PROJECT SPECIAL PROVISIONS

ROADWAY

REPAIR OF 8" CONTINUOUSLY REINFORCED CONCRETE PAVEMENT:

SPI 7-4

Description

The work covered by this provision consists of the removal and satisfactory disposal of the existing damaged 8" continuously reinforced concrete pavement, furnishing and placing 8" continuously reinforced concrete pavement as shown in the plans or as directed by the Engineer.

Materials

Refer to Division 10 of the Standard Specifications.

Item	Section
Concrete	1000
Aggregate Base Course Backfill	1006 and 1010
Reinforcing Steel	1070

Methods of Production

The repair of 8" continuously reinforced concrete pavement shall meet the applicable requirements of Section 700 of the *Standard Specifications* and the following provisions:

The concrete shall produce a minimum compressive strength at 24 hours of 3000 psi. The pavement shall not be opened to traffic until the minimum specified strength is obtained.

The Contractor shall submit a mix design to the Engineer for approval in accordance with Section 1000-3 of the Standard Specification.

The concrete will be accepted based on suitable cylinders tested at 24 hours.

The surface finish of the proposed concrete pavement shall be a burlap drag finish and conform to the cross-section of adjacent pavement. Immediately after finishing operations have been completed and surface water has disappeared, all exposed surfaces of the pavement shall be cured in accordance with the applicable provisions of Section 700-9 "Curing" and Section 1026 "Curing Agents for Concrete" of the *Standard Specifications*.

The Aggregate Base Course Backfill shall conform to the requirements of Section 520 of the Standard Specifications.

Reinforcing steel shall meet all the requirements of Section 1070, except that epoxy coating will not be required.

The placement of 8" continuously reinforced concrete pavement shall be conducted in one lane at a time. The work shall be accomplished with other operations in progress in the same area.

Reinforcing steel of the size shown on the plans shall be installed and spliced in accordance with the details in the plans. Splices shall be made by using bar couplers. The reinforcing steel shall be cleaned of loose concrete, rust and other materials to a degree acceptable to the Engineer before making the splice.

The bar coupler shall be a cold forged mechanical splice applied by dies of an appropriate shape. The completed splice shall achieve 125% of the required minimum yield strength. Samples of complete splices shall be furnished to the Engineer for testing purposes. The proposed bar coupler shall be approved by the Engineer before being used. An 18-inch lap splice shall be provided at the center of each patch.

As an alternate to the use of mechanical splices, reinforcing steel may be drilled and epoxied into the existing CRC pavement. Holes shall be drilled 8 inches deep into the vertical face of the sawcuts at the same height and adjacent to the existing reinforcing steel strands. The drilled holes shall be cleaned well before epoxying the reinforcing steel into the existing CRC pavement using an approved product. An 18-inch lap splice shall be provided at the center of each patch regardless of the steel attachment mechanism.

As a result of the full depth sawing of the existing pavement to remove the distressed area, saw cuts that extend into the adjacent pavement shall be filled with epoxy prior to placing traffic on the new area. The epoxy shall meet the requirements of Section 1081 Type 3 of the *Standard Specifications*.

The Contractor shall take necessary measures to protect the exposed subgrade and base from damage resulting from surface water and/or rain during the period between the pavement removal and replacement. The Contractor shall replace the concrete within 24 hours after removal of the distressed concrete unless otherwise directed by the Engineer.

At locations as directed by the Engineer, the Contractor shall remove unsuitable aggregate base material to achieve a 12" depth from the top of pavement surface and backfill with 4" Aggregate Base Course Backfill. At locations as directed by the Engineer, the Contractor shall undercut the subgrade, place a soil-stabilization fabric, and backfill with Aggregate Base Course Backfill as directed by the Engineer.

The Contractor shall thoroughly tamp any subgrade material loosened in the pavement removal process to the satisfaction of the Engineer before the pavement is replaced. New pavement shall be cast to a minimum thickness of eight inches.

No traffic will be permitted on the 8" continuously reinforced concrete pavement patch until the minimum compressive strength of 3000 psi has been obtained. Test may be made by the Engineer using a Swiss Hammer.

Measurement and Payment

The quantity of pavement repair to be paid for at the contract unit price will be the actual number of square yards of 8" continuously reinforced concrete pavement repair which has been completed and accepted. In measuring this quantity, the width of the repair will be measured perpendicular to the centerline of the lane. The length will be the actual length constructed, measured along the centerline of the pavement

The unit price shown in the contract for 8" continuously reinforced concrete pavement repair will be full compensation for all work covered by this provision, and applicable sections of the *Standard Specifications* for furnishing all labor, materials, tools, equipment, and incidentals for doing all work involved in placement of the concrete including but not limited to furnishing placing, and curing concrete; reinforcing steel; splicing reinforcing steel; sawing and removing concrete; and filling saw cuts around the pavement repair.

The quantity of aggregate base course backfill to be paid for at the contract unit price for will be the actual number of tons of aggregate which has been incorporated into the completed and accepted work. The aggregate will be measured in accordance with Section 520-11 of the Standard Specifications. The unit price shown in the contract for aggregate base course backfill will be full compensation for all work covered by this provision and the Standard Specifications including but not limited to removing of existing aggregate base course and replacing with aggregate base course backfill.

Payment will be made under:

Pay Item Pay Unit

8" Continuously Reinforced Concrete Repair Square Yard Aggregate Base Course for Backfill Ton Fabric for Soil Stabilization Square Yard

GROOVING EXISTING CONCRETE PAVEMENT:

(12-15-09) SPI 8-26

Description

Perform the work covered by this provision including but not limited to longitudinal grooving the surface of existing portland cement concrete pavement at the locations and of the dimensions shown on the plans and in accordance with the contract documents, selecting diamond tipped saw blades and configuration of cutting head; continual removal of residual slurry from pavement and proper disposal off-site; furnishing all labor, materials, supplies, tools, equipment and incidentals as necessary.

Equipment

Furnish equipment that is power-driven, self-propelled and equipped with diamond blades specifically designed to groove portland cement concrete pavement.

Utilize equipment that does not cause ravels; aggregate fracture; spalls or disturbance to the longitudinal or transverse joints; or damage and strain to the underlying surface of the pavement. Should any of the above problems occur immediately suspend operations.

Provide vacuuming equipment to continuously remove slurry residue and excess water from the pavement as part of the grooving operation.

Provide grinder with the following features:

Depth control device that will detect and respond to variations in the concrete surface Adjustable cutting head height to maintain the depth of groove specified Diamond tipped grooving blades that are 0.095±0.003 inches wide and spaced ¾ inches on centers

Devices to control alignment

Construction Requirements

Begin and end the grooved areas at lines normal to the pavement center line and centered within the lane width. Groove the surface of the pavement without causing excessive raveling of the joints, and without cracking or fracturing the aggregates.

Provide grooves cut to not less than ½ inch or more than ¼ inch deep. Provide grooves on bridge decks cut to not less than ½ inch or more than 3/16 inches deep.

The actual grooved area of any selected 2 foot by 100 foot longitudinal area of pavement specified to be grooved shall not be less than 95% of the selected area. Any portion of the selected area not grooved, shall be due only to irregularities in the pavement surface and for no other reason.

Do not allow slurry from the grooving operations to accumulate on adjacent lanes to the extent that it would create slippery or hazardous conditions. Do not allow the slurry material to flow into a travel lane occupied by traffic or into any drainage facility. Continuously remove residue resulting from grooving operations from pavement surfaces. Immediately leave pavements in a washed clean condition, free of all slipperiness from the slurry and other debris. Do not dispose of slurry in the existing drains or on the slopes of the roadway. Place all debris and surplus material removed from the grooving operations in a truck or other conveyance designed to prevent loss of any liquid when being hauled to the disposal site; remove from the project and dispose of properly.

Measurement and Payment

Grooving Existing Concrete Pavement will be measured and paid for in square yards of completed and accepted work. Such price and payment will include water, removal and proper disposal of residue off-site, and for all labor, tools, materials, equipment and incidentals necessary to complete the work.

Payment will be made under:

Pay Item

Grooving Existing Concrete Pavement

Pay Unit Square Yard

ASPHALT PAVEMENTS - SUPERPAVE:

(7-18-06)(Rev 4-20-10)

RR6R01

Revise the 2006 Standard Specifications as follows:

Page 6-2, Article 600-9 Measurement and Payment, delete the second paragraph.

Page 6-12, Subarticle 609-5(C)2, Required Sampling and Testing Frequencies, first partial paragraph at the top of the page, delete last sentence and add the following:

If the Engineer allows the mix to remain in place, payment will be made in accordance with Article 105-3.

Page 6-12, Subarticle 609-5(C)2, QUALITY CONTROL MINIMUM SAMPLING AND TESTING SCHEDULE

First paragraph, delete and replace with the following.

Sample and test the completed mixture from each mix design per plant per year at the following minimum frequency during mix production:

Second paragraph, delete the fourth sentence, and replace with the following

When daily production of each mix design exceeds 100 tons and a regularly scheduled full test series random sample location for that mix design does not occur during that day's production, perform at least one partial test series consisting of Items A and B in the schedule below.

Page 6-12, Subarticle 609-5(C)2(c) Maximum Specific Gravity, add after (AASHTO T 209):

or ASTM D 2041

Page 6-13, last line and on page and Page 6-14, Subarticle 609-5(C)(2)(e) Tensile Strength Ratio (TSR), add a heading before the first paragraph as follows:

(i) Option 1

Insert the following immediately after the first paragraph:

(ii) Option 2

Mix sampled from truck at plant with one set of specimens prepared by the Contractor and then tested jointly by QA and QC at a mutually agreed upon lab site within the first 7 calendar days after beginning production of each new mix design.

Second paragraph, delete and replace with the following:

Test all TSR specimens required by either option noted above on either a recording test press or a test press that maintains the peak load reading after the specimen has broken.

Subarticle 609-5(C)(3) Control Charts, delete the second sentence of the first paragraph and replace with the following:

For mix incorporated into the project, record full test series data from all regularly scheduled random samples or directed samples that replace regularly scheduled random samples, on control charts the same day the test results are obtained.

Page 6-15, Subarticle 609-5(C)(3) Control Charts, first paragraph on this page, delete the last sentence and substitute the following:

Denote the moving average control limits with a dash green line and the individual test limits with a dash red line.

Subarticle 609-5(C)(3)(a), (b) and (c), replace (a) (b) and (c) with the following:

- (a) A change in the binder percentage, aggregate blend, or G_{mm} is made on the JMF, or,
- (b) When the Contractor elects to stop or is required to stop production after one or two moving average values, respectively, fall outside the moving average limits as outlined in subarticle 609-5(C)6 or,
- (c) If failure to stop production after two consecutive moving averages exceed the moving average limits occurs, but production does stop at a subsequent time, reestablish a new moving average beginning at the actual production stop point.

Subarticle 609-5(C)(4) Control Limits, replace the first paragraph and the CONTROL LIMITS Table on page 6-16 with the following.

The following are established as control limits for mix production. Apply the individual limits to the individual test results. Control limits for the moving average limits are based on a moving average of the last 4 data points. Apply all control limits to the applicable target source.

COL	JTR	OI.	T.IN	MITS

Mix Control Criteria	Target Source	Moving Average Limit	Individual Limit
2.36 mm Sieve	JMF	±4.0 %	±8.0 %
0.075mm Sieve	JMF	±1.5 %	±2.5 %
Binder Content	JMF	±0.3 %	±0.7 %
VTM @ N _{des}	JMF	±1.0 %	±2.0 %
VMA @ N _{des}	Min. Spec. Limit	Min Spec. Limit	-1.0%
P _{0.075} / P _{be} Ratio	1.0	±0.4	±0.8
%G _{mm} @ N _{ini}	Max. Spec. Limit	N/A	+2.0%
TSR	Min. Spec. Limit	N/A	- 15%

Page 6-16, Subarticle 609-5(C)(5) Warning Bands, delete this subarticle in its entirety.

Pages 6-16 through 6-19, Subarticle 609-5(C)(6), delete the word "warning" and substitute the words "moving average".

Page 6-16, Subarticle 609-5(C)(6) Corrective Actions, first paragraph, first sentence, delete and replace with the following:

Immediately notify the Engineer when moving averages exceed the moving average limits.

Page 6-17, third full paragraph, delete and replace with the following:

Failure to stop production when required due to an individual mix test not meeting the specified requirements will subject all mix from the stop point tonnage to the point when the next individual test is back on or within the moving average limits, or to the tonnage point when production is actually stopped, whichever occurs first, to being considered unacceptable.

Sixth full paragraph, delete the first, second, and third sentence and replace with the following:

Immediately notify the Engineer when any moving average value exceeds the moving average limit. If two consecutive moving average values for any one of the mix control criteria fall outside the moving average limits, cease production of that mix, immediately

notify the Engineer of the stoppage, and make adjustments. The Contractor may elect to stop production after only one moving average value falls outside the moving average limits.

Page 6-18, Subarticle 609-5(C)(6) Corrective Actions second full paragraph, delete and replace with the following:

If the process adjustment improves the property in question such that the moving average after four additional tests is on or within the moving average limits, the Contractor may continue production with no reduction in payment

Page 6-18, delete the third and fourth full paragraphs, including the Table for Payment for Mix Produced in the Warning Bands and substitute the following:

If the adjustment does not improve the property in question such that the moving average after four additional individual tests is outside the moving average limits, the mix will be evaluated for acceptance in accordance with Article 105-3. Reduced payment for or removal of the mix in question will be applied starting from the plant sample tonnage at the stop point to the sample tonnage when the moving average is on or within the moving average limits. In addition, any mix that is obviously unacceptable will be rejected for use in the work.

Page 6-19, First paragraph, delete and replace with the following:

Failure to stop production and make adjustments when required due to two consecutive moving average values falling outside the moving average limits will subject all mix produced from the stop point tonnage to the tonnage point when the moving average is back on or within the moving average limits or to the tonnage point when production is actually stopped, whichever occurs first, to being considered unacceptable. Remove this material and replaced with materials that comply with the Specifications at no additional costs to the Department, unless otherwise approved. Payment will be made for the actual quantities of materials required to replace the removed quantities, not to exceed the original amounts.

Page 6-20, Subarticle 609-5(D)(1) General, delete the third full paragraph, and replace with the following:

Perform the sampling and testing at the minimum test frequencies as specified above. Should the density testing frequency fail to meet the minimum frequency as specified above, all mix without the required density test representation will be considered unsatisfactory. If the Engineer allows the mix to remain in place, payment will be made in accordance with Article 105-3.

Page 6-22, Subarticle 609-5(D)(4) Nuclear Gauge Density Procedures, third paragraph, insert the following as the second sentence:

7.

Determine the Daily Standard Count in the presence of the QA Roadway Technician or QA Nuclear Gauge Technician on days when a control strip is being placed.

Page 6-23, Subarticle 609-5(D)(5) Limited Production Procedure, delete the first paragraph including (a), (b), (c) and substitute the following:

Proceed on limited production when, for the same mix type and on the same contract, one of the following conditions occur (except as noted in the first paragraph below).

- (a) Two consecutive failing lots, except on resurfacing*
- (b) Three consecutive failing lots on resurfacing*
- (c) Two consecutive failing nuclear control strips.
 - * Resurfacing is defined as the first new uniform layer placed on an existing pavement.

Page 6-25, Article 609-6 Quality Assurance, Density Quality Assurance, insert the following items after item (E):

- (F) By retesting Quality Control core samples from control strips (either core or nuclear) at a frequency of 100% of the frequency required of the Contractor;
- (G) By observing the Contractor perform all standard counts of the Quality Control nuclear gauge prior to usage each nuclear density testing day; or
- (H) By any combination of the above

Page 6-28, Subarticle 610-3(A) Mix Design-General, delete the fourth and fifth paragraphs and replace with the following:

Reclaimed Asphalt Pavement (RAP) or Reclaimed Asphalt Shingles (RAS) may be incorporated into asphalt plant mixes in accordance with Article 1012-1 and the following applicable requirements.

Reclaimed asphalt pavement (RAP) may constitute up to 50% of the total material used in recycled mixtures, except for mix Type S 12.5D, Type S 9.5D, and mixtures containing reclaimed asphalt shingle material (RAS). Reclaimed asphalt shingle (RAS) material may constitute up to 6% by weight of total mixture for any mix. When both RAP and RAS are used, do not use a combined percentage of RAS and RAP greater than 20% by weight of total mixture, unless otherwise approved. When the percent of binder contributed from RAS or a combination of RAS and RAP exceeds 20% but not more than 30% of the total binder in the completed mix, the virgin binder PG grade shall be one grade below (both high and low temperature grade) the binder grade specified in

Table 610-2 for the mix type, unless otherwise approved. When the percent of binder contributed from RAS or a combination of RAS and RAP exceeds 30% of the total binder in the completed mix, the Engineer will establish and approve the virgin binder PG grade. Use approved methods to determine if any binder grade adjustments are necessary to achieve the performance grade for the specified mix type.

For Type S 12.5D and Type S 9.5D mixes, the maximum percentage of reclaimed asphalt material is limited to 20% and shall be produced using virgin asphalt binder grade PG 76-22. For all other recycled mix types, the virgin binder PG grade shall be as specified in Table 610-2A for the specified mix type.

When the percentage of RAP is greater than 20% but not more than 30% of the total mixture, use RAP meeting the requirements for processed or fractionated RAP in accordance with the requirements of Section 1012-1.

When the percentage of RAP is greater than 30% of the total mixture, use an approved stockpile of RAP in accordance with Section 1012-1(C). Use approved test methods to determine if any binder grade adjustments are necessary to achieve the performance grade for the specified mix type. The Engineer will establish and approve the virgin asphalt binder grade to be used.

Page 6-34, Subarticle 610-3(C),

Delete Table 610-2 and associated notes. Substitute the following:

TABLE 610-2 SUPERPAVE MIX DESIGN CRITERIA

Mix Type	Design ESALs Millions	Binder PG Grade	Leve	Compaction Levels No. Gyrations @ Max. Rut Depth (mm)			Volumetric	e Properties (c)
	(a)	(b)	N _{ini}	N _{des}		VMA % Min.	VTM %	VFA Min Max.	${}^{\!$
S-4.75A(e)	< 0.3	64 -22	6	50		20.0	7.0 - 15.0		****
SF-9.5A	< 0.3	64 -22	6	50	11.5	16.0	3.0 - 5.0	70 - 80	≤ 91.5
S-9.5B	0.3 - 3	64 -22	7	65	9.5	15.5	3.0 - 5.0	65 - 80	≤ 90.5
S-9.5C	3 - 30	70 -22	7	75	6.5	15.5	3.0 - 5.0	65 - 78	≤ 90.5
S-9.5D	> 30	76 -22	8	100	4.5	15.5	3.0 - 5.0	65 - 78	≤ 90.0
S-12.5C	3 - 30	70 -22	7	75	6.5	14.5	3.0 - 5.0	65 - 78	≤ 90.5
S-12.5D	> 30	76 -22	8	100	4.5	14.5	3.0 - 5.0	65 - 78	≤ 90.0
I-19.0B	< 3	64 -22	7	65		13.5	3.0 - 5.0	65 - 78	≤ 90.5
I-19.0C	3 - 30	64 -22	7	75		13.5	3.0 - 5.0	65 - 78	≤ 90.0
I-19.0D	> 30	70 -22	8	100		13.5	3.0 - 5.0	65 - 78	≤ 90.0
B-25.0B	< 3	64 -22	7	65		12.5	3.0 - 5.0	65 - 78	≤ 90.5
B-25.0C	> 3	64 -22	7	75		12.5	3.0 - 5.0	65 - 78	≤ 90.0
	Design I	Paramete	r				Desig	n Criteria	
All Mix	1 Dust to Binder Potic (D / D.)					0.6 – 1.4			
Types		ed Tensile O T283 M					85%	Min. (d)	

Notes:

- (a) Based on 20 year design traffic.
- (b) When Recycled Mixes are used, select the binder grade to be added in accordance with Subarticle 610-3(A).
- (c) Volumetric Properties based on specimens compacted to N_{des} as modified by the Department.
- (d) AASHTO T 283 Modified (No Freeze-Thaw cycle required). TSR for Type S 4.75A, Type B 25.0B, and Type B 25.0C mixes is 80% minimum.
- (e) Mix Design Criteria for Type S 4.75A may be modified subject to the approval of the Engineer.

Page 6-34, Insert the following immediately after Table 610-2:

TABLE 610-2A SUPERPAVE MIX DESIGN CRITERIA

	Percentage of RAP in Mix				
	Category 1	Category 2	Category 3		
Mix Type	% RAP ≤20%	$20.1\% \le \% RAP \le 30.0\%$	%RAP > 30.0%		
All A and B Level	PG 64 -22	PG 64 -22	TBD		
Mixes, I19.0C, B25.0C					
S9.5C, S12.5C, I19.0D	PG 70 -22	PG 64-22	TBD		
S 9.5D and S12.5D	PG 76-22	N/A	N/A		

Note: (1) Category 1 RAP has been processed to a maximum size of 2 inches.

- (2) Category 2 RAP has been processed to a maximum size of 1 inch by either crushing and or screening to reduce variability in the gradations.
- (3) Category 3 RAP has been processed to a maximum size of 1 inch, fractionating the RAP into 2 or more sized stockpiles

Page 6-35, Table 610-3 delete and replace with the following:

TABLE 610-3
ASPHALT PLACEMENT- MINIMUM TEMPERATURE REQUIREMENTS

Asphalt Concrete Mix Type	Minimum Air Temperature	Minimum Surface Temperature
ACBC, Type B 25.0B, C, B 37.5C	35°F	35°F
ACIC, Type I 19.0B, C, D	35°F	35°F
ACSC, Type S 4.75A, SF 9.5A, S 9.5B	40°F	50°F*
ACSC, Type S 9.5C, S 12.5C	45°F	50°F
ACSC, Type S 9.5D, S 12.5D	50°F	50°F

^{* 35°}F if surface is soil or aggregate base for secondary road construction.

Page 6-44, Article 610-8 Spreading and Finishing, third full paragraph, replace the first sentence with the following:

Use the 30 foot minimum length mobile grade reference system or the non-contacting laser or sonar type ski with at least four referencing stations mounted on the paver at a minimum length of 24 feet to control the longitudinal profile when placing the initial lanes and all adjacent lanes of all layers, including resurfacing and asphalt in-lays, unless otherwise specified or approved.

Page 6-50, Article 610-13 Density Acceptance, delete the second paragraph and replace with the following:

As an exception, when the first layer of mix is a surface course and is being placed directly on an unprimed aggregate or soil base, the layer will be included in the "Other" construction category.

Page 6-50, Article 610-13 Density Acceptance, delete the formula and description in the middle of the page and replace with the following:,

 $PF = 100 - 10(D)^{1.465}$

where: PF = Pay Factor (computed to 0.1%)

D = the deficiency of the lot average density, not to exceed 2.0%

not to exceed 2.070

Page 6-53, Article 620-4 Measurement and Payment:

Sixth paragraph, delete the last sentence.

Seventh paragraph, delete the paragraph and replace with the following:

The adjusted contract unit price will then be applied to the theoretical quantity of asphalt binder authorized for use in the plant mix placed during the partial payment period involved, except that where recycled plant mix is used, the adjusted unit price will be applied only to the theoretical number of tons of additional asphalt binder materials required by the job mix formula.

Page 6-54, Article 620-4 Measurement and Payment, add the following pay item:

Pay ItemPay UnitAsphalt Binder for Plant Mix, Grade PG 70-28Ton

Page 6-69, Table 660-1 Material Application Rates and Temperatures, add the following:

Type of Coat	Grade of Asphalt	Asphalt Rate gal/yd ²	Application Temperature F	Aggregate Size	Aggregate Rate lb./sq. yd. Total
Sand Seal	CRS-2 or CRS-2P	0.22-0.30	150-175	Blotting Sand	12-15

Page 6-75, Subarticle 660-9(B), add the following as sub-item (5)

(5) Sand Seal

Place the fully required amount of asphalt material in one application and immediately cover with the seal coat aggregate. Uniformly spread the fully required

amount of aggregate in one application and correct all non-uniform areas prior to rolling.

Immediately after the aggregate has been uniformly spread, perform rolling.

When directed, broom excess aggregate material from the surface of the seal coat.

When the sand seal is to be constructed for temporary sealing purposes only and will not be used by traffic, other grades of asphalt material meeting the requirements of Articles 1020-6 and 1020-7 may be used in lieu of the grade of asphalt required by Table 660-1 when approved.

Page 6-76, Article 661-1 Description, add the following as the 2nd paragraph:

Provide and conduct the quality control and required testing for acceptance of the UBWC in accordance with *Quality Management System for Asphalt Pavements (OGAFC, PADL, and Ultra-Thin HMA Version)*, included in the contract.

Page 6-76, Article 661-2 Materials, add the following after Asphalt Binder, Grade 70-28:

Item	Section
Asphalt Binder, Grade 76-22	1020
Reclaimed Asphalt Shingles	1012

Page 6-78, Subarticle 661-2(E), Asphalt Binder For Plant Mix, Grade PG 70-28, rename as ASPHALT BINDER FOR PLANT MIX and add the following as the first paragraph:

Use either PG 70-28 or PG 76-22 binder in the mix design. Where PG 76-22 is being used in the production of Ultra-thin, the grade of asphalt binder to be paid for will be PG 70-28, unless otherwise approved.

Page 6-79, Subarticle 661-2(G), Composition of Mix, add the following as the third sentence of the first paragraph.

The percent of asphalt binder contributed from the RAS shall not exceed 20% of the total binder in the completed mix.

Page 6-80, Article 661-2(G) Composition of Mix, replace Table 661-4 and associated notes with the following:

	TABLE 661-4 – MIXTURE DESIGN CRITERIA						
	Gradation Design Criteria (% Passing by Weight)						
Standard	d Sieves	1/2 in. Type A	3/8 in. Type B	1/4 in. Type C			
ASTM	mm		(% Passing by Weig	ht)			
¾ inch	19.0	100					
½ inch	12.5	85 - 100	100				
3/8 inch	9.5	60 - 80	85 - 100	100			
#4	4.75	28 - 38	28 – 44	40 - 55			
#8	2.36	19 - 32	17 – 34	22 - 32			
#16	1.18	15 - 23	13 - 23	15 - 25			
#30	0.600	10 - 18	8 - 18	10 - 18			
#50	0.300	8 - 13	6 - 13	8 - 13			
#100	0.150	6 - 10	4 - 10	6 - 10			
#200	0.075	4.0 - 7.0	3.0 - 7.0	4.0 - 7.0			

Mix Design Criteria					
	1/2 in. Type A	3/8 in. Type B	1/4 in. Type C		
Asphalt Content, %	4.6 - 5.6	4.6 - 5.8	5.0 - 5.8		
Draindown Test, AASHTO T 305		0.1% max.			
Moisture Sensitivity, AASHTO T 283*	80% min.				
Application Rate, lb/ yd ²	90 70 50				
Approximate Application Depth, in.	3/4	5/8	1/2		
Asphalt PG Grade, AASHTO M 320	PG 70-28 or PG 76-22	PG 70-28 or PG 76-22	PG 70-28 or PG 76-22		

NOTE: *Specimens for T-283 testing are to be compacted using the SUPERPAVE gyratory compactor. The mixtures shall be compacted using 100 gyrations to achieve specimens approximately 95 mm in height. Use mixture and compaction temperatures recommended by the binder supplier.

Page 6-80, Subarticle 661-3(A) Equipment, add the following as the first paragraph:

Use asphalt mixing plants in accordance with Article 610-5 of the Standard Specifications.

Page 6-82, Subarticle 661-3(C), Application of Ultra-thin Bonded Wearing Course, delete the first paragraph and add the following as the first and second paragraphs.

Use only one asphalt binder PG grade for the entire project, unless the Engineer gives written approval.

Do not place Ultra-thin Bonded Wearing Course between October 31 and April 1, when the pavement surface temperature is less than 50°F or on a wet pavement. In addition, when PG 76-22 binder is used in the JMF, place the wearing course only when the road pavement surface temperature is 60°F or higher and the air temperature in the shade away from artificial heat is 60°F or higher.

Page 10-40, Subarticle 1012-1(A), add the following at the end of the last paragraph, last sentence:

or ultra-thin bonded wearing course.

Page 10-41, Table 1012-1, delete the entries for OGAFC and add new entries for OGAFC and a row for UBWC with entries:

Mix Type	Coarse Aggregate Angularity (b) ASTM D5821	Fine Aggregate Angularity % Minimum AASHTO T304 Method A	Sand Equivalent % Minimum AASHTO T176	Flat & Elongated 5:1 Ratio % Maximum ASTM D4791 Section 8.4
S 9.5 D	100/100	45	50	10
OGAFC	100/100	N/A	N/A	10
UBWC	100/85	40	45	10

Delete Note (c) under the Table 1012-1 and replace with the following:

(c) Does not apply to Mix Types SF 9.5A and S 9.5B.

Page 10-42, Subarticle 1012-1(B)(6), add as the last sentence:

The percentage loss for aggregate used in UBWC shall be no more than 35%.

Page 10-43, Subarticle 1012-1(F): Reclaimed Asphalt Shingle Material (RAS), insert the following immediately following the first paragraph:

(1) Mix Design RAS

Incorporate RAS from stockpiles that have been tested for uniformity of gradation and binder content prior to use in an asphalt mix design.

(2) Mix Production RAS

New Source RAS is defined as acceptable material which was not included in the stockpile when samples were taken for mix design purposes. Process new source RAS so that all materials will pass a 1/2" sieve prior to introduction into the plant mixer unit.

After a stockpile of processed RAS has been sampled and mix designs made from these samples, do not add new source RAS to the original stockpile without prior field testing

to insure gradation and binder uniformity. Sample and test new source RAS before blending with the existing stockpile.

Store new source RAS in a separate stockpile until the material can be sampled and tested for comparison with the original recycled mix design data. New source RAS may also be placed against the existing stockpile in a linear manner provided it is sampled for mix design conformity prior to its use in the recycled mix.

RAS contamination including but not limited to excessive dirt, debris, clean stone, concrete will not be allowed.

Field approval of new source RAS will be based on the table below and volumetric mix properties on the mix with the new source RAS included. Provided these tolerances are met, volumetric properties of the new mix will then be performed. If all volumetric mix properties meet the mix design criteria for that mix type, the new source RAS may continue to be used.

If the gradation, binder content, or any of the volumetric mix properties are not within the allowable tolerances of the table below, do not use the new source RAS unless approved by the Engineer. The Contractor may elect to either not use the stockpile, to request an adjustment to the JMF, or to redesign the mix.

NEW SOURCE RAS GRADATION and BINDER TOLERANCES (Apply Tolerances to Mix Design Data)

	0-6% RAS				
P _b %	±1.6%				
Sieve Size (mm)	Tolerance				
9.5	<u>±1</u>				
4.75	±5				
2.36	±4				
1.18	<u>±</u> 4				
0.300	±4				
0.150	±4				
0.075	±2.0				

Page 10-43 through 10-45, Subarticle 1012-1(G), delete this in its entirety and replace with the following:

(G) Reclaimed Asphalt Pavement (RAP)

(1) Mix Design RAP

Incorporate RAP from stockpiles or other sources that have been tested for uniformity of gradation and binder content prior to use in an asphalt mix design. Use reclaimed asphalt pavement that meets all requirements specified for *one of* the following *two* classifications.

(a) Millings

Existing reclaimed asphalt pavement (RAP) that is removed from its original location by a milling process as specified in Section 607. Millings should be such that it has a uniform gradation and binder content and all materials will pass a 2" sieve prior to introduction into the plant mixer unit.

(b) Processed RAP

RAP that is processed in some manner (possibly by crushing and/or use of a blending method) to produce a uniform gradation and binder content in the RAP prior to use in a recycled mix. Process RAP so that all materials have a uniform gradation and binder content and will pass a 1" sieve prior to introduction into the plant mixer unit.

(c) Fractionated RAP

Fractionated RAP is defined as having two or more RAP stockpiles, where the RAP is divided into coarse and fine fractions. Grade RAP so that all materials will pass a 1" sieve. The coarse RAP stockpile shall only contain material retained on a 3/8" screen, unless otherwise approved. The fine RAP stockpile shall only contain material passing the 3/8" screen, unless otherwise approved. The Engineer may allow the Contractor to use an alternate to the 3/8" screen to fractionate the RAP. The maximum percentages of fractionated RAP may be comprised of coarse, fine, or the combination of both. Utilize a separate cold feed bin for each stockpile of fractionated RAP used.

(d) Approved Stockpiled RAP

Approved Stockpiled RAP is defined as fractionated RAP which has been isolated and tested for asphalt content, gradation, and asphalt binder characteristics with the intent to be used in mix designs with greater than 30% RAP materials. Fractionate the RAP in accordance with Section 1012-1(G)(c). Utilize a separate cold feed bin for each approved stockpile of RAP used.

Perform extraction tests at a rate of 1 per 1000 tons of RAP, with a minimum of 5 tests per stockpile to determine the asphalt content and gradation. Separate stockpiles of RAP material by fine and coarse fractions. Erect and maintain a sign satisfactory to the Engineer on each stockpile to identify the material. Assure that no deleterious material is allowed in any stockpile. The Engineer may reject by visual inspection any stockpiles that are not kept clean, separated, and free of foreign materials.

Submit requests for RAP stockpile approval to the Engineer with the following information at the time of the request:

- (1) Approximate tons of materials in stockpile
- (2) Name or Identification number for the stockpile
- (3) Asphalt binder content and gradation test results
- (4) Asphalt characteristics of the Stockpile.

For the Stockpiled RAP to be considered for approval, the gradation and asphalt content shall be uniform. Individual test results, when compared to the target, will be accepted if within the tolerances listed below:

APPROVED STOCKPILED RAP GRADATION and BINDER TOLERANCES
(Apply Tolerances to Mix Design Data)

P _b %	±0.3%
Sieve Size (mm)	Percent Passing
25.0	±5%
19.0	±5%
12.5	±5%
9.5	±5%
4.75	±5%
2.36	±4%
1.18	±4%
0.300	±4%
0.150	±4%
0.075	±1.5%

Note: If more than 20% of the individual sieves are out of the gradation tolerances, or if more than 20% of the asphalt binder content test results fall outside the appropriate tolerances, the RAP shall not be used in HMA unless the RAP representing the failing tests is removed from the stockpile.

Do not add additional material to any approved RAP stockpile, unless otherwise approved by the Engineer.

Maintain at the plant site a record system for all approved RAP stockpiles. Include at a minimum the following: Stockpile identification and a sketch of all stockpile areas at the plant site; all RAP test results (including asphalt content, gradation, and asphalt binder characteristics).

(2) Mix Production RAP

During mix production, use RAP that meets the criteria for one of the following categories:

(a) Mix Design RAP

RAP contained in the mix design stockpiles as described above may be used in all applicable JMFs. These stockpiles have been pretested: however, they are subject to required QC/QA testing in accordance with Subarticle 609-5(C)(2).

(b) New Source RAP

New Source RAP is defined as any acceptable material that was not included in the stockpile or other source when samples were taken for mix design purposes. Process new source RAP so that all materials have a uniform gradation and binder content and will pass a 2" sieve prior to introduction into the plant mixer unit.

After a stockpile of millings, processed RAP, or fractionated RAP has been sampled and mix designs made from these samples, do not add new source RAP to the original stockpile without prior field testing to insure gradation and binder uniformity. Sample and test new source RAP before blending with the existing stockpile.

Store new source RAP in a separate stockpile until the material can be sampled and tested for comparison with the original recycled mix design data. New source RAP may also be placed against the existing stockpile in a linear manner provided it is sampled for mix design conformity prior to its use in the recycled mix.

Unprocessed RAP is asphalt material that was not milled and/or has not been processed to obtain a uniform gradation and binder content and is not representative of the RAP used during the applicable mix design. Unprocessed RAP shall not be incorporated into any JMFs

prior to processing. Different sources of unprocessed RAP may be stockpiled together provided it is generally free of contamination and will be processed prior to use in a recycled mix. RAP contamination in the form of excessive dirt, debris, clean stone, concrete, etc. will not be allowed. Incidental amounts of dirt, concrete, and clean stone may be acceptable. Unprocessed RAP may be processed and then classified as a new source RAP as described above.

Field approval of new source RAP will be based on Table 1012-2 below and volumetric mix properties on the mix with the new source RAP included. Provided the Table 1012-2 tolerances are met, volumetric properties of the new mix will then be performed. If all volumetric mix properties meet the mix design criteria for that mix type, the new source RAP may continue to be used.

If the gradation, binder content, or any of the volumetric mix properties are not within the allowable tolerances of Table 1012-2, do not use the new source RAP unless approved by the Engineer. The Contractor may elect to either not use the stockpile, to request an adjustment to the JMF, or to redesign the mix.

	TABLE 1012-2 NEW SOURCE RAP GRADATION and BINDER TOLERANCES (Apply Tolerances to Mix Design Data)								
Mix Type	0-20% RAP		20 ⁺ -30 % RAP			30 ⁺ % RAP			
Sieve (mm)	Base	Inter.	Surf.	Base	Inter.	Surf.	Base	Inter.	Surf.
P _b %	² ь % ± 0.7%		± 0.4%			± 0.3%			
25.0	±10	-	_	±7	-	_	±5	-	-
19.0	±10	±10	-	±7	±7	-	±5	±5	_
12.5	_	±10	±10	-	±7	±7	-	±5	±5
9.5	-	-	±10	-	-	±7	-	-	±5
4.75	±10	-	±10	±7	-	±7	±5	-	±5
2.36	±8	±8	±8	±5	±5	±5	±4	±4	±4
1.18	±8	±8	±8	±5	±5	±5	±4	±4	±4
0.300	±8	±8	±8	±5	±5	±5	±4	±4	±4
0.150			±8	-	-	±5	-	-	±4
0.075	±4	±4	±4	±2	±2	±2	±1.5	±1.5	±1.5
	Court with the growing women				A STREET				

ASPHALT BINDER CONTENT OF ASPHALT PLANT MIXES:

(1-1-02)

R6 R15

The approximate asphalt binder content of the asphalt concrete plant mixtures used on this project will be as follows:

Asphalt Concrete Base Course	Type B 25.0	4.3 %
Asphalt Concrete Intermediate Course	Type I 19.0	4.7 %
Asphalt Concrete Surface Course	Type S 4.75A	7.0 %
Asphalt Concrete Surface Course	Type SF 9.5A	6.5 %
Asphalt Concrete Surface Course	Type S 9.5	6.0 %
Asphalt Concrete Surface Course	Type S 12.5	5.5 %

The actual asphalt binder content will be established during construction by the Engineer within the limits established in the 2006 Standard Specifications.

ASPHALT PLANT MIXTURES:

(7-1-95)

R6 R20 (Rev.)

Place asphalt concrete intermediate course and surface material in trench sections with asphalt pavement spreaders made for the purpose or with other equipment approved by the Engineer.

PRICE ADJUSTMENT - ASPHALT BINDER FOR PLANT MIX:

(11-21-00)

R6 R25

Price adjustments for asphalt binder for plant mix will be made in accordance with Section 620 of the 2006 Standard Specifications.

The base price index for asphalt binder for plant mix is \$ 504.29 per ton.

This base price index represents an average of F.O.B. selling prices of asphalt binder at supplier's terminals on March 1, 2010.

RESURFACING EXISTING BRIDGES:

(7-1-95)

R6 R61

The Contractor's attention is directed to the fact that he will be required to resurface the bridges on this project if directed by the Engineer.

Place the surface so as to follow a grade line set by the Engineer with the minimum thickness as shown on the sketch herein or as directed by the Engineer. State Forces will make all necessary repairs to the bridge floors prior to the time that the Contractor places the proposed surfacing. Give the Engineer at least 15 days notice prior to the expected time to begin operations so that State Forces will have sufficient time to complete their work.

At all bridges that are not to be resurfaced, taper out the proposed resurfacing layer adjacent to the bridges to insure a proper tie-in with the bridge surface.

PATCHING EXISTING PAVEMENT:

Description

The Contractor's attention is directed to the fact that after the 4" milling is preformed there may be areas of existing shoulder pavement on this project that will require repair prior to resurfacing.

Patch the areas that, in the opinion of the Engineer, need repairing. The areas to be patched will be delineated by the Engineer prior to the Contractor performing repairs.

Construction Methods

The patching consists of Asphalt Concrete Base Course, Asphalt Concrete Intermediate Course, Asphalt Concrete Surface Course, or a combination of base, binder and surface course, and pavement removal, as directed by the Engineer.

The Contractor's attention is directed to the fact that all patching of existing pavement performed under this contract shall be performed with the use of a milling machine. This machine shall have a minimum cutting width of 36", be of sufficient size and capacity to perform the work. The machine shall have been designed and built exclusively for pavement milling operations and shall have sufficient power, traction and stability to accurately maintain depth of cut and slope. Multiple passes may be required to remove deteriorated pavement.

Milling width and depth will be varied by Engineer's representative to accomplish desired results. Payment will be made for the area delineated by the Engineer. Any overages resulting from equipment limitations will not be compensated.

Patching of existing pavement includes but is not limited to the **milling** of the existing pavement to a neat vertical joint and uniform line; the removal and disposal of pavement, base, and subgrade material as approved or directed by the Engineer; the coating of the area to be repaired with a tack coat; and the replacement of the removed material with asphalt plant mix.

Place Asphalt Concrete Base Course, in lifts not exceeding 5 1/2 inches. Utilize compaction equipment suitable for compacting patches as small as 3.5 feet by 6 feet on each lift. Use an approved compaction pattern to achieve proper compaction. If patched pavement is to be open to traffic for more than 48 hours prior to overlay, then use Asphalt Surface Course in the top 1.25 inches of the patch.

Remove existing pavement at locations directed by the Engineer in accordance with Section 250 of the Standard Specifications.

Schedule operations so that all areas where pavement has been removed will be repaired on the same day of the pavement removal, and all lanes of traffic restored.

Method of Measurement

The quantity of patching existing pavement to be paid for will be the actual number of tons of asphalt plant mix, complete in place, which has been used to make completed and accepted repairs. The asphalt plant mixed material will be measured by being weighed in trucks on certified platform scales or other certified weighing devices.

Basis of Payment

The quantity of patching existing pavement, measured as provided above, will be paid for at the contract unit price per ton for "Patching Existing Pavement".

The above price and payment will be full compensation for all work covered by this provision, including but not limited to removal and disposal of pavement; furnishing and applying tack coat; furnishing, placing, and compacting of asphalt plant mix; furnishing of asphalt binder for the asphalt plant mix; and furnishing scales.

Any provisions included in the contract in the form of project special provisions or in any other form which provide for adjustments in compensation due to variations in the price of asphalt binder will not be applicable to payment for the work covered by this provision.

The item of "Patching Existing Pavement" will be considered to be a minor item. In the event that the item of "Patching Existing Pavement" overruns the original bid quantity by more than 100 percent, the provisions of Article 104-5 pertaining to revised contract unit price for overrunning minor items will not apply to this item.

RR88

Payment will be made under:

(12-18-07) (4-15-08)

BORROW EXCAVATION AND SHPO DOCUMENTATION FOR BORROW/WASTE SITES:

Revise the 2006 Standard Specifications as follows:

R8 R02

Division 2 Earthwork

Page 2-16, Subarticle 230-1(D), add the words: The Contractor specifically waives as the first words of the sentence.

Page 2-17, Article 230-4(B) Contractor Furnished Sources, first paragraph, first sentence replace with the following:

Prior to the approval of any borrow sources developed for use on any project, obtain certification from the State Historic Preservation Officer of the State Department of Cultural Resources certifying that the removal of the borrow material from the borrow sources(s) will

have no effect on any known district, site building, structure, or object, architectural and/or archaeological that is included or eligible for inclusion in the National Register of Historic Places.

Division 8 Incidentals

Page 8-9, Article 802-2 General Requirements, add the following as the 1st paragraph:

Prior to the removal of any waste from any project, obtain certification from the State Historic Preservation Officer of the State Department of Cultural Resources certifying that the deposition of the waste material to the proposed waste area will have no effect on any known district, site building, structure, or object, architectural and/or archaeological that is included or eligible for inclusion in the National Register of Historic Places. Furnish a copy of this certification to the Engineer prior to performing any work in the proposed waste site.

Page 8-10, Article 802-2, General Requirements, 4th paragraph, add the following as the 2nd sentence:

The Department's borrow and waste site reclamation procedures for contracted projects is available on the NCDOT website and shall be used for all borrow and waste sites on this project.

GUARDRAIL ANCHOR UNITS, TYPE 350:

(4-20-04)

R8 R65

Description

Furnish and install guardrail anchor units in accordance with the details in the plans, the applicable requirements of Section 862 of the 2006 Standard Specifications, and at locations shown in the plans.

Materials

The Contractor may at his option, furnish any one of the guardrail anchor units.

Guardrail anchor unit (ET-2000) as manufactured by:

Trinity Industries, Inc. 2525 N. Stemmons Freeway Dallas, Texas 75207 Telephone: 800-644-7976

The guardrail anchor unit (SKT 350) as manufactured by:

Road Systems, Inc. 3616 Old Howard County Airport Big Spring, Texas 79720 Telephone: 915-263-2435 Prior to installation the Contractor shall submit to the Engineer:

- (A) FHWA acceptance letter for each guardrail anchor unit certifying it meets the requirements of NCHRP Report 350, Test Level 3, in accordance with Section 106-2 of the Standard Specifications.
- (B) Certified working drawings and assembling instructions from the manufacturer for each guardrail anchor unit in accordance with Section 105-2 of the Specifications.

No modifications shall be made to the guardrail anchor unit without the express written permission from the manufacturer. Perform installation in accordance with the details in the plans, and details and assembling instructions furnished by the manufacturer.

Construction Methods

Guardrail end delineation is required on all approach and trailing end sections for both temporary and permanent installations. Guardrail end delineation consists of yellow reflective sheeting applied to the entire end section of the guardrail in accordance with Section 1088-3 of the 2006 Standard Specifications and is incidental to the cost of the guardrail anchor unit.

Measurement and Payment

Measurement and payment will be made in accordance with Articles 862-6 of the 2006 Standard Specifications.

Payment will be made under:

Pay Item Pay Unit

Guardrail Anchor Units, Type 350 Each

AGGREGATE PRODUCTION:

(11-20-01) (Rev. 11-21-06)

Provide aggregate from a producer who uses the current Aggregate Quality Control/Quality Assurance Program which is in effect at the time of shipment.

No price adjustment is allowed to contractors or producers who use the program. Participation in the program does not relieve the producer of the responsibility of complying with all requirements of the 2006 Standard Specifications. Copies of this procedure are available upon request from the Materials and Test Unit.

CONCRETE BRICK AND BLOCK PRODUCTION:

(11-20-01) (Rev. 11-21-06) R10 R10

Provide concrete brick and block from a producer who uses the current Solid Concrete Masonry Brick/Unit Quality Control/Quality Assurance Program that is in effect on the date that material is received on the project.

No price adjustment is allowed to contractors or producers who use the program. Participation in the program does not relieve the producer of the responsibility of complying with all requirements of the 2006 Standard Specifications. Copies of this procedure are available upon request from the Materials and Test Unit.

PORTLAND CEMENT CONCRETE (Alkali-Silica Reaction):

2-20-07

R10 R16

R10 R35

Revise the 2006 Standard Specifications as follows:

Article 1024-1(A), replace the 2nd paragraph with the following:

Certain combinations of cement and aggregate exhibit an adverse alkali-silica reaction. The alkalinity of any cement, expressed as sodium-oxide equivalent, shall not exceed 1.0 percent. For mix designs that contain non-reactive aggregates and cement with an alkali content less than 0.6%, straight cement or a combination of cement and fly ash, cement and ground granulated blast furnace slag or cement and microsilica may be used. The pozzolan quantity shall not exceed the amount shown in Table 1024-1. For mixes that contain cement with an alkali content between 0.6% and 1.0%, and for mixes that contain a reactive aggregate documented by the Department, regardless of the alkali content of the cement, use a pozzolan in the amount shown in Table 1024-1.

Obtain the list of reactive aggregates documented by the Department at:http://www.ncdot.org/doh/operations/materials/pdf/quarryasrprob.pdf

	Table 1024-1		
Pozzolans for Use in Portland Cement Concrete			
Pozzolan	Rate		
Class F Fly Ash	20% by weight of required cement content, with 1.2 lbs Class F fly ash per lb of cement replaced		
Ground Granulated Blast Furnace Slag	35%-50% by weight of required cement content with 1 lb slag per lb of cement replaced		
Microsilica	4%-8% by weight of required cement content, with 1 lb microsilica per lb of cement replaced		

GLASS BEADS:

Revise the 2006 Standard Specifications as follows:

Page 10-223, 1087-4(C) Gradation & Roundness

Replace the second sentence of the first paragraph with the following:

All Drop-On and Intermixed Glass Beads shall be tested in accordance with ASTM D1155.

Delete the last paragraph.

ENGINEERING FABRICS TABLE 1056-1:

(7-18-06

R10 R40

Revise the 2006 Standard Specifications as follows:

Page 10-100, Table 1056-1, replace the values for Trapezoidal Tear Strength with the following:

Physical Property	ASTM Test Method	Type 1	Type 2	Type 3		Type 4
				Class A	Class B	
Typical Applications		Shoulder Drain	Under Riprap	Temporary Silt Fence		Soil Stabilization
Trapezoidal Tear Strength	D4533	<i>45</i> lb	<i>75</i> lb			<i>75</i> lb

CHANGEABLE MESSAGE SIGNS

(11-21-06)

R11 R11

Revise the 2006 Standard Specifications as follows:

Page 11-9, Article 1120-3, Replace the 3rd sentence with the following:

Sign operator will adjust flash rate so that no more than two messages will be displayed and be legible to a driver when approaching the sign at the posted speed.

PAVEMENT MARKING LINES:

(11-21-06) (Rev. 9-18-07)

R12 R01

Revise the 2006 Standard Specifications as follows:

Page 12-2, 1205-3(D) Time Limitations for Replacement, add the following at the beginning of the chart:

Facility Type	Marking Type	Replacement Deadline			
Full-control-of-access multi-lane roadway (4 or more total lanes) and ramps, including Interstates	•	By the end of each workday's operation if the lane is opened to traffic			

Page 12-14, Subarticle 1205-10, Measurement and Payment, delete the first sentence of the first paragraph and replace with the following:

Pavement Marking Lines will be measured and paid for as the actual number of linear feet of pavement marking lines per application that has been satisfactorily placed and accepted by the Engineer.