STATE OF NORTH CAROLINA

DEPARTMENT OF TRANSPORTATION DIVISION OF HIGHWAYS GEOTECHNICAL ENGINEERING UNIT

STATE	STATE P	ROJECT REFERENCE NO.	SHEET NO.	SHEETS
N.C.	33	3478.1.1	1	27
STATE	PROJ. NO.	F.A. PROJ. NO.	DESCRIP	TION
B-	-4125	BRZ-1091(1)	P.E	
			CONS	ST.

For Letting

SHEET CONTENTS:

N.C. DOT GEOTECHNICAL UNIT SOIL AND ROCK CLASSIFICATION LEGEND, TERMS, 2 SYMBOLS, AND ABBRIVATIONS GEOTECHNICAL REPORT SITE LOCATION MAP AND TOPOGRAPHIC SITE MAP (DRAWING Nos. 1&2) BORING LOCATION PLAN (DRAWING No. 3) PROFILE 15 ft LT OF -L- (DRAWING No. 4)
PROFILE 11 ft RT OF -L- (DRAWING No. 5) CROSS SECTION ALONG END BENT 1 (DRAWING No. 6) CROSS SECTION ALONG BENT 1 (DRAWING No. 7) CROSS SECTION ALONG BENT 2 (DRAWING No. 8) CROSS SECTION ALONG END BENT 2 (DRAWING No. 9) BORING AND CORING LOGS WITH CORE PHOTOGRAPHS AASHTO/ASTM LABORATORY RESULTS AND GRAIN SIZE CURVES SCOUR REPORT SITE PHOTOGRAPHS

CAUTION NOTICE

THE SUBSURFACE INFORMATION AND THE SUBSURFACE INVESTIGATION ON WHICH IT IS BASED WAS MADE FOR THE PURPOSE OF STUDY, PLANNING AND DESIGN, AND NOT FOR CONSTRUCTION OR PAY PURPOSES. THE VARIOUS FIELD BORING LOGS, ROCK CORES, AND SOIL TEST DATA AVAILABLE MAY BE REVIEWED OR INSPECTED IN RALEIGH BY CONTACTING THE N. C. DEPARTMENT OF TRANSPORTATION, GEOTECHNICAL UNIT @ (919) 250-4088. NEITHER THE SUBSURFACE PLANS AND REPORTS, NOR THE FIELD BORING LOGS, ROCK CORES, OR SOIL TEST DATA IS PART OF THE CONTRACT.

GENERAL SOIL AND ROCK STRATA DESCRIPTIONS AND INDICATED BOUNDARIES ARE BASED ON A GEOTECHNICAL INTERPRETATION OF ALL AVAILABLE SUBSURFACE DATA AND MAY NOT NECESSARILY REFLECT THE ACTUAL SUBSURFACE CONDITIONS BETWEEN BORINGS OR BETWEEN SAMPLED STRATA WITHIN THE BOREHOLE. THE LABORATORY SAMPLE DATA AND THE IN SITU (IN-PLACE) TEST DATA CAN BE RELIED ON ONLY TO THE DEGREE OF RELIABILITY INHERENT IN THE STANDARD TEST METHOD. THE OBSERVED WATER LEVELS OR SOIL MOISTURE CONDITIONS INDICATED IN THE SUBSURFACE INVESTIGATIONS ARE AS RECORDED AT THE TIME OF THE INVESTIGATION. THESE WATER LEVELS OR SOIL MOISTURE CONDITIONS MAY VARY CONSIDERABLY WITH TIME ACCORDING TO CLIMATIC CONDITIONS INCLUDING TEMPERATURES, PRECIPITATION AND WIND, AS WELL AS OTHER NON-CLIMATIC FACTORS.

THE BIDDER OR CONTRACTOR IS CAUTIONED THAT DETAILS SHOWN ON THE SUBSURFACE PLANS ARE PRELIMINARY ONLY AND IN MANY CASES THE FINAL DESIGN DETAILS ARE DIFFERENT. FOR BIDDING AND CONSTRUCTION PURPOSES, REFER TO THE CONSTRUCTION PLANS AND DOCUMENTS FOR FINAL DESIGN INFORMATION ON THIS PROJECT. THE DEPARTMENT DOES NOT WARRANT OR GUARANTEE THE SUFFICIENCY OR ACCURACY OF THE INVESTIGATION MADE, NOR THE INTERPRETATIONS MADE OR PINION OF THE DEPARTMENT AS TO THE TYPE OF MATERIALS AND CONDITIONS TO BE ENCOUNTERED. THE BIDDER OR CONTRACTOR IS CAUTIONED TO MAKE SUCH INDEPENDENT SUBSURFACE INVESTIGATIONS AS HE DEEMS NECESSARY TO SATISFY HIMSELF AS TO CONDITIONS TO BE ENCOUNTERED ON THIS PROJECT. THE CONTRACTOR SHALL HAVE NO CLAIM FOR ADDITIONAL COMPENSATION OR FOR AN EXTENSION OF TIME FOR ANY REASON RESULTING FROM THE ACTUAL CONDITIONS ENCOUNTERED AT THE SITE DIFFERING FROM THOSE INDICATED IN THE SUBSURFACE INFORMATION.

- NOTE THE INFORMATION CONTAINED HEREIN IS NOT IMPLIED OR GUARANTEED BY THE N. C. DEPARTMENT OF TRANSPORTATION AS BEING ACCURATE NOR IT IS CONSIDERED TO BE PART OF THE PLANS. SPECIFICATIONS, OR CONTRACT FOR THE PROJECT.
- NOTE BY HAVING REQUESTED THIS INFORMATION THE CONTRACTOR SPECIFICALLY WAIVES ANY CLAIMS FOR INCREASED COMPENSATION OR EXTENSION OF TIME BASED ON DIFFERENCES BETWEEN THE CONDITIONS INDICATED HEREIN AND THE ACTUAL CONDITIONS AT THE PROJECT SITE.

DRAWN	BY:	R.RAHIE

STRU	CTURE
SUBSURFACE	INVESTIGATION

STATE PROJECT 33478.1.1 I.D. NO. B-4125 F.A. PROJECT BRZ-1091(1)
COUNTY GREENE
PROJECT DESCRIPTION BRIDGE NO. 46 OVER
WHEAT SWAMP CREEK ON SR 1091
SITE DESCRIPTION

NVESTIGATED BY	MACTEC ENGINEERING AND CONSULTING, INC.
CHECKED BY	S. CRISCENZO
SUBMITTED BY	W. DEOBALD
DATE	12/21/05
REVISED	01/12/06
REVISED	01/31/06

REVISED

PERSONNEL W. DEOBALD T. HAHN W. BURKETT

NORTH CAROLINA DEPARTMENT OF TRANSPORTATION

DIVISION OF HIGHWAYS

GEOTECHNICAL ENGINEERING UNIT

SUBSURFACE INVESTIGATION

SOIL AND ROCK LEGEND, TERMS, SYMBOLS, AND ABBREVIATIONS

		ר עו	PROJECT NO	CHEET NO	TOTAL OUTEER
		B-4125	PROJECT NO. 33478.1.1	SHEET NO.	TOTAL SHEETS
					The alternation of the second
				•	• •
			TERMS AND DEFIN	IITIONS	
ALLUV	UM (A	ALLUV.) - SOILS WHICI	H HAVE BEEN TRANSPORTED BY		
	_		RMATION OR STRATA.		
		_	KS THAT HAVE BEEN DERIVED FR L ROCKS OR SUBSTANCES COMP		
			TION OF CLAY IN THEIR COMPOSI		
			AT IS UNDER SUFFICIENT PRESSU BUT WHICH DOES NOT NECESSAF		
- 1		IRFACE.			
			IICH CONTAIN APPRECIABLE AMO MIXED WITH SOIL DEPOSITED BY		
OF SLO		- NOON TO COME!!!O	mines min doie bei dones bi	0.000 200	AT BOTTOM
			LENGTH OF ALL MATERIAL RECO' RESSED AS A PERCENTAGE.	VERED IN THE CORE BA	RREL DIVIDED BY TOTAL
			OUS ROCK THAT CUTS ACROSS T	HE STRUCTURE OF ADJ	ACENT
1		CUTS MASSIVE ROCK. IGLE AT WHICH A STR	RATUM OR ANY PLANAR FEATURE	IS INCLINED FROM THE	
HORIZ					
			HE DIRECTION OR BEARING OF TH OCKWISE FROM NORTH.	E HORIZONTAL TRACE	DF
			JRE ZONE ALONG WHICH THERE H	IAS BEEN DISPLACEMEN	IT OF THE
- 1			ER PARALLEL TO THE FRACTURE. 'ING ALONG CLOSELY SPACED PA	RALLEL PLANES.	
	_		URFACE NEAR THEIR ORIGINAL P		D FROM
1		TERIAL.			
THE S			ERING A STREAM, BUILT OF SEDIN	EN IS DEPOSITED BY	
FORM.		(FM.) - A MAPPABLE	GEOLOGIC UNIT THAT CAN BE RE	COGNIZED AND TRACED	iN
1		CTURE IN ROCK ALON	NG WHICH NO APPRECIABLE MOV	EMENT HAS OCCURRED.	
		HELF-LIKE RIDGE OR L EXTENT.	PROJECTION OF ROCK WHOSE TO	HICKNESS IS SMALL COM	MPARED TO
			CTHAT THINS OUT IN ONE OR MOR	RE DIRECTIONS.	
			MARKED WITH SPOTS OF DIFFER R AERATION AND LACK OF GOOD I		3 IN
PERCI	ED W	ATER - WATER MAIN	TAINED ABOVE THE NORMAL GRO		THE PRESENCE OF AN
- 1		IG IMPERVIOUS STRA IOIL - SOIL FORMED IN	TUM. NPLACE BY THE WEATHERING OF	ROCK.	
ROCK	QUAL	ITY DESIGNATION (R.	Q.D.) - A MEASURE OF ROCK QUA	LITY DESCRIBED BY: TO	
		IENTS EQUAL TO OR : AS A PERCENTAGE.	GREATER THAN 4 INCHES DIVIDE	D BY THE TOTAL LENGTH	FOR CORE RUN AND
			DIL WHICH RETAINS THE RELIC ST	RUCTURE OR FABRIC OF	THE
SILL -			NEOUS ROCK OF APPROXIMATEL	/ UNIFORM THICKNESS A	AND
RELAT	IVELY	THIN COMPARED WI	TH ITS LATERAL EXTENT, WHICH I		
SLICK	NSID	E - POLISHED AND ST	FRIATED SURFACE THAT RESULTS	FROM FRICTION ALONG	G A FAULT OR
SLIPP			(PENETRATION RESISTANCE) (SP	D. NUMBER OF BLOWE	ALOD P.D.E. LOE
A 140	B. HA	MMER FALLING 30 IN	CHES REQUIRED TO PRODUCE A	PENETRATION OF 1 FOO	T INTO SOIL WITH
WITH			LIT SPOON SAMPLER. SPT REFUS	AL IS LESS THAN 0.1 FO	OT PENETRATION
		RE RECOVERY (SREC	C.) - TOTAL LENGTH OF STRATA MA	TERIAL RECOVERED DI	VIDED BY TOTAL LENGTH
STRAT	A RO	CK QUALITY DESIGNA	ATION (S.R.Q.D.) - A MEASURE OF F		
			NTS WITHIN A STRATUM EQUAL T EXPRESSED AS A PERCENTAGE.	O OR GREATER THAN 4	NCHES DIVIDED BY THE
TOPS	IL (T.	S.) - SURFACE SOILS	USUALLY CONTAINING ORGANIC	MATTER.	
BEN	CH	MARK: NCDOT E	BASELINE REFERENCE POI	NT BL-1, ELEV. 34.72	2 ft MSL
LICT.					
	echn	ical Exploration			
Perfo	med	d By:	Allia.		
			Z/ N/	ACTI	7 C
			IVI .		
				RING AND CONSULTING	3, INC.
			RALEIGH, N	ORTH CAROLINA 2760	4
1			(9)	19) 8760416	

SOIL DESCRIPTION	GRADATION	ROCK DESCRIPTION	TERMS AND DEFINITIONS
SOIL IS CONSIDERED TO BE THE UNCONSOLIDATED, SEMI-CONSOLIDATED OR WEATHERED EARTH MATERIALS WHICH CAN BE PENETRATED WITH A CONTINUOUS FLIGHT POWER AUGER, AND WHICH YIELDS LESS THAN 100 BLOWS PER FOOT ACCORDING TO STANDARD PENETRATION TEST (AASHTO T206, ASTM D-1586), SOIL CLASSIFICATION IS BASED ON THE AASHTO SYSTEM AND BASIC DESCRIPTIONS GENERALLY SHALL INCLUDE: CONSISTENCY, COLOR, TEXTURE, MOISTURE, AASHTO CLASSIFICATION, AND OTHER PERTINENT FACTORS SUCH	WELL GRADED- INDICATES A GOOD REPRESENTATION OF PARTICLE SIZES FROM FINE TO COARSE UNIFORM- INDICATES THAT SOIL PARTICLES ARE ALL APPROXIMATELY THE SAME SIZE. (ALSO POORLY GRADED) GAP-GRADED- INDICATES A MIXTURE OF UNIFORM PARTICLES OF TWO OR MORE SIZES. ANGULARITY OF GRAINS	HARD ROCK IS NON-COASTAL PLAIN MATERIAL THAT WHEN TESTED, WOULD YIELD SPT REFUSAL. AN INFERRED ROCK LINE INDICATES THE LEVEL AT WHICH NON-COASTAL PLAIN MATERIAL WOULD YIELD SPT REFUSAL. SPT REFUSAL IS PERFERATION BY A SPLIT SPOON SAMPLE REQUAL TO OR LESS THAN 0.1 FOOT PER 60 BLOWS. IN NON-COASTAL PLAIN MATERIAL, THE TRANSITION BETWEEN SOIL AND ROCK IS OFTEN REPRESENTED BY A ZONE OF WEATHERED ROCK. ROCK MATERIALS ARE TYPICALLY DIVIDED AS FOLOWS:	ALLUVIUM (ALLUV.) - SOILS WHICH HAVE BEEN TRANSPORTED BY WATER. AQUIFER - A WATER BEARING FORMATION OR STRATA. ARENACEOUS - APPLIED TO ROCKS THAT HAVE BEEN DERIVED FROM SAND OR THAT CONTAIN SAND.
AS MINERALOGICAL COMPOSITION, ANGULARITY, STRUCTURE, PLASTICITY, ETC. EXAMPLE: VERY STIPP, GRAY SILTY CLAY, MOIST WITH INTERBEDDED FINE SAND LAYERS, HIGHLY PLASTIC, 4-7-6	THE ANGULARITY OR ROUNDNESS OF SOIL GRAINS ARE DESIGNATED BY THE TERMS; ANGULAR, SUBANGULAR, SUBROUNDED, OR ROUNDED.	WEATHERED NON-COASTAL PLAIN MATERIAL THAT YIELDS SPT N VALUES > 100 BLOWS	ARGILLACEOUS - APPLIED TO ALL ROCKS OR SUBSTANCES COMPOSED OF CLAY MINERALS, OR HAVING A NOTABLE PROPORTION OF CLAY IN THEIR COMPOSITION, AS SHALE, SLATE, ETC.
SOIL LEGEND AND AASHTO CLASSIFICATION GENERAL GRANULAR MATERIALS SILT-CLAY MATERIALS CLASS. (<35% PASSING #200) (>35% PASSING #200) ORGANIC MATERIALS	MINERALOGICAL COMPOSITION MINERAL NAMES SUCH AS QUARTZ, FELDSPAR, MICA, TALC, KAOLIN, ETC. ARE USED IN DESCRIPTIONS WHENEVER THEY ARE CONSIDERED OF SIGNIFICANCE.	ROCK (WR) PER FOOT. CRYSTALLINE ROCK (CR) FINE TO COARSE GRAIN IGNEOUS AND METAMORPHIC ROCK THAT WOULD YIELD SPIT REFUSAL IF TESTED. ROCK TYPE INCLUDES GRAINTE, GNEISS, GABBRO, SCHIST, ETC.	ARTESIAN - GROUND WATER THAT IS UNDER SUFFICIENT PRESSURE TO RISE ABOVE THE LEVEL AT WHICH IS IS ENCOUNTERED, BUT WHICH DOES NOT NECESSARILY RISE TO OR ABOVE THE GROUND SURFACE.
GROUP A-1 A-3 A-2 A-4 A-5 A-6 A-7 A-1, A-2 A-4, A-5	COMPRESSIBILITY	NON-CRYSTALLINE FINE TO COARSE GRAIN METAMORPHIC AND NON-COASTAL PLAIN SEDIMENTARY ROCK THAT WOULD YELLD SPT REFUSAL IF TESTED. ROCK TYPE	CALCAREOUS (CALC.) - SOILS WHICH CONTAIN APPRECIABLE AMOUNTS OF CALCIUM CARBONATE. COLLUVIUM - ROCK FRAGMENTS MIXED WITH SOIL DEPOSITED BY GRAVITY ON SLOPE OR AT BOTTOM CE CLODE.
CLASS. A-1a A-1b A-24 A-25 A-26 A-27 A-3 A-6, A-7 SYMBOL 80808080808080808080808080808080808080	SLIGHTLY COMPRESSIBLE LIQUID LIMIT LESS THAN 30 MODERATELY COMPRESSIBLE LIQUID LIMIT 31-50 HIGHLY COMPRESSIBLE LIQUID LIMIT GREATER THAN 50	COASTAL PLAIN COASTAL PLAIN SEDIMENTS CEMENTED INTO ROCK, BUT MAY NOT YIELD SEDIMENTARY ROCK SPT REFUSAL. ROCK TYPE INCLUDES LIMESTONE, SANDSTONE, CEMENTED	OF SLOPE. CORE RECOVERY (REC.) - TOTAL LENGTH OF ALL MATERIAL RECOVERED IN THE CORE BARREL DIVIDED BY TOTAL LENGTH OF CORE RUN AND EXPRESSED AS A PERCENTAGE.
% PASSING #10 50 MX SILT- MUCK,	PERCENTAGE OF MATERIAL GRANULAR SILT-CLAY	(CP) SHELL BEDS, ETC. WEATHERING	DIKE - A TABULAR BODY OF IGNEOUS ROCK THAT CUTS ACROSS THE STRUCTURE OF ADJACENT
# 40 30 MX 50 MX 51 MN	ORGANIC MATERIAL SOILS OTHER MATERIAL TRACE OF ORGANIC MATTER 2 - 3% 3 - 5% TRACE 1 - 10%	FRESH ROCK FRESH, CRYSTALLS BRIGHT, FEW JOINTS MAY SHOW SLIGHT STAINING. ROCK RINGS UNDER HAMMER IF CRYSTALLINE.	ROCKS OR CUTS MASSIVE ROCK. DIP - THE ANGLE AT WHICH A STRATUM OR ANY PLANAR FEATURE IS INCLINED FROM THE HORIZONTAL.
LIQUID LIMIT 40 MX 41 MN 40 MX 41 MN 40 MX 41 MN 40 MX 41 MN 50 ILS WITH PLASTIC INDEX 6 MX N.P. 10 MX 10 MX 11 MN 11 MN 10 MX 10 MX 11 MN 11 MN LITTLE OR HIGHLY	LITTLE ORGANIC MATTER 3 - 5% 5 - 12% LITTLE 10 - 20% MODERATELY ORGANIC 5 - 10% 12 - 20% SOME 20 - 35% HIGHLY ORGANIC >10% >20% HIGHLY 35% AND ABOVE	VERY SLIGHT ROCK GENERALLY FRESH, JOINTS STAINED, SOME JOINTS MAY SHOW THIN CLAY COATINGS IF OPEN, (V. SLI.) CRYSTALS ON A BROKEN SPECIMEN FACE SHINE BRIGHTLY. ROCK RINGS UNDER HAMMER BLOWS IF	DIP DIRECTION (DIP AZIMUTH) - THE DIRECTION OR BEARING OF THE HORIZONTAL TRACE OF THE LINE OF DIP, MEASURED CLOCKWISE FROM NORTH.
GROUP INDEX 0 0 0 4 MX 8 MX 12 MX 16 MX No MX MODERATE AMOUNTS OF USUAL TYPES STONE FRAGS OF MAJOR GRAVEL AND FINE SILTY OR CLAYEY SILTY CLAYEY MATTER ORGANIC MATTER AMOUNTS OF ORGANIC MATTER ORGANIC MATTER ORGANIC MATTER	GROUND WATER WATER LEVEL IN BORE HOLE IMMEDIATELY AFTER DRILLING.	OF A CRYSTALLINE NATURE. SLIGHT ROCK GENERALLY FRESH, JOINTS STAINED AND DISCOLORATION EXTENDS INTO ROCK UP TO 1 INCH. OPEN JOINTS MAY CONTAIN CLAY. IN GRANITOID ROCKS SOME OCCASIONAL FELDSPAR	FAULT - A FRACTURE OR FRACTURE ZONE ALONG WHICH THERE HAS BEEN DISPLACEMENT OF THE SIDES RELATIVE TO ONE ANOTHER PARALLEL TO THE FRACTURE.
MATERIALS SAND SAND GRAVEL AND SAND SOILS SOILS WATTER	STATIC WATER LEVEL AFTER 24 HOURS.	CRYSTALS ARE DULL AND DISCOLORED. CRYSTALLINE ROCKS RING UNDER HAMMER BLOWS. MODERATE SIGNIFICANT PORTIONS OF ROCK SHOW DISCOLORATION AND WEATHERING EFFECTS. IN	FISSILE - A PROPERTY OF SPLITTING ALONG CLOSELY SPACED PARALLEL PLANES. FLOAT - ROCK FRAGMENTS ON SURFACE NEAR THEIR ORIGINAL POSITION AND DISLODGED FROM
AS A EXCELLENT TO GOOD FAIR TO POOR FAIR TO POOR UNSUITABLE	PERCHED WATER, SATURATED ZONE OR WATER BEARING STRATA SPRING OR SEEPAGE	(MOD.) GRANITOID ROCKS, MOST FELDSPARS ARE DULL AND DISCOLORED, SOME SHOW CLAY. ROCK HAS DULL SOUND UNDER HAMMER BLOWS AND SHOWS SIGNIFICANT LOSS OF STRENGTH AS COMPARED WITH FRESH ROCK.	PARENT MATERIAL. FLOOD PLAIN (F.P.) - LAND BORDERING A STREAM, BUILT OF SEDIMENTS DEPOSITED BY
P.I. OF A-7-5 ≤L.L 30 : P.I. OF A-7-6 >L.L 30 CONSISTENCY OR DENSENESS COUNTY TO BE RANGE OF STANDARD RANGE OF UNCONFINED	MISCELLANEOUS SYMBOLS	MODERATELY ALL ROCK EXCEPT QUARTZ DISCOLORED OR STAINED. IN GRANITOID ROCKS, ALL FELDSPARS DULL SEVERE AND DISCOLORED AND A MAJORITY SHOW KAOLNIZATION. ROCK SHOWS SEVERE LOSS OF STRENGTH (MOD. SEV.) AND CAN BE EXCAVATED WITH A GEOLOGIST'S PICK. ROCK GIVES "CLUNK" SOUND WHEN STRUCK.	THE STREAM. FORMATION (FM.) - A MAPPABLE GEOLOGIC UNIT THAT CAN BE RECOGNIZED AND TRACED IN THE FIELD.
PRIMARY SOIL TYPE COMPACTNESS OR CONSISTENCY PENETRATION RESISTENCE COMPRESSIVE STRENGTH (TONS/FT²)	ROADWAY EMBANKMENT SPT CPT DMT TEST BORING REF— SPT REFUSAL VST PMT		JOINT - FRACTURE IN ROCK ALONG WHICH NO APPRECIABLE MOVEMENT HAS OCCURRED.
GENERALLY VERY LOOSE 4 GRANULAR LOOSE 4 TO 10	SOIL SYMBOL AUGER BORING SAMPLE	(SEV.) IN STRENGTH TO STRONG SOIL. IN GRANITOID ROCKS ALL FELDSPARS ARE KAOLINIZED TO SOME EXTENT. SOME FRAGMENTS OF STRONG ROCK USUALLY REMAIN.	LEDGE - A SHELF-LIKE RIDGE OR PROJECTION OF ROCK WHOSE THICKNESS IS SMALL COMPARED TO ITS LATERAL EXTENT.
MATERIAL MEDIUM DENSE 10 TO 30	ARTIFICIAL FILL OTHER THAN BULK SAMPLE DESIGNATIONS ROADWAY EMBANKMENTS S - BULK SAMPLE	IF TESTED. YIELDS SPT N VALUES > 100 BPF VERY SEVERE ALL ROCK EXCEPT QUARTZ DISCOLORED OR STAINED. ROCK FABRIC ELEMENTS ARE DISCERNIBLE BUT	LENS - A BODY OF SOIL OR ROCK THAT THINS OUT IN ONE OR MORE DIRECTIONS. MOTTLED (MOT.): IRREGULARLY MARKED WITH SPOTS OF DIFFERENT COLORS. MOTTLING IN SOILS USUALLY INDICATES POOR AERATION AND LACK OF GOOD DRAINAGE.
VERY SOFT <2 <0.25	INFERRED SOIL BOUNDARIES CORE BORING SS - SPLIT SPOON SAMPLE ST - SHELBY TUBE	(V. SEV.) THE MASS IS EFFECTIVELY REDUCED TO SOIL STATUS, WITH ONLY FRAGMENTS OF STRONG ROCK REMAINING. SAPROLITE IS AN EXAMPLE OF ROCK WEATHERED TO A DEGREE SUCH THAT ONLY MINOR VESTIGES OF THE ORIGINAL ROCK FABRIC REMAIN. IF TRISTED. TRIBLDS SPT. N. YALUES < 100 BPF	PERCHED WATER - WATER MAINTAINED ABOVE THE NORMAL GROUND WATER LEVEL BY THE PRESENCE OF AN
SILT-CLAY MEDIUM STIFF 4 TO 8 0.5 TO 1 MATERIAL STIFF 8 TO 15 1 TO 2 (COHESIVE) VERY STIFF 15 TO 30 2 TO 4 HARD >30	MONITORING WELL SAMPLE TTTTT ALLUVIAL SOIL BOUNDARY ALLUVIAL SOIL BOUNDARY	COMPLETE ROCK REDUCED TO SOIL. ROCK FABRIC NOT DISCERNIBLE, OR DISCERNIBLE ONLY IN SMALL AND SCATTERED CONCENTRATIONS. QUARTZ MAY BE PRESENT AS DIKES OR STRINGERS. SAPROLITE IS ALSO AN EXAMPLE.	RESIDUAL SOIL - SOIL FORMED IN PLACE BY THE WEATHERING OF ROCK. ROCK QUALITY DESIGNATION (R.Q.D.) - A MEASURE OF ROCK QUALITY DESCRIBED BY: TOTAL LENGTH OF ROCK SEGMENTS EQUAL TO OR GREATER THAN 4 INCHES DIVIDED BY THE TOTAL LENGTH OF CORE RUN AND
TEXTURE OR GRAIN SIZE	25/025 DIP/DIP DIRECTION OF SLOPE INDICATOR RT - RECOMPACTED INSTALLATION TRIAXIAL SAMPLE	ROCK HARDNESS	EXPRESSED AS A PERCENTAGE.
U.S. STD. SIEVE SIZE 4 10 40 60 200 270 OPENING (MM) 4.76 2.0 0.42 0.25 0.075 0.053	O SOUNDING ROD — SPT N-VALUE CBR - CBR SAMPLE	VERY HARD CANNOT BE SCRATCHED BY KNIFE OR SHARP PICK. BREAKING OF HAND SPECIMENS REQUIRES SEVERAL HARD BLOWS OF THE GEOLOGISTS PICK.	SAPROLITE (SAP.) - RESIDUAL SOIL WHICH RETAINS THE RELIC STRUCTURE OR FABRIC OF THE PARENT ROCK. SILL - AN INTRUSIVE BODY OF IGNEOUS ROCK OF APPROXIMATELY UNIFORM THICKNESS AND
BOULDER COBBLE GRAVEL COARSE FINE SILT CLAY	ABBREVIATIONS AR-AUGER REFUSAL FRAGS FRAGMENTS	HARD CAN BE SCRATCHED BY KNIFE OR PICK ONLY WITH DIFFICULTY. HARD HAMMER BLOWS REQUIRED TO DETACH HAND SPECIMEN. MODERATELY, ONLY SCROUT REPORT OF THE PROPERTY OF THE PROPER	RELATIVELY THIN COMPARED WITH ITS LATERAL EXTENT, WHICH HAS BEEN EMPLACED PARALLEL TO THE BEDDING OR SCHISTOSITY OF THE INTRUDED ROCKS
GRAIN MM 305 75 2.0 0.25 0.05 0.005	BT - BORING TERMINATED MED MEDIUM	MODERATELY CAN BE SCRATCHED BY KNIFE OR PICK. GOUGES OR GROOVES TO 0.25 INCHES DEEP CAN BE HARD EXCAVATED BY HARD BLOW OF A GEOLOGISTS PICK. HAND SPECIMENS CAN BE DETACHED BY MODERATE BLOWS.	SLICKENSIDE - POLISHED AND STRIATED SURFACE THAT RESULTS FROM FRICTION ALONG A FAULT OR SLIP PLANE.
SIZE IN. 12" 3" SOIL MOISTURE - CORRELATION OF TERMS	CPT - CONE PENETRATION TEST SL SILT, SILTY CSE COARSE SLI SLIGHTLY	MEDIUM CAN BE GROOVED OR GOUGED 0.05 INCHES DEEP BY FIRM PRESSURE OF KNIFE OR PICK POINT. HARD CAN BE EXCAVATED IN SMALL CHIPS TO PEICES 1 INCH MAXIMUM SIZE BY HARD BLOWS OF THE POINT OF A GEOLOGISTS PICK.	STANDARD PENETRATION TEST (PENETRATION RESISTANCE) (SPT). NUMBER OF BLOWS (N OR B.P.F.) OF A 140 LB. HAMMER FALLING 30 INCHES REQUIRED TO PRODUCE A PENETRATION OF 1 FOOT INTO SOIL WITH A 2 INCH OUTSIDE DIAMETER SPLIT SPOON SAMPLER. SPT REFUSAL IS LESS THAN 0.1 FOOT PENETRATION
SOIL MOISTURE SCALE FIELD MOISTURE GUIDE FOR FIELD MOISTURE DESCRIPTION (ATTERBERG LIMITS) DESCRIPTION	DMT - DILATOMETER TEST TCR - TRICONE REFUSAL DPT - DYNAMIC PENETRATION TEST e - VOID RATIO F - FINE - FINE DMT - DILATOMETER TEST 7 - UNIT WEIGHT 7 - DRY UNIT WEIGHT	SOFT CAN BE GROVED OR GOUGED READILY BY KNIFE OR PICK. CAN BE EXCAVATED IN FRAGMENTS FROM CHIPS TO SEVERAL INCHES IN SIZE BY MODERATE BLOWS OF A PICK POINT. SMALL, THIN	WITH 60 BLOWS. STRATA CORE RECOVERY (SREC.) - TOTAL LENGTH OF STRATA MATERIAL RECOVERED DIVIDED BY TOTAL LENGTH OF STRATUM AND EXPRESSED AS A PERCENTAGE.
- SATURATED - USUALLY LIQUID; VERY WET, USUALLY (SAT.) FROM BELOW THE GROUND WATER TABLE LL LIQUID LIMIT	FIAD - FILLED IMMEDIATELY AFTER DRILLING V VERY FOSS FOSSILIFEROUS VST - VANE SHEAR TEST	PIECES CAN BE BROKEN BY FINGER PRESSURE. VERY CAN BE CARVED WITH KNIFE. CAN BE EXCAVATED READILY WITH POINT OF PICK. PIECES 1 INCH SOFT OR MORE IN THICKNESS CAN BE BROKEN BY FINGER PRESSURE. CAN BE SCRATCHED READILY BY	STRATA ROCK QUALITY DESIGNATION (S.R.Q.D.) - A MEASURE OF ROCK QUALITY DESCRIBED BY: TOTAL LENGTH OF ROCK SEGMENTS WITHIN A STRATUM EQUAL TO OR GREATER THAN 4 INCHES DIVIDED BY THE
PLASTIC SEMISOLID; REQUIRES DRYING TO ATTAIN OPTIMUM MOISTURE	FRAC FRACTURED W - MOISTURE CONTENT EQUIPMENT USED ON SUBJECT PROJECT	FINGERNAIL. FRACTURE SPACING BEDDING	TOTAL LENGTH OF STRATA AND EXPRESSED AS A PERCENTAGE. TOPSOIL (T.S.) - SURFACE SOILS USUALLY CONTAINING ORGANIC MATTER.
PL PLASTIC LIMIT	DRILL UNITS: ADVANCING TOOLS: HAMMER TYPE:	TERM SPACING TERM THICKNESS VERY WIDE MORE THAN 10 FEET VERY THICKLY BEDDED > 4 FEET	BENCH MARK: NCDOT BASELINE REFERENCE POINT BL-1, ELEV. 34.72 ft MSL
OM — OPTIMUM MOISTURE SL — SHRINKAGE LIMIT ———————————————————————————————————	MOBILE B- CLAY BITS AUTOMATIC X MAN	MODERATELY CLOSE 1 TO 3 FEET THINLY BEDDED 0.16 - 1.5 FEET	
- DRY - (D) REQUIRES ADDITIONAL WATER TO ATTAIN OPTIMUM MOISTURE	BK-51 BK-51 BK-51 B*HOLLOW AUGERS CORE SIZE:	CLOSE 0.16 TO 1 FEET VERY CLOSE LESS THAN 0.16 FEET THICKLY LAMINATED 0.008 - 0.03 FEET THINLY LAMINATED < 0.008 FEET	NOTES: Geotechnical Exploration
PLASTICITY PLASTICITY INDEX (PI) DRY STRENGTH	CME-45 HARD FACED FINGER BITS	INDURATION FOR SEDIMENTARY ROCKS, INDURATION IS THE HARDENING OF THE MATERIAL BY CEMENTING, HEAT, PRESSURE, ETC.	Performed By:
NONPLASTIC 0-5 VERY LOW LOW PLASTICITY 6-15 SLIGHT	TUNGCARBIDE INSERTS X CASING W/ADVANCER WHO SOCIO	FRIABLE GENTLE BLOW BY HAMMER DISINTEGRATES SAMPLE.	MACTEC
MED. PLASTICITY 16-25 MEDIUM HIGH PLASTICITY 26 OR MORE HIGH	PORTABLE HOIST X TRICONE 3° STEEL TEETH HAND TOOLS: POST HOLE DIGGER	MODERATELY INDURATED GRAINS CAN BE SEPARATED FROM SAMPLE WITH STEEL PROBE; BREAKS EASILY WHEN HIT WITH HAMMER.	MACTEC ENGINEERING AND CONSULTING, INC. 3301 ATLANTIC AVENUE
COLOR DESCRIPTIONS MAY INCLUDE COLOR OR COLOR COMBINATIONS (TAN, RED, YEL-BRN, BLUE-GRAY)	TRICONETUNGCARB. HAND AUGER X CORE BIT SERIES 2&6 SOUNDING ROD	INDURATED GRAINS ARE DIFFICULT TO SEPARATE WITH STEEL PROBE; DIFFICULT TO BREAK WITH HAMMER.	RALEIGH, NORTH-CAROLINA 27604 (919) 876—0416
MODIFIERS SUCH AS LIGHT, DARK, STREAKED, ETC. ARE USED TO DESCRIBE APPEARANCE.	X OTHER D-50 OTHER VANE SHEAR TEST	EXTREMELY INDURATED SHARP HAMMER BLOWS REQUIRED TO BREAK SAMPLE;	, , , , , , , , , , , , , , , , , , , ,

Subject:

Revised Geotechnical Report

Description:

Bridge No. 46 over Wheat Swamp Creek on SR 1091

Project Number: Tip Number:

33478.1.1 **B-4125**

F.A. Number:

BRZ-1091(1)

MACTEC Project Number: 6468-05-1241

Project Information

The purpose of this investigation was to obtain geotechnical information for foundation design and construction of the proposed replacement bridge over Wheat Swamp Creek on SR 1091, Greene County, North Carolina (Drawings 1 and 2). Our understanding of this project comes from a site visit by MACTEC personnel; conversations with NCDOT Geotechnical Unit personnel; and from documents and drawings provided by the Geotechnical Unit, including a Request for Proposal dated October 21, 2005, Bridge Survey and Hydraulic Design Report dated August 17, 2005, a field log of a preliminary boring completed at the site by NCDOT, and electronic files of site plan drawings obtained via the NCDOT file transfer website.

The proposed structure is approximately 100 feet in length, 36 feet wide, and will be constructed at the approximate grade of the existing bridge. The proposed structure will consist of three spans (four bents) approximately 25 feet, 50 feet, and 25 feet in length. The length of the span to end bent 2 was still under consideration at the time of our investigation. The bents are skewed 90° to the alignment (-L-).

Field Testing

During November, 2005, MACTEC advanced 7 borings at locations shown on the Boring Location Plan (Drawing 3). The borings were drilled with a CME 45C trailer-mounted drill rig or a D-50 ATV-mounted drill rig. All borings were advanced using rotary wash drilling techniques. HQ-size rock/soil coring techniques were also used to core selected intervals at interior bent borings. All borings were drilled to depths that satisfy the minimum criteria for the NCDOT Ultimate Pile Capacity Chart for 12-inch steel piles. Interior bent borings were drilled to depths that also satisfy the minimum criteria for drilled shaft foundations.

Proposed boring locations were established at the project site utilizing GPS equipment and existing site features. Boring location coordinates were determined from the provided electronic files. Three borings were drilled at end bent 1. Two borings were drilled at end bent 2. One boring was drilled at each of bents 1 and 2. Boring at bents 1 and 2 were drilled through the deck of the existing bridge. The bridge deck was patched upon completion of the borings. Actual boring location coordinates were captured with GPS equipment.

Conventional survey techniques were used to establish the collar elevations at all boring locations and selected ground surface points depicted on the subsurface profile and cross section drawings included with this report (Drawings 4 to 8). Reference Survey point BL-1, established at the project site by NCDOT personnel, was used as a benchmark.

Bridge No. 46 over Wheat Swamp Creek on SR 1091 North Carolina Department. of Transportation

January 31, 2006 MACTEC Project No. 6468-05-1241

Standard penetration tests (SPT) were conducted and soil samples collected at approximately five foot intervals or 2.5 foot intervals, as directed by NCDOT. Samples were collected from within the soil profile using a split-barrel sampler and a 140 lb. manual hammer. SPT's were also performed between core runs.

Sheet pile retaining walls exist at both end bents of the existing bridge. We located the sheet piles with a metal detector and mapped the locations with GPS equipment. Locations are shown on the inset drawing of the Boring Location Plan.

In July 2002, NCDOT advanced one preliminary boring at the site. The location of NCDOT's preliminary boring is shown on the Boring Location Plan (Drawing 3).

Laboratory Testing

Laboratory testing consisting of AASHTO classification and grain-size distribution tests were performed on split-barrel samples SS-1 through SS-12, and bulk samples S-1 and S-2 which were collected from Wheat Swamp Creek's channel bank and channel bed, respectively.

Laboratory testing was performed in accordance with applicable ASTM/AASHTO/NCDOT specifications. Test results for AASHTO classification and grain-size distribution are included with this report.

Physiography

The project site is located in the North Carolina Coastal Plain Physiographic Province. The roadway surface at the existing bridge is at elevation 32± feet mean sea level (msl). The natural ground surface varies from 6 to 11 below grade at the existing bridge. The creek bed is at elevation 18± feet msl. The creek banks are moderately sloped to steep and are wooded with small to large trees both up- and down-stream. The ground surface is relatively flat approaching the site from the west. The ground surface slopes gradually upward to elevation 65± feet msl one-quarter mile to the east.

Geology

The 1985 Geologic Map of North Carolina, compiled by the N.C. Geological Survey, indicates that the Yorktown, Peedee and Black Creek Formations may be at or near the surface at the project site. Our investigation identified surficial soils consisting of roadway embankment fill and/or alluvium, underlain by marine soil interlayered with sedimentary rock. Without additional evidence to distinguish marine soil/sedimentary rock as part of one formation or another, we have grouped the marine soil and sedimentary rock and referred to them as the Yorktown Formation.

Boring and coring logs describing subsurface conditions at each of the boring locations, including NCDOT's preliminary boring, are included with this report. A generalized profile, Drawing 4, depicts subsurface conditions 15 feet left of alignment -L-. Generalized cross-sections, Drawings 5 to 8, depict subsurface conditions along each bent.

Soils

Roadway Embankment Fill was encountered at the surface and extends to elevations 24 to 21± feet msl. Fill consists of very loose to medium dense, clayey, silty, fine to coarse sand and gravel (A-1b/A-2-4), and medium stiff, fine to coarse sandy silt (A-4) with trace organics and cemented shells. A surficial layer of rip-rap covers embankment slopes to the creek.

Alluvium was encountered at the surface and beneath roadway embankment fill at elevations 24 to 18± feet msl, and extends to elevations 20 to 16± feet msl. Alluvium consists of very loose to medium dense, clayey, silty, fine to coarse sand (A-3/A-2-4), and is trace to moderately organic.

Yorktown Formation was encountered at elevations 20 to 16± feet msl. All borings were terminated in the Yorktown Formation, with the deepest boring extending to elevation -30± feet msl. Yorktown Formation primarily consists of loose to very dense, glauconitic, clayey, silty, fine to coarse sand (A-3/A-2-4) with trace to little shell fragments, lignite and clay lenses; and stiff to very stiff, clayey, fine to coarse sandy silt (A-4). Soil density increases with depth. Soils encountered below elevation 0± feet msl are typically very dense. The soils are interlayered with sedimentary rock.

Rock

Two primary sedimentary rock layers were encountered within the Yorktown Formation; an upper layer at 16± feet msl and a lower layer at -16± feet msl. Both layers consist of friable to extremely indurated, fossiliferous sandstone. The upper layer is thinly bedded and was not encountered at boring EB2-A. The lower layer is thinly to thickly bedded and was not encountered at boring EB1-B, although soils in its place remain very dense.

Thinly bedded, friable to moderately indurated sandstone was also encountered at elevation 5± feet msl at boring B2-B.

Groundwater

24-hour groundwater levels were measured at elevation 24± feet msl in borings at end bent 1. 24hour groundwater level elevations ranged from 23± feet msl to 27± feet msl in borings at end bent 2. Surface water in Wheat Swamp Creek was measured at elevation 21.3 feet msl on November 19, 2005.

N.C.D.O.T. GEOTECHNICAL UNIT BORING LOG

THE OF	TRAINING					· · · · · · · · · · · · · · · · · · ·				e .,						SHEE	T 1 OF 1		
PROJECT NO. 33478.1.1														OGIST W	ST W. Grimes				
				o. 46 Ov	er Whe	Wheat Swamp Creek on SR 1091 (MACTEC Proj. No. 6468-05-1241)								GROUND V	VATER (ft)			
<u></u>	NG NO.					LOCA				<u> </u>	ET 18			ALIGN	MENT -		0 HR.	2.2	
	AR ELE			} -		607,1			US ft	EAST	ING 2	,429,2	67	*****************		US ft	24 HR.	8.2	
	L DEPTI			DRILL	. MAC	CHINEC				DRILL	. METH	HOD	Mud	Rotary		HAMME	R TYPE 140-lb.	Manual	
	STARTI	·	/19/05					11/19/05		SURF	ACE W	ATER	R DE	PTH N/A					
1	DEPTH	<u> </u>	OW COL		0	. 20		PER FOOT		100	SAMP.		0		SOIL	AND ROCK	DESCRIPTION		
(ft)	(ft)	0.5ft	0.5ft	0.5ft	Ľ.		40	60 	80	100	NO.	MOI	G						
31.8							Ground	Surface						31.8	-				0.
31.8	0.0	8	17	9		/	26 · · ·					W					t Fill: Red to brov SAND and GRAV		
28.6	<u>∔ 3.2</u> +	7	3	4		·/ · · ·						М		-	(A-1-b) w/	trace organi	cs		
26.1	5.7	3	4	4									Lis	-					
24.2	7.6	5	6	5	. •	§						M	L 88	<u> </u>	Alluvium: G	Fray and red	-brown, silty, f. S	<u> </u>	7.
21.5	10.3	"		"		• 11					SS-2	1			(A-2-4)	u, and 160	Diomi, only, i. O		
	12.5	5	3	7		10						М		20.3					11.5
	12.5	4	6	8		•14			: : :		SS-3	м		•	f. to cse. S	AND (A-2-4)	y to green, claye w/ cemented sa	y, silty, nd	
16.7	15.1	15	85/0.5'	.				· · · · ·	: : :	· · · ·				16.2	-	trace shell f		***************************************	15.6
14.3 -	17.5			10					: : :	00/1.0.					SANDSTO	NE	edded, indurated,	Γ	16.6
11.7	20.1	9	9	12		2.1						Sat.		- ;	Yorktown F	m: Dark gre	en to dark gray,	silty, f.	
		. 9	11	16	::	· · · · ?	27 · · ·	· · · · ·	<u> </u>			w		10.2	ignite, and	clay lenses	_		21.6
	 -															m: Med. de	i.6 ft (Elev. 10.2 f nse, silty, f. to cs		
-	‡													_ 1	Bits Used:	3" Roller Co	ne		
	‡													- - i	Drilling Flui	id Properties	s: 8.5 lbs/gal		
	‡									. 56-6				<u>-</u> + . +	4.4.	m _k + N			
-	‡													-					
	‡													-					
-	‡													-					
	‡ .													-					
	‡													-					
	T .													-					
	‡ l													- -					
	‡ [**					-					
	‡													.					
														-					
	‡													-					
	‡							•					<u> </u>						
_	‡												<u> </u>	-					
•	‡						4							•					
	<u> </u>													-					
	<u>†</u>		*										F	-			r		
	<u> </u>												F	-					
	<u>L</u>												F	-					
	t l						,						F	-					
	<u> </u>													•					
-	F								-					-					
	Γl													<u>.</u>					

N.C.D.O.T. GEOTECHNICAL UNIT BORING LOG

	CT NO					ID. B					' Gree			GEOLOGIST W. Grimes
ITE D	ESCRI	TION	Bridge N	o. 46 Ov	er Whea	at Swam	Creek o	on SR 109	1 (MAC	TEC Pro	oj. No. 6	468-05	-1241	1) GROUND WATER
ORIN	G NO.	EB1-A	١	BC	DRING	LOCAT	ION 1	6+44		OFFS	ET 16	ft LT		ALIGNMENT -L- 0 HR. 0.0
OLLA	R ELE	V. 31.6	3 ft	NORT	THING	607,1	47		US ft	EAST	ING 2	,429,2	269	US ft 24 HR. 7.9
OTAL	. DEPTH	d 45.8	ft	DRILI	L MACI	HINE D	-50 AT∖	/		DRIL	MET	HOD	Mud	Rotary HAMMER TYPE 140-lb. Manua
ATE :	STARTE	ED 11	1/17/05			COMP	ETED	11/17/05	5	SURF	ACE V	VATE	R DE	EPTH N/A
LEV.	DEPTH	BL	ow co	UNT				PER FOO	Т		SAMP	V	L	SOIL AND BOOK DESCRIPTION
(ft)	(ft)	0.5ft	0.5ft	0.5ft	P	20 	40	60	80	100	NO.	МО	ı G	
31.6							Ground	Surface						31.6
1.2	0.4	4	3	3	•6						SS-1	D	LISS	Roadway Embankment Fill: Rip Rap
8.0	3.6]::/:			· · · · ·						Roadway Embankment Fill: Red, gray, and brown, clayey, silty, f. to cse. SAND and
}	-	5	4	4	•E	3				: : :		Sat.		GRAVEL (A-1-b) w/ cemented shells
-	_				: :L	· · ·							- 00	24.4
2.7	_ 8.9	9	9	9	│ : : :			· · · · ·	· • • •			2-1		Alluvium: Gray and brown, clayey, silty, f. SAND (A-2-4)
1	-	9	"	9	: : :	. 18.						Sat.		
7	-				: : :	:5:		· · · · ·		:				19.4 Yorktown Fm: Dark gray, silty, clayey, f. SAND
7.3	- 14.3 -	8	9	12	<u> </u>	: 1:						w		(A-2-4) w/ little shell fragments
4	- -			'-								"		15.8 14.8 Yorktown Fm: Thinly bedded, indurated,
2.3	- - 19.3													SANDSTONE (Not sampled - Indicated by drilling)
<u></u> -	- 10.0	12	16	18	: : :		●34					w		Yorktown Fm: Dark gray to green, glauconitic.
-	-				: : :			· · · · ·						clayey, silty, f. to cse. SAND (A-2-4) w/ trace to little shell fragments and lignite
.3	24.3						1 ::					·		
1	-	12	16	21	:::		37					W		
7	-				1 : : :		:: :::							-
2.3	29.3	10	18	23	 :::							w		
4	-											'' ,		<u></u>
2.7	- - 34.3				:::		\	:::::						
	-	30	26	28	1:::			54				w		
1	-				: : :									-
7.7	- 39.3 -	26	28	53					<u> </u>	. , .		w		<u> </u>
1	-		20	"	: : :				81			**		<u>.</u>
2.7	- - 44.3				: : :					<i>.</i>				
		26	47	53/0.5'					• • •			w		-14,2
4	-								1	00/1.0				Boring terminated at 45.8 ft (Elev14.2 ft) in Yorktown Fm: V. dense, clayey, silty, f. to cse.
1	-					. •								SAND (A-2-4)
f	-													Bits Used: 3" Roller Cone
7	-													Drilling Fluid Properties: 8.6 lbs/gal
Ŧ	-													F
4	-	1114 202												Ļ.
1	-													
‡	-	ĺ					,							<u></u>
+	-													.
1	-													<u>L</u>
£	-										_			<u>.</u>
1	-		l											F
}	-											٠.		F
7	-		ļ	1		4.								F
1	-		1	1							1	1	1	

MACTEC

N.C.D.O.T. GEOTECHNICAL UNIT BORING LOG

12

PROJE	ECT NO	. 334	78.1.1		ID. B-4125 COUNTY Greene GEOLOGIST	ET 1 OF 1 W. Grimes
SITE D	ESCRI	PTION	Bridge N	lo. 46 Ov	Wheat Swamp Creek on SR 1091 (MACTEC Proj. No. 6468-05-1241)	GROUND WATER (ft)
	IG NO.				ING LOCATION 16+45 OFFSET 19 ft RT ALIGNMENT -L-	0 HR. 0.0
COLLA	AR ELE	V. 31 4	1 ft		ING 607,113 US ft EASTING 2,429,268 US ft	-
	DEPT			_		
	START		1/17/05	ــــــــــــــــــــــــــــــــــــــ		ER TYPE 140-lb. Manual
ELEV.					COMPLETED 11/17/05 SURFACE WATER DEPTH N/A	
			OW CO	0.5ft	BLOWS PER FOOT SAMP. L O SOIL AND RO	CK DESCRIPTION
(ft)	(ft)	0.5ft	0.5ft	U.Sit	0 20 40 60 80 100 NO. MOI G	
31.4					Ground Surface 31.4	
_	F		ł		Roadway Embankm	ent Fill: Rip Rap ent Fill: Brown and red,
28.4	3.0	5	2	1	silty, f. to cse. SAND	(A-2-4)
-	‡				·T·····	
-	t				Alluvium: Brown and	red, silty, f. SAND (A-2-4)
22.7	8.7	3		3	w/ little organics	,,,
-	‡	3	4	3	Sat. Sat.	
_	<u> </u>				19.5	11
17.7	_ 13.7	9	14	86/0.4	(A-2-4) w/ shell fragr	gray, clayey, f. SAND nents
-	F		'7	00/0.4	100/0.9 W 16.7 V2 Vorktown Fm: Thinly	bedded, indurated, 16
	F				SANDSTONE	gray to green, glauconitic,
12.7	18.7	8	14	15		. SAND (A-2-4) w/ trace to
-	+		''	, ,	little shell fragments	
7	F					
7.7	23.7	12	16	18	SS-4 W	
-	+				· · · · · · · · · · · · · · · · · · ·	
2.7	F 7					
2.1	28.7	7	17	23	· · · · · · · · · · · · · · · · · · ·	
_	Ė					
-2.3	33.7				::::::::::::::::::::::::::::::::::::::	
	- 00.7	20	20	24		
1	ļ.					
-7.3	38.7					
		25	48	52/0.3'		
-	F				100/0.8	
-12.3	43.7					
	È	41	59/0.5'		100/1.01 W	
-	Ŀ					
-17.3	48.7	L	04/0.51	1		
1	-	39	61/0.5'		100/1.g	
-22.3	_ 53.7	25	43	42	::::::::::::::::::::::::::::::/:::	
1	F	25	43	42	85 . W	•
=			! .			
-27.3	_ 58.7	37	33	38	SS-5 W	
1		"		 	-28.8	60.2 ft (Elev28.8 ft) in
7	E,				Yorktown Fm: V. den	se, silty, f. to cse. SAND
1	<u> </u>		1		(A-2-4)	
4	E				Bits Used: 3" Roller (Cone
7	F				Drilling Fluid Properti	es: 8.5 lbs/gal
1	ļ.					
£	L					
1	-					
1	ב					

N.C.D.O.T. GEOTECHNICAL UNIT BORING LOG

SHEET 1 OF 1

87 OF 11	ANGE													SHEE	T 1 OF 1	
PROJE	CT NO	. 3347	78.1.1			ID. B-4125	C	OUNTY	Gree	ne		G	EOLO	GIST W.	Grimes/B. Do	eobald
SITE D	ESCRII	PTION	Bridge N	o. 46 Ov	er Wh	eat Swamp Creek on SR 1091 (MACTEC Proj. No. 6468-05-1241))			GROUND	WATER (ft)
BORIN	G NO.	B1-A	***********	ВС	ORING	G LOCATION 16+86		OFFSI	ET 10	ft LT		ALIGNMEN	IT -L-		0 HR.	Water
COLLA	R ELE	V. 19.5	5 ft	NORT	THING	G 607,138 U	S ft	EASTI	NG 2	429.3	11			US ft	24 HR.	Boring
TOTAL	DEPTI	1 46.5	ft	 		CHINE D-50 ATV		 				Rotary/Core		HANME	R TYPE 140-I	
DATES			/19/05	1		COMPLETED 11/20/05		ļ				PTH 1.8	1		V 111 1 170 1	o. Manual
ELEV.			OW COL	INT	Γ	BLOWS PER FOOT		JOIN	SAMP.			111 1.0				
(ft)	(ft)	0.5ft	0.5ft	0.5ft	0	20 40 60	80	100	NO.		0		SOIL A	ND ROCK	DESCRIPTION	N
(1.5)		0.010	0.010	0.01	╫		<u> </u>		140.	/MOI	G					
								,								
19.5				<u> </u>	<u> </u>	Mudline						19.5				
19.5	- 0.0	WOH	WOH	WOH	OH .					Sat.		- (A-2-	ium: Br 4) w/ tr	own and gr ace organic	ay, silty, f. SAN :s	ID
‡	-											- 16.6			nly bedded, inc	lurated, 4
40.4	- - 6.4				: :		· · ·					─ \fossil	liferous.	SANDSTO	ONE ray and gray, c	
13.1	0.4	6	9	10	: :	019		: : :		w		~ silty,	f. to cse	e. SAND (A	-2-4) w/ trace s	shell
10.6	- 8.9	14	15	15	: :		· · ·	: : :				fragn	nents a	nd lignite		
, 7	-	14	15	10	: :	30	 	: : :		W		-				
‡	-	,			::	/						- -				
5.6	- 13.9 -	8	9	11	1::					w		*				
‡	-				: :							-				
0.6	- - 18.9				: :							<u>.</u> .				
7 1		7	17	33	1::			: : :		w		- -				
Ŧ	-				::		· · ·	: : :				-				
-4.4	- 23.9]::		• • , •	: : :				-				•
‡	-	9	16	25	: :	41				W		-				
1	- -				: :							-				
-9.4	- 28.9	15	20	40	: :							-				
Ŧ	-	13	20	40	: :		• • •	:::		M		-				
‡	- -				: :		· · ·	: : :				- -		*		
-14.4	- 33.9 -	33	67/0.4							м		-				
‡	- -				: :			10,0010			****				ckly bedded, fr	able to
-19.4	- - 38.9				: :			::						durated, for E w/ lignite		
1		60/0.0'			: :			60/0.0			3 0 0					40
Ŧ	-							::				- Yorkt - (A-2-	town Fn 4) w/ tra	n: Gray, silt ace shell fra	y, f. to cse. SA agments and lig	ND Inite
- ‡					: :			::				- -				
-26.1	45.6	60	40/0.4		: :							 - _{-27.0}				40
‡	•	00	40/0.4					100/0.9		w	****	Borin	g termi	nated at 46	.5 ft (Elev27.	46 0 ft) in
	- -													n: V. dense ace shells a	, silty, f. to cse and lignite	SAND
1	-											- Bits I	Jsed: 3	' Roller Cor	ne; HQ Surface	Set
1	-											- Core			,	, 661
\pm	-											- Drillin	ng Fluid	Properties	: 8.8 lbs/gal	
Ŧ	-											Loss	of drillin	ng fluids dri	lling from 34.8	to 38.9 ft
Ŧ	-											(~30	Gallons	s)	=	
‡	•											-				
‡	-											• •				
	-											- -				
±												-				
Ŧ								I				-				
+	-		ì			•						-				
‡	-							1				- ·				•
<u> </u>	•							Į				-				
	•				<u> </u>			1								

N.C.D.O.T. GEOTECHNICAL UNIT CORE BORING REPORT

13

PROJE	ECT NO.	334	78.1.1			ID. B-4	125			COUNTY Greene GEOLOGIST W. Grimes/B. Deobald
SITE D	ESCRIP	TION	Bridge No	. 46 Ove	er Whe	at Swamp (Creek o	n SR 10) 190	ACTEC Proj. No. 6468-05-1241) GROUND WATER (f
BORIN	IG NO.	B1-A		ВО	RING	LOCATIO	ON 16	3+86		OFFSET 10 ft LT ALIGNMENT -L- 0 HR. Water
COLLA	R ELE	/. 19.	5 ft	NORT	HING	607,138	8		US	ft EASTING 2,429,311 US ft 24 HR. Boring
OTAL	DEPTH	1 46.5	5 ft	DRILL	MAC	HINE D-5	O ATV	·····		DRILL METHOD Mud Rotary/Core HAMMER TYPE 140-lb. Manual
DATE	STARTE	D 1	1/19/05			COMPLE	ETED	11/20/	05	SURFACE WATER DEPTH 1.8
ORE	SIZE +	IQ				TOTAL F	RUN 2	27.0 ft		DRILLER T. Hahn
ELEV.	DEPTH	RUN	DRILL	REC.	UN RQD	SAMP.	STF REC.	RATA	L	
(ft)	(ft)	(ft)	RATE (Min/ft)	(ft)	(ft) %	NO.	(ft)	(#)	O G	DESCRIPTION AND REMARKS
										Davis Oaks O 000
16.6	2.9	3.5	1:45	(1.2)	(N/A		(1.2)	(N/A)		Begin Coring @ 2.9 ft 18.2 Yorktown Fm: Gray, thinly bedded, indurated, fossiliferous, SANDSTONE
13.1	6.4		0:40 0:40	34%			(4.1)	(N/A)		Yorktown Fm: Green-gray and gray, clayey, silty, f. to cse. SAND (A-2-4) w/ trace shell fragments and lignite
44.6	7.0		0:20/0.5 N=19		4114		19%			
11.6 10.6	7.9 \8.9	1.0	0:35 N=30	(0.0)	(N/A	Ч	1			· -
9.1	10.4	3.5	0:35 0:15	(0.0)	(N/A		1			
5.6	13.9		0:15 0:15/0.5		<u></u>					
4.1	15.4	3.5	N=20 1:40	(2.1)	(N/A		-			
		5.0	0:50 0:50	60%	(147)	1				
0.6	18.9		0:20/0.5 N=50	┼──		·	ł			· -
-0.9	20.4	3.5	0:25 0:25	(2.0)	(N/A)					
-4.4	23.9		0:30 0:11/0,5	57%						
-5.9	25.4	3.5	N=41 0:40	(0.0)	(N/A)					-
		3.5	0:25 0:20	0%	(IVA)	' ·				
-9.4	28.9		0:12/0.5 N=60	 	ļ	 				_
-10.9	30.4	3.5	0:18	(0.0)	(N/A)) 				
-14.4	33.9		0:14 0:14	0%						
-15.3	34.8	4.1	0:10/0.5 N=100/0.9 1:00	(0.9)	(N/A)		<u> </u>			-16.0
			6:00 0:55	22%	,,		(1.8) 42%	(N/A)	田	Yorktown Fm: Gray, thickly bedded, friable to extremely indurated, fossiliferous, SANDSTONE w/ lignite
-19.4 -20.3	38.9 39.8	0.9	4:00 0:05/0.1	(0.9)	(N/A)	, 			日	20.3
			N=60/0.0' 7:30/0.9	100%						Coring terminated at 39.8 ft (Elev20.3 ft) in Yorktown Fm: Thickly bedded, extremely indurated, fossiliferous, SANDSTONE w/ lignite
										Due to technical difficulties coring, the remainder of the boring was drilled by
										roller cone
										_
									<u> </u>	
									1	
										-
		. ·								
		-								
									F	
										-
									╟╏	
										Land the second second
					,					
- 1	f			1			, ,	i	, 1	

Core Photos MACTEC Proj. No. 6468-05-1241

SHEET 14 OF 27 Bridge No. 46 over Wheat Swamp Creek on SR 1091 NCDOT Proj. No. 33478.1.1 (B-4125)

N.C.D.O.T. GEOTECHNICAL UNIT BORING LOG

SHEET 1 OF 1

W. O. T														,	SHEE	T 1 OF 1	
PROJE	CT NO.	3347	8.1.1			ID. B-41	25	С	OUNTY	Gree	ne		G	EOLOGI	ST B.	Deobald	
SITE D	ESCRIP	TION	Bridge No	o. 46 Ove	r Whe	eat Swamp Cre	ek on SR 109	91 (MACTI	EC Proj.	No. 6468	-05-12	41)				GROUND	WATER (ft)
BORIN	G NO.	B2-B		ВС	RING	LOCATION	17+06		OFFS	ET 6ft	RT		ALIGNMEN	IT -L-		0 HR.	Water
COLLA	R ELEV	/. 18.3	ft	NORT	HING	607,121		US ft	EAST	ING 2	429.3	32	.1		US ft	24 HR.	Boring
TOTAL	DEPTH	48.6	ft			CHINE CME	-45C trailer	/D-50	 				Rotary/Core			R TYPE 140-I	
	STARTE		/17/05	L		·	ED 11/19/		 				TH 2.8				
	DEPTH		OW COL	INT			WS PER FO		100.4	SAMP.		111					
(ft)	(ft)	0.5ft	0.5ft	0.5ft	o		40 60	80	100	1	мо	0 G		SOIL AN	D ROCK	DESCRIPTION	
(-9	(4)									1.0.	MU	l G					
	ĺ																
18.3							Mudline						18.3				
18.3 16.7	0.0 1.6	WOH	WOH	WOH	● 0·						Sat.		- 10./ /A 2		n and gi	ay, silty, f. SAN	-
_	<u> </u>	60/0.0'		"					<u> 60/0.01</u>				York	town Fm:		nly bedded, indi	
-	_							 					York	town Fm:	Green-g	shell fragments ray and gray, cla	ayey, f.
11.7 -	- 6.6	12	6	8				 			w			e. sandy S nents	SILT (A-	4) w/ trace shell	
_	-	'*		ľ		. •14					**						
:	F					\							- -				
6.7	11.6	7	8	12		/		· · · · ·		SS-6	w		-			•	
-	E								· · · i				<u>4.7</u> York	town Fm:	Grav thi	inly bedded, frial	ole to1
1.7	16.6							· · · · ·					-	. indurated	, SAND		
-	-	15	20	30			50				w		- (A-2	-4) w/ trace	e shell fr	agments and lig	nite
-	F												_	•			
-3.3 -	21.6							 					<u>.</u>				
-		5	20	32			52	· · · · ·		SS-7	W		- -				
-	E							SS. : :			İ		-				,
-8.3 -	26.6	8	45	50				· · · ` · ·	· · · ·		101		- -				
_	F	°	45	50	٠.				. 95		W		9.8York	town Em:	Grav sil	ty, f. to cse. SAN	JD (A-3)
	-								: 1:				w/ tr	ace shell fi	ragment	s and lignite	10 (7.0)
<u>-13.3</u> -	31.6	42	45	53				· · · · ·	98	SS-8	w		-				
-	- .				: :			 					-				
								 	:: ;			===	17.3 	town Em:	Gray thi	ickly bedded, inc	3
-19.0	37.3	60/0.0'						 	60/0.01				19.2 , to e>	tremely in	durated,	fossiliferous,	,— 3
-											`		- York	DSTONE town Fm:	Gray, sil	ty, f. to cse. SAN	1D /
-24.0 ⁻	42.3												- (A-2	-4) w/ trace	e shell fr	agments and lig	nite
	- 12.0	40	60/0.4'	1			• • • • •	 		SS-9	w		-				
-	t				: :			 	100/0.9				-				
-2 9.0 ¯	47.3							 					-				
-		28	45	55/0.3'	• •	· · · · · ·			100/0.8		W		30.3		1	0.6 /51	4
	F								10010.0				 York 	town Fm:	V. dense	3.6 ft (Elev30.3 e, silty, f. to cse.	
-	F												- (A-2	-4) w/ trace	e shells a	and lignite	
-	-										ļ		- Bits	Used: HQ	Surface	Set Core Bit	
1	_										İ	1 1	_ Drilli	ng Fluid P	roperties	s: 8.5-9.0 lbs/gal	
-	L												- -				
	-						-						-				•
	F												- -			•	
-	<u></u>												<u>-</u>				
-	ţ												<u>.</u>				
-	E												-				•
-	_			1		•		*				·	-				
-	F												-				
-	ļ.												- -				
-	<u> </u>						•					1					

N.C.D.O.T. GEOTECHNICAL UNIT CORE BORING REPORT

PPO II	ECT NO.	224	78 1 1			ID. B-4	125	·····		SHEET 1 OF 1
				46.0	ng 1875 -					COUNTY Greene GEOLOGIST B. Deobald
	IG NO.		Bridge No						091 (N	MACTEC Proj. No. 6468-05-1241) GROUND WATER (ft)
						LOCATIO		7+06		OFFSET 6 ft RT ALIGNMENT -L- 0 HR. Water
	AR ELE					607,12	··········			S ft EASTING 2,429,332 US ft 24 HR. Boring
	_ DEPTH			DRILL	MAC	HINE CM				DRILL METHOD Mud Rotary/Core HAMMER TYPE 140-lb. Manual
	STARTE		1/17/05			COMPLE			05	SURFACE WATER DEPTH 2.8~
CORE	SIZE +	IQ .		 	UN	TOTAL F				DRILLER T. Hahn
ELEV. (ft)	DEPTH (ft)	RUN (ft)	DRILL RATE (Min/ft)	REC.		SAMP. NO.	REC.	RATA RQD (ff) %	L O G	DESCRIPTION AND REMARKS
16,7	1.6	- 5.0	N=60/0.0°	(0.9)	(N/A		(0.9)	L(N/A)		Begin Coring @ 1.6 ft
10.7	1.0	5.0	1:30 0:45	18%	(13/7)	'	100%		网	Yorktown Fm: Gray, thinly bedded, indurated, SANDSTONE w/ some shell fragments
44 7			0:35 0:40]			(0.5) 6%			Yorktown Fm: Green-gray and gray, clayey, f. to cse. sandy SILT (A-4) w/ trace shell fragments
11.7	6.6		1:40 N=14	┼──	 	 	ĺ			- -
10.2	8.1	3.5	0:45 1:40	(0.0)	(N/A					<u></u>
6.7	11.6		1:55	0%						<u>.</u>
			1:05/0.5 N=20	1		SS-6				-
5.2	13.1	3.5	0:45 1:40	(1.7) 49%	(N/A))	(1.2)	(N/A)		- 3.5 Yorktown Fm: Gray, thinly bedded, friable to mod, indurated, SANDSTONE
1.7	16.6	,	1:35 0:33/0.5				\ <u>100%</u> / (0.8)	(N/A)		Yorktown Fm: Gray, silty, f. to cse. SAND (A-2-4) w/ trace shell fragments and lignite
0.2	18.1	3.5	N=50 0:25	(0.0)	(N/A)		9%			• -
			0:54 1:15	0%						• · · · · · · · · · · · · · · · · · · ·
-3.3	21.6		0:40/0.5 N=52	├	 	SS-7		,		• •
-4.8	23.1	3.5	0:20 0:30	(0.8)	(N/A)				-	<u>-</u>
-8.3	26.6		0:30	23%	Ì				*:+	• · · · · · · · · · · · · · · · · · · ·
			0:22/0.5 N=95							-
-9.8	28.1	3.5	0:10 0:15	(0.0)	(N/A)		(0.0) 0%	(N/A)		Yorktown Fm: Gray, silty, f. to cse. SAND (A-3) w/ trace shell fragments and lignite
-13.3	31.6		0:25 0:20/0:5				0,0			- "gritte
-14.8	33.1	4.2	N=98 0:15	(1.7)	(N/A)	SS-8				-
,		7.2	0:10 3:50	40%	(1.07.)	1				- 17.3
-19.0	37.3		4:00 1:30/0.2		4111		(1.9) 100%	(N/A)		Yorktown Fm: Gray, thickly bedded, indurated to extremely indurated, fossiliferous, SANDSTONE 37
		5.0	N=60/0.0' 0:38	(0.2 <u>)</u> 4%	(N/A)) 	(2.0) 23%	(N/A)		Yorktown Fm: Gray, silty, f. to cse. SAND (A-2-4) w/ trace shell fragments and lignite
			0:10 0:10				20,0		-	ngrine
-24.0	42.3		0:10 \ 0:10	}		SS-9				•
-25.0	43.3	4.0	N=100/0.9 0:17	(2.0) 50%	(N/A)				-	•• •
-29.0	47.3		0:15 0:11	30,0			,			- 29.0
			0:15	1					••••	Coring terminated at 47.3 ft (Elev29.0 ft) in Yorktown Fm: V. dense, silty, f, to
										cse. SAND (A-2-4) w/ trace shells and lignite
									l E)
							*.		-	- And the second
									F	<u>.</u>
· .										
										- •
						<u>.</u>				
l				ľ					Ŀ	• •
									F	
									F	• ••
				,						·
										• •
										- Control of the Co
		- 1		1		1 '			ıL	

Core Photos MACTEC Proj. No. 6468-05-1241

SHEET 16 OF 27 Bridge No. 46 over Wheat Swamp Creek on SR 1091 NCDOT Proj. No. 33478.1.1 (B-4125)

West of	TRAVELS					TE(SHEE	T 1 OF 1	
	EĆŢ NO					D. B-4°				UNTY					GEOLO	GIST W.	Grimes/B. Deob	oald
SITE	DESCRI	PTION	Bridge N	o. 46 Ov	er Wheat	Swamp (Creek on	SR 1091	(MACT	EC Proj	. No. 64	68-05-	1241))			GROUND W	ATER (ft)
BORI	NG NO.	EB2-A	\			OCATIO		·51		OFFSE	ET 18	ft LT		ALIGI	NMENT -L-		0 HR.	4.5
COLL	AR ELE	V. 32.6	ft	NORT	HING	607,142	2	. 1	JS ft	EASTI	NG 2,	429,3	77			US ft	24 HR.	9.7
	L DEPTI		ft	DRILL		INE CM				DRILL	METH	OD	Mud	Rotary		HAMME	R TYPE 140-lb. I	Manual
	START		/19/05		0	OMPLE	TED 1	1/20/05		SURF	ACE W	ATE	DE	PTH N/	Ά			ı
	DEPTH		OW COL				OWS PE				SAMP.	lacksquare	0		SOIL A	ND ROCK	DESCRIPTION	
(ft)	(ft)	0.5ft	0.5ft	0.5ft	Ŷ	20 	40	60 	80	100	NO.	MO	G		*			
32.6						G	round S	urface		į				32.6				
32.6	0.0	6	6	6	•	12 · · ·			• • • •			М	Hi	-	Roadway En	nbankmeni	Fill: Tan, silty, f. t	o cse.
29.5	+ 3.1 +	3	3	7					: : :			∇		-	0,110 (712	• /		
27.4	+ 5.2	2	4	4	· · [: : :		M		-				
25.2	7.4	2	2								00.40		H	- 25.6	Roadway En	nhankment	Fill: Tan, f. to cse	
22.4	10.2	4	. 2	3	. •5					: : :	SS-10	M	F	-	sandy SILT		1 III. 1 ali, 1. 10 CSC	•
20.2	12.4	3	3	4						: : :		Sat.		- 21.6	Allunium: Gr	oon cilby f	SAND (A-3)	1
20.2	12.4	4	5	7	: : /	i2					SS-11	Sat.			Alluvium. Gr	een, siity, i	. SAND (A-S)	
17.4	15.2	4	4	5	: : <u> </u> -					: : :	CC 12	0-4		1 <u>8.1</u>	Alluvium: Ta	n, silty, f. to	cse. SAND (A-2-	4) 14
15.2	17.4	·	·		📥					: : : 	SS-12	Sat.		- <u>15.6</u>			·	1
	±	3	2	2	. 4.	• • • • • • • • • • • • • • • • • • •	· · · ·			: : :		Sat.		• .	to gray, claye	ey, silty, f. t	rown-green, dark o cse. SAND (A-2	-4) w/
2.3	<u>† 20.3</u>	3	4	5	/.					: : :		Sat.		•	trace to little and trace lig		ents, trace clay le	enses,
0.1	22.5	7	11	17			· · · · ·			: : :		Sat.		-				
7.5	25.1						· • • • ·			: : :				•				
5.1	27.5	8	12	15		27	· · · · ·			: : :		Sat.		•				
	F	11	17	19		: : : :)	●36			: : :		Sat.		-				
2.4	+ 30.2 +	6	9	14		/ 				: : :		Sat.		•				•
0.1	32.5	7	26	48						: : :		w		• 			•	
2.5	35.1					 		· · · · ·	9 74	: : :				•				
4.9	37.5	9	12	15		∷ .≪<	· · · · ·			: : :		W						
	Į.	11	22	31		<i></i> .		53		: : :		w		-				
7.5	+ 40.1 +	9	16	46		 	· · · · ·			: : :		w		•				
9.9	42.5	15	30	29		 				: : :		w		-				
2.5	45.1					 		. • 59		: : :		**						
4.9	47.5	19	45	55/0.4'		 		 	10	10/0.9		Sat.		•				
16.7	49.3	7	.56	44/0.1'		 				0/0.6		w		-16.0	V-11		·	48
	-	-60/0.4 ⁻								0/0.4				-17.1	\fossiliferous,	SANDSTO	nly bedded, indura NE	
-	‡													-	(Elev17.1 f	t) in Yorkto	T refusal at 49.7 f wn Fm: Thinly be	
	‡												<u> </u>		indurated, fo	ssiliferous,	SANDSTONE	
	‡									1				•	Bits Used: 3'	' Roller Co	ne	
-	‡ ·						•							-	Drilling Fluid	Properties	8.5 lbs/gal	
	‡																	
-	‡												<u> </u>				•	
	‡			l									<u> </u>					
	‡												<u> </u>					•
-	‡											,		-	eg trop			
	<u>†</u>												F	•				
	Ł l			l										•			•	
_	Ľ											-	rF		*			

MACTEC

N.C.D.O.T. GEOTECHNICAL UNIT BORING LOG

17

PRO IE	CT NO	. 33/17	'8·1 1		I	ID. B-	4125		100	YTNUC					Γ 1 OF 1	
														GEOLOGIST W.		
								on SR 109	1 (MAC	TEC Pro	j. No. 64	68-05-	1241)	GROUND WA	TER (ft)
BORIN	G NO.	EB2-B		BC	RING	LOCAT	ION 1	7+47		OFFS	ET 19	ft RT		ALIGNMENT -L-	0 HR.	3.4
COLLA	R ELE	V. 32.0) ft	NORT	HING	607,10)5		US ft	EAST	ING 2,	429,3	70	US ft	24 HR.	4.9
OTAL	DEPTH	1 49.1	ft	DRILL	MAC	HINE D-	50 AT\	/						Rotary HAMMER	TYPE 140-lb. N	
	STARTE		/18/05	1				11/18/05	_	<u> </u>					TTPE 140-10. IV	ianuai
	DEPTH									SURF	·	AIE	Y DE	PTH N/A		
- 1			OW COI		0	20	40	PER FOO		400	SAMP.	▼/	0	SOIL AND ROCK	DESCRIPTION	
(ft)	(ft)	0.5ft	0.5ft	0.5ft	<u> </u>			60 1	80	100	NO.	MOI	G			
32.0							O	0								
32.0	0.0	4	4	4			Grouna	Surface				М		32.0 Roadway Embankment	Fill: Brown and gr	31/
4	-				/			• • • • •					F	clayey, silty, f. to cse. S.	AND (A-2-4) w/ tra	ce
27.3	- - 4,7] : <i>[</i> ;]	 		· · · · ·				$\vdash \leftarrow$		_ organics		
	-	2	1	1		 			· • • •			-м-		_		
+	-				-								L	<u> </u>		
22:7	9.3				:	 										
1	-	1	WOH	WOH	0.	<i></i> 						Sat.		21.0		1
+	-			1	[]									Alluvium: Light brown, s	ilty, f. to cse. SANI	<u> </u>
17.7	14.3			<u> </u>		 								(A-2-4) w/ little to mod.	wood fragments	
1	• •	4	2	98/0.2'	<u> </u>		::::	· · · · ·		00/9.71		Sat.	***	- 16.5 - 15.5 Yorktown Fm: Thinly be	ddad iadt	1
+	-								• • • •	• • •				- \SANDSTONE	,	
12.7	19.3													Yorktown Fm: Dark-gray f. to cse. SAND (A-2-4)	to green, clayey,	silty,
1	- -	10	15	16			31		· · · ·	: : :		W		fragments and lignite	w trace to little sin	311
+	-						· · ·							_		
7.7	24.3						\	· · · · ·						- -		
1	- -	12	16	18		 	34	 				Sat.				
+	-						/· · ·									
2.7	29.3					: : : : /		· · · · ·								
1	.	8	11	17		· · · · · •	28: : :	· · · · ·		: : :		W		<u> </u>		
+	_)								_		_
-2.3	34.3	- 44	1.0				/. : :							-		
1	-	11	16	21		<i>.</i> 	37					w		<u>-</u>		
1	-						. :/.							F		
-7.3	_ 39.3	-10												F		
1	-	13	23	27)	50 : :				W		-		
1	-				1 : : :	 	:::							-		
-12.3	44.3	24	54	46/0.4'								,,,		F		
1	-	24] 54	40/0.4		· · · · ·			1	00/0.9		W		ļ.		
-17.1	- - 49.1					 		· · · · ·						-166		46
-1/.1	49.1	60/0.0'	<u> </u>		 -			 		60/0.0			-	Yorktown Fm: Thinly be	dded, indurated,	7 9
+	-								•					SANDSTONE Boring terminated at SP	T refusal at 49.1 ft	
7	-													(Elev17.1 ft) in Yorkto	wn Fm: Thinly bed	ded,
1	-													indurated, fossiliferous,		
1	-													Bits Used: 3" Roller Con	e	
Ŧ	-			• •										Drilling Fluid Properties:	8.7 lbs/gal	
1	-													‡		
Ĺ	-													-		
Ŧ	-													F		
‡	-													<u>, </u>		
	-						•							-		
7	-													F		
‡	-													<u></u>		
+	-													-		
7	-				١.									F		
+	-		L	L						- 1				-		

N.C.D.O.T. GEOTECHNICAL UNIT BORING LOG 18

SHEET 1 OF 1

GEOLOGIST F.M.W. COUNTY Greene PROJECT NO. 33478.1.1 GROUND WATER (ft)

SITE D	ESCRIP	TION B	ridge No	o. 46 Ove	r Whe	at Swamp Cree	ek on	SR 1091							GROUND V	VATER (ft)
BORIN	G NO.	NCDO.	T Prelir	m BO	RING	LOCATION	17	7+60	OFFSI	ET 15	ft LT		ALIGNMENT -L		0 HR.	NM ·
COLLA	R ELEV	•		NORT	HING	607,138		US ft	EAST	NG 2	,429,3	85		US ft	24 HR.	10.2
TOTAL	DEPTH	60.1	ft	DRILL	MAC	CHINE CME-	45B		DRILL	. METH	OD I	Rotar	y Mud	HAMME	R TYPE Auto	
DATE	STARTE	D 7/1	7/02	L		COMPLETI	ED	7/17/02	SURF	ACE W	ATER	DEP	TH N/A			
	DEPTH		ow cou	TNL		BLO	WS P	ER FOOT		SAMP.	V /	L	SOII	AND BOCK	DESCRIPTION	
(ft)	(ft)	0.5ft	0.5ft	0.5ft	P	20 4	40	60 80	100	NO.	MOI				DECORA HON	
													•			ŀ
						,	٠.									2.0
	0.0	2	2	5		Gro	ound 	Surface			\vdash	L.:	Roadway E	mbankmen	Fill: Tan, fine to	coarse 0.0
		_											SAND (A-2	:-4) - moist to	o saturated	
	4.0	4	3	3	1:1											
		7								l ·		<u> </u>	•			,
	8.6]:							! ::				
		2	2	2] : •	4	: :				V	F.				
		,			:							F				
	13.6	3	2	3	:											1
		,	_	"	1:7)5	• •				1					17.0
	40.6				1:1:		· ·						Alluvium: 0	Greenish-bro	wn, phosphatic,	silty,
	18.6	2	1	1		· · · · · · · · · · · · · · · · · · ·							fine to coal	rse SAND (A	\-2-4) - saturated	,
						\										22.0
	23.6]					İ			Gray, phos coarse SA	sphatic, sligr ND (A-2-4) v	itly clayey, silty, f with shells and lig	ine to gnite -
		6	12	13		25	: :						saturated			
					: :											
	28.6	4	5	8	┨∷											
					: :	· ·••3. · · · ·	: :			1						
	33.6				: :	: : : : :										
	33.0	20	25	20	1::	<i></i>	`	45								
				1.	1::		<u>/:</u> :									
	38.6]	/	·									
		7	11	17		28.										
*						/.				1						
	43.6	14	17	23	\exists			· · · · · · · · ·								
			1			 										47.0
	48.6				1:	 	Ŀ	· · · · · · · · ·	· · · · · · · · · · · · · · · · · · ·				Harder dri	illing from 47	'.6 to 50.2 ft	47.6
		60/0.1	7		;			· · · · · · · ·	60/0.1	'			Crov mice	accour eilh	, fine to coarse S	50.2
					:								(A-2-4) wi	th thin rock l	ayers	מאואט
ļ. 	53.6	20	25	41	- ∶		 									
	1	20	25	"	:											
	58.6	27	32	32	- :			64								60.1
													I	rminated at		*
													Note: Bor	ing collar ele	evation not provid	ied
		1						·					,			
							-									
ı	ı	1	1	ı	- 1					1	1	1	i			

MACTEC ENGINEERING AND CONSULTING, INC. **3301 ATLANTIC AVENUE** RALEIGH, NORTH CAROLINA 27604

N.C.D.O.T./AASHTO CLASSIFICATIONS

REPORT ON SAMPLES OF: SOILS FOR QUALITY

MACTEC PROJECT NAME AND NUMBER: BRIDGE NO. 46 OVER WHEAT SWAMP CREEK ON SR 1091 (6468-05-1241)

PROJECT: 33478.1.1 (B-4125)

COUNTY: Greene

OWNER: N.C.D.O.T.

DATE SAMPLED: November, 2005

RECEIVED: 11/28/2005

REPORTED BY: MACTEC

SAMPLED FROM: EB1-A, B2-B

SUBMITTED BY: MACTEC ENGINEERING AND CONSULTING, INC.

1992 STANDARD SPECIFICATIONS

TEST RESULTS

Lab Sample No.		SS-1	SS-2	SS-3	SS-4	SS-5	SS-6
Retained 4.75 mm Sieve	(%)	17.5	0.0	0.0	0.0	0.0	0.0
Passing 2.00 mm Sieve	(%)	72.3	100.0	100.0	100.0	100.0	100.0
Passing 425 µm Sieve	(%)	44.4	97.8	90.0	95.2	98.7	98.3
Passing 75 µm Sieve	(%)	17.4	17.3	31.6	14.9	21.2	37.8

MINUS 2.00mm FRACTION

SOIL MORTAR - 100%							
Coarse Sand Ret - 250 µm	(%)	53.3	17.1	32.4	35.2	1.8	16.0
Fine Sand Ret - 53 µm	(%)	25.0	68.9	39.3	50.8	82.8	49.0
Silt 0.05 - 0.005 mm	(%)	8.4	. 4.1	7.4	4.6	7.0	13.6
Clay < 0.005 mm	(%)	13.3	9.9	20.9	9.4	8.4	21.4

Moisture Content	(%)	ND	ND	ND	ND	ND	ND
Liquid Limit, L.L.		18	21	29	21	27	31
Plasticity Index, P.I.		NP	NP	NP	NP	NP	NP
AASHTO Classification		A-1-b	A-2-4(0)	A-2-4(0)	A-2-4(0)	A-2-4(0)	A-4(0)
Organic Content	(%)	ND	ND	ND	ND	ND	ND

Boring No.		EB1-A	EB1-A 0S	EB1-A 0S	EB1-B	EB1-B	B2-B
Station		16+44	16+41	16+41	16+45	16+45	17+06
Offset		16 LT	18 LT	18 LT	19 RT	19 RT	6 RT
Alignment		-L-	-L-	-L-	-L-	-L-	-L-
Depth (ft)	From	0.4'	7.6'	12.5'	23.7'	58.7'	11.6'
·	to	1.9'	9.1'	14.0'	25.2'	60.2'	13.1'

REMARKS: ND=Not Determined, NP=Non-Plastic

Submitted by: DZUNG NGUYEN

MACTEC ENGINEERING AND CONSULTING, INC. 3301 ATLANTIC AVENUE RALEIGH, NORTH CAROLINA 27604

N.C.D.O.T./AASHTO CLASSIFICATIONS

REPORT ON SAMPLES OF: SOILS FOR QUALITY

MACTEC PROJECT NAME AND NUMBER: BRIDGE NO. 46 OVER WHEAT SWAMP CREEK ON SR 1091 (6468-05-1241)

PROJECT: 33478.1.1 (B-4125)

COUNTY: Greene

OWNER: N.C.D.O.T.

DATE SAMPLED: November, 2005

RECEIVED: 11/28/2005

REPORTED BY: MACTEC

SAMPLED FROM: B2-B, EB2-A

SUBMITTED BY: MACTEC ENGINEERING AND CONSULTING, INC.

1992 STANDARD SPECIFICATIONS

TEST RESULTS

Lab Sample No.		SS-7	SS-8	SS-9	SS-10	SS-11	SS-12
Retained 4.75 mm Sieve	(%)	0.0	0.0	0.0	0.0	0.0	0.0
Passing 2.00 mm Sieve	(%)	100.0	100.0	100.0	100.0	100.0	100.0
Passing 425 µm Sieve	(%)	78.8	70.8	83.4	99.3	98.0	98.8
Passing 75 µm Sieve	(%)	16.9	5.9	14.9	62.2	5.5	11.5

MINUS 2.00mm FRACTION

SOIL MORTAR - 100%							
Coarse Sand Ret - 250 µm	(%)	57.9	66.2	29.8	12.8	42.7	16.1
Fine Sand Ret - 53 µm	(%)	26.0	28.7	58.4	25.3	52.6	74.5
Silt 0.05 - 0.005 mm	(%)	2.8	0.2	4.7	55.6	0.8	2.2
Clay < 0.005 mm	(%)	13.3	4.9	7.1	6.3	3.9	7.2

Moisture Content	(%)	ND	ND	ND	ND	ND	ND
Liquid Limit, L.L.		31	33	41	23	43	23
Plasticity Index, P.I.		NP	NP	• NP	NP	NP	NP
AASHTO Classification		A-2-4(0)	A-3	A-2-4(0)	A-4(0)	A-3	A-2-4(0)
Organic Content	(%)	ND	ND	ND	ND	ND	ND

Boring No.		B2-B	B2-B	B2-B	EB2-A	EB2-A	EB2-A
Station :		17+06	17+06	17+06	17+51	17+51	17+51
Offset		6 RT	6 RT	6 RT	18 LT	18 LT	18 LT
Alignment		-L-	-L-	-L-	-L-	-L-	- <u>L</u> -
Depth (ft)	From	21.6'	31.6'	42.3'	7.4'	12.4'	15.2'
	to	23.1'	33.1'	43.2'	8.9'	13.9'	16.7'

REMARKS: ND=Not Determined, NP=Non-Plastic

Submitted by:

DZUNG NGUYEN

_	_
/ .	٤.

MACTEC ENGINEERING AND CONSULTING, INC. 3301 ATLANTIC AVENUE RALEIGH, NORTH CAROLINA 27604

N.C.D.O.T./AASHTO CLASSIFICATIONS

REPORT ON SAMPLES OF: SOILS FOR QUALITY

MACTEC PROJECT NAME AND NUMBER: BRIDGE NO. 46 OVER WHEAT SWAMP CREEK ON SR 1091 (6468-05-1241)

PROJECT: 33478.1.1 (B-4125)

COUNTY: Greene

OWNER: N.C.D.O.T.

DATE SAMPLED: November, 2005 RECEIVED: 11/28/2005 REPORTED BY: MACTEC

SAMPLED FROM: CHANNEL BANK

SUBMITTED BY: MACTEC ENGINEERING AND CONSULTING, INC.

1992 STANDARD SPECIFICATIONS

TEST RESULTS

Lab Sample No.		S-1	S-2	·		-
Retained 4.75 mm Sieve	(%)	0.2	0.1			
Passing 2.00 mm Sieve	(%)	99.2	.99.8			
Passing 425 µm Sieve	(%)	97.2	98.7			
Passing 75 µm Sieve	(%)	6.4	22.1		-	

MINUS 2.00mm FRACTION

SOIL MORTAR - 100%						
Coarse Sand Ret - 250 µm	(%)	15.7	10.6			
Fine Sand Ret - 53 µm	(%)	78.6	69.9			
Silt 0.05 - 0.005 mm	(%)	1.2	5.4			
Clay < 0.005 mm	(%)	4.4	14.0			

Moisture Content	(%)	ND	ND			
Liquid Limit, L.L.		24	23			
Plasticity Index, P.I.		NP	NP	•		
AASHTO Classification		A-3	A-2-4(0)		,	
Organic Content	(%)	ND	ND			

Boring No.		Channel Bank	Channel Bed		
Station		16+77	16+85		
Offset		28 LT	27 LT		
Alignment		-L-	-L-		
Depth (ft)	From	0.0'	0.0'		
	to	0.5'	0.5'		

REMARKS: ND=Not Determined, NP=Non-Plastic

Submitted by: DZUNG NGUYEN

SIEVE	PERCENT	SPEC.*	PASS?
		1	
SIZE	FINER	PERCENT	(X=NO)
#10	100.0		
#20	100.0		
#40	97.8		
#60 #200	82.9 17.3	1	İ
#270	14.0		
11210	14.0		
1			

	Soil Description	1
PL= ND	Atterberg Limits	PI= NP
D ₈₅ = 0.263 D ₃₀ = 0.103 C _U = 24.82	Coefficients D ₆₀ = 0.167 D ₁₅ = 0.0650 C _C = 9.49	D ₅₀ = 0.143 D ₁₀ = 0.0067
USCS=	Classification AASH	TO= A-2-4(0)
	<u>Remarks</u>	

(no specification provided)

Sample No.: SS-2 Location: EB1-A 05

- 27....

Source of Sample:

Date: 12/13/2005

Elev./Depth: 7.6' - 9.1'

MACTEC

Client: NCDOT

Project: Bridge Number 46 Over Wheat Swamp Creek on SR 1091

ENGINEERING & CONSULTING, INC.

Project No: 6468-05-1241

(no specification provided)

Sample No.: SS-3 Location: EB1-B Source of Sample:

PASS?

(X=NO)

Date: 12/13/2005 Elev./Depth: 12.5' - 14.0'

MACTEC

Client: NCDOT

Project: Bridge Number 46 Over Wheat Swamp Creek on SR 1091

Project No: 6468-05-1241

GRAIN SIZE - mm

Particle Size Distribution Report

ENGINEERING & CONSULTING, INC.

SIEVE	PERCENT	SPEC.*	PASS?
SIZE	FINER	PERCENT	(X=NO)
#10 #20 #40 #60 #200 #270	100.0 99.7 98.3 84.0 37.8 35.0		

	Soil Description	<u>on</u>
PL= ND	Atterberg Limi LL= 31	ts PI= NP
D ₈₅ = D ₃₀ = C _u =	Coefficients D ₆₀ = D ₁₅ = C _c =	D ₅₀ = D ₁₀ =
USCS=	Classification AASI	1 HTO= A-4(0)
4.	<u>Remarks</u>	
		,

(no specification provided)

Sample No.: SS-6

Source of Sample:

Date: 12/13/2005 **Elev./Depth:** 11.6' - 13.1'

Location: B2-B

MACTEC

- -

Project: Bridge Number 46 Over Wheat Swamp Creek on SR 1091

ENGINEERING & CONSULTING, INC.

Project No: 6468-05-1241

ı	0.0		0.0	
-			T	
	SIEVE	PERCENT	SPEC.*	PASS?
	SIZE	FINER	PERCENT	(X=NO)
	#10 #20 #40 #60 #200 #270	100.0 98.3 78.8 42.1 16.9 16.1	PERCENT	(X=NO)

	Soil Description	
PL= ND	Atterberg Limits LL= 31	PI= NP
D ₈₅ = 0.482 D ₃₀ = 0.196 C _u =	Coefficients D60= 0.323 D15= 0.0306 C _C =	D ₅₀ = 0.281 D ₁₀ =
USCS=	Classification AASHT	O= A-2-4(0)
-,	Remarks	

* (no specification provided)

Sample No.: SS-7 Location: B2-B Source of Sample:

Date: 12/13/2005 **Elev./Depth:** 21.6' - 23.1'

MACTEC

ENGINEERING & CONSULTING, INC.

Client: NCDOT

Project: Bridge Number 46 Over Wheat Swamp Creek on SR 1091

Project No: 6468-05-1241

SIEVE	PERCENT	SPEC.*	PASS?
SIZE	FINER	PERCENT	(X=NO)
#10 #20 #40 #60 #200 #270	100.0 100.0 98.0 57.3 5.5 4.7		(,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,
			,
		*	

	Soil Description	
PL= ND	Atterberg Limits LL= 20	PI≐ NP
D ₈₅ = 0.361 D ₃₀ = 0.161 C _u = 2.69	Coefficients D60= 0.260 D15= 0.114 Cc= 1.03	D ₅₀ = 0.225 D ₁₀ = 0.0967
USCS=	Classification AASHT	O= A-3
	Remarks	, # . *
,		•

(no specification provided)

Sample No.: SS-11

Source of Sample:

Date: 12/13/2005 **Elev./Depth:** 12.4' - 13.9'

Location: EB2-A

Client: NCDO

Project: Bridge Number 46 Over Wheat Swamp Creek on SR 1091

ENGINEERING & CONSULTING, INC.

MACTEC

Project No: 6468-05-1241

0.0	<u> </u>	0.0			
SIEVE	PERCENT	ERCENT SPEC.*			
SIZE	FINER	PERCENT	(X=NO)		
#10 #20 #40 #60 #200 #270	100.0 99.9 98.8 83.9 11.5 9.4				
,		-			

	Soil Description	
PL= ND	Atterberg Limits LL= 21	PI= NP
D ₈₅ = 0.256 D ₃₀ = 0.112 C _u = 2.91	Coefficients D ₆₀ = 0.170 D ₁₅ = 0.0841 C _c = 1.25	D ₅₀ = 0.148 D ₁₀ = 0.0585
USCS=	Classification AASHT	O= A-2-4(0)
	Remarks	

(no specification provided)

Sample No.: SS-12 Location: EB2-A Source of Sample:

Date: 12/13/2005 **Elev./Depth:** 15.2' - 16.7'

MACTEC

Client: NCDOI

Project: Bridge Number 46 Over Wheat Swamp Creek on SR 1091

Project No: 6468-05-1241

ENGINEERING & CONSULTING, INC.

% COBE	BLES	% GRAV	/EL	% SAND	% SILT	% CLAY
0.0		0.8		93.6	5.6	
	,					
SIEVE	PERCE		PASS?	Soil I	<u>Description</u>	

	SIEVE	PERCENT	SPEC.*	PASS?
	SIZE	FINER	PERCENT	(X=NO)
1	.375 in.	100.0		
	#4 #10	99.8 99.2		
	#20	98.6		
	#40 #60	97.2 83.6		
	#200	6.4		
	#270	5.6		
			,	
			l	

	Soil Description	
	Association of the tax	
PL= ND	Atterberg Limits LL= 24	PI= NP
D ₈₅ = 0.258 D ₃₀ = 0.119 C _U = 2.06	Coefficients D60= 0.174 D15= 0.0939 C _C = 0.96	D ₅₀ = 0.153 D ₁₀ = 0.0843
USCS=	Classification AASHT	O= A-3
	<u>Remarks</u>	
		•

* (no specification provided)

Sample No.: S-1

- 27...

Source of Sample:

Date: 12/13/2005

Location: CHANNEL BANK

Elev./Depth: 0.0' - 0.5'

Client: NCDOT

Project: Bridge Number 46 Over Wheat Swamp Creek on SR 1091

ENGINEERING & CONSULTING, INC.

MACTEC

Project No: 6468-05-1241

80.4

SIEVE	PERCENT	SPEC.*	PASS?
SIZE	FINER	PERCENT	(X=NO)
3/8 in. #4 #10 #20 #40 #60 #200 #270	100.0 99.9 99.8 99.7 98.7 89.2 22.1 19.4		,

	Soil Description	
		and the same of th
PL= ND	Atterberg Limits LL= 23	PI= NP
D ₈₅ = 0.227 D ₃₀ = 0.0931 C _u = 18.88	Coefficients D60= 0.151 D15= 0.0164 C _C = 7.21	D ₅₀ = 0.130 D ₁₀ = 0.0080
USCS=	Classification AASHTO	D= A-2-4(0)
	<u>Remarks</u>	

(no specification provided)

Sample No.: S-2 Location: CHANNEL BED Source of Sample:

Date: 12/13/2005 **Elev./Depth:** 0.0' - 0.5'

19.4

MACTEC

Client: NCDOT

Project: Bridge Number 46 Over Wheat Swamp Creek on SR 1091

ENGINEERING & CONSULTING, INC.

Project No: 6468-05-1241

FIELD SCOUR REPORT

WBS:	33478.1.1 TIP: B-4125 COUNTY: Greene
DESCRIPTION(1):	Bridge No. 46 over Wheat Swamp Creek on SR 1091
	EXISTING BRIDGE
Information from:	Field Inspection X Microfilm (reel pos:) Other (explain)
	46 Length: 90 ft Total Bents: 4 Bents in Channel: 2 Bents in Floodplain: 2 Timber piles and concrete caps, reinforced with steel "H" piles and "I" beams
EVIDENCE OF S Abutments or I	SCOUR(2) End Bent Slopes: Directly under bridge from end bent 1 to bent
Interior Bents:	Not Apparent
Channel Bed:	Not Apparent
Channel Bank:	Not Apparent
	UR PROTECTION Sheet-piles driven below grade along end bents; Rip-rap slope protection
Extent(4):	Sheet-piles extend approx. 10 ft left and right of bridge; Rip-rap doesn't extend under bridge
Effectiveness(5):	Satisfactory, though some scour of bank evident from end bent 1 to bent 1
Obstructions(6):	

INSTRUCTIONS

- 1 Describe the specific site's location, including route number and body of water crossed.
- 2 Note scour evidence at existing end bents or abutments (e.g. undermining, sloughing, degradations).
- 3 Note existing scour protection (e.g. rip rap).
- 4 Describe extent of existing scour protection.
- 5 Describe whether or not the scour protection appears to be working.
- 6 Note obstructions such as dams, fallen trees, debris at bents, etc.
- 7 Describe the channel bed material based on observation and/or samples. Include any lab results with report.
- 8 Describe the channel bank material based on observation and/or samples. Include any lab results with report.
- 9 Describe the material covering the banks (e.g. grass, trees, rip rap, none).
- 10 Determine the approximate floodplain width from field observation or a topographic map.
- 11 Describe the material covering the floodplain (e.g. grass, trees, crops).
- 12 Use professional judgement to specify if the stream is degrading, aggrading, or static.
- 13 Describe potential and direction of the stream to migrate laterally during the bridge's life (approx. 100 years).
- Give the geotechnically adjusted scour elevation (GASE) expected over the life of the bridge (approx. 100 years). This elevation can be given as a range across the site, or for each bent. Discuss the relationship between the Hydraulics Unit theoritical scour and the GASE. If the GASE is dependent on scour counter measures, explain (e.g. rip rap armoring on slopes). The GASE is based on the erodability of materials, giving consideration to the influence of joints, foliation, bedding characteristics, % core recovery, % RQD, differential weathering, shear strength, observations at existing structures, other tests deemed appropriate, and overall geologic conditions at the site.

			DESIGN	INFORM	MATION				
Channel I	Bed Material(7): Alluvium: \$	Sand (A-2-4	1)					
. Channel B	ank Material(8	3): Alluvium: \$	Sand (A-3)						
Channel	Bank Cover(9): Small to la	rge trees, k	orush and g	grasses	,			
Flood	plain Width(10)): Approxima	ately 300 ft				•	٠,	
Flood	plain Cover(1	l): Small to la	rge trees, b	orush and g	grasses				
	Stream is(12	2): Aggı	ading	Deg	grading	X	Sta	tic	-
Channel Migration	Tendency(1	B): Eastward;	bridge cros	ses over e	eastward b	end in c	reek cha	nnel	
Observations a	and Other Con	nments:	····						·
·	,.! 	Reported by:		<i>Deol</i> Engineer	ng and Co	onsulting	, Inc.	Date:	11/21/2005
GEOTECHNIC	*AI I V AD III	STED SCOU	S EL EVATI	ONE(44)	Foot	. 🗸	Moto	·ro	
GEOTECHNIC	MLLI ADJU	3150 3000	CELEVAII	UN3(14)	ree		Mete	=15	_
	BENT	<u>rs</u>							
	B1	B2	B3 B	4 ·					
	16.6	6 16.7							
							<u> </u>		
Comparison of	F CASE to Hw	drauliae I Init t	hoorotical s	loour:		<u> </u>	<u> </u>		<u> </u>
Companson of	GASE to Hyt	iraulics Office	neoretical s	cour.					
SOIL ANALYS		termined by		,	,			Date:	1/27/06
Bed or Bank	Bank	Bed							
Sample No.	S-1	S-2							
Retained #4	0.2	0.1							
Passed #10	99.2	99.8							
Passed #40	97.2	98.7							
Passed #200	6.4	22.1							
Coarse Sand	15.7	10.6							
Fine Sand	78.6	69.9		,					
Silt	1.2	5.4							
Clay	4.4	14							
LL	24	23							
PI	NP	NP							
AASHTO	A-3	A-2-4							
Station	16+77	16+85							
Offset	28 ft LT	27 ft LT							
Depth L	0.0-0.5 ft	0.0-0.5 ft	<u> </u>						

Photograph No. 1: Looking east along SR 1091.

Photograph No. 2: Looking west along SR 1091.

Photograph No. 3: Looking northwest from end bent 2.

Photograph No. 4: Looking southeast from end bent 1.

Photograph No. 5: Looking south along end bent 1.

Photograph No. 6: Looking south along bent 1.

Photograph No. 7: Looking north along bent 2.

Photograph No. 8: Looking south along end bent 2.