PROJECT SPECIAL PROVISIONS #### **ROADWAY** ## **CLEARING AND GRUBBING - METHOD II:** (9-17-02) (Rev 3-18-08) SP2 R01 Perform clearing on this project to the limits established by Method "II" shown on Standard No. 200.02 of the 2006 Roadway Standard Drawings. Revise the 2006 Standard Specifications as follows: ## Page 2-2, Article 200-3, Clearing, add the following as the 6th paragraph: At bridge sites, clear the entire width of the right of way beginning at a station 3 feet back of the beginning extremity of the structure and ending at a station 3 feet beyond the ending extremity of the structure. ## **BURNING RESTRICTIONS:** (7-1-95) SP2 R05 Open burning is not permitted on any portion of the right-of-way limits established for this project. Do not burn the clearing, grubbing or demolition debris designated for disposal and generated from the project at locations within the project limits, off the project limits or at any waste or borrow sites in this county. Dispose of the clearing, grubbing and demolition debris by means other than burning, according to state or local rules and regulations. ## CONTAMINATED SOIL The Contractor's attention is directed to the fact that soil containing petroleum hydrocarbon compounds and volatile organic compounds may exist within the project area. An active gas station operates on Parcel #52, M. M. Fowler, Inc. property. Petroleum hydrocarbon compounds may have migrated, contaminating soil in the right of way and/or construction easement. Impact to contamination is possible during any earthwork activities on the project. The Contractor shall only excavate those soils which the Engineer designates necessary to complete a particular task. The Engineer shall determine if soil is contaminated based on petroleum odors and unusual soil staining. Contaminated soil not required to be excavated is to remain in place and undisturbed. Undisturbed soil shall remain in place, whether contaminated or not. The Contractor shall stockpile all excavated contaminated soil within the property boundaries of Parcel #52. If the volume of contaminated material exceeds available space on site, the Contractor shall obtain a permit from the NCDENR UST Section for off-site temporary storage. The stockpile shall be constructed in accordance with the "Diagram for Temporary Containment of Petroleum Contaminated Soil" detail located in the plans. The Engineer is to notify the Geotechnical Engineering Unit if petroleum contaminated soil is encountered and the Geotechnical Engineering Unit shall arrange for the sampling and disposal of the contaminated soil. ## **Measurement and Payment:** The quantity of contaminated soil excavated and stockpiled shall be the actual number of tons of material, which has been acceptably excavated, transported, and weighed with certified scales. Include in the unit bid price for *Excavating and Stockpiling Contaminated Soil* all costs associated with this activity including excavation, stockpile construction material, permitting, and personal protective equipment. Payment shall be made under: Pay Item Pay Unit Excavation and Stockpiling Contaminated Soil Ton ## **EMBANKMENTS:** (5-16-06) (Rev 7-21-09) SP2 R18 Revise the Standard Specifications as follows: Page 2-22, Article 235-3 Materials, add the following as the second sentence of the second paragraph: Aerate and dry material containing moisture content in excess of what is required to achieve embankment stability and specified density. ### Page 2-22, Subarticle 235-4(B) Embankment Formation, add the following: (16) Do not place rock or broken pavement in embankment areas where piles or drilled shaft foundations are to be constructed. This shall include but not be limited to piles and foundations for structures, metal signal poles, overhead sign structures, and high mount lighting. ## **AGGREGATE SUBGRADE:** (9-18-07) (Rev 3-16-10) SP2 R35 #### **Description** Construct aggregate subgrades in accordance with the contract or as directed by the Engineer. Undercut as needed in cut areas. Install fabric for soil stabilization and place Class IV Subgrade Stabilization at locations shown on the plans. #### **Materials** Refer to Division 10 of the Standard Specifications. | Item | Section | |---------------------------------------|---------| | Select Material, Class IV | 1016 | | Fabric for Soil Stabilization, Type 4 | 1056 | Use Class IV Select Material for Class IV Subgrade Stabilization. If Class IV Subgrade Stabilization does not meet the requirements of Article 1010-2 of the *Standard Specifications*, the Engineer may consider the material reasonably acceptable in accordance with Article 105-3 of the *Standard Specifications*. #### **Construction Methods** When shallow undercut is required to construct aggregate subgrades, undercut 6 to 24 inches as shown on the plans or as directed by the Engineer. Perform undercut excavation in accordance with Section 225 of the *Standard Specifications*. Install fabric for soil stabilization in accordance with Article 270-3 of the *Standard Specifications*. Place Class IV Subgrade Stabilization (standard size no. ABC) by end dumping ABC on the fabric. Do not operate heavy equipment on the fabric until it is covered with Class IV Subgrade Stabilization. Compact ABC to 92% of AASHTO T180 as modified by the Department or to the highest density that can be reasonably obtained. Maintain Class IV Subgrade Stabilization in an acceptable condition and minimize the use of heavy equipment on ABC in order to avoid damaging aggregate subgrades. Provide and maintain drainage ditches and drains as required to prevent entrapping water in aggregate subgrades. ## **Measurement and Payment** Shallow Undercut will be measured and paid for in cubic yards. Shallow undercut will be measured in accordance with Article 225-7 of the Standard Specifications. The contract unit price for Shallow Undercut will be full compensation for excavating, hauling and disposing of materials to construct aggregate subgrades. Class IV Subgrade Stabilization will be measured and paid for in tons. Class IV Subgrade Stabilization will be measured by weighing material in trucks in accordance with Article 106-7 of the Standard Specifications. The contract unit price for Class IV Subgrade Stabilization will be full compensation for furnishing, hauling, handling, placing, compacting and maintaining ABC. Fabric for Soil Stabilization will be measured and paid for in accordance with Article 270-4 of the Standard Specifications. Payment will be made under: Pay Item Shallow Undercut Class IV Subgrade Stabilization Pay Unit Cubic Yard Ton # **SHOULDER AND FILL SLOPE MATERIAL:** (5-21-02) SP2 R45 C # **Description** Perform the required shoulder and slope construction for this project in accordance with the applicable requirements of Section 560 and Section 235 of the 2006 Standard Specifications except as follows: Construct the top 6 inches of shoulder and fill slopes with soils capable of supporting vegetation. Provide soil with a P.I. greater than 6 and less than 25 and with a pH ranging from 5.5 to 6.8. Remove stones and other foreign material 2 inches or larger in diameter. All soil is subject to test and acceptance or rejection by the Engineer. Obtain material from within the project limits or approved borrow source. # Compensation When the Contractor elects to obtain material from an area located beneath a proposed fill sections which does not require excavation for any reason other than to generate acceptable shoulder and fill slope material, the work of performing the excavation will be considered incidental to the item of Borrow Excavation or Shoulder Borrow. If there is no pay item for Borrow or Shoulder Excavation in the contract, this work will be considered incidental to Unclassified Excavation. Stockpile the excavated material in a manner to facilitate measurement by the Engineer. Fill the void created by the excavation of the shoulder and fill slope material with suitable material. Payment for material used from the stockpile will be made at the contract unit price for Borrow Excavation or Shoulder Borrow, then the material will be paid for at the contract unit price for Unclassified Excavation. The material used to fill the void created by the excavation of the shoulder and fill slope material will be made at the contract unit price for Unclassified Excavation, Borrow Excavation, or Shoulder Borrow, depending on the source of the material. Material generated from undercut excavation, unclassified excavation or clearing and grubbing operations that is placed directly on shoulders or slope areas, will not be measured separately for payment, as payment for the work requiring the excavation will be considered adequate compensation for depositing and grading the material on the shoulders or slopes. When undercut excavation is performed at the direction of the Engineer and the material excavated is found to be suitable for use as shoulder and fill slope material, and there is no area on the project currently prepared to receive the material generated by the undercut operation, the Contractor may construct a stockpile for use as borrow at a later date. Payment for the material used from the stockpile will be made at the contract unit price for *Borrow Excavation* or *Shoulder Borrow*. When shoulder material is obtained from borrow sources or from stockpiled material, payment for the work of shoulder construction will be made at the contract unit price per cubic yard for *Borrow Excavation* or *Shoulder Borrow* in accordance with the applicable provisions of Section 230 or Section 560 of the 2006 Standard Specifications. # **SELECT GRANULAR MATERIAL:** (3-16-10) SP2 R80 Revise the *Standard Specifications* as follows: Page 2-29, Delete Section 265 **SELECT GRANULAR MATERIAL** and replace it with the following: # **Description** Furnish and place select granular material in accordance with the contract or as directed by the
Engineer. #### **Materials** Refer to Division 10 of the Standard Specifications. | Item | Section | |----------------------------|---------| | Select Material, Class II | 1016 | | Select Material, Class III | 1016 | ## **Construction Methods** Use Class II or III Select Material over fabric for soil stabilization and only Class III Select Material for backfill in water. Place select granular material to 3 ft above fabric and water level. ## Measurement and Payment Select granular material will be paid for as *Select Granular Material* unless the material is obtained from the same source as the borrow material and the contract includes a pay item for *Borrow Excavation*. When this occurs, select granular material will be paid for as *Borrow Excavation* in accordance with Article 230-5 of the *Standard Specifications* and no payment for *Select Granular Material* will be made. Select Granular Material will be measured and paid for in cubic yards. When Undercut Excavation is in accordance with Section 226 (Comprehensive Grading) of the Standard Specifications and the Engineer requires undercut to be backfilled with select granular material, the second sentence of the sixth paragraph of Article 226-3 will not apply, as payment for the backfill will be made as specified in this provision. Select granular material will be measured by in place measurement in accordance with Article 230-5 of the *Standard Specifications* or by weighing material in trucks in accordance with Article 106-7 of the *Standard Specifications* as determined by the Engineer. When select granular material is weighed in trucks, a unit weight of 135 lb/ft³ will be used to convert the weight of select granular material to cubic yards. At the Engineer's discretion, truck measurement in accordance with Article 230-5 of the *Standard Specifications* may be used in lieu of weighing material in trucks. The contract unit prices for *Select Granular Material* and *Borrow Excavation* as described above will be full compensation for furnishing, hauling, handling, placing, compacting and maintaining select granular material. Payment will be made under: ## Pay Item Pay Unit Select Granular Material Cubic Yard # **FLOWABLE FILL:** (9-17-02) (Rev 8-21-07) SP3 R30 #### **Description** This work consists of all work necessary to place flowable fill in accordance with these provisions, the plans, and as directed. #### Materials Provide flowable fill material in accordance with Article 340-2 of the 2006 Standard Specifications. #### **Construction Methods** Discharge flowable fill material directly from the truck into the space to be filled, or by other approved methods. The mix may be placed full depth or in lifts as site conditions dictate. The Contractor shall provide a method to plug the ends of the existing pipe in order to contain the flowable fill. ## **Measurement and Payment** At locations where flowable fill is called for on the plans and a pay item for flowable fill is included in the contract, *flowable fill* will be measured in cubic yards and paid for as the actual number of cubic yards that have been satisfactorily placed and accepted. Such price and payment will be full compensation for all work covered by this provision including but not limited to the mix design, furnishing, hauling, placing and containing the flowable fill. Payment will be made under: | Pay Item | Pay Unit | |---------------|------------| | Flowable Fill | Cubic Yard | # PIPE TESTING: 4-17-07 SP3 R33 Revise the 2006 Standard Specifications as follows: Page 3-3, Article 300-6, add the following as a new paragraph before (A): The Department reserves the right to perform forensic testing on any installed pipe. ## **DRAINAGE PIPE:** (7-18-06) (Rev 3-16-10) SP3 R37 ## **Description** Where shown in the plans the Contractor may use Reinforced Concrete Pipe, Aluminum Alloy Pipe, Aluminized Corrugated Steel Pipe, HDPE Pipe, or PVC pipe in accordance with the following requirements. ## Material | Item | Section | | |--|--------------|--| | Corrugated Aluminum Alloy Pipe | 1032-2(A) | | | Aluminized Corrugated Steel Pipe | 1032-3(A)(7) | | | Corrugated Polyethylene Pipe (HDPE) | 1032-10 | | | Reinforced Concrete Pipe – Class II or III | 1032-9(C) | | | Polyvinyl-Chloride (PVC) | 1032-11 | | | Elbows | 1032 | | Corrugated Steel Pipe will not be permitted in counties listed in the contract documents. Only pipe with smooth inside walls will be allowed for storm drain systems. Storm drain systems are defined as pipe under curb and gutter, expressway gutter, and shoulder berm gutter that connects drainage structures and is not open ended. #### **Construction Methods** Pipe Culverts shall be installed in accordance with the contract documents. Where allowed by the plans, use any of the several alternate pipes shown herein, but only one type of pipe and elbow will be permitted between drainage structures or for the entire length of a cross line pipe. # **Measurement and Payment** | " Drainage Pipe will be paid for as the actual number of linear feet installed and accepted Measurement will be in accordance with the contract documents. | | |--|--| | for in units of each. | | | | | | Pay Unit | | | Linear Foot | | | Each | | | | | # **PIPE INSTALLATION AND PIPE CULVERTS:** SP3 R40 B Revise the Standard Specifications as follows: Replace Section 300 and Section 310 with the following: # SECTION 300 PIPE INSTALLATION ## 300-1 DESCRIPTION Excavate, undercut, provide material, condition foundation, lay pipe, joint and couple pipe sections, and furnish and place all backfill material as necessary to install the various types of pipe culverts and fittings required to complete the project. Install pipe in accordance with the detail in the plans. Do not waste excavation unless permitted. Use suitable excavated material as backfill; or in the formation of embankments, subgrades, and shoulders; or as otherwise directed. Furnish disposal areas for the unsuitable material. The Engineer will identify excavated materials that are unsuitable. Where traffic is to be maintained, install pipe in sections so that half the width of the roadway is available to traffic. ## 300-2 MATERIALS Refer to Division 10: | Item | Section | |--------------------|-----------| | Flowable Fill | 1000 | | Select Materials | 1016 | | Joint Materials | 1032-9(G) | | Engineering Fabric | 1056-1 | Provide foundation conditioning material meeting the requirements of Article 1016-3 for Class V or VI as shown in the contract documents. Provide bedding material meeting the requirements of Article 1016-3 for Class II (Type 1 only) or Class III as shown in contract documents. Provide backfill material meeting the requirements of Article 1016-3 for Class II (Type 1 – for Flexible Pipe) or Class III material as shown in the contract documents. Do not use corrugated steel pipe in the following counties: Beaufort, Bertie, Bladen, Brunswick, Camden, Carteret, Chowan, Columbus, Craven, Currituck, Dare, Gates, Hertford, Hyde, Jones, Martin, New Hanover, Onslow, Pamlico, Pasquotank, Pender, Perquimans, Tyrrell, and Washington. ## 300-3 UNLOADING AND HANDLING Unload and handle pipe with reasonable care. Do not roll or drag metal pipe or plates over gravel or rock during handling. Take necessary precautions to ensure the method used in lifting or placing the pipe does not induce stress fatigue in the pipe. Use a lifting device that uniformly distributes the weight of the pipe along its axis or circumference. Repair minor damage to pipe when permitted. Remove pipe from the project that is severely damaged or is rejected as being unfit for use. Undamaged portions of a joint or section may be used where partial lengths are required. #### 300-4 PREPARATION OF PIPE FOUNDATION Prepare the pipe foundation in accordance with the applicable method as shown in the contract documents, true to line and grade, and uniformly firm. Camber invert grade an amount sufficient to prevent the development of sag or back slope in the flow line. The Contractor shall determine the amount of camber required and submit to the Engineer for approval. Where material is found to be of poor supporting value or of rock and when the Engineer cannot make adjustment in the location of the pipe, undercut existing foundation material within the limits established on the plans. Backfill the undercut with foundation conditioning material, Class V or VI select material. Encapsulate the foundation conditioning material with Type 4 engineering fabric prior to placing bedding material. Overlap all transverse and longitudinal joints in the fabric at least 18 inches. Maintain the pipe foundation in a dry condition. #### 300-5 INVERT ELEVATIONS The proposed pipe culvert invert elevations shown on the Drainage Summary Sheets are based upon information available when the plans were prepared. If proposed invert elevations are adjusted during construction based upon actual conditions encountered, no claim for an extension of time for any reason resulting from this information will be allowed. When a pipe culvert is to be installed in a trench and the average actual elevation of the pipe between drainage structures deviates from the average proposed elevation shown on the Drainage Summary Sheets by more than one foot a pay adjustment will be made as follows: Pay Adjustment (per linear foot) = [(APE-AAE)± 1 foot] (0.15 X CUP) Where: CUP = Contract Unit Price of Pipe Culvert AAE = Average Actual Elevation (Actual Inlet elev. + Actual Outlet elev.) 2 APE = Average Plan Elevation (Plan Inlet elev. + Plan Outlet elev.) 2 When the actual location of a pipe culvert is changed from the location shown on the plans, the Engineer will make a pay adjustment deemed warranted based upon the relation of the pipe culvert as
shown on the plans to the finished roadway and the relation of the pipe culvert as constructed to the finished roadway. The top elevation column on the drainage summary sheet indicates the flow elevation at the top of structures intended to collect surface water. The top elevation column on drainage structures not intended to collect surface water indicates the elevation at the top of the cover. ## 300 -6 LAYING PIPE The Department reserves the right to perform forensic testing on any installed pipe. # (A) Rigid Pipe Concrete and welded steel pipe will be considered rigid pipe. Lay pipe on prepared foundation, bell or groove end upgrade with the spigot or tongue fully inserted. Check each joint for alignment and grade as the work proceeds. Use flexible plastic joint material except when material of another type is specified in the contract documents. Joint material of another type may be used when permitted. Repair lift holes in concrete pipe, if present. Thoroughly clean and soak the lift hole and completely fill the void with an approved non-shrink grout. Submit alternate details for repairing lift holes to the engineer for review and approval. For all pipes 42 inches in diameter and larger, wrap filter fabric around all pipe joints. Use Type 3 Class B fabric. Extend fabric at least 12 inches beyond each side of the joint. Secure the filter fabric against the outside of the pipe by methods approved by the Engineer. # (B) Flexible Pipe (Except Structural Plate Pipe) Corrugated steel, corrugated aluminum, corrugated polyethylene (HDPE), and polyvinylchloride (PVC) pipe will be considered flexible pipe. Place flexible pipe carefully on the prepared foundation starting at the downstream end with the inside circumferential laps pointing downstream and with the longitudinal laps at the side or quarter points. Handle coated corrugated steel pipe with special care to avoid damage to coatings. Join pipe sections with coupling band, fully bolted and properly sealed. Provide coupling bands for annular and helical corrugated metal pipe with circumferential and longitudinal strength sufficient to preserve the alignment, prevent separation of the sections, and prevent backfill infiltration. Match-mark all pipe 60 inches or larger in diameter at the plant for proper installation on the project. At locations indicated in the plans, corrugated steel pipe sections shall be jointed together with rod and lug coupling bands, fully bolted. Sleeve gaskets shall be used in conjunction with rod and lug couplings and the joints properly sealed. Coupling bands shall provide circumferential and longitudinal strength sufficient to preserve the alignment, prevent separation of the sections and prevent infiltration of backfill material. #### 300-7 BEDDING AND BACKFILLING Loosely place bedding material, in a uniform layer, a depth equal to the inside diameter of the pipe divided by 6 or 6 inches, whichever is greater. Leave bedding material directly beneath the pipe uncompacted and allow pipe seating and backfill to accomplish compaction. Excavate recesses to receive the bells where bells and spigot type pipe is used. Place fill around the pipe in accordance with the applicable method shown on the plans in layers not to exceed 6 inches loose unless otherwise permitted. Compact to the density required by Subarticle 235-4(C). Approval of the backfill material is required prior to its use. Use select material as shown in the contract documents. Take care during backfill and compaction operations to maintain alignment and prevent damage to the joints. Keep backfill free from stones, frozen lumps, chunks of highly plastic clay, or other objectionable material. Grade and maintain all pipe backfill areas in such a condition that erosion or saturation will not damage the pipe foundation or backfill. Excavatable flowable fill may be used for backfill when approved by the Engineer. When using excavatable flowable fill, ensure that the pipe is not displaced and does not float during backfill. Submit methods for supporting the pipe and material placement to the Engineer for review and approval. Do not operate heavy equipment over any pipe until it has been properly backfilled with a minimum 3 feet of cover. Place, maintain, and finally remove the required cover that is above the proposed finished grade at no cost to the Department. Remove and replace, at no cost to the Department, pipe that becomes misaligned, shows excessive settlement, or has been otherwise damaged by the Contractor's operations. ### 300-8 INSPECTION AND MAINTENANCE Prior to final acceptance, the Engineer will perform random video camera and or mandrel inspections to ensure proper jointing and that deformations do not exceed allowable limits. Replace pipes having cracks greater than 0.1 inches or deflections greater than 7.5 percent. Repair or replace pipes with cracks greater than 0.01 inches, exhibiting displacement across a crack, exhibiting bulges, creases, tears, spalls, or delamination. Maintain all pipe installations in a condition such that they will function continuously from the time the pipe is installed until the project is accepted. ## 300-9 MEASUREMENT AND PAYMENT ## General No measurement will be made of any work covered by this section except as listed below. Removal and disposal of existing pavement is a part of the excavation for the new pipe culvert installation. Repair of the pavement will be made in accordance with Section 654. # **Foundation Conditioning** # **Using Local Material** Undercut excavation is all excavation removed by undercutting below the bottom of the trench as staked. *Undercut Excavation* will be measured as the actual number of cubic yards of undercut excavation, measured in its original position and computed by the average end area method, that has been removed as called for in the contract and will be paid for at double the contract unit price for *Unclassified Excavation* as provided in Article 225-7. Local material used for conditioning the foundation will be measured and paid for in accordance with Article 225-7 for *Unclassified Excavation* or in accordance with Article 230-5 for *Borrow Excavation* depending on the source of the material. Local material used to replace pipe undercut excavation will be measured and paid for in accordance with Article 225-7 or Article 230-5. # **Using Other Than Local Material** No measurement and payment will be made for *Undercut Excavation*. The material used to replace pipe undercut excavation will be classified as foundation conditioning material. Foundation Conditioning Material, Minor Structures will be measured and paid for as the actual number of tons of this material weighed in trucks on certified platform scales or other certified weighing devices. No direct payment will be paid for undercut excavation. Payment at the contract unit price for *Foundation Conditioning Material, Minor Structures* will be full compensation for all work of pipe undercut excavation. ## **Foundation Conditioning Fabric** Foundation Conditioning Fabric will be measured and paid for in square yards. The measurement will be based on the theoretical calculation using length of pipe installed and two times the standard trench width. No separate measurement will be made for overlapping fabric or the vertical fabric dimensions required to encapsulate the foundation conditioning material. ## **Bedding and Backfill - Select Material** No measurement will be made for select bedding and backfill material required in the contract documents. The select bedding and backfill material will be included in the cost of the installed pipe. Where unclassified excavation or borrow material meets the requirements for select bedding and backfill and is approved for use by the Engineer, no deductions will be made to these pay items to account for use in the pipe installation. Payment will be made under: | Pay Item | Pay Unit | |--|-------------| | Foundation Conditioning Material, Minor Structures | Ton | | Foundation Conditioning Fabric | Square Yard | # SECTION 310 PIPE CULVERTS ## 310-1 DESCRIPTION Furnish and install drainage pipe at locations and size called for in the contract documents. The work includes construction of joints and connections to other pipes, endwalls, and drainage structures. ## 310-2 MATERIALS Refer to Division 10: | Item | Section | |--|------------| | Plain Concrete Pipe Culvert | 1032-9(B) | | Reinforced Concrete Pipe Culvert | 1032-9(C) | | Precast Concrete Pipe End Sections | 1032-9(D) | | Concrete Pipe Tees and Elbows | 1032-9(E) | | Corrugated Aluminum Alloy Pipe Culvert | 1032-2(A) | | Corrugated Aluminum Alloy Pipe Tees and Elbows | 1032-2(B) | | Corrugated Steel Culvert Pipe and Pipe Arch | 1032-3(A) | | Prefabricated Corrugated Steel Pipe End Sections | 1032-3(B) | | Corrugated Steel Pipe Tees and Elbows | 1032-3(C) | | Corrugated Steel Eccentric Reducers | 1032-3(D) | | HDPE Smooth Lined Corrugated Plastic Pipe | 1032-10B | | Polyvinylchloride (PVC) Pipe | 1032-11(B) | Suppliers that provide metal pipe culverts, fittings, and all other accessories covered by this section shall meet the requirements of the Department's Brand Certification program for metal pipe culverts, and be listed on the Department's pre-approved list for suppliers of metal pipe culvert. Do not use corrugated steel pipe in the following counties: Beaufort, Bertie, Bladen, Brunswick, Camden, Carteret, Chowan, Columbus, Craven, Currituck, Dare, Gates, Hertford, Hyde, Jones, Martin, New Hanover, Onslow, Pamlico, Pasquotank, Pender, Perquimans, Tyrell, and Washington. #### 310-3 PIPE INSTALLATION Install pipe, pipe tees, and elbows in accordance with Section 300. #### 310-4 SIDE DRAIN PIPE Side drain pipe is defined as storm drain pipe running parallel to the roadway to include pipe in medians, outside ditches, driveways, and under shoulder
berm gutter along outside shoulders greater than 4 feet wide. Where shown in the plans, side drain pipe may be class II reinforced concrete pipe, aluminized corrugated steel pipe, corrugated aluminum alloy pipe, HDPE pipe, or PVC pipe. Corrugated steel pipe is restricted in the counties listed in Article 310-2. Install side drain pipe in accordance to Section 300. Cover for side drain pipe shall be at least one foot. ## 310-5 PIPE END SECTIONS Choose which material to use for the required end sections. Both corrugated steel and concrete pipe end sections will work on concrete pipe, corrugated steel pipe, and HDPE smooth lined corrugated plastic pipe. # 310-6 MEASUREMENT AND PAYMENT Pipe will be measured and paid for as the actual number of linear feet of pipe that has been incorporated into the completed and accepted work. Measurement of pipe will be made by counting the number of joints used and multiplying by the length of the joint to obtain the number of linear feet of pipe installed and accepted. Measurements of partial joints will be made along the longest length of the partial joint to the nearest 0.1 of a foot. Select bedding and backfill material will be included in the cost of the installed pipe. Pipe end sections, tees, elbows, and eccentric reducers will be measured and paid for as the actual number of each of these items that have been incorporated into the completed and accepted work. Payment will be made under: | Pay Item | Pay Unit | |---|-------------| | " R.C. Pipe Culverts, Class | Linear Feet | | " x" x" R.C. Pipe Tees, Class | Each | | " R.C. Pipe Elbows, Class | Each | | " C.A.A. Pipe Culvert," Thick | Linear Feet | | " x" x" C.A.A. Pipe Tees," Thick | Each | | " C.A.A. Pipe Elbows," Thick | Each | | " C.S. Pipe Culverts," Thick | Linear Feet | | " x" C.S. Pipe Arch Culverts," Thick | Linear Feet | | x" x" C.S. Pipe Tees," Thick | Each | | " C.S. Pipe Elbows," Thick | Each | | " x" C.S. Eccentric Reducers," Thick | Each | | " HDPE Pipe | Linear Feet | | " PVC Pipe | Linear Feet | | " Side Drain Pipe | Linear Foot | | Pipe End Section | Each | | MECHANICALLY STABILIZED EARTH RETAINING WALLS | (2-16-10) | ## 1.0 General ## A. Description A mechanically stabilized earth (MSE) retaining wall is defined as a soil retaining system with steel or geogrid tensile reinforcements in the reinforced zone and vertical or nearly vertical facing elements. The facing elements may be precast concrete panels or segmental retaining wall (SRW) units unless required otherwise on the plans or the NCDOT Policy for Mechanically Stabilized Earth Retaining Walls prohibits the use of SRW units. Design and construct MSE retaining walls based on actual elevations and dimensions in accordance with the contract and accepted submittals. Use an MSE Wall Installer prequalified by the NCDOT Contractual Services Unit for MSE retaining walls work (work code 3015). For this provision, "MSE wall" refers to a mechanically stabilized earth retaining wall and "MSE Wall Vendor" refers to the vendor supplying the chosen MSE wall system. Also, "blocks" refer to SRW units and "panels" refer to precast concrete panels. ## B. MSE Wall System Use an MSE wall system approved by the Department in accordance with any restrictions for the chosen system, the plans and the *NCDOT Policy for Mechanically Stabilized Earth Retaining Walls*. Value engineering proposals for other MSE wall systems will not be considered. Obtain the NCDOT MSE wall policy and the list of approved MSE wall systems from: # http://www.ncdot.org/doh/preconstruct/highway/geotech/msewalls/ MSE wall systems with conditional approval are restricted to a design height of 20 ft (6.1 m) and an exposed face area of 5,000 ft² (465 m²) per MSE wall. The design height is defined as the difference between where the finished grade intersects the back and front of an MSE wall. The conditional status of an MSE wall system will be reevaluated after satisfactorily completing a representative MSE wall meeting the following requirements. - Design height exceeds 15 ft (4.6 m) for a horizontal distance of at least 150 ft (46 m) along the wall face - Designed and constructed in accordance with this provision - Movement monitored during construction to 3 months after wall is subject to surcharge loads or movement stops, whichever is longer, in accordance with the NCDOT MSE wall policy - MSE wall system evaluation report submitted in accordance with the NCDOT MSE wall policy When designing an MSE wall with a conditionally approved system, notify the Engineer if the MSE wall will meet the above requirements. ## 2.0 MSE Wall Design Submittal Submit 11 hard copies of working drawings and 3 hard copies of design calculations and an electronic copy (PDF on CD or DVD) of each for the MSE wall design submittal. Provide the submittal at least 30 calendar days before conducting the MSE wall preconstruction meeting. Do not begin MSE wall construction until the design submittal is accepted. The Retaining Wall Plans show plan views, typical sections, details, notes and elevation or profile views (wall envelope) for each MSE wall. When noted on plans and before beginning MSE wall design, survey existing ground elevations shown on the plans and submit a revised wall envelope for review and acceptance. Use the accepted revised wall envelope for design. Design MSE walls in accordance with any restrictions for the chosen MSE wall system, the plans and the AASHTO Standard Specifications for Highway Bridges unless otherwise required. Either the simplified or Meyerhof coherent gravity approach is acceptable for determining maximum reinforcement loads. Design steel components including reinforcement and connection hardware for non-aggressive backfill with corrosion losses in accordance with the AASHTO specifications. Also, design MSE walls with a minimum reinforcement length of 6 ft (1.8 m) unless shown otherwise on the plans and the reinforcement coefficients and geogrid reduction factors submitted to the Department for the approval of the chosen MSE wall system. If existing or future obstructions such as foundations, guardrail posts, pavements, pipes, inlets or utilities will interfere with reinforcement, maintain a minimum clearance of 3" (75 mm) between the obstruction and reinforcement unless otherwise approved. Place reinforcement within 3" (75 mm) above the corresponding connection elevation. Use 6 inch (150 mm) thick cast-in-place unreinforced concrete leveling pads beneath panels and blocks that are continuous at steps and extend a minimum of 6" (150 mm) in front of and behind bottom row of panels and blocks. Unless required otherwise on the plans, embed top of leveling pads in accordance with the following. #### EMBEDMENT DEPTH | Front Slope (H:V) | Minim | num Facing Embedment Depth* (whichever is greater) | |--|-------|--| | 6:1 or Flatter (except abutment walls) | H/20 | 1 ft (0.3 m) | | 6:1 or Flatter (abutment walls) | H/10 | 2 ft (0.6 m) | | Steeper than 6:1 to 3:1 | H/10 | 2 ft (0.6 m) | | Steeper than 3:1 to 2:1 | H/7 | 2 ft (0.6 m) | | * H is from the top of leveling pad to the grade elevation | | | When a drain is required with a note on plans, extend a continuous drain along the base of the reinforced zone behind the select material. Provide drains meeting the requirements of an aggregate shoulder drain in accordance with Roadway Standard Drawing No. 816.02. Use select material in the reinforced zone for MSE walls and extend the reinforced zone 6" (150 mm) beyond the end of reinforcement. Regardless of select material type, fill between and behind SRW units for a horizontal distance of 18" (450 mm) and, unless otherwise approved, any block core spaces with stone meeting the requirements of standard size nos. 57, 67 or 78M in accordance with Sections 1005 and 1014 of the *Standard Specifications*. Separation fabric is required between select material and overlying fill or aggregate with the exception of when concrete pavement is placed directly on the select material. Separation fabric may also be required between stone and backfill or natural ground as determined by the Engineer. Unless shown otherwise on the plans, use reinforced concrete coping at top of walls with dimensions shown on the plans. Extend coping a minimum of 6" (150 mm) above where finished grade intersects the back of MSE walls unless required otherwise on the plans. Castin-place concrete coping is required when noted on plans and for MSE walls with SRW units. At the Contractor's option, connect cast-in-place concrete coping to panels and blocks with dowels or extend coping down the back of MSE walls. Also, connect cast-in-place leveling concrete for precast concrete coping to panels with dowels. When barriers are required above MSE walls, use concrete barrier rails with moment slabs in accordance with the plans and design reinforcement for impact loads in accordance with the AASHTO Standard Specifications for Highway Bridges unless otherwise required. Submit working drawings and design calculations for review and acceptance in accordance with Article 105-2 of the Standard Specifications. Submit working drawings showing plan views, wall profiles with maximum applied bearing pressures, typical sections with reinforcement connection details, select material type and separation fabric locations and details of leveling pads, facing elements, coping, bin walls, slip joints, etc. If necessary, include details on working drawings for concrete barrier rails with moment slabs, reinforcement connected to end bent caps and obstructions interfering with reinforcement or extending through walls. Submit design calculations for each wall section with different surcharge loads, geometry or material parameters. A minimum of one analysis is required for each wall section with different
reinforcement lengths. When using a software program other than MSEW by ADAMA Engineering, Inc. for design, provide a hand calculation verifying the analysis of the section with the longest reinforcement length. Have MSE walls designed, detailed and sealed by a Professional Engineer registered in North Carolina. #### 3.0 Materials # A. Certifications, Storage and Handling Provide certifications in accordance with Article 106-3 of the *Standard Specifications*. Provide Type 3 Manufacturer's Certifications for all MSE wall materials with the exception of geogrids, SRW units and precast elements. For each geogrid product, provide Type 2 Typical Certified Mill Test Reports for tensile strength. For SRW units, provide Type 4 Certified Test Reports for all block properties with the exception of durability. When a note on plans requires freeze-thaw durable blocks, provide Type 5 Typical Certified Test Reports for durability. Load, transport, unload and store MSE wall materials such that they are kept clean and free of damage. Damaged panels or blocks with excessive discoloration, chips or cracks as determined by the Engineer will be rejected. Do not damage reinforcement connection hardware or mechanisms in handling and storing panels or blocks. Label each pallet of blocks with the information listed in Article 1077-13 of the *Standard Specifications*. Do not transport SRW units away from the casting yard until the concrete strength reaches 4000 psi (27.6 MPa) and a period of at least 5 days elapses after casting unless otherwise approved. Identify, store and handle geogrids and fabrics in accordance with ASTM D4873. Geogrids and fabrics with defects, flaws, deterioration or damage will be rejected. Do not leave geogrids and fabrics uncovered for more than 7 days. # B. Facing Elements Provide facing elements produced by a manufacturer approved or licensed by the MSE Wall Vendor. #### 1. Precast Concrete Panels Provide precast concrete panels meeting the requirements of Sections 1000 and 1077 of the *Standard Specifications* and reinforcing steel meeting the requirements of Section 1070 of the *Standard Specifications*. Accurately locate and secure reinforcement connection hardware and maintain a minimum 2" (50 mm) clearance to the reinforcing steel. Produce panels within 1/4 inch (6 mm) of the panel dimensions shown in the accepted submittals. A minimum compressive strength of 4000 psi (27.6 MPa) at 28 days is required. For testing panels for compressive strength, 4 cylinders are required per 2000 ft² (186 m²) of panel face area or a single day's production, whichever is less. Unless required otherwise on the plans, provide a final finish in accordance with Article 1077-11 of the *Standard Specifications*. # 2. Segmental Retaining Wall (SRW) Units Unless required otherwise on the plans, provide SRW units with a vertical split face and a concrete gray color with no tints, dyes or pigments. Before beginning block production, obtain approval of sample blocks of the type, face and color proposed for the project. Use blocks meeting the requirements of ASTM C1372 with the exception of absorption, compressive strength and durability requirements. Test blocks in accordance with ASTM C140 with the exception of the number of units in a lot. For testing blocks, a lot is defined as 5000 units or a single day's production, whichever is less, and 6 blocks are required per lot. Provide blocks with a maximum absorption of 5%. A minimum compressive strength of 4000 psi (27.6 MPa) at 28 days is required for blocks with the exception of freeze-thaw durable blocks. When a note on plans requires freeze-thaw durable SRW units, a minimum compressive strength of 5500 psi (37.9 MPa) at 28 days is required. Test freeze-thaw durable blocks in accordance with ASTM C1262. Test specimens in water. Freeze-thaw durable blocks are acceptable if the weight loss of each of 4 of the 5 specimens after 150 cycles does not exceed 1% of its initial weight. #### C. Reinforcement Provide reinforcement supplied by the MSE Wall Vendor or a manufacturer approved or licensed by the vendor. ## 1. Steel (Inextensible) Reinforcement Use welded wire reinforcement mesh and mats meeting the requirements of AASHTO M55 or M221 and steel strips or straps meeting the requirements of ASTM A572 or A1011 with a grade as specified in the accepted submittals. Galvanize steel reinforcement in accordance with Section 1076 of the *Standard Specifications*. ## 2. Geogrid (Extensible) Reinforcement Use geogrids approved by the Department for the chosen MSE wall system. Obtain the list of approved geogrids for each MSE wall system from the website shown elsewhere in this provision. Test geogrids in accordance with ASTM D6637. Provide minimum average roll values (MARV) as defined by ASTM D4439 for tensile strength of geogrids. For testing geogrids, a lot is defined as a single day's production. #### D. Select Material Provide select material meeting the requirements of standard size nos. 2S, 2MS, 57, 67 or 78M in accordance with Sections 1005 and 1014 of the *Standard Specifications* with the following exception. Do not use nos. 2S or 2MS when prohibited by a note on plans or when SRW units are not allowed. When using steel reinforcement with nos. 2S or 2MS, provide select material meeting the electrochemical requirements of Section 7.3.6.3 of the *AASHTO LRFD Bridge Construction Specifications* tested in accordance with the following methods: | Property | AASHTO Test Method | |-------------|--------------------| | pН | T289 | | Resistivity | T288 | | Chlorides | T291 | | Sulfates | T290 | Use select material free of deleterious materials with a maximum organic content of 1% tested in accordance with AASHTO T267. ## E. Miscellaneous Components Miscellaneous components may include attachment devices, connectors (e.g., pins, bars, plates, etc.), bearing pads, dowels, fasteners (e.g., bolts, nuts, etc.), filter fabric and any other wall components not included above. Galvanize steel components in accordance with Section 1076 of the *Standard Specifications*. Provide miscellaneous components approved by the Department for the chosen MSE wall system. Obtain the list of approved miscellaneous components for each MSE wall system from the website shown elsewhere in this provision. # F. Coping, Leveling Concrete and Pads Provide concrete coping and leveling pads meeting the requirements of Section 1000 of the *Standard Specifications* and reinforcing steel meeting the requirements of Section 1070 of the *Standard Specifications*. Provide precast coping meeting the requirements of Section 1077 of the *Standard Specifications* and leveling concrete for precast coping meeting the requirements of Section 1000 of the *Standard Specifications*. Use Class A Concrete for coping, leveling concrete and pads in accordance with Article 1000-4 of the *Standard Specifications*. For testing precast coping for compressive strength, 4 cylinders are required per 40 yd3 (31 m3) of concrete or a single day's production, whichever is less. ## G. Wall Drainage Systems Wall drainage systems consist of drains and outlet components. Use shoulder drain materials meeting the requirements of Section 816 of the *Standard Specifications*. ## H. Separation Fabrics Use separation fabrics meeting the requirements of Type 2 Engineering Fabric in accordance with Section 1056 of the *Standard Specifications*. ## I. Concrete Barrier Rails with Moment Slabs Provide concrete barrier rails with moment slabs meeting the requirements of Section 1000 of the *Standard Specifications* and reinforcing steel meeting the requirements of Section 1070 of the *Standard Specifications*. Use Class A Concrete for moment slabs and Class AA Concrete for concrete barrier rails in accordance with Article 1000-4 of the *Standard Specifications*. #### J. Joint Materials Use joint materials in accordance with Section 1028 of the Standard Specifications. ## 4.0 Corrosion Monitoring Corrosion monitoring is required for MSE walls with steel reinforcement. The Engineer will determine the number of monitoring locations and where to install the instrumentation. Contact the NCDOT Materials & Tests (M&T) Unit before beginning wall construction. M&T will provide the corrosion monitoring instrumentation kits and assistance with installation, if necessary. ## 5.0 MSE Wall Preconstruction Meeting Before starting MSE wall construction, conduct a preconstruction meeting to discuss the construction and inspection of the MSE walls. Schedule this meeting after all MSE wall submittals have been accepted. The Resident or Bridge Maintenance Engineer, Bridge Construction Engineer, Geotechnical Operations Engineer, Contractor and MSE Wall Installer Superintendent will attend this preconstruction meeting. #### 6.0 MSE Wall Vendor Site Assistance Provide a representative employed by the MSE Wall Vendor to assist and guide the MSE Wall Installer on-site for at least 8 hours when the first panels or blocks are set and the first reinforcement layer is placed unless otherwise approved. If problems are encountered during construction, the Engineer may require the vendor representative to return to the site for a time period determined by the Engineer at no additional cost to the Department. ## 7.0 Construction Methods Control drainage during construction in the vicinity of MSE walls. Direct run off away from MSE walls, select material and backfill. Contain and maintain select material and backfill and protect material from erosion. Perform necessary clearing and grubbing in accordance with Section 200 of the *Standard Specifications*. Excavate as necessary for MSE walls in accordance with the accepted submittals. If applicable and at the Contractor's option, "temporary shoring for wall construction" may be used in lieu of temporary slopes to construct MSE walls. For this provision, temporary shoring for wall construction is defined as temporary shoring not shown on the plans or
required by the Engineer including shoring for OSHA reasons or the Contractor's convenience. Unless prohibited by a note on plans, install foundations located in the reinforced zone before placing select material or the first reinforcement layer. Notify the Engineer when foundation excavation is complete. Do not place leveling pad concrete, select material or reinforcement until obtaining approval of the excavation depth and foundation material. Construct cast-in-place concrete leveling pads at elevations and with dimensions shown in the accepted submittals and in accordance with Section 420 of the *Standard Specifications*. Cure leveling pads a minimum of 24 hours before placing panels or blocks. Erect and support panels or blocks with no negative batter (wall face leaning forward) such that the final position is as shown in the accepted submittals. Stagger vertical block joints to create a running bond when possible unless shown otherwise in the accepted submittals. Place blocks with a maximum joint width of 3/8 inch (10 mm) and set panels with a joint width of 1/2 to 1 inch (13 to 25 mm). Construct MSE walls with a vertical and horizontal tolerance of 3/4 inch (19 mm) when measured with a 10 ft (3 m) straight edge and a final overall vertical plumbness (batter) of less than 1/2 inch per 10 ft (13 mm per 3 m) of wall height. Place reinforcement at the locations and elevations shown in the accepted submittals. Do not splice reinforcement. Contact the Engineer when unanticipated existing or future obstructions such as foundations, guardrail posts, pavements, pipes, inlets or utilities will interfere with reinforcement. To avoid obstructions, deflect, skew and modify reinforcement as shown in the accepted submittals. Place reinforcement in slight tension free of kinks, folds, wrinkles or creases. Place select material in the reinforced zone in 8 to 10 inch (200 to 250 mm) thick lifts. Compact standard size nos. 2S and 2MS select material in accordance with Subarticle 235-4(C) of the Standard Specifications. Use only hand operated compaction equipment within 3 ft (1 m) of the wall face. At a distance greater than 3 ft (1 m), compact select material with at least 4 passes of an 8 – 10 ton (7.3 - 9.1 metric ton) vibratory roller. Smooth wheeled or rubber tired rollers are also acceptable for compacting select material. Do not use sheepsfoot, grid rollers or other types of compaction equipment with feet. Compact select material in a direction parallel to the wall face. Do not damage reinforcement when placing and compacting select material. End dumping directly on the reinforcement is not permitted. Do not operate heavy equipment on the reinforcement until it is covered with at least 10" (250 mm) of select material. Replace any damaged reinforcement to the satisfaction of the Engineer. Backfill for wall construction outside the reinforced zone in accordance with Article 410-8 of the Standard Specifications. If a drain is required, install wall drainage systems as shown in the accepted submittals and in accordance with Section 816 of the *Standard Specifications*. Provide drains with positive drainage towards outlets. Place and construct coping and leveling concrete as shown in the accepted submittals. Construct cast-in-place concrete coping, leveling concrete and moment slabs in accordance with Section 420 of the *Standard Specifications*. Do not remove forms until concrete achieves a minimum compressive strength of 2400 psi (16.5 MPa). Provide a Class 2 Surface Finish for cast-in-place concrete coping in accordance with Article 420-17 of the *Standard Specifications*. Construct concrete barrier rails with moment slabs in accordance with the plans and concrete barrier rails in accordance with Subarticle 460-3(C) of the *Standard Specifications*. Construct cast-in-place concrete coping joints at a maximum spacing of 10 ft (3 m) to coincide with vertical joints between panels or blocks. Half-inch (13 mm) thick expansion joints in accordance with Article 420-10 of the *Standard Specifications* are required every third joint. Half-inch (13 mm) deep grooved contraction joints in accordance with Subarticle 825-10(B) of the *Standard Specifications* are required for the remaining joints. Stop coping reinforcement 2" (50 mm) from either side of expansion joints. When separation fabric is required, overlap fabric a minimum of 18" (450 mm) with seams oriented parallel to the wall face. Seal joints above and behind MSE walls between coping and ditches with joint sealer as shown on the plans. ## 8.0 Measurement and Payment MSE Retaining Walls will be measured and paid for in square feet (meters). MSE walls will be measured as the exposed face area with the wall height equal to the difference between the top and bottom of wall elevation. The top of wall elevation is defined as the top of coping unless shown otherwise on the plans. The bottom of wall elevation is defined as where the finished grade intersects the front face of the MSE wall. No payment will be made for portions of MSE walls below bottom of wall elevations. The contract unit price bid for MSE Retaining Walls will be full compensation for design, submittals, furnishing labor, tools, equipment and MSE wall materials, excavating, backfilling, hauling and removing excavated materials and providing site assistance, leveling pads, facing elements, reinforcement, select material, wall drainage systems, fabrics, coping, miscellaneous components and any incidentals necessary to design and construct MSE walls in accordance with this provision. If necessary, the contract unit price bid for MSE Retaining Walls will also be full compensation for reinforcement connected to and select material behind end bent caps in the reinforced zone in accordance with the contract. No separate payment will be made for temporary shoring for wall construction. Temporary shoring for wall construction will be considered incidental to the contract unit price bid for MSE Retaining Walls. Payment will be made under: Pay Item Pay Unit MSE Retaining Walls Square Foot (Meter) # PRECAST GRAVITY RETAINING WALLS (2-16-10) #### 1.0 General A precast gravity retaining wall is a gravity retaining wall constructed of unreinforced precast concrete units and a cast-in-place unreinforced concrete footing. Design and construct precast gravity retaining walls based on actual elevations and dimensions in accordance with the contract and accepted submittals. For this provision, "precast gravity wall" refers to a precast gravity retaining wall and "precast units" refer to unreinforced precast concrete units. ## 2.0 Precast Gravity Wall Design Submittal Submit 11 hard copies of working drawings and 3 hard copies of design calculations and an electronic copy (PDF on CD or DVD) of each for the precast gravity wall design submittal. Provide the submittal at least 30 calendar days before conducting the precast gravity wall preconstruction meeting. Do not begin precast gravity wall construction until the design submittal is accepted. The Retaining Wall Plans show plan views, typical sections, details, notes and elevation or profile views (wall envelope) for each precast gravity wall. When noted on plans and before beginning precast gravity wall design, survey existing ground elevations shown on the plans and submit a revised wall envelope for review and acceptance. Use the accepted revised wall envelope for design. Design precast gravity walls in accordance with the plans and Section 5.9 of the AASHTO Standard Specifications for Highway Bridges unless otherwise required. Design precast gravity walls to meet minimum clearances shown on the plans. Do not locate precast units or footings beyond right-of-way or easement lines. Use 12 inch (300 mm) thick cast-in-place unreinforced concrete footings beneath precast units that extend a minimum of 6" (150 mm) in front of and behind bottom row of precast units. Unless required otherwise on the plans, embed bottom of footings a minimum of 2 ft (0.6 m) below where finished grade intersects the front face of precast gravity walls. Fill precast unit core spaces with no. 57 stone, if applicable. Assume a unit weight of 100 pcf (15.7 kN/m3) for stone. Fill between and behind precast units with no. 57 stone for a horizontal distance of at least 18" (450 mm) and make stone continuous in all directions. When adjacent precast units are different sizes, it may be necessary to fill behind units with more than 18" (450 mm) of no. 57 stone to make stone continuous. Place separation fabric between stone and backfill, natural ground or overlying aggregate. When a subdrain pipe is required with a note on plans, use a 4" (100 mm) dia. continuous perforated subdrain pipe in the no. 57 stone behind the bottom row of precast units. At the Contractor's option, use cap or top precast units at top of walls unless there is a back slope or barrier above precast gravity walls as shown on the plans. For precast gravity walls with back slopes, use top precast units only and extend top of walls a minimum of 4" (100 mm) above where finished grade intersects the back of walls. If necessary, adjust paved ditch width or back slope for varying grade elevations along top of walls and make ditches continuous with cast-in-place concrete ditches when top of wall steps down. When barriers are required above precast gravity walls, do not use cap precast units and use concrete barrier rails with moment slabs in accordance with the plans. Submit working drawings and design calculations for review and acceptance in accordance with Article 105-2 of the *Standard Specifications*. Submit working drawings showing plan views, wall profiles with maximum applied bearing pressures, typical sections, separation fabric locations and details of footings, precast units, etc. If necessary, include details on working drawings for cast-in-place concrete ditches, concrete barrier rails with moment slabs and obstructions extending through
walls. Submit design calculations for each wall section with different surcharge loads, geometry or material parameters. When using a software program for design, provide a hand calculation verifying the analysis of the tallest wall section. Have precast gravity walls designed, detailed and sealed by a Professional Engineer registered in North Carolina. ## 3.0 Materials ## A. Footings Provide cast-in-place unreinforced concrete footings meeting the requirements of Section 1000 of the *Standard Specifications*. Use Class A Concrete in accordance with Article 1000-4 of the *Standard Specifications*. #### B. Precast Concrete Units Provide precast concrete units meeting the requirements of Sections 1000 and 1077 of the *Standard Specifications*. A minimum compressive strength of 4000 psi (27.6 MPa) at 28 days is required. For testing precast units for compressive strength, 4 cylinders are required per 40 yd3 (31 m3) of concrete or a single day's production, whichever is less. With the exception of front faces of precast units, provide a final finish in accordance with Article 1077-11 of the *Standard Specifications*. Unless required otherwise on the plans, provide precast units with a vertical rock like face and a concrete gray color with no tints, dyes, pigments or stains. Before beginning precast unit production, obtain approval of the precast unit type, face and color proposed for the project. #### C. No. 57 Stone Use standard size no. 57 stone meeting the requirements of Class VI Select Material in accordance with Section 1016 of the *Standard Specifications*. ## D. Wall Drainage Systems Wall drainage systems consist of subdrain pipes and outlet components. Use subsurface drainage materials meeting the requirements of Section 815 of the *Standard Specifications*. ## E. Separation Fabrics Use separation fabrics meeting the requirements of Type 1 Engineering Fabric in accordance with Section 1056 of the *Standard Specifications*. ### F. Concrete Barrier Rails with Moment Slabs Provide concrete barrier rails with moment slabs meeting the requirements of Section 1000 of the *Standard Specifications* and reinforcing steel meeting the requirements of Section 1070 of the *Standard Specifications*. Use Class A Concrete for moment slabs and Class AA Concrete for concrete barrier rails in accordance with Article 1000-4 of the *Standard Specifications*. ## 4.0 Precast Gravity Wall Preconstruction Meeting Before starting precast gravity wall construction, conduct a preconstruction meeting to discuss the construction and inspection of the precast gravity walls. Schedule this meeting after all precast gravity wall submittals have been accepted. The Resident or Bridge Maintenance Engineer, Bridge Construction Engineer, Geotechnical Operations Engineer, Contractor and Precast Gravity Wall Installer Superintendent will attend this preconstruction meeting. #### 5.0 Construction Methods Control drainage during construction in the vicinity of precast gravity walls. Direct run off away from precast gravity walls, no. 57 stone and backfill. Contain and maintain stone and backfill and protect material from erosion. Perform all necessary clearing and grubbing in accordance with Section 200 of the *Standard Specifications*. Excavate as necessary for precast gravity walls in accordance with the accepted submittals. If applicable and at the Contractor's option, "temporary shoring for wall construction" may be used in lieu of temporary slopes to construct precast gravity walls. For this provision, temporary shoring for wall construction is defined as temporary shoring not shown on the plans or required by the Engineer including shoring for OSHA reasons or the Contractor's convenience. Notify the Engineer when foundation excavation is complete. Do not place concrete for footings until obtaining approval of the excavation depth and foundation material. Construct cast-in-place concrete footings at elevations and with dimensions shown in the accepted submittals and in accordance with Section 420 of the *Standard Specifications*. Cure footings a minimum of 24 hours before placing precast units. Place precast units with no negative batter (wall face leaning forward) such that the final position is as shown in the accepted submittals. Stagger vertical precast unit joints to create a running bond when possible unless shown otherwise in the accepted submittals. Place precast units with a maximum joint width of ½ inch (13 mm). Construct precast gravity walls with a horizontal tolerance of ¾ inch (19 mm) when measured with a 10 ft (3 m) straight edge and a vertical tolerance within 2 degrees of the batter shown in the accepted submittals. If a subdrain pipe is required, construct wall drainage systems as shown in the accepted submittals and in accordance with Section 815 of the *Standard Specifications*. Provide subdrain pipes with positive drainage towards outlets. Place no. 57 stone between and behind precast units in 8 to 10 inch (200 to 250 mm) thick lifts. Compact stone with hand operated compaction equipment. Overlap separation fabric a minimum of 18" (450 mm) at seams. Backfill for wall construction behind no. 57 stone in accordance with Article 410-8 of the *Standard Specifications*. Set cap precast units with a ½ to 1-½ inch (13 to 38 mm) overhang. Construct cast-in-place concrete moment slabs in accordance with Section 420 of the *Standard Specifications*. Do not remove forms until concrete achieves a minimum compressive strength of 2400 psi (16.5 MPa). Construct concrete barrier rails with moment slabs in accordance with the plans and concrete barrier rails in accordance with Subarticle 460-3(C) of the *Standard Specifications*. # 6.0 Measurement and Payment Precast Gravity Retaining Walls will be measured and paid for in square feet (meters). Precast gravity walls will be measured as the exposed face area with the wall height equal to the difference between the top and bottom of wall elevation. The top of wall elevation is defined as the top of cap/top precast units. The bottom of wall elevation is defined as where the finished grade intersects the front face of the precast gravity wall. No payment will be made for portions of precast gravity walls below bottom of wall elevations. The contract unit price bid for *Precast Gravity Retaining Walls* will be full compensation for design, submittals, furnishing labor, tools, equipment and precast gravity wall materials, excavating, backfilling, hauling and removing excavated materials and providing footings, precast units, no. 57 stone, wall drainage systems, fabrics and any incidentals necessary to design and construct precast gravity walls in accordance with this provision. No separate payment will be made for temporary shoring for wall construction. Temporary shoring for wall construction will be considered incidental to the contract unit price bid for *Precast Gravity Retaining Walls*. Payment will be made under: Pay Item Pay Unit **Precast Gravity Retaining Walls** Square Foot (Meter) ## SEGMENTAL GRAVITY RETAINING WALLS (8-18-09) #### 1.0 General A segmental gravity retaining wall is a gravity retaining wall constructed of segmental retaining wall (SRW) units and a cast-in-place unreinforced concrete footing. Design and construct segmental gravity retaining walls based on actual elevations and dimensions in accordance with the contract and accepted submittals. For this provision, "block wall" refers to a segmental gravity retaining wall, "blocks" refer to SRW units and "cap blocks" refer to SRW cap units. ## 2.0 Block Wall Design Submittal Submit 11 hard copies of working drawings and 3 hard copies of design calculations and an electronic copy (PDF on CD or DVD) of each for the block wall design submittal. Provide the submittal at least 30 calendar days before conducting the block wall preconstruction meeting. Do not begin block wall construction until the design submittal is accepted. The Retaining Wall Plans show plan views, typical sections, details, notes and elevation or profile views (wall envelope) for each block wall. When noted on plans and before beginning block wall design, survey existing ground elevations shown on the plans and submit a revised wall envelope for review and acceptance. Use the accepted revised wall envelope for design. Design block walls in accordance with the plans and Section 5.9 of the AASHTO Standard Specifications for Highway Bridges unless otherwise required. Design block walls to meet minimum clearances shown on the plans. Do not locate blocks or footings beyond right-of-way or easement lines. Use 12 inch (300 mm) thick cast-in-place unreinforced concrete footings beneath blocks that extend a minimum of 6" (150 mm) in front of and behind bottom row of blocks. Unless required otherwise on the plans, embed bottom of footings a minimum of 2 ft (0.6 m) below where finished grade intersects the front face of block walls. Fill block core spaces with no. 57 stone, if applicable. Assume a unit weight of 100 pcf (15.7 kN/m3) for stone. Fill between and behind blocks with no. 57 stone for a horizontal distance of at least 12" (300 mm). Place separation fabric between stone and backfill, natural ground or overlying aggregate. When a subdrain pipe is required with a note on plans, use a 4" (100 mm) dia. continuous perforated subdrain pipe in the no. 57 stone behind the bottom row of blocks. At the Contractor's option, use SRW cap units or reinforced concrete coping at top of walls unless required otherwise on the plans. Attach cap blocks with adhesive and extend top of walls with cap blocks a minimum of 4" (100 mm) above where finished grade intersects the back of block walls. Use coping with dimensions shown on the plans and extend top of walls with coping a minimum of 6" (150 mm) above where finished grade intersects the back of block walls. At the Contractor's option, connect coping to blocks with dowels or extend coping down the back of blocks. When
barriers are required above block walls, use concrete barrier rails with moment slabs in accordance with the plans and design walls for impact loads applied to top of walls as shown on the plans. Submit working drawings and design calculations for review and acceptance in accordance with Article 105-2 of the *Standard Specifications*. Submit working drawings showing plan views, wall profiles with maximum applied bearing pressures, typical sections, separation fabric locations and details of footings, blocks, coping, etc. If necessary, include details on working drawings for concrete barrier rails with moment slabs and obstructions extending through walls. Submit design calculations for each wall section with different surcharge loads, geometry or material parameters. When using a software program for design, provide a hand calculation verifying the analysis of the tallest wall section. Have block walls designed, detailed and sealed by a Professional Engineer registered in North Carolina. ## 3.0 Materials A. Segmental Retaining Wall (SRW) Units Use blocks with a minimum depth (front face to back face) of 12" (300 mm). Unless required otherwise on the plans, provide blocks with a vertical split face and a concrete gray color with no tints, dyes or pigments. Before beginning block production, obtain approval of sample blocks of the type, face and color proposed for the project. Load, transport, unload and store blocks such that they are kept clean and free of damage. Damaged blocks with excessive discoloration, chips or cracks as determined by the Engineer will be rejected. Label each pallet of blocks with the information listed in Article 1077-13 of the *Standard Specifications*. Do not transport blocks away from the casting yard until the concrete strength reaches 4000 psi (27.6 MPa) and a period of at least 5 days elapses after casting unless otherwise approved. Provide certifications in accordance with Article 106-3 of the *Standard Specifications*. Provide Type 4 Certified Test Reports for all block properties with the exception of durability. When a note on plans requires freeze-thaw durable blocks, provide Type 5 Typical Certified Test Reports for durability. Use blocks meeting the requirements of ASTM C1372 with the exception of absorption, compressive strength and durability requirements. Test blocks in accordance with ASTM C140 with the exception of the number of units in a lot. For testing blocks, a lot is defined as 5000 units or a single day's production, whichever is less, and 6 blocks are required per lot. Provide blocks with a maximum absorption of 5%. A minimum compressive strength of 4000 psi (27.6 MPa) at 28 days is required for blocks with the exception of freeze-thaw durable blocks. When a note on plans requires freeze-thaw durable blocks, a minimum compressive strength of 5500 psi (37.9 MPa) at 28 days is required. Test freeze-thaw durable blocks in accordance with ASTM C1262. Test specimens in water. Freeze-thaw durable blocks are acceptable if the weight loss of each of 4 of the 5 specimens after 150 cycles does not exceed 1% of its initial weight. ## B. SRW Cap Units Use cap blocks meeting the requirements of the SRW units above with the exception of the minimum block depth. Use cap blocks with a minimum depth (front face to back face) of 8" (200 mm). # C. No. 57 Stone Use standard size no. 57 stone meeting the requirements of Class VI Select Material in accordance with Section 1016 of the *Standard Specifications*. # D. Wall Drainage Systems Wall drainage systems consist of subdrain pipes and outlet components. Use subsurface drainage materials meeting the requirements of Section 815 of the *Standard Specifications*. ## E. Separation Fabrics Use separation fabrics meeting the requirements of Type 1 Engineering Fabric in accordance with Section 1056 of the *Standard Specifications*. ## F. Footings and Coping Provide cast-in-place concrete footings and coping meeting the requirements of Section 1000 of the *Standard Specifications*. Use Class A Concrete in accordance with Article 1000-4 of the *Standard Specifications*. Provide reinforcing steel for coping meeting the requirements of Section 1070 of the *Standard Specifications*. ## G. Adhesive Provide adhesive in accordance with the block vendor's recommendations. Store adhesive in accordance with the manufacturer's instructions. #### H. Concrete Barrier Rails with Moment Slabs Provide concrete barrier rails with moment slabs meeting the requirements of Section 1000 of the *Standard Specifications* and reinforcing steel meeting the requirements of Section 1070 of the *Standard Specifications*. Use Class A Concrete for moment slabs and Class AA Concrete for concrete barrier rails in accordance with Article 1000-4 of the *Standard Specifications*. #### I. Joint Materials Use joint materials in accordance with Section 1028 of the Standard Specifications. ## 4.0 Block Wall Preconstruction Meeting Before starting block wall construction, conduct a preconstruction meeting to discuss the construction and inspection of the block walls. Schedule this meeting after all block wall submittals have been accepted. The Resident or Bridge Maintenance Engineer, Bridge Construction Engineer, Geotechnical Operations Engineer, Contractor and Block Wall Installer Superintendent will attend this preconstruction meeting. #### 5.0 Construction Methods Control drainage during construction in the vicinity of block walls. Direct run off away from block walls, no. 57 stone and backfill. Contain and maintain stone and backfill and protect material from erosion. Perform all necessary clearing and grubbing in accordance with Section 200 of the *Standard Specifications*. Excavate as necessary for block walls in accordance with the accepted submittals. Notify the Engineer when foundation excavation is complete. Do not place concrete for footings until obtaining approval of the excavation depth and foundation material. Construct cast-in-place concrete footings at elevations and with dimensions shown in the accepted submittals and in accordance with Section 420 of the *Standard Specifications*. Cure footings a minimum of 24 hours before placing blocks. Place blocks with no negative batter (wall face leaning forward) such that the final position is as shown in the accepted submittals. Stagger vertical block joints to create a running bond when possible unless shown otherwise in the accepted submittals. Place blocks with a maximum joint width of ½ inch (13 mm). Construct block walls with a horizontal tolerance of ¾ inch (19 mm) when measured with a 10 ft (3 m) straight edge and a vertical tolerance within 2 degrees of the batter shown in the accepted submittals. If a subdrain pipe is required, construct wall drainage systems as shown in the accepted submittals and in accordance with Section 815 of the *Standard Specifications*. Provide subdrain pipes with positive drainage towards outlets. Place no. 57 stone between and behind blocks in 8 to 10 inch (200 to 250 mm) thick lifts. Compact stone with hand operated compaction equipment. Overlap separation fabric a minimum of 18" (450 mm) at seams. Backfill for wall construction behind no. 57 stone in accordance with Article 410-8 of the *Standard Specifications*. Place cap blocks as shown in the accepted submittals. Set cap blocks with a ½ to 1-½ inch (13 to 38 mm) overhang. Do not install cap blocks if the surface to receive caps is wet or frozen or the air temperature measured at the wall in the shade away from artificial heat is below 40°F (4°C). Before applying adhesive, clean the surface the caps will adhere to and ensure it is dry and free of oil, grease, dust and debris. Attach cap blocks using adhesive in accordance with the manufacturer's instructions. Construct concrete coping in accordance with the accepted submittals. Construct cast-in-place concrete coping and moment slabs in accordance with Section 420 of the *Standard Specifications*. Do not remove forms until concrete achieves a minimum compressive strength of 2400 psi (16.5 MPa). Provide a Class 2 Surface Finish for cast-in-place concrete coping in accordance with Article 420-17 of the *Standard Specifications*. Construct concrete barrier rails with moment slabs in accordance with the plans and concrete barrier rails in accordance with Subarticle 460-3(C) of the *Standard Specifications*. Construct coping joints at a maximum spacing of 10 ft (3 m). Half-inch (13 mm) thick expansion joints in accordance with Article 420-10 of the Standard Specifications are required every third joint. Half-inch (13 mm) deep grooved contraction joints in accordance with Subarticle 825-10(B) of the Standard Specifications are required for the remaining joints. Stop coping reinforcement 2" (50 mm) from either side of expansion joints. Seal joints above and behind block walls between coping and ditches with joint sealer as shown on the plans. # 6.0 Measurement and Payment Segmental Gravity Retaining Walls will be measured and paid for in square feet (meters). Block walls will be measured as the exposed face area with the wall height equal to the difference between the top and bottom of wall elevation. The top of wall elevation is defined as the top of cap blocks or coping unless shown otherwise on the plans. The bottom of wall elevation is defined as where the finished grade intersects the front face of the block wall. No payment will be made for portions of block walls below bottom of wall elevations. The contract unit price bid for Segmental Gravity Retaining Walls will be full compensation for design, submittals, furnishing labor, tools, equipment and materials, excavating, backfilling, providing footings, blocks, no. 57 stone, wall drainage systems, fabrics, cap blocks, coping and any incidentals necessary to design and construct block walls in accordance with this provision. Payment will be made under: Pay Unit Pay Item Segmental Gravity Retaining Walls Square Foot (Meter) #
FINE GRADING SUBGRADE, SHOULDERS AND DITCHES: Revise the *Standard Specifications* as follows: SP5 R01 ## Page 5-1, Article 500-1 Description, replace the first sentence with the following: Perform the work covered by this section including but not limited to preparing, grading, shaping, manipulating moisture content, and compacting either an unstabilized or stabilized roadbed to a condition suitable for placement of base course, pavement, and shoulders. ## **AGGREGATE BASE COURSE:** SP5 R03 Revise the 2006 Standard Specifications as follows: Page 5-11, Article 520-5 Hauling and Placing Aggregate Base Material, 6th paragraph, replace the first sentence with the following: Base course that is in place on November 15 shall have been covered with a subsequent layer of pavement structure or with a sand seal. Base course that has been placed between November 16 and March 15 inclusive shall be covered within 7 calendar days with a subsequent layer of pavement structure or with a sand seal. ## **ASPHALT PAVEMENTS - SUPERPAVE:** (7-18-06)(Rev 4-20-10) SP6 R01 Revise the 2006 Standard Specifications as follows: Page 6-2, Article 600-9 Measurement and Payment, delete the second paragraph. Page 6-12, Subarticle 609-5(C)2, Required Sampling and Testing Frequencies, first partial paragraph at the top of the page, delete last sentence and add the following: If the Engineer allows the mix to remain in place, payment will be made in accordance with Article 105-3. Page 6-12, Subarticle 609-5(C)2, QUALITY CONTROL MINIMUM SAMPLING AND TESTING SCHEDULE First paragraph, delete and replace with the following. Sample and test the completed mixture from each mix design per plant per year at the following minimum frequency during mix production: Second paragraph, delete the fourth sentence, and replace with the following When daily production of each mix design exceeds 100 tons and a regularly scheduled full test series random sample location for that mix design does not occur during that day's production, perform at least one partial test series consisting of Items A and B in the schedule below. Page 6-12, Subarticle 609-5(C)2(c) Maximum Specific Gravity, add after (AASHTO T 209): or ASTM D 2041 Page 6-13, last line and on page and Page 6-14, Subarticle 609-5(C)(2)(e) Tensile Strength Ratio (TSR), add a heading before the first paragraph as follows: # (i) Option 1 # Insert the following immediately after the first paragraph: # (ii) Option 2 Mix sampled from truck at plant with one set of specimens prepared by the Contractor and then tested jointly by QA and QC at a mutually agreed upon lab site within the first 7 calendar days after beginning production of each new mix design. ## Second paragraph, delete and replace with the following: Test all TSR specimens required by either option noted above on either a recording test press or a test press that maintains the peak load reading after the specimen has broken. # Subarticle 609-5(C)(3) Control Charts, delete the second sentence of the first paragraph and replace with the following: For mix incorporated into the project, record full test series data from all regularly scheduled random samples or directed samples that replace regularly scheduled random samples, on control charts the same day the test results are obtained. # Page 6-15, Subarticle 609-5(C)(3) Control Charts, first paragraph on this page, delete the last sentence and substitute the following: Denote the moving average control limits with a dash green line and the individual test limits with a dash red line. ## Subarticle 609-5(C)(3)(a), (b) and (c), replace (a) (b) and (c) with the following: - (a) A change in the binder percentage, aggregate blend, or G_{mm} is made on the JMF, or, - (b) When the Contractor elects to stop or is required to stop production after one or two moving average values, respectively, fall outside the moving average limits as outlined in subarticle 609-5(C)6 or, - (c) If failure to stop production after two consecutive moving averages exceed the moving average limits occurs, but production does stop at a subsequent time, reestablish a new moving average beginning at the actual production stop point. # Subarticle 609-5(C)(4) Control Limits, replace the first paragraph and the CONTROL LIMITS Table on page 6-16 with the following. The following are established as control limits for mix production. Apply the individual limits to the individual test results. Control limits for the moving average limits are based on a moving average of the last 4 data points. Apply all control limits to the applicable target source. #### **CONTROL LIMITS** | Mix Control Criteria | Target Source | Moving Average
Limit | Individual Limit | |--|------------------|-------------------------|------------------| | 2.36 mm Sieve | JMF | ±4.0 % | ±8.0 % | | 0.075mm Sieve | JMF | ±1.5 % | ±2.5 % | | Binder Content | JMF | ±0.3 % | ±0.7 % | | VTM @ N _{des} | JMF | ±1.0 % | ±2.0 % | | VMA @ N _{des} | Min. Spec. Limit | Min Spec. Limit | -1.0% | | P _{0.075} / P _{be} Ratio | 1.0 | ±0.4 | ±0.8 | | %G _{mm} @ N _{ini} | Max. Spec. Limit | N/A | +2.0% | | TSR | Min. Spec. Limit | N/A | - 15% | Page 6-16, Subarticle 609-5(C)(5) Warning Bands, delete this subarticle in its entirety. Pages 6-16 through 6-19, Subarticle 609-5(C)(6), delete the word "warning" and substitute the words "moving average". # Page 6-16, Subarticle 609-5(C)(6) Corrective Actions, first paragraph, first sentence, delete and replace with the following: Immediately notify the Engineer when moving averages exceed the moving average limits. #### Page 6-17, third full paragraph, delete and replace with the following: Failure to stop production when required due to an individual mix test not meeting the specified requirements will subject all mix from the stop point tonnage to the point when the next individual test is back on or within the moving average limits, or to the tonnage point when production is actually stopped, whichever occurs first, to being considered unacceptable. # Sixth full paragraph, delete the first, second, and third sentence and replace with the following: Immediately notify the Engineer when any moving average value exceeds the moving average limit. If two consecutive moving average values for any one of the mix control criteria fall outside the moving average limits, cease production of that mix, immediately notify the Engineer of the stoppage, and make adjustments. The Contractor may elect to stop production after only one moving average value falls outside the moving average limits. # Page 6-18, Subarticle 609-5(C)(6) Corrective Actions second full paragraph, delete and replace with the following: If the process adjustment improves the property in question such that the moving average after four additional tests is on or within the moving average limits, the Contractor may continue production with no reduction in payment # Page 6-18, delete the third and fourth full paragraphs, including the Table for Payment for Mix Produced in the Warning Bands and substitute the following: If the adjustment does not improve the property in question such that the moving average after four additional individual tests is outside the moving average limits, the mix will be evaluated for acceptance in accordance with Article 105-3. Reduced payment for or removal of the mix in question will be applied starting from the plant sample tonnage at the stop point to the sample tonnage when the moving average is on or within the moving average limits. In addition, any mix that is obviously unacceptable will be rejected for use in the work. ## Page 6-19, First paragraph, delete and replace with the following: Failure to stop production and make adjustments when required due to two consecutive moving average values falling outside the moving average limits will subject all mix produced from the stop point tonnage to the tonnage point when the moving average is back on or within the moving average limits or to the tonnage point when production is actually stopped, whichever occurs first, to being considered unacceptable. Remove this material and replaced with materials that comply with the Specifications at no additional costs to the Department, unless otherwise approved. Payment will be made for the actual quantities of materials required to replace the removed quantities, not to exceed the original amounts. # Page 6-20, Subarticle 609-5(D)(1) General, delete the third full paragraph, and replace with the following: Perform the sampling and testing at the minimum test frequencies as specified above. Should the density testing frequency fail to meet the minimum frequency as specified above, all mix without the required density test representation will be considered unsatisfactory. If the Engineer allows the mix to remain in place, payment will be made in accordance with Article 105-3. # Page 6-22, Subarticle 609-5(D)(4) Nuclear Gauge Density Procedures, third paragraph, insert the following as the second sentence: Determine the Daily Standard Count in the presence of the QA Roadway Technician or QA Nuclear Gauge Technician on days when a control strip is being placed. # Page 6-23, Subarticle 609-5(D)(5) Limited Production Procedure, delete the first paragraph including (a), (b), (c) and substitute the following: Proceed on limited production when, for the same mix type and on the same contract, one of the following conditions occur (except as noted in the first paragraph below). - (a) Two consecutive failing lots, except on resurfacing* - (b) Three consecutive failing lots on resurfacing* - (c) Two consecutive failing nuclear control strips. - * Resurfacing is defined as the first new uniform layer placed on an existing pavement. # Page 6-25, Article 609-6 Quality Assurance, Density Quality Assurance, insert the following items after item (E): - (F) By retesting Quality Control core samples from control strips (either core or
nuclear) at a frequency of 100% of the frequency required of the Contractor; - (G) By observing the Contractor perform all standard counts of the Quality Control nuclear gauge prior to usage each nuclear density testing day; or - (H) By any combination of the above # Page 6-28, Subarticle 610-3(A) Mix Design-General, delete the fourth and fifth paragraphs and replace with the following: Reclaimed Asphalt Pavement (RAP) or Reclaimed Asphalt Shingles (RAS) may be incorporated into asphalt plant mixes in accordance with Article 1012-1 and the following applicable requirements. Reclaimed asphalt pavement (RAP) may constitute up to 50% of the total material used in recycled mixtures, except for mix Type S 12.5D, Type S 9.5D, and mixtures containing reclaimed asphalt shingle material (RAS). Reclaimed asphalt shingle (RAS) material may constitute up to 6% by weight of total mixture for any mix. When both RAP and RAS are used, do not use a combined percentage of RAS and RAP greater than 20% by weight of total mixture, unless otherwise approved. When the percent of binder contributed from RAS or a combination of RAS and RAP exceeds 20% but not more than 30% of the total binder in the completed mix, the virgin binder PG grade shall be one grade below (both high and low temperature grade) the binder grade specified in Table 610-2 for the mix type, unless otherwise approved. When the percent of binder contributed from RAS or a combination of RAS and RAP exceeds 30% of the total binder in the completed mix, the Engineer will establish and approve the virgin binder PG grade. Use approved methods to determine if any binder grade adjustments are necessary to achieve the performance grade for the specified mix type. For Type S 12.5D and Type S 9.5D mixes, the maximum percentage of reclaimed asphalt material is limited to 20% and shall be produced using virgin asphalt binder grade PG 76-22. For all other recycled mix types, the virgin binder PG grade shall be as specified in Table 610-2A for the specified mix type. When the percentage of RAP is greater than 20% but not more than 30% of the total mixture, use RAP meeting the requirements for processed or fractionated RAP in accordance with the requirements of Section 1012-1. When the percentage of RAP is greater than 30% of the total mixture, use an approved stockpile of RAP in accordance with Section 1012-1(C). Use approved test methods to determine if any binder grade adjustments are necessary to achieve the performance grade for the specified mix type. The Engineer will establish and approve the virgin asphalt binder grade to be used. ### **Page 6-34, Subarticle 610-3(C),** Delete Table 610-2 and associated notes. Substitute the following: TABLE 610-2 SUPERPAVE MIX DESIGN CRITERIA | Mix
Type | Design
ESALs
Millions | Binder
PG
Grade | Leve | oaction
ls No.
ions @ | Max.
Rut
Depth
(mm) | | Volumetric Properties (c) | |) | |------------------|-----------------------------|--------------------------------|------------------|-----------------------------|---|---------------------------|---------------------------|-----------------|--| | | (a) | (b) | N _{ini} | N _{des} | | VMA
% Min. | VTM
% | VFA
Min Max. | ${}^{\!$ | | S-4.75A(e) | < 0.3 | 64 -22 | 6 | 50 | | 20.0 | 7.0 - 15.0 | | | | SF-9.5A | < 0.3 | 64 -22 | 6 | 50 | 11.5 | 16.0 | 3.0 - 5.0 | 70 - 80 | ≤ 91.5 | | S-9.5B | 0.3 - 3 | 64 -22 | 7 | 65 | 9.5 | 15.5 | 3.0 - 5.0 | 65 - 80 | ≤ 90.5 | | S-9.5C | 3 - 30 | 70 -22 | 7 | 75 | 6.5 | 15.5 | 3.0 - 5.0 | 65 - 78 | ≤ 90.5 | | S-9.5D | > 30 | 76 -22 | 8 | 100 | 4.5 | 15.5 | 3.0 - 5.0 | 65 - 78 | ≤ 90.0 | | S-12.5C | 3 - 30 | 70 -22 | 7 | 75 | 6.5 | 14.5 | 3.0 - 5.0 | 65 - 78 | ≤ 90.5 | | S-12.5D | > 30 | 76 -22 | 8 | 100 | 4.5 | 14.5 | 3.0 - 5.0 | 65 - 78 | ≤ 90.0 | | I-19.0B | < 3 | 64 -22 | 7 | 65 | | 13.5 | 3.0 - 5.0 | 65 - 78 | ≤ 90.5 | | I-19.0C | 3 - 30 | 64 -22 | 7 | 75 | | 13.5 | 3.0 - 5.0 | 65 - 78 | ≤ 90.0 | | I-19.0D | > 30 | 70 -22 | 8 | 100 | | 13.5 | 3.0 - 5.0 | 65 - 78 | ≤ 90.0 | | B-25.0B | < 3 | 64 -22 | 7 | 65 | ~ | 12.5 | 3.0 - 5.0 | 65 - 78 | ≤ 90.5 | | B-25.0C | > 3 | 64 -22 | 7 | 75 | *************************************** | 12.5 | 3.0 - 5.0 | 65 - 78 | ≤ 90.0 | | | Design F | Paramete | r | | | Design Criteria | | | | | All Mix
Types | 2. Retaine | Binder Radder Tensile O T283 M | Strengtl | ı (TSR) | | 0.6 – 1.4
85% Min. (d) | | | | #### Notes: - (a) Based on 20 year design traffic. - (b) When Recycled Mixes are used, select the binder grade to be added in accordance with Subarticle 610-3(A). - (c) Volumetric Properties based on specimens compacted to N_{des} as modified by the Department. - (d) AASHTO T 283 Modified (No Freeze-Thaw cycle required). TSR for Type S 4.75A, Type B 25.0B, and Type B 25.0C mixes is 80% minimum. - (e) Mix Design Criteria for Type S 4.75A may be modified subject to the approval of the Engineer. # Page 6-34, Insert the following immediately after Table 610-2: A. TABLE 610-2A B. SUPERPAVE MIX DESIGN CRITERIA | | Percentage of RAP in Mix | | | | | |-----------------------|--------------------------|--------------------------------|--------------|--|--| | | Category 1 | Category 2 | Category 3 | | | | Mix Type | % RAP ≤20% | $20.1\% \le \% RAP \le 30.0\%$ | %RAP > 30.0% | | | | All A and B Level | PG 64 -22 | PG 64 -22 | TBD | | | | Mixes, I19.0C, B25.0C | | | | | | | S9.5C, S12.5C, I19.0D | PG 70 -22 | PG 64-22 | TBD | | | | S 9.5D and S12.5D | PG 76-22 | N/A | N/A | | | Note: (1) Category 1 RAP has been processed to a maximum size of 2 inches. - (2) Category 2 RAP has been processed to a maximum size of 1 inch by either crushing and or screening to reduce variability in the gradations. - (3) Category 3 RAP has been processed to a maximum size of 1 inch, fractionating the RAP into 2 or more sized stockpiles Page 6-35, Table 610-3 delete and replace with the following: TABLE 610-3 ASPHALT PLACEMENT- MINIMUM TEMPERATURE REQUIREMENTS | Asphalt Concrete Mix Type | Minimum Air
Temperature | Minimum Surface
Temperature | |-------------------------------------|----------------------------|--------------------------------| | ACBC, Type B 25.0B, C, B 37.5C | 35°F | 35°F | | ACIC, Type I 19.0B, C, D | 35°F | 35°F | | ACSC, Type S 4.75A, SF 9.5A, S 9.5B | 40°F | 50°F* | | ACSC, Type S 9.5C, S 12.5C | 45°F | 50°F | | ACSC, Type S 9.5D, S 12.5D | 50°F | 50°F | ^{* 35°}F if surface is soil or aggregate base for secondary road construction. # Page 6-44, Article 610-8 Spreading and Finishing, third full paragraph, replace the first sentence with the following: Use the 30 foot minimum length mobile grade reference system or the non-contacting laser or sonar type ski with at least four referencing stations mounted on the paver at a minimum length of 24 feet to control the longitudinal profile when placing the initial lanes and all adjacent lanes of all layers, including resurfacing and asphalt in-lays, unless otherwise specified or approved. # Page 6-50, Article 610-13 Density Acceptance, delete the second paragraph and replace with the following: As an exception, when the first layer of mix is a surface course and is being placed directly on an unprimed aggregate or soil base, the layer will be included in the "Other" construction category. # Page 6-50, Article 610-13 Density Acceptance, delete the formula and description in the middle of the page and replace with the following:, $PF = 100 - 10(D)^{1.465}$ where: PF = Pay Factor (computed to 0.1%) D = the deficiency of the lot average density, not to exceed 2.0% ## Page 6-53, Article 620-4 Measurement and Payment: Sixth paragraph, delete the last sentence. ## Seventh paragraph, delete the paragraph and replace with the following: The adjusted contract unit price will then be applied to the theoretical quantity of asphalt binder authorized for use in the plant mix placed during the partial payment period involved, except that where recycled plant mix is used, the adjusted unit price will be applied only to the theoretical number of tons of additional asphalt binder materials required by the job mix formula. ## Page 6-54, Article 620-4 Measurement and Payment, add the following pay item: Pay ItemPay UnitAsphalt Binder for Plant Mix, Grade PG 70-28Ton ## Page 6-69, Table 660-1 Material Application Rates and Temperatures, add the following: | Type of
Coat | Grade of Asphalt | Asphalt Rate
gal/yd ² | Application
Temperature
°F | Aggregate
Size | Aggregate
Rate lb./sq. yd.
Total | |-----------------|------------------|-------------------------------------|----------------------------------|-------------------|--| | Sand Seal | CRS-2 or | 0.22-0.30 | 150-175 | Blotting | 12-15 | | | CRS-2P | | , | Sand | District On Committee | #### Page 6-75, Subarticle 660-9(B), add the following as sub-item (5) ### (5) Sand Seal Place the fully required amount of asphalt material in one application and immediately cover with the seal coat aggregate. Uniformly spread the fully required amount of aggregate in one application and correct all non-uniform areas prior to rolling. Immediately after the aggregate has been uniformly spread, perform rolling. When directed, broom excess aggregate material from the surface of the seal coat. When the sand seal is to be constructed for temporary sealing purposes only and will not be used by traffic, other grades of asphalt material meeting the requirements of Articles 1020-6 and 1020-7 may be used in lieu of the grade of asphalt required by Table 660-1 when approved. ## Page 6-76, Article 661-1 Description, add the following as the 2nd paragraph: Provide and conduct the quality control and required testing for acceptance of the UBWC in accordance with *Quality Management System for
Asphalt Pavements (OGAFC, PADL, and Ultra-Thin HMA Version)*, included in the contract. ## Page 6-76, Article 661-2 Materials, add the following after Asphalt Binder, Grade 70-28: | Item | Section | |-----------------------------|---------| | Asphalt Binder, Grade 76-22 | 1020 | | Reclaimed Asphalt Shingles | 1012 | # Page 6-78, Subarticle 661-2(E), Asphalt Binder For Plant Mix, Grade PG 70-28, rename as ASPHALT BINDER FOR PLANT MIX and add the following as the first paragraph: Use either PG 70-28 or PG 76-22 binder in the mix design. Where PG 76-22 is being used in the production of Ultra-thin, the grade of asphalt binder to be paid for will be PG 70-28, unless otherwise approved. # Page 6-79, Subarticle 661-2(G), Composition of Mix, add the following as the third sentence of the first paragraph. The percent of asphalt binder contributed from the RAS shall not exceed 20% of the total binder in the completed mix. Page 6-80, Article 661-2(G) Composition of Mix, replace Table 661-4 and associated notes with the following: | | TABLE | 661-4 – MIXTURE I | DESIGN CRITERIA | | | | | | |----------|---|-------------------|--------------------|----------------|--|--|--|--| | | Gradation Design Criteria (% Passing by Weight) | | | | | | | | | Standar | d Sieves | 1/2 in. Type A | 3/8 in. Type B | 1/4 in. Type C | | | | | | ASTM | mm | | (% Passing by Weig | ht) | | | | | | ¾ inch | 19.0 | 100 | | | | | | | | ½ inch | 12.5 | 85 - 100 | 100 | | | | | | | 3/8 inch | 9.5 | 60 - 80 | 85 - 100 | 100 | | | | | | #4 | 4.75 | 28 - 38 | 28 – 44 | 40 - 55 | | | | | | #8 | 2.36 | 19 - 32 | 17 – 34 | 22 - 32 | | | | | | #16 | 1.18 | 15 - 23 | 13 - 23 | 15 - 25 | | | | | | #30 | 0.600 | 10 - 18 | 8 - 18 | 10 - 18 | | | | | | #50 | 0.300 | 8 - 13 | 6 - 13 | 8 - 13 | | | | | | #100 | 0.150 | 6 - 10 | 4 - 10 | 6 - 10 | | | | | | #200 | 0.075 | 4.0 - 7.0 | 3.0 - 7.0 | 4.0 - 7.0 | | | | | | | Mix Design Cri | teria | | | | | |---------------------------------------|-------------------------|-------------------------|-------------------------|--|--|--| | | 1/2 in. Type A | 3/8 in. Type B | 1/4 in. Type C | | | | | Asphalt Content, % | 4.6 - 5.6 | 4.6 - 5.8 | 5.0 - 5.8 | | | | | Draindown Test,
AASHTO T 305 | 0.1% max. | | | | | | | Moisture Sensitivity, AASHTO T 283* | 80% min. | | | | | | | Application Rate, lb/ yd ² | 90 | 70 | 50 | | | | | Approximate Application Depth, in. | 3/4 | 5/8 | 1/2 | | | | | Asphalt PG Grade,
AASHTO M 320 | PG 70-28 or
PG 76-22 | PG 70-28 or
PG 76-22 | PG 70-28 or
PG 76-22 | | | | NOTE: *Specimens for T-283 testing are to be compacted using the SUPERPAVE gyratory compactor. The mixtures shall be compacted using 100 gyrations to achieve specimens approximately 95 mm in height. Use mixture and compaction temperatures recommended by the binder supplier. ### Page 6-80, Subarticle 661-3(A) Equipment, add the following as the first paragraph: Use asphalt mixing plants in accordance with Article 610-5 of the Standard Specifications. # Page 6-82, Subarticle 661-3(C), Application of Ultra-thin Bonded Wearing Course, delete the first paragraph and add the following as the first and second paragraphs. Use only one asphalt binder PG grade for the entire project, unless the Engineer gives written approval. Do not place Ultra-thin Bonded Wearing Course between October 31 and April 1, when the pavement surface temperature is less than 50°F or on a wet pavement. In addition, when PG 76-22 binder is used in the JMF, place the wearing course only when the road pavement surface temperature is 60°F or higher and the air temperature in the shade away from artificial heat is 60°F or higher. Page 10-40, Subarticle 1012-1(A), add the following at the end of the last paragraph, last sentence: or ultra-thin bonded wearing course. Page 10-41, Table 1012-1, delete the entries for OGAFC and add new entries for OGAFC and a row for UBWC with entries: | Mix Type | Coarse
Aggregate
Angularity ^(b)
ASTM D5821 | Fine Aggregate
Angularity % Minimum
AASHTO T304 Method
A | Sand Equivalent
% Minimum
AASHTO T176 | Flat & Elongated 5:1 Ratio
% Maximum
ASTM D4791 Section 8.4 | |----------|--|---|---|---| | S 9.5 D | 100/100 | 45 | 50 | 10 | | OGAFC | 100/100 | N/A | N/A | 10 | | UBWC | 100/85 | 40 | 45 | 10 | ## Delete Note (c) under the Table 1012-1 and replace with the following: (c) Does not apply to Mix Types SF 9.5A and S 9.5B. ### Page 10-42, Subarticle 1012-1(B)(6), add as the last sentence: The percentage loss for aggregate used in UBWC shall be no more than 35%. # Page 10-43, Subarticle 1012-1(F): Reclaimed Asphalt Shingle Material (RAS), insert the following immediately following the first paragraph: ### (1) Mix Design RAS Incorporate RAS from stockpiles that have been tested for uniformity of gradation and binder content prior to use in an asphalt mix design. #### (2) Mix Production RAS New Source RAS is defined as acceptable material which was not included in the stockpile when samples were taken for mix design purposes. Process new source RAS so that all materials will pass a 1/2" sieve prior to introduction into the plant mixer unit. After a stockpile of processed RAS has been sampled and mix designs made from these samples, do not add new source RAS to the original stockpile without prior field testing to insure gradation and binder uniformity. Sample and test new source RAS before blending with the existing stockpile. Store new source RAS in a separate stockpile until the material can be sampled and tested for comparison with the original recycled mix design data. New source RAS may also be placed against the existing stockpile in a linear manner provided it is sampled for mix design conformity prior to its use in the recycled mix. RAS contamination including but not limited to excessive dirt, debris, clean stone, concrete will not be allowed. Field approval of new source RAS will be based on the table below and volumetric mix properties on the mix with the new source RAS included. Provided these tolerances are met, volumetric properties of the new mix will then be performed. If all volumetric mix properties meet the mix design criteria for that mix type, the new source RAS may continue to be used. If the gradation, binder content, or any of the volumetric mix properties are not within the allowable tolerances of the table below, do not use the new source RAS unless approved by the Engineer. The Contractor may elect to either not use the stockpile, to request an adjustment to the JMF, or to redesign the mix. NEW SOURCE RAS GRADATION and BINDER TOLERANCES (Apply Tolerances to Mix Design Data) | 0-6% I | 0-6% RAS | | | | | | |------------------|------------|--|--|--|--|--| | P _b % | ±1.6% | | | | | | | Sieve Size (mm) | Tolerance | | | | | | | 9.5 | ± 1 | | | | | | | 4.75 | ±5 | | | | | | | 2.36 | ±4 | | | | | | | 1.18 | ±4 | | | | | | | 0.300 | <u>±</u> 4 | | | | | | | 0.150 | ±4 | | | | | | | 0.075 | ±2.0 | | | | | | Page 10-43 through 10-45, Subarticle 1012-1(G), delete this in its entirety and replace with the following: ## (G) Reclaimed Asphalt Pavement (RAP) #### (1) Mix Design RAP Incorporate RAP from stockpiles or other sources that have been tested for uniformity of gradation and binder content prior to use in an asphalt mix design. Use reclaimed asphalt pavement that meets all requirements specified for *one of* the following *two* classifications. ## (a) Millings Existing reclaimed asphalt pavement (RAP) that is removed from its original location by a milling process as specified in Section 607. Millings should be such that it has a uniform gradation and binder content and all materials will pass a 2" sieve prior to introduction into the plant mixer unit. #### (b) Processed RAP RAP that is processed in some manner (possibly by crushing and/or use of a blending method) to produce a uniform gradation and binder content in the RAP prior to use in a recycled mix. Process RAP so that all materials have a uniform gradation and binder content and will pass a 1" sieve prior to introduction into the plant mixer unit. #### (c) Fractionated RAP Fractionated RAP is defined as having two or more RAP stockpiles, where the RAP is divided into coarse and fine fractions. Grade RAP so that all materials will pass a 1" sieve. The coarse RAP stockpile shall only contain material retained on a 3/8" screen, unless otherwise approved. The fine RAP stockpile shall only contain material passing the 3/8" screen, unless otherwise approved. The Engineer may allow the Contractor to use an alternate to the 3/8" screen to fractionate the RAP. The maximum percentages of fractionated RAP may be comprised of coarse, fine, or the combination of both. Utilize a separate cold feed bin for each stockpile of fractionated RAP used. #### (d) Approved Stockpiled RAP Approved Stockpiled RAP is defined as fractionated RAP which has been isolated and tested for asphalt content, gradation, and asphalt binder characteristics with the intent to be used in mix designs with greater than 30% RAP materials. Fractionate the RAP in accordance with Section 1012-1(G)(c). Utilize a separate cold feed bin for each approved stockpile of RAP used. Perform extraction tests at a rate of 1 per 1000 tons of RAP, with a minimum of 5 tests per stockpile to determine the asphalt content and gradation. Separate stockpiles of RAP material by fine and coarse fractions. Erect and maintain a sign satisfactory to the Engineer on each stockpile to identify the material. Assure that no deleterious material is allowed in any stockpile. The Engineer may reject by visual inspection any stockpiles that are not kept clean, separated, and free of foreign materials. Submit
requests for RAP stockpile approval to the Engineer with the following information at the time of the request: - (1) Approximate tons of materials in stockpile - (2) Name or Identification number for the stockpile - (3) Asphalt binder content and gradation test results - (4) Asphalt characteristics of the Stockpile. For the Stockpiled RAP to be considered for approval, the gradation and asphalt content shall be uniform. Individual test results, when compared to the target, will be accepted if within the tolerances listed below: APPROVED STOCKPILED RAP GRADATION and BINDER TOLERANCES (Apply Tolerances to Mix Design Data) | P _b % | ±0.3% | |------------------|-----------------| | Sieve Size (mm) | Percent Passing | | 25.0 | ±5% | | 19.0 | ±5% | | 12.5 | ±5% | | 9.5 | ±5% | | 4.75 | ±5% | | 2.36 | ±4% | | 1.18 | ±4% | | 0.300 | ±4% | | 0.150 | ±4% | | 0.075 | ±1.5% | Note: If more than 20% of the individual sieves are out of the gradation tolerances, or if more than 20% of the asphalt binder content test results fall outside the appropriate tolerances, the RAP shall not be used in HMA unless the RAP representing the failing tests is removed from the stockpile. Do not add additional material to any approved RAP stockpile, unless otherwise approved by the Engineer. Maintain at the plant site a record system for all approved RAP stockpiles. Include at a minimum the following: Stockpile identification and a sketch of all stockpile areas at the plant site; all RAP test results (including asphalt content, gradation, and asphalt binder characteristics). ### (2) Mix Production RAP During mix production, use RAP that meets the criteria for one of the following categories: ## (a) Mix Design RAP RAP contained in the mix design stockpiles as described above may be used in all applicable JMFs. These stockpiles have been pretested: however, they are subject to required QC/QA testing in accordance with Subarticle 609-5(C)(2). ## (b) New Source RAP New Source RAP is defined as any acceptable material that was not included in the stockpile or other source when samples were taken for mix design purposes. Process new source RAP so that all materials have a uniform gradation and binder content and will pass a 2" sieve prior to introduction into the plant mixer unit. After a stockpile of millings, processed RAP, or fractionated RAP has been sampled and mix designs made from these samples, do not add new source RAP to the original stockpile without prior field testing to insure gradation and binder uniformity. Sample and test new source RAP before blending with the existing stockpile. Store new source RAP in a separate stockpile until the material can be sampled and tested for comparison with the original recycled mix design data. New source RAP may also be placed against the existing stockpile in a linear manner provided it is sampled for mix design conformity prior to its use in the recycled mix. Unprocessed RAP is asphalt material that was not milled and/or has not been processed to obtain a uniform gradation and binder content and is not representative of the RAP used during the applicable mix design. Unprocessed RAP shall not be incorporated into any JMFs prior to processing. Different sources of unprocessed RAP may be stockpiled together provided it is generally free of contamination and will be processed prior to use in a recycled mix. RAP contamination in the form of excessive dirt, debris, clean stone, concrete, etc. will not be allowed. Incidental amounts of dirt, concrete, and clean stone may be acceptable. Unprocessed RAP may be processed and then classified as a new source RAP as described above. Field approval of new source RAP will be based on Table 1012-2 below and volumetric mix properties on the mix with the new source RAP included. Provided the Table 1012-2 tolerances are met, volumetric properties of the new mix will then be performed. If all volumetric mix properties meet the mix design criteria for that mix type, the new source RAP may continue to be used. If the gradation, binder content, or any of the volumetric mix properties are not within the allowable tolerances of Table 1012-2, do not use the new source RAP unless approved by the Engineer. The Contractor may elect to either not use the stockpile, to request an adjustment to the JMF, or to redesign the mix. | | | | | TABLE | | | | | | | |------------------|-----------|---------|----------|-----------|---------------------|-----------|---------|-----------------------|-------|--| | | N. | EW SOUR | | | N and BIN Mix Desig | | ERANCES | | | | | Mix
Type | 0-20% RAP | | | | +-30 % R | | 30 | 30 ⁺ % RAP | | | | Sieve (mm) | Base | Inter. | Surf. | Base | Inter. | Surf. | Base | Inter. | Surf. | | | P _b % | | ± 0.7% | | | ± 0.4% | | | ± 0.3% | | | | 25.0 | ±10 | _ | - | ±7 | - | - | ±5 | - | - | | | 19.0 | ±10 | ±10 | - | ±7 | ±7 | - | .±5 | ±5 | - | | | 12.5 | _ | ±10 | ±10 | - | ±7 | ±7 | _ | ±5 | ±5 | | | 9.5 | - | - | ±10 | - | - | ±7 | _ | - | ±5 | | | 4.75 | ±10 | - | ±10 | ±7 | - | ±7 | ±5 | _ | ±5 | | | 2.36 | ±8 | ±8 | ±8 | ±5 | ±5 | ±5 | ±4 | ±4 | ±4 | | | 1.18 | ±8 | ±8 | ±8 | ±5 | ±5 | ±5 | ±4 | ±4 | ±4 | | | 0.300 | ±8 | ±8 | ±8 | ±5 | ±5 | ±5 | ±4 | ±4 | ±4 | | | 0.150 | - | - | ±8 | - | - | ±5 | - | - | ±4 | | | 0.075 | ±4 | ±4 | ±4 | <u>+2</u> | ±2 | <u>+2</u> | ±1.5 | ±1.5 | ±1.5 | | | | www. | - | <u> </u> | | | ļ | | <u></u> | | | # ASPHALT PAVEMENTS - WARM MIX ASPHALT SUPERPAVE: (5-19-09) (Rev 10-20-09) SP6 R02 Warm Mix Asphalt (WMA) is defined as additives or processes that allow a reduction in the temperature at which asphalt mixtures are produced and placed. Notify the Engineer at least 2 weeks before producing the Warm Mix so the Engineer can arrange a preconstruction meeting. Discuss special testing requirements necessary for warm mix asphalt at the pre-pave meeting. Included at the pre-pave meeting the Contractor's QC manager, Paving Superintendent, and manufacturer's representative for the process or additive used for producing warm mix asphalt, the Department's Roadway Construction Engineer, Resident Engineer, State Pavement Construction, and Quality Assurance Supervisor. Require a manufacturer's representative for the process or additive used to be present on site at the plant during the initial production and on the roadway during the laydown of the warm mix asphalt. Revise the 2006 Standard Specifications as follows: #### Page 6-8, Article 609-1 Description, insert the following as the second paragraph. Warm Mix Asphalt (WMA) is defined as additives or processes that allow a reduction in the temperature at which asphalt mixtures are produced and placed. WMA is allowed for use at the Contractor's option when shown in the contract documents. #### Page 6-9, Article 609-4 Field Verification of Mixture and Job Mix Formula Adjustments, #### Second paragraph, insert the following immediately after the first sentence. When producing a WMA, field verification testing will also consist of performing a Tensile Strength Ratio (TSR) testing in accordance with AASHTO T283 as Modified by the Department. #### Third paragraph, delete the third sentence and replace with the following: Verification is considered satisfactory for HMA when all volumetric properties except %G_{mm}@N_{ini} are within the applicable mix design criteria, and the gradation, binder content, and %G_{mm}@N_{ini} are within the individual limits for the mix type being produced. Verification is considered satisfactory for WMA when all volumetric properties except %G_{mm}@N_{ini} are within the applicable mix design criteria, the TSR is equal to or above the minimum design criteria, and the gradation, binder content, and %G_{mm}@N_{ini} are within the individual limits for the mix type being produced. # Page 6-12, Subarticle 609-5(C)2(d) Bulk Specific Gravity of Compacted Specimens, add after (AASHTO T 312): When producing Warm Mix Asphalt, gyrate specimens to specified N_{des} compaction effort without reheating mix other than to desired compaction temperature. Record time needed to reheat samples (if any). # Page 6-14, Subarticle 609-5(C)(2)(e) Tensile Strength Ratio, insert the following immediately after the third paragraph: When producing WMA, perform TSR testing at - i. Beginning of production for each JMF - ii. Monthly thereafter ## Page 6-27, Article 610-1 Description, insert the following as the third paragraph: Warm Mix Asphalt (WMA) is defined as additives or processes that allow a reduction in the temperature at which asphalt mixtures are produced and placed. Use WMA at the Contractor's option unless otherwise shown on the plans. # Page 6-27, Article 610-2 Materials, insert the following at the end of this Article: Use only WMA additives or processes listed on the Department's approved list maintained by the Materials and Tests Unit. # Page 6-31, Subarticle 610-3(B) Mix Design-Criteria, add the following as the fifth paragraph: When WMA is used, submit the mix design without including the WMA additive. # Page 6-32, Subarticle 610-3(C) Job Mix Formula, Add the following as the second paragraph: When WMA is used, document the additive or process used and recommended rate on the JMF submittal. Verify the JMF based on plant produced mixture from the trial batch. ### Immediately following PG 76-22 335°F, add the following paragraph: When WMA is used, produce an asphalt mixture within the temperature range of 225°F and 275 °F. # **ASPHALT BINDER CONTENT OF ASPHALT PLANT MIXES:** (11-21-00) SP6 R15 The approximate asphalt binder content of the asphalt concrete plant mixtures used on this project will be as follows: | Asphalt Concrete Base Course | Type B 25.0 | 4.3% | |--------------------------------------|--------------|------| | Asphalt Concrete Intermediate Course | Type I 19.0 | 4.7% | | Asphalt Concrete Surface Course | Type S 4.75A | 7.0% | | Asphalt Concrete Surface Course | Type SF 9.5A | 6.5% | | Asphalt Concrete Surface Course | Type S 9.5 | 6.0% | |
Asphalt Concrete Surface Course | Type S 12.5 | 5.5% | The actual asphalt binder content will be established during construction by the Engineer within the limits established in the 2006 Standard Specifications. ### **ASPHALT PLANT MIXTURES:** (7-1-95) SP6 R20 Place asphalt concrete base course material in trench sections with asphalt pavement spreaders made for the purpose or with other equipment approved by the Engineer. ## PRICE ADJUSTMENT - ASPHALT BINDER FOR PLANT MIX: $\overline{(11-21-00)}$ SP6 R25 Price adjustments for asphalt binder for plant mix will be made in accordance with Section 620 of the 2006 Standard Specifications. The base price index for asphalt binder for plant mix is \$487.33 per ton. This base price index represents an average of F.O.B. selling prices of asphalt binder at supplier's terminals on June 1, 2010. ### FINAL SURFACE TESTING - ASPHALT PAVEMENTS (Rideability): (5-18-04) (Rev. 7-15-08) SP6 R45 On portions of this project where the typical section requires two or more layers of new pavement, perform acceptance testing of the longitudinal profile of the finished pavement surface in accordance with these provisions using a North Carolina Hearne Straightedge (Model No. 1). Furnish and operate the straightedge to determine and record the longitudinal profile of the pavement on a continuous graph. Final surface testing is an integral part of the paving operation and is subject to observation and inspection by the Engineer as deemed necessary. Push the straightedge manually over the pavement at a speed not exceeding 2 miles per hour. For all lanes, take profiles in the right wheel path approximately 3 feet from the right edge of pavement in the same direction as the paving operation, unless otherwise approved due to traffic control or safety considerations. As an exception, lanes adjacent to curb and gutter, expressway gutter, or shoulder berm gutter may be tested in the left wheel path. Make one pass of the straightedge in each full width travel lane. The full lane width should be comparable in ride quality to the area evaluated with the Hearne Straightedge. If deviations exist at other locations across the lane width, utilize a 10 foot non-mobile straightedge or the Hearne Straightedge to evaluate which areas may require corrective action. Take profiles as soon as practical after the pavement has been rolled and compacted, but no later than 24 hours following placement of the pavement, unless otherwise authorized by the Engineer. Take profiles over the entire length of final surface travel lane pavement exclusive of -Y- line travel lanes less than or equal to 1000 feet in length, ramps less than or equal to 1000 feet in length, turn lanes less than or equal to 1000 feet in length, structures, approach slabs, paved shoulders, loops, and tapers or other irregular shaped areas of pavement, unless otherwise approved by the Engineer. Test in accordance with this provision all mainline travel lanes, full width acceleration or deceleration lanes, -Y- line travel lanes greater than 1000 feet in length, and collector lanes. At the beginning and end of each day's testing operations, and at such other times as determined by the Engineer, operate the straightedge over a calibration strip so that the Engineer can verify correct operation of the straightedge. The calibration strip shall be a 100 foot section of pavement that is reasonably level and smooth. Submit each day's calibration graphs with that day's test section graphs to the Engineer. Calibrate the straightedge in accordance with the current NCDOT procedure titled North Carolina Hearne Straightedge - Calibration and Determination of Cumulative Straightedge Index. Copies of this procedure may be obtained from the Department's Pavement Construction Section. Plot the straightedge graph at a horizontal scale of approximately 25 feet per inch with the vertical scale plotted at a true scale. Record station numbers and references (bridges, approach slabs, culverts, etc.) on the graphs. Distances between references/stations must not exceed 100 feet. Have the operator record the Date, Project No., Lane Location, Wheel Path Location, Type Mix, and Operator's Name on the graph. Upon completion of each day's testing, evaluate the graph, calculate the Cumulative Straightedge Index (CSI), and determine which lots, if any, require corrective action. Document the evaluation of each lot on a QA/QC-7 form. Submit the graphs along with the completed QA/QC-7 forms to the Engineer, within 24 hours after profiles are completed, for verification of the results. The Engineer will furnish results of their acceptance evaluation to the Contractor within 48 hours of receiving the graphs. In the event of discrepancies, the Engineer's evaluation of the graphs will prevail for acceptance purposes. The Engineer will retain all graphs and forms. Use blanking bands of 0.2 inches, 0.3 inches, and 0.4 inches to evaluate the graph for acceptance. The 0.2 inch and 0.3 inch blanking bands are used to determine the Straightedge Index (SEI), which is a number that indicates the deviations that exceed each of the 0.2 inch and 0.3 inch bands within a 100 foot test section. The Cumulative Straightedge Index (CSI) is a number representing the total of the SEIs for one lot, which consist of not more than 25 consecutive test sections. In addition, the 0.4 inch blanking band is used to further evaluate deviations on an individual basis. The CSI will be determined by the Engineer in accordance with the current procedure titled "North Carolina Hearne Straightedge - Calibration and Determination of Cumulative Straightedge Index". The pavement will be accepted for surface smoothness on a lot by lot basis. A test section represents pavement one travel lane wide not more than 100 feet in length. A lot will consist of 25 consecutive test sections, except that separate lots will be established for each travel lane, unless otherwise approved by the Engineer. In addition, full width acceleration or deceleration lanes, ramps, turn lanes, and collector lanes, will be evaluated as separate lots. For any lot that is less than 2500 feet in length, the applicable pay adjustment incentive will be prorated on the basis of the actual lot length. For any lot which is less than 2500 feet in length, the applicable pay adjustment disincentive will be the full amount for a lot, regardless of the lot length. If during the evaluation of the graphs, 5 lots require corrective action, then proceed on limited production for unsatisfactory laydown in accordance with Article 610-12 of the *Standard Specifications*. Proceeding on limited production is based upon the Contractor's initial evaluation of the straightedge test results and shall begin immediately upon obtaining those results. Additionally, the Engineer may direct the Contractor to proceed on limited production in accordance with Article 610-12 due to unsatisfactory laydown or workmanship. Limited production for unsatisfactory laydown is defined as being restricted to the production, placement, compaction, and final surface testing of a sufficient quantity of mix necessary to construct only 2500 feet of pavement at the laydown width. Once this lot is complete, the final surface testing graphs will be evaluated jointly by the Contractor and the Engineer. Remain on limited production until such time as acceptable laydown results are obtained or until three consecutive 2500 foot sections have been attempted without achieving acceptable laydown results. The Engineer will determine if normal production may resume based upon the CSI for the limited production lot and any adjustments to the equipment, placement methods, and/or personnel performing the work. Once on limited production, the Engineer may require the Contractor to evaluate the smoothness of the previous asphalt layer and take appropriate action to reduce and/or eliminate corrective measures on the final surface course. Additionally, the Contractor may be required to demonstrate acceptable laydown techniques off the project limits prior to proceeding on the project. If the Contractor fails to achieve satisfactory laydown results after three consecutive 2500 foot sections have been attempted, cease production of that mix type until such time as the cause of the unsatisfactory laydown results can be determined. As an exception, the Engineer may grant approval to produce a different mix design of the same mix type if the cause is related to mix problem(s) rather than laydown procedures. If production of a new mix design is allowed, proceed under the limited production procedures detailed above. After initially proceeding under limited production, the Contractor shall immediately notify the Engineer if any additional lot on the project requires corrective action. The Engineer will determine if limited production procedures are warranted for continued production. If the Contractor does not operate by the limited production procedures as specified above, the 5 lots, which require corrective action, will be considered unacceptable and may be subject to removal and replacement. Mix placed under the limited production procedures for unsatisfactory laydown will be evaluated for acceptance in accordance with Article 105-3. The pay adjustment schedule for the Cumulative Straightedge Index test results per lot is as follows: | Pay Adjustment Schedule for Cumulative Straightedge Index (CSI) (Obtained by adding SE Index of up to 25 consecutive 100 foot test sections) | | | | | |--|-------------------|------------|--------------------|--------------------| | | | | PAY ADJUS | TMENT | | *CSI | ACCEPTANCE | CORRECTIVE | | After Corrective | | | CATEGORY | ACTION | Before Corrective | Action | | 0-0 | Acceptable | None | \$300 incentive | None | | 1-0 or 2-0 |
Acceptable | None | \$100 incentive | None | | 3-0 or 4-0 | Acceptable | None | No Adjustment | No Adjustment | | 1-1, 2-1,
5-0 or 6-0 | Acceptable | Allowed | \$300 disincentive | \$300 disincentive | | 3-1, 4-1, | A 1.1. | A 11 | ΦC00 1'-' | \$C00 1: : 4: | | 5-1 or 6-1 | Acceptable | Allowed | \$600 disincentive | \$600 disincentive | | Any other | T.I | Damina d | Per CSI after C | orrection(s) | | Number | Unacceptable | Required | (not to exceed | 100% Pay) | ^{*}Either Before or After Corrective Actions Correct any deviation that exceeds a 0.4 inch blanking band such that the deviation is reduced to 0.3 inches or less. Corrective actions shall be performed at the Contractor's expense and shall be presented for evaluation and approval by the Engineer prior to proceeding. Any corrective action performed shall not reduce the integrity or durability of the pavement that is to remain in place. Corrective action for deviation repair may consist of overlaying, removing and replacing, indirect heating and rerolling. Scraping of the pavement with any blade type device will not be allowed as a corrective action. Provide overlays of the same type mix, full roadway width, and to the length and depth established by the Engineer. Tapering of the longitudinal edges of the overlay will not be allowed. Corrective actions will not be allowed for lots having a CSI of 4-0 or better. If the CSI indicates *Allowed* corrective action, the Contractor may elect to take necessary measures to reduce the CSI in lieu of accepting the disincentive. Take corrective actions as specified if the CSI indicates *Required* corrective action. The CSI after corrective action shall meet or exceed *Acceptable* requirements. Where corrective action is allowed or required, the test section(s) requiring corrective action will be retested, unless the Engineer directs the retesting of the of the entire lot. No disincentive will apply after corrective action if the CSI is 4-0 or better. If the retested lot after corrective action has a CSI indicating a disincentive, the appropriate disincentive will be applied. Test sections and/or lots that are initially tested by the Contractor that indicate excessive deviations such that either a disincentive or corrective action is necessary, may be re-rolled with 88 asphalt rollers while the mix is still warm and in a workable condition, to possibly correct the problem. In this instance, reevaluation of the test section(s) shall be completed within 24 hours of pavement placement and these test results will serve as the initial test results. Incentive pay adjustments will be based only on the initially measured CSI, as determined by the Engineer, prior to any corrective work. Where corrective actions have been taken, payment will be based on the CSI determined after correction, not to exceed 100 percent payment. Areas excluded from testing by the N.C. Hearne Straightedge will be tested by using a nonmobile 10-foot straightedge. Assure that the variation of the surface from the testing edge of the straightedge between any two contact points with the surface is not more than 1/8 inch. Correct deviations exceeding the allowable tolerance in accordance with the corrective actions specified above, unless the Engineer permits other corrective actions. Furnish the North Carolina Hearne Straightedge(s) necessary to perform this work. Maintain responsibility for all costs relating to the procurement, handling, and maintenance of these devices. The Department has entered into a license agreement with a manufacturer to fabricate, sell, and distribute the N.C. Hearne Straightedge. The Department's Pavement Construction Section may be contacted for the name of the current manufacturer and the approximate price of the straightedge. No direct payment will be made for the work covered by this section. Payment at the contract unit prices for the various items covered by those sections of the specifications directly applicable to the work constructed will be full compensation for all work covered by this section including, but not limited to, performing testing in accordance with this specification, any corrective work required as a result of this testing and any additional traffic control as may be necessary. #### **MASONRY DRAINAGE STRUCTURES:** SP8 R01 Revise the 2006 Standard Specifications as follows: Page 8-31, Article 840-4 Measurement and Payment, add the following at the end of the second paragraph: For that portion of *Masonry Drainage Structure* measured above a height of 10.0 feet, payment will be made at 1.3 times the contract unit price per linear foot for Masonry Drainage Structure. # BORROW EXCAVATION AND SHPO DOCUMENTATION FOR BORROW/WASTE SITES: (12-18-07) (4-15-08) SP8 R02 Revise the 2006 Standard Specifications as follows: ## **Division 2 Earthwork** Page 2-16, Subarticle 230-1(D), add the words: The Contractor specifically waives as the first words of the sentence. # Page 2-17, Article 230-4(B) Contractor Furnished Sources, first paragraph, first sentence replace with the following: Prior to the approval of any borrow sources developed for use on any project, obtain certification from the State Historic Preservation Officer of the State Department of Cultural Resources certifying that the removal of the borrow material from the borrow sources(s) will have no effect on any known district, site building, structure, or object, architectural and/or archaeological that is included or eligible for inclusion in the National Register of Historic Places. #### **Division 8 Incidentals** # Page 8-9, Article 802-2 General Requirements, add the following as the 1st paragraph: Prior to the removal of any waste from any project, obtain certification from the State Historic Preservation Officer of the State Department of Cultural Resources certifying that the deposition of the waste material to the proposed waste area will have no effect on any known district, site building, structure, or object, architectural and/or archaeological that is included or eligible for inclusion in the National Register of Historic Places. Furnish a copy of this certification to the Engineer prior to performing any work in the proposed waste site. # Page 8-10, Article 802-2, General Requirements, 4th paragraph, add the following as the 2nd sentence: The Department's borrow and waste site reclamation procedures for contracted projects is available on the NCDOT website and shall be used for all borrow and waste sites on this project. # CONCRETE TRANSITIONAL SECTIONS FOR CATCH BASINS AND DROP INLETS: (1-20-09) SP8 R03 Revise the Standard Specifications as follows: # Page 8-32, Article 840-4 Measurement and Payment, delete the eighth full paragraph and replace with the following: No separate payment will be made for Concrete Aprons as shown in Standard Drawings 840.17, 840.18, 840.19, 840.26, 840.27 and 840.28 and will be incidental to the other work in this section. # Page 8-38, Article 852-4, Measurement and Payment, add the following as the fourth paragraph: Concrete Transitional Section for Catch Basin will be measured and paid for in units of each. Concrete Transitional Section for Drop Inlet will be measured and paid for in units of each. Payment will be made under: | Pay Item | Pay Unit | |---|----------| | Concrete Transitional Section for Catch Basin | Each | | Concrete Transitional Section for Drop Inlet | Each | Revise the Roadway Standard Drawings as follows: On page 852.04, delete the statement: *CONCRETE APRON IS INCIDENTAL TO CONSTRUCTION OF THE DRAINAGE STRUCTURE and change *Pay Limits for Concrete Apron for Drop Inlets in two places on the drawing to *Pay Limits for Concrete Transitional Section for Drop Inlet*. On page 852.05, delete the statement: *CONCRETE APRON IS INCIDENTAL TO CONSTRUCTION OF THE DRAINAGE STRUCTURE and change *Concrete Apron for Catch Basin on the drawing to Concrete Transitional Section for Catch Basin. On page 852.06, delete the statement: *CONCRETE APRON IS INCIDENTAL TO CONSTRUCTION OF THE DRAINAGE STRUCTURE and change *Pay Limits for Concrete Apron for Drop Inlets in two places on the drawing to *Pay Limits for Concrete Transitional Section for Drop Inlet*. # **SUBSURFACE DRAINAGE:** SP8 R05 Revise the Standard Specifications as follows: ## Page 8-13, Delete Section 815 SUBSURFACE DRAINAGE and replace it with the following: #### **Description** Construct subsurface drains, underdrains, blind drains and other types of drains in accordance with the contract or as directed by the Engineer. Install markers to locate concrete pads for drains as shown on the plans. This provision does not apply to shoulder drains. #### **Materials** Refer to Division 10 of the Standard Specifications. | Item | Section | |---|---------| | Portland Cement Concrete, Class B | 1000 | | Select Material, Class V | 1016 | | Subsurface Drainage Materials | 1044 | | Filter Fabric for Subsurface Drains, Type 1 | 1056 | | Steel Markers | 1072-4 | | Steel Marker Paint | 1080-14 | | Pavement Marker Paint | 1087 | Use Class B Concrete for concrete pads and Class V Select Material for subdrain coarse aggregate. Provide subdrain coarse aggregate for subsurface drains and subdrain fine aggregate for underdrains and blind drains. #### **Construction Methods** Do not leave filter fabrics uncovered for more than 7 days. Excavate trenches as necessary in accordance with the contract or as directed by the Engineer. For subsurface drains, line trench with filter fabric and overlap fabric ends a minimum of 6" on top of subdrain coarse aggregate. Install blind drains at a depth of 4 to 6 ft below subgrade elevation. Install subdrain pipes for subsurface drains and underdrains at a depth of 4 to 6 ft below subgrade elevation unless the subgrade will be proof rolled. For subsurface drains and underdrains in subgrades that will be proof rolled, install subdrain pipes
at a depth of 6 ft below subgrade elevation. Firmly connect subdrain pipes together as needed. Place perforated subdrain pipes with perforations down except for pipes in dry materials, in which case turn perforations up or use non-perforated pipes. For concrete pipes in dry materials, construct mortar joints in accordance with Subarticle 300-6(A) of the Standard Specifications. Place subdrain aggregate beneath, around and over subdrain pipes such that pipes are covered by at least 6" of aggregate unless shown otherwise on the plans. Do not displace or damage subdrain pipes while placing and compacting subdrain aggregate. Lightly compact backfill material such that settlement is minimized. Use solvent cement for connecting polyvinyl chloride (PVC) outlet pipes and fittings such as wyes, tees and elbows. Provide connectors for outlet pipes and fittings that are watertight and suitable for gravity flow conditions. Cover open ends of outlet pipes with rodent screens as shown on the plans. Connect drains to concrete pads or existing drainage structures at ends of outlet pipes. Construct concrete pads and provide an Ordinary Surface Finish in accordance with Subarticle 825-6(B) of the *Standard Specifications*. Furnish and install steel and pavement markers at concrete pads as shown on the plans. Allow drains to function for up to 30 days or a sufficient time as determined by the Engineer before undercutting, proof rolling or constructing embankments over drains. ### Measurement and Payment Subdrain Excavation will be measured and paid for in cubic yards. Excavation will be measured based on the trench width shown on the plans or as directed by the Engineer and the actual trench depth as determined by the Engineer. The contract unit price for Subdrain Excavation will be full compensation for excavating trenches and backfilling above subdrain aggregate. Filter Fabric for Subsurface Drains will be measured and paid for in square yards. Filter fabric in a trench will be measured in place based on the subdrain aggregate width shown on the plans or as directed by the Engineer and the actual aggregate depth as determined by the Engineer. No additional payment will be made for overlapping fabric. The contract unit price for *Filter Fabric* for *Subsurface Drains* will be full compensation for supplying, transporting and installing filter fabric. Subdrain Fine Aggregate and Subdrain Coarse Aggregate will be measured and paid for in cubic yards. Subdrain aggregate in a trench will be measured in place based on the aggregate width shown on the plans or as directed by the Engineer and the actual aggregate depth as determined by the Engineer. When subdrain aggregate is not placed in a trench, aggregate will be measured in place based on the aggregate dimensions shown on the plans or as determined by the Engineer. The contract unit prices for Subdrain Fine Aggregate and Subdrain Coarse Aggregate will be full compensation for furnishing, hauling, handling, placing, compacting and maintaining subdrain aggregate. ___" Perforated Subdrain Pipe and ___" Outlet Pipe will be measured and paid for in linear feet. Pipes will be measured in place as the pipe length, including fittings, to the nearest 0.1 foot with no deduction for fittings. The contract unit prices for ___" Perforated Subdrain Pipe and __" Outlet Pipe will be full compensation for supplying, transporting and installing pipes, fittings and rodent screens and making joint connections. Subdrain Pipe Outlets will be measured and paid for in units of each. Outlets will be measured as the number of concrete pads or connections to existing drainage structures. The contract unit price for Subdrain Pipe Outlets will be full compensation for concrete pads including furnishing concrete, constructing pads and providing and placing markers and connecting pipes to existing drainage structures including cutting into structures, removing existing paved ditches and grouting around connections. Payment will be made under: | Pay Unit | |-------------| | Cubic Yard | | Square Yard | | Cubic Yard | | Cubic Yard | | Linear Foot | | Linear Foot | | Each | | | #### **CONCRETE STEPS (with handrail):** ((Rev 11-7-08) SPI 8-4 #### **Description** Construct reinforced concrete steps with handrails in accordance with the plans and contract documents. C202266 (U-3306) **Orange County** #### **Materials** Refer to Division 10. | Item | Section | |-----------------------------------|---| | Portland cement concrete, Class B | 1000 | | Curing agents | 1026 | | Steel bar reinforcement | 1070-2 | | Galvanizing | 1076 | | Steel Pipe Rail | ASTM A53 (schedule 40)Plain End Galvanized Pipe | #### **Construction Methods** Construct concrete in accordance with Section 825, except as otherwise provided herein. Furnish and place reinforcement, as shown on the plans, in accordance with Section 425. Give formed surfaces of the concrete a rubbed finish. Give unformed surfaces a float finish. Compact backfill to a degree comparable to the adjacent undisturbed material. ## Measurement and Payment Concrete Steps will be measured and paid for in cubic yards computed from the dimensions shown on the plans or established by the Engineer that has been incorporated into the completed and accepted steps. Work includes but is not limited to excavation and backfilling, furnishing and placing concrete, reinforcing steel, reinforcing steel, steel pipe rail, grout and all labor, tools, materials, equipment and incidentals necessary to complete the work. Handrail on Steps will be measured and paid in linear feet along the top of the rail to the nearest 0.1 foot. Such price shall include furnishing and installing handrails, grouting, painting, and all labor, tools, equipment and incidentals necessary to complete the work. Payment will be made under: | Pay Item | Pay Unit | |-------------------|-------------| | Concrete Steps | Cubic Yard | | Handrail on Steps | Linear Foot | ## **ENDWALLS:** (5-20-08) SP8 R25 Revise the *Standard Specifications* as follows: #### Page 8-28, Article 838-4 Replace the 1st and 2nd paragraph with the following: Endwalls will be measured and paid for in cubic yards of concrete or brick that have been completed and accepted. This quantity will be computed from the dimensions shown on the plans or from revised authorized dimensions. Where precast concrete units have been approved and are used in lieu of cast-in-place units the quantity to be paid for will be computed the same as if cast-in-place units were used, as no reduction in pay quantity will be made due to the use of precast in lieu of cast in place endwalls. Reinforced Endwalls will be measured and paid for in cubic yards of concrete or brick that have been completed and accepted. This quantity will be computed from the dimensions shown on the plans or from revised authorized dimensions. Where precast concrete units have been approved and are used in lieu of cast-in-place units the quantity to be paid for will be computed the same as if cast-in-place units were used, as no reduction in pay quantity will be made due to the use of precast in lieu of reinforced cast in place endwalls. # **GUARDRAIL ANCHOR UNITS, TYPE 350:** (4-20-04) SP8 R65 ### **Description** Furnish and install guardrail anchor units in accordance with the details in the plans, the applicable requirements of Section 862 of the 2006 Standard Specifications, and at locations shown in the plans. #### **Materials** į The Contractor may at his option, furnish any one of the guardrail anchor units. Guardrail anchor unit (ET-2000) as manufactured by: Trinity Industries, Inc. 2525 N. Stemmons Freeway Dallas, Texas 75207 Telephone: 800-644-7976 The guardrail anchor unit (SKT 350) as manufactured by: Road Systems, Inc. 3616 Old Howard County Airport Big Spring, Texas 79720 Telephone: 915-263-2435 Prior to installation the Contractor shall submit to the Engineer: - (A) FHWA acceptance letter for each guardrail anchor unit certifying it meets the requirements of NCHRP Report 350, Test Level 3, in accordance with Section 106-2 of the 2006 Standard Specifications. - (B) Certified working drawings and assembling instructions from the manufacturer for each guardrail anchor unit in accordance with Section 105-2 of the 2006 Standard Specifications. No modifications shall be made to the guardrail anchor unit without the express written permission from the manufacturer. Perform installation in accordance with the details in the plans, and details and assembling instructions furnished by the manufacturer. #### **Construction Methods** Guardrail end delineation is required on all approach and trailing end sections for both temporary and permanent installations. Guardrail end delineation consists of yellow reflective sheeting applied to the entire end section of the guardrail in accordance with Section 1088-3 of the 2006 Standard Specifications and is incidental to the cost of the guardrail anchor unit. ## Measurement and Payment Measurement and payment will be made in accordance with Articles 862-6 of the 2006 Standard Specifications. Payment will be made under: Pay Item Guardrail Anchor Units, Type 350 Pay Unit Each #### **8" CONCRETE TRUCK APRON:** # **Description** Construct 8" Concrete Truck Apron in accordance with Section 848 of the Standard Specifications as modified by the typical section in the plans and this provision. #### **Materials** Concrete shall be Class A Concrete meeting the requirements of Section 1000 of the *Standard Specifications*. #### **Measurement and Payment** 8" Concrete Truck Apron will be measured and paid for in square yards of 8" Concrete Truck Apron that have completed and accepted. Such price and payment will be full compensation for all work of constructing truck apron, including but not limited to excavating and backfilling, furnishing and placing concrete, and constructing joints. Pay Item Pay Unit 8" Concrete Truck
Apron Square Yard # **DETECTABLE WARNINGS FOR PROPOSED WHEELCHAIR RAMPS;** (6-15-10 SP8 R126 ## **Description** Construct detectable warnings consisting of integrated raised truncated domes on proposed concrete wheelchair ramps in accordance with the 2006 Standard Specifications, plan details, the requirements of the 28 CFR Part 36 ADA Standards for Accessible Design and this provision. #### **Materials** Detectable warning for proposed wheelchair ramps shall consist of integrated raised truncated domes. The description, size and spacing shall conform to Section 848 of the *Standard Specifications*. Use material for detectable warning systems as shown herein. Material and coating specifications must be stated in the Manufacturers Type 3 Certification and all Detectable Warning systems must be on the NCDOT Approved Product List for Wheelchair Ramps. Install detectable warnings created from one of the following materials: precast concrete blocks or bricks, clay paving brick, gray or ductile iron castings, mild steel, stainless steel, and engineered plastics, rubber or composite tile. Only one material type for detectable warning will be permitted per project, unless otherwise approved by the Engineer. - (A) Detectable Warnings shall consist of a base with integrated raised truncated domes, and when constructed of precast concrete they shall conform to the material requirements of Article 848-2 of the Standard Specifications. - (B) Detectable Warnings shall consist of a base with integrated raised truncated domes, and may be comprised of other materials including but not limited to clay paving brick, gray iron or ductile iron castings, mild steel, stainless steel, and engineered plastics, rubber or composite tile, which are cast into the concrete of the wheelchair ramps. The material shall have an integral color throughout the thickness of the material. The detectable warning shall include fasteners or anchors for attachment in the concrete and shall be furnished as a system from the manufacturer. Prior to installation, the Contractor shall submit to the Engineer assembling instructions from the manufacturer for each type of system used in accordance with Article 105-2 of the *Standard Specifications*. The system shall be furnished as a kit containing all consumable materials and consumable tools, required for the application. They shall be capable of being affixed to or anchored in the concrete ramp, including green concrete (concrete that has set but not appreciably hardened). The system shall be solvent free and contain no volatile organic compounds (VOC). The static coefficient of friction shall be 0.8 or greater when measured on top of the truncated domes and when measured between the domes in accordance with ASTM C 1028 (dry and wet). The system shall be resistant to deterioration due to exposure to sunlight, water, salt or adverse weather conditions and impervious to degradation by motor fuels, lubricants and antifreeze. (C) When steel or gray iron or ductile iron casting products are provided, only products that meet the requirements of Article 106-1(B) of the *Standard Specifications* may be used. Submit to the Engineer a Type 6 Certification, catalog cuts and installation procedures at least 30 days prior to installation for all. #### **Construction Methods** - (A) Prior to placing detectable warnings in proposed concrete ramps, adjust the existing subgrade to the proper grade and in accordance with Article 848-3 of the *Standard Specifications*. - (B) Install all detectable warning in proposed concrete ramps in accordance with the manufacturer's recommendations. ## **Measurement and Payment** Detectable Warnings installed for construction of proposed wheelchair ramps will not be paid for separately. Such payment will be included in the price bid for *Concrete Wheelchair Ramps*. #### **STEEL U-CHANNEL POSTS:** (7-18-06) SP9 R02 Revise the 2006 Standard Specifications as follows: Page 9-15 Subarticle 903-3(D) first paragraph, last sentence, delete the last sentence and add the following: Use posts of sufficient length to permit the appropriate sign mounting height. Spliced posts are not permitted on new construction. ### HIGH STRENGTH CONCRETE FOR DRIVEWAYS: (11-21-00) (7-18-06) SP10 R01 Use high early strength concrete for all driveways shown in the plans and as directed by the Engineer. Provide high early strength concrete that meets the requirements of Article 1000-6 of the 2006 Standard Specifications. Measurement and payment will be in accordance with Section 848 of the 2006 Standard Specifications. #### GALVANIZED HIGH STRENGTH BOLTS, NUTS AND WASHERS: (2-17-09) SP10 R02 Revise the *Standard Specifications* as follows: Page 10-126, Subarticle 1072-7(F)(3) Change the AASHTO reference to B 695 Class 55. Page 10-247, Table 1092-2, Steel Sign Materials, Change High Strength Bolts, Nuts & Washers ASTM Specifications for Galvanizing to B695 Class 55. Page 10-259, Subarticle 1094-1(A) Breakaway or Simple Steel Beam Sign Supports, replace the third paragraph with the following: Fabricate high strength bolts, nuts, and washers required for breakaway supports from steel in accordance with ASTM A325 and galvanize in accordance with AASHTO B 695 Class 55. Page 10-261, Article 1096-2 Steel Overhead Sign Structures, replace the last sentence with the following: The galvanizing shall meet the requirement of AASHTO B 695 Class 55 for fasteners and of ASTM A123 for other structural steel. ## **AGGREGATE PRODUCTION:** (11-20-01) SP10 R05 Provide aggregate from a producer who uses the current Aggregate Quality Control/Quality Assurance Program that is in effect at the time of shipment. No price adjustment is allowed to contractors or producers who use the program. Participation in the program does not relieve the producer of the responsibility of complying with all requirements of the 2006 Standard Specifications. Copies of this procedure are available upon request from the Materials and Test Unit. # **CONCRETE BRICK AND BLOCK PRODUCTION:** (11-20-01) SP10 R10 Provide concrete brick and block from a producer who uses the current Solid Concrete Masonry Brick/Unit Quality Control/Quality Assurance Program that is in effect on the date that material is received on the project. No price adjustment is allowed to contractors or producers who use the program. Participation in the program does not relieve the producer of the responsibility of complying with all requirements of the 2006 Standard Specifications. Copies of this procedure are available upon request from the Materials and Test Unit. #### **VOLUMETRIC CONCRETE BATCHING:** (5-18-10) SP10 R13 Revise the 2006 Standard Specifications as follows: Page 10-19, after Article 1000-12, add the following as a new article: #### 1000-13 VOLUMETRIC MIXED CONCRETE Upon written request by the contractor, the Department may approve the use of concrete proportioned by volume. The volumetric producer must submit and have approved a process control plan and product quality control plan by the Materials and Tests Unit. If concrete is proportioned by volume, the other requirements of these specifications with the following modifications will apply. Unless otherwise approved by the Department, use of concrete proportioned by volume shall be limited to Class B concrete and a maximum of 30 cubic yards per unit per day. ## (A) Materials Use materials that meet the requirements for the respective items in the *Standard Specifications* except that they will be measured by a calibrated volume-weight relationship. Storage facilities for all material shall be designed to permit the Department to make necessary inspections prior to the batching operations. The facilities shall also permit identification of approved material at all times, and shall be designed to avoid mixing with or contaminating by unapproved material. Coarse and fine aggregate shall be furnished and handled so variations in the moisture content affecting the uniform consistency of the concrete will be avoided. Moisture content of the coarse and fine aggregate will be made available onsite for the Engineer's review for each load. The frequency of moisture testing will be dependent on certain variables such as weather, season and source; however, moisture tests should be performed at least once at the beginning of the work day for each source material. Additional daily moisture tests for the coarse and fine aggregate shall be performed if requested by the Engineer. Unused materials should be emptied from hopper daily. Concrete should not be mixed with materials that have been left in the hopper overnight. ## (B) Equipment Provide volumetric mixers with rating plates indicating that the performance of the mixer is in accordance with the Volumetric Mixer Manufacturer Bureau or equivalent. Mixers must comply with ASTM C685. Unless otherwise specified, all mixing operations must be in strict accordance with the manufacturer's recommended procedures. Such procedures shall be provided to the Department for review upon request. The volumetric mixer shall be capable of carrying sufficient unmixed dry bulk cement, pozzolan (if required), fine aggregate, coarse aggregate, admixtures and water, in separate compartments and accurately proportioning the specified mix. Each batching or mixing unit (or both) shall carry in a prominent place a metal plate or plates on which are plainly marked the gross volume of the unit in terms of mixed concrete, discharge speed and the weight-calibrated constant of the machine in terms of a revolution counter or other output indicator. The concrete mixing device shall be an auger-type continuous mixer used in conjunction with volumetric proportioning. The mixer shall produce concrete, uniform in color and appearance, with homogeneous distribution of the material throughout the mixture. Mixing time necessary to produce uniform concrete shall be established by the contractor and shall comply with other
requirements of these specifications. Only equipment found acceptable in every respect and capable of producing uniform results will be permitted. Each volumetric mixer shall be equipped with an onboard ticketing system that will electronically produce a record of all material used and their respective weights and the total volume of concrete placed. Alternate methods of recordation may be used if approved by the Engineer. Tickets should also identify the following information, at minimum: - Contractor Name - Contractor Phone Number - NCDOT Project No. and TIP No. - Date - Truck No. - Ticket No. - Time Start/End of Pour - Mix ID & Description (Strength) - Aggregate Moisture Before Mixing # (C) Proportioning Devices Volume proportioning devices, such as counters, calibrated gate openings or flow meters, shall be easily accessible for controlling and determining the quantities of the ingredients discharged. All indicating devices that affect the accuracy of proportioning and mixing of concrete shall be in full view of and near enough to be read by the operator and Engineer while concrete is being produced. In operation, the entire measuring and dispensing mechanism shall produce the specified proportions of each ingredient. The volumetric mixer shall provide positive control of the flow of water and admixtures into the mixing chamber. Water flow shall be indicated by a flow meter and be readily adjustable to provide for slump control and/or minor variations in aggregate moisture. The mixer shall be capable of continuously circulating or mechanically agitating the admixtures. Liquid admixtures shall be dispensed through a controlled, calibrated flow meter. A positive means to observe the continuous flow of material shall be provided. If an admixture requires diluting, the admixture shall be diluted and thoroughly mixed prior to introducing the admixture into the dispenser. When admixtures are diluted, the ratio of dilution and the mixing shall be approved by and performed in the presence of the Department. The volumetric mixer shall be capable of measurement of cement, pozzolan (if required), liquids and aggregate being introduced into the mix. # 101 ### (D) Calibration Volume-weight relationships will be based on calibration. The proportioning devices shall be calibrated by the contractor prior to the start of each NCDOT job, and subsequently at intervals recommended by the equipment manufacturer. Calibrations will be performed in the presence of the Department and subject to approval from the Department. Calibration of the cement and aggregate proportioning devices shall be accomplished by weighing (determining the mass of) each component. Calibration of the admixture and water proportioning devices shall be accomplished by weight (mass) or volume. Tolerances in proportioning the individual components will be as follows: TABLE 1000-4 VOLUMETRIC MIXED CONCRETE CALIBRATION PROPORTION TOLERANCES | Item | Tolerance | |---|-----------| | Cement, Weight (Mass) percent | 0 to +4 | | Fine Aggregate, Weight (Mass) percent | ± 2 | | Coarse Aggregate, Weight (Mass) percent | ± 2 | | Admixtures, Weight (Mass) or Volume percent | ± 3 | | Water, Weight (Mass) or Volume percent | ± 1 | Each volumetric mixer must be accompanied at all times by completed calibration worksheets and they shall be made available to the Department upon request. ### (E) Verification of Yield Verification of the proportioning devices may be required at any time by the Department. Verification shall be accomplished by proportioning the rock and sand based on the cement meter count for each concrete mobile mixer. Once the count (revolutions) for 94 pounds of cement has been determined then delivery of the correct amount of rock and sand can be verified. # (F) Uniformity When concrete is produced, have present during all batching operations a Certified Concrete Batch Technician. During batching and placement, the sole duty of this employee is to supervise the production and control of the concrete, perform moisture tests, adjust mix proportions of aggregates for free moisture, complete and sign approved delivery tickets, and assure quality control of the batching. Two samples of sufficient size to make the required tests will be taken after discharge of approximately 15 and 85 percent of the load. Each of the 2 samples of concrete will be separately tested for the properties listed in Table 1000-3. Tests will be conducted in accordance with the test procedures specified in Table 1000-3 or procedures established by the Materials and Tests Unit. The Engineer may recheck mixer performance at any time when in his opinion satisfactory mixing is not being accomplished. # PORTLAND CEMENT CONCRETE (Alkali-Silica Reaction): (2-20-07) SP10 R16 Revise the 2006 Standard Specifications as follows: Article 1024-1(A), replace the 2nd paragraph with the following: Certain combinations of cement and aggregate exhibit an adverse alkali-silica reaction. The alkalinity of any cement, expressed as sodium-oxide equivalent, shall not exceed 1.0 percent. For mix designs that contain non-reactive aggregates and cement with an alkali content less than 0.6%, straight cement or a combination of cement and fly ash, cement and ground granulated blast furnace slag or cement and microsilica may be used. The pozzolan quantity shall not exceed the amount shown in Table 1024-1. For mixes that contain cement with an alkali content between 0.6% and 1.0%, and for mixes that contain a reactive aggregate documented by the Department, regardless of the alkali content of the cement, use a pozzolan in the amount shown in Table 1024-1. Obtain the list of reactive aggregates documented by the Department at:http://www.ncdot.org/doh/operations/materials/pdf/quarryasrprob.pdf | Table 1024-1 | | | |---|--|--| | Pozzolans for Use in Portland Cement Concrete | | | | Pozzolan Rate | | | | Class F Fly Ash | 20% by weight of required cement content, with 1.2 lbs Class F fly ash per lb of cement replaced | | | Ground Granulated Blast Furnace Slag | 35%-50% by weight of required cement content with 1 lb slag per lb of cement replaced | | | Microsilica | 4%-8% by weight of required cement content, with 1 lb microsilica per lb of cement replaced | | ### **CULVERT PIPE:** $\overline{(1-19-10)}$ SP10 R32 Revise the Standard Specifications for Roads and Structures as follows: #### Page 10-67, Article 1032-1, replace (A), (B), (C), (D), (E) and (F) with the following: - (A) Coated corrugated metal culvert pipe and pipe arches. - (B) Coated corrugated metal end sections, coupling band, and other accessories - (C) Corrugated aluminum alloy structural plate pipe and pipe arches - (D) Corrugated aluminum alloy end sections, coupling band, and other accessories - (E) Welded steel pipe #### Page 10-69, Subarticle 1032-3(A)(5) Coating Repair, replace with the following: Repair shall be in accordance with Section 1076-6 of the Standard Specifications. ### Subarticle 1032-3(A)(7) Aluminized Pipe, replace with the following: Aluminized pipe shall meet all requirements herein, except that the pipe and coupling bands shall be fabricated from aluminum coated steel sheet meeting the requirements of AASHTO M274. Page 10-71, Article 1032-4 Coated Culvert Pipe, replace (A), (1), (2), (3), (4), (B), (C), (D), (E), (F) and (G) with the following: (A) Coatings for Steel Culvert Pipe or Pipe Arch The below coating requirements apply for steel culvert pipe, pipe arch, end sections, tees, elbows, and eccentric reducers. - (1) Steel Culvert pipe shall have an aluminized coating, meeting the requirement of AASHTO M274 - (2) When shown on the plans or as approved by the Engineer, a polymeric coating meeting the requirements of AASHTO M246 for Type B coating may be substituted for aluminized coating. ## (B) Acceptance Acceptance of coated steel culvert pipe, and its accessories will be based on, but not limited to, visual inspections, classification requirements, check samples taken from material delivered to the project, and conformance to the annual Brand Registration. Page 10-73, Article 1032-5, sixth paragraph, third sentence, remove the word "spelter" Page 10-74, 1032-7 Vitrified Clay Culvert Pipe, delete section in its entirety. Page 10-75, Article 1032-8 Welded Steel Pipe, change title to WELDED STEEL PIPE FOR DRAINAGE Subarticle 1032-9(B) Plain Concrete Culvert Pipe, delete section in its entirety. Page 10-77, Article 1032-10 Corrugated Polyethylene Culvert Pipe, change title to CORRUGATED POLYETHYLENE (HDPE) CULVERT PIPE Add the following: Article 1032-11 Polyvinyl Chloride (PVC) Pipe Polyvinyl Chloride pipe shall conform to AASHTO M 304 or ASTM 949. When rubber gaskets are to be installed in the pipe joint, the gasket shall be the sole element relied on to maintain a tight joint. Test pipe joints at the plant hydrostatically using test methods in ASTM D 3212. Soil tight joints shall be watertight to 13.8 kPa. Watertight joints shall be watertight to 34.5 kPa unless a higher pressure rating is specified in the plans. ## **GLASS BEADS:** (7-18-06) SP10 R35 Revise the 2006 Standard Specifications as follows: ## Page 10-223, 1087-4(C) Gradation & Roundness Replace the second sentence of the first paragraph with the following: All Drop-On and Intermixed Glass Beads shall be tested in accordance with ASTM D1155. Delete the last paragraph. # **ENGINEERING FABRICS TABLE 1056-1:** (7-18-06 SP10 R40 Revise the 2006 Standard Specifications as follows: # Page 10-100, Table 1056-1, replace the values for Trapezoidal Tear Strength with the following: | Physical Property | ASTM
Test
Method | Type 1 | Type 2 | Тур | e 3 | Type 4 | |---------------------------|------------------------|----------------|--------------|---------|------------------
-----------------------| | | | | | Class A | Class B | | | Typical Applications | | Shoulder Drain | Under Riprap | - | rary Silt
nce | Soil
Stabilization | | Trapezoidal Tear Strength | D4533 | <i>45</i> lb | <i>75</i> lb | | | <i>75</i> lb | #### PRECAST DRAINAGE STRUCTURES - MACRO-SYNTHETIC FIBERS (7-15-08)(Rev 11-18-08) SP10 R42 ### **Description** Substitute as an option, macro-synthetic fibers in lieu of 4" x 4" W1.4 x W1.4 welded wire fabric reinforcement for selected precast concrete products in accordance with the following requirements. #### **Materials** Item Portland Cement Concrete **Section** 1077-5 - (A) Substitute macro-synthetic fibers only for steel reinforcement with an area of steel of 0.12 in²/ft or less in the following items: - (1) Precast Drainage Structure units in accordance with the requirements of Standard Drawing 840.45. (2) Precast Manhole 4.0' Riser Sections in accordance with the requirements of Standard Drawing 840.52. All other requirements, including reinforcement for these precast concrete items will remain the same. **(B)** Submittal Submit to the Department for approval by the precast producer and fiber manufacturer, independently performed test results certifying the macro-synthetic fibers and the precast concrete products meet the requirements listed herein: ### (C) Macro-Synthetic Fibers (1) Manufacture from virgin polyolefins (polypropylene and polyethylene) and comply with ASTM C 1116.4.1.3. Fibers manufactured from materials other than polyolefins Submit test results certifying resistance to long-term deterioration when in contact with the moisture and alkalies present in cement paste and/or the substances present in airentraining and chemical admixtures. - (2) Fiber length no less than 1-1/2 inch. - (3) Macro-synthetic fibers aspect ratio (length divided by the equivalent diameter of the fiber) between 45 and 150. - (4) Macro-synthetic fibers Minimum tensile strength of 40 ksi when tested in accordance with ASTM D 3822. - (5) Macro-synthetic fibers minimum modulus of elasticity of 400 ksi when tested in accordance with ASTM D 3822. ### (D) Fiber Reinforced Concrete - (1) Approved structural fibers may be used as a replacement of steel reinforcement in allowable structures of NCDOT Standards 840.45 and 840.52. The dosage rate, in pounds of fibers per cubic yard, shall be as per recommended by the fiber manufacturer to provide a minimum average residual strength (in accordance with ASTM C 1399) of concrete of no less than that of the concrete with the steel reinforcement that is being replaced, but no less than 5 lbs. per cubic yard. Submit the recommendations of the manufacturer that correlate the toughness of steel-reinforced concrete with that of the recommended dosage rate for the fiber-reinforced concrete. - (2) Fiber reinforced concrete 4.5% air content, $\pm 1.5\%$ tolerance. - (3) Fiber reinforced concrete develop a minimum compressive strength 4000 psi in 28 days. - (4) Workability of the concrete mix determine in accordance with ASTM C995. The flow time not be less than 7 seconds or greater than 25 seconds. (5) Assure the fibers are well dispersed and prevent fiber balling during production. After introduction of all other ingredients, add the plastic concrete and mix the plastic concrete for at least 4 minutes or for 50 revolutions at standard mixing speed. #### Measurement and Payment No separate payment will be made for substitution of macro-fiber synthetic reinforcement for the steel reinforcing. The price bid for the precast units will be full compensation for furnishing and incorporating the macro-fiber synthetic reinforcement. # **QUALIFICATION OF WELDS AND PROCEDURES:** (7-21-09) SP10 R43 Page 10-143, Subarticle 1072-20(D) Qualification of Welds and Procedures, replace the third sentence of the first paragraph with the following: For all prequalified field welds, submit Welding Procedure Specifications (WPS) for each joint configuration for approval at least 30 days prior to performing any welding. In lieu of this, use the WPS provided and preapproved by the Department. These preapproved WPS are available from the Materials and Tests Unit or at: http://www.ncdot.org/doh/operations/materials/structural/appr_proc.html. Use non-prequalified welds only if approved by the Engineer. Submit WPS for all non-prequalified welds to the Engineer for approval. At no cost to the Department, demonstrate their adequacy in accordance with the requirements of the Bridge Welding Code. ## **PAINT SAMPLING AND TESTING:** (8-15-06 SP10 R45 Revise the 2006 Standard Specifications as follows: Page 10-190, Article 1080-4, Delete the first paragraph and replace with the following: All paint will be sampled, either at the point of manufacture or at the point of destination. Inspection and sampling will be performed at the point of manufacture wherever possible. The Contractor shall not begin painting until the analysis of the paint has been performed, and the paint has been accepted. # **CHANNELIZING DEVICES (Drums):** 7-20-10 SP10 R60 Revise the 2006 Standard Specifications as follows: Page 10-236, Subarticle 1089-5(A) Drums (1) General, replace the paragraph with the following: (1) General Provide drums composed of a body, alternating orange and white 4 band pattern of Type III-High Intensity Microprismatic Sheeting and ballasts that have been evaluated by NTPEP. 107 The following guidelines will be used during the transition from drums with the standard 5 band engineer's grade sheeting to the new 4 band configuration. - (a) All <u>new</u> drums purchased <u>after July 20, 2010</u> shall have the new sheeting and 4 band configuration. - (b) Existing 5 band drums with engineer's grade sheeting (both new and used devices in existing inventories) will be allowed for use on all on-going construction projects until project completion and will also be allowed for use on other projects until a sunset date has been established. - (c) Intermixing of "old drums" and "new drums" on the same project is acceptable during the transition. - (d) 4 band drums with engineer's grade sheeting will not be allowed at anytime. Page 10-236, Subarticle 1089-5(A) Drums (3) Retroreflective Stripes, replace the paragraph with the following: ### (3) Retroreflective Bands Provide a minimum of 4 retroreflective bands- 2 orange and 2 white alternating horizontal circumferential bands. The top band shall always be orange. Use a 6" to 8" wide band Type III—High Intensity Microprismatic Retroreflective Sheeting or better that meets the requirement of Section 1093 for each band. Do not exceed 2" for any non-reflective spaces between orange and white stripes. Do not splice the retroreflective sheeting to create the 6-inch band. Apply the retroreflective sheeting directly to the drum surface. Do not apply the retroreflective sheeting over a pre-existing layer of retroreflective sheeting. Do not place bands over any protruding corrugations areas. No damage to the reflective sheeting should result from stacking and unstacking the drums, or vehicle impact. Page 10-237, Subarticle 1089-5(B) Skinny-Drums (1) General, replace the paragraph with the following: ### (1) General All existing skinny-drums that do not have Type III-High Intensity Microprismatic Sheeting as a minimum will have the same transition requirements as drums as stated above. All **new** skinny-drums purchased **after July 20, 2010** shall have Type III-High Intensity Microprismatic Sheeting as the minimum. Type IV and higher grade sheeting is acceptable for use on both new and used devices. Provide skinny-drums composed of a body, reflective bands, and ballasts that have been evaluated by NTPEP. C202266 (U-3306) Orange County Page 10-237, Subarticle 1089-5(B) Skinny Drums (3) Retroreflective Stripes, replace the paragraph with the following: #### (3) Retroreflective Bands Provide a minimum of 4 retroreflective bands- 2 orange and 2 white alternating horizontal circumferential bands for each skinny-drum. The top band shall always be orange. Use a 6" to 8" wide band Type III—High Intensity Microprismatic Retroreflective Sheeting or better that meets the requirement of Section 1093 for each band. Do not exceed 2" for any non-reflective spaces between orange and white stripes. Do not splice the retroreflective sheeting to create the 6-inch band. Apply the retroreflective sheeting directly to the skinny-drum surface. Do not apply the retroreflective sheeting over a pre-existing layer of retroreflective sheeting. Do not place bands over any protruding corrugations areas. No damage to the reflective sheeting should result from stacking and unstacking the skinny-drums, or vehicle impact. #### **CHANGEABLE MESSAGE SIGNS:** (11-21-06) SP11 R11 Revise the 2006 Standard Specifications as follows: Page 11-9, Article 1120-3, Replace the 3rd sentence with the following: Sign operator will adjust flash rate so that no more than two messages will be displayed and be legible to a driver when approaching the sign at the posted speed. #### **PAVEMENT MARKING LINES:** (11-21-06) (Rev. 9-18-07) SP12 R01 Revise the 2006 Standard Specifications as follows: Page 12-2, 1205-3(D) Time Limitations for Replacement, add the following at the beginning of the chart: | Facility Type | Marking Type | Replacement Deadline | |-------------------------------------|--------------|------------------------------------| | Full-control-of-access multi-lane | All markings | By the end of each workday's | | roadway (4 or more total lanes) and | including | operation if the lane is opened to | | ramps, including Interstates | symbols | traffic | Page 12-14, Subarticle 1205-10, Measurement and Payment, delete the first sentence of the first paragraph and replace with the following: Pavement Marking Lines will be measured and paid for as the actual number of linear feet of pavement marking lines per application that has been satisfactorily placed and accepted by the Engineer. #
EXCAVATION, TRENCHING, PIPE LAYING, & BACKFILLING FOR UTILITIES: (2-17-09) SP15 R01 Revise the 2006 Standard Specifications as follows: # Page 15-5, Article 1505-4 Repair of Pavements, Sidewalks and Driveways, first paragraph, add at the end of the first sentence in accordance with Section 848. # Page 15-6, Article 1505-6 Measurement and Payment, Second paragraph, Delete (5) Repair of Sidewalks and Driveways in its entirety. #### Add as the eighth paragraph: __" Concrete Sidewalk and __" Concrete Driveways will be measured and paid for in accordance with Article 848-4. # PERMANENT SEEDING AND MULCHING: (7-1-95) SP16 R01 The Department desires that permanent seeding and mulching be established on this project as soon as practical after slopes or portions of slopes have been graded. As an incentive to obtain an early stand of vegetation on this project, the Contractor's attention is called to the following: For all permanent seeding and mulching that is satisfactorily completed in accordance with the requirements of Section 1660, Seeding and Mulching, and within the following percentages of elapsed contract times, an additional payment will be made to the Contractor as an incentive additive. The incentive additive will be determined by multiplying the number of acres of seeding and mulching satisfactorily completed times the contract unit bid price per acre for Seeding and Mulching times the appropriate percentage additive. | Percentage of Elapsed Contract Time | Percentage Additive | |-------------------------------------|---------------------| | 0% - 30% | 30% | | 30.01% - 50% | 15% | Percentage of elapsed contract time is defined as the number of calendar days from the date of availability of the contract to the date the permanent seeding and mulching is acceptably completed divided by the total original contract time. #### TREE PROTECTION FENCE: SPI 16-2 ### **Description** "Tree Protection Fence" consists of furnishing, installing, maintaining, and removing wood or steel post, wood slat fence or orange poly-barricade fence fabric and signs at locations shown on the plans or as directed by the Engineer in the field and in accordance with the special provisions included herein. Tree protection fence will be installed after the slope-stake line is staked and prior to all other work. #### Materials Use wood posts that are nominal 4" x 4", length as required, structural light framing, grade No. 2, Southern Pine or steel posts that are a minimum of 1 3/8" wide measured parallel to the fence, with a weight of 1.25 lb/ft of length. Post must have a means for retaining wire in desired position without displacement. Use of steel posts will be required in any area where the tree protection fence is in close proximity to the tree's trunk or any major roots. Use orange polyethylene or polypropylene prefabricated barricade type fence fabric that is a minimum of 48" high and approved by the Engineer or wood slat prefabricated sand or snow fence that is a minimum of 48" high and that conforms to the following requirements. The fabric will be constructed of wood slats and twisted wire cables. Vertical slats will be 3/8" to 3/4" thick and from 1 1/4" to 2" wide and shall comprise 33% to 50% of the surface area. Slats will be connected by means of a two line twisted cable for each foot of fabric height or fraction thereof. The twisted cable will be a minimum of 13 gauge galvanized wire. Treat wood posts and wood slat fence fabric with a preservative in accordance with Section 1082-3 of the Standard Specifications. Use a durable, weatherproof lightweight material to fabricate 'Tree Protection Area' signs. Signs will be a minimum of 5 square feet and lettering will be a minimum of 2" tall and text will be clearly legible. Each sign will contain the following wording: Tree Protection Area Do Not Enter Zona de Protección de Árbol No Entre Use a red background with white lettering. Submit sample sign to the Engineer for approval prior to installation. #### **Construction Methods** Erect fence to conform to the general contour of the ground. Do not remove existing plant material or perform any grading unless indicated on the plans or directed by the Engineer. Avoid soil compaction within tree protection area; do not use heavy equipment and stay outside the perimeter of the tree protection area where possible. Install posts and maintain in a vertical position. Post may be hand set or set with a post driver. If hand set tamp backfill material thoroughly. Power driven wood posts may be sharpened to a dull point. Remove and replace posts damaged by power driving prior to final acceptance. At the direction of the Engineer use steel post instead of wood post when installing fence in close proximity to a tree's trunk or any major roots. Stretch orange poly-barricade fence fabric or wood slat fence fabric taut and attach to post with appropriate means according to post type used. In sections where signs will be located, if orange poly-barricade fence fabric is used reinforce top of fabric by weaving a 12 gauge galvanized wire in the fabric and firmly attach to a post at each end of the section. Attach signs to fence fabric at all four corners using appropriate method for fence fabric and sign material that is chosen. Locate signs every 100 feet, at all corners, changes in direction and as directed by the Engineer. Maintain tree protection fence with required signs in good condition, fully upright with no loose attachments or missing links for the duration of the project. Signs must be visible and legible throughout the duration of the contract. The Engineer must approve in writing, prior to entering the tree protection area, access for the contractor and subcontractor for anything other than routine vegetation maintenance and liter pick-up. Approval must be made for each access occurrence. Do not release petroleum products, fuels, paints, or lubricants anywhere within this project in the vicinity of the tree preservation areas or in areas that drain into this vicinity. Do not apply or release herbicides, fertilizers or chemicals of any kind that may be toxic to plant life and do not 'clean out' concrete trucks in the vicinity of the tree preservation areas, or into areas that drain into this vicinity. Do not burn trash, debris or vegetation in the vicinity of tree preservation areas. Violation of any of the tree preservation measures will result in suspension of all work until the violation is resolved or repaired to the satisfaction of the Engineer. Such suspension of work will not be considered justification for additional compensation in accordance with Section 104 of the *Standard Specifications* or extension of the contract time. As a last item of work after road construction and all related work is complete, and at the direction of the Engineer, remove the tree protection fence, backfill post holes and remove, and properly dispose of fence materials off the construction site. While performing this work do not use heavy equipment and stay on the outside perimeter of the tree protection area where possible to avoid soil compaction within root zone. #### **Measurement and Payment** The quantity of tree protection fence will be paid for at the contract unit price per linear foot. Such payment will be full compensation for the work as described above, including but not limited to furnishing, installing, maintaining and removing the tree protection fence and signs. Payment will be made under: Pay Item Tree Protection Fence Pay Unit Linear Foot