27 #### PROJECT SPECIAL PROVISIONS #### **ROADWAY** #### **CLEARING AND GRUBBING – METHOD III:** (4-6-06) (Rev 3-18-08) SP2 R02 Perform clearing on this project to the limits established by Method "III" shown on Standard No. 200.03 of the 2006 Roadway Standard Drawings. Revise the 2006 Standard Specifications as follows: #### Page 2-2, Article 200-3, Clearing, add the following as the 6th paragraph: At bridge sites, clear the entire width of the right of way beginning at a station 3 feet back of the beginning extremity of the structure and ending at a station 3 feet beyond the ending extremity of the structure. #### **EMBANKMENTS:** (5-16-06) (Rev 7-21-09) SP2 R18 Revise the Standard Specifications as follows: Page 2-22, Article 235-3 Materials, add the following as the second sentence of the second paragraph: Aerate and dry material containing moisture content in excess of what is required to achieve embankment stability and specified density. #### Page 2-22, Subarticle 235-4(B) Embankment Formation, add the following: (16) Do not place rock or broken pavement in embankment areas where piles or drilled shaft foundations are to be constructed. This shall include but not be limited to piles and foundations for structures, metal signal poles, overhead sign structures, and high mount lighting. #### **DRAINAGE PIPE:** (7-18-06) (Rev 1-19-10) SP3 R37 #### **Description** Where shown in the plans the Contractor may use Reinforced Concrete Pipe, Aluminum Alloy Pipe, Aluminized Corrugated Steel Pipe, HDPE Pipe, or PVC pipe in accordance with the following requirements. #### Material | Item | Section | |--|--------------| | Corrugated Aluminum Alloy Pipe | 1032-2(A) | | Aluminized Corrugated Steel Pipe | 1032-3(A)(7) | | Corrugated Polyethylene Pipe (HDPE) | 1032-10 | | Reinforced Concrete Pipe – Class II or III | 1032-9(C) | | Polyvinyl-Chloride (PVC) | 1032-11 | Corrugated Steel Pipe will not be permitted in counties listed in the contract documents. Only pipe with smooth inside walls will be allowed for storm drain systems. Storm drain systems are defined as pipe under curb and gutter, expressway gutter, and shoulder berm gutter that connects drainage structures and is not open ended. #### **Construction Methods** Pipe Culverts shall be installed in accordance with the contract documents. Where allowed by the plans, use any of the several alternate pipes shown herein, but only one type of pipe will be permitted between drainage structures or for the entire length of a cross line pipe. #### **Measurement and Payment** | Measurement | will be in | accordance | with the | contract | documents. | ″ | Drainage | Pipe | will | be | |-----------------|------------|---------------|-------------|------------|-------------|---|----------|------|------|----| | paid for as the | actual nun | nber of linea | r feet inst | talled and | l accepted. | | | | | | Payment will be made under: | Pay Item | Pay Unit | |-----------------|-------------| | " Drainage Pipe | Linear Foot | ### **CULVERT PIPE:** -19-10) SP10R32 Revise the Standard Specifications for Roads and Structures as follows: #### Page 10-67, Article 1032-1, replace (A), (B), (C), (D), (E) and (F) with the following: - (A) Coated corrugated metal culvert pipe and pipe arches. - (B) Coated corrugated metal end sections, coupling band, and other accessories - (C) Corrugated aluminum alloy structural plate pipe and pipe arches - (D) Corrugated aluminum alloy end sections, coupling band, and other accessories - (E) Welded steel pipe #### Page 10-69, Subarticle 1032-3(A)(5) Coating Repair, replace with the following: Repair shall be in accordance with Section 1076-6 of the Standard Specifications. #### Subarticle 1032-3(A)(7) Aluminized Pipe, replace with the following: Aluminized pipe shall meet all requirements herein, except that the pipe and coupling bands shall be fabricated from aluminum coated steel sheet meeting the requirements of AASHTO M274. ### Page 10-71, Article 1032-4 Coated Culvert Pipe, replace (A), (1), (2), (3), (4), (B), (C), (D), (E), (F) and (G) with the following: (A) Coatings for Steel Culvert Pipe or Pipe Arch The below coating requirements apply for steel culvert pipe, pipe arch, end sections, tees, elbows, and eccentric reducers. - (1) Steel Culvert pipe shall have an aluminized coating, meeting the requirement of AASHTO M274 - (2) When shown on the plans or as approved by the Engineer, a polymeric coating meeting the requirements of AASHTO M246 for Type B coating may be substituted for aluminized coating. #### (B) Acceptance Acceptance of coated steel culvert pipe, and its accessories will be based on, but not limited to, visual inspections, classification requirements, check samples taken from material delivered to the project, and conformance to the annual Brand Registration. Page 10-73, Article 1032-5, sixth paragraph, third sentence, remove the word "spelter" Page 10-74, 1032-7 Vitrified Clay Culvert Pipe, delete section in its entirety. Page 10-75, Article 1032-8 Welded Steel Pipe, change title to WELDED STEEL PIPE FOR DRAINAGE Subarticle 1032-9(B) Plain Concrete Culvert Pipe, delete section in its entirety. Page 10-77, Article 1032-10 Corrugated Polyethylene Culvert Pipe, change title to CORRUGATED POLYETHYLENE (HDPE) CULVERT PIPE #### Add the following: Article 1032-11 Polyvinyl Chloride (PVC) Pipe Polyvinyl Chloride pipe shall conform to AASHTO M 304 or ASTM 949. When rubber gaskets are to be installed in the pipe joint, the gasket shall be the sole element relied on to maintain a tight joint. Test pipe joints at the plant hydrostatically using test methods in ASTM D 3212. Soil tight joints shall be watertight to 13.8 kPa. Watertight joints shall be watertight to 34.5 kPa unless a higher pressure rating is specified in the plans. #### **SHOULDER AND FILL SLOPE MATERIAL:** (SPECIAL) #### **Description** Perform the required shoulder and slope construction for this project in accordance with the applicable requirements of Section 560 and Section 235 of the 2006 Standard Specifications except as follows: Construct the top 12 inches of shoulder and fill slopes with soils capable of supporting vegetation. Provide soil with a P.I. greater than 6 and less than 25 and with a pH ranging from 5.5 to 6.8. Remove stones and other foreign material 2 inches or larger in diameter. All soil is subject to test and acceptance or rejection by the Engineer. Obtain material from within the project limits or approved borrow source. #### Compensation When the Contractor elects to obtain material from an area located beneath a proposed fill sections which does not require excavation for any reason other than to generate acceptable shoulder and fill slope material, the work of performing the excavation will be considered incidental to the item of Borrow Excavation or Shoulder Borrow. If there is no pay item for Borrow or Shoulder Excavation in the contract, this work will be considered incidental to Unclassified Excavation. Stockpile the excavated material in a manner to facilitate measurement by the Engineer. Fill the void created by the excavation of the shoulder and fill slope material with suitable material. Payment for material used from the stockpile will be made at the contract unit price for Borrow Excavation or Shoulder Borrow, then the material will be paid for at the contract unit price for Unclassified Excavation. The material used to fill the void created by the excavation of the shoulder and fill slope material will be made at the contract unit price for Unclassified Excavation, Borrow Excavation, or Shoulder Borrow, depending on the source of the material. Material generated from undercut excavation, unclassified excavation or clearing and grubbing operations that is placed directly on shoulders or slope areas, will not be measured separately for payment, as payment for the work requiring the excavation will be considered adequate compensation for depositing and grading the material on the shoulders or slopes. When undercut excavation is performed at the direction of the Engineer and the material excavated is found to be suitable for use as shoulder and fill slope material, and there is no area on the project currently prepared to receive the material generated by the undercut operation, the Contractor may construct a stockpile for use as borrow at a later date. Payment for the material used from the stockpile will be made at the contract unit price for *Borrow Excavation* or *Shoulder Borrow*. When shoulder material is obtained from borrow sources or from stockpiled material, payment for the work of shoulder construction will be made at the contract unit price per cubic yard for *Borrow Excavation* or *Shoulder Borrow* in accordance with the applicable provisions of Section 230 or Section 560 of the 2006 Standard Specifications. #### **FABRIC FOR EMBANKMENT STABILIZATION** (SPECIAL) #### **DESCRIPTION:** This work consists of furnishing and installing synthetic fabric for stabilizing embankment in accordance with this provision or as directed by the Engineer. The work shall include maintaining the fabric in the required configuration until completion and acceptance of overlying work items. The fabric shall be placed at the locations shown in the plans or as directed by the Engineer. #### MATERIAL: The fabric for embankment stabilization shall be made of high-tenacity polyester in the machine direction with a plain or straight-warp weave pattern and polyester or polypropylene in the cross machine direction or approved equal. The fabric shall be composed of strong rot-proof synthetic fibers formed into a fabric of the woven type. The fabric shall be free of any treatment or coating which might significantly alter its physical properties after installation. The fabric shall contain stabilizers and/or inhibitors to make the filaments resistant to deterioration resulting from ultraviolet or heat exposure.
The fabric shall be a pervious sheet of synthetic fibers oriented into a stable network so that the fibers retain their relative positions with respect to each other. The edges of the fabric shall be finished to prevent the outer yarn from pulling away from the fabric. The fabric shall be free of defects or flaws which significantly affect its physical and/or filtering properties. Sheets of fabric shall be sewn together with a seam that furnishes the required minimum strengths. The seam thread shall be made of synthetic fibers which are resistant to deterioration, as are the fabric fibers. Lamination of fabric sheets to produce the physical requirements of a fabric layer will not be accepted. During all periods of shipment and storage, the fabric shall be wrapped in a heavy duty protective covering to protect the fabric from direct sunlight ultraviolet rays, mud, dust, dirt, and debris. The fabric shall not be exposed to temperatures greater than 140°F. After the protective wrapping has been removed, the fabric shall not be left uncovered under any circumstances for longer than one (1) week. The fabric shall meet the following physical requirements: All values represent minimum average roll values (any roll in a lot should meet or exceed the minimum values in this table). | Fabric Property | Test Method | Requirements | |---|----------------------------------|----------------------------------| | Min. Puncture Strength | ASTM D-4833 | 135 lbs | | Min. Bursting Strength | ASTM D-3786 | 600 psi | | Trapezoid Tear | ASTM D-4533 | 135 lbs | | AOS, US STD
Sieve | ASTM D-4751 | 20-70 | | Seams, Strength Cross
Machine Direction Only | ASTM D-4884 | 500 lbs/ft | | Ultraviolet (UV) % Strength Retained | ASTM D-4355 | 30% | | Permeability | ASTM D-4491 | 0.02 in/sec. | | Tensile Strength at 5% Strain | ASTM D-4595
(Wide Strip Test) | Machine Direction
8000 lbs/ft | | Ultimate
Tensile Strength | ASTM D-4595
(Wide Strip Test) | Machine Direction 20000 lbs/ft | The Contractor shall furnish certified test reports by an approved independent testing laboratory with each shipment of material attesting that the fabric meets the requirements of this provision; however, the material shall be subject to inspection, test, or rejection by the Engineer at any time. The Contractor shall furnish the Engineer certified test reports by an approved independent testing laboratory attesting that the sewn seam provides the required strength. The Contractor shall furnish and place over the embankment stabilization fabric as shown in the plan or directed by the engineer. #### **CONSTRUCTION METHODS:** The fabric for embankment stabilization shall be placed at locations shown in the plans or as directed by the Engineer. The locations should be cleared and free of obstructions, debris and pockets. Stumps shall be cut smooth at the ground elevation with the root system left intact. At the time of installation, the fabric shall be rejected if it has defects, rips, holes, flaws, deterioration or damage incurred during manufacture, transportation, or storage. The fabric for embankment stabilization shall be placed with the machine directions as shown on the plans or as directed by the engineer. Fabric shall be laid smooth and free from tension, stress fold, wrinkles or creases. All joints parallel to the machine direction shall be sewn by an approved method to develop the required seam strength. All sewn seams shall be placed facing upward to allow for inspection. No seams will be allowed perpendicular to the machine direction. The lightweight aggregate should be placed and compacted using low ground pressure equipment as directed by the Engineer. All fabric which is damaged as a result of installation will be required to be replaced or repaired at the discretion of the Engineer with no additional cost to the Department. Compaction equipment shall be such that it will not harm the fabric. A lightweight aggregate layer at a depth shown in the plan or as directed by the engineer shall be placed over geosynthetic layer. End dumping fill directly on the fabric is not permitted. Spreading and compaction of lightweight aggregate with low ground pressure (<4 psi) equipment is required until 2 feet of lightweight aggregate fill has been placed. Any fabric which is damaged as a result of installation or which is left uncovered for longer than one week after placement shall be replaced at no additional cost to the Department. #### METHOD OF MEASUREMENT The quantity of fabric to be paid for will be the number of square yards of "Fabric for Embankment Stabilization" measured along the surface of the ground which has been acceptably placed. No separate measurement will be made of overlapping fabric. #### **BASIS OF PAYMENT:** The quantity of fabric, measured as provided above, will be paid for at the contract unit price per square yard for "Fabric for Embankment Stabilization". Such price and payment will be full compensation for furnishing, hauling, placing, compaction, and all incidentals necessary to complete the work. Pay Item: Fabric for Embankment Stabilization...... Square Yard ### **BORROW EXCAVATION (In Place or Truck Measurement):** (7-1-95) SP2 R58 The borrow material used on this project will be measured for payment by in place measurement as provided in Subarticle 230-5 of the 2006 Standard Specifications, or by truck measurement as provided in Subarticle 230-5 of the 2006 Standard Specifications, as directed by the Engineer. ### 33 ### RESTRICTIONS ON CONSTRUCTION OF LIGHTWEIGHT AGGREGRATE EMBANKMENT: (2-17-04) (Rev 7-18-06) SP2 R65 (Rev.) The Contractor shall construct the lightweight aggregate fill embankments to the finished grades in the prescribed sequence and shall observe the waiting periods shown on Sheet 2F of the plans unless otherwise notified by the Engineer that the settlement rate has stabilized and work on the end bents may proceed. The Contractor will be required to maintain the embankments at the finished graded roadway section during the waiting period. Additional lightweight aggregate needed to maintain the required elevation will be paid for at the contract unit price per ton for "Lightweight Aggregrate". Additional earth material required to maintain embankment of finished graded roadway section will be paid for at the contract unit price per cubic yard for *Borrow Excavation*, or *Unclassified Excavation* depending on the source of the material. Where there is no pay item for *Borrow* or *Unclassified Excavation*, the furnishing of additional material will be paid for as extra work. #### **SELECT GRANULAR MATERIAL:** 10-21-08 SPI 2-06 Select Granular Material used shall be in accordance with Section 265 of the Specifications except that Class II Select Material shall not be used. Payment will be made at the contract unit price per cubic yard for "Select Granular Material, Class III". #### **EMBANKMENT MONITORING:** (SPECIAL) The instrumentation will consist of 12 settlement gauges. Place the settlement gauges at the locations as shown in the plans or as directed. #### **SETTLEMENT GAUGE:** Furnish and install Settlement Gauges as shown in the plans. Place the base on a level surface near the natural ground as shown in the plans. Provide threaded 2.5 inch diameter metal pipe meeting ASTM A53 Type F and having a black finish. Add pipe sections at threaded couplings as the embankment progresses. Maintain the top of the pipe be no less than 1 foot above the embankment surface and no higher that 6 feet. Make the exposed length of pipe conspicuous to avoid damage. Compact fill around the gauge pipes and plates to the same density as the surrounding material. Restore or replace any settlement gauge pipe damaged or destroyed due to fault or negligence on the part of the Contractor at no additional cost. No additional payment will be made for compaction of fill around and over the settlement gauges or for interference with the Contractor's operations resulting from settlement gauge installations. Care shall be taken that the pipe remains plumb. #### METHOD OF MEASUREMENT: The quantity of settlement gauges to be paid for will be the actual number of each of these items which have been incorporated into the completed and accepted work. #### **BASIC OF PAYMENT:** The quantity of settlement gauges, measured as provided above, will be paid for at the contract unit price each for "Embankment Settlement Gauge". Such price and payment will be full compensation for all materials, labor, equipment and other necessary to complete the work satisfactorily. Payment will be made under: Embankment Settlement Gauge......Each #### SURCHARGE PLACEMENT, MAINTENANCE AND REMOVAL: (SPECIAL) The Contractor shall construct the embankment from Sta. $19+00 \pm -L$ - to Sta. $21+72 \pm -L$ - and from Sta. $24+12 \pm -L$ - to Sta. $27+00 \pm -L$ - to an elevation equal to two feet above the subgrade of the final roadway section in order to surcharge the embankment. The limits of the surcharge earth material shall extend from the centerline to the top of the slope in both left and right sides. The surcharge shall be placed as directed by the Engineer and compacted as normal roadway embankment. The Contractor shall notify the Engineer when he is ready to begin the surcharge waiting period (seven months). The Contractor will be required to maintain the surcharge at an elevation equal to two feet above the subgrade of the final roadway section. The placement of the surcharge earth material above the subgrade of the final roadway section and surcharge earth material required to maintain this elevation will be measured and paid for at the contract unit price per cubic yards for "Borrow Excavation" by in place measurement. The surcharge earth material shall remain in place for seven months or as directed by the Engineer from Sta. $19+00 \pm -L$ - to Sta. $21+72 \pm -L$ - and from Sta. $24+12 \pm -L$ - to
Sta. $27+00 \pm -L$ -. After the surcharge earth material has remained in place for the required waiting period, the surcharge earth material shall be removed. Surcharge earth material removed above fabric for soil stabilization will be measured and paid for at the contract unit price per cubic yards for "Unclassified Excavation". #### **LIGHTWEIGHT AGGREGATE:** (SPECIAL) #### **GENERAL**: Furnish and place lightweight aggregate as shown on the plans, according to this provision, and as directed by the Engineer. Use ESCS (Expanded Shale Clay Slate) produced by the rotary kiln method conforming to ASTM C330 (latest edition). #### MATERIAL PROPERTIES: Lightweight aggregate must have a proven record of durability, and be non-corrosive, with the following properties: - Contains a maximum organic content of 0.1%. - Soundness Loss (AASHTO T104): Have a maximum soundness loss of less than 30% when subjected to four cycles of Magnesium Sulfate. - Abrasion Resistance (ASTM C131): Have a maximum percentage of abrasion loss of less than 40%. - Chloride Content (AASHTO T291): Have a chloride content less than 100 ppm. - Gradation (ASTM 136): Use an aggregate gradation from 3/4" to #4. Other gradations may be acceptable with approval by the Engineer. - Aggregate loose unit weight (ASTM C29): Have a loose unit weight less than 55 lbs/ft3. - In-place unit weight: (ASTM D4253, D4254): Have an in-place compacted dry unit weight between 55 and 60 lbs/ft3. Material must be compacted to a minimum 65% relative density as determined by ASTM D4253 and D4254. Use a vibratory table when determining the maximum index density and unit weight in accordance with ASTM D4253. Determine the minimum index density and unit weight in accordance with ASTM D4254. - Angle of Internal Friction (ASTM D3080): Minimum angle of internal friction of 40 degrees. Test a saturated representative sample (with particles larger than larger than 0.75 inch removed) in a round or square shear box that is a minimum of 12 inches across. - Resistivity (ASTM D1125): Have a resistivity greater than 3000 ohm-cm. - pH (ASTM D1293): Have a pH greater than five but less than 10. Before placing any backfill, furnish a Type IV certification in accordance with Article 106-3 of the Standard Specifications. Include a copy of all test results conducted in accordance with the above requirements in the certification. The Engineer determines how often NCDOT samples backfill material to assure compliance with gradation and other material properties. #### METHOD OF CONSTRUCTION: Place lightweight fill in uniform layers. Compact as need to achieve the required density. Place layers not more than 12 inches in depth loose thickness and compact. Compact with three passes of an 8 – 10 ton vibratory roller in the vibratory mode, or as directed by the Engineer. In confined areas use vibratory plate compaction equipment (5 hp to 20 hp) with a minimum of two passes in 6" lifts for a 5 hp plate and 12" lifts for a 20 hp plate. Take all necessary precautions when working adjacent to the lightweight fill to ensure that the material is not over compacted. Construction equipment, other than for placement and compaction, must not operate on the exposed lightweight fill. #### METHOD OF MEASUREMENT AND PAYMENT: Lightweight aggregate will be measured and paid for per ton of "Lightweight Aggregate" that has been acceptably placed and compacted. Such price and payment will be full compensation for furnishing, hauling, placing, and compacting the fill and all incidentals necessary to complete the work. Pay Item: Lightweight Aggregate Ton #### **NOTE TO CONTRACTOR:** The Contractor shall notify the Chowan County Emergency Services one (1) month in advance of the temporary road closure. Contact information is: Douglas L. Belch, Director Chowan County Emergency Services 208 W. Hicks Street Edenton, NC 27932 Phone: (252) 482-4436 The Contractor shall notify the Edenton - Chowan Public School District one (1) month in advance of the temporary road closure. Contact information is: Alan T. Smith, Superintendent Edenton – Chowan Public School District 113 E. King Street, Suite 300 Edenton, NC 27932 Phone: (252) 482-4436 #### **SUBSURFACE DRAINAGE – UNDERDRAIN:** Six-inch perforated underdrain is as shown on Roadway Design Standard Drawing No. 815.03. Underdrain pipe should be installed 6 feet below subgrade or as deep as practical to allow for sufficient out-fall. Allow underdrain to function for 30 days prior to the earliest occurrences of either undercutting, proof rolling, or any embankment construction. Payment will be made under Section 815-4 of the NCDOT Standard Specifications. #### **BICYCLE SAFE STEEL GRATE & FRAME:** The work covered by this provision consists of furnishing and placing steel frames with grate at locations shown in the plans and as directed by the Engineer. All materials shall meet the requirements of Section 840 of the Standard Specifications. The steel frame with grates shall be constructed in accordance with the applicable requirements of Section 840 of the Standard Specification, the details in the plans, and as directed by the Engineer. The quantity of steel frame with grate to be paid for will be the actual number of assemblies which have been incorporated into the completed work. The quantity of steel frame with grate, measured as provided for above will be paid for at the contract unit price each for "Bicycle Safe Steel Grate and Frame". The above prices and payment will be full compensation for all work covered by this provision including but not limited to furnishing all material, transporting, installing, labor, and all incidentals necessary to complete the work. Payment will be made under: #### **PIPE TESTING:** 4-17-07 SP3 R33 Revise the 2006 Standard Specifications as follows: Page 3-3, Article 300-6, add the following as a new paragraph before (A): The Department reserves the right to perform forensic testing on any installed pipe. #### **PIPE INSTALLATION AND PIPE CULVERTS:** (1-19-10) SP3 R40 B Revise the *Standard Specifications* as follows: Replace Section 300 and Section 310 with the following: #### SECTION 300 PIPE INSTALLATION #### 300-1 DESCRIPTION Excavate, undercut, provide material, condition foundation, lay pipe, joint and couple pipe sections, and furnish and place all backfill material as necessary to install the various types of pipe culverts and fittings required to complete the project. Install pipe in accordance with the detail in the plans. Do not waste excavation unless permitted. Use suitable excavated material as backfill; or in the formation of embankments, subgrades, and shoulders; or as otherwise directed. Furnish disposal areas for the unsuitable material. The Engineer will identify excavated materials that are unsuitable. Where traffic is to be maintained, install pipe in sections so that half the width of the roadway is available to traffic. #### 300-2 MATERIALS Refer to Division 10: | Item | Section | |--------------------|-----------| | Flowable Fill | 1000 | | Select Materials | 1016 | | Joint Materials | 1032-9(G) | | Engineering Fabric | 1056-1 | Provide foundation conditioning material meeting the requirements of Article 1016-3 for Class V or VI as shown in the contract documents. Provide bedding material meeting the requirements of Article 1016-3 for Class II (Type 1 only) or Class III as shown in contract documents. Provide backfill material meeting the requirements of Article 1016-3 for Class II (Type 1 only) or Class III material as shown in the contract documents. Do not use corrugated steel pipe in the following counties: Beaufort, Bertie, Bladen, Brunswick, Camden, Carteret, Chowan, Columbus, Craven, Currituck, Dare, Gates, Hertford, Hyde, Jones, Martin, New Hanover, Onslow, Pamlico, Pasquotank, Pender, Perquimans, Tyrrell, and Washington. #### 300-3 UNLOADING AND HANDLING Unload and handle pipe with reasonable care. Do not roll or drag metal pipe or plates over gravel or rock during handling. Take necessary precautions to ensure the method used in lifting or placing the pipe does not induce stress fatigue in the pipe. Use a lifting device that uniformly distributes the weight of the pipe along its axis or circumference. Repair minor damage to pipe when permitted. Remove pipe from the project that is severely damaged or is rejected as being unfit for use. Undamaged portions of a joint or section may be used where partial lengths are required. #### 300-4 PREPARATION OF PIPE FOUNDATION Prepare the pipe foundation in accordance with the applicable method as shown in the contract documents, true to line and grade, and uniformly firm. Camber invert grade an amount sufficient to prevent the development of sag or back slope in the flow line. The Contractor shall determine the amount of camber required and submit to the Engineer for approval. Where material is found to be of poor supporting value or of rock and when the Engineer cannot make adjustment in the location of the pipe, undercut existing foundation material within the limits established on the plans. Backfill the undercut with foundation conditioning material, Class V or VI select material. Encapsulate the foundation conditioning material with Type 4 engineering fabric prior to placing bedding material. Overlap all transverse and longitudinal joints in the fabric at least 18 inches. Maintain the pipe foundation in a dry condition. #### 300-5 INVERT ELEVATIONS The proposed pipe culvert invert elevations shown on the Drainage Summary Sheets are based upon information available when the plans were prepared. If proposed invert elevations are adjusted during construction based upon actual conditions encountered, no claim for an extension of time for any reason resulting from this information will be allowed. When a pipe culvert is to be installed in a trench and the average actual elevation of the pipe between drainage structures deviates from the average proposed elevation
shown on the Drainage Summary Sheets by more than one foot a pay adjustment will be made as follows: Pay Adjustment (per linear foot) = $[(APE-AAE)\pm 1 \text{ foot}] (0.15 \text{ X CUP})$ Where: CUP = Contract Unit Price of Pipe Culvert AAE = Average Actual Elevation (Actual Inlet elev. + Actual Outlet elev.) 2 APE = Average Plan Elevation (Plan Inlet elev. + Plan Outlet elev.) 2 When the actual location of a pipe culvert is changed from the location shown on the plans, the Engineer will make a pay adjustment deemed warranted based upon the relation of the pipe culvert as shown on the plans to the finished roadway and the relation of the pipe culvert as constructed to the finished roadway. The top elevation column on the drainage summary sheet indicates the flow elevation at the top of structures intended to collect surface water. The top elevation column on drainage structures not intended to collect surface water indicates the elevation at the top of the cover. #### 300 -6 LAYING PIPE The Department reserves the right to perform forensic testing on any installed pipe. #### (A) Rigid Pipe Concrete and welded steel pipe will be considered rigid pipe. Lay pipe on prepared foundation, bell or groove end upgrade with the spigot or tongue fully inserted. Check each joint for alignment and grade as the work proceeds. Use flexible plastic joint material except when material of another type is specified in the contract documents. Joint material of another type may be used when permitted. Repair lift holes in concrete pipe, if present. Thoroughly clean and soak the lift hole and completely fill the void with an approved non-shrink gout. Submit alternate details for repairing lift holes to the engineer for review and approval. For all pipes 42 inches in diameter and larger, wrap filter fabric around all pipe joints. Use Type 2 Class B fabric. Extend fabric at least 12 inches beyond each side of the joint. Secure the filter fabric against the outside of the pipe by methods approved by the Engineer. #### (B) Flexible Pipe (Except Structural Plate Pipe) Corrugated steel, corrugated aluminum, corrugated polyethylene (HDPE), and polyvinylchloride (PVC) pipe will be considered flexible pipe. Place flexible pipe carefully on the prepared foundation starting at the downstream end with the inside circumferential laps pointing downstream and with the longitudinal laps at the side or quarter points. Handle coated corrugated steel pipe with special care to avoid damage to coatings. Join pipe sections with coupling band, fully bolted and properly sealed. Provide coupling bands for annular and helical corrugated metal pipe with circumferential and longitudinal strength sufficient to preserve the alignment, prevent separation of the sections, and prevent backfill infiltration. Match-mark all pipe 60 inches or larger in diameter at the plant for proper installation on the project. At locations indicated in the plans, corrugated steel pipe sections shall be jointed together with rod and lug coupling bands, fully bolted. Sleeve gaskets shall be used in conjunction with rod and lug couplings and the joints properly sealed. Coupling bands shall provide circumferential and longitudinal strength sufficient to preserve the alignment, prevent separation of the sections and prevent infiltration of backfill material. #### 300-7 BEDDING AND BACKFILLING Loosely place bedding material, in a uniform layer, a depth equal to the inside diameter of the pipe divided by 6 or 6 inches, whichever is greater. Leave bedding material directly beneath the pipe uncompacted and allow pipe seating and backfill to accomplish compaction. Excavate recesses to receive the bells where bells and spigot type pipe is used. Place fill around the pipe in accordance with the applicable method shown on the plans in layers not to exceed 6 inches loose unless otherwise permitted. Compact to the density required by Subarticle 235-4(C). Approval of the backfill material is required prior to its use. Use select material as shown in the contract documents. Take care during backfill and compaction operations to maintain alignment and prevent damage to the joints. Keep backfill free from stones, frozen lumps, chunks of highly plastic clay, or other objectionable material. Grade and maintain all pipe backfill areas in such a condition that erosion or saturation will not damage the pipe foundation or backfill. Excavatable flowable fill may be used for backfill when approved by the Engineer. When using excavatable flowable fill, ensure that the pipe is not displaced and does not float during backfill. Submit methods for supporting the pipe and material placement to the Engineer for review and approval. Do not operate heavy equipment over any pipe until it has been properly backfilled with a minimum 3 feet of cover. Place, maintain, and finally remove the required cover that is above the proposed finished grade at no cost to the Department. Remove and replace, at no cost to the Department, pipe that becomes misaligned, shows excessive settlement, or has been otherwise damaged by the Contractor's operations. #### 300-8 INSPECTION AND MAINTENANCE Prior to final acceptance, the Engineer will perform random video camera and or mandrel inspections to ensure proper jointing and that deformations do not exceed allowable limits. Replace pipes having cracks greater than 0.1 inches or deflections greater than 7.5 percent. Repair or replace pipes with cracks greater than 0.01 inches, exhibiting displacement across a crack, exhibiting bulges, creases, tears, spalls, or delamination. Maintain all pipe installations in a condition such that they will function continuously from the time the pipe is installed until the project is accepted. #### 300-9 MEASUREMENT AND PAYMENT #### General No measurement will be made of any work covered by this section except as listed below. Removal and disposal of existing pavement is a part of the excavation for the new pipe culvert installation. Repair of the pavement will be made in accordance with Section 654. #### **Foundation Conditioning** #### **Using Local Material** Undercut excavation is all excavation removed by undercutting below the bottom of the trench as staked. *Undercut Excavation* will be measured as the actual number of cubic yards of undercut excavation, measured in its original position and computed by the average end area method, that has been removed as called for in the contract and will be paid for at double the contract unit price for *Unclassified Excavation* as provided in Article 225-7. Local material used for conditioning the foundation will be measured and paid for in accordance with Article 225-7 for *Unclassified Excavation* or in accordance with Article 230-5 for *Borrow Excavation* depending on the source of the material. Local material used to replace pipe undercut excavation will be measured and paid for in accordance with Article 225-7 or Article 230-5. #### **Using Other Than Local Material** No measurement and payment will be made for *Undercut Excavation*. The material used to replace pipe undercut excavation will be classified as foundation conditioning material. Foundation Conditioning Material, Minor Structures will be measured and paid for as the actual number of tons of this material weighed in trucks on certified platform scales or other certified weighing devices. No direct payment will be paid for undercut excavation. Payment at the contract unit price for *Foundation Conditioning Material*, *Minor Structures* will be full compensation for all work of pipe undercut excavation. #### **Foundation Conditioning Fabric** Foundation Conditioning Fabric will be measured and paid for in square yards. The measurement will be based on the theoretical calculation using length of pipe installed and two times the standard trench width. No separate measurement will be made for overlapping fabric or the vertical fabric dimensions required to encapsulate the foundation conditioning material. #### **Bedding and Backfill - Select Material** No measurement will be made for select bedding and backfill material required in the contract documents. The select bedding and backfill material will be included in the cost of the installed pipe. Where unclassified excavation or borrow material meets the requirements for select bedding and backfill and is approved for use by the Engineer, no deductions will be made to these pay items to account for use in the pipe installation. Payment will be made under: | Th | W 4 | | |----|-----|--| Foundation Conditioning Material, Minor Structures Foundation Conditioning Fabric Pay Unit Ton Square Yard #### SECTION 310 PIPE CULVERTS #### 310-1 DESCRIPTION Furnish and install drainage pipe at locations and size called for in the contract documents. The work includes construction of joints and connections to other pipes, endwalls, and drainage structures. #### 310-2 MATERIALS Refer to Division 10: | Item | Section | |--|------------| | Plain Concrete Pipe Culvert | 1032-9(B) | | Reinforced Concrete Pipe Culvert | 1032-9(C) | | Precast Concrete Pipe End Sections | 1032-9(D) | | Concrete Pipe Tees and Elbows | 1032-9(E) | | Corrugated Aluminum Alloy Pipe Culvert | 1032-2(A) | | Corrugated Aluminum Alloy Pipe Tees and Elbows | 1032-2(B) | | Corrugated Steel Culvert Pipe and Pipe Arch | 1032-3(A) | | Prefabricated Corrugated Steel Pipe End Sections | 1032-3(B) | | Corrugated Steel Pipe Tees and Elbows | 1032-3(C) | | Corrugated Steel Eccentric Reducers | 1032-3(D) | | HDPE Smooth Lined Corrugated Plastic Pipe | 1032-10B | | Polyvinylchloride (PVC) Pipe | 1032-11(B) | Suppliers that provide metal pipe culverts, fittings, and all other accessories covered by this section shall meet the requirements of the Department's Brand Certification program for metal pipe culverts, and be listed on the Department's pre-approved list for suppliers of metal pipe culvert. Do not use
corrugated steel pipe in the following counties: Beaufort, Bertie, Bladen, Brunswick, Camden, Carteret, Chowan, Columbus, Craven, Currituck, Dare, Gates, Hertford, Hyde, Jones, Martin, New Hanover, Onslow, Pamlico, Pasquotank, Pender, Perquimans, Tyrell, and Washington. #### 310-3 PIPE INSTALLATION Install pipe, pipe tees, and elbows in accordance with Section 300. #### 310-4 SIDE DRAIN PIPE Side drain pipe is defined as storm drain pipe running parallel to the roadway to include pipe in medians, outside ditches, driveways, and under shoulder berm gutter along outside shoulders greater than 4 feet wide. Where shown in the plans, side drain pipe may be class II reinforced concrete pipe, aluminized corrugated steel pipe, corrugated aluminum alloy pipe, HDPE pipe, or PVC pipe. Corrugated steel pipe is restricted in the counties listed in Article 310-2. Install side drain pipe in accordance to Section 300. Cover for side drain pipe shall be at least one foot. #### 310-5 PIPE END SECTIONS Choose which material to use for the required end sections. Both corrugated steel and concrete pipe end sections will work on concrete pipe, corrugated steel pipe, and HDPE smooth lined corrugated plastic pipe. #### 310-6 MEASUREMENT AND PAYMENT Pipe will be measured and paid for as the actual number of linear feet of pipe that has been incorporated into the completed and accepted work. Measurement of pipe will be made by counting the number of joints used and multiplying by the length of the joint to obtain the number of linear feet of pipe installed and accepted. Measurements of partial joints will be made along the longest length of the partial joint to the nearest 0.1 of a foot. Select bedding and backfill material will be included in the cost of the installed pipe. Pipe end sections, tees, elbows, and eccentric reducers will be measured and paid for as the actual number of each of these items that have been incorporated into the completed and accepted work. SP4 R02 Payment will be made under: | Pay Item" R.C. Pipe Culverts, Class" x" x" R.C. Pipe Tees, Class" R.C. Pipe Elbows, Class" C.A.A. Pipe Culvert," Thick" x" x" C.A.A. Pipe Tees," Thick" C.S. Pipe Elbows," Thick" C.S. Pipe Culverts," Thick" x" C.S. Pipe Arch Culverts," Thick" x" C.S. Pipe Tees," Thick" C.S. Pipe Elbows," Thick" C.S. Pipe Elbows," Thick | Pay Unit Linear Feet Each Linear Feet Each Linear Feet Linear Feet Linear Feet Linear Feet | |---|--| | " x" C.S. Eccentric Reducers," Thick | Each | | " HDPE Pipe" PVC Pipe" Side Drain Pipe" Pipe End Section | Linear Feet
Linear Feet
Linear Foot
Each | BRIDGE APPROACH FILL - SUB REGIONAL TIER: ### **Description** (9-16-08) This work consists of all work necessary to construct bridge approach fills in accordance with these provisions and the plans, and as directed by the Engineer. #### Materials #### (A) Fabric Refer to Section 1056 for Type 1 Engineering Fabric and the following: Use a non-woven fabric consisting of strong rot-proof synthetic fibers such as polypropylene, polyethylene, or polyester formed into a stable network such that the filaments or yarns retain their relative positions to each other. Lamination of fabric sheets to produce the physical requirements of a fabric layer will not be accepted. Furnish letters of certification from the manufacturer with each shipment of the fabric attesting that the material meets the requirements of this provision; however, the material is subject to inspection, test, or rejection by the Engineer at any time. During all periods of shipment and storage, wrap the fabric in a heavy-duty protective covering to protect the material from ultraviolet rays. After the protective wrapping has been removed, do not leave the material uncovered under any circumstances for longer than 4 days. #### (B) Stone Backfill Provide # 78M aggregate material meeting the requirements of Section 1005 of the Standard Specifications. #### (C) 4 inch Diameter Corrugated Drainage Pipe and Fittings Provide pipe and fittings that meet all the applicable requirements of Section 815 or 816 of the *Standard Specifications*. #### **Construction Methods** Place the fabric as shown on the plans or as directed by the Engineer. Perform the excavation for the fabric fill to the limits shown on the plans. Provide an excavated surface free of obstructions, debris, pockets, stumps, and cleared of all vegetation. The fabric will be rejected if it has defects, rips, holes, flaws, deterioration or damage incurred during manufacture, transportation, handling or storage. Lay the fabric smooth, and free from tension, stress, folds, wrinkles or creases. Deposit and spread stone material in successive, uniform, approximately horizontal layers of not more than 10 inches in depth, loose measurement, for the full width of the cross section, and keep each layer approximately level. Place and compact each layer of select material fill no more than 10 inches thick with low ground pressure equipment. Use hand operated equipment to compact the fill material within three feet of the backwall and wingwalls as directed by the Engineer. Compact stone material to the satisfaction of the Engineer. No equipment will be allowed to operate on the drainage pipe or any fabric layer until it is covered with at least six inches of fill material. Compaction shall not damage the drainage pipe or fabric under the fill. Cover the fabric with a layer of fill material within four days after placement of the fabric. Fabric that is damaged as a result of installation will be replaced as directed by the Department at no additional cost. Place the fabric on the ground, and attach and secure it tightly to the vertical face of the backwall and wingwalls with adhesives, duct-tape, nails or any other method approved by the Engineer. Place four inch diameter perforated drainage pipe along the base of the backwall and sloped to drain as shown on the plans. Install a pipe sleeve through the bottom of or under the wing wall prior to placing concrete for the wing wall. The pipe sleeve shall be of adequate strength to withstand the wingwall load. Place the pipe sleeve in position to allow the drainage pipe to go through the wing wall with a proper slope. Connect four-inch diameter nonperforated (plain) drainage pipe with a coupling to the perforated pipe near the inside face of the wingwall. Place the nonperforated drainage pipe through the pipe sleeve, extend down to the toe of the slope and connect, to a ditch or other drainage systems as directed by the Engineer. For bridge approaches in cut sections where no side slope is available, direct the drainage pipe outlet to the end slope down to the toe using elbows as directed by the Engineer. #### **Measurement and Payment** | Bridge Approach F | Fill – Sub Regional Tie | er, Station | will be | paid for at | the contract | lump | |----------------------|-------------------------|---------------|----------------|--------------|----------------|--------| | sum price. Such p | price and payment will | l be full con | npensation for | or both app | roach fills at | each | | bridge installation, | including but not li | imited to fu | ırnishing, pl | acing and | compacting s | stone | | material, furnishing | g and placing fabric, f | furnishing ar | nd placing pi | ipe sleeve a | and drainage | pipe, | | furnishing and inst | alling concrete pads a | t the end of | outlet pipes | , excavation | n and all mat | erial, | | labor, tools and equ | ipment necessary to co | omplete the v | vork. | | | | | _ | _ | - | | | | | Payment will be made under: | Pay Item | Pay Unit | |---|----------| | Bridge Approach Fill – Sub Regional Tier, Station | Lump Sum | ### FINE GRADING SUBGRADE, SHOULDERS AND DITCHES: (7-21-09) Revise the Standard Specifications as follows: SP5R01 Page 5-1, Article 500-1 Description, replace the first sentence with the following: Perform the work covered by this section including but not limited to preparing, grading, shaping, manipulating moisture content, and compacting either an unstabilized or stabilized roadbed to a condition suitable for placement of base course, pavement, and shoulders. #### **AGGREGATE BASE COURSE:** 12-19-06 SP5 R03 Revise the 2006 Standard Specifications as follows: Page 5-11, Article 520-5 Hauling and Placing Aggregate Base Material, 6th paragraph, replace the first sentence with the following: Base course that is in place on November 15 shall have been covered with a subsequent layer of pavement structure or with a sand seal. Base course that has been placed between November 16 and March 15 inclusive shall be covered within 7 calendar days with a subsequent layer of pavement structure or with a sand seal. #### **ASPHALT PAVEMENTS - SUPERPAVE:** (7-18-06)(Rev 10-20-09) SP6R01 Revise the 2006 Standard Specifications as follows: Page 6-2, Article 600-9 Measurement and Payment, delete the second paragraph. Page 6-12, Subarticle 609-5(C)2, Required Sampling and Testing Frequencies, first partial paragraph at the top of the page, delete last sentence and add the following: If the Engineer allows the mix to remain in place, payment will be made in accordance with Article 105-3. ### Page 6-12, Subarticle 609-5(C)2, QUALITY CONTROL MINIMUM SAMPLING AND TESTING SCHEDULE First paragraph, delete and replace with the following. Sample and test the completed mixture from each mix design per plant per year at the following minimum frequency during mix production: Second paragraph, delete the fourth sentence, and replace with the
following When daily production of each mix design exceeds 100 tons and a regularly scheduled full test series random sample location for that mix design does not occur during that day's production, perform at least one partial test series consisting of Items A and B in the schedule below. Page 6-12, Subarticle 609-5(C)2(c) Maximum Specific Gravity, add after (AASHTO T 209): or ASTM D 2041 ### Page 6-13, last line and on page and Page 6-14, Subarticle 609-5(C)(2)(e) Tensile Strength Ratio (TSR), add a heading before the first paragraph as follows: (i) Option 1 #### Insert the following immediately after the first paragraph: (ii) Option 2 Mix sampled from truck at plant with one set of specimens prepared by the Contractor and then tested jointly by QA and QC at a mutually agreed upon lab site within the first 7 calendar days after beginning production of each new mix design. #### Second paragraph, delete and replace with the following: Test all TSR specimens required by either option noted above on either a recording test press or a test press that maintains the peak load reading after the specimen has broken. Subarticle 609-5(C)(3) Control Charts, delete the second sentence of the first paragraph and replace with the following: For mix incorporated into the project, record full test series data from all regularly scheduled random samples or directed samples that replace regularly scheduled random samples, on control charts the same day the test results are obtained. ### Page 6-15, Subarticle 609-5(C)(3) Control Charts, first paragraph on this page, delete the last sentence and substitute the following: Denote the moving average control limits with a dash green line and the individual test limits with a dash red line. #### Subarticle 609-5(C)(3)(a), (b) and (c), replace (a) (b) and (c) with the following: - (a) A change in the binder percentage, aggregate blend, or G_{mm} is made on the JMF, or, - (b) When the Contractor elects to stop or is required to stop production after one or two moving average values, respectively, fall outside the moving average limits as outlined in subarticle 609-5(C)6 or, - (c) If failure to stop production after two consecutive moving averages exceed the moving average limits occurs, but production does stop at a subsequent time, reestablish a new moving average beginning at the actual production stop point. ## Subarticle 609-5(C)(4) Control Limits, replace the first paragraph and the CONTROL LIMITS Table on page 6-16 with the following. The following are established as control limits for mix production. Apply the individual limits to the individual test results. Control limits for the moving average limits are based on a moving average of the last 4 data points. Apply all control limits to the applicable target source. #### **CONTROL LIMITS** | Mix Control Criteria | Target Source | Moving Average
Limit | Individual Limit | |--|------------------|-------------------------|------------------| | 2.36 mm Sieve | JMF | ±4.0 % | ±8.0 % | | 0.075mm Sieve | JMF | ±1.5 % | ±2.5 % | | Binder Content | JMF | ±0.3 % | ±0.7 % | | VTM @ N _{des} | JMF | ±1.0 % | ±2.0 % | | VMA @ N _{des} | Min. Spec. Limit | Min Spec. Limit | -1.0% | | P _{0.075} / P _{be} Ratio | 1.0 | ±0.4 | ±0.8 | | %G _{mm} @ N _{ini} | Max. Spec. Limit | N/A | +2.0% | | TSR | Min. Spec. Limit | N/A | - 15% | **Page 6-16, Subarticle 609-5**(C)(5) Warning Bands, delete this subarticle in its entirety. Pages 6-16 through 6-19, Subarticle 609-5(C)(6), delete the word "warning" and substitute the words "moving average". ## Page 6-16, Subarticle 609-5(C)(6) Corrective Actions, first paragraph, first sentence, delete and replace with the following: Immediately notify the Engineer when moving averages exceed the moving average limits. #### Page 6-17, third full paragraph, delete and replace with the following: Failure to stop production when required due to an individual mix test not meeting the specified requirements will subject all mix from the stop point tonnage to the point when the next individual test is back on or within the moving average limits, or to the tonnage point when production is actually stopped, whichever occurs first, to being considered unacceptable. ### Sixth full paragraph, delete the first, second, and third sentence and replace with the following: Immediately notify the Engineer when any moving average value exceeds the moving average limit. If two consecutive moving average values for any one of the mix control criteria fall outside the moving average limits, cease production of that mix, immediately notify the Engineer of the stoppage, and make adjustments. The Contractor may elect to stop production after only one moving average value falls outside the moving average limits. ## Page 6-18, Subarticle 609-5(C)(6) Corrective Actions second full paragraph, delete and replace with the following: If the process adjustment improves the property in question such that the moving average after four additional tests is on or within the moving average limits, the Contractor may continue production with no reduction in payment ### Page 6-18, delete the third and fourth full paragraphs, including the Table for Payment for Mix Produced in the Warning Bands and substitute the following: If the adjustment does not improve the property in question such that the moving average after four additional individual tests is outside the moving average limits, the mix will be evaluated for acceptance in accordance with Article 105-3. Reduced payment for or removal of the mix in question will be applied starting from the plant sample tonnage at the stop point to the sample tonnage when the moving average is on or within the moving average limits. In addition, any mix that is obviously unacceptable will be rejected for use in the work. #### Page 6-19, First paragraph, delete and replace with the following: Failure to stop production and make adjustments when required due to two consecutive moving average values falling outside the moving average limits will subject all mix produced from the stop point tonnage to the tonnage point when the moving average is back on or within the moving average limits or to the tonnage point when production is actually stopped, whichever occurs first, to being considered unacceptable. Remove this material and replaced with materials that comply with the Specifications at no additional costs to the Department, unless otherwise approved. Payment will be made for the actual quantities of materials required to replace the removed quantities, not to exceed the original amounts. ## Page 6-20, Subarticle 609-5(D)(1) General, delete the third full paragraph, and replace with the following: Perform the sampling and testing at the minimum test frequencies as specified above. Should the density testing frequency fail to meet the minimum frequency as specified above, all mix without the required density test representation will be considered unsatisfactory. If the Engineer allows the mix to remain in place, payment will be made in accordance with Article 105-3. ### Page 6-22, Subarticle 609-5(D)(4) Nuclear Gauge Density Procedures, third paragraph, insert the following as the second sentence: Determine the Daily Standard Count in the presence of the QA Roadway Technician or QA Nuclear Gauge Technician on days when a control strip is being placed. ### Page 6-23, Subarticle 609-5(D)(5) Limited Production Procedure, delete the first paragraph including (a), (b), (c) and substitute the following: Proceed on limited production when, for the same mix type and on the same contract, one of the following conditions occur (except as noted in the first paragraph below). - (a) Two consecutive failing lots, except on resurfacing* - (b) Three consecutive failing lots on resurfacing* - (c) Two consecutive failing nuclear control strips. - * Resurfacing is defined as the first new uniform layer placed on an existing pavement. ## Page 6-25, Article 609-6 Quality Assurance, Density Quality Assurance, insert the following items after item (E): - (F) By retesting Quality Control core samples from control strips (either core or nuclear) at a frequency of 100% of the frequency required of the Contractor; - (G) By observing the Contractor perform all standard counts of the Quality Control nuclear gauge prior to usage each nuclear density testing day; or - (H) By any combination of the above ### Page 6-28, Subarticle 610-3(A) Mix Design-General, delete the fourth and fifth paragraphs and replace with the following: Reclaimed Asphalt Pavement (RAP) or Reclaimed Asphalt Shingles (RAS) may be incorporated into asphalt plant mixes in accordance with Article 1012-1 and the following applicable requirements. Reclaimed asphalt pavement (RAP) may constitute up to 50% of the total material used in recycled mixtures, except for mix Type S 12.5D, Type S 9.5D, and mixtures containing reclaimed asphalt shingle material (RAS). Reclaimed asphalt shingle (RAS) material may constitute up to 6% by weight of total mixture for any mix. When both RAP and RAS are used, do not use a combined percentage of RAS and RAP greater than 20% by weight of total mixture, unless otherwise approved. When the percent of binder contributed from RAS or a combination of RAS and RAP exceeds 20% but not more than 30% of the total binder in the completed mix, the virgin binder PG grade shall be one grade below (both high and low temperature grade) the binder grade specified in Table 610-2 for the mix type, unless otherwise approved. When the percent of binder contributed from RAS or a combination of RAS and RAP exceeds 30% of the total binder in the completed mix, the Engineer will establish and approve the virgin binder PG grade. Use approved methods to determine if any binder grade adjustments are necessary to achieve the performance grade for the specified mix type. For Type S 12.5D and Type S 9.5D mixes, the maximum
percentage of reclaimed asphalt material is limited to 20% and shall be produced using virgin asphalt binder grade PG 76-22. For all other recycled mix types, the virgin binder PG grade shall be as specified in Table 610-2A for the specified mix type. When the percentage of RAP is greater than 20% but not more than 30% of the total mixture, use RAP meeting the requirements for processed or fractionated RAP in accordance with the requirements of Section 1012-1. When the percentage of RAP is greater than 30% of the total mixture, use an approved stockpile of RAP in accordance with Section 1012-1(C). Use approved test methods to determine if any binder grade adjustments are necessary to achieve the performance grade for the specified mix type. The Engineer will establish and approve the virgin asphalt binder grade to be used. #### Page 6-34, Subarticle 610-3(C), Delete Table 610-2 and associated notes. Substitute the following: TABLE 610-2 SUPERPAVE MIX DESIGN CRITERIA | Mix
Type | Design
ESALs
Millions | Binder
PG
Grade | Leve | action
ls No.
ions @ | Max.
Rut
Depth
(mm) | Volumetric Properties (c) | | | 2) | |------------------|-----------------------------|---|------------------------------------|----------------------------|------------------------------|---|------------|-----------------|-----------------------------------| | | (a) | (b) | N _{ini} | N _{des} | | VMA
% Min. | VTM
% | VFA
Min Max. | ${\rm \%G_{mm}} \ @\ N_{\rm ini}$ | | S-4.75A(e) | < 0.3 | 64 -22 | 6 | 50 | | 20.0 | 7.0 - 15.0 | | | | SF-9.5A | < 0.3 | 64 -22 | 6 | 50 | 11.5 | 16.0 | 3.0 - 5.0 | 70 - 80 | ≤ 91.5 | | S-9.5B | 0.3 - 3 | 64 -22 | 7 | 65 | 9.5 | 15.5 | 3.0 - 5.0 | 65 - 80 | ≤ 90.5 | | S-9.5C | 3 - 30 | 70 -22 | 7 | 75 | 6.5 | 15.5 | 3.0 - 5.0 | 65 - 78 | ≤ 90.5 | | S-9.5D | > 30 | 76 -22 | 8 | 100 | 4.5 | 15.5 | 3.0 - 5.0 | 65 - 78 | ≤ 90.0 | | S-12.5C | 3 - 30 | 70 -22 | 7 | 75 | 6.5 | 14.5 | 3.0 - 5.0 | 65 - 78 | ≤ 90.5 | | S-12.5D | > 30 | 76 -22 | 8 | 100 | 4.5 | 14.5 | 3.0 - 5.0 | 65 - 78 | ≤ 90.0 | | I-19.0B | < 3 | 64 -22 | 7 | 65 | | 13.5 | 3.0 - 5.0 | 65 - 78 | ≤ 90.5 | | I-19.0C | 3 - 30 | 64 -22 | 7 | 75 | | 13.5 | 3.0 - 5.0 | 65 - 78 | ≤ 90.0 | | I-19.0D | > 30 | 70 -22 | 8 | 100 | | 13.5 | 3.0 - 5.0 | 65 - 78 | ≤ 90.0 | | B-25.0B | < 3 | 64 -22 | 7 | 65 | | 12.5 | 3.0 - 5.0 | 65 - 78 | ≤ 90.5 | | B-25.0C | > 3 | 64 -22 | 7 | 75 | | 12.5 | 3.0 - 5.0 | 65 - 78 | ≤ 90.0 | | All Mix
Types | 1. Dust to 2. Retained | Paramete
Binder Rand Tensile
O T283 M | atio (P _{0.0}
Strength | ı (TSR) | | Design Criteria 0.6 – 1.4 85% Min. (d) | | | | Notes: - (a) Based on 20 year design traffic. - (b) When Recycled Mixes are used, select the binder grade to be added in accordance with Subarticle 610-3(A). - (c) Volumetric Properties based on specimens compacted to N_{des} as modified by the Department. - (d) AASHTO T 283 Modified (No Freeze-Thaw cycle required). TSR for Type S 4.75A, Type B 25.0B, and Type B 25.0C mixes is 80% minimum. - (e) Mix Design Criteria for Type S 4.75A may be modified subject to the approval of the Engineer. #### Page 6-34, Insert the following immediately after Table 610-2: #### TABLE 610-2A SUPERPAVE MIX DESIGN CRITERIA | | Percentage of RAP in Mix | | | | |--|--------------------------|--------------------------------|--------------|--| | | Category 1 | Category 2 | Category 3 | | | Mix Type | % RAP ≤20% | $20.1\% \le \% RAP \le 30.0\%$ | %RAP > 30.0% | | | All A and B Level
Mixes, I19.0C, B25.0C | PG 64 -22 | PG 64 -22 | TBD | | | S9.5C, S12.5C, I19.0D | PG 70 -22 | PG 64-22 | TBD | | | S 9.5D and S12.5D | PG 76-22 | N/A | N/A | | Note: (1) Category 1 RAP has been processed to a maximum size of 2 inches. - (2) Category 2 RAP has been processed to a maximum size of 1 inch by either crushing and or screening to reduce variability in the gradations. - (3) Category 3 RAP has been processed to a maximum size of 1 inch, fractionating the RAP into 2 or more sized stockpiles Page 6-35, Table 610-3 delete and replace with the following: TABLE 610-3 ASPHALT PLACEMENT- MINIMUM TEMPERATURE REQUIREMENTS | Asphalt Concrete Mix Type | Minimum Air
Temperature | Minimum Surface
Temperature | | |-------------------------------------|----------------------------|--------------------------------|--| | ACBC, Type B 25.0B, C, B 37.5C | 35°F | 35°F | | | ACIC, Type I 19.0B, C, D | 35°F | 35°F | | | ACSC, Type S 4.75A, SF 9.5A, S 9.5B | 40°F | 50°F* | | | ACSC, Type S 9.5C, S 12.5C | 45°F | 50°F | | | ACSC, Type S 9.5D, S 12.5D | 50°F | 50°F | | ^{* 35°}F if surface is soil or aggregate base for secondary road construction. # Page 6-44, Article 610-8 Spreading and Finishing, third full paragraph, replace the first sentence with the following: Use the 30 foot minimum length mobile grade reference system or the non-contacting laser or sonar type ski with at least four referencing stations mounted on the paver at a minimum length of 24 feet to control the longitudinal profile when placing the initial lanes and all adjacent lanes of all layers, including resurfacing and asphalt in-lays, unless otherwise specified or approved. ### Page 6-50, Article 610-13 Density Acceptance, delete the second paragraph and replace with the following: As an exception, when the first layer of mix is a surface course and is being placed directly on an unprimed aggregate or soil base, the layer will be included in the "Other" construction category. ## Page 6-50, Article 610-13 Density Acceptance, delete the formula and description in the middle of the page and replace with the following:, $PF = 100 - 10(D)^{1.465}$ where: PF = Pay Factor (computed to 0.1%) D = the deficiency of the lot average density, not to exceed 2.0% #### Page 6-53, Article 620-4 Measurement and Payment: Sixth paragraph, delete the last sentence. #### Seventh paragraph, delete the paragraph and replace with the following: The adjusted contract unit price will then be applied to the theoretical quantity of asphalt binder authorized for use in the plant mix placed during the partial payment period involved, except that where recycled plant mix is used, the adjusted unit price will be applied only to the theoretical number of tons of additional asphalt binder materials required by the job mix formula. #### Page 6-54, Article 620-4 Measurement and Payment, add the following pay item: Pay ItemPay UnitAsphalt Binder for Plant Mix, Grade PG 70-28Ton #### Page 6-69, Table 660-1 Material Application Rates and Temperatures, add the following: | Type of
Coat | Grade of Asphalt | Asphalt Rate gal/yd ² | Application
Temperature
°F | Aggregate
Size | Aggregate
Rate lb./sq. yd.
Total | |-----------------|--------------------|----------------------------------|----------------------------------|-------------------|--| | Sand Seal | CRS-2 or
CRS-2P | 0.22-0.30 | 150-175 | Blotting
Sand | 12-15 | #### Page 6-75, Subarticle 660-9(B), add the following as sub-item (5) #### (5) Sand Seal Place the fully required amount of asphalt material in one application and immediately cover with the seal coat aggregate. Uniformly spread the fully required amount of aggregate in one application and correct all non-uniform areas prior to rolling. Immediately after the aggregate has been uniformly spread, perform rolling. When directed, broom excess aggregate material from the surface of the seal coat. When the sand seal is to be constructed for temporary sealing purposes only and will not be used by traffic, other grades of asphalt material meeting the requirements of Articles 1020-6 and 1020-7 may be used in lieu of the grade of asphalt required by Table 660-1 when approved. #### Page 6-76, Article 661-1 Description, add the following as the 2nd paragraph: Provide and conduct the quality control and required testing for acceptance of the UBWC in accordance with "Quality Management System for Asphalt Pavements (OGAFC, PADL, and Ultra-Thin HMA Version)", included in the contract. #### Page 6-80, Subarticle 661-3(A) Equipment, add the following as the first paragraph: Use asphalt mixing plants in accordance with Article 610-5. Page 10-41, Table 1012-1, delete the last row of entries for OGAFC and add the following: | Mix Type | Coarse
Aggregate
Angularity ^(b)
ASTM D5821 | Fine Aggregate Angularity % Minimum AASHTO T304 Method A | Sand Equivalent
% Minimum
AASHTO T176 | Flat & Elongated 5:1 Ratio
% Maximum
ASTM D4791 Section 8.4 | |----------|--|--|---|---| | S 9.5 D | 100/100 | 45 | 50 | 10 | | OGAFC | 100/100 | N/A | N/A | 10 | | UBWC | 100/85 | 40 | 45 | 10 | #### Delete Note (c) under the Table 1012-1 and replace with the following: (c) Does not apply to Mix Types SF 9.5A and S 9.5B. ## Page 10-43, Subarticle 1012-1(F): Reclaimed Asphalt Shingle Material (RAS), insert the following immediately following the first paragraph: #### (1) Mix Design RAS Incorporate RAS from stockpiles that have been tested for uniformity of gradation and binder content prior to use in an asphalt mix design. #### (2) Mix Production RAS New Source RAS is defined as acceptable material which was not included in the stockpile when samples were taken for mix design purposes. Process new source RAS so that all materials will pass a 1/2" sieve prior to introduction into the plant mixer unit. After a stockpile of processed RAS has been sampled and mix designs made from these samples, do not add new source RAS to the original stockpile without prior field testing to insure gradation and binder uniformity. Sample and test new source RAS before
blending with the existing stockpile. Store new source RAS in a separate stockpile until the material can be sampled and tested for comparison with the original recycled mix design data. New source RAS may also be placed against the existing stockpile in a linear manner provided it is sampled for mix design conformity prior to its use in the recycled mix. RAS contamination including but not limited to excessive dirt, debris, clean stone, concrete will not be allowed. Field approval of new source RAS will be based on the table below and volumetric mix properties on the mix with the new source RAS included. Provided these tolerances are met, volumetric properties of the new mix will then be performed. If all volumetric mix properties meet the mix design criteria for that mix type, the new source RAS may continue to be used. If the gradation, binder content, or any of the volumetric mix properties are not within the allowable tolerances of the table below, do not use the new source RAS unless approved by the Engineer. The Contractor may elect to either not use the stockpile, to request an adjustment to the JMF, or to redesign the mix. NEW SOURCE RAS GRADATION and BINDER TOLERANCES (Apply Tolerances to Mix Design Data) | 0-6% RAS | | | |------------------|-----------------|--| | P _b % | ±1.6% | | | Sieve Size (mm) | Tolerance | | | 9.5 | ±1 | | | 4.75 | ±5 | | | 2.36 | ±4 | | | 1.18 | ±4 | | | 0.300 | ±4 | | | 0.150 | ±4 _. | | | 0.075 | ±2.0 | | Page 10-43 through 10-45, Subarticle 1012-1(G), delete this in its entirety and replace with the following: #### (G) Reclaimed Asphalt Pavement (RAP) #### (1) Mix Design RAP Incorporate RAP from stockpiles or other sources that have been tested for uniformity of gradation and binder content prior to use in an asphalt mix design. Use reclaimed asphalt pavement that meets all requirements specified for *one of* the following *two* classifications. #### (a) Millings Existing reclaimed asphalt pavement (RAP) that is removed from its original location by a milling process as specified in Section 607. Millings should be such that it has a uniform gradation and binder content and all materials will pass a 2" sieve prior to introduction into the plant mixer unit. #### (b) Processed RAP RAP that is processed in some manner (possibly by crushing and/or use of a blending method) to produce a uniform gradation and binder content in the RAP prior to use in a recycled mix. Process RAP so that all materials have a uniform gradation and binder content and will pass a 1" sieve prior to introduction into the plant mixer unit. #### (c) Fractionated RAP Fractionated RAP is defined as having two or more RAP stockpiles, where the RAP is divided into coarse and fine fractions. Grade RAP so that all materials will pass a 1" sieve. The coarse RAP stockpile shall only contain material retained on a 3/8" screen, unless otherwise approved. The fine RAP stockpile shall only contain material passing the 3/8" screen, unless otherwise approved. The Engineer may allow the Contractor to use an alternate to the 3/8" screen to fractionate the RAP. The maximum percentages of fractionated RAP may be comprised of coarse, fine, or the combination of both. Utilize a separate cold feed bin for each stockpile of fractionated RAP used. #### (d) Approved Stockpiled RAP Approved Stockpiled RAP is defined as fractionated RAP which has been isolated and tested for asphalt content, gradation, and asphalt binder characteristics with the intent to be used in mix designs with greater than 30% RAP materials. Fractionate the RAP in accordance with Section 1012-1(G)(c). Utilize a separate cold feed bin for each approved stockpile of RAP used. Perform extraction tests at a rate of 1 per 1000 tons of RAP, with a minimum of 5 tests per stockpile to determine the asphalt content and gradation. Separate stockpiles of RAP material by fine and coarse fractions. Erect and maintain a sign satisfactory to the Engineer on each stockpile to identify the material. Assure that no deleterious material is allowed in any stockpile. The Engineer may reject by visual inspection any stockpiles that are not kept clean, separated, and free of foreign materials. Submit requests for RAP stockpile approval to the Engineer with the following information at the time of the request: - (1) Approximate tons of materials in stockpile - (2) Name or Identification number for the stockpile - (3) Asphalt binder content and gradation test results - (4) Asphalt characteristics of the Stockpile. For the Stockpiled RAP to be considered for approval, the gradation and asphalt content shall be uniform. Individual test results, when compared to the target, will be accepted if within the tolerances listed below: APPROVED STOCKPILED RAP GRADATION and BINDER TOLERANCES (Apply Tolerances to Mix Design Data) | P _b % | ±0.3% | |------------------|-----------------| | Sieve Size (mm) | Percent Passing | | 25.0 | ±5% | | 19.0 | ±5% | | 12.5 | ±5% | | 9.5 | ±5% | | 4.75 | ±5% | | 2.36 | ±4% | | 1.18 | $\pm 4\%$ | | 0.300 | ±4% | | 0.150 | ±4% | | 0.075 | ±1.5% | Note: If more than 20% of the individual sieves are out of the gradation tolerances, or if more than 20% of the asphalt binder content test results fall outside the appropriate tolerances, the RAP shall not be used in HMA unless the RAP representing the failing tests is removed from the stockpile. Do not add additional material to any approved RAP stockpile, unless otherwise approved by the Engineer. Maintain at the plant site a record system for all approved RAP stockpiles. Include at a minimum the following: Stockpile identification and a sketch of all stockpile areas at the plant site; all RAP test results (including asphalt content, gradation, and asphalt binder characteristics). #### (2) Mix Production RAP During mix production, use RAP that meets the criteria for one of the following categories: #### (a) Mix Design RAP RAP contained in the mix design stockpiles as described above may be used in all applicable JMFs. These stockpiles have been pretested: however, they are subject to required QC/QA testing in accordance with Subarticle 609-5(C)(2). #### (b) New Source RAP New Source RAP is defined as any acceptable material that was not included in the stockpile or other source when samples were taken for mix design purposes. Process new source RAP so that all materials have a uniform gradation and binder content and will pass a 2" sieve prior to introduction into the plant mixer unit. After a stockpile of millings, processed RAP, or fractionated RAP has been sampled and mix designs made from these samples, do not add new source RAP to the original stockpile without prior field testing to insure gradation and binder uniformity. Sample and test new source RAP before blending with the existing stockpile. Store new source RAP in a separate stockpile until the material can be sampled and tested for comparison with the original recycled mix design data. New source RAP may also be placed against the existing stockpile in a linear manner provided it is sampled for mix design conformity prior to its use in the recycled mix. Unprocessed RAP is asphalt material that was not milled and/or has not been processed to obtain a uniform gradation and binder content and is not representative of the RAP used during the applicable mix design. Unprocessed RAP shall not be incorporated into any JMFs prior to processing. Different sources of unprocessed RAP may be stockpiled together provided it is generally free of contamination and will be processed prior to use in a recycled mix. RAP contamination in the form of excessive dirt, debris, clean stone, concrete, etc. will not be allowed. Incidental amounts of dirt, concrete, and clean stone may be acceptable. Unprocessed RAP may be processed and then classified as a new source RAP as described above. Field approval of new source RAP will be based on Table 1012-2 below and volumetric mix properties on the mix with the new source RAP included. Provided the Table 1012-2 tolerances are met, volumetric properties of the new mix will then be performed. If all volumetric mix properties meet the mix design criteria for that mix type, the new source RAP may continue to be used. If the gradation, binder content, or any of the volumetric mix properties are not within the allowable tolerances of Table 1012-2, do not use the new source RAP unless approved by the Engineer. The Contractor may elect to either not use the stockpile, to request an adjustment to the JMF, or to redesign the mix. TABLE 1012-2 NEW SOURCE RAP GRADATION and BINDER TOLERANCES (Apply Tolerances to Mix Design Data) Mix 0-20% RAP 20⁺-30 % RAP 30⁺ % RAP Type Sieve Base Inter. Surf. Base Surf. Base Surf. Inter. Inter. (mm) P_b % $\pm 0.7\%$ $\pm 0.4\%$ $\pm 0.3\%$ 25.0 ±10 ±7 ± 5 19.0 ±10 ±10 ±7 ±7 ± 5 ± 5 12.5 ±10 ±10 ±7 ±7 ±5 ± 5 9.5 --±10 -_ ±7 - ± 5 4.75 ±5 ±10 ±10 ±7 ±7 ± 5 2.36 ±8 ±8 ±8 ± 5 ± 5 ± 5 ±4 ±4 ±4 1.18 ±8 ± 8 ±8 ±5 ± 5 ±5 ± 4 ±4 ±4 0.300 ±8 ±8 ±8 ±5 ±5 ±5 ±4 ±4 ±4 0.150 ±8 ±5 ±4 0.075 ±4 ±4 ±4 ± 2 ±2 ± 2 ± 1.5 ± 1.5 ±1.5 #### **ASPHALT PAVEMENTS - WARM MIX ASPHALT SUPERPAVE:** (5-19-09) (Rev 10-20-09) SP6 R02 Warm Mix Asphalt (WMA) is defined as additives or processes that allow a reduction in the temperature at which asphalt mixtures are produced and placed. Notify the Engineer at least 2 weeks before producing the Warm Mix so the Engineer can arrange a preconstruction meeting. Discuss special testing requirements necessary for warm mix asphalt at the pre-pave meeting. Included at the pre-pave meeting the Contractor's QC manager, Paving Superintendent, and manufacturer's representative for the process or additive used for producing warm mix asphalt, the Department's Roadway Construction Engineer, Resident Engineer, State Pavement Construction, and Quality Assurance Supervisor. Require a manufacturer's representative for the process or additive used to
be present on site at the plant during the initial production and on the roadway during the laydown of the warm mix asphalt. Revise the 2006 Standard Specifications as follows: #### Page 6-8, Article 609-1 Description, insert the following as the second paragraph. Warm Mix Asphalt (WMA) is defined as additives or processes that allow a reduction in the temperature at which asphalt mixtures are produced and placed. WMA is allowed for use at the Contractor's option when shown in the contract documents. #### Page 6-9, Article 609-4 Field Verification of Mixture and Job Mix Formula Adjustments, #### Second paragraph, insert the following immediately after the first sentence. When producing a WMA, field verification testing will also consist of performing a Tensile Strength Ratio (TSR) testing in accordance with AASHTO T283 as Modified by the Department. #### Third paragraph, delete the third sentence and replace with the following: Verification is considered satisfactory for HMA when all volumetric properties except ${}^{\circ}G_{mm}@N_{ini}$ are within the applicable mix design criteria, and the gradation, binder content, and ${}^{\circ}G_{mm}@N_{ini}$ are within the individual limits for the mix type being produced. Verification is considered satisfactory for WMA when all volumetric properties except ${}^{\circ}G_{mm}@N_{ini}$ are within the applicable mix design criteria, the TSR is equal to or above the minimum design criteria, and the gradation, binder content, and ${}^{\circ}G_{mm}@N_{ini}$ are within the individual limits for the mix type being produced. ### Page 6-12, Subarticle 609-5(C)2(d) Bulk Specific Gravity of Compacted Specimens, add after (AASHTO T 312): When producing Warm Mix Asphalt, gyrate specimens to specified N_{des} compaction effort without reheating mix other than to desired compaction temperature. Record time needed to reheat samples (if any). ### Page 6-14, Subarticle 609-5(C)(2)(e) Tensile Strength Ratio, insert the following immediately after the third paragraph: When producing WMA, perform TSR testing at - i. Beginning of production for each JMF - ii. Monthly thereafter #### Page 6-27, Article 610-1 Description, insert the following as the third paragraph: Warm Mix Asphalt (WMA) is defined as additives or processes that allow a reduction in the temperature at which asphalt mixtures are produced and placed. Use WMA at the Contractor's option unless otherwise shown on the plans. #### Page 6-27, Article 610-2 Materials, insert the following at the end of this Article: Use only WMA additives or processes listed on the Department's approved list maintained by the Materials and Tests Unit. ### Page 6-31, Subarticle 610-3(B) Mix Design-Criteria, add the following as the fifth paragraph: When WMA is used, submit the mix design without including the WMA additive. #### Page 6-32, Subarticle 610-3(C) Job Mix Formula, Add the following as the second paragraph: When WMA is used, document the additive or process used and recommended rate on the JMF submittal. Verify the JMF based on plant produced mixture from the trial batch. #### Immediately following PG 76-22 335°F, add the following paragraph: When WMA is used, produce an asphalt mixture within the temperature range of 225°F and 275 °F. ### **ASPHALT BINDER CONTENT OF ASPHALT PLANT MIXES:** (11-21-00) SP6 R15 The approximate asphalt binder content of the asphalt concrete plant mixtures used on this project will be as follows: | Asphalt Concrete Base Course | Type B 25.0 | 4.3% | |--------------------------------------|--------------|------| | Asphalt Concrete Intermediate Course | Type I 19.0 | 4.7% | | Asphalt Concrete Surface Course | Type S 4.75A | 7.0% | | Asphalt Concrete Surface Course | Type SF 9.5A | 6.5% | | Asphalt Concrete Surface Course | Type S 9.5 | 6.0% | | Asphalt Concrete Surface Course | Type S 12.5 | 5.5% | The actual asphalt binder content will be established during construction by the Engineer within the limits established in the 2006 Standard Specifications. #### **ASPHALT PLANT MIXTURES:** (7-1-95) SP6 R20 Place asphalt concrete base course material in trench sections with asphalt pavement spreaders made for the purpose or with other equipment approved by the Engineer. #### PRICE ADJUSTMENT - ASPHALT BINDER FOR PLANT MIX: (11-21-00) SP6 R25 Price adjustments for asphalt binder for plant mix will be made in accordance with Section 620 of the 2006 Standard Specifications. The base price index for asphalt binder for plant mix is \$419.67 per ton. This base price index represents an average of F.O.B. selling prices of asphalt binder at supplier's terminals on **December 1, 2009**. # BORROW EXCAVATION AND SHPO DOCUMENTATION FOR BORROW/WASTE SITES: (12-18-07) (4-15-08) SP8 R02 Revise the 2006 Standard Specifications as follows: #### **Division 2 Earthwork** Page 2-16, Subarticle 230-1(D), add the words: The Contractor specifically waives as the first words of the sentence. ### Page 2-17, Article 230-4(B) Contractor Furnished Sources, first paragraph, first sentence replace with the following: Prior to the approval of any borrow sources developed for use on any project, obtain certification from the State Historic Preservation Officer of the State Department of Cultural Resources certifying that the removal of the borrow material from the borrow sources(s) will have no effect on any known district, site building, structure, or object, architectural and/or archaeological that is included or eligible for inclusion in the National Register of Historic Places. #### **Division 8 Incidentals** #### Page 8-9, Article 802-2 General Requirements, add the following as the 1st paragraph: Prior to the removal of any waste from any project, obtain certification from the State Historic Preservation Officer of the State Department of Cultural Resources certifying that the deposition of the waste material to the proposed waste area will have no effect on any known district, site building, structure, or object, architectural and/or archaeological that is included or eligible for inclusion in the National Register of Historic Places. Furnish a copy of this certification to the Engineer prior to performing any work in the proposed waste site. ### Page 8-10, Article 802-2, General Requirements, 4th paragraph, add the following as the 2nd sentence: The Department's borrow and waste site reclamation procedures for contracted projects is available on the NCDOT website and shall be used for all borrow and waste sites on this project. #### **GUARDRAIL ANCHOR UNITS, TYPE 350:** $\overline{(4-20-04)}$ SP8 R65 #### **Description** Furnish and install guardrail anchor units in accordance with the details in the plans, the applicable requirements of Section 862 of the 2006 Standard Specifications, and at locations shown in the plans. #### **Materials** The Contractor may at his option, furnish any one of the guardrail anchor units. Guardrail anchor unit (ET-2000) as manufactured by: Trinity Industries, Inc. 2525 N. Stemmons Freeway Dallas, Texas 75207 Telephone: 800-644-7976 The guardrail anchor unit (SKT 350) as manufactured by: Road Systems, Inc. 3616 Old Howard County Airport Big Spring, Texas 79720 Telephone: 915-263-2435 Prior to installation the Contractor shall submit to the Engineer: - (A) FHWA acceptance letter for each guardrail anchor unit certifying it meets the requirements of NCHRP Report 350, Test Level 3, in accordance with Section 106-2 of the 2006 Standard Specifications. - (B) Certified working drawings and assembling instructions from the manufacturer for each guardrail anchor unit in accordance with Section 105-2 of the 2006 Standard Specifications. No modifications shall be made to the guardrail anchor unit without the express written permission from the manufacturer. Perform installation in accordance with the details in the plans, and details and assembling instructions furnished by the manufacturer. #### **Construction Methods** Guardrail end delineation is required on all approach and trailing end sections for both temporary and permanent installations. Guardrail end delineation consists of yellow reflective sheeting applied to the entire end section of the guardrail in accordance with Section 1088-3 of the 2006 Standard Specifications and is incidental to the cost of the guardrail anchor unit. #### **Measurement and Payment** Measurement and payment will be made in accordance with Articles 862-6 of the 2006 Standard Specifications. Payment will be made under: Pay Item Guardrail Anchor Units, Type 350 Pay Unit Each #### **AGGREGATE PRODUCTION:** $\overline{(11-20-01)}$ SP10 R05 Provide aggregate from a producer who uses the current Aggregate Quality Control/Quality Assurance Program that is in effect at the time of shipment. No price adjustment is allowed to contractors or producers who use the program. Participation in the program does not relieve the producer of the responsibility of complying with all requirements of the 2006 Standard Specifications. Copies of this procedure are available upon request from the Materials and Test Unit. #### **CONCRETE BRICK AND BLOCK PRODUCTION:** (11-20-01 SP10 R10 Provide concrete brick and block from a producer who uses the current Solid Concrete Masonry Brick/Unit Quality Control/Quality Assurance Program that is in effect on the date that material is received on the project. No price adjustment is allowed to contractors or producers who use the program. Participation in the program does not relieve the producer of the responsibility of complying with all requirements of the 2006 Standard Specifications. Copies of this procedure are available upon request from the Materials and Test Unit. #### **ENGINEERING FABRICS TABLE 1056-1:** (7-18-06 SP10 R40 Revise the 2006 Standard Specifications as follows: Page 10-100, Table 1056-1, replace the values for Trapezoidal Tear Strength with the following: | Physical Property | ASTM
Test
Method | Type 1 | Type 2 | Type 3 | Type 4 |
---------------------------|------------------------|----------------|--------------|--------------------------------------|-----------------------| | Typical Applications | | Shoulder Drain | Under Riprap | Class A Class B Temporary Silt Fence | Soil
Stabilization | | Trapezoidal Tear Strength | D4533 | <i>45</i> lb | <i>75</i> lb | | 75 lb | #### **QUALIFICATION OF WELDS AND PROCEDURES:** (7-21-09 SP10 R43 Page 10-143, Subarticle 1072-20(D) Qualification of Welds and Procedures, replace the third sentence of the first paragraph with the following: For all prequalified field welds, submit Welding Procedure Specifications (WPS) for each joint configuration for approval at least 30 days prior to performing any welding. In lieu of this, use the WPS provided and preapproved by the Department. These preapproved WPS are available from the Materials and Tests Unit or at: http://www.ncdot.org/doh/operations/materials/structural/appr_proc.html. Use non-prequalified welds only if approved by the Engineer. Submit WPS for all non-prequalified welds to the Engineer for approval. At no cost to the Department, demonstrate their adequacy in accordance with the requirements of the Bridge Welding Code. ### EXCAVATION, TRENCHING, PIPE LAYING, & BACKFILLING FOR UTILITIES: SP15 R01 Revise the 2006 Standard Specifications as follows: Page 15-5, Article 1505-4 Repair of Pavements, Sidewalks and Driveways, first paragraph, add at the end of the first sentence in accordance with Section 848. Page 15-6, Article 1505-6 Measurement and Payment, Second paragraph, Delete (5) Repair of Sidewalks and Driveways in its entirety. Add as the eighth paragraph: __" Concrete Sidewalk and __" Concrete Driveways will be measured and paid for in accordance with Article 848-4.