10 23:50	CGP	P0H0259
2-Chloronaphthalene	BRL	ug/L	10	2.3	1	8270D	8/12/10 23:50	CGP	P0H0259
2-Chlorophenol	BRL	ug/L	10	2.1	1	8270D	8/12/10 23:50	CGP	P0H0259
2-Methylnaphthalene	BRL	ug/L	10	2.6	1	8270D	8/12/10 23:50	CGP	P0H0259
2-Methylphenol	BRL	ug/L	10	2.4	1	8270D	8/12/10 23:50	CGP	P0H0259
2-Nitroaniline	BRL	ug/L	10	1.9	1	8270D	8/12/10 23:50	CGP	P0H0259
2-Nitrophenol	BRL	ug/L	10	2.5	1	8270D	8/12/10 23:50	CGP	P0H0259
3,3'-Dichlorobenzidine	BRL	ug/L	10	0.96	1	8270D	8/12/10 23:50	CGP	P0H0259
3/4-Methylphenol	BRL	ug/L	10	2.4	1	8270D	8/12/10 23:50	CGP	P0H0259
3-Nitroaniline	BRL	ug/L	10	1.3	1	8270D	8/12/10 23:50	CGP	P0H0259
4,6-Dinitro-2-methylphenol	BRL	ug/L	10	2.7	1	8270D	8/12/10 23:50	CGP	P0H0259
4-Bromophenyl phenyl ether	BRL	ug/L	10	1.8	1	8270D	8/12/10 23:50	CGP	P0H0259
4-Chloro-3-methylphenol	BRL	ug/L	10	2.3	1	8270D	8/12/10 23:50	CGP	P0H0259
4-Chloroaniline	BRL	ug/L	10	2.5	1	8270D	8/12/10 23:50	CGP	P0H0259
4-Chlorophenyl phenyl ether	BRL	ug/L	10	1.8	1	8270D	8/12/10 23:50	CGP	P0H0259
4-Nitroaniline	BRL	ug/L	10	0.91	1	8270D	8/12/10 23:50	CGP	P0H0259
4-Nitrophenol	BRL	ug/L	50	2.6	1	8270D	8/12/10 23:50	CGP	P0H0259
Acenaphthene	BRL	ug/L	10	2.1	1	8270D	8/12/10 23:50	CGP	P0H0259
Acenaphthylene	BRL	ug/L	10	2.2	1	8270D	8/12/10 23:50	CGP	P0H0259
Aniline	BRL	ug/L	10	2.2	1	8270D	8/12/10 23:50	CGP	P0H0259
Anthracene	BRL	ug/L	10	1.2	1	8270D	8/12/10 23:50	CGP	P0H0259
Azobenzene	BRL	ug/L	10	1.8	1	8270D	8/12/10 23:50	CGP	P0H0259
Benzo(a)anthracene	BRL	ug/L	10	0.95	1	8270D	8/12/10 23:50	CGP	P0H0259
Benzo(a)pyrene	BRL	ug/L	10	1.1	1	8270D	8/12/10 23:50	CGP	P0H0259
Benzo(b)fluoranthene	BRL	ug/L	10	1.4	1	8270D	8/12/10 23:50	CGP	P0H0259
Benzo(g,h,i)perylene	BRL	ug/L	10	2.1	1	8270D	8/12/10 23:50	CGP	P0H0259
Benzo(k)fluoranthene	BRL	ug/L	10	1.1	1	8270D	8/12/10 23:50	CGP	P0H0259
Benzoic Acid	BRL	ug/L	100	50	1	8270D	8/12/10 23:50	CGP	P0H0259
Benzyl alcohol	BRL	ug/L	10	2.1	1	8270D	8/12/10 23:50	CGP	P0H0259
bis(2-Chloroethoxy)methane	BRL	ug/L	10	2.2	1	8270D	8/12/10 23:50	CGP	P0H0259
Bis(2-Chloroethyl)ether	BRL	ug/L	10	1.9	1	8270D	8/12/10 23:50	CGP	P0H0259
Bis(2-chloroisopropyl)ether	BRL	ug/L	10	2.3	1	8270D	8/12/10 23:50	CGP	P0H0259

Raleigh, NC 27607

Project: NCDOT Elizabeth City PSA's

- 222 Water St.

Project No.: WBS# 35742.1.1 Sample Matrix: Water Client Sample ID: 222-3 Prism Sample ID: 0080167-04 Prism Work Order: 0080167 Time Collected: 08/04/10 09:00 Time Submitted: 08/05/10 18:05

Suly benzyl prihabalate BRL ugl. 10 1.5 1 82700 81210 23.50 CGP Poll-0256 Pol	Parameter	Result	Units	Report Limit	MDL	Dilution Factor	Method	Analysis Date/Time	Analyst	Batch ID
Second	Bis(2-Ethylhexyl)phthalate	BRL	ug/L	10	1.8	1	8270D	8/12/10 23:50	CGP	P0H0259
Denzero(a,h)anthracene	Butyl benzyl phthalate	BRL	ug/L	10	1.5	1	8270D	8/12/10 23:50	CGP	P0H0259
Disenzionarian BRL Ug/L 10 2.2 1 82700 8112/10 23.50 CGP P0H0259	Chrysene	BRL	ug/L	10	1.2	1	8270D	8/12/10 23:50	CGP	P0H0259
Delity phthalate BRI	Dibenzo(a,h)anthracene	BRL	ug/L	10	1.8	1	8270D	8/12/10 23:50	CGP	P0H0259
Simple	Dibenzofuran	BRL	ug/L	10	2.2	1	8270D	8/12/10 23:50	CGP	P0H0259
Secular Description Secular	Diethyl phthalate	BRL	ug/L	10	1.4	1	8270D	8/12/10 23:50	CGP	P0H0259
Final Part	Dimethyl phthalate	BRL	ug/L	10	1.6	1	8270D	8/12/10 23:50	CGP	P0H0259
Fluoranthene BRL ug/L 10 0,94 1 8270 81210 2350 CGP P0H0259 P0H0259 P0H0260 BRL ug/L 10 1,8 1 8270 81210 2350 CGP P0H0259 P0H0260 BRL ug/L 10 1,4 1 8270 81210 2350 CGP P0H0259 P0H0260 BRL ug/L 10 1,4 1 8270 81210 2350 CGP P0H0259 P0H0260 BRL ug/L 10 1,8 1 8270 81210 2350 CGP P0H0259 P0H0260 BRL ug/L 10 1,8 1 8270 81210 2350 CGP P0H0259 P0H0260 BRL ug/L 10 1,8 1 8270 81210 2350 CGP P0H0259 P0H0260 BRL ug/L 10 1,8 1 8270 81210 2350 CGP P0H0259 P0H0260 BRL ug/L 10 1,8 1 8270 81210 2350 CGP P0H0259 P0H0260 BRL ug/L 10 1,8 1 8270 81210 2350 CGP P0H0259 P0H0260 BRL ug/L 10 1,8 1 8270 81210 2350 CGP P0H0259 P0H0260 BRL ug/L 10 2,3 1 8270 81210 2350 CGP P0H0259 P0H0260 BRL ug/L 10 2,3 1 8270 81210 2350 CGP P0H0259 P0H0260 BRL ug/L 10 2,3 1 8270 81210 2350 CGP P0H0259 P0H0260 BRL ug/L 10 2,3 1 8270 81210 2350 CGP P0H0259 P0H0260 BRL ug/L 10 2,3 1 8270 81210 2350 CGP P0H0259 P0H0260 BRL ug/L 10 2,3 1 8270 81210 2350 CGP P0H0259 P0H0260 BRL ug/L 10 1,6 1 8270 81210 2350 CGP P0H0259 P0H0260 BRL ug/L 10 1,6 1 8270 81210 2350 CGP P0H0259 P0H0260 BRL ug/L ug/L 10 1,6 1 8270 81210 2350 CGP P0H0259 P0H0260 BRL ug/L 10 1,6 1 8270 81210 2350 CGP P0H0259 P0H0260 BRL ug/L 10 1,6 1 8270 81210 2350 CGP P0H0259 P0H0260 BRL ug/L ug/L 10 1,6 1 8270 81210 2350 CGP P0H0259 P0H0260 BRL ug/L ug/L 10 1,6 1 8270 81210 2350 CGP P0H0259 P0H0260 BRL ug/L ug/L 10 1,6 1 8270 81210 2350 CGP P0H0260 P0H0260 BRL ug/L ug/L 10 1,6 1 8270 81210 2350 CGP P0H0260 P0H0260 BRL ug/L ug/L 10 1,6 1 8270 81210 2350 CGP P0H0260 P0H0260 BRL ug/L ug/L 10 0 1,6 1 8270 81210 2350 CGP P0H0260 P0H0260 BRL ug/L ug/L ug/L 10 1,6 1 8270 81210 2350 CGP P0H0260 P0H0260 BRL ug/L ug/L ug/L ug/L ug/L ug/L ug/L ug/	Di-n-butyl phthalate	BRL	ug/L	10	1.8	1	8270D	8/12/10 23:50	CGP	P0H0259
Fluorene	Di-n-octyl phthalate	BRL	ug/L	10	1.9	1	8270D	8/12/10 23:50	CGP	P0H0259
Hexachlorobenzene	Fluoranthene	BRL	ug/L	10	0.94	1	8270D	8/12/10 23:50	CGP	P0H0259
Hexachlorobutadiene BRL ug/L 10 2.3 1 8270D 8/12/10 23:50 CGP P0H0259 elexachlorocyclopentadiene BRL ug/L 10 1.8 1 8270D 8/12/10 23:50 CGP P0H0259 elexachlorocyclopentadiene BRL ug/L 10 1.9 1 8270D 8/12/10 23:50 CGP P0H0259 sophorone BRL ug/L 10 1.6 1 8270D 8/12/10 23:50 CGP P0H0259 sophorone BRL ug/L 10 1.6 1 8270D 8/12/10 23:50 CGP P0H0259 sophorone BRL ug/L 10 2.3 1 8270D 8/12/10 23:50 CGP P0H0259 sophorone BRL ug/L 10 2.3 1 8270D 8/12/10 23:50 CGP P0H0259 sophorone BRL ug/L 10 2.3 1 8270D 8/12/10 23:50 CGP P0H0259 sophorone BRL ug/L 10 2.3 1 8270D 8/12/10 23:50 CGP P0H0259 sophorone BRL ug/L 10 2.3 1 8270D 8/12/10 23:50 CGP P0H0259 sophorone BRL ug/L 10 2.3 1 8270D 8/12/10 23:50 CGP P0H0259 sophorone BRL ug/L 10 10 2.3 1 8270D 8/12/10 23:50 CGP P0H0259 sophorone BRL ug/L 10 1.6 1 8270D 8/12/10 23:50 CGP P0H0259 sophorone BRL ug/L 10 1.6 1 8270D 8/12/10 23:50 CGP P0H0259 sophorone BRL ug/L 10 1.6 1 8270D 8/12/10 23:50 CGP P0H0259 sophorone BRL ug/L 10 1.6 1 8270D 8/12/10 23:50 CGP P0H0259 sophorone BRL ug/L 10 1.6 1 8270D 8/12/10 23:50 CGP P0H0259 sophorone BRL ug/L 10 1.2 1 8270D 8/12/10 23:50 CGP P0H0259 sophorone BRL ug/L 10 1.2 1 8270D 8/12/10 23:50 CGP P0H0259 sophorone BRL ug/L 10 1.2 1 8270D 8/12/10 23:50 CGP P0H0259 sophorone BRL ug/L 10 1.4 1 8270D 8/12/10 23:50 CGP P0H0259 sophorone BRL ug/L 10 1.4 1 8270D 8/12/10 23:50 CGP P0H0259 sophorone BRL ug/L 10 1.4 1 8270D 8/12/10 23:50 CGP P0H0259 sophorone BRL ug/L 10 0.015 1 8200B 8/11/10 23:1 KLA P0H0263 sophorone BRL ug/L 10 0.015 1 8200B 8/11/10 23:1 KLA P0H0263 sophorone BRL ug/L 10 0.071 1 8200B 8/11/10 23:1 KLA P0H0263 sophorone BRL ug/L 10 0.071 1 8200B 8/11/10 23:1 KLA P0H0263 sophorone BRL ug/L 10 0.076 1 8200B 8/11/10 23:1 KLA P0H0263 sophorone BRL ug/L 10 0.076 1 8200B 8/11/10 23:1 KLA P0H0263 sophorone BRL ug/L 10 0.076 1 8200B 8/11/10 23:1 KLA P0H0263 sophorone BRL ug/L 10 0.076 1 8200B 8/11/10 23:1 KLA P0H0263 sophorone BRL ug/L 10 0.076 1 8200B 8/11/10 23:1 KLA P0H0263 sophorone BRL ug/L 10 0.061 1 8200B 8/11/10 23:1 KLA P0H0263 sophoron	Fluorene	BRL	ug/L	10	1.8	1	8270D	8/12/10 23:50	CGP	P0H0259
BRL Ug/L 10 1.8 1 82700 8/12/10 23:50 CGP P0H0259 exachioroethane BRL Ug/L 10 1.9 1 82700 8/12/10 23:50 CGP P0H0259 exachioroethane BRL Ug/L 10 1.6 1 82700 8/12/10 23:50 CGP P0H0259 sophorone BRL Ug/L 10 2.4 1 82700 8/12/10 23:50 CGP P0H0259 Sophorone BRL Ug/L 10 2.3 1 82700 8/12/10 23:50 CGP P0H0259 Sophorone BRL Ug/L 10 2.3 1 82700 8/12/10 23:50 CGP P0H0259 Sophorone BRL Ug/L 10 2.3 1 82700 8/12/10 23:50 CGP P0H0259 Sophorone BRL Ug/L 10 2.3 1 82700 8/12/10 23:50 CGP P0H0259 Sophorone BRL Ug/L 10 2.3 1 82700 8/12/10 23:50 CGP P0H0259 Sophorone BRL Ug/L 10 1.6 1 82700 8/12/10 23:50 CGP P0H0259 Sophorone BRL Ug/L 10 1.6 1 82700 8/12/10 23:50 CGP P0H0259 Sophorone BRL Ug/L 10 1.6 1 82700 8/12/10 23:50 CGP P0H0259 Sophorone BRL Ug/L 10 1.6 1 82700 8/12/10 23:50 CGP P0H0259 Sophorone BRL Ug/L 10 1.2 1 82700 8/12/10 23:50 CGP P0H0259 Sophorone BRL Ug/L 10 1.4 1 82700 8/12/10 23:50 CGP P0H0259 Sophorone BRL Ug/L 10 1.4 1 82700 8/12/10 23:50 CGP P0H0259 Sophorone BRL Ug/L 10 1.4 1 82700 8/12/10 23:50 CGP P0H0259 Sophorone BRL Ug/L 10 0.05 1 82008 8/11/10 23:50 CGP P0H0259 Sophorone BRL Ug/L 1.0 0.05 1 82008 8/11/10 23:31 KLA P0H0263 Sophorone BRL Ug/L 1.0 0.063 1 82008 8/11/10 23:31 KLA P0H0263 Sophorone BRL Ug/L 1.0 0.07 1 82008 8/11/10 23:31 KLA P0H0263 Sophorone BRL Ug/L 1.0 0.07 1 82008 8/11/10 23:31 KLA P0H0263 Sophorone BRL Ug/L 1.0 0.061 1 82008 8/11/10 23:31 KLA P0H0263 Sophorone BRL Ug/L 1.0 0.061 1 82008 8/11/10 23:31 KLA P0H0263 Sophorone	Hexachlorobenzene	BRL	ug/L	10	1.4	1	8270D	8/12/10 23:50	CGP	P0H0259
BRL Ug/L 10 1.9 1 82700 812/10 23:50 CGP P0H0259	Hexachlorobutadiene	BRL	ug/L	10	2.3	1	8270D	8/12/10 23:50	CGP	P0H0259
ndeno(1,2,3-cd)pyrene BRL ug/L 10 1.6 1 8270D 8/12/10 23:50 GGP P0H0259 sophorone BRL ug/L 10 2.4 1 8270D 8/12/10 23:50 GGP P0H0259 Naphthalene BRL ug/L 10 2.3 1 8270D 8/12/10 23:50 GGP P0H0259 Naphthalene BRL ug/L 10 2.3 1 8270D 8/12/10 23:50 GGP P0H0259 Naphthalene BRL ug/L 10 2.3 1 8270D 8/12/10 23:50 GGP P0H0259 N-Nitroso-di-n-propylamine BRL ug/L 10 2.3 1 8270D 8/12/10 23:50 GGP P0H0259 N-Nitroso-di-n-propylamine BRL ug/L 10 1.6 1 8270D 8/12/10 23:50 GGP P0H0259 N-Nitrosodiphenylamine BRL ug/L 10 1.6 1 8270D 8/12/10 23:50 GGP P0H0259 N-Nitrosodiphenylamine BRL ug/L 10 1.6 1 8270D 8/12/10 23:50 GGP P0H0259 Pohenathirene BRL ug/L 10 1.6 1 8270D 8/12/10 23:50 GGP P0H0259 Pohenathirene BRL ug/L 10 1.2 1 8270D 8/12/10 23:50 GGP P0H0259 Pohenathirene BRL ug/L 10 1.2 1 8270D 8/12/10 23:50 GGP P0H0259 Pohenathirene BRL ug/L 10 1.4 1 8270D 8/12/10 23:50 GGP P0H0259 Pohenol BRL ug/L 10 1.4 1 8270D 8/12/10 23:50 GGP P0H0259 Pohenol BRL ug/L 10 1.4 1 8270D 8/12/10 23:50 GGP P0H0259 Pohenol BRL ug/L 10 1.4 1 8270D 8/12/10 23:50 GGP P0H0259 Pohenol BRL ug/L 10 1.4 1 8270D 8/12/10 23:50 GGP P0H0259 Pohenol BRL ug/L 10 1.4 1 8270D 8/12/10 23:50 GGP P0H0259 Pohenol BRL ug/L 10 1.4 1 8270D 8/12/10 23:50 GGP P0H0259 Pohenol BRL ug/L 10 0 0.6 1 8260B 8/11/10 23:50 GGP P0H0259 Pohenol BRL ug/L 10 0 0.6 1 8260B 8/11/10 23:31 KLA P0H0263 1.1,12-Tichloroethane BRL ug/L 10 0 0.6 1 8260B 8/11/10 23:31 KLA P0H0263 1.1,22-Tichloroethane BRL ug/L 10 0 0.6 1 8260B 8/11/10 23:31 KLA P0H0263 1.1,12-Tichloroethane BRL ug/L 10 0 0.6 1 8260B 8/11/10 23:31 KLA P0H0263 1.1,12-Tichloroethane BRL ug/L 10 0 0.6 1 8260B 8/11/10 23:31 KLA P0H0263 1.1,12-Tichloroethane BRL ug/L 10 0 0.6 1 8260B 8/11/10 23:31 KLA P0H0263 1.1,12-Tichloroethane BRL ug/L 10 0 0.6 1 8260B 8/11/10 23:31 KLA P0H0263 1.1,12-Tichloroethane BRL ug/L 10 0 0.6 1 8260B 8/11/10 23:31 KLA P0H0263 1.1,12-Tichloroethane BRL ug/L 10 0 0.6 1 8260B 8/11/10 23:31 KLA P0H0263 1.1,12-Tichloroethane BRL ug/L 10 0 0.6 1 8260B 8/11/10 23:31 KLA P0H0263 1.1,12-Tichloroethane BRL ug/L 20 0 0	Hexachlorocyclopentadiene	BRL	ug/L	10	1.8	1	8270D	8/12/10 23:50	CGP	P0H0259
sophorone BRL ug/L 10 2.4 1 8270D 8/12/10 23:50 GGP P0H0259 Naphthalene BRL ug/L 10 2.3 1 8270D 8/12/10 23:50 CGP P0H0259 Nalphthalene BRL ug/L 10 2.3 1 8270D 8/12/10 23:50 CGP P0H0259 Naltirosodijhenylamine BRL ug/L 10 2.3 1 8270D 8/12/10 23:50 CGP P0H0259 Penathtrene BRL ug/L 10 1.6 1 8270D 8/12/10 23:50 CGP P0H0259 Phenol BRL ug/L 10 1.2 1 8270D 8/12/10 23:50 CGP P0H0259 Phenol BRL ug/L 10 1.2 1 8270D 8/12/10 23:50 CGP P0H0259 Phenol BRL ug/L 10 1.4 8270D 8/12/10	Hexachloroethane	BRL	ug/L	10	1.9	1	8270D	8/12/10 23:50	CGP	P0H0259
Naphthalene BRL Ug/L 10 2.3 1 82700 81/2/10 23.50 CGP P0H0259 R10/20 P0H0259 BRL Ug/L 10 2.3 1 82700 81/2/10 23.50 CGP P0H0259 R10/20 P0H0259 BRL Ug/L 10 1.6 1 82700 81/2/10 23.50 CGP P0H0259 P0H0259 P0H0259 BRL Ug/L 10 1.6 1 82700 81/2/10 23.50 CGP P0H0259 P0H0	Indeno(1,2,3-cd)pyrene	BRL	ug/L	10	1.6	1	8270D	8/12/10 23:50	CGP	P0H0259
Nitrobenzene BRL ug/L 10 2.0 1 8270D 8/12/10 23:50 CGP P0H0259 N-Nitroso-di-n-propylamine BRL ug/L 10 2.3 1 8270D 8/12/10 23:50 CGP P0H0259 N-Nitroso-di-n-propylamine BRL ug/L 10 1.6 1 8270D 8/12/10 23:50 CGP P0H0259 Pentachlorophenol BRL ug/L 10 1.6 1 8270D 8/12/10 23:50 CGP P0H0259 Pentachlorophenol BRL ug/L 10 1.6 1 8270D 8/12/10 23:50 CGP P0H0259 Penenathrene BRL ug/L 10 1.6 1 8270D 8/12/10 23:50 CGP P0H0259 Penenathrene BRL ug/L 10 1.6 1 8270D 8/12/10 23:50 CGP P0H0259 Penenathrene BRL ug/L 10 1.4 1 8270D 8/12/10 23:50 CGP P0H0259 Poyrene BRL ug/L 10 1.4 1 8270D 8/12/10 23:50 CGP P0H0259 Poyrene BRL Ug/L 10 1.4 1 8270D 8/12/10 23:50 CGP P0H0259 Poyrene BRL Ug/L 10 1.4 1 8270D 8/12/10 23:50 CGP P0H0259 Poyrene BRL Ug/L 10 1.4 1 8270D 8/12/10 23:50 CGP P0H0259 Poyrene BRL Ug/L 10 1.4 1 8270D 8/12/10 23:50 CGP P0H0259 Poyrene BRL Ug/L 10 1.4 1 8270D 8/12/10 23:50 CGP P0H0259 Poyrene BRL Ug/L 10 1.4 1 8270D 8/12/10 23:50 CGP P0H0259 Poyrene BRL Ug/L 1.0 0.063 1 8260B 8/11/10 23:31 KLA P0H0263 I,1,1-Trichloroethane BRL Ug/L 1.0 0.063 1 8260B 8/11/10 23:31 KLA P0H0263 I,1,2-Trichloroethane BRL Ug/L 1.0 0.071 1 8260B 8/11/10 23:31 KLA P0H0263 I,1,1-Dichloroethane BRL Ug/L 1.0 0.066 1 8260B 8/11/10 23:31 KLA P0H0263 I,1,1-Dichloroethane BRL Ug/L 1.0 0.066 1 8260B 8/11/10 23:31 KLA P0H0263 I,1,1-Dichloroethane BRL Ug/L 1.0 0.071 1 8260B 8/11/10 23:31 KLA P0H0263 I,1,1-Dichloroethane BRL Ug/L 1.0 0.066 1 8260B 8/11/10 23:31 KLA P0H0263 I,1,1-Dichloroethane BRL Ug/L 1.0 0.066 1 8260B 8/11/10 23:31 KLA P0H0263 I,1,1-Dichloroethane BRL Ug/L 1.0 0.066 1 8260B 8/11/10 23:31 KLA P0H0263 I,1,1-Dichloroethyne BRL Ug/L 1.0 0.066 1 8260B 8/11/10 23:31 KLA P0H0263 I,1,2-Trichloroethane BRL Ug/L 1.0 0.066 1 8260B 8/11/10 23:31 KLA P0H0263 I,1,2-Trichloroethane BRL Ug/L 1.0 0.066 1 8260B 8/11/10 23:31 KLA P0H0263 I,1,2-Trichloroethyne BRL Ug/L 1.0 0.066 1 8260B 8/11/10 23:31 KLA P0H0263 I,2,3-Trichloroethyne BRL Ug/L 1.0 0.066 1 8260B 8/11/10 23:31 KLA P0H0263 I,2,3-Trichloroethyne BRL Ug/L 1.0 0.066 1 8260B 8/11/10 23:31 KLA P0	Isophorone	BRL	ug/L	10	2.4	1	8270D	8/12/10 23:50	CGP	P0H0259
N-Nitroso-di-n-propylamine BRL ug/L 10 2.3 1 8270D 8/12/10 23:50 CGP P0H0259 N-Nitrosodiphenylamine BRL ug/L 10 1.6 1 8270D 8/12/10 23:50 CGP P0H0259 N-Nitrosodiphenylamine BRL ug/L 10 1.6 1 8270D 8/12/10 23:50 CGP P0H0259 Pentanthrene BRL ug/L 10 1.2 1 8270D 8/12/10 23:50 CGP P0H0259 Phenol BRL ug/L 10 1.2 1 8270D 8/12/10 23:50 CGP P0H0259 Pyrene BRL ug/L 10 1.2 1 8270D 8/12/10 23:50 CGP P0H0259 Pyrene BRL ug/L 10 1.2 1 8270D 8/12/10 23:50 CGP P0H0259 Pyrene BRL ug/L 10 1.2 1 8270D 8/12/10 23:50 CGP P0H0259 Pyrene BRL ug/L 10 1.2 1 8270D 8/12/10 23:50 CGP P0H0259 Pyrene BRL ug/L 10 1.2 1 8270D 8/12/10 23:50 CGP P0H0259 Phenol-d5 5 % 26-139 Phenol-d5 5 % 34-102 Phenol-d5 5 % 34-102 Phenol-d5 53 % 34-102 Phenol-d5 53 % 34-102 Phenol-d5 76 % 31-165 Volatile Organic Compounds by GC/MS I.1,1,2-Tetrachloroethane BRL ug/L 1.0 0.15 1 8260B 8/11/10 23:31 KLA P0H0263 I.1,1,2-Trichloroethane BRL ug/L 1.0 0.071 1 8260B 8/11/10 23:31 KLA P0H0263 I.1,1,2-Trichloroethane BRL ug/L 1.0 0.071 1 8260B 8/11/10 23:31 KLA P0H0263 I.1,1,2-Trichloroethane BRL ug/L 1.0 0.076 1 8260B 8/11/10 23:31 KLA P0H0263 I.1,1-Erichloroethane BRL ug/L 1.0 0.076 1 8260B 8/11/10 23:31 KLA P0H0263 I.1,1-Erichloroethane BRL ug/L 1.0 0.076 1 8260B 8/11/10 23:31 KLA P0H0263 I.1,1-Erichloroethane BRL ug/L 1.0 0.076 1 8260B 8/11/10 23:31 KLA P0H0263 I.1,1-Erichloroethane BRL ug/L 1.0 0.076 1 8260B 8/11/10 23:31 KLA P0H0263 I.1,1-Erichloroethane BRL ug/L 1.0 0.076 1 8260B 8/11/10 23:31 KLA P0H0263 I.1,1-Erichloroethane BRL ug/L 1.0 0.076 1 8260B 8/11/10 23:31 KLA P0H0263 I.1,1-Erichloroethylene BRL ug/L 1.0 0.076 1 8260B 8/11/10 23:31 KLA P0H0263 I.1,2-Trichloroethylene BRL ug/L 1.0 0.076 1 8260B 8/11/10 23:31 KLA P0H0263 I.2,3-Trichloroethylene BRL ug/L 1.0 0.076 1 8260B 8/11/10 23:31 KLA P0H0263 I.2,3-Trichloroethylene BRL ug/L 1.0 0.076 1 8260B 8/11/10 23:31 KLA P0H0263	Naphthalene	BRL	ug/L	10	2.3	1	8270D	8/12/10 23:50	CGP	P0H0259
N-Nitrosodiphenylamine BRL ug/L 10 1.6 1 8270D 8/12/10 23:50 CGP POH0259 Pentachlorophenol BRL ug/L 10 1.6 1 8270D 8/12/10 23:50 CGP POH0259 Pentachlorophenol BRL ug/L 10 1.2 1 8270D 8/12/10 23:50 CGP POH0259 Pentachlorophenol BRL ug/L 10 2.2 1 8270D 8/12/10 23:50 CGP POH0259 Pyrene BRL ug/L 10 1.4 1 8270D 8/12/10 23:50 CGP POH0259 Pyrene BRL ug/L 10 1.4 1 8270D 8/12/10 23:50 CGP POH0259 Pyrene BRL ug/L 10 1.4 1 8270D 8/12/10 23:50 CGP POH0259 Pyrene BRL ug/L 10 1.4 1 8270D 8/12/10 23:50 CGP POH0259 Pyrene BRL ug/L 10 1.4 1 8270D 8/12/10 23:50 CGP POH0259 Pyrene BRL ug/L 10 1.4 1 8270D 8/12/10 23:50 CGP POH0259 Pyrene BRL ug/L 1.0 0.015 1 8260B 8/11/10 23:31 KLA POH0263 1,1,1-Trichloroethane BRL ug/L 1.0 0.053 1 8260B 8/11/10 23:31 KLA POH0263 1,1,1-Trichloroethane BRL ug/L 1.0 0.071 1 8260B 8/11/10 23:31 KLA POH0263 1,1,1-Trichloroethane BRL ug/L 1.0 0.071 1 8260B 8/11/10 23:31 KLA POH0263 1,1,1-Trichloroethane BRL ug/L 1.0 0.071 1 8260B 8/11/10 23:31 KLA POH0263 1,1,1-Trichloroethane BRL ug/L 1.0 0.076 1 8260B 8/11/10 23:31 KLA POH0263 1,1,1-Trichloroethane BRL ug/L 1.0 0.076 1 8260B 8/11/10 23:31 KLA POH0263 1,1,1-Trichloroethane BRL ug/L 1.0 0.076 1 8260B 8/11/10 23:31 KLA POH0263 1,1,1-Trichloroethane BRL ug/L 1.0 0.076 1 8260B 8/11/10 23:31 KLA POH0263 1,1,1-Trichloroethane BRL ug/L 1.0 0.076 1 8260B 8/11/10 23:31 KLA POH0263 1,1,1-Trichloroethylene BRL ug/L 1.0 0.076 1 8260B 8/11/10 23:31 KLA POH0263 1,1,1-Trichloroethylene BRL ug/L 1.0 0.076 1 8260B 8/11/10 23:31 KLA POH0263 1,1,1-Trichloroethylene BRL ug/L 1.0 0.076 1 8260B 8/11/10 23:31 KLA POH0263 1,1,1-Trichloroethylene BRL ug/L 1.0 0.076 1 8260B 8/11/10 23:31 KLA POH0263 1,1,1-Trichloroethylene BRL ug/L 1.0 0.076 1 8260B 8/11/10 23:31 KLA POH0263 1,1,2-Trichloroethylene BRL ug/L 1.0 0.0861 1 8260B 8/11/10 23:31 KLA POH0263 1,2,3-Trichloroethane BRL ug/L 1.0 0.0861 1 8260B 8/11/10 23:31 KLA POH0263 1,2,3-Trichloroethane BRL ug/L 1.0 0.0861 1 8260B 8/11/10 23:31 KLA POH0263	Nitrobenzene	BRL	ug/L	10	2.0	1	8270D	8/12/10 23:50	CGP	P0H0259
Pentachlorophenol BRL ug/L 10 1.6 1 8270D 8/12/10 23:50 CGP POH0259 Phenonlhrene BRL ug/L 10 1.2 1 8270D 8/12/10 23:50 CGP POH0259 Phenol BRL ug/L 10 2.2 1 8270D 8/12/10 23:50 CGP POH0259 Pyrene BRL ug/L 10 1.4 1 8270D 8/12/10 23:50 CGP POH0259 Pyrene BRL ug/L 10 1.4 1 8270D 8/12/10 23:50 CGP POH0259 Pyrene BRL ug/L 10 1.4 1 8270D 8/12/10 23:50 CGP POH0259 Pyrene BRL ug/L 10 1.4 1 8270D 8/12/10 23:50 CGP POH0259 Pyrene BRL Ug/L 10 1.4 1 8270D 8/12/10 23:50 CGP POH0259 Pyrene BRL Ug/L 10 1.4 1 8270D 8/12/10 23:50 CGP POH0259 Phenol-Bread Bread Br	N-Nitroso-di-n-propylamine	BRL	ug/L	10	2.3	1	8270D	8/12/10 23:50	CGP	P0H0259
Phenol Phenol BRL Ug/L 10 1.2 1 82700 8/12/10 23:50 CGP POH0259 Poyrene BRL Ug/L 10 2.2 1 82700 8/12/10 23:50 CGP POH0259 Poyrene BRL Ug/L 10 1.4 1 82700 8/12/10 23:50 CGP POH0259 Poyrene BRL Ug/L 10 1.4 1 82700 8/12/10 23:50 CGP POH0259 Poyrene BRL Ug/L 10 1.4 1 82700 8/12/10 23:50 CGP POH0259 Poyrene BRL Ug/L 10 1.4 1 82700 8/12/10 23:50 CGP POH0259 Poyrene BRL Ug/L 10 1.4 1 82700 8/12/10 23:50 CGP POH0259 Poyrene BRL Ug/L 10 1.4 1 82700 8/12/10 23:50 CGP POH0259 Poyrene BRL Ug/L 10 1.4 1 82700 8/12/10 23:50 CGP POH0259 Poyrene BRL Ug/L 10 0.1 1 82608 8/11/10 23:31 KLA POH0263 L1,1,1-Trichloroethane BRL Ug/L 1.0 0.063 1 82608 8/11/10 23:31 KLA POH0263 L1,1,2-Tetrachloroethane BRL Ug/L 1.0 0.071 1 82608 8/11/10 23:31 KLA POH0263 L1,1,2-Trichloroethane BRL Ug/L 1.0 0.096 1 82608 8/11/10 23:31 KLA POH0263 L1,1-Trichloroethane BRL Ug/L 1.0 0.096 1 82608 8/11/10 23:31 KLA POH0263 L1,1-Trichloroethane BRL Ug/L 1.0 0.096 1 82608 8/11/10 23:31 KLA POH0263 L1,1-Dichloroethane BRL Ug/L 1.0 0.078 1 82608 8/11/10 23:31 KLA POH0263 L1,1-Dichloroethylene BRL Ug/L 1.0 0.078 1 82608 8/11/10 23:31 KLA POH0263 L1,1-Dichloroethylene BRL Ug/L 1.0 0.078 1 82608 8/11/10 23:31 KLA POH0263 L1,1-Dichloroethylene BRL Ug/L 1.0 0.078 1 82608 8/11/10 23:31 KLA POH0263 L1,1-Dichloroethylene BRL Ug/L 1.0 0.078 1 82608 8/11/10 23:31 KLA POH0263 L1,1-Dichloroethylene BRL Ug/L 1.0 0.078 1 82608 8/11/10 23:31 KLA POH0263 L1,1-Dichloroethylene BRL Ug/L 1.0 0.078 1 82608 8/11/10 23:31 KLA POH0263 L1,1-Dichloroethylene BRL Ug/L 1.0 0.078 1 82608 8/11/10 23:31 KLA POH0263 L1,1-Dichloroethylene BRL Ug/L 1.0 0.078 1 82608 8/11/10 23:31 KLA POH0263 L1,1-Dichloroethylene BRL Ug/L 1.0 0.078 1 82608 8/11/10 23:31 KLA POH0263 L1,2-Trichloroethylene BRL Ug/L 1.0 0.081 1 82608 8/11/10 23:31 KLA POH0263	N-Nitrosodiphenylamine	BRL	ug/L	10	1.6	1	8270D	8/12/10 23:50	CGP	P0H0259
Phenol BRL ug/L 10 2.2 1 82700 8/12/10 23:50 CGP POHO259 Pyrene BRL ug/L 10 1.4 1 82700 8/12/10 23:50 CGP POHO259 Pyrene BRL ug/L 10 1.4 1 82700 8/12/10 23:50 CGP POHO259 Pyrene BRL ug/L 10 1.4 1 82700 8/12/10 23:50 CGP POHO259 Pyrene BRL ug/L 10 1.4 1 82700 8/12/10 23:50 CGP POHO259 Pyrene BRL ug/L 1.0 0.15 1 82608 8/11/10 23:31 KLA POHO263 1,1,1,2-Tetrachloroethane BRL ug/L 1.0 0.071 1 82608 8/11/10 23:31 KLA POHO263 1,1,2-Tichloroethane BRL ug/L 1.0 0.096 1 82608 8/11/10 23:31 KLA POHO263 1,1,1-Tolichloroethane BRL ug/L 1.0 0.096 1 82608 8/11/10 23:31 KLA POHO263 1,1,1-Tolichloroethane BRL ug/L 1.0 0.096 1 82608 8/11/10 23:31 KLA POHO263 1,1,1-Dichloroethane BRL ug/L 1.0 0.096 1 82608 8/11/10 23:31 KLA POHO263 1,1-Dichloroethane BRL ug/L 1.0 0.096 1 82608 8/11/10 23:31 KLA POHO263 1,1-Dichloroethane BRL ug/L 1.0 0.096 1 82608 8/11/10 23:31 KLA POHO263 1,1-Dichloroethane BRL ug/L 1.0 0.096 1 82608 8/11/10 23:31 KLA POHO263 1,1-Dichloroethane BRL ug/L 1.0 0.096 1 82608 8/11/10 23:31 KLA POHO263 1,1-Dichloroethylene BRL ug/L 1.0 0.096 1 82608 8/11/10 23:31 KLA POHO263 1,1-Dichloroethylene BRL ug/L 1.0 0.096 1 82608 8/11/10 23:31 KLA POHO263 1,1-Dichloropropylene BRL ug/L 1.0 0.0078 1 82608 8/11/10 23:31 KLA POHO263 1,1-Dichloropropylene BRL ug/L 1.0 0.0078 1 82608 8/11/10 23:31 KLA POHO263 1,1-Dichloropropylene BRL ug/L 1.0 0.0061 1 82608 8/11/10 23:31 KLA POHO263 1,1-Dichloropropylene BRL ug/L 1.0 0.0078 1 82608 8/11/10 23:31 KLA POHO263 1,1-Dichloropropylene BRL ug/L 1.0 0.0061 1 82608 8/11/10 23:31 KLA POHO263 1,2-Trichloropropylene BRL ug/L 1.0 0.0078 1 82608 8/11/10 23:31 KLA POHO263	Pentachlorophenol	BRL	ug/L	10	1.6	1	8270D	8/12/10 23:50	CGP	P0H0259
Pyrene BRL ug/L 10 1.4 1 82700 8/12/10 23:50 CGP POH0259 Surrogate Recovery Control Limits	Phenanthrene	BRL	ug/L	10	1.2	1	8270D	8/12/10 23:50	CGP	P0H0259
Surrogate Recovery Control Limits Surrogate Recovery Control Limits	Phenol	BRL	ug/L	10	2.2	1	8270D	8/12/10 23:50	CGP	P0H0259
2,4,6-Tribromophenol 65 % 26-139	Pyrene	BRL	ug/L	10	1.4	1	8270D	8/12/10 23:50	CGP	P0H0259
2-Fluorobipheny 57 % 41-112				Surrogate			Reco	very	Control I	Limits
2-Fluorophenol 24 % 10-48 Nitrobenzene-d5 53 % 34-102				2,4,6-Tribro	mophenol		65	5 %	26-139	
Nitrobenzene-d5 53 % 34-102 Phenol-d5 12 % 10-34 Terphenyl-d14 76 % 31-165 Volatile Organic Compounds by GC/MS 1,1,1,2-Tetrachloroethane BRL ug/L 1.0 0.15 1 8260B 8/11/10 23:31 KLA P0H0263 1,1,1-Trichloroethane BRL ug/L 1.0 0.071 1 8260B 8/11/10 23:31 KLA P0H0263 1,1,2-Tetrachloroethane BRL ug/L 1.0 0.071 1 8260B 8/11/10 23:31 KLA P0H0263 1,1,2-Trichloroethane BRL ug/L 1.0 0.071 1 8260B 8/11/10 23:31 KLA P0H0263 1,1,2-Trichloroethane BRL ug/L 1.0 0.071 1 8260B 8/11/10 23:31 KLA P0H0263 1,1,2-Trichloroethane BRL ug/L 1.0 0.096 1 8260B 8/11/10 23:31 KLA P0H0263 1,1-Dichloroethylene BRL ug/L 1.0 0.078 1 8260B 8/11/10 23:31 KLA P0H0263 1,1-Dichloroethylene BRL ug/L 1.0 0.061 1 8260B 8/11/10 23:31 KLA P0H0263 1,1-Dichloropropylene BRL ug/L 1.0 0.061 1 8260B 8/11/10 23:31 KLA P0H0263 1,2,3-Trichlorobenzene BRL ug/L 2.0 0.20 1 8260B 8/11/10 23:31 KLA P0H0263 1,2,3-Trichloropropynee BRL ug/L 1.0 0.081 1 8260B 8/11/10 23:31 KLA P0H0263				2-Fluorobiph	nenyl		57	7 %	41-112	
Phenol-d5 Terphenyl-d14 76 % 31-165 Volatile Organic Compounds by GC/MS 1,1,1,2-Tetrachloroethane BRL ug/L 1.0 0.15 1 82608 8/11/10 23:31 KLA P0H0263 1,1,1-Trichloroethane BRL ug/L 1.0 0.063 1 82608 8/11/10 23:31 KLA P0H0263 1,1,2,2-Tetrachloroethane BRL ug/L 1.0 0.071 1 82608 8/11/10 23:31 KLA P0H0263 1,1,2-Trichloroethane BRL ug/L 1.0 0.071 1 82608 8/11/10 23:31 KLA P0H0263 1,1,2-Trichloroethane BRL ug/L 1.0 0.17 1 82608 8/11/10 23:31 KLA P0H0263 1,1-Dichloroethane BRL ug/L 1.0 0.096 1 82608 8/11/10 23:31 KLA P0H0263 1,1-Dichloroethylene BRL ug/L 1.0 0.078 1 82608 8/11/10 23:31 KLA P0H0263 1,1-Dichloroethylene BRL ug/L 1.0 0.078 1 82608 8/11/10 23:31 KLA P0H0263 1,1-Dichloropropylene BRL ug/L 1.0 0.061 1 82608 8/11/10 23:31 KLA P0H0263 1,2,3-Trichlorobenzene BRL ug/L 2.0 0.20 1 82608 8/11/10 23:31 KLA P0H0263 1,2,3-Trichloropropylene BRL ug/L 1.0 0.081 1 82608 8/11/10 23:31 KLA P0H0263				2-Fluorophe	nol		24	1 %	10-48	
Terphenyl-d14 76 % 31-165 Volatile Organic Compounds by GC/MS Section 1,1,1,2-Tetrachloroethane BRL ug/L 1.0 0.15 1 82608 8/11/10 23:31 KLA P0H0263 1,1,1-Trichloroethane BRL ug/L 1.0 0.063 1 82608 8/11/10 23:31 KLA P0H0263 1,1,2-Tetrachloroethane BRL ug/L 1.0 0.071 1 82608 8/11/10 23:31 KLA P0H0263 1,1,2-Trichloroethane BRL ug/L 1.0 0.17 1 82608 8/11/10 23:31 KLA P0H0263 1,1,2-Trichloroethane BRL ug/L 1.0 0.096 1 82608 8/11/10 23:31 KLA P0H0263 1,1-Dichloroethane BRL ug/L 1.0 0.096 1 82608 8/11/10 23:31 KLA P0H0263 1,1-Dichloroethylene BRL ug/L 1.0 0.078 1 82608 8/11/10 23:31 KLA P0H0263 1,2,3-Trichloropropylene BRL ug/L 1.0 0.061 1 82608 8/11/10 23:31 KLA P0H0263 1,2,3-Trichloropropane BRL ug/L 1.0 0.081 1 82608 8/11/10 23:31 KLA P0H0263 1,2,3-Trichloropropane BRL ug/L 1.0 0.081 1 82608 8/11/10 23:31 KLA P0H0263 1,2,3-Trichloropropane BRL ug/L 1.0 0.081 1 82608 8/11/10 23:31 KLA P0H0263 1,2,3-Trichloropropane BRL ug/L 1.0 0.081 1 82608 8/11/10 23:31 KLA P0H0263 1,2,3-Trichloropropane BRL ug/L 1.0 0.081 1 82608 8/11/10 23:31 KLA P0H0263 1,2,3-Trichloropropane BRL ug/L 1.0 0.081 1 82608 8/11/10 23:31 KLA P0H0263 1,2,3-Trichloropropane BRL ug/L 1.0 0.081 1 82608 8/11/10 23:31 KLA P0H0263 1,2,3-Trichloropropane BRL ug/L 1.0 0.081 1 82608 8/11/10 23:31 KLA P0H0263 1,2,3-Trichloropropane BRL ug/L 1.0 0.081 1 82608 8/11/10 23:31 KLA P0H0263 1,2,3-Trichloropropane BRL ug/L 1.0 0.081 1 82608 8/11/10 23:31 KLA P0H0263 1,2,3-Trichloropropane BRL ug/L 1.0 0.081 1 82608 8/11/10 23:31 KLA P0H0263 1,2,3-Trichloropropane BRL ug/L 1.0 0.081 1 82608 8/11/10 23:31 KLA P0H0263 1,2,3-Trich				Nitrobenzen	e-d5		53	3 %	34-102	
Volatile Organic Compounds by GC/MS 1,1,1,2-Tetrachloroethane BRL Ug/L 1.0 0.015 1 8260B 8/11/10 23:31 KLA P0H0263 1,1,1-Trichloroethane BRL Ug/L 1.0 0.063 1 8260B 8/11/10 23:31 KLA P0H0263 1,1,2-Tetrachloroethane BRL Ug/L 1.0 0.071 1 8260B 8/11/10 23:31 KLA P0H0263 1,1,2-Trichloroethane BRL Ug/L 1.0 0.17 1 8260B 8/11/10 23:31 KLA P0H0263 1,1-Dichloroethane BRL Ug/L 1.0 0.096 1 8260B 8/11/10 23:31 KLA P0H0263 1,1-Dichloroethane BRL Ug/L 1.0 0.096 1 8260B 8/11/10 23:31 KLA P0H0263 1,1-Dichloroethylene BRL Ug/L 1.0 0.078 1 8260B 8/11/10 23:31 KLA P0H0263 1,1-Dichloropropylene BRL Ug/L 1.0 0.061 1 8260B 8/11/10 23:31 KLA P0H0263 1,2,3-Trichlorobenzene BRL Ug/L 1.0 0.081 1 8260B 8/11/10 23:31 KLA P0H0263 1,2,3-Trichloropropane BRL Ug/L 1.0 0.081 1 8260B 8/11/10 23:31 KLA P0H0263				Phenol-d5			12	2 %	10-34	
1,1,1,2-Tetrachloroethane BRL ug/L 1.0 0.15 1 8260B 8/11/10 23:31 KLA P0H0263 1,1,1-Trichloroethane BRL ug/L 1.0 0.063 1 8260B 8/11/10 23:31 KLA P0H0263 1,1,2,2-Tetrachloroethane BRL ug/L 1.0 0.071 1 8260B 8/11/10 23:31 KLA P0H0263 1,1,2-Trichloroethane BRL ug/L 1.0 0.17 1 8260B 8/11/10 23:31 KLA P0H0263 1,1,2-Trichloroethane BRL ug/L 1.0 0.071 1 8260B 8/11/10 23:31 KLA P0H0263 1,1-Dichloroethane BRL ug/L 1.0 0.096 1 8260B 8/11/10 23:31 KLA P0H0263 1,1-Dichloroethylene BRL ug/L 1.0 0.078 1 8260B 8/11/10 23:31 KLA P0H0263 1,1-Dichloropropylene BRL ug/L 1.0 0.061 1 8260B 8/11/10 23:31 KLA P0H0263 1,2,3-Trichlorobenzene BRL ug/L 1.0 0.081 1 8260B 8/11/10 23:31 KLA P0H0263 1,2,3-Trichloropropane BRL ug/L 1.0 0.081 1 8260B 8/11/10 23:31 KLA P0H0263 1,2,3-Trichloropropane				Terphenyl-d	14		76	5 %	31-165	
1,1,1-Trichloroethane BRL ug/L 1.0 0.063 1 8260B 8/11/10 23:31 KLA P0H0263 1,1,2-Tetrachloroethane BRL ug/L 1.0 0.071 1 8260B 8/11/10 23:31 KLA P0H0263 1,1,2-Trichloroethane BRL ug/L 1.0 0.17 1 8260B 8/11/10 23:31 KLA P0H0263 1,1-Dichloroethane BRL ug/L 1.0 0.096 1 8260B 8/11/10 23:31 KLA P0H0263 1,1-Dichloroethylene BRL ug/L 1.0 0.078 1 8260B 8/11/10 23:31 KLA P0H0263 1,1-Dichloroethylene BRL ug/L 1.0 0.078 1 8260B 8/11/10 23:31 KLA P0H0263 1,1-Dichloropropylene BRL ug/L 1.0 0.061 1 8260B 8/11/10 23:31 KLA P0H0263 1,2,3-Trichlorobenzene BRL ug/L 2.0 0.20 1 8260B 8/11/10 23:31 KLA P0H0263 1,2,3-Trichloropropane BRL ug/L 1.0 0.081 1 8260B 8/11/10 23:31 KLA P0H0263 1,2,3-Trichloropropane	Volatile Organic Compounds b	y GC/MS								
1,1,2,2-Tetrachloroethane BRL ug/L 1.0 0.071 1 8260B 8/11/10 23:31 KLA P0H0263 1,1,2-Trichloroethane BRL ug/L 1.0 0.17 1 8260B 8/11/10 23:31 KLA P0H0263 1,1-Dichloroethane BRL ug/L 1.0 0.096 1 8260B 8/11/10 23:31 KLA P0H0263 1,1-Dichloroethylene BRL ug/L 1.0 0.078 1 8260B 8/11/10 23:31 KLA P0H0263 1,1-Dichloropropylene BRL ug/L 1.0 0.061 1 8260B 8/11/10 23:31 KLA P0H0263 1,2,3-Trichlorobenzene BRL ug/L 2.0 0.20 1 8260B 8/11/10 23:31 KLA P0H0263 1,2,3-Trichloropropylene BRL ug/L 1.0 0.081 1 8260B 8/11/10 23:31 KLA P0H0263 1,2,3-Trichloropropane BRL ug/L 1.0 0.081 1 8260B 8/11/10 23:31 KLA P0H0263 1,2,3-Trichloropropane	1,1,1,2-Tetrachloroethane	BRL	ug/L	1.0	0.15	1	8260B	8/11/10 23:31	KLA	P0H0263
1,1,2-Trichloroethane BRL ug/L 1.0 0.17 1 8260B 8/11/10 23:31 KLA P0H0263 1,1-Dichloroethane BRL ug/L 1.0 0.096 1 8260B 8/11/10 23:31 KLA P0H0263 1,1-Dichloroethylene BRL ug/L 1.0 0.078 1 8260B 8/11/10 23:31 KLA P0H0263 1,1-Dichloropropylene BRL ug/L 1.0 0.061 1 8260B 8/11/10 23:31 KLA P0H0263 1,2,3-Trichlorobenzene BRL ug/L 2.0 0.20 1 8260B 8/11/10 23:31 KLA P0H0263 1,2,3-Trichloropropane BRL ug/L 1.0 0.081 1 8260B 8/11/10 23:31 KLA P0H0263 1,2,3-Trichloropropane	1,1,1-Trichloroethane	BRL	ug/L	1.0	0.063	1	8260B	8/11/10 23:31	KLA	P0H0263
1,1-Dichloroethane BRL ug/L 1.0 0.096 1 8260B 8/11/10 23:31 KLA P0H0263 1,1-Dichloroethylene BRL ug/L 1.0 0.078 1 8260B 8/11/10 23:31 KLA P0H0263 1,1-Dichloropropylene BRL ug/L 1.0 0.061 1 8260B 8/11/10 23:31 KLA P0H0263 1,2,3-Trichlorobenzene BRL ug/L 2.0 0.20 1 8260B 8/11/10 23:31 KLA P0H0263 1,2,3-Trichloropropane BRL ug/L 1.0 0.081 1 8260B 8/11/10 23:31 KLA P0H0263 1,2,3-Trichloropropane	1,1,2,2-Tetrachloroethane	BRL	ug/L	1.0	0.071	1	8260B	8/11/10 23:31	KLA	P0H0263
1,1-Dichloroethylene BRL ug/L 1.0 0.078 1 8260B 8/11/10 23:31 KLA P0H0263 1,1-Dichloropropylene BRL ug/L 1.0 0.061 1 8260B 8/11/10 23:31 KLA P0H0263 1,2,3-Trichlorobenzene BRL ug/L 2.0 0.20 1 8260B 8/11/10 23:31 KLA P0H0263 1,2,3-Trichloropropane BRL ug/L 1.0 0.081 1 8260B 8/11/10 23:31 KLA P0H0263	1,1,2-Trichloroethane	BRL	ug/L	1.0	0.17	1	8260B	8/11/10 23:31	KLA	P0H0263
1,1-Dichloropropylene BRL ug/L 1.0 0.061 1 8260B 8/11/10 23:31 KLA P0H0263 1,2,3-Trichloropropane BRL ug/L 2.0 0.20 1 8260B 8/11/10 23:31 KLA P0H0263 1,2,3-Trichloropropane BRL ug/L 1.0 0.081 1 8260B 8/11/10 23:31 KLA P0H0263	1,1-Dichloroethane	BRL	ug/L	1.0	0.096	1	8260B	8/11/10 23:31	KLA	P0H0263
1,2,3-Trichlorobenzene BRL ug/L 2.0 0.20 1 8260B 8/11/10 23:31 KLA P0H0263 1,2,3-Trichloropropane BRL ug/L 1.0 0.081 1 8260B 8/11/10 23:31 KLA P0H0263	1,1-Dichloroethylene	BRL	ug/L	1.0	0.078	1	8260B	8/11/10 23:31	KLA	P0H0263
1,2,3-Trichloropropane BRL ug/L 1.0 0.081 1 8260B 8/11/10 23:31 KLA P0H0263	1,1-Dichloropropylene	BRL	ug/L	1.0	0.061	1	8260B	8/11/10 23:31	KLA	P0H0263
	1,2,3-Trichlorobenzene	BRL	ug/L	2.0	0.20	1	8260B	8/11/10 23:31	KLA	P0H0263
	1,2,3-Trichloropropane	BRL		1.0	0.081	1	8260B	8/11/10 23:31	KLA	P0H0263
	1,2,4-Trichlorobenzene	BRL	ug/L		0.10	1	8260B			P0H0263

08/24/2010

Solutions IES (NCDOT Project)

Attn: Jody Overmyer 1101 Nowell Road Raleigh, NC 27607 Project: NCDOT Elizabeth City PSA's

- 222 Water St.

Project No.: WBS# 35742.1.1 Sample Matrix: Water Client Sample ID: 222-3 Prism Sample ID: 0080167-04 Prism Work Order: 0080167 Time Collected: 08/04/10 09:00 Time Submitted: 08/05/10 18:05

Parameter	Result	Units	Report Limit	MDL	Dilution Factor	Method	Analysis Anal Date/Time	yst Batch ID
1,2,4-Trimethylbenzene	BRL	ug/L	1.0	0.048	1	8260B	8/11/10 23:31 K	_A P0H0263
1,2-Dibromo-3-chloropropane	BRL	ug/L	2.0	0.59	1	8260B	8/11/10 23:31 K	_A P0H0263
1,2-Dibromoethane	BRL	ug/L	1.0	0.14	1	8260B	8/11/10 23:31 K	_A P0H0263
1,2-Dichlorobenzene	BRL	ug/L	1.0	0.076	1	8260B	8/11/10 23:31 K	_A P0H0263
1,2-Dichloroethane	BRL	ug/L	1.0	0.14	1	8260B	8/11/10 23:31 K	_A P0H0263
1,2-Dichloropropane	BRL	ug/L	1.0	0.13	1	8260B	8/11/10 23:31 K	_A P0H0263
1,3,5-Trimethylbenzene	BRL	ug/L	1.0	0.057	1	8260B	8/11/10 23:31 K	_A P0H0263
1,3-Dichlorobenzene	BRL	ug/L	1.0	0.074	1	8260B	8/11/10 23:31 K	_A P0H0263
1,3-Dichloropropane	BRL	ug/L	1.0	0.11	1	8260B	8/11/10 23:31 K	_A P0H0263
1,4-Dichlorobenzene	BRL	ug/L	1.0	0.068	1	8260B	8/11/10 23:31 K	_A P0H0263
2,2-Dichloropropane	BRL	ug/L	2.0	0.11	1	8260B	8/11/10 23:31 K	_A P0H0263
2-Chloroethyl Vinyl Ether	BRL	ug/L	2.0	0.22	1	8260B	8/11/10 23:31 K	_A P0H0263
2-Chlorotoluene	BRL	ug/L	1.0	0.038	1	8260B	8/11/10 23:31 K	_A P0H0263
4-Chlorotoluene	BRL	ug/L	1.0	0.053	1	8260B	8/11/10 23:31 K	_A P0H0263
4-Isopropyltoluene	BRL	ug/L	1.0	0.065	1	8260B	8/11/10 23:31 K	_A P0H0263
Acetone	BRL	ug/L	10	0.62	1	8260B	8/11/10 23:31 K	_A P0H0263
Acrolein	BRL	ug/L	100	1.1	1	8260B	8/11/10 23:31 K	_A P0H0263
Acrylonitrile	BRL	ug/L	100	0.86	1	8260B	8/11/10 23:31 K	_A P0H0263
Benzene	BRL	ug/L	1.0	0.072	1	8260B	8/11/10 23:31 K	_A P0H0263
Bromobenzene	BRL	ug/L	1.0	0.064	1	8260B	8/11/10 23:31 K	_A P0H0263
Bromochloromethane	BRL	ug/L	1.0	0.13	1	8260B	8/11/10 23:31 K	_A P0H0263
Bromodichloromethane	BRL	ug/L	1.0	0.062	1	8260B	8/11/10 23:31 K	_A P0H0263
Bromoform	BRL	ug/L	1.0	0.27	1	8260B	8/11/10 23:31 K	_A P0H0263
Bromomethane	BRL	ug/L	3.0	0.47	1	8260B	8/11/10 23:31 K	_A P0H0263
Carbon disulfide	BRL	ug/L	5.0	1.4	1	8260B	8/11/10 23:31 K	_A P0H0263
Carbon Tetrachloride	BRL	ug/L	2.0	0.12	1	8260B	8/11/10 23:31 K	_A P0H0263
Chlorobenzene	BRL	ug/L	1.0	0.061	1	8260B	8/11/10 23:31 K	_A P0H0263
Chloroethane	BRL	ug/L	5.0	0.13	1	8260B	8/11/10 23:31 K	_A P0H0263
Chloroform	BRL	ug/L	1.0	0.089	1	8260B	8/11/10 23:31 K	_A P0H0263
Chloromethane	BRL	ug/L	2.0	0.11	1	8260B	8/11/10 23:31 K	_A P0H0263
cis-1,2-Dichloroethylene	BRL	ug/L	1.0	0.076	1	8260B	8/11/10 23:31 K	_A P0H0263
cis-1,3-Dichloropropylene	BRL	ug/L	1.0	0.10	1	8260B	8/11/10 23:31 K	_A P0H0263
Dibromochloromethane	BRL	ug/L	1.0	0.30	1	8260B	8/11/10 23:31 K	_A P0H0263
Dibromomethane	BRL	ug/L	1.0	0.13	1	8260B	8/11/10 23:31 K	_A P0H0263
Dichlorodifluoromethane	BRL	ug/L	2.0	0.11	1	8260B	8/11/10 23:31 K	_A P0H0263
Ethylbenzene	BRL	ug/L	1.0	0.067	1	8260B	8/11/10 23:31 K	_A P0H0263
Hexachlorobutadiene	BRL	ug/L	2.0	0.36	1	8260B	8/11/10 23:31 K	_A P0H0263
Isopropyl Ether	BRL	ug/L	1.0	0.043	1	8260B	8/11/10 23:31 K	_A P0H0263
Isopropylbenzene (Cumene)	BRL	ug/L	1.0	0.072	1	8260B	8/11/10 23:31 K	_A P0H0263
m,p-Xylenes	BRL	ug/L	2.0	0.081	1	8260B		_A P0H0263
Methyl Butyl Ketone (2-Hexanone)	BRL	ug/L	5.0	0.19	1	8260B		_A P0H0263
Methyl Ethyl Ketone (2-Butanone)	BRL	ug/L	5.0	0.90	1	8260B		_A P0H0263
Methyl Isobutyl Ketone	BRL	ug/L	5.0	0.12	1	8260B		_A P0H0263

Project: NCDOT Elizabeth City PSA's

- 222 Water St.

Project No.: WBS# 35742.1.1 Sample Matrix: Water Client Sample ID: 222-3 Prism Sample ID: 0080167-04 Prism Work Order: 0080167 Time Collected: 08/04/10 09:00 Time Submitted: 08/05/10 18:05

Parameter	Result	Units	Report Limit	MDL	Dilution Factor	Method	Analysis A Date/Time	Analyst	Batch ID
Methylene Chloride	BRL	ug/L	2.0	0.44	1	8260B	8/11/10 23:31	KLA	P0H0263
Methyl-tert-Butyl Ether	BRL	ug/L	1.0	0.070	1	8260B	8/11/10 23:31	KLA	P0H0263
Naphthalene	BRL	ug/L	1.0	0.098	1	8260B	8/11/10 23:31	KLA	P0H0263
n-Butylbenzene	BRL	ug/L	1.0	0.11	1	8260B	8/11/10 23:31	KLA	P0H0263
n-Propylbenzene	BRL	ug/L	1.0	0.060	1	8260B	8/11/10 23:31	KLA	P0H0263
o-Xylene	BRL	ug/L	1.0	0.046	1	8260B	8/11/10 23:31	KLA	P0H0263
sec-Butylbenzene	BRL	ug/L	1.0	0.087	1	8260B	8/11/10 23:31	KLA	P0H0263
Styrene	BRL	ug/L	1.0	0.047	1	8260B	8/11/10 23:31	KLA	P0H0263
tert-Butylbenzene	BRL	ug/L	1.0	0.080	1	8260B	8/11/10 23:31	KLA	P0H0263
Tetrachloroethylene	BRL	ug/L	1.0	0.069	1	8260B	8/11/10 23:31	KLA	P0H0263
Toluene	BRL	ug/L	1.0	0.042	1	8260B	8/11/10 23:31	KLA	P0H0263
trans-1,2-Dichloroethylene	BRL	ug/L	2.0	0.12	1	8260B	8/11/10 23:31	KLA	P0H0263
trans-1,3-Dichloropropylene	BRL	ug/L	1.0	0.043	1	8260B	8/11/10 23:31	KLA	P0H0263
Trichloroethylene	BRL	ug/L	2.0	0.054	1	8260B	8/11/10 23:31	KLA	P0H0263
Trichlorofluoromethane	BRL	ug/L	2.0	0.088	1	8260B	8/11/10 23:31	KLA	P0H0263
Vinyl acetate	BRL	ug/L	20	0.10	1	8260B	8/11/10 23:31	KLA	P0H0263
Vinyl chloride	BRL	ug/L	2.0	0.16	1	8260B	8/11/10 23:31	KLA	P0H0263
			Surrogate			Recov	very	Control	Limits

Raleigh, NC 27607

Project: NCDOT Elizabeth City PSA's

- 222 Water St.

Project No.: WBS# 35742.1.1 Sample Matrix: Water Client Sample ID: 601-1 Prism Sample ID: 0080167-05 Prism Work Order: 0080167 Time Collected: 08/04/10 07:40 Time Submitted: 08/05/10 18:05

Parameter	Result	Units	Report Limit	MDL	Dilution Factor	Method	Analysis Date/Time	Analyst	Batch ID
Semivolatile Organic Compoun	ds by GC/MS								
1,2,4-Trichlorobenzene	BRL	ug/L	10	2.2	1	8270D	8/13/10 0:20	CGP	P0H0259
1,2-Dichlorobenzene	BRL	ug/L	10	1.8	1	8270D	8/13/10 0:20	CGP	P0H0259
1,3-Dichlorobenzene	BRL	ug/L	10	1.8	1	8270D	8/13/10 0:20	CGP	P0H0259
1,4-Dichlorobenzene	BRL	ug/L	10	2.0	1	8270D	8/13/10 0:20	CGP	P0H0259
2,4,5-Trichlorophenol	BRL	ug/L	10	2.5	1	8270D	8/13/10 0:20	CGP	P0H0259
2,4,6-Trichlorophenol	BRL	ug/L	10	2.3	1	8270D	8/13/10 0:20	CGP	P0H0259
2,4-Dichlorophenol	BRL	ug/L	10	2.4	1	8270D	8/13/10 0:20	CGP	P0H0259
2,4-Dimethylphenol	BRL	ug/L	10	2.4	1	8270D	8/13/10 0:20	CGP	P0H0259
2,4-Dinitrophenol	BRL	ug/L	10	2.4	1	8270D	8/13/10 0:20	CGP	P0H0259
2,4-Dinitrotoluene	BRL	ug/L	10	0.95	1	8270D	8/13/10 0:20	CGP	P0H0259
2,6-Dinitrotoluene	BRL	ug/L	10	1.6	1	8270D	8/13/10 0:20	CGP	P0H0259
2-Chloronaphthalene	BRL	ug/L	10	2.3	1	8270D	8/13/10 0:20	CGP	P0H0259
2-Chlorophenol	BRL	ug/L	10	2.1	1	8270D	8/13/10 0:20	CGP	P0H0259
2-Methylnaphthalene	BRL	ug/L	10	2.6	1	8270D	8/13/10 0:20	CGP	P0H0259
2-Methylphenol	BRL	ug/L	10	2.4	1	8270D	8/13/10 0:20	CGP	P0H0259
2-Nitroaniline	BRL	ug/L	10	1.9	1	8270D	8/13/10 0:20	CGP	P0H0259
2-Nitrophenol	BRL	ug/L	10	2.5	1	8270D	8/13/10 0:20	CGP	P0H0259
3,3'-Dichlorobenzidine	BRL	ug/L	10	0.96	1	8270D	8/13/10 0:20	CGP	P0H0259
3/4-Methylphenol	BRL	ug/L	10	2.4	1	8270D	8/13/10 0:20	CGP	P0H0259
3-Nitroaniline	BRL	ug/L	10	1.3	1	8270D	8/13/10 0:20	CGP	P0H0259
4,6-Dinitro-2-methylphenol	BRL	ug/L	10	2.7	1	8270D	8/13/10 0:20	CGP	P0H0259
4-Bromophenyl phenyl ether	BRL	ug/L	10	1.8	1	8270D	8/13/10 0:20	CGP	P0H0259
4-Chloro-3-methylphenol	BRL	ug/L	10	2.3	1	8270D	8/13/10 0:20	CGP	P0H0259
4-Chloroaniline	BRL	ug/L	10	2.5	1	8270D	8/13/10 0:20	CGP	P0H0259
4-Chlorophenyl phenyl ether	BRL	ug/L	10	1.8	1	8270D	8/13/10 0:20	CGP	P0H0259
4-Nitroaniline	BRL	ug/L	10	0.91	1	8270D	8/13/10 0:20	CGP	P0H0259
4-Nitrophenol	BRL	ug/L	50	2.6	1	8270D	8/13/10 0:20	CGP	P0H0259
Acenaphthene	BRL	ug/L	10	2.1	1	8270D	8/13/10 0:20	CGP	P0H0259
Acenaphthylene	BRL	ug/L	10	2.2	1	8270D	8/13/10 0:20	CGP	P0H0259
Aniline	BRL	ug/L	10	2.2	1	8270D	8/13/10 0:20	CGP	P0H0259
Anthracene	BRL	ug/L	10	1.2	1	8270D	8/13/10 0:20	CGP	P0H0259
Azobenzene	BRL	ug/L	10	1.8	1	8270D	8/13/10 0:20	CGP	P0H0259
Benzo(a)anthracene	BRL	ug/L	10	0.95	1	8270D	8/13/10 0:20	CGP	P0H0259
Benzo(a)pyrene	BRL	ug/L	10	1.1	1	8270D	8/13/10 0:20	CGP	P0H0259
Benzo(b)fluoranthene	BRL	ug/L	10	1.4	1	8270D	8/13/10 0:20		P0H0259
Benzo(g,h,i)perylene	BRL	ug/L	10	2.1	1	8270D	8/13/10 0:20		P0H0259
Benzo(k)fluoranthene	BRL	ug/L	10	1.1	1	8270D	8/13/10 0:20		P0H0259
Benzoic Acid	BRL	ug/L	100	50	1	8270D	8/13/10 0:20		P0H0259
Benzyl alcohol	BRL	ug/L	10	2.1	1	8270D	8/13/10 0:20		P0H0259
bis(2-Chloroethoxy)methane	BRL	ug/L	10	2.2	1	8270D	8/13/10 0:20		P0H0259
Bis(2-Chloroethyl)ether	BRL	ug/L	10	1.9	1	8270D	8/13/10 0:20		P0H0259
Bis(2-chloroisopropyl)ether	BRL	ug/L	10	2.3	1	8270D	8/13/10 0:20		P0H0259

08/24/2010

Solutions IES (NCDOT Project) Attn: Jody Overmyer 1101 Nowell Road Raleigh, NC 27607 Project: NCDOT Elizabeth City PSA's

- 222 Water St.

Project No.: WBS# 35742.1.1 Sample Matrix: Water Client Sample ID: 601-1 Prism Sample ID: 0080167-05 Prism Work Order: 0080167 Time Collected: 08/04/10 07:40 Time Submitted: 08/05/10 18:05

Parameter	Result	Units	Report Limit	MDL	Dilution Factor	Method	Analysis Date/Time	Analyst	Batch ID
Bis(2-Ethylhexyl)phthalate	BRL	ug/L	10	1.8	1	8270D	8/13/10 0:20	CGP	P0H0259
Butyl benzyl phthalate	BRL	ug/L	10	1.5	1	8270D	8/13/10 0:20	CGP	P0H0259
Chrysene	BRL	ug/L	10	1.2	1	8270D	8/13/10 0:20	CGP	P0H0259
Dibenzo(a,h)anthracene	BRL	ug/L	10	1.8	1	8270D	8/13/10 0:20	CGP	P0H0259
Dibenzofuran	BRL	ug/L	10	2.2	1	8270D	8/13/10 0:20	CGP	P0H0259
Diethyl phthalate	BRL	ug/L	10	1.4	1	8270D	8/13/10 0:20	CGP	P0H0259
Dimethyl phthalate	BRL	ug/L	10	1.6	1	8270D	8/13/10 0:20	CGP	P0H0259
Di-n-butyl phthalate	BRL	ug/L	10	1.8	1	8270D	8/13/10 0:20	CGP	P0H0259
Di-n-octyl phthalate	BRL	ug/L	10	1.9	1	8270D	8/13/10 0:20	CGP	P0H0259
Fluoranthene	BRL	ug/L	10	0.94	1	8270D	8/13/10 0:20	CGP	P0H0259
Fluorene	BRL	ug/L	10	1.8	1	8270D	8/13/10 0:20	CGP	P0H0259
Hexachlorobenzene	BRL	ug/L	10	1.4	1	8270D	8/13/10 0:20	CGP	P0H0259
Hexachlorobutadiene	BRL	ug/L	10	2.3	1	8270D	8/13/10 0:20	CGP	P0H0259
Hexachlorocyclopentadiene	BRL	ug/L	10	1.8	1	8270D	8/13/10 0:20	CGP	P0H0259
Hexachloroethane	BRL	ug/L	10	1.9	1	8270D	8/13/10 0:20	CGP	P0H0259
Indeno(1,2,3-cd)pyrene	BRL	ug/L	10	1.6	1	8270D	8/13/10 0:20	CGP	P0H0259
Isophorone	BRL	ug/L	10	2.4	1	8270D	8/13/10 0:20	CGP	P0H0259
Naphthalene	BRL	ug/L	10	2.3	1	8270D	8/13/10 0:20	CGP	P0H0259
Nitrobenzene	BRL	ug/L	10	2.0	1	8270D	8/13/10 0:20		P0H0259
N-Nitroso-di-n-propylamine	BRL	ug/L	10	2.3	1	8270D	8/13/10 0:20		P0H0259
N-Nitrosodiphenylamine	BRL	ug/L	10	1.6	1	8270D	8/13/10 0:20		P0H0259
Pentachlorophenol	BRL	ug/L	10	1.6	1	8270D	8/13/10 0:20		P0H0259
Phenanthrene	BRL	ug/L	10	1.2	1	8270D	8/13/10 0:20		P0H0259
Phenol	BRL	ug/L	10	2.2	1	8270D	8/13/10 0:20		P0H0259
Pyrene	BRL	ug/L	10	1.4	1	8270D	8/13/10 0:20		P0H0259
,			Surrogate			Recov		Control	
			2,4,6-Tribror	mophenol		26	5 %	26-139	
			2-Fluorobiph	•			3 %	41-112	
			2-Fluorophe	•			%	10-48	SR
			Nitrobenzen				0 %	34-102	
			Phenol-d5	0 40			0 %	10-34	SR
			Terphenyl-d	14			3 %	31-165	
Volatile Organic Compounds by (GC/MS								
1,1,1,2-Tetrachloroethane	BRL	ug/L	1.0	0.15	1	8260B	8/12/10 0:10) KLA	P0H0263
1,1,1-Trichloroethane	BRL	ug/L	1.0	0.13	1	8260B	8/12/10 0:10		P0H0263
1,1,2,2-Tetrachloroethane	BRL	ug/L	1.0	0.003	1	8260B	8/12/10 0:10		P0H0263
1,1,2-Trichloroethane	BRL	ug/L	1.0	0.071	1	8260B	8/12/10 0:10		P0H0263
1,1-Dichloroethane	BRL	ug/L	1.0	0.17	1	8260B	8/12/10 0:10		P0H0263
1,1-Dichloroethylene	BRL	ug/L	1.0	0.090	1	8260B	8/12/10 0:10		P0H0263
•	BRL								P0H0263
1,1-Dichloropropylene	BRL	ug/L	1.0	0.061	1	8260B	8/12/10 0:10		P0H0263
1,2,3-Trichlorobenzene	BRL	ug/L	2.0	0.20	1	8260B	8/12/10 0:10		
1,2,3-Trichloropropane		ug/L	1.0	0.081	1	8260B	8/12/10 0:10		P0H0263
1,2,4-Trichlorobenzene	BRL	ug/L	1.0	0.10	1	8260B	8/12/10 0:10) KLA	P0H0263

Solutions IES (NCDOT Project) Attn: Jody Overmyer

1101 Nowell Road Raleigh, NC 27607 Project: NCDOT Elizabeth City PSA's

- 222 Water St.

Project No.: WBS# 35742.1.1 Sample Matrix: Water Client Sample ID: 601-1 Prism Sample ID: 0080167-05 Prism Work Order: 0080167 Time Collected: 08/04/10 07:40 Time Submitted: 08/05/10 18:05

Parameter	Result	Units	Report Limit	MDL	Dilution Factor	Method	Analysis Date/Time	Analyst	Batch ID
1,2,4-Trimethylbenzene	1.3	ug/L	1.0	0.048	1	8260B	8/12/10 0:10	KLA	P0H0263
1,2-Dibromo-3-chloropropane	BRL	ug/L	2.0	0.59	1	8260B	8/12/10 0:10	KLA	P0H0263
1,2-Dibromoethane	BRL	ug/L	1.0	0.14	1	8260B	8/12/10 0:10	KLA	P0H0263
1,2-Dichlorobenzene	BRL	ug/L	1.0	0.076	1	8260B	8/12/10 0:10	KLA	P0H0263
1,2-Dichloroethane	BRL	ug/L	1.0	0.14	1	8260B	8/12/10 0:10	KLA	P0H0263
1,2-Dichloropropane	BRL	ug/L	1.0	0.13	1	8260B	8/12/10 0:10	KLA	P0H0263
1,3,5-Trimethylbenzene	2.8	ug/L	1.0	0.057	1	8260B	8/12/10 0:10	KLA	P0H0263
1,3-Dichlorobenzene	BRL	ug/L	1.0	0.074	1	8260B	8/12/10 0:10	KLA	P0H0263
1,3-Dichloropropane	BRL	ug/L	1.0	0.11	1	8260B	8/12/10 0:10	KLA	P0H0263
1,4-Dichlorobenzene	BRL	ug/L	1.0	0.068	1	8260B	8/12/10 0:10	KLA	P0H0263
2,2-Dichloropropane	BRL	ug/L	2.0	0.11	1	8260B	8/12/10 0:10	KLA	P0H0263
2-Chloroethyl Vinyl Ether	BRL	ug/L	2.0	0.22	1	8260B	8/12/10 0:10	KLA	P0H0263
2-Chlorotoluene	BRL	ug/L	1.0	0.038	1	8260B	8/12/10 0:10	KLA	P0H0263
4-Chlorotoluene	BRL	ug/L	1.0	0.053	1	8260B	8/12/10 0:10	KLA	P0H0263
4-Isopropyltoluene	BRL	ug/L	1.0	0.065	1	8260B	8/12/10 0:10	KLA	P0H0263
Acetone	BRL	ug/L	10	0.62	1	8260B	8/12/10 0:10	KLA	P0H0263
Acrolein	BRL	ug/L	100	1.1	1	8260B	8/12/10 0:10	KLA	P0H0263
Acrylonitrile	BRL	ug/L	100	0.86	1	8260B	8/12/10 0:10	KLA	P0H0263
Benzene	BRL	ug/L	1.0	0.072	1	8260B	8/12/10 0:10	KLA	P0H0263
Bromobenzene	BRL	ug/L	1.0	0.064	1	8260B	8/12/10 0:10	KLA	P0H0263
Bromochloromethane	BRL	ug/L	1.0	0.13	1	8260B	8/12/10 0:10	KLA	P0H0263
Bromodichloromethane	BRL	ug/L	1.0	0.062	1	8260B	8/12/10 0:10	KLA	P0H0263
Bromoform	BRL	ug/L	1.0	0.27	1	8260B	8/12/10 0:10	KLA	P0H0263
Bromomethane	BRL	ug/L	3.0	0.47	1	8260B	8/12/10 0:10	KLA	P0H0263
Carbon disulfide	BRL	ug/L	5.0	1.4	1	8260B	8/12/10 0:10	KLA	P0H0263
Carbon Tetrachloride	BRL	ug/L	2.0	0.12	1	8260B	8/12/10 0:10	KLA	P0H0263
Chlorobenzene	BRL	ug/L	1.0	0.061	1	8260B	8/12/10 0:10	KLA	P0H0263
Chloroethane	BRL	ug/L	5.0	0.13	1	8260B	8/12/10 0:10	KLA	P0H0263
Chloroform	BRL	ug/L	1.0	0.089	1	8260B	8/12/10 0:10	KLA	P0H0263
Chloromethane	BRL	ug/L	2.0	0.11	1	8260B	8/12/10 0:10	KLA	P0H0263
cis-1,2-Dichloroethylene	BRL	ug/L	1.0	0.076	1	8260B	8/12/10 0:10	KLA	P0H0263
cis-1,3-Dichloropropylene	BRL	ug/L	1.0	0.10	1	8260B	8/12/10 0:10	KLA	P0H0263
Dibromochloromethane	BRL	ug/L	1.0	0.30	1	8260B	8/12/10 0:10	KLA	P0H0263
Dibromomethane	BRL	ug/L	1.0	0.13	1	8260B	8/12/10 0:10		P0H0263
Dichlorodifluoromethane	BRL	ug/L	2.0	0.11	1	8260B	8/12/10 0:10		P0H0263
Ethylbenzene	BRL	ug/L	1.0	0.067	1	8260B	8/12/10 0:10	KLA	P0H0263
Hexachlorobutadiene	BRL	ug/L	2.0	0.36	1	8260B	8/12/10 0:10		P0H0263
Isopropyl Ether	BRL	ug/L	1.0	0.043	1	8260B	8/12/10 0:10		P0H0263
Isopropylbenzene (Cumene)	BRL	ug/L	1.0	0.072	1	8260B	8/12/10 0:10		P0H0263
m,p-Xylenes	BRL	ug/L	2.0	0.081	1	8260B	8/12/10 0:10		P0H0263
Methyl Butyl Ketone (2-Hexanone)	BRL	ug/L	5.0	0.19	1	8260B	8/12/10 0:10		P0H0263
Methyl Ethyl Ketone (2-Butanone)	BRL	ug/L	5.0	0.90	1	8260B	8/12/10 0:10		P0H0263
Methyl Isobutyl Ketone	BRL	ug/L	5.0	0.12	1	8260B	8/12/10 0:10		P0H0263

Project: NCDOT Elizabeth City PSA's

- 222 Water St.

Project No.: WBS# 35742.1.1 Sample Matrix: Water Client Sample ID: 601-1 Prism Sample ID: 0080167-05 Prism Work Order: 0080167 Time Collected: 08/04/10 07:40 Time Submitted: 08/05/10 18:05

102 %

98 %

75-129

77-123

Parameter	Result	Units	Report Limit	MDL	Dilution Factor	Method	Analysis Date/Time	Analyst	Batch ID	
Methylene Chloride	BRL	ug/L	2.0	0.44	1	8260B	8/12/10 0:1	0 KLA	P0H0263	
Methyl-tert-Butyl Ether	1.3	ug/L	1.0	0.070	1	8260B	8/12/10 0:1	0 KLA	P0H0263	
Naphthalene	0.77 J	ug/L	1.0	0.098	1	8260B	8/12/10 0:1	0 KLA	P0H0263	
n-Butylbenzene	BRL	ug/L	1.0	0.11	1	8260B	8/12/10 0:1	0 KLA	P0H0263	
n-Propylbenzene	BRL	ug/L	1.0	0.060	1	8260B	8/12/10 0:1	0 KLA	P0H0263	
o-Xylene	0.62 J	ug/L	1.0	0.046	1	8260B	8/12/10 0:1	0 KLA	P0H0263	
sec-Butylbenzene	BRL	ug/L	1.0	0.087	1	8260B	8/12/10 0:1	0 KLA	P0H0263	
Styrene	BRL	ug/L	1.0	0.047	1	8260B	8/12/10 0:1	0 KLA	P0H0263	
tert-Butylbenzene	BRL	ug/L	1.0	0.080	1	8260B	8/12/10 0:1	0 KLA	P0H0263	
Tetrachloroethylene	BRL	ug/L	1.0	0.069	1	8260B	8/12/10 0:1	0 KLA	P0H0263	
Toluene	BRL	ug/L	1.0	0.042	1	8260B	8/12/10 0:1	0 KLA	P0H0263	
trans-1,2-Dichloroethylene	BRL	ug/L	2.0	0.12	1	8260B	8/12/10 0:1	0 KLA	P0H0263	
trans-1,3-Dichloropropylene	BRL	ug/L	1.0	0.043	1	8260B	8/12/10 0:1	0 KLA	P0H0263	
Trichloroethylene	BRL	ug/L	2.0	0.054	1	8260B	8/12/10 0:1	0 KLA	P0H0263	
Trichlorofluoromethane	BRL	ug/L	2.0	0.088	1	8260B	8/12/10 0:1	0 KLA	P0H0263	
Vinyl acetate	BRL	ug/L	20	0.10	1	8260B	8/12/10 0:1	0 KLA	P0H0263	
Vinyl chloride	BRL	ug/L	2.0	0.16	1	8260B	8/12/10 0:1	0 KLA	P0H0263	
			Surrogate			Recov	very	Control	Control Limits	
			4-Bromofluc	orobenzene)	101 %			80-124	

Dibromofluoromethane

Toluene-d8

Raleigh, NC 27607

Project: NCDOT Elizabeth City PSA's

- 222 Water St.

Project No.: WBS# 35742.1.1 Sample Matrix: Water Client Sample ID: 229-2 Prism Sample ID: 0080167-06 Prism Work Order: 0080167 Time Collected: 08/04/10 08:10 Time Submitted: 08/05/10 18:05

Parameter	Result	Units	Report Limit	MDL	Dilution Factor	Method	Analysis Date/Time	Analyst	Batch ID
Semivolatile Organic Compoun	nds by GC/MS								
1,2,4-Trichlorobenzene	BRL	ug/L	10	2.2	1	8270D	8/13/10 0:50) CGP	P0H0259
1,2-Dichlorobenzene	BRL	ug/L	10	1.8	1	8270D	8/13/10 0:50	CGP	P0H0259
1,3-Dichlorobenzene	BRL	ug/L	10	1.8	1	8270D	8/13/10 0:50) CGP	P0H0259
1,4-Dichlorobenzene	BRL	ug/L	10	2.0	1	8270D	8/13/10 0:50) CGP	P0H0259
2,4,5-Trichlorophenol	BRL	ug/L	10	2.5	1	8270D	8/13/10 0:50) CGP	P0H0259
2,4,6-Trichlorophenol	BRL	ug/L	10	2.3	1	8270D	8/13/10 0:50) CGP	P0H0259
2,4-Dichlorophenol	BRL	ug/L	10	2.4	1	8270D	8/13/10 0:50) CGP	P0H0259
2,4-Dimethylphenol	BRL	ug/L	10	2.4	1	8270D	8/13/10 0:50) CGP	P0H0259
2,4-Dinitrophenol	BRL	ug/L	10	2.4	1	8270D	8/13/10 0:50) CGP	P0H0259
2,4-Dinitrotoluene	BRL	ug/L	10	0.95	1	8270D	8/13/10 0:50) CGP	P0H0259
2,6-Dinitrotoluene	BRL	ug/L	10	1.6	1	8270D	8/13/10 0:50) CGP	P0H0259
2-Chloronaphthalene	BRL	ug/L	10	2.3	1	8270D	8/13/10 0:50) CGP	P0H0259
2-Chlorophenol	BRL	ug/L	10	2.1	1	8270D	8/13/10 0:50) CGP	P0H0259
2-Methylnaphthalene	BRL	ug/L	10	2.6	1	8270D	8/13/10 0:50		P0H0259
2-Methylphenol	BRL	ug/L	10	2.4	1	8270D	8/13/10 0:50		P0H0259
2-Nitroaniline	BRL	ug/L	10	1.9	1	8270D	8/13/10 0:50		P0H0259
2-Nitrophenol	BRL	ug/L	10	2.5	1	8270D	8/13/10 0:50		P0H0259
3,3'-Dichlorobenzidine	BRL	ug/L	10	0.96	1	8270D	8/13/10 0:50		P0H0259
3/4-Methylphenol	BRL	ug/L	10	2.4	1	8270D	8/13/10 0:50		P0H0259
3-Nitroaniline	BRL	ug/L	10	1.3	1	8270D	8/13/10 0:50		P0H0259
4,6-Dinitro-2-methylphenol	BRL	ug/L	10	2.7	1	8270D	8/13/10 0:50		P0H0259
4-Bromophenyl phenyl ether	BRL	ug/L	10	1.8	1	8270D	8/13/10 0:50		P0H0259
4-Chloro-3-methylphenol	BRL	ug/L	10	2.3	1	8270D	8/13/10 0:50		P0H0259
4-Chloroaniline	BRL	ug/L	10	2.5	1	8270D	8/13/10 0:50		P0H0259
4-Chlorophenyl phenyl ether	BRL	ug/L	10	1.8	1	8270D	8/13/10 0:50		P0H0259
4-Nitroaniline	BRL	ug/L	10	0.91	1	8270D	8/13/10 0:50		P0H0259
4-Nitrophenol	BRL	ug/L	50	2.6	1	8270D	8/13/10 0:50		P0H0259
Acenaphthene	BRL	ug/L	10	2.0	1	8270D	8/13/10 0:50		P0H0259
Acenaphthylene	BRL	ug/L	10	2.1	1	8270D	8/13/10 0:50		P0H0259
Aniline	BRL	ug/L	10	2.2	1	8270D	8/13/10 0:50		P0H0259
Anthracene	BRL	ug/L		1.2	1	8270D			P0H0259
Azobenzene	BRL	ug/L	10 10	1.8	1	8270D	8/13/10 0:50 8/13/10 0:50		P0H0259
	BRL								P0H0259
Benzo(a)anthracene	BRL	ug/L	10	0.95	1	8270D 8270D	8/13/10 0:50		P0H0259
Benzo(a)pyrene	BRL	ug/L	10	1.1	1		8/13/10 0:50		P0H0259
Benzo(b)fluoranthene		ug/L	10	1.4	1	8270D	8/13/10 0:50		
Benzo(g,h,i)perylene	BRL	ug/L	10	2.1	1	8270D	8/13/10 0:50		P0H0259
Benzo(k)fluoranthene	BRL	ug/L	10	1.1	1	8270D	8/13/10 0:50		P0H0259
Benzoic Acid	BRL	ug/L	100	50	1	8270D	8/13/10 0:50		P0H0259
Benzyl alcohol	BRL	ug/L	10	2.1	1	8270D	8/13/10 0:50		P0H0259
bis(2-Chloroethoxy)methane	BRL	ug/L	10	2.2	1	8270D	8/13/10 0:50		P0H0259
Bis(2-Chloroethyl)ether	BRL	ug/L	10	1.9	1	8270D	8/13/10 0:50		P0H0259
Bis(2-chloroisopropyl)ether	BRL	ug/L	10	2.3	1	8270D	8/13/10 0:50) CGP	P0H0259

08/24/2010

Solutions IES (NCDOT Project) Attn: Jody Overmyer 1101 Nowell Road Raleigh, NC 27607 Project: NCDOT Elizabeth City PSA's

- 222 Water St.

Project No.: WBS# 35742.1.1 Sample Matrix: Water Client Sample ID: 229-2 Prism Sample ID: 0080167-06 Prism Work Order: 0080167 Time Collected: 08/04/10 08:10 Time Submitted: 08/05/10 18:05

Parameter	Result	Units	Report Limit	MDL	Dilution Factor	Method	Analysis Date/Time	Analyst	Batch ID
Bis(2-Ethylhexyl)phthalate	BRL	ug/L	10	1.8	1	8270D	8/13/10 0:50	CGP	P0H0259
Butyl benzyl phthalate	BRL	ug/L	10	1.5	1	8270D	8/13/10 0:50	CGP	P0H0259
Chrysene	BRL	ug/L	10	1.2	1	8270D	8/13/10 0:50	CGP	P0H0259
Dibenzo(a,h)anthracene	BRL	ug/L	10	1.8	1	8270D	8/13/10 0:50	CGP	P0H0259
Dibenzofuran	BRL	ug/L	10	2.2	1	8270D	8/13/10 0:50	CGP	P0H0259
Diethyl phthalate	BRL	ug/L	10	1.4	1	8270D	8/13/10 0:50	CGP	P0H0259
Dimethyl phthalate	BRL	ug/L	10	1.6	1	8270D	8/13/10 0:50	CGP	P0H0259
Di-n-butyl phthalate	BRL	ug/L	10	1.8	1	8270D	8/13/10 0:50	CGP	P0H0259
Di-n-octyl phthalate	BRL	ug/L	10	1.9	1	8270D	8/13/10 0:50	CGP	P0H0259
Fluoranthene	BRL	ug/L	10	0.94	1	8270D	8/13/10 0:50	CGP	P0H0259
Fluorene	BRL	ug/L	10	1.8	1	8270D	8/13/10 0:50	CGP	P0H0259
Hexachlorobenzene	BRL	ug/L	10	1.4	1	8270D	8/13/10 0:50	CGP	P0H0259
Hexachlorobutadiene	BRL	ug/L	10	2.3	1	8270D	8/13/10 0:50	CGP	P0H0259
Hexachlorocyclopentadiene	BRL	ug/L	10	1.8	1	8270D	8/13/10 0:50	CGP	P0H0259
Hexachloroethane	BRL	ug/L	10	1.9	1	8270D	8/13/10 0:50	CGP	P0H0259
Indeno(1,2,3-cd)pyrene	BRL	ug/L	10	1.6	1	8270D	8/13/10 0:50	CGP	P0H0259
Isophorone	BRL	ug/L	10	2.4	1	8270D	8/13/10 0:50	CGP	P0H0259
Naphthalene	BRL	ug/L	10	2.3	1	8270D	8/13/10 0:50	CGP	P0H0259
Nitrobenzene	BRL	ug/L	10	2.0	1	8270D	8/13/10 0:50	CGP	P0H0259
N-Nitroso-di-n-propylamine	BRL	ug/L	10	2.3	1	8270D	8/13/10 0:50	CGP	P0H0259
N-Nitrosodiphenylamine	BRL	ug/L	10	1.6	1	8270D	8/13/10 0:50	CGP	P0H0259
Pentachlorophenol	BRL	ug/L	10	1.6	1	8270D	8/13/10 0:50	CGP	P0H0259
Phenanthrene	BRL	ug/L	10	1.2	1	8270D	8/13/10 0:50	CGP	P0H0259
Phenol	BRL	ug/L	10	2.2	1	8270D	8/13/10 0:50	CGP	P0H0259
Pyrene	BRL	ug/L	10	1.4	1	8270D	8/13/10 0:50	CGP	P0H0259
•			Surrogate			Reco		Control	Limits
			2,4,6-Tribror	monhenol		66	5 %	26-139	
			2-Fluorobiph	•			7 %	41-112	
			2-Fluorophe	•			5 %	10-48	
			Nitrobenzen				2 %	34-102	
			Phenol-d5				3 %	10-34	
			Terphenyl-d	14			5 %	31-165	
Volatile Organic Compounds b	v GC/MS		.,.,.						
1,1,1,2-Tetrachloroethane	BRL	ug/L	1.0	0.15	1	8260B	8/12/10 0:58	KLA	P0H0263
1,1,1-Trichloroethane	BRL	ug/L	1.0	0.063	1	8260B	8/12/10 0:58		P0H0263
1,1,2,2-Tetrachloroethane	BRL	ug/L	1.0	0.003	1	8260B	8/12/10 0:58		P0H0263
1,1,2-Trichloroethane	BRL	ug/L	1.0	0.071	1	8260B	8/12/10 0:58		P0H0263
1,1-Dichloroethane	BRL	ug/L	1.0	0.17	1	8260B	8/12/10 0:58		P0H0263
1,1-Dichloroethylene	BRL	ug/L	1.0	0.030	1	8260B	8/12/10 0:58		P0H0263
1,1-Dichloropropylene	BRL	ug/L	1.0	0.078	1	8260B	8/12/10 0:58		P0H0263
1,2,3-Trichlorobenzene	BRL	ug/L	2.0	0.001	1	8260B	8/12/10 0:58		P0H0263
1,2,3-Trichloropenzene	BRL	ug/L ug/L	1.0	0.20	1	8260B	8/12/10 0.58		P0H0263
• •	BRL	_							
1,2,4-Trichlorobenzene	DKL	ug/L	1.0	0.10	1	8260B	8/12/10 0:58	KLA	P0H0263

Solutions IES (NCDOT Project)

Attn: Jody Overmyer 1101 Nowell Road Raleigh, NC 27607 Project: NCDOT Elizabeth City PSA's

- 222 Water St.

Project No.: WBS# 35742.1.1 Sample Matrix: Water Client Sample ID: 229-2 Prism Sample ID: 0080167-06 Prism Work Order: 0080167 Time Collected: 08/04/10 08:10 Time Submitted: 08/05/10 18:05

Parameter	Result	Units	Report Limit	MDL	Dilution Factor	Method	Analysis Date/Time	Analyst	Batch ID
1,2,4-Trimethylbenzene	BRL	ug/L	1.0	0.048	1	8260B	8/12/10 0:58	8 KLA	P0H0263
1,2-Dibromo-3-chloropropane	BRL	ug/L	2.0	0.59	1	8260B	8/12/10 0:58	8 KLA	P0H0263
1,2-Dibromoethane	BRL	ug/L	1.0	0.14	1	8260B	8/12/10 0:58	8 KLA	P0H0263
1,2-Dichlorobenzene	BRL	ug/L	1.0	0.076	1	8260B	8/12/10 0:58	8 KLA	P0H0263
1,2-Dichloroethane	BRL	ug/L	1.0	0.14	1	8260B	8/12/10 0:58	8 KLA	P0H0263
1,2-Dichloropropane	BRL	ug/L	1.0	0.13	1	8260B	8/12/10 0:58	8 KLA	P0H0263
1,3,5-Trimethylbenzene	BRL	ug/L	1.0	0.057	1	8260B	8/12/10 0:58	8 KLA	P0H0263
1,3-Dichlorobenzene	BRL	ug/L	1.0	0.074	1	8260B	8/12/10 0:58	8 KLA	P0H0263
1,3-Dichloropropane	BRL	ug/L	1.0	0.11	1	8260B	8/12/10 0:58	8 KLA	P0H0263
1,4-Dichlorobenzene	BRL	ug/L	1.0	0.068	1	8260B	8/12/10 0:58	8 KLA	P0H0263
2,2-Dichloropropane	BRL	ug/L	2.0	0.11	1	8260B	8/12/10 0:58	8 KLA	P0H0263
2-Chloroethyl Vinyl Ether	BRL	ug/L	2.0	0.22	1	8260B	8/12/10 0:58	8 KLA	P0H0263
2-Chlorotoluene	BRL	ug/L	1.0	0.038	1	8260B	8/12/10 0:58	8 KLA	P0H0263
4-Chlorotoluene	BRL	ug/L	1.0	0.053	1	8260B	8/12/10 0:58	8 KLA	P0H0263
4-Isopropyltoluene	BRL	ug/L	1.0	0.065	1	8260B	8/12/10 0:58	8 KLA	P0H0263
Acetone	BRL	ug/L	10	0.62	1	8260B	8/12/10 0:58	8 KLA	P0H0263
Acrolein	BRL	ug/L	100	1.1	1	8260B	8/12/10 0:58	8 KLA	P0H0263
Acrylonitrile	BRL	ug/L	100	0.86	1	8260B	8/12/10 0:58	8 KLA	P0H0263
Benzene	BRL	ug/L	1.0	0.072	1	8260B	8/12/10 0:58	8 KLA	P0H0263
Bromobenzene	BRL	ug/L	1.0	0.064	1	8260B	8/12/10 0:58	8 KLA	P0H0263
Bromochloromethane	BRL	ug/L	1.0	0.13	1	8260B	8/12/10 0:58	8 KLA	P0H0263
Bromodichloromethane	BRL	ug/L	1.0	0.062	1	8260B	8/12/10 0:58	8 KLA	P0H0263
Bromoform	BRL	ug/L	1.0	0.27	1	8260B	8/12/10 0:58	8 KLA	P0H0263
Bromomethane	BRL	ug/L	3.0	0.47	1	8260B	8/12/10 0:58	8 KLA	P0H0263
Carbon disulfide	BRL	ug/L	5.0	1.4	1	8260B	8/12/10 0:58	8 KLA	P0H0263
Carbon Tetrachloride	BRL	ug/L	2.0	0.12	1	8260B	8/12/10 0:58	8 KLA	P0H0263
Chlorobenzene	BRL	ug/L	1.0	0.061	1	8260B	8/12/10 0:58	8 KLA	P0H0263
Chloroethane	BRL	ug/L	5.0	0.13	1	8260B	8/12/10 0:58	KLA	P0H0263
Chloroform	BRL	ug/L	1.0	0.089	1	8260B	8/12/10 0:58	8 KLA	P0H0263
Chloromethane	BRL	ug/L	2.0	0.11	1	8260B	8/12/10 0:58	KLA	P0H0263
cis-1,2-Dichloroethylene	BRL	ug/L	1.0	0.076	1	8260B	8/12/10 0:58	KLA	P0H0263
cis-1,3-Dichloropropylene	BRL	ug/L	1.0	0.10	1	8260B	8/12/10 0:58	8 KLA	P0H0263
Dibromochloromethane	BRL	ug/L	1.0	0.30	1	8260B	8/12/10 0:58	8 KLA	P0H0263
Dibromomethane	BRL	ug/L	1.0	0.13	1	8260B	8/12/10 0:58	8 KLA	P0H0263
Dichlorodifluoromethane	BRL	ug/L	2.0	0.11	1	8260B	8/12/10 0:58	8 KLA	P0H0263
Ethylbenzene	BRL	ug/L	1.0	0.067	1	8260B	8/12/10 0:58	8 KLA	P0H0263
Hexachlorobutadiene	BRL	ug/L	2.0	0.36	1	8260B	8/12/10 0:58	8 KLA	P0H0263
Isopropyl Ether	BRL	ug/L	1.0	0.043	1	8260B	8/12/10 0:58	8 KLA	P0H0263
Isopropylbenzene (Cumene)	BRL	ug/L	1.0	0.072	1	8260B	8/12/10 0:58	8 KLA	P0H0263
m,p-Xylenes	BRL	ug/L	2.0	0.081	1	8260B	8/12/10 0:58	8 KLA	P0H0263
Methyl Butyl Ketone (2-Hexanone)	BRL	ug/L	5.0	0.19	1	8260B	8/12/10 0:58	8 KLA	P0H0263
Methyl Ethyl Ketone (2-Butanone)	BRL	ug/L	5.0	0.90	1	8260B	8/12/10 0:58	8 KLA	P0H0263
Methyl Isobutyl Ketone	BRL	ug/L	5.0	0.12	1	8260B	8/12/10 0:58	8 KLA	P0H0263

Project: NCDOT Elizabeth City PSA's

- 222 Water St.

Project No.: WBS# 35742.1.1 Sample Matrix: Water Client Sample ID: 229-2 Prism Sample ID: 0080167-06 Prism Work Order: 0080167 Time Collected: 08/04/10 08:10 Time Submitted: 08/05/10 18:05

Parameter	Result	Units	Report Limit	MDL	Dilution Factor	Method	Analysis Date/Time	Analyst	Batch ID
Methylene Chloride	BRL	ug/L	2.0	0.44	1	8260B	8/12/10 0:58	8 KLA	P0H0263
Methyl-tert-Butyl Ether	0.72 J	ug/L	1.0	0.070	1	8260B	8/12/10 0:58	KLA	P0H0263
Naphthalene	BRL	ug/L	1.0	0.098	1	8260B	8/12/10 0:58	8 KLA	P0H0263
n-Butylbenzene	BRL	ug/L	1.0	0.11	1	8260B	8/12/10 0:58	8 KLA	P0H0263
n-Propylbenzene	BRL	ug/L	1.0	0.060	1	8260B	8/12/10 0:58	8 KLA	P0H0263
o-Xylene	BRL	ug/L	1.0	0.046	1	8260B	8/12/10 0:58	8 KLA	P0H0263
sec-Butylbenzene	BRL	ug/L	1.0	0.087	1	8260B	8/12/10 0:58	8 KLA	P0H0263
Styrene	BRL	ug/L	1.0	0.047	1	8260B	8/12/10 0:58	8 KLA	P0H0263
tert-Butylbenzene	BRL	ug/L	1.0	0.080	1	8260B	8/12/10 0:58	8 KLA	P0H0263
Tetrachloroethylene	BRL	ug/L	1.0	0.069	1	8260B	8/12/10 0:58	8 KLA	P0H0263
Toluene	BRL	ug/L	1.0	0.042	1	8260B	8/12/10 0:58	8 KLA	P0H0263
trans-1,2-Dichloroethylene	BRL	ug/L	2.0	0.12	1	8260B	8/12/10 0:58	8 KLA	P0H0263
trans-1,3-Dichloropropylene	BRL	ug/L	1.0	0.043	1	8260B	8/12/10 0:58	8 KLA	P0H0263
Trichloroethylene	BRL	ug/L	2.0	0.054	1	8260B	8/12/10 0:58	8 KLA	P0H0263
Trichlorofluoromethane	BRL	ug/L	2.0	0.088	1	8260B	8/12/10 0:58	8 KLA	P0H0263
Vinyl acetate	BRL	ug/L	20	0.10	1	8260B	8/12/10 0:58	8 KLA	P0H0263
Vinyl chloride	BRL	ug/L	2.0	0.16	1	8260B	8/12/10 0:58	8 KLA	P0H0263
			Surrogate			Recov	very	Control	Limits
			4.5				4.07	00.404	

Surrogate	Recovery	Control Limits
4-Bromofluorobenzene	104 %	80-124
Dibromofluoromethane	103 %	75-129
Toluene-d8	109 %	77-123

Project: NCDOT Elizabeth City PSA's

- 222 Water St.

Project No.: WBS# 35742.1.1

Sample Matrix: Solid

Client Sample ID: S07-4-1-4 Prism Sample ID: 0080167-07 Prism Work Order: 0080167 Time Collected: 08/04/10 09:15 Time Submitted: 08/05/10 18:05

Parameter	Result	Units	Report Limit	MDL	Dilution Factor	Method	Analysis Date/Time	Analyst	Batch ID
Diesel Range Organics by GC/FID									
Diesel Range Organics	150	mg/kg dry	12	2.0	1	*8015C	8/16/10 14:21	JMV	P0H0313
			Surrogate			Recov	/ery	Control	Limits
			o-Terphenyl			91	1 %	49-124	
Gasoline Range Organics by GC/FID)								
Gasoline Range Organics	BRL	mg/kg dry	6.6	0.86	50	*8015C	8/17/10 12:31	HPE	P0H0354
			Surrogate			Recov	ery	Control	Limits
			a,a,a-Trifluor	otoluene		82	2 %	55-129	
General Chemistry Parameters									
% Solids	57.4 Aa	% by Weight	0.100	0.100	1	*SM2540 G	8/12/10 15:31	JAB	P0H0309

Solutions IES (NCDOT Project)

Attn: Jody Overmyer 1101 Nowell Road Raleigh, NC 27607

Datab DOLLOGG FORD

Project: NCDOT Elizabeth City PSA's -

222 Water St.

Project No: WBS# 35742.1.1

Prism Work Order: 0080167

Time Submitted: 8/5/10 6:05:00PM

		Reporting		Spike	Source		%REC		RPD	
Analyte	Result	Limit	Units	Level	Result	%REC	Limits	RPD	Limit	Notes

Batch P0H0263 - 5030B				
Blank (P0H0263-BLK1)			F	Prepared & Analyzed: 08/11/10
1,1,1,2-Tetrachloroethane	BRL	1.0	ug/L	
1,1,1-Trichloroethane	BRL	1.0	ug/L	
1,1,2,2-Tetrachloroethane	BRL	1.0	ug/L	
1,1,2-Trichloroethane	BRL	1.0	ug/L	
1,1-Dichloroethane	BRL	1.0	ug/L	
1,1-Dichloroethylene	BRL	1.0	ug/L	
1,1-Dichloropropylene	BRL	1.0	ug/L	
1,2,3-Trichlorobenzene	BRL	2.0	ug/L	
1,2,3-Trichloropropane	BRL	1.0	ug/L	
1,2,4-Trichlorobenzene	BRL	1.0	ug/L	
1,2,4-Trimethylbenzene	BRL	1.0	ug/L	
1,2-Dibromo-3-chloropropane	BRL	2.0	ug/L	
1,2-Dibromoethane	BRL	1.0	ug/L	
1,2-Dichlorobenzene	BRL	1.0	ug/L	
1,2-Dichloroethane	BRL	1.0	ug/L	
1,2-Dichloropropane	BRL	1.0	ug/L	
1,3,5-Trimethylbenzene	BRL	1.0	ug/L	
1,3-Dichlorobenzene	BRL	1.0	ug/L	
1,3-Dichloropropane	BRL	1.0	ug/L	
1,4-Dichlorobenzene	BRL	1.0	ug/L	
2,2-Dichloropropane	BRL	2.0	ug/L	
2-Chloroethyl Vinyl Ether	BRL	2.0	ug/L	
2-Chlorotoluene	BRL	1.0	ug/L	
4-Chlorotoluene	BRL	1.0	ug/L	
4-Isopropyltoluene	BRL	1.0	ug/L	
Acetone	BRL	10	ug/L	
Acrolein	BRL	100	ug/L	
Acrylonitrile	BRL	100	ug/L	
Benzene	BRL	1.0	ug/L	
Bromobenzene	BRL	1.0	ug/L	
Bromochloromethane	BRL	1.0	ug/L	
Bromodichloromethane	BRL	1.0	ug/L	
Bromoform	BRL	1.0	ug/L	
Bromomethane	BRL	3.0	ug/L	
Carbon disulfide	BRL	5.0	ug/L	
Carbon Tetrachloride	BRL	2.0	ug/L	
Chlorobenzene	BRL	1.0	ug/L	
Chloroethane	BRL	5.0	ug/L	
Chloroform	BRL	1.0	ug/L	
Chloromethane	BRL	2.0	ug/L	
cis-1,2-Dichloroethylene	BRL	1.0	ug/L	
cis-1,3-Dichloropropylene	BRL	1.0	ug/L	
Dibromochloromethane	BRL	1.0	ug/L	
Dibromomethane	BRL	1.0	ug/L	
Dichlorodifluoromethane	BRL	2.0	ug/L	
Ethylbenzene	BRL	1.0	ug/L	

Project: NCDOT Elizabeth City PSA's -

222 Water St.

Project No: WBS# 35742.1.1

Prism Work Order: 0080167

Time Submitted: 8/5/10 6:05:00PM

		Reporting		Spike	Source		%REC		RPD	
Analyte	Result	Limit	Units	Level	Result	%REC	Limits	RPD	Limit	Notes

Blank (P0H0263-BLK1)				Prepared & Ana	alyzed: 08/11/	10
Hexachlorobutadiene	BRL	2.0	ug/L			
Isopropyl Ether	BRL	1.0	ug/L			
Isopropylbenzene (Cumene)	BRL	1.0	ug/L			
m,p-Xylenes	BRL	2.0	ug/L			
Methyl Butyl Ketone (2-Hexanone)	BRL	5.0	ug/L			
Methyl Ethyl Ketone (2-Butanone)	BRL	5.0	ug/L			
Methyl Isobutyl Ketone	BRL	5.0	ug/L			
Methylene Chloride	BRL	2.0	ug/L			
Methyl-tert-Butyl Ether	BRL	1.0	ug/L			
Naphthalene	BRL	1.0	ug/L			
n-Butylbenzene	BRL	1.0	ug/L			
n-Propylbenzene	BRL	1.0	ug/L			
o-Xylene	BRL	1.0	ug/L			
sec-Butylbenzene	BRL	1.0	ug/L			
Styrene	BRL	1.0	ug/L			
ert-Butylbenzene	BRL	1.0	ug/L			
Tetrachloroethylene	BRL	1.0	ug/L			
l'oluene	BRL	1.0	ug/L			
rans-1,2-Dichloroethylene	BRL	2.0	ug/L			
rans-1,3-Dichloropropylene	BRL	1.0	ug/L			
Trichloroethylene	BRL	2.0	ug/L			
Frichlorofluoromethane	BRL	2.0	ug/L			
Vinyl acetate	BRL	20	ug/L			
/inyl chloride	BRL	2.0	ug/L			
Surrogate: 4-Bromofluorobenzene	26.0		ug/L	25.0	104	80-124
Surrogate: Dibromofluoromethane	23.7		ug/L	25.0	95	75-129
Surrogate: Toluene-d8	24.3		ug/L	25.0	97	77-123

Project: NCDOT Elizabeth City PSA's -

222 Water St.

Project No: WBS# 35742.1.1

Prism Work Order: 0080167

Time Submitted: 8/5/10 6:05:00PM

		Reporting		Spike	Source		%REC		RPD	
Analyte	Result	Limit	Units	Level	Result	%REC	Limits	RPD	Limit	Notes
Batch P0H0263 - 5030B										
LCS (P0H0263-BS1)				Prepared	& Analyze	d: 08/11/1	0			
1,1-Dichloroethylene	51.1	1.0	ug/L	50.0		102	70-154			
Benzene	53.7	1.0	ug/L	50.0		107	77-128			
Carbon Tetrachloride	60.1	2.0	ug/L	50.0		120	72-142			
Chlorobenzene	51.7	1.0	ug/L	50.0		103	78-119			
Tetrachloroethylene	53.3	1.0	ug/L	50.0		107	80-129			
Toluene	53.6	1.0	ug/L	50.0		107	76-131			
Trichloroethylene	50.2	2.0	ug/L	50.0		100	77-133			
Surrogate: 4-Bromofluorobenzene	25.7		ug/L	25.0		103	80-124			
Surrogate: Dibromofluoromethane	24.2		ug/L	25.0		97	75-129			
Surrogate: Toluene-d8	22.4		ug/L	25.0		90	77-123			
LCS Dup (P0H0263-BSD1)				Prepared	& Analyze	d: 08/11/1	0			
1,1-Dichloroethylene	52.3	1.0	ug/L	50.0		105	70-154	2	200	
Benzene	50.6	1.0	ug/L	50.0		101	77-128	6	200	
Carbon Tetrachloride	55.4	2.0	ug/L	50.0		111	72-142	8	200	
Chlorobenzene	49.8	1.0	ug/L	50.0		100	78-119	4	200	
Tetrachloroethylene	50.7	1.0	ug/L	50.0		101	80-129	5	200	
Toluene	50.8	1.0	ug/L	50.0		102	76-131	5	200	
Trichloroethylene	48.2	2.0	ug/L	50.0		96	77-133	4	200	
Surrogate: 4-Bromofluorobenzene	25.2		ug/L	25.0		101	80-124			
Surrogate: Dibromofluoromethane	24.7		ug/L	25.0		99	75-129			
Surrogate: Toluene-d8	23.1		ug/L	25.0		93	77-123			

Solutions IES (NCDOT Project) Attn: Jody Overmyer

1101 Nowell Road Raleigh, NC 27607

Chrysene

Dibenzo(a,h)anthracene

Project: NCDOT Elizabeth City PSA's -

222 Water St.

Project No: WBS# 35742.1.1

Prism Work Order: 0080167

Time Submitted: 8/5/10 6:05:00PM

Semivolatile Organic Compounds by GC/MS - Quality Control

		Reporting		Spike	Source		%REC		RPD	
Analyte	Result	Limit	Units	Level	Result	%REC	Limits	RPD	Limit	Notes
Batch P0H0259 - 3510C MS										
Blank (P0H0259-BLK1)				Prepared:	: 08/11/10	Analyzed:	: 08/12/10			
1,2,4-Trichlorobenzene	BRL	10	ug/L							
1,2-Dichlorobenzene	BRL	10	ug/L							
1,3-Dichlorobenzene	BRL	10	ug/L							
1,4-Dichlorobenzene	BRL	10	ug/L							
2,4,5-Trichlorophenol	BRL	10	ug/L							
2,4,6-Trichlorophenol	BRL	10	ug/L							
2,4-Dichlorophenol	BRL	10	ug/L							
2,4-Dimethylphenol	BRL	10	ug/L							
2,4-Dinitrophenol	BRL	10	ug/L							
2,4-Dinitrotoluene	BRL	10	ug/L							
2,6-Dinitrotoluene	BRL	10	ug/L							
2-Chloronaphthalene	BRL	10	ug/L							
2-Chlorophenol	BRL	10	ug/L							
2-Methylnaphthalene	BRL	10	ug/L							
2-Methylphenol	BRL	10	ug/L							
2-Nitroaniline	BRL	10	ug/L							
2-Nitrophenol	BRL	10	ug/L							
3,3'-Dichlorobenzidine	BRL	10	ug/L							
3/4-Methylphenol	BRL	10	ug/L							
3-Nitroaniline	BRL	10	ug/L							
1,6-Dinitro-2-methylphenol	BRL	10	ug/L							
I-Bromophenyl phenyl ether	BRL	10	ug/L							
4-Chloro-3-methylphenol	BRL	10	ug/L							
4-Chloroaniline	BRL	10	ug/L							
4-Chlorophenyl phenyl ether	BRL	10	ug/L							
1-Nitroaniline	BRL	10	ug/L							
1-Nitrophenol	BRL	50	ug/L							
Acenaphthene	BRL	10	ug/L							
Acenaphthylene	BRL	10	ug/L							
Aniline	BRL	10	ug/L							
Anthracene	BRL	10	ug/L							
Azobenzene	BRL	10	ug/L							
Benzo(a)anthracene	BRL	10	ug/L							
Benzo(a)pyrene	BRL	10	ug/L							
Benzo(b)fluoranthene	BRL	10	ug/L							
Benzo(g,h,i)perylene	BRL	10	ug/L							
Benzo(k)fluoranthene	BRL	10	ug/L							
Benzoic Acid	BRL	100	ug/L							
Benzyl alcohol	BRL	10	ug/L							
pis(2-Chloroethoxy)methane	BRL	10	ug/L							
Bis(2-Chloroethyl)ether	BRL	10	ug/L							
Bis(2-chloroisopropyl)ether	DIVL									
		10								
Bis(2-Ethylhexyl)phthalate	BRL BRL	10 10	ug/L ug/L							

ug/L

ug/L

10

10

BRL

BRL

Project: NCDOT Elizabeth City PSA's -

222 Water St.

Project No: WBS# 35742.1.1

Prism Work Order: 0080167

Time Submitted: 8/5/10 6:05:00PM

Analyte	Result	Reporting Limit	Units	Spike Level	Source Result	%REC	%REC Limits	RPD	RPD Limit	Notes
Batch P0H0259 - 3510C MS										

Blank (P0H0259-BLK1)				Prepared: 08/1	1/10 Analyzed	d: 08/12/10
Dibenzofuran	BRL	10	ug/L			
Diethyl phthalate	BRL	10	ug/L			
Dimethyl phthalate	BRL	10	ug/L			
Di-n-butyl phthalate	BRL	10	ug/L			
Di-n-octyl phthalate	BRL	10	ug/L			
Fluoranthene	BRL	10	ug/L			
Fluorene	BRL	10	ug/L			
Hexachlorobenzene	BRL	10	ug/L			
Hexachlorobutadiene	BRL	10	ug/L			
Hexachlorocyclopentadiene	BRL	10	ug/L			
Hexachloroethane	BRL	10	ug/L			
Indeno(1,2,3-cd)pyrene	BRL	10	ug/L			
Isophorone	BRL	10	ug/L			
Naphthalene	BRL	10	ug/L			
Nitrobenzene	BRL	10	ug/L			
N-Nitroso-di-n-propylamine	BRL	10	ug/L			
N-Nitrosodiphenylamine	BRL	10	ug/L			
Pentachlorophenol	BRL	10	ug/L			
Phenanthrene	BRL	10	ug/L			
Phenol	BRL	10	ug/L			
Pyrene	BRL	10	ug/L			
Surrogate: 2,4,6-Tribromophenol	58.7		ug/L	100	59	26-139
Surrogate: 2-Fluorobiphenyl	36.3		ug/L	50.0	73	41-112
Surrogate: 2-Fluorophenol	45.6		ug/L	100	46	10-48
Surrogate: Nitrobenzene-d5	34.9		ug/L	50.0	70	34-102
Surrogate: Phenol-d5	25.3		ug/L	100	25	10-34
Surrogate: Terphenyl-d14	46.6		ug/L	50.0	93	31-165

Project: NCDOT Elizabeth City PSA's -

222 Water St.

Project No: WBS# 35742.1.1

Prism Work Order: 0080167

Time Submitted: 8/5/10 6:05:00PM

Analyte	Result	Reporting Limit	Units	Spike Level	Source Result	%REC	%REC Limits	RPD	RPD Limit	Notes
Batch P0H0259 - 3510C MS										
LCS (P0H0259-BS1)				Prepared:	: 08/11/10	Analyzed	: 08/12/10			
1,2,4-Trichlorobenzene	29.4	10	ug/L	50.0		59	39-102			
1,2-Dichlorobenzene	28.3	10	ug/L	50.0		57	46-90			
1,3-Dichlorobenzene	27.6	10	ug/L	50.0		55	31-100			
1,4-Dichlorobenzene	27.9	10	ug/L	50.0		56	45-89			
2,4,5-Trichlorophenol	39.2	10	ug/L	50.0		78	60-108			
2,4,6-Trichlorophenol	37.9	10	ug/L	50.0		76	48-118			
2,4-Dichlorophenol	35.8	10	ug/L	50.0		72	38-107			
2,4-Dimethylphenol	33.7	10	ug/L	50.0		67	26-108			
2,4-Dinitrophenol	28.2	10	ug/L	50.0		56	10-157			
2,4-Dinitrotoluene	41.6	10	ug/L	50.0		83	61-139			
2,6-Dinitrotoluene	39.1	10	ug/L	50.0		78	55-141			
2-Chloronaphthalene	31.8	10	ug/L	50.0		64	46-114			
2-Chlorophenol	30.8	10	ug/L	50.0		62	39-80			
2-Methylnaphthalene	36.3	10	ug/L	50.0		73	39-107			
2-Methylphenol	24.9	10	ug/L	50.0		50	24-73			
2-Nitroaniline	36.0	10	ug/L	50.0		72	65-123			
2-Nitrophenol	35.2	10	ug/L	50.0		70	40-111			
3,3'-Dichlorobenzidine	27.9	10	ug/L	50.0		56	25-203			
3/4-Methylphenol	22.8	10	ug/L	50.0		46	22-84			
3-Nitroaniline	57.3	10	ug/L	50.0		115	66-131			
4,6-Dinitro-2-methylphenol	28.0	10	ug/L	50.0		56	31-155			
4-Bromophenyl phenyl ether	39.8	10	ug/L	50.0		80	50-131			
4-Chloro-3-methylphenol	32.9	10	ug/L	50.0		66	48-94			
4-Chloroaniline	53.4	10	ug/L ug/L	50.0		107	45-120			
4-Chlorophenyl phenyl ether	39.1	10	ug/L ug/L	50.0		78	55-125			
4-Nitroaniline	39.6	10	ug/L ug/L	50.0		78 79	63-138			
4-Nitrophenol	5.92	50		50.0		12	10-89			J
•	37.9		ug/L			76	53-118			J
Acenaphthylene		10	ug/L	50.0		76 79	52-110			
Acenaphthylene	39.5	10	ug/L	50.0						
Aniline	47.8	10	ug/L	50.0		96	24-105			
Anthracene	44.0	10	ug/L	50.0		88	59-138			
Azobenzene	41.0	10	ug/L	50.0		82	65-123			
Benzo(a)anthracene	41.4	10	ug/L	50.0		83	63-138			
Benzo(a)pyrene	43.2	10	ug/L	50.0		86	67-142			
Benzo(b)fluoranthene	39.9	10	ug/L	50.0		80	58-151			
Benzo(g,h,i)perylene	32.8	10	ug/L	50.0		66	47-151			
Benzo(k)fluoranthene	54.5	10	ug/L	50.0		109	45-155			_
Benzoic Acid	BRL	100	ug/L	50.0			10-125			Р
Benzyl alcohol	24.2	10	ug/L	50.0		48	25-77			
bis(2-Chloroethoxy)methane	35.6	10	ug/L	50.0		71	42-119			
Bis(2-Chloroethyl)ether	34.6	10	ug/L	50.0		69	38-109			
Bis(2-chloroisopropyl)ether	30.7	10	ug/L	50.0		61	31-117			
Bis(2-Ethylhexyl)phthalate	42.3	10	ug/L	50.0		85	52-165			
Butyl benzyl phthalate	44.2	10	ug/L	50.0		88	51-162			
Chrysene	44.3	10	ug/L	50.0		89	59-137			
Dibenzo(a,h)anthracene	32.4	10	ug/L	50.0		65	43-161			

Project: NCDOT Elizabeth City PSA's -

222 Water St.

Project No: WBS# 35742.1.1

Prism Work Order: 0080167

Time Submitted: 8/5/10 6:05:00PM

Analyte	Result	Reporting Limit	Units	Spike Level	Source Result	%REC	%REC Limits	RPD	RPD Limit	Notes
Batch P0H0259 - 3510C MS										
LCS (P0H0259-BS1)				Prepared:	08/11/10	Analyzed	: 08/12/10			
Dibenzofuran	38.4	10	ug/L	50.0		77	63-115			
Diethyl phthalate	41.7	10	ug/L	50.0		83	54-135			
Dimethyl phthalate	41.3	10	ug/L	50.0		83	46-135			
Di-n-butyl phthalate	44.1	10	ug/L	50.0		88	51-142			
Di-n-octyl phthalate	44.4	10	ug/L	50.0		89	54-160			
Fluoranthene	42.3	10	ug/L	50.0		85	52-137			
Fluorene	40.7	10	ug/L	50.0		81	56-122			
Hexachlorobenzene	35.5	10	ug/L	50.0		71	57-129			
Hexachlorobutadiene	28.2	10	ug/L	50.0		56	34-110			
Hexachlorocyclopentadiene	21.8	10	ug/L	50.0		44	27-120			
Hexachloroethane	27.0	10	ug/L	50.0		54	37-98			
Indeno(1,2,3-cd)pyrene	28.2	10	ug/L	50.0		56	24-172			
Isophorone	36.6	10	ug/L	50.0		73	44-117			
Naphthalene	35.2	10	ug/L	50.0		70	37-108			
Nitrobenzene	32.1	10	ug/L	50.0		64	29-120			
N-Nitroso-di-n-propylamine	32.8	10	ug/L	50.0		66	42-115			
N-Nitrosodiphenylamine	62.0	10	ug/L	50.0		124	69-142			
Pentachlorophenol	25.8	10	ug/L	50.0		52	42-156			
Phenanthrene	42.0	10	ug/L	50.0		84	60-133			
Phenol	11.2	10	ug/L	50.0		22	10-47			
Pyrene	46.7	10	ug/L	50.0		93	50-152			
Surrogate: 2,4,6-Tribromophenol	75.2		ug/L	100		75	26-139			
Surrogate: 2-Fluorobiphenyl	35.6		ug/L	50.0		71	41-112			
Surrogate: 2-Fluorophenol	33.2		ug/L	100		33	10-48			
Surrogate: Nitrobenzene-d5	32.2		ug/L	50.0		64	34-102			
Surrogate: Phenol-d5	18.1		ug/L	100		18	10-34			
Surrogate: Terphenyl-d14	37.4		ug/L	50.0		75	31-165			

Project: NCDOT Elizabeth City PSA's -

222 Water St.

Project No: WBS# 35742.1.1

Prism Work Order: 0080167

Time Submitted: 8/5/10 6:05:00PM

Analyte	Result	Reporting Limit	Units	Spike Level	Source Result	%REC	%REC Limits	RPD	RPD Limit	Notes
Batch P0H0259 - 3510C MS										
LCS Dup (P0H0259-BSD1)				Prepared	: 08/11/10	Analyzed	: 08/12/10			
1,2,4-Trichlorobenzene	25.8	10	ug/L	50.0		52	39-102	13	200	
1,2-Dichlorobenzene	25.2	10	ug/L	50.0		50	46-90	11	200	
1,3-Dichlorobenzene	23.8	10	ug/L	50.0		48	31-100	15	200	
1,4-Dichlorobenzene	25.4	10	ug/L	50.0		51	45-89	9	200	
2,4,5-Trichlorophenol	33.5	10	ug/L	50.0		67	60-108	16	200	
2,4,6-Trichlorophenol	32.0	10	ug/L	50.0		64	48-118	17	200	
2,4-Dichlorophenol	30.0	10	ug/L	50.0		60	38-107	18	200	
2,4-Dimethylphenol	29.4	10	ug/L	50.0		59	26-108	14	200	
2,4-Dinitrophenol	23.4	10	ug/L	50.0		47	10-157	19	200	
2,4-Dinitrotoluene	35.2	10	ug/L	50.0		70	61-139	17	200	
2,6-Dinitrotoluene	34.5	10	ug/L	50.0		69	55-141	13	200	
2-Chloronaphthalene	29.7	10	ug/L	50.0		59	46-114	7	200	
2-Chlorophenol	27.3	10	ug/L	50.0		55	39-80	12	200	
2-Methylnaphthalene	31.6	10	ug/L	50.0		63	39-107	14	200	
2-Methylphenol	22.2	10	ug/L	50.0		44	24-73	12	200	
2-Nitroaniline	31.4	10	ug/L	50.0		63	65-123	14	200	Α
2-Nitrophenol	30.3	10	ug/L	50.0		61	40-111	15	200	A
3.3'-Dichlorobenzidine	22.7	10	ug/L ug/L	50.0		45	25-203	21	200	
.,	20.8	10	_	50.0		42	22-84	9	200	
3/4-Methylphenol 3-Nitroaniline	50.0	10	ug/L	50.0		100	66-131	14	200	
			ug/L							
4,6-Dinitro-2-methylphenol	23.5	10	ug/L	50.0		47 67	31-155	18	200	
4-Bromophenyl phenyl ether	33.6	10	ug/L	50.0		67 57	50-131	17	200	
4-Chloro-3-methylphenol	28.5	10	ug/L	50.0		57	48-94	14	200	
4-Chloroaniline	46.4	10	ug/L	50.0		93	45-120	14	200	
4-Chlorophenyl phenyl ether	33.3	10	ug/L	50.0		67	55-125	16	200	
4-Nitroaniline	33.6	10	ug/L	50.0		67	63-138	16	200	
4-Nitrophenol	5.23	50	ug/L	50.0		10	10-89	12	200	J
Acenaphthene	33.2	10	ug/L	50.0		66	53-118	13	200	
Acenaphthylene	34.8	10	ug/L	50.0		70	52-121	13	200	
Aniline	43.6	10	ug/L	50.0		87	24-105	9	200	
Anthracene	38.2	10	ug/L	50.0		76	59-138	14	200	
Azobenzene	36.0	10	ug/L	50.0		72	65-123	13	200	
Benzo(a)anthracene	36.0	10	ug/L	50.0		72	63-138	14	200	
Benzo(a)pyrene	38.8	10	ug/L	50.0		78	67-142	11	200	
Benzo(b)fluoranthene	34.1	10	ug/L	50.0		68	58-151	16	200	
Benzo(g,h,i)perylene	25.9	10	ug/L	50.0		52	47-151	24	200	
Benzo(k)fluoranthene	48.3	10	ug/L	50.0		97	45-155	12	200	
Benzoic Acid	BRL	100	ug/L	50.0			10-125		200	Р
Benzyl alcohol	21.9	10	ug/L	50.0		44	25-77	10	200	
bis(2-Chloroethoxy)methane	31.3	10	ug/L	50.0		63	42-119	13	200	
Bis(2-Chloroethyl)ether	30.9	10	ug/L	50.0		62	38-109	11	200	
Bis(2-chloroisopropyl)ether	27.5	10	ug/L	50.0		55	31-117	11	200	
Bis(2-Ethylhexyl)phthalate	36.4	10	ug/L	50.0		73	52-165	15	200	
Butyl benzyl phthalate	37.7	10	ug/L	50.0		75	51-162	16	200	
Chrysene	38.0	10	ug/L	50.0		76	59-137	15	200	
Dibenzo(a,h)anthracene	25.4	10	ug/L	50.0		51	43-161	24	200	

Project: NCDOT Elizabeth City PSA's -

222 Water St.

Project No: WBS# 35742.1.1

Prism Work Order: 0080167

Time Submitted: 8/5/10 6:05:00PM

Semivolatile Organic Compounds by GC/MS - Quality Control

		Reporting Spike Source					%REC		RPD		
Analyte	Result	Limit	Units	Level	Result	%REC	Limits	RPD	Limit	Notes	
Batch P0H0259 - 3510C MS											
LCS Dup (P0H0259-BSD1)				Prepared:	08/11/10	Analyzed	: 08/12/10				
Dibenzofuran	33.1	10	ug/L	50.0		66	63-115	15	200		
Diethyl phthalate	37.0	10	ug/L	50.0		74	54-135	12	200		
Dimethyl phthalate	35.7	10	ug/L	50.0		71	46-135	14	200		
Di-n-butyl phthalate	38.4	10	ug/L	50.0		77	51-142	14	200		
Di-n-octyl phthalate	37.7	10	ug/L	50.0		75	54-160	16	200		
Fluoranthene	36.4	10	ug/L	50.0		73	52-137	15	200		
Fluorene	35.6	10	ug/L	50.0		71	56-122	13	200		
Hexachlorobenzene	30.0	10	ug/L	50.0		60	57-129	17	200		
Hexachlorobutadiene	24.6	10	ug/L	50.0		49	34-110	14	200		
Hexachlorocyclopentadiene	17.3	10	ug/L	50.0		35	27-120	23	200		
Hexachloroethane	24.3	10	ug/L	50.0		49	37-98	11	200		
ndeno(1,2,3-cd)pyrene	22.5	10	ug/L	50.0		45	24-172	23	200		
sophorone	31.9	10	ug/L	50.0		64	44-117	14	200		
Naphthalene	31.4	10	ug/L	50.0		63	37-108	11	200		
Nitrobenzene	28.2	10	ug/L	50.0		56	29-120	13	200		
N-Nitroso-di-n-propylamine	28.6	10	ug/L	50.0		57	42-115	14	200		
N-Nitrosodiphenylamine	52.1	10	ug/L	50.0		104	69-142	17	200		
Pentachlorophenol	21.4	10	ug/L	50.0		43	42-156	19	200		
Phenanthrene	36.5	10	ug/L	50.0		73	60-133	14	200		
Phenol	10.3	10	ug/L	50.0		21	10-47	8	200		
Pyrene	40.2	10	ug/L	50.0		80	50-152	15	200		
Surrogate: 2,4,6-Tribromophenol	63.5		ug/L	100		63	26-139				
Surrogate: 2-Fluorobiphenyl	31.1		ug/L	50.0		62	41-112				
Surrogate: 2-Fluorophenol	31.0		ug/L	100		31	10-48				
Surrogate: Nitrobenzene-d5	28.3		ug/L	50.0		57	34-102				
Surrogate: Phenol-d5	19.8		ug/L	100		20	10-34				
Surrogate: Terphenyl-d14	32.3		ug/L	50.0		65	31-165				

Project: NCDOT Elizabeth City PSA's -

222 Water St.

Project No: WBS# 35742.1.1

Prism Work Order: 0080167

Time Submitted: 8/5/10 6:05:00PM

Gasoline Range Organics by GC/FID - Quality Control

Analyte	Result	Reporting Limit	Units	Spike Level	Source Result	%REC	%REC Limits	RPD	RPD Limit	Notes
Allalyte	Nesuit	LIIIII	Offics	Level	Result	/orceo	LIIIIII	INFD	LIIIII	Notes
Batch P0H0224 - 5035										
Blank (P0H0224-BLK1)			F	Prepared	& Analyze	d: 08/10/1	0			
Gasoline Range Organics	BRL	5.0	mg/kg wet							
Surrogate: a,a,a-Trifluorotoluene	5.10		mg/kg wet	5.00		102	55-129			
LCS (P0H0224-BS1)			F	Prepared	& Analyze	d: 08/10/1	0			
Gasoline Range Organics	45.3	5.0	mg/kg wet	50.0		91	67-116			
Surrogate: a,a,a-Trifluorotoluene	5.55		mg/kg wet	5.00		111	55-129			
LCS Dup (P0H0224-BSD1)			F	Prepared	& Analyze	d: 08/10/1	0			
Gasoline Range Organics	46.8	5.0	mg/kg wet	50.0		94	67-116	3	200	
Surrogate: a,a,a-Trifluorotoluene	5.65		mg/kg wet	5.00		113	55-129			
Batch P0H0354 - 5035										
Blank (P0H0354-BLK1)			F	Prepared	& Analyze	d: 08/16/1	0			
Gasoline Range Organics	BRL	5.0	mg/kg wet							
Surrogate: a,a,a-Trifluorotoluene	5.00		mg/kg wet	5.00		100	55-129			
LCS (P0H0354-BS1)			F	Prepared	& Analyze	d: 08/16/1	0			
Gasoline Range Organics	44.0	5.0	mg/kg wet	50.0		88	67-116			
Surrogate: a,a,a-Trifluorotoluene	5.55		mg/kg wet	5.00		111	55-129			
LCS Dup (P0H0354-BSD1)			F	Prepared	& Analyze	d: 08/16/1	0			
Gasoline Range Organics	45.1	5.0	mg/kg wet	50.0		90	67-116	2	200	
Surrogate: a,a,a-Trifluorotoluene	5.50		mg/kg wet	5.00		110	55-129			

Project: NCDOT Elizabeth City PSA's -

222 Water St.

Project No: WBS# 35742.1.1

Prism Work Order: 0080167

Time Submitted: 8/5/10 6:05:00PM

Diesel Range Organics by GC/FID - Quality Control

Analyte	Result	Reporting Limit	Units	Spike Level	Source Result	%REC	%REC Limits	RPD	RPD Limit	Notes
Batch P0H0282 - 3545A										
Blank (P0H0282-BLK1)				Prepared	: 08/11/10	Analyzed	I: 08/13/10			
Diesel Range Organics	BRL	7.0	mg/kg wet							
Surrogate: o-Terphenyl	1.95		mg/kg wet	1.60		122	49-124			
LCS (P0H0282-BS1)				Prepared	: 08/11/10	Analyzed	I: 08/13/10			
Diesel Range Organics	70.7	7.0	mg/kg wet	80.0		88	55-109			
Surrogate: o-Terphenyl	2.54		mg/kg wet	1.60		159	49-124			SR
LCS Dup (P0H0282-BSD1)				Prepared	: 08/11/10	Analyzed	I: 08/13/10			
Diesel Range Organics	80.0	7.0	mg/kg wet	79.9		100	55-109	12	200	
Surrogate: o-Terphenyl	2.75		mg/kg wet	1.60		172	49-124			SR
Batch P0H0313 - 3545A										
Blank (P0H0313-BLK1)				Prepared	: 08/12/10	Analyzed	I: 08/14/10			
Diesel Range Organics	BRL	7.0	mg/kg wet							
Surrogate: o-Terphenyl	1.79		mg/kg wet	1.60		112	49-124			
LCS (P0H0313-BS1)				Prepared	: 08/12/10	Analyzed	I: 08/14/10			
Diesel Range Organics	69.3	7.0	mg/kg wet	79.9		87	55-109			
Surrogate: o-Terphenyl	2.33		mg/kg wet	1.60		146	49-124			SR
LCS Dup (P0H0313-BSD1)				Prepared	: 08/12/10	Analyzed	I: 08/14/10			
Diesel Range Organics	73.7	7.0	mg/kg wet	79.9		92	55-109	6	200	
Surrogate: o-Terphenyl	2.42		mg/kg wet	1.60		152	49-124			SR
Matrix Spike (P0H0313-MS1)	So	urce: 008016	7-07	Prepared	: 08/12/10	Analyzed	1: 08/16/10			
Diesel Range Organics	655	12	mg/kg dry	139	153	361	50-117			MI
Surrogate: o-Terphenyl	4.21		mg/kg dry	2.78		151	49-124			SR

Project: NCDOT Elizabeth City PSA's -

222 Water St.

Project No: WBS# 35742.1.1

Prism Work Order: 0080167

Time Submitted: 8/5/10 6:05:00PM

Diesel Range Organics by GC/FID - Quality Control

Analyte		Result	Reporting Limit	Units	Spike Level	Source Result	%REC	%REC Limits	RPD	RPD Limit	Notes
Batch P0H0313 -	· 3545A										
Matrix Spike Dup (P0H0313-MSD1)	So	ource: 0080167-	07	Prepared	: 08/12/10	Analyzed	: 08/16/10			
Diesel Range Organic	cs	216	12	mg/kg dry	139	153	45	50-117	101	24	D, M
Surrogate: o-Terphen	pyl	2.68		mg/kg dry	2.78		96	49-124			
			Sample	Extracti	on Data						
Prep Method: 3545A											
Lab Number	Batch	Initial		Final		Date					
0080167-01	P0H0282	25.08 g		1 mL		08/11/10					
0080167-02	P0H0282	25.05 g		1 mL		08/11/10					
0080167-03	P0H0282	25.09 g		1 mL		08/11/10					
0080167-07	P0H0313	25.06 g		1 mL		08/12/10					
Prep Method: 5035											
Lab Number	Batch	Initial		Final		Date					
0080167-01	P0H0224	6.43 g		5 mL		08/10/10					
0080167-02	P0H0224	5.21 g		5 mL		08/10/10					
0080167-03	P0H0224	4.62 g		5 mL		08/10/10					
0080167-07	P0H0354	6.6 g		5 mL		08/16/10					
NO PREP											
Lab Number	Batch	Initial		Final		Date					
0080167-01	P0H0272	30 g		30 mL		08/11/10					
0080167-02	P0H0272	30 g		30 mL		08/11/10					
0080167-03	P0H0272	30 g		30 mL		08/11/10					
0080167-07	P0H0309	30 g		30 mL		08/12/10					
Prep Method: 3510C	MS										
Lab Number	Batch	Initial		Final		Date					
0080167-04	P0H0259	1000 mL		1 mL		08/11/10					
0080167-05	P0H0259	1000 mL		1 mL		08/11/10					
0080167-06	P0H0259	1000 mL		1 mL		08/11/10					
Prep Method: 5030B											
Lab Number	Batch	Initial		Final		Date					
0080167-04	P0H0263	10 mL		10 mL		08/11/10					
0080167-05	P0H0263	10 mL		10 mL		08/11/10					
0080167-06	P0H0263	10 mL		10 mL		08/11/10					

NPDES:

UST:

_NC _SC _NC _SC _NC _SC

GROUNDWATER:

DRINKING WATER:

□NC □SC

SOLID WASTE:

□NC □SC

*CONTAINER TYPE CODES: A = Amber C = Clear G = Glass P = Plastic; TL = Teflon-Lined Cap VOA = Volatile Organics Analysis (Zero Head Space)

RCRA:

CERCLA NC SC NC SC NC SC

Full-Service Analytical & Environmental Solutions

LABORATORIES, INC.
449 Springbrook Road • P.O. Box 240543 • Charlotte, NC 28224-0543 Phone: 704/529-6364 • Fax: 704/525-0409
lient Company Name: Solu Gon S-IFS
eport To/Contact Name 5014 OVEVYVUEV
Reporting Address: 101 Nowell Load!
hone: 919-813-1066 Fax (Yes) (No):
mail (Yes) (No) Email Address
DD Type: PDF V Excel Other
ite Location Name: NOON Elizabeth CIMPS/45
ite Location Physical Address: 222 Water Street
TIME MATRIX

PAGE OF QUOTE # TO ENSURE PROPER BILLING: Samples INTACT upon arrival?	
	1 of 3
Project Name: ACONT 6\17a\bullet \City PSAs Short Hold Analysis: (Yes) (No) UST Project: (Yes) (No) Received ON WET ICE? Temp 2 X PROPER PRESERVATIVES indicated? RECEIVED ON WET ICE? Temp 2 X PROPER PRESERVATIVES indicated?	age 3
*Please ATTACH any project specific reporting (QC LEVEL I II III IV) provisions and/or QC Requirements Invoice To: NCD WBS# 35742.1.1 Received WITHIN HOLDING TIMES? CUSTODY SEALS INTACT? VOLATILES reced WOUT HEADSPACE?	a pr

LANDFILL

OTHER:

□NC □SC

PROPER CONTAINERS used?

ORIGINAL

hone: <u>919-87-3-1066</u>			s) (No):		Purchase Or	der No./	Billing Refere	nce <u>43</u> 001	328	75	T	O BE FILI	LED IN B	Y CLIENT/SAM	PLING PEF	SONNEL
mail (Yes) (No) Email DD Type: PDF VEX Site Location Name: A Site Location Physical	cel_ <i>[სემ</i>	Other	aboth CIMP	SAS	Requested Due "Working Day: Samples receiv Turnaround tim (SEE REV)	e Date s" ed after 1: e is based ERSE FOR	1 Day □ 2 Day 6-9 Days □ Sta 5:00 will be prod on business da FERMS & CONDIT	s 3 Days 4 ndard 10 days 4 essed next busine ys, excluding wee tons regarding s, inc. to client	I Days Rush Wo Pre-Appropriess day. Rends and Services	5 Days rk Must B oved d holidays	e 3. 1	Water Chlo	SC_ orinated:	ACUSACEOTHER_ YESNO_X collection: YES	N/A	NC_ <u>X_</u> _
CLIENT SAMPLE DESCRIPTION		DATE LECTED	TIME COLLECTED MILITARY HOURS	MATRIX (SOIL, WATER OR SLUDGE)	*TYPE SEE BELOW	LE CONT	AINER SIZE	PRESERVA- TIVES	784	- 00/	ANALY!	XO REQUES	STED	REMA	RKS	PRISM LAB ID NO.
222-1-2-4	8/	f 110	820	soil	Vo A, 6	4	40ml, 120	Z	K,							Ol
222-2-24	8	4/10	830	Soil	WA,6	4			\times							62,
222-3-0-2	8/	4/10	835	Soil	VOAG	4	1		>							03
222-3	8/	4/10	900	water	WAA	5	Yank 12	-		\times	X					04
601-1	,	9/10	0740	water	VOA, A	5	(4	X	:				92_
129-2		9/10	810	water	VOA A	5	4	,,		X	X					26
		4/10	0915	Soil	VOA, G	4			X				}	Added ups -	Prom	07
Sampler's Signature							wn Dd					15-(ES		PRESS DOW	N FIRMLY	- 3 COPIES
Upon relinquishing, this submitted in writing to	Chair the Pr	n of Cust ism Proj	tody is your autl ect Manager. Th	nere will be c	harges for an	ceed witl y change	n the analyses is after analys	as requested a es have been in	above. An nitialized	ny chang	jes mus]	PRISM	USE ONLY
Relinquished By: (Signature)	12 L	Done 1		Rece	eived By:/(Signatu		8819				140	Military/Hours	Additio	nal Comments:	Site Arrival 7	
Relinquished By: (Signature)	م ا	1		Rece	eived y: (Signatu	(e) //	_			Date PAS	-10	1150	Roll	énquisho	Site Departu	re Time:
Relinquished By: (Signature)		85,1			Daw	baratories E	('a			10	70	1600	leg-	Ju Mgir	Field Tech F Mileage:	ee:
Method of Shipment: NOTE: A SAMPLE	S ARE	NOT ACCE	ERS SHOULD BE TA PTED AND VERIFIED	AGAINST COC I	CUSTODY SEAL UNTIL RECEIVED	S FORTRAI	NSPORTATION TO BORATORY.	THE LABORATORY	Υ.	COC Gro	up No.		85	-10	Provence Synt 1511	<u> </u>
Deadley Dure Distant	dolivoro	a XMaio	m Field Service [Othor						, vo	OUL	>- †−	Ι,	-/		

NC Certification No. 402 SC Certification No. 99012 NC Drinking Water Cert No. 37735

Case Narrative

08/30/2010

Solutions IES (NCDOT Project) Jody Overmyer 1101 Nowell Road Raleigh, NC 27607 Project: NCDOT Elizabeth City PSA's Project No.: WBS# 35742.1.1 Lab Submittal Date: 08/05/2010

Prism Work Order: 0080212

This data package contains the analytical results for the project identified above and includes a Case Narrative, Sample Results and Chain of Custody. Unless otherwise noted, all samples were received in acceptable condition and processed according to the referenced methods.

Data qualifiers are flagged individually on each sample. A key reference for the data qualifiers appears at the end of this case narrative.

Narrative Notes:

Fecal Coliform analyses subcontracted to Environmental 1, Inc. Laboratory report is attached with a total page count of 8 pages.

Please call if you have any questions relating to this analytical report.

Respectfully,

PRISM LABORATORIES, INC.

VP Laboratory Services

Reviewed By

Kari a.

Data Qualifiers Key Reference:

RPD

BRL Below Reporting Limit
MDL Method Detection Limit

Relative Percent Difference

* Results reported to the reporting limit. All other results are reported to the MDL with values between MDL and reporting limit indicated with a J.

Sample Receipt Summary

Prism Work Order:

Client Sample ID	Lab Sample ID	Matrix	Date Sampled	Date Received

Samples received in good condition at 0.6 degrees C unless otherwise noted.

Laboratory Report

08/30/2010

Solutions IES (NCDOT Project)

Project: NCDOT Elizabeth City PSA's

Prism Work Order: 0080212

Attn: Chemical Testing Engineer

Materials and Testing, 1801 Blue Ridge Project No.: WBS# 35742.1.1

Raleigh, NC 27607

Field Data

Laboratory ID	Client ID	Field Parameter	Result
0080212-01	507-6-2-4		
0080212-02	601-3-2-3		
0080212-03	229-4-2-4		
0080212-04	229-2-2-4		
0080212-05	601-1-0-2		
0080212-06	222-1-2-4		
0080212-07	222-2-2-4		
0080212-08	507-4-1-4		
0080212-09	222-2		
0080212-10	229-2		
0080212-11	601-1		1.
0080212-12	507-6		

Drinking water ID: 37/15 Wastawater ID: 10

P.O. BOX 7085, 114 OAKMONT DRIVE GREENVILLE, N.C. 27835-7085 PHONE (252) 756-6208 FAX (252) 756-0633

D#: 425

PRISM (MISC. TESTING)
MS. ANGELA OVERCASH
P.O. BOX 240543
CHARLOTTE ,NC 28224-0543

DATE COLLECTED: 08/03/10 DATE REPORTED: 08/05/10

REVIEWED BY:

Method Sample Sample Analysis Sample Sample Sample #1 #2 #3 #4 #5 Date Analyst Code **PARAMETERS** 08/04/10 MJN SM9221E <2 <2 <2 Fecal Coliform (MPN), /gram Solids <2

Drinking Water ID: 37715 Wastewater ID: 10

P.O. BOX 7085, 114 OAKMONT DRIVE GREENVILLE, N.C. 27835-7085 PHONE (252) 756-6208 FAX (252) 756-0633

ID#: 425

PRISM (MISC. TESTING)
MS. ANGELA OVERCASH
P.O. BOX 240543
CHARLOTTE ,NC 28224-0543

DATE COLLECTED: 08/04/10 DATE REPORTED: 08/05/10

REVIEWED BY:

Sample Analysis Method Sample Sample Sample Sample #9 #10 Date Analyst Code #7 #8 #6 **PARAMETERS** 08/04/10 MEL SM9221E 30 13 Fecal Coliform (MPN), /100 Mls 08/04/10 MJN SM9221E Fecal Coliform (MPN), /gram Solids <2 13 <2

Drinking Water ID: 3/715 Wastewater ID: 10

PHONE (252) 756-6208 FAX (252) 756-0633

P.O. BOX 7085, 114 OAKMONT DRIVE GREENVILLE, N.C. 27835-7085

ID#: 425

PRISM (MISC. TESTING) MS. ANGELA OVERCASH P.O. BOX 240543 CHARLOTTE , NC 28224-0543

DATE COLLECTED: 08/04/10 DATE REPORTED : 08/05/10

Method

Sample Analysis Sample Date Analyst Code #11 #12 **PARAMETERS** 08/04/10 MEL SM9221E 30 2400 Fecal Coliform (MPN), /100 Mls

A49 Springbrook Road • F Phone: 704/529-6364 • F Client Company Name Report To/Contact Nat Reporting Address: 1 Phone: 919-673-100 Email (Yes) (No) Email EDD Type: PDF Ex Site Location Name: 1 Site Location Physical	TOTALES, INC. P.O. Box 240543 • Fax: 704/525-0409 TOTALES, INC. P.O. Box 240543 • Fax: 704/525-0409 TOTALES, INC. P.O. Box 240543 • Fax: 704/525-0409 Address JOY CoelOther.	15-1ES DVE VM YCA Pead JC 2760) (NO): 10 VM YE V. E.	Solutions 28224-0543 Solutions 105.(cw	Project Name: Short Hold An: *Please ATTA provisions and Invoice To: Address: Purchase Ord Requested Due I "Working Days" Samples receive Turnaround time (SEE BEVER	alysis: CH any part of the control o	(Yes) (No)	; ific reporting (0	roject: QC LEVE 2. 1. Days Bush Wor Pre-Appress day. Kends and	(Yes) (No) EL I II III IV) To Days the Must Be byed d holidays.	Samples II Received (PROPER Received (CUSTOD) VOLATILE PROPER TO BE FILLE Certification Water Chlor	ON WET IC PRESERV WITHIN HE SEALS III SE PECTO W CONTAIN ED IN BY ED IN BY SC_ inated:	DE? Temp UW ATIVES indicated' DLDING TIMES? NTACT? OUT HEADSPACERS used?	PLING PER: MPLING PER: M/A	SONNEL NC
CLIENT SAMPLE DESCRIPTION	DATE COLLECTED	TIME COLLECTED MILITARY HOURS	MATRIX (SOIL, WATER OR SLUDGE)	*TYPE SEE BELOW	E CONTA	INER SIZE	PRESERVA- TIVES	/¿el	All luty ANAL	YSES REQUEST	ED	REM	IARKS	PRISM LAB ID NO.
507-6-2-4	8/3/10-	1620-	Soil	Plastic	1	250mL	wore *	X	Sample	1				
101-3-2-3	8 3 10	1621-	Soil	Plashe	1	250ml	NONE	X	Sample	2				
229:4-2-4	8/3/10	1645	5011	Plashic-		250mb	Nove	1	Sample	3		SuB	TO E	1
229.2.2-4	8/3/10	1650	Soil	Plastic	1	250 ml	NOVE	X	3gmp18	#		. (1) (1) (1) (1) (1) (1) (1) (1) (1) (1)	(HG	
601-1-0-2	2/3/10	1700 -	-Soil	Plashe	<u></u> 1	250ml.	None	×	SAMPLE	9,		-	<u> </u>	
222-1-2-4	8/4/10	825 1	5011	Plastic	1	250mL	none	X	Sample	26		1		
222-2-24	8/4/10	6755	-soil	Plastic	(250mL	none	X	Sample	0				
507.4-4-4	8910	/915:	5011	Plashe	1	250ml	none	X	SUMPLY		-			
222-2	8/9/10	935	water	Plastic			1/25,03	>	Sumple	7 10	-			
229-2	8/4/10	937	valor	Plasfic)		V	X	15040gg/	9///		PPESS DO	WN FIRMLÝ	- 3 COPIE
Sampler's Signature	Kollsen (Dall"	Sampled E	By (Print Name)	Koll	win Da		Affilia		1018 15	<u> </u>	FILOS DO		
Upon relinquishing, this submitted in writing to				- 1	ماطانيين لمستسي	the englisee	s as requested ses have been i	above. A nitialized	ny changes n I.	nust be			######################################	USE ONLY
Relinquished By: (Signature)	11	7.01	Red	ceived By: (Signature	e) \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \				08041c	Military/Hours	Additio	onal Comments:	Site Arrival	- T + N + 1 + N + 1 + 1 + 1 + 1 + 1 + 1 + 1
Relinquished By (Signature)	Myn X	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	Rec	ceived By: (Signature		V) ()	. 0		S 411	12350			Field Tech F	
Relinguished By: (Signalure)	x LOST.		Red	ceived For Prism Lat	boratories B	1-061	<u> </u>		Date				Mileage:	
Method of Shipment: NOTE/	ALL SAMPLE COOL	ERS SHOULD BE T	APED SHUT WIT	H CUSTODY SEALS	FOR TRAN	ISPORTATION T	TO THE LABORATOR	Υ.	COC Group No				Mileage	<u>Parti de la como de l</u>
1 /			D AGAINST COC	UNTIL RECEIVED	AT THE LAE	BORATORY.								TIVEDES FOR
NPDES: UST:	GROUN	DWATER:	RINKING W	11 to 12	ID WAST		A: CERCL		LANDFILL □ NC □ SC	OTHER:			TERMS	EVERSE FOR & CONDITIONS
			NC SC	· —	C □ SC		·- m	1	n. 4862				INVOIC	E COPY
*CONTAINER TYPE C	CODES: A = A	mber $C = Clea$	ar G = Glass	P = Plastic; I	L= Tello	ni-Lineu Oap	, voa – voiauit	, organi				11/2		

449 Springbrook Road • F. Phone: 704/529-6364 • F. Client Company Name: Report To/Contact Nar Reporting Address: Phone: 99-673-106 Email (Yes) (No) Email EDD Type: PDF Ex. Site Location Name: Site Location Physical	No. En Conies, INC.	OPEN MAR Doad IC (NO):	olutions) 28224-0543	Requested Due Date 1 Day 2 Days 3 Days 4 Days 5 Days "Working Days" 6-9 Days 5 Standard 10 days Pre-Approved Samples received after 15:00 will be processed next business day. Turnaround time is based on business days, excluding weekends and holidays.								Samples INTACT upon arrival? Received ON WET ICE? Temp D. L. PROPER PRESERVATIVES indicated? Received WITHIN HOLDING TIMES? CUSTODY SEALS INTACT? VOLATILES rec'd WOUT HEADSPACE? PROPER CONTAINERS used? D BE FILLED IN BY CLIENT/SAMPLING PERSONNEL ertification: NELAC USAGE FL NC SC OTHER N/A Vater Chlorinated: YESNO						
		TIME	MATRIX	RENDERED	BY PRISM E CONTA	LABORATORI	ES; (NC. TO CLIENT)		<u> </u>	تالد		UESTED		onecu	VII. 15		<u>v —</u>	PRISM
CLIENT SAMPLE DESCRIPTION	DATE COLLECTED	COLLECTED MILITARY HOURS	(SOIL, WATER OR SLUDGE)	*TYPE SEE BELOW	NO.	SIZE	PRESERVA- TIVES	(c)							REN	iarks o E	1	LAB ID NO.
601-1	8 MIG	940	water	Plastic	1	9 2 7 3 3 3 3 3 4 7 4 7 4 7 4 7 4 7 4 7 4 7	Na. 15, 0,	\times	Sample	2//				\$tt E	S		Ď.	
507-6	51410	955						\times	Samp	P.	2		-/					
						3.0								77	B. `	ට දී	51 (A
		7									W		100 m	7				-
										\$ 1						101/2		
										*			7 121					
					a ija			T		Ĭ,					1.00 miles 1.00 miles			
										* S	849 1			1 11			-	
													<u> </u>	36				
Sampler's Signature	Middle (21/21	Sampled B	By (Print Name)	Kall	nyh	2011		tion <u>Sy</u> (10	T	1E <	<u>, </u>	PRE	SS DO	WN FI	alvi Sy	- 3 COPIE
Upon relinquishing, this submitted in writing to		فمحم مدينات بالماء	horization for here will be c	r Prism to proc harges for any	eed with changes	the analyse	s as requested a	bove. Aı itialized.	ny change		t be Villitary/Ho	urs I	مانانام		nments	7.5	100	USE ONLY
Relinquished By: (Signature)	Un Do	ll _		eived By: (Signature	(28	<u>م</u> الم			0804	34	1030		Audillo	nai Coi		30 300	Arrival Departu	ı ime: ire:Time:
Relinquished By: (Signature)	יי איני	4		eived By: (Signature	WT)	Now	Ö		8H)11) 	235	<u>5Ω</u>	<i>3</i>		4. 2. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1	Fiel	d Tech F	ee:
Relinquished By: (Signature)				eived For Prism Lab		To g			Date	1						Mile	age:	
Method of Shipment: NOTE: A SAMPLE	LL SAMPLE COOLE S ARE NOT ACCES	RS SHOULD BE TA TED AND VERIFIED	APED SHUT WITH D AGAINST COC	I CUSTODY SEALS UNTIL RECEIVED A	FOR TRANS	SPORTATION # ORATORY:	OTHE LABORATORY	(.	COC Group	NO.	To the second			4.57			S	· -
Fed EX QUPS DHand NPDES: UST:	GROUND	WATER: D	Other RINKING WA NC DSC		D WASTI	E: RCRA	. CERCL		 _ ANDFIL L ⊒ NC □ S		THER:						SEE R ERMS	EVERSE FOR & CONDITION: