### PROJECT SPECIAL PROVISIONS #### **ROADWAY** ### **CLEARING AND GRUBBING – METHOD III:** (4-6-06) (Rev 3-18-08) SP2 R02 Perform clearing on this project to the limits established by Method "III" shown on Standard No. 200.03 of the 2006 Roadway Standard Drawings. Revise the 2006 Standard Specifications as follows: # Page 2-2, Article 200-3, Clearing, add the following as the 6th paragraph: At bridge sites, clear the entire width of the right of way beginning at a station 3 feet back of the beginning extremity of the structure and ending at a station 3 feet beyond the ending extremity of the structure. #### **LUMP SUM GRADING** SPI 2-1 Lump sum grading shall be performed in accordance with Section 226 Comprehensive Grading of the 2006 Standard Specifications except as follows: Delete all references to Section 225, Unclassified Excavation. #### **BUILDING SURVEYS:** (SPECIAL) Attention is directed to Articles 107-12 and 107-15 of the Standard Specifications and to the Subsurface Plans. Use a geotechnical firm prequalified by the NCDOT Construction Unit for Vibration and Noise Monitoring work (work code 3020). The work performed in this section shall be completed even if blasting is not performed at this site. The building surveys can be used to fulfill the requirements for Pre-Blast Surveys found in the Rock Blasting Special Provision. The firm shall perform a Pre-Construction Structure Condition Inspection for the buildings at the listed addresses and submit three (3) copies at least 5 business days before the preconstruction conference. | New River General Store | 10725 US 221N | |-----------------------------------|------------------------| | Parcel 2 - Single Family Dwelling | 10606 US 221N | | Parcel 3 - Single Family Dwelling | 5028 Chestnut Hill Rd. | At the completion of the project, submit to the Engineer three (3) copies of the final report which should include all preconstruction and post construction condition assessments of the subject buildings with both photographic and written documentation. At a minimum, the reports should contain the information stated in the Pre-Blast survey section of the Rock Blasting Special Provision Payment will be made by the Lump Sum bid price for "Building Surveys." Such payment will be full compensation for all work described in this provision including, but not limited to, inspection of the buildings and submission of reports. **Pay Item**Building Surveys Pay Unit Lump Sum # **ROCK BLASTING:** (SPECIAL) ### **Description** This project special provision governs fracturing rock for excavation and constructing stable rock cut slopes using controlled, production and trench blasting. Controlled blasting is used to form a certain slope by limiting the effects of blasting with cushion or trim blasting. Another type of controlled blasting known as presplitting is not addressed by this provision. Production blasting is used to fracture rock in manageable sizes for excavation. Trench blasting is used to create trenches in rock for utilities and pipes and construct open ditches. This provision also addresses secondary blasting and blasting adjacent to highway structures in lieu of Article 410-11 of the *Standard Specifications*. Exercise care when using bulk ammonium nitrate and fuel oil (ANFO) near open water to prevent ANFO from leaching into lakes, streams, creeks and rivers. Control blasting to avoid damaging public and private property. Contain flyrock in the construction limits or perform blasting such that no flyrock occurs if required in the "Project Requirements" section of this provision. When blasting in the vicinity of an open travelway, have equipment standing by to remove material that interferes with traffic flow. Perform rock blasting, develop blast plans, provide explosive materials, drill, load and stem holes, record drilling, conduct blast surveys, monitor blasts and submit drilling records, surveys and reports in accordance with the plans, *Standard Specifications* and this provision as directed by the Engineer. #### **Project Requirements** If blast damage occurs to the New River General Store, propose and obtain acceptance from the Engineer of a repair plan and the Engineer may suspend blasting operations in accordance with Article 108-7 of the *Standard Specifications*. If the vibration and air-overpressure recorded at the New River General Store were below the Not-to-Exceed Limits specified, the costs of the repair will be paid for as Extra Work in accordance with Article 104-7 of the *Standard Specifications*. If structural damage due to blasting occurs to the store, the Engineer shall suspend blasting operations until approved structural reinforcement of the store is complete. At a minimum, conduct pre-blast surveys for any building, residence or utility when the maximum charge per delay ( $W_{max}$ ) and the distance to the subject structure (D) may result in a peak particle velocity (PPV) equal to or greater than 0.4 in/sec using the formulas in the "Peak Particle Velocity and Scaled Distance" section of this provision. Blasting from Station 13+50 -L- to Station 15+50 -L- is subject to the following warning levels and not-to-exceed limits. | Variable | Warning Level | Not-to-Exceed Limit | |--------------------------|---------------|---------------------| | Vibration (PPV) > 40 Hz | 0.75 in/sec | 1.0 in/sec | | Vibration (PPV) < 40 Hz | 0.40 in/sec | 0.50 in/sec | | Air-overpressure (noise) | 120 dBL | 133 dBL | In addition to the requirements above, conduct a pre-blast survey for the following structures. | Structure | Location | |-----------------------------------|------------------------| | New River General Store | 10725 US 221N | | Parcel 2 - Single Family Dwelling | 10606 US 221N | | Parcel 3 - Single Family Dwelling | 5028 Chestnut Hill Rd. | In addition to the requirements for blast monitoring reports, monitor vibration and airoverpressure for the following structure. | Structure | Location | |-------------------------|---------------| | New River General Store | 10725 US 221N | Retain a Blast Monitoring Consultant to provide pre-blast surveys and blast monitoring for blasting from Station 13+50 -L- to Station 15+50 -L-. Retain a Blasting Consultant to design blasts and prepare blast plans for blasting from Station 13+50 -L- to Station 15+50 -L-. Design and perform rock blasting from Station 13+50 -L- to Station 15+50 -L- such that no flyrock occurs. If flyrock occurs, the Engineer may suspend blasting operations in accordance with Article 108-7 of the *Standard Specifications* and require a revised general blast plan. Blasting from Station 13+50 -L- to Station 15+50 -L- will be very critical due to the close proximity of populated or sensitive environmental areas, urban or sensitive communities or historic structures. The Contractor should exercise caution and the utmost care when designing and performing blasts in this area. Video record each blast and submit a copy with the post-blast report. Show blast mats in place and overall views of blast area prior to blast. Use miniDV or DVD video device approved by the Engineer. #### **Definitions** Air-Overpressure or Air Blast (Noise) – The pulsating pressure changes above and below ambient air pressure generated by an explosion. Air-overpressure "linear scale" measurements include low frequency noise with a 2 hertz (Hz) response and are expressed in units of decibels-L (dBL). Blast Pattern – A plan of blast hole locations or an expression of the burden and spacing distance and their relationship to each other. Burden – The amount of rock broken by an explosive charge measured as the distance between the blast hole and the nearest free face. Charge per Delay (W) – The sum of all charge weights firing within any 8 milliseconds (ms) time period. For example, if two 10 lb charges fire at 100 ms and one 15 lb charge fires at 105 ms, the charge per delay would be 35 lbs. Cushion or Trim Blasting – A controlled blasting technique in which a line of blast holes along a rock face are detonated during the last delay period of the blast. The main burden is moved from the face by production blast holes leaving only a small burden to be removed by the line of blast holes at the face. Charges in these holes are lighter than charges in the production blast holes. Deck Loading (Decking) – A method of loading blast holes in which two or more explosive charges, called decks or deck charges, are loaded in the same hole separated by stemming or an air cushion. Delay Blasting – The practice of initiating individual explosive decks, blast holes or rows of holes at predetermined time intervals using delays or delay detonators as compared to firing all blast holes simultaneously. Flyrock – Rocks propelled through the air by the force of an explosion. Free Face – A rock surface exposed to air or water that provides room for expansion upon fragmentation. Magazine – Any building, structure or container, approved for storage of explosive materials other than an explosive manufacturing building. Misfire – An event where all or some charges in a blast fail (do not detonate) when initiated or a term for any portion of explosive materials that fail to detonate as planned. Peak Particle Velocity (PPV) – The maximum ground vibration velocity measured in the vertical, longitudinal or transverse direction. PPV measurement units are expressed in inches per second (in/sec). Scaled Distance (Ds) – A calculated value in units of $ft/lb^{0.5}$ describing relative vibration energy based on distance to a structure (D) and charge per delay (W). Ds is equal to D divided by the square root of W, Ds = D / W<sup>0.5</sup> or W = (D / Ds)<sup>2</sup>. Spacing – The distance between blast holes in a row. In production blasting, the distance is measured parallel to the free face and perpendicular to the burden. Stemming – Crushed stone placed in the unloaded collar area of blast holes for the purpose of confining explosive charges and limiting rock movement and air-overpressure. Subdrilling – The portion of a blast hole that is drilled below or beyond the desired excavation depth or limit. Subdrilling is generally required to prevent the occurrence of high or tight areas of unfractured rock between blast holes. ### Regulations Comply with all the latest applicable Federal, State and local codes, laws, rules and regulations as well as professional society standards for the storage, transportation and use of explosives. These include but are not limited to the following: - The Occupational Safety and Health (OSH) Act of 1970 and the Construction Safety Act (CSA) of 1969, as amended - Safe Explosives Act, Title XI, Subtitle C of Public Law 107-296; Interim Final Rule - Title 29, U. S. Code, Section 651 et seq., including safety and health regulations for construction - Title 27, Code of Federal Regulations (27 CFR), Part 555, U. S. Department of Justice, Bureau of Alcohol, Tobacco, Firearms and Explosives (ATF) - Organized Crime Control Act of 1970, Title XI, Public Law 91-452, as amended - Title 49, Code of Federal Regulations (49 CFR), Parts 105-177 (DOT RSPA) & Parts 301-399 (DOT FHA) - Title 29, Code of Federal Regulations (29 CFR), Parts 1910 & 1926, N. C. Department of Labor, Division of Occupational Safety and Health - The Mining Act of 1971, North Carolina General Statute, Chapter 74, Article 7, as amended - Fire Code of North Carolina, Section 105.6.15 Explosives - Administrative Rules, 13 NCAC 06.0521 13 NCAC 06.0526, N. C. Department of Labor - "A Guide to the Safe Storage of Explosive Materials" and "North Carolina Occupational Safety and Health Standards in Construction for Blasting & Use of Explosives", N. C. Department of Labor Keep a copy of all regulations listed above at the project site. Non-regulatory Industry Support Organizations: - Blast Monitoring Equipment Operation Standards (1999), Vibration Subcommittee of the International Society of Explosive Engineers (ISEE) - Institute of Makers of Explosives (IME) Safety Library Publications (SLPs) In case of conflict, the more stringent regulation applies. #### **Submittals** In lieu of a blasting plan in accordance with Article 107-11 of the *Standard Specifications*, the following submittals are required for rock blasting. - Blasting Contractor Personnel and Experience including Blasting Consultant, if applicable - General Blast Plan including Blast Monitoring Consultant, if applicable - Site Specific Blast Plans including Pre-blast Surveys Post-blast Reports including Drilling Records, Blast Monitoring Report and Blast Damage Report, when necessary For the site specific blast plans and post-blast reports, submit two hard copies of each to the Resident Engineer. After completing all blasting for a cut, structure or an excavation, submit electronic copies (pdf or jpg format on CD or DVD) of all site specific blast plans and post-blast reports. Allow 30 calendar days upon receipt by the Department for the review and acceptance of the Blasting Contractor personnel and experience and general blast plan. Provide these submittals in both electronic and hard copy form in accordance with the following: Submit one hard copy to the Resident Engineer. At the same time, submit a second hard copy and an electronic copy (pdf or jpg format on CD or DVD) directly to the Geotechnical Engineering Unit at the following addresses: # For projects in Divisions 1-7, use the following Eastern Regional Office address: Via US mail: Via other delivery service: Eastern Regional Geotechnical Manager Eastern Regional Geotechnical Manager North Carolina Department of North Carolina Department of Transportation Transportation Geotechnical Engineering Unit Geotechnical Engineering Unit Eastern Regional Office Eastern Regional Office 1570 Mail Service Center 3301 Jones Sausage Road, Suite 100 Raleigh, NC 27699-1570 Garner, NC 27529 # For projects in Divisions 8-14, use the following Western Regional Office address: Via US mail: Via other delivery service: Western Regional Geotechnical Manager Western Region Geotechnical Manager North Carolina Department of North Carolina Department of Transportation Transportation Geotechnical Engineering Unit Geotechnical Engineering Unit With Paris 100% Western Regional Office Western Regional Office 5253 Z Max Boulevard 5253 Z Max Boulevard Harrisburg, NC 28075 Harrisburg, NC 28075 The Engineer may suspend blasting operations in accordance with Article 108-7 of the *Standard Specifications* if submittals are illegible, incomplete or not provided. # (A) Blasting Contractor Personnel and Experience The Engineer may waive this submittal if a Blasting Consultant is not required and the Blasting Contractor and Blaster-in-Charge for this project were previously accepted within the last year for another NCDOT project with subsurface conditions and blasting of a scope and complexity similar to that anticipated for this project. Obtain acceptance of the Blasting Contractor personnel and experience before submitting a general blast plan. ### (1) Blasting Contractor Use a Blasting Contractor prequalified by the Contractual Services Unit for rock blasting work (work code 070). Submit documentation that the Blasting Contractor has successfully completed at least 5 blasting projects within the last 3 years with subsurface conditions and blasting of a scope and complexity similar to that anticipated for this project. Documentation should include the General Contractor and Owner's name and current contact information with descriptions of each past project. # (2) Blaster-in-Charge The Blaster-in-Charge has total authority over the handling, use and security of explosives and is responsible for coordinating, planning and supervising explosives use. The Blaster-in-Charge is also responsible for designing blasts and preparing blast plans when a Blasting Consultant is not required and for monitoring blasts when a Blast Monitoring Consultant is not required. Either the Blaster-in-Charge or an alternate Blaster-in-Charge is required to be on-site during blasting. Submit documentation that the Blaster-in-Charge and any alternate Blasters-in-Charge have a minimum of 5 years experience in blasting with past projects of scope and complexity similar to that anticipated for this project. Documentation should include resumes, references, certifications, project lists, experience descriptions and details, etc. If there is a change in the Blaster-in-Charge, discontinue explosives use until a new Blaster-in-Charge is submitted and accepted. #### (3) Blasting Consultant When a Blasting Consultant is required in the "Project Requirements" section of this provision, submit the consultant's name with the Blasting Contractor personnel and experience. The Blasting Consultant shall not be an employee of the Contractor or any affiliated companies or product suppliers. Contact the Geotechnical Engineering Unit Contract Administrator for a list of approved Blasting Consultants. #### (B) Blast Plans Blast plans are for quality control and record keeping purposes and shall be signed by the Blaster-in-Charge (and Blasting Consultant, if applicable). Review and acceptance of blast plans does not relieve the Contractor of responsibility for the blast results or liability in accordance with Articles 107-11 and 107-12 of the *Standard Specifications*. #### (1) General Blast Plan Submit a general blast plan before beginning drilling, when revised drilling or blasting methods are proposed or as directed by the Engineer. At a minimum, include the following in the plan: - Work procedures and safety precautions for the storage, transportation, handling and detonation of explosives - Explosive products and devices for dry and wet blast holes including explosives, primers and detonators with material safety data sheets - Drilling equipment and methods for maintaining blast hole alignment - Typical plan, profile and sectional views for both production and controlled blasting showing hole diameter, depth, inclination and spacing, maximum blast limits, burden, subdrill depth and maximum charge per delay - Initiation and delay methods and delay times - Site specific blast plan format - Blast hole drill log format - Pre-blast survey criteria and method - Blast monitoring report format and equipment including calibration information - Post-blast report format - Blast Monitoring Consultant if applicable Do not deliver explosives to the project site until the general blast plan is reviewed and accepted. #### (2) Site Specific Blast Plan After the general blast plan is accepted, submit a site specific blast plan at least 24 hours in advance of each blast. Site specific blast plans may be waived for non-critical blasts as determined by the Engineer. The following is required for the plan: - Scaled drawings of the blast area with cross-sections showing the beginning and ending stations, hole diameter, depth, inclination, spacing, burden, subdrill depth and free face location and any joints, bedding planes, weathered zones, voids or other significant rock structure that may influence the blast - A loading pattern diagram showing the location and amount of each type of explosive including primers and detonators - The locations and depths of stemming, column heights and maximum charge per delay for each type of loading - A delay and initiation diagram showing delay pattern, sequence and times - Pre-blast surveys (once per structure; not required when submitted for a prior blast) For site specific blast plans do not exceed the maximum charge per delay accepted in the general blast plan or submit a revised general blast plan to increase the maximum charge per delay allowed. # (C) Pre-blast Surveys and Post-blast Reports # (1) Blast Monitoring Consultant When a Blast Monitoring Consultant is required in the "Project Requirements" section of this provision, submit the consultant's name with the general blast plan. The Blast Monitoring Consultant shall not be an employee of the Contractor or any affiliated companies or product suppliers. Contact the Geotechnical Engineering Unit Contract Administrator for a list of approved Blast Monitoring Consultants. # (2) Peak Particle Velocity and Scaled Distance Use the following formulas to determine peak particle velocity (PPV) and scaled distance (Ds). $$PPV = K(Ds)^m$$ and $Ds = D / (W_{max})^{0.5}$ where: PPV = Peak Particle Velocity (in/sec) K and m = Site specific constants defining initial energy and decay Ds = Scaled Distance (ft/lb<sup>0.5</sup>) D = Distance to subject structure (ft) W<sub>max</sub> = Maximum charge per delay (lbs) Typically, a K of 240 and an m of -1.6 may be used for the equations above. However, K and m are site specific and may be determined by performing a regression analysis of multiple PPV and Ds data pairs. Select K and m based on actual site conditions, rock type and structure, subsurface information and blast monitoring measurements. # (3) Pre-blast Survey Conduct pre-blast surveys in accordance with the "Project Requirements" section of this provision and the accepted general blast plan. At a minimum, include the following in the survey: - Summary naming the person who performed the survey and comments about each structure and existing condition - Sketches of interior and exterior walls and foundations with existing cracks and a written description of the cracks including the length, width, type and angle - 4 x 6 inch color 35-mm or 5-megapixel digital photographs or miniDV or DVD digital video documenting the existing cracks and condition of each structure Submit pre-blast surveys with site specific blast plans. # (4) Post-blast Report Within 3 days after each blast or before the next blast, whichever is sooner, submit a post-blast report signed by the Blaster-in-Charge that includes the following: - Results and effectiveness of the blast and any proposed changes to subsequent site specific blast plans - Blast monitoring report - Blast damage report when necessary - Drilling records including blast pattern and blast hole drill logs #### (a) Blast Monitoring At a minimum, monitor vibration and air-overpressure (noise) at the nearest building, residence or utility and the nearest building, residence or utility in the direction of the blast in accordance the accepted general blast plan. Furnish seismographs capable of measuring particle velocities in the longitudinal, vertical and horizontal directions. Use monitoring equipment calibrated within one year of the date the data is collected. Interpret the recorded data and submit a blast monitoring report signed by the Blaster-in-Charge (or Blast Monitoring Consultant, if applicable) with the post-blast report that includes the following for each monitoring location: - Type, identification and specific location of monitoring equipment - Distance and direction to blast - PPV in each direction and peak vector sum - Maximum air-overpressure If damage occurs from blasting, notify the Engineer immediately. Submit a blast damage report signed by the Blaster-in-Charge (and Blast Monitoring Consultant, if applicable) with the post-blast report that includes the following: - Property owner's (and injured person's, if any) names, addresses and telephone numbers - Details and description of property damage (and injury, if any) with photos or video - Any associated tort claims, complaint letters and other applicable information #### (b) Drilling Records Identify each blast hole with a number on a blast pattern. Log the hole number, total depth, date drilled and the depth and description of significant conditions encountered such as water, voids and weak or jointed seams. Submit the blast pattern and blast hole drill logs signed by the Driller with the post-blast report. ### **Blast Design Requirements** #### (A) Vibration and Air-overpressure Design blasts for the vibration and air-overpressure (noise) warning levels and not-to-exceed limits in the "Project Requirements" section of this provision. If warning levels are exceeded, the Engineer may require additional monitoring and the Contractor should be aware that future blasts could exceed the not-to-exceed limits. If not-to-exceed limits are exceeded, the Engineer may suspend blasting operations in accordance with Article 108-7 of the *Standard Specifications* and require a revised general blast plan. #### (B) Production Blasts Design production blasts in accordance with the following unless otherwise approved: - Maintain a minimum 6 ft clearance between the production blast holes and final cut slope face - Diameter of production blast holes may not exceed 6" - Do not drill production blast holes below the bottom of adjacent controlled blast holes - Use delay blasting to detonate production blast holes towards a free face #### (C) Controlled Blasts Controlled blasts are required for final cut slopes steeper than 2:1 (H:V) when the height of the rock face exceeds 15 ft. #### (1) Cushion Blasts Cushion blasts refer to either trim or cushion blasting. Design cushion blasts in accordance with the following unless otherwise approved: - Diameter of cushion blast holes may not exceed 6" - Minimize subdrilling to only that required for excavation of the final cut slopes - Do not subdrill below final grade - Bench height or lift thickness may not exceed 25 ft - Use a maximum of half the charge density and burden of the production blast holes for the cushion blast holes - Do not use bulk ANFO or any other bulk loaded products - Fire cushion blast holes after production blast holes with a minimum 25 ms delay #### (D) Trench Blasts Design trench blasts in accordance with the following unless otherwise approved: - Diameter of trench blast holes may not exceed 3" - Do not use bulk ANFO or any other bulk loaded products - Use cartridge explosives or other types of explosives specifically designed for trench blasting - Use a charge diameter ½ to ¾ inch less than the diameter of the trench blast holes #### **Construction Methods** Conduct a pre-blast meeting with the Blaster-in-Charge, Blasting Consultant and Blast Monitoring Consultant, if required, the Resident Engineer, the Roadway Construction Engineer and the Geotechnical Operations Engineer to discuss the blasting and associated activities. This meeting should occur after the general blast plan is accepted and before submitting the site specific blast plan for the first blast on the project. Drill and blast in accordance with site specific blast plans, the general blast plan, and this provision as directed by the Engineer. Use explosives in accordance with all applicable government regulations, professional society standards and manufacturer guidelines and recommendations. Remove all overburden material along the top of the excavation for a minimum of 30 ft beyond the blast holes or the end of the cut unless approved otherwise by the Engineer. Inspect the free face to ensure there is adequate burden. Drill blast holes within 3" of plan location and control drilling to maintain the final cut slope angle. Accurately determine the angle at which the drill steel enters the rock. Cover all blast holes after drilling to prevent unwanted backfill and identify and mark each hole with hole number and depth. Blast holes shall be free of obstructions the entire depth. Load holes without dislodging material or caving in the blast hole wall. Use standard size nos. 67 and 78M in accordance with Section 1005 of the *Standard Specifications* for stemming. Stem blast holes with diameters of 5" (250 mm) or greater with no. 67 coarse aggregate and blast holes with diameters less than 5" (250 mm) with no. 78M coarse aggregate. Do not stem blast holes with drill cuttings. Matting is required when blasting in close proximity to buildings, residences, utilities, traffic and populated areas. Soil cover may be used in lieu of matting if allowed by the Engineer. Notify all occupants of residences, businesses and structures in the surrounding area and the Engineer at least 24 hours before blasting. Check for misfires immediately after each blast before signaling all clear. Remove any loose, hanging or potentially dangerous conditions by hand or machine scaling methods. Resume drilling only after scaling is complete. When the height of a cut requires multiple lifts or benches, offset the controlled blast holes for each subsequent lift the minimum distance necessary to allow for drill equipment clearances. Adjust the alignment of controlled blast holes to account for this offset as well as any drift that occurred in the preceding lift. The Engineer may suspend blasting operations in accordance with Article 108-7 of the *Standard Specifications* when vibration, air-overpressure or flyrock limits are exceeded, unsatisfactory rock cut slopes are produced or other reasons. Remove all loose material from final rock faces by scaling. The Contractor is responsible for the final rock face. If blasting damages the final rock face, stabilize the slope at no additional cost to the Department with a method proposed by the Contractor and accepted by the Department. # **Secondary Blasting** Secondary blasting is used to reduce the size of naturally occurring boulders or those resulting from initial blasting. Secondary blasting methods include block holing or boulder busting. Block holing or boulder busting is the breaking of boulders by loading and firing small explosive charges in small diameter blast holes. Submit a combined general and site specific blast plan for secondary blasting. The Engineer may waive the pre-blast surveys, blast monitoring and post-blast reports at their discretion. Mud capping, which is defined as placing an unconfined explosive charge in contact with a rock surface without the use of a blast hole and covering it with mud, is not allowed. #### **Blasting Adjacent to Highway Structures** Do not blast adjacent to highway structures until the concrete strength reaches 2400 psi. When blasting adjacent to highway structures, limit PPV to 4 in/sec measured at a location on the structure nearest the blast. Perform blasting adjacent to highway structures in accordance with the submittal, blast design and construction requirements in this provision. When blasting for foundation excavation, submit a combined general and site specific blast plan and the Engineer may waive the pre-blast surveys, blast monitoring and post-blast reports at their discretion. #### Measurement and Payment Payment for rock blasting for roadway excavation will be considered incidental to *Unclassified Exacavation* in accordance with Section 225 of the *Standard Specifications*. No separate payment will be made for any scaling. Payment for scaling will be considered incidental to *Unclassified Excavation*. Rock blasting for pipe and utility installation will be considered excavation and payment will be made in accordance with Sections 300 and 1505, respectively, of the *Standard Specifications*. Payment for rock blasting for foundation excavation will be considered incidental to Foundation Excavation or Foundation Excavation for End Bent No. 1 and End Bent No. 2 in accordance with Section 410 of the Standard Specifications. No additional payment will be made or extension of contract time allowed when the Engineer suspends blasting operations and requires additional monitoring or submittals in accordance with this provision. # **BUILDING AND UNDERGROUND STORAGE TANK REMOVAL:** (1-1-02) (Rev.6-21-05) SP2 R15 A # **Building Removal** Remove the buildings and appurtenances listed below in accordance with Section 215 of the 2006 Standard Specifications and the following: Prior to removal of any building, comply with the notification requirements of *Title 40 Code of Federal Regulations*, Part 61, Subpart M, which are applicable to asbestos. Give notification to the North Carolina Department of Health and Human Services, Division of Public Health Epidemiology Branch and/or the appropriate county agency when the county performs enforcement of the Federal Regulation. Submit a copy of the notification to the Engineer prior to the building removal. Perform removal and disposal of asbestos in accordance with the requirements of *Title 40 Code* of Federal Regulations; comply with all Federal, State and local regulations when performing building removal and/or asbestos removal and disposal. Any fines resulting from violations of any regulation are the sole responsibility of the Contractor and the Contractor agrees to indemnify and hold harmless the Department against any assessment of such fines. The Department has performed asbestos assessments for building items identified below. Copies of this report may be obtained through the Division Right-of-Way Agent. When asbestos is discovered after the opening of bids for the project, the Engineer may have the work performed by others or the cost of asbestos removal and disposal will be paid for in accordance with Article 104-7 of the 2006 Standard Specifications. When a building has had or will have asbestos removed and the Contractor elects to remove the building such that it becomes a public area, the Contractor is responsible for any additional costs incurred including final air monitoring. #### **Underground Storage Tank Removal** Prior to removal of any Underground Storage Tank (UST), comply with the notification requirements of the *Title 40 Code of Federal Regulations*, Part 280.71(a). Give notification to the appropriate regional office of the North Carolina Department of Environment and Natural Resources, Division of Waste Management, UST Section. Submit a copy of the notification to the Engineer prior to the removal of the underground storage tank. Permanently close UST systems by removal and disposal in compliance with the regulations set forth in *Title 40, Code of Federal Regulations*, Part 280.71 and *North Carolina Administrative Code (NCAC)* Title 15A, Chapter 2, Subchapter 2N and any applicable local regulations. Assess Underground Storage Tank sites at closure for the presence of contamination as required in *NCAC* Title 15A, Chapter 2, Subchapter 2N, Section .0803 and as directed by the appropriate Regional Office of the Division of Waste Management. Remove and dispose of UST systems and contents in a safe manner in conformance with requirements of *American Petroleum Institute Bulletin 1604*, Removal and Disposal of Used Underground Petroleum Storage Tanks, Chapters 3 through 6. (Note: As an exception to these requirements, the filling of the tank with water as a means of expelling vapors from the tank as described in Section 4.2.6.1 of *American Petroleum Institute Bulletin 1604*, will not be allowed. Comply with all Federal, State and local regulations when performing UST removal and contaminated material disposal. Any fines resulting from violations of any regulation are the sole responsibility of the Contractor and the Contractor agrees to indemnify and hold harmless the Department against any assessment of such fines. Where underground storage tanks are indicated below, there will be no direct payment for the assessment or closure. When the contract does not indicate the presence of storage tanks and storage tanks are discovered after the opening of bids for the project, the Engineer may have the work performed by others or the cost of assessment, closure, and/or removal will be paid for in accordance with Article 104-7 of the 2006 Standard Specifications. Disposition of any contaminated material associated with underground storage tanks will be made as provided in Article 107-26 of the 2006 Standard Specifications. # **Building Removal (Item No. 1)** Parcel Number 004 – Right of Survey Station 21+80, Survey Line -L-One-Story Block and Frame Business with Attached Canopy Containing Approximately 1,080 Square Feet Combined #### **Building Removal (Item No. 2)** Parcel Number 006 – Right of Survey Station 21+25, Survey Line -L-One and One Half-Story Frame Dwelling Containing Approximately 1,652 Square Feet of Heated and Unheated Gross Area, Which Includes Covered Porches #### **EMBANKMENTS:** (5-16-06) (Rev 7-21-09) SP2 R18 Revise the Standard Specifications as follows: Page 2-22, Article 235-3 Materials, add the following as the second sentence of the second paragraph: Aerate and dry material containing moisture content in excess of what is required to achieve embankment stability and specified density. # Page 2-22, Subarticle 235-4(B) Embankment Formation, add the following: (16) Do not place rock or broken pavement in embankment areas where piles or drilled shaft foundations are to be constructed. This shall include but not be limited to piles and foundations for structures, metal signal poles, overhead sign structures, and high mount lighting. # **HAZARDOUS SPILL BASIN:** The special ditch draining to the 18" CSP as shown in the plans shall serve as the Hazardous Spill Basin. No separate payment shall be made for Hazardous Spill Basin. ### SHOULDER AND FILL SLOPE MATERIAL: (5-21-02) SP2 R45 A #### **Description** Perform the required shoulder and slope construction for this project in accordance with the applicable requirements of Section 226 of the 2006 Standard Specifications except as follows: Construct the top 6 inches of shoulder and fill slopes with soils capable of supporting vegetation. Provide soil with a P.I. greater than 6 and less than 25 and with a pH ranging from 5.5 to 6.8. Remove stones and other foreign material 2 inches or larger in diameter. All soil is subject to test and acceptance or rejection by the Engineer. Obtain material from within the project limits or approved borrow source. #### Measurement and Payment No direct payment will be made for this work, as the cost of this work will be considered to be a part of the work being paid for at the contract lump sum price for *Grading*. #### **DUCTILE IRON PIPE:** #### **Description** Furnish and install ductile iron pipe at locations indicated on the plans and as directed by the Engineer. The work includes the construction of joints and connections to other pipes, endwalls, and other drainage structures. #### **Materials** Refer to Division 10: **Item** Section Ductile Iron Pipe 1034 Use pipe meeting the requirements for Gravity Flow Sewer Pipe. #### **Construction Methods** Install pipe in accordance with Section 300 of the Specifications and as directed by the Engineer. #### **Measurement And Payment** \_\_ "Ductile Iron Pipe will be measured and paid for as the actual number of linear feet of pipe that has been incorporated into the completed and accepted work. Pay Item Pay Unit " Ductile Iron Pipe Linear Foot **PIPE TESTING:** 4-17-07 SP3 R33 Revise the 2006 Standard Specifications as follows: Page 3-3, Article 300-6, add the following as a new paragraph before (A): The Department reserves the right to perform forensic testing on any installed pipe. #### **PIPE ALTERNATES:** (7-18-06) (Rev 4-17-07) SP3 R36 #### **Description** The Contractor may substitute Aluminized Corrugated Steel Pipe, Type IR or HDPE Pipe, Type S or Type D up to 48 inches in diameter in lieu of concrete pipe in accordance with the following requirements. #### **Material** | Item | Section | |-------------------------------------------|--------------| | HDPE Pipe, Type S or D | 1032-10 | | Aluminized Corrugated Steel Pipe, Type IR | 1032-3(A)(7) | Aluminized Corrugated Steel Pipe will not be permitted in counties listed in Article 310-2 of the 2006 Standard Specifications. #### **Construction Methods** Aluminized Corrugated Steel Pipe Culverts and HDPE Pipe Culverts shall be installed in accordance with the requirements of Section 300 of the 2006 Standard Specifications for Method A, except that the minimum cover shall be at least 12 inches. Aluminized Corrugated Steel Pipe Culvert and HDPE Pipe Culvert will not be permitted for use under travelways, including curb and gutter. ### **Measurement and Payment** "Aluminized Corrugated Steel Pipe Culvert to be paid for will be the actual number of linear feet installed and accepted. Measurement will be in accordance with Section 310-6 of the 2006 Standard Specifications. "HDPE Pipe Culvert to be paid for will be the actual number of linear feet installed and accepted. Measurement will be in accordance with Section 310-6 of the 2006 Standard Specifications. Payment will be made under: | Pay Item | Pay Unit | |-----------------------------------------------------|-------------| | " Aluminized Corrugated Steel Pipe Culverts," Thick | Linear Foot | | " HDPE Pipe Culverts | Linear Foot | # **PIPE INSTALLATION:** (10-20-09) SP3R40 A Revise the 2006 Standard Specifications as follows: Replace Section 300 with the following: # SECTION 300 PIPE INSTALLATION # 300-1 DESCRIPTION Excavate, undercut, provide material, condition foundation, lay pipe, joint and couple pipe sections, and furnish and place all backfill material as necessary to install the various types of pipe culverts and fittings required to complete the project. Install pipe in accordance with the detail in the plans. Do not waste excavation unless permitted. Use suitable excavated material as backfill; or in the formation of embankments, subgrades, and shoulders; or as otherwise directed. Furnish disposal areas for the unsuitable material. The Engineer will identify excavated materials that are unsuitable. Where traffic is to be maintained, install pipe in sections so that half the width of the roadway is available to traffic. ### 300-2 MATERIALS Refer to Division 10: | Item | Section | |--------------------|-----------| | Flowable Fill | 1000 | | Select Materials | 1016 | | Joint Materials | 1032-9(G) | | Engineering Fabric | 1056-1 | Provide foundation conditioning material meeting the requirements of Article 1016-3 for Class V or VI as shown in the contract documents. Provide bedding material meeting the requirements of Article 1016-3 for Class II (Type 1 only) or Class III as shown in contract documents. Provide backfill material meeting the requirements of Article 1016-3 for Class II (Type 1 only) or Class III material as shown in the contract documents. Do not use corrugated steel pipe in the following counties: Beaufort, Bertie, Bladen, Brunswick, Camden, Carteret, Chowan, Columbus, Craven, Currituck, Dare, Gates, Hertford, Hyde, Jones, Martin, New Hanover, Onslow, Pamlico, Pasquotank, Pender, Perquimans, Tyrrell, and Washington. #### 300-3 UNLOADING AND HANDLING Unload and handle pipe with reasonable care. Do not roll or drag metal pipe or plates over gravel or rock during handling. Take necessary precautions to ensure the method used in lifting or placing the pipe does not induce stress fatigue in the pipe. Use a lifting device that uniformly distributes the weight of the pipe along its axis or circumference. Repair minor damage to pipe when permitted. Remove pipe from the project that is severely damaged or is rejected as being unfit for use. Undamaged portions of a joint or section may be used where partial lengths are required. #### 300-4 PREPARATION OF PIPE FOUNDATION Prepare the pipe foundation in accordance with the applicable as shown in the contract documents, true to line and grade, and uniformly firm. Camber invert grade an amount sufficient to prevent the development of sag or back slope in the flow line. The Contractor shall determine the amount of camber required and submit to the Engineer for approval. Where material is found to be of poor supporting value or of rock and when the Engineer cannot make adjustment in the location of the pipe, undercut existing foundation material within the limits established on the plans. Backfill the undercut with foundation conditioning material, Class V or VI select material. Encapsulate the foundation conditioning material with Type 4 engineering fabric prior to placing bedding material. Overlap all transverse and longitudinal joints in the fabric at least 18 inches. Maintain the pipe foundation in a dry condition. #### 300-5 INVERT ELEVATIONS The proposed pipe culvert invert elevations shown on the Drainage Summary Sheets are based upon information available when the plans were prepared. If proposed invert elevations are adjusted during construction based upon actual conditions encountered, no claim for an extension of time for any reason resulting from this information will be allowed. When a pipe culvert is to be installed in a trench and the average actual elevation of the pipe between drainage structures deviates from the average proposed elevation shown on the Drainage Summary Sheets by more than one foot a pay adjustment will be made as follows: Pay Adjustment (per linear foot) = $[(APE-AAE)\pm 1 \text{ foot}] (0.15 \text{ X CUP})$ Where: CUP = Contract Unit Price of Pipe Culvert AAE = Average Actual Elevation (Actual Inlet elev. + Actual Outlet elev.) APE = Average Plan Elevation (Plan Inlet elev. + Plan Outlet elev.) When the actual location of a pipe culvert is changed from the location shown on the plans, the Engineer will make a pay adjustment deemed warranted based upon the relation of the pipe culvert as shown on the plans to the finished roadway and the relation of the pipe culvert as constructed to the finished roadway. The top elevation column on the drainage summary sheet indicates the flow elevation at the top of structures intended to collect surface water. The top elevation column on drainage structures not intended to collect surface water indicates the elevation at the top of the cover. #### 300 -6 LAYING PIPE The Department reserves the right to perform forensic testing on any installed pipe. #### **(A) Rigid Pipe** Concrete and welded steel pipe will be considered rigid pipe. Lay pipe on prepared foundation, bell or groove end upgrade with the spigot or tongue fully inserted. Check each joint for alignment and grade as the work proceeds. Use flexible plastic joint material except when material of another type is specified in the contract documents. Joint material of another type may be used when permitted. Repair lift holes in concrete pipe, if present. Thoroughly clean and soak the lift hole and completely fill the void with an approved non-shrink gout. Submit alternate details for repairing lift holes to the engineer for review and approval. For all pipes 42 inches in diameter and larger, wrap filter fabric around all pipe joints. Use Type 2 Class B fabric. Extend fabric at least 12 inches beyond each side of the joint. Secure the filter fabric against the outside of the pipe by methods approved by the Engineer. # (B) Flexible Pipe (Except Structural Plate Pipe) Corrugated steel, corrugated aluminum, corrugated polyethylene (HDPE), and polyvinylchloride (PVC) pipe will be considered flexible pipe. Place flexible pipe carefully on the prepared foundation starting at the downstream end with the inside circumferential laps pointing downstream and with the longitudinal laps at the side or quarter points. Handle coated corrugated steel pipe with special care to avoid damage to coatings. Join pipe sections with coupling band, fully bolted and properly sealed. Provide coupling bands for annular and helical corrugated metal pipe with circumferential and longitudinal strength sufficient to preserve the alignment, prevent separation of the sections, and prevent backfill infiltration. Match-mark all pipe 60 inches or larger in diameter at the plant for proper installation on the project. At locations indicated in the plans, corrugated steel pipe sections shall be jointed together with rod and lug coupling bands, fully bolted. Sleeve gaskets shall be used in conjunction with rod and lug couplings and the joints properly sealed. Coupling bands shall provide circumferential and longitudinal strength sufficient to preserve the alignment, prevent separation of the sections and prevent infiltration of backfill material. #### 300-7 BEDDING AND BACKFILLING Loosely place bedding material, in a uniform layer, a depth equal to the inside diameter of the pipe divided by 6 or 6 inches, whichever is greater. Leave bedding material directly beneath the pipe uncompacted and allow pipe seating and backfill to accomplish compaction. Excavate recesses to receive the bells where bells and spigot type pipe is used. Place fill around the pipe in accordance with the applicable method shown on the plans in layers not to exceed 6 inches loose unless otherwise permitted. Compact to the density required by Subarticle 235-4(C). Approval of the backfill material is required prior to its use. Use select material as shown in the contract documents. Take care during backfill and compaction operations to maintain alignment and prevent damage to the joints. Keep backfill free from stones, frozen lumps, chunks of highly plastic clay, or other objectionable material. Grade and maintain all pipe backfill areas in such a condition that erosion or saturation will not damage the pipe foundation or backfill. Excavatable flowable fill may be used for backfill when approved by the Engineer. When using excavatable flowable fill, ensure that the pipe is not displaced and does not float during backfill. Submit methods for supporting the pipe and material placement to the Engineer for review and approval. Do not operate heavy equipment over any pipe until it has been properly backfilled with a minimum 3 feet of cover. Place, maintain, and finally remove the required cover that is above the proposed finished grade at no cost to the Department. Remove and replace, at no cost to the Department, pipe that becomes misaligned, shows excessive settlement, or has been otherwise damaged by the Contractor's operations. # 300-8 INSPECTION AND MAINTENANCE Prior to final acceptance, the Engineer will perform random video camera and or mandrel inspections to ensure proper jointing and that deformations do not exceed allowable limits. Replace pipes having cracks greater than 0.1 inches or deflections greater than 7.5 percent. Repair or replace pipes with cracks greater than 0.01 inches, exhibiting displacement across a crack, exhibiting bulges, creases, tears, spalls, or delamination. Maintain all pipe installations in a condition such that they will function continuously from the time the pipe is installed until the project is accepted. # 300-9 MEASUREMENT AND PAYMENT #### General No measurement will be made of any work covered by this section except as listed below. Removal and disposal of existing pavement is a part of the excavation for the new pipe culvert installation. Repair of the pavement will be made in accordance with Section 654. #### **Foundation Conditioning** #### **Using Local Material** Undercut excavation is all excavation removed by undercutting below the bottom of the trench as staked. *Undercut Excavation* will be measured as the actual number of cubic yards of undercut excavation, measured in its original position and computed by the average end area method, that has been removed as called for in the contract and will be paid for at double the contract unit price for *Unclassified Excavation* as provided in Article 225-7. Local material used for conditioning the foundation will be measured and paid for in accordance with Article 225-7 for *Unclassified Excavation* or in accordance with Article 230-5 for *Borrow Excavation* depending on the source of the material. Local material used to replace pipe undercut excavation will be measured and paid for in accordance with Article 225-7 or Article 230-5. ### **Using Other Than Local Material** No measurement and payment will be made for *Undercut Excavation*. The material used to replace pipe undercut excavation will be classified as foundation conditioning material. Foundation Conditioning Material, Minor Structures will be measured and paid for as the actual number of tons of this material weighed in trucks on certified platform scales or other certified weighing devices. No direct payment will be paid for undercut excavation. Payment at the contract unit price for *Foundation Conditioning Material*, *Minor Structures* will be full compensation for all work of pipe undercut excavation. # **Foundation Conditioning Fabric** Foundation Conditioning Fabric will be measured and paid for in square yards. The measurement will be based on the theoretical calculation using length of pipe installed and two times the standard trench width. No separate measurement will be made for overlapping fabric or the vertical fabric dimensions required to encapsulate the foundation conditioning material. # **Bedding and Backfill - Select Material** No measurement will be made for select bedding and backfill material required in the contract documents. The select bedding and backfill material will be included in the cost of the installed pipe. Where unclassified excavation or borrow material meets the requirements for select bedding and backfill and is approved for use by the Engineer, no deductions will be made to these pay items to account for use in the pipe installation. Payment will be made under: | Pay Item | Pay Unit | |----------------------------------------------------|-------------| | Foundation Conditioning Material, Minor Structures | Ton | | Foundation Conditioning Fabric | Square Yard | # **REINFORCED BRIDGE APPROACH FILL:** (3-18-03) (Rev 9-16-08) SP4 R01 A #### **Description** This work consists of all work necessary to construct reinforced bridge approach fills in accordance with these provisions and the plans, and as directed by the Engineer. #### Materials # (A) Geomembrane Provide geomembrane that is impermeable, composed of polyethylene polymers or polyvinyl chloride, and meets the following physical requirements: | Property | Requirements | <b>Test Method</b> | |----------------------------------|------------------------------------------|--------------------| | Thickness | 25 mils Minimum | <b>ASTM D1593</b> | | Tensile Strength at Break | 100 lb/inch Minimum | ASTM D638 | | Puncture Strength | 40 lbs Minimum | <b>ASTM D 4833</b> | | Moisture Vapor Transmission Rate | 0.018 oz/yd <sup>2</sup> per Day Maximum | ASTM E96 | #### (B) Fabric Refer to Section 1056 for Type 2 Engineering Fabric and the following: Use a woven fabric consisting of strong rot-proof synthetic fibers such as polypropylene, polyethylene, or polyester formed into a stable network such that the filaments or yarns retain their relative positions to each other. | Fabric Property | Requirements | Test Method | |-------------------|---------------------------|-------------| | Minimum Flow Rate | 2 gallons/min/square foot | ASTM D 4491 | Lamination of fabric sheets to produce the physical requirements of a fabric layer will not be accepted. Furnish letters of certification from the manufacturer with each shipment of the fabric and geomembrane attesting that the material meets the requirements of this provision; however, the material is subject to inspection, test, or rejection by the Engineer at any time. During all periods of shipment and storage, wrap the geomembrane and fabric in a heavy-duty protective covering to protect the material from ultraviolet rays. After the protective wrapping has been removed, do not leave the material uncovered under any circumstances for longer than 4 days. ### (C) Select Material Provide select material meeting the requirements of Class III, Type 1 or Type 2, or Class V select material of Section 1016 of the 2006 Standard Specifications. When select material is required under water, use select material class V only, up to one foot above the existing water elevation. ### (D) 4 inch Diameter Corrugated Drainage Pipe and Fittings Provide pipe and fittings that meet all the applicable requirements of Section 815 or 816 of the 2006 Standard Specifications. #### **Construction Methods** Place the geomembrane and fabric as shown on the plans or as directed by the Engineer. Perform the excavation for the fabric reinforced fill to the limits shown on the plans. Provide an excavated surface free of obstructions, debris, pockets, stumps, and cleared of all vegetation. The geomembrane or fabric will be rejected if it has defects, rips, holes, flaws, deterioration or damage incurred during manufacture, transportation, handling or storage. Lay all layers smooth, and free from tension, stress, folds, wrinkles or creases. Place all the fabric layers with the machine direction (roll direction) parallel to the centerline of the roadway. A minimum roll width of 10.0 feet for the fabric is required. Overlap geomembrane or fabric splices parallel to the centerline of the roadway a minimum of 18 inches. Geomembrane or fabric splices parallel to the backwall face will not be allowed. Deposit and spread select material in successive, uniform, approximately horizontal layers of not more than 10 inches in depth, loose measurement, for the full width of the cross section, and keep each layer approximately level. Place and compact each layer of select material fill no more than 10 inches thick with low ground pressure equipment. Use hand operated equipment to compact the fill material within three feet of the backwall and wingwalls as directed by the Engineer. Compact select material to a density equal to at least 95% of that obtained by compacting a sample of the material in accordance with AASHTO T99 as modified by the Department. Compact the top eight inches of select material to a density to at least 100% of that obtained by compacting a sample of the material in accordance with AASHTO T99 as modified by the Department. Density requirements are not applicable to select material, class V; however compact the fill with at least four passes of low ground pressure equipment on the entire surface as directed by the Engineer. The compaction of each layer of select material shall be inspected and approved by the Department prior to the placement of the next fill layer. No equipment will be allowed to operate on the drainage pipe or any geomembrane/fabric layer until it is covered with at least six inches of fill material. Compaction shall not damage the drainage pipe, geomembrane, or fabric under the fill. Cover the geomembrane/fabric with a layer of fill material within four days after placement of the geomembrane/fabric. Geomembrane and fabric that are damaged as a result of installation will be replaced as directed by the Department at no additional cost. Place the geomembrane on the ground, and attach and secure it tightly to the vertical face of the backwall and wingwalls with adhesives, duct-tape, nails or any other method approved by the Engineer. Place the first fabric layer on the surface of the geomembrane with the same dimensions of the geomembrane. No material or void is allowed between the geomembrane and the first fabric layer. Place and fold the remaining fabric layers on the edges as shown on the plans or as directed by the Engineer. Provide vertical separation between fabric layers as specified on the plans. The number of fabric layers will be shown in the plans. Place four inch diameter perforated drainage pipe along the base of the backwall and sloped to drain as shown on the plans. Completely wrap perforated drainage pipe and #78M stone with Type 2 Engineering Fabric as shown on the plan detail. Install a pipe sleeve through the bottom of or under the wing wall prior to placing concrete for the wing wall. The pipe sleeve shall be of adequate strength to withstand the wingwall load. Place the pipe sleeve in position to allow the drainage pipe to go through the wing wall with a proper slope. Connect four-inch diameter nonperforated (plain) drainage pipe with a coupling to the perforated pipe near the inside face of the wingwall. Place the nonperforated drainage pipe through the pipe sleeve, extend down to the toe of the slope and connect, to a ditch or other drainage systems as directed by the Engineer. For bridge approaches in cut sections where no side slope is available, direct the drainage pipe outlet to the end slope down to the toe using elbows as directed by the Engineer. #### **Measurement and Payment** Reinforced Bridge Approach Fill, Station \_\_\_\_\_ will be paid for at the contract lump sum price. Such price and payment will be full compensation for both approach fills at each bridge installation, including but not limited to furnishing, placing and compacting select material, furnishing and placing geomembrane and woven fabric, furnishing and placing pipe sleeve, C202165 (B-1037) Ashe County drainage pipe, and stone, furnishing and installing concrete pads at the end of outlet pipes, excavation and any other items necessary to complete the work. Payment will be made under: Pay ItemPay UnitReinforced Bridge Approach Fill, StationLump Sum # FINE GRADING SUBGRADE, SHOULDERS AND DITCHES: (7-21-09 SP5R01 Revise the Standard Specifications as follows: Page 5-1, Article 500-1 Description, replace the first sentence with the following: Perform the work covered by this section including but not limited to preparing, grading, shaping, manipulating moisture content, and compacting either an unstabilized or stabilized roadbed to a condition suitable for placement of base course, pavement, and shoulders. #### **ASPHALT PAVEMENTS - SUPERPAVE:** (7-18-06)(Rev 10-20-09) SP6R01 Revise the 2006 Standard Specifications as follows: Page 6-2, Article 600-9 Measurement and Payment, delete the second paragraph. Page 6-12, Subarticle 609-5(C)2, Required Sampling and Testing Frequencies, first partial paragraph at the top of the page, delete last sentence and add the following: If the Engineer allows the mix to remain in place, payment will be made in accordance with Article 105-3. # Page 6-12, Subarticle 609-5(C)2, QUALITY CONTROL MINIMUM SAMPLING AND TESTING SCHEDULE First paragraph, delete and replace with the following. Sample and test the completed mixture from each mix design per plant per year at the following minimum frequency during mix production: #### Second paragraph, delete the fourth sentence, and replace with the following When daily production of each mix design exceeds 100 tons and a regularly scheduled full test series random sample location for that mix design does not occur during that day's production, perform at least one partial test series consisting of Items A and B in the schedule below. # Page 6-12, Subarticle 609-5(C)2(c) Maximum Specific Gravity, add after (AASHTO T 209): or ASTM D 2041 # Page 6-13, last line and on page and Page 6-14, Subarticle 609-5(C)(2)(e) Tensile Strength Ratio (TSR), add a heading before the first paragraph as follows: (i) Option 1 #### Insert the following immediately after the first paragraph: (ii) Option 2 Mix sampled from truck at plant with one set of specimens prepared by the Contractor and then tested jointly by QA and QC at a mutually agreed upon lab site within the first 7 calendar days after beginning production of each new mix design. ### Second paragraph, delete and replace with the following: Test all TSR specimens required by either option noted above on either a recording test press or a test press that maintains the peak load reading after the specimen has broken. # Subarticle 609-5(C)(3) Control Charts, delete the second sentence of the first paragraph and replace with the following: For mix incorporated into the project, record full test series data from all regularly scheduled random samples or directed samples that replace regularly scheduled random samples, on control charts the same day the test results are obtained. # Page 6-15, Subarticle 609-5(C)(3) Control Charts, first paragraph on this page, delete the last sentence and substitute the following: Denote the moving average control limits with a dash green line and the individual test limits with a dash red line. #### Subarticle 609-5(C)(3)(a), (b) and (c), replace (a) (b) and (c) with the following: - (a) A change in the binder percentage, aggregate blend, or G<sub>mm</sub> is made on the JMF, or, - (b) When the Contractor elects to stop or is required to stop production after one or two moving average values, respectively, fall outside the moving average limits as outlined in subarticle 609-5(C)6 or, (c) If failure to stop production after two consecutive moving averages exceed the moving average limits occurs, but production does stop at a subsequent time, reestablish a new moving average beginning at the actual production stop point. Subarticle 609-5(C)(4) Control Limits, replace the first paragraph and the CONTROL LIMITS Table on page 6-16 with the following. The following are established as control limits for mix production. Apply the individual limits to the individual test results. Control limits for the moving average limits are based on a moving average of the last 4 data points. Apply all control limits to the applicable target source. #### **CONTROL LIMITS** | COLLINGE EMILIES | | | | | | |--------------------------------------------|------------------|-------------------------|------------------|--|--| | Mix Control Criteria | Target Source | Moving Average<br>Limit | Individual Limit | | | | 2.36 mm Sieve | JMF | ±4.0 % | ±8.0 % | | | | 0.075mm Sieve | JMF | ±1.5 % | ±2.5 % | | | | Binder Content | JMF | ±0.3 % | ±0.7 % | | | | VTM @ N <sub>des</sub> | JMF | ±1.0 % | ±2.0 % | | | | VMA @ N <sub>des</sub> | Min. Spec. Limit | Min Spec. Limit | -1.0% | | | | P <sub>0.075</sub> / P <sub>be</sub> Ratio | 1.0 | ±0.4 | ±0.8 | | | | %G <sub>mm</sub> @ N <sub>ini</sub> | Max. Spec. Limit | N/A | +2.0% | | | | TSR | Min. Spec. Limit | N/A | - 15% | | | Page 6-16, Subarticle 609-5(C)(5) Warning Bands, delete this subarticle in its entirety. Pages 6-16 through 6-19, Subarticle 609-5(C)(6), delete the word "warning" and substitute the words "moving average". Page 6-16, Subarticle 609-5(C)(6) Corrective Actions, first paragraph, first sentence, delete and replace with the following: Immediately notify the Engineer when moving averages exceed the moving average limits. # Page 6-17, third full paragraph, delete and replace with the following: Failure to stop production when required due to an individual mix test not meeting the specified requirements will subject all mix from the stop point tonnage to the point when the next individual test is back on or within the moving average limits, or to the tonnage point when production is actually stopped, whichever occurs first, to being considered unacceptable. # Sixth full paragraph, delete the first, second, and third sentence and replace with the following: Immediately notify the Engineer when any moving average value exceeds the moving average limit. If two consecutive moving average values for any one of the mix control criteria fall outside the moving average limits, cease production of that mix, immediately notify the Engineer of the stoppage, and make adjustments. The Contractor may elect to stop production after only one moving average value falls outside the moving average limits. # Page 6-18, Subarticle 609-5(C)(6) Corrective Actions second full paragraph, delete and replace with the following: If the process adjustment improves the property in question such that the moving average after four additional tests is on or within the moving average limits, the Contractor may continue production with no reduction in payment # Page 6-18, delete the third and fourth full paragraphs, including the Table for Payment for Mix Produced in the Warning Bands and substitute the following: If the adjustment does not improve the property in question such that the moving average after four additional individual tests is outside the moving average limits, the mix will be evaluated for acceptance in accordance with Article 105-3. Reduced payment for or removal of the mix in question will be applied starting from the plant sample tonnage at the stop point to the sample tonnage when the moving average is on or within the moving average limits. In addition, any mix that is obviously unacceptable will be rejected for use in the work. #### Page 6-19, First paragraph, delete and replace with the following: Failure to stop production and make adjustments when required due to two consecutive moving average values falling outside the moving average limits will subject all mix produced from the stop point tonnage to the tonnage point when the moving average is back on or within the moving average limits or to the tonnage point when production is actually stopped, whichever occurs first, to being considered unacceptable. Remove this material and replaced with materials that comply with the Specifications at no additional costs to the Department, unless otherwise approved. Payment will be made for the actual quantities of materials required to replace the removed quantities, not to exceed the original amounts. # Page 6-20, Subarticle 609-5(D)(1) General, delete the third full paragraph, and replace with the following: Perform the sampling and testing at the minimum test frequencies as specified above. Should the density testing frequency fail to meet the minimum frequency as specified above, all mix without the required density test representation will be considered unsatisfactory. If the Engineer allows the mix to remain in place, payment will be made in accordance with Article 105-3. # Page 6-22, Subarticle 609-5(D)(4) Nuclear Gauge Density Procedures, third paragraph, insert the following as the second sentence: Determine the Daily Standard Count in the presence of the QA Roadway Technician or QA Nuclear Gauge Technician on days when a control strip is being placed. # Page 6-23, Subarticle 609-5(D)(5) Limited Production Procedure, delete the first paragraph including (a), (b), (c) and substitute the following: Proceed on limited production when, for the same mix type and on the same contract, one of the following conditions occur (except as noted in the first paragraph below). - (a) Two consecutive failing lots, except on resurfacing\* - (b) Three consecutive failing lots on resurfacing\* - (c) Two consecutive failing nuclear control strips. - \* Resurfacing is defined as the first new uniform layer placed on an existing pavement. # Page 6-25, Article 609-6 Quality Assurance, Density Quality Assurance, insert the following items after item (E): - (F) By retesting Quality Control core samples from control strips (either core or nuclear) at a frequency of 100% of the frequency required of the Contractor; - (G) By observing the Contractor perform all standard counts of the Quality Control nuclear gauge prior to usage each nuclear density testing day; or - (H) By any combination of the above # Page 6-28, Subarticle 610-3(A) Mix Design-General, delete the fourth and fifth paragraphs and replace with the following: Reclaimed Asphalt Pavement (RAP) or Reclaimed Asphalt Shingles (RAS) may be incorporated into asphalt plant mixes in accordance with Article 1012-1 and the following applicable requirements. Reclaimed asphalt pavement (RAP) may constitute up to 50% of the total material used in recycled mixtures, except for mix Type S 12.5D, Type S 9.5D, and mixtures containing reclaimed asphalt shingle material (RAS). Reclaimed asphalt shingle (RAS) material may constitute up to 6% by weight of total mixture for any mix. When both RAP and RAS are used, do not use a combined percentage of RAS and RAP greater than 20% by weight of total mixture, unless otherwise approved. When the percent of binder contributed from RAS or a combination of RAS and RAP exceeds 20% but not more than 30% of the total binder in the completed mix, the virgin binder PG grade shall be one grade below (both high and low temperature grade) the binder grade specified in Table 610-2 for the mix type, unless otherwise approved. When the percent of binder contributed from RAS or a combination of RAS and RAP exceeds 30% of the total binder in the completed mix, the Engineer will establish and approve the virgin binder PG grade. Use approved methods to determine if any binder grade adjustments are necessary to achieve the performance grade for the specified mix type. For Type S 12.5D and Type S 9.5D mixes, the maximum percentage of reclaimed asphalt material is limited to 20% and shall be produced using virgin asphalt binder grade PG 76-22. For all other recycled mix types, the virgin binder PG grade shall be as specified in Table 610-2A for the specified mix type. When the percentage of RAP is greater than 20% but not more than 30% of the total mixture, use RAP meeting the requirements for processed or fractionated RAP in accordance with the requirements of Section 1012-1. When the percentage of RAP is greater than 30% of the total mixture, use an approved stockpile of RAP in accordance with Section 1012-1(C). Use approved test methods to determine if any binder grade adjustments are necessary to achieve the performance grade for the specified mix type. The Engineer will establish and approve the virgin asphalt binder grade to be used. # **Page 6-34, Subarticle 610-3(C),** Delete Table 610-2 and associated notes. Substitute the following: TABLE 610-2 SUPERPAVE MIX DESIGN CRITERIA | Mix<br>Type | Design<br>ESALs<br>Millions | Binder<br>PG<br>Grade | Compaction<br>Levels No.<br>Gyrations @ | | Max.<br>Rut<br>Depth<br>(mm) | Volumetric Properties (c) | | | E) | |------------------|-----------------------------|-----------------------------------------------|-----------------------------------------|------------------|------------------------------|--------------------------------------------------------|------------|-----------------|-----------------------------------------------------------------------------| | | (a) | (b) | N <sub>ini</sub> | N <sub>des</sub> | | VMA<br>% Min. | VTM<br>% | VFA<br>Min Max. | ${^{\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!$ | | S-4.75A(e) | < 0.3 | 64 -22 | 6 | 50 | | 20.0 | 7.0 - 15.0 | | | | SF-9.5A | < 0.3 | 64 -22 | 6 | 50 | 11.5 | 16.0 | 3.0 - 5.0 | 70 - 80 | ≤ 91.5 | | S-9.5B | 0.3 - 3 | 64 -22 | 7 | 65 | 9.5 | 15.5 | 3.0 - 5.0 | 65 - 80 | ≤ 90.5 | | S-9.5C | 3 - 30 | 70 -22 | 7 | 75 | 6.5 | 15.5 | 3.0 - 5.0 | 65 - 78 | ≤ 90.5 | | S-9.5D | > 30 | 76 -22 | 8 | 100 | 4.5 | 15.5 | 3.0 - 5.0 | 65 - 78 | ≤ 90.0 | | S-12.5C | 3 - 30 | 70 -22 | 7 | 75 | 6.5 | 14.5 | 3.0 - 5.0 | 65 - 78 | ≤ 90.5 | | S-12.5D | > 30 | 76 -22 | 8 | 100 | 4.5 | 14.5 | 3.0 - 5.0 | 65 - 78 | ≤ 90.0 | | I-19.0B | < 3 | 64 -22 | 7 | 65 | | 13.5 | 3.0 - 5.0 | 65 - 78 | ≤ 90.5 | | I-19.0C | 3 - 30 | 64 -22 | 7 | 75 | | 13.5 | 3.0 - 5.0 | 65 - 78 | ≤ 90.0 | | I-19.0D | >30 | 70 -22 | 8 | 100 | | 13.5 | 3.0 - 5.0 | 65 - 78 | ≤ 90.0 | | B-25.0B | < 3 | 64 -22 | 7 | 65 | | 12.5 | 3.0 - 5.0 | 65 - 78 | ≤ 90.5 | | B-25.0C | > 3 | 64 -22 | 7 | 75 | · | 12.5 | 3.0 - 5.0 | 65 - 78 | ≤ 90.0 | | All Mix<br>Types | 1. Dust to 2. Retained | Paramete<br>Binder Rander Tensile<br>O T283 M | atio ( $P_{0.0}$<br>Strength | | | <b>Design Criteria</b> 0.6 – 1.4 85% Min. ( <b>d</b> ) | | | | Notes: - (a) Based on 20 year design traffic. - (b) When Recycled Mixes are used, select the binder grade to be added in accordance with Subarticle 610-3(A). - (c) Volumetric Properties based on specimens compacted to $N_{des}$ as modified by the Department. - (d) AASHTO T 283 Modified (No Freeze-Thaw cycle required). TSR for Type S 4.75A, Type B 25.0B, and Type B 25.0C mixes is 80% minimum. - (e) Mix Design Criteria for Type S 4.75A may be modified subject to the approval of the Engineer. # Page 6-34, Insert the following immediately after Table 610-2: #### TABLE 610-2A SUPERPAVE MIX DESIGN CRITERIA | | Percentage of RAP in Mix | | | |--------------------------------------------|--------------------------|--------------------------------|--------------| | | Category 1 | Category 2 | Category 3 | | Mix Type | % RAP ≤20% | $20.1\% \le \% RAP \le 30.0\%$ | %RAP > 30.0% | | All A and B Level<br>Mixes, I19.0C, B25.0C | PG 64 -22 | PG 64 -22 | TBD | | S9.5C, S12.5C, I19.0D | PG 70 -22 | PG 64-22 | TBD | | S 9.5D and S12.5D | PG 76-22 | N/A | N/A | Note: (1) Category 1 RAP has been processed to a maximum size of 2 inches. - (2) Category 2 RAP has been processed to a maximum size of 1 inch by either crushing and or screening to reduce variability in the gradations. - (3) Category 3 RAP has been processed to a maximum size of 1 inch, fractionating the RAP into 2 or more sized stockpiles ### Page 6-35, Table 610-3 delete and replace with the following: TABLE 610-3 ASPHALT PLACEMENT- MINIMUM TEMPERATURE REQUIREMENTS | Asphalt Concrete Mix Type | Minimum Air<br>Temperature | Minimum Surface<br>Temperature | |-------------------------------------|----------------------------|--------------------------------| | ACBC, Type B 25.0B, C, B 37.5C | 35°F | 35°F | | ACIC, Type I 19.0B, C, D | 35°F | 35°F | | ACSC, Type S 4.75A, SF 9.5A, S 9.5B | 40°F | 50°F* | | ACSC, Type S 9.5C, S 12.5C | 45°F | 50°F | | ACSC, Type S 9.5D, S 12.5D | 50°F | 50°F | <sup>\* 35°</sup>F if surface is soil or aggregate base for secondary road construction. # Page 6-44, Article 610-8 Spreading and Finishing, third full paragraph, replace the first sentence with the following: Use the 30 foot minimum length mobile grade reference system or the non-contacting laser or sonar type ski with at least four referencing stations mounted on the paver at a minimum length of 24 feet to control the longitudinal profile when placing the initial lanes and all adjacent lanes of all layers, including resurfacing and asphalt in-lays, unless otherwise specified or approved. # Page 6-50, Article 610-13 Density Acceptance, delete the second paragraph and replace with the following: As an exception, when the first layer of mix is a surface course and is being placed directly on an unprimed aggregate or soil base, the layer will be included in the "Other" construction category. # Page 6-50, Article 610-13 Density Acceptance, delete the formula and description in the middle of the page and replace with the following:, $PF = 100 - 10(D)^{1.465}$ where: PF = Pay Factor (computed to 0.1%) D = the deficiency of the lot average density, not to exceed 2.0% ### Page 6-53, Article 620-4 Measurement and Payment: Sixth paragraph, delete the last sentence. ### Seventh paragraph, delete the paragraph and replace with the following: The adjusted contract unit price will then be applied to the theoretical quantity of asphalt binder authorized for use in the plant mix placed during the partial payment period involved, except that where recycled plant mix is used, the adjusted unit price will be applied only to the theoretical number of tons of additional asphalt binder materials required by the job mix formula. #### Page 6-54, Article 620-4 Measurement and Payment, add the following pay item: Pay ItemPay UnitAsphalt Binder for Plant Mix, Grade PG 70-28Ton #### Page 6-69, Table 660-1 Material Application Rates and Temperatures, add the following: | Type of<br>Coat | Grade of Asphalt | Asphalt Rate<br>gal/yd² | Application<br>Temperature<br>°F | Aggregate<br>Size | Aggregate<br>Rate lb./sq. yd.<br>Total | |-----------------|--------------------|-------------------------|----------------------------------|-------------------|----------------------------------------| | Sand Seal | CRS-2 or<br>CRS-2P | 0.22-0.30 | 150-175 | Blotting<br>Sand | 12-15 | ### Page 6-75, Subarticle 660-9(B), add the following as sub-item (5) #### (5) Sand Seal Place the fully required amount of asphalt material in one application and immediately cover with the seal coat aggregate. Uniformly spread the fully required amount of aggregate in one application and correct all non-uniform areas prior to rolling. Immediately after the aggregate has been uniformly spread, perform rolling. When directed, broom excess aggregate material from the surface of the seal coat. When the sand seal is to be constructed for temporary sealing purposes only and will not be used by traffic, other grades of asphalt material meeting the requirements of Articles 1020-6 and 1020-7 may be used in lieu of the grade of asphalt required by Table 660-1 when approved. ### Page 6-76, Article 661-1 Description, add the following as the 2nd paragraph: Provide and conduct the quality control and required testing for acceptance of the UBWC in accordance with "Quality Management System for Asphalt Pavements (OGAFC, PADL, and Ultra-Thin HMA Version)", included in the contract. ### Page 6-80, Subarticle 661-3(A) Equipment, add the following as the first paragraph: Use asphalt mixing plants in accordance with Article 610-5. Page 10-41, Table 1012-1, delete the last row of entries for OGAFC and add the following: | Mix Type | Coarse<br>Aggregate<br>Angularity <sup>(b)</sup><br>ASTM D5821 | Fine Aggregate Angularity % Minimum AASHTO T304 Method A | Sand Equivalent<br>% Minimum<br>AASHTO T176 | Flat & Elongated 5:1 Ratio<br>% Maximum<br>ASTM D4791 Section 8.4 | |----------|----------------------------------------------------------------|----------------------------------------------------------|---------------------------------------------|-------------------------------------------------------------------| | S 9.5 D | 100/100 | 45 | 50 | 10 | | OGAFC | 100/100 | N/A | N/A | 10 | | UBWC | 100/85 | 40 | 45 | 10 | #### Delete Note (c) under the Table 1012-1 and replace with the following: (c) Does not apply to Mix Types SF 9.5A and S 9.5B. # Page 10-43, Subarticle 1012-1(F): Reclaimed Asphalt Shingle Material (RAS), insert the following immediately following the first paragraph: #### (1) Mix Design RAS Incorporate RAS from stockpiles that have been tested for uniformity of gradation and binder content prior to use in an asphalt mix design. ### (2) Mix Production RAS New Source RAS is defined as acceptable material which was not included in the stockpile when samples were taken for mix design purposes. Process new source RAS so that all materials will pass a 1/2" sieve prior to introduction into the plant mixer unit. After a stockpile of processed RAS has been sampled and mix designs made from these samples, do not add new source RAS to the original stockpile without prior field testing to insure gradation and binder uniformity. Sample and test new source RAS before blending with the existing stockpile. Store new source RAS in a separate stockpile until the material can be sampled and tested for comparison with the original recycled mix design data. New source RAS may also be placed against the existing stockpile in a linear manner provided it is sampled for mix design conformity prior to its use in the recycled mix. RAS contamination including but not limited to excessive dirt, debris, clean stone, concrete will not be allowed. Field approval of new source RAS will be based on the table below and volumetric mix properties on the mix with the new source RAS included. Provided these tolerances are met, volumetric properties of the new mix will then be performed. If all volumetric mix properties meet the mix design criteria for that mix type, the new source RAS may continue to be used. If the gradation, binder content, or any of the volumetric mix properties are not within the allowable tolerances of the table below, do not use the new source RAS unless approved by the Engineer. The Contractor may elect to either not use the stockpile, to request an adjustment to the JMF, or to redesign the mix. NEW SOURCE RAS GRADATION and BINDER TOLERANCES (Apply Tolerances to Mix Design Data) | 0-6% RAS | | | |------------------|-----------|--| | P <sub>b</sub> % | ±1.6% | | | Sieve Size (mm) | Tolerance | | | 9.5 | ±1 | | | 4.75 | ±5 | | | 2.36 | ±4 | | | 1.18 | ±4 | | | 0.300 | ±4 | | | 0.150 | ±4 | | | 0.075 | ±2.0 | | Page 10-43 through 10-45, Subarticle 1012-1(G), delete this in its entirety and replace with the following: ## (G) Reclaimed Asphalt Pavement (RAP) ## (1) Mix Design RAP Incorporate RAP from stockpiles or other sources that have been tested for uniformity of gradation and binder content prior to use in an asphalt mix design. Use reclaimed asphalt pavement that meets all requirements specified for *one of* the following *two* classifications. ## (a) Millings Existing reclaimed asphalt pavement (RAP) that is removed from its original location by a milling process as specified in Section 607. Millings should be such that it has a uniform gradation and binder content and all materials will pass a 2" sieve prior to introduction into the plant mixer unit. ## (b) Processed RAP RAP that is processed in some manner (possibly by crushing and/or use of a blending method) to produce a uniform gradation and binder content in the RAP prior to use in a recycled mix. Process RAP so that all materials have a uniform gradation and binder content and will pass a 1" sieve prior to introduction into the plant mixer unit. #### (c) Fractionated RAP Fractionated RAP is defined as having two or more RAP stockpiles, where the RAP is divided into coarse and fine fractions. Grade RAP so that all materials will pass a 1" sieve. The coarse RAP stockpile shall only contain material retained on a 3/8" screen, unless otherwise approved. The fine RAP stockpile shall only contain material passing the 3/8" screen, unless otherwise approved. The Engineer may allow the Contractor to use an alternate to the 3/8" screen to fractionate the RAP. The maximum percentages of fractionated RAP may be comprised of coarse, fine, or the combination of both. Utilize a separate cold feed bin for each stockpile of fractionated RAP used. ## (d) Approved Stockpiled RAP Approved Stockpiled RAP is defined as fractionated RAP which has been isolated and tested for asphalt content, gradation, and asphalt binder characteristics with the intent to be used in mix designs with greater than 30% RAP materials. Fractionate the RAP in accordance with Section 1012-1(G)(c). Utilize a separate cold feed bin for each approved stockpile of RAP used. Perform extraction tests at a rate of 1 per 1000 tons of RAP, with a minimum of 5 tests per stockpile to determine the asphalt content and gradation. Separate stockpiles of RAP material by fine and coarse fractions. Erect and maintain a sign satisfactory to the Engineer on each stockpile to identify the material. Assure that no deleterious material is allowed in any stockpile. The Engineer may reject by visual inspection any stockpiles that are not kept clean, separated, and free of foreign materials. Submit requests for RAP stockpile approval to the Engineer with the following information at the time of the request: - (1) Approximate tons of materials in stockpile - (2) Name or Identification number for the stockpile - (3) Asphalt binder content and gradation test results - (4) Asphalt characteristics of the Stockpile. For the Stockpiled RAP to be considered for approval, the gradation and asphalt content shall be uniform. Individual test results, when compared to the target, will be accepted if within the tolerances listed below: APPROVED STOCKPILED RAP GRADATION and BINDER TOLERANCES (Apply Tolerances to Mix Design Data) | P <sub>b</sub> % | ±0.3% | |------------------|-----------------| | Sieve Size (mm) | Percent Passing | | 25.0 | ±5% | | 19.0 | ±5% | | 12.5 | ±5% | | 9.5 | ±5% | | 4.75 | ±5% | | 2.36 | ±4% | | 1.18 | ±4% | | 0.300 | ±4% | | 0.150 | ±4% | | 0.075 | ±1.5% | Note: If more than 20% of the individual sieves are out of the gradation tolerances, or if more than 20% of the asphalt binder content test results fall outside the appropriate tolerances, the RAP shall not be used in HMA unless the RAP representing the failing tests is removed from the stockpile. Do not add additional material to any approved RAP stockpile, unless otherwise approved by the Engineer. Maintain at the plant site a record system for all approved RAP stockpiles. Include at a minimum the following: Stockpile identification and a sketch of all stockpile areas at the plant site; all RAP test results (including asphalt content, gradation, and asphalt binder characteristics). ### (2) Mix Production RAP During mix production, use RAP that meets the criteria for one of the following categories: ### (a) Mix Design RAP RAP contained in the mix design stockpiles as described above may be used in all applicable JMFs. These stockpiles have been pretested: however, they are subject to required QC/QA testing in accordance with Subarticle 609-5(C)(2). ## (b) New Source RAP New Source RAP is defined as any acceptable material that was not included in the stockpile or other source when samples were taken for mix design purposes. Process new source RAP so that all materials have a uniform gradation and binder content and will pass a 2" sieve prior to introduction into the plant mixer unit. After a stockpile of millings, processed RAP, or fractionated RAP has been sampled and mix designs made from these samples, do not add new source RAP to the original stockpile without prior field testing to insure gradation and binder uniformity. Sample and test new source RAP before blending with the existing stockpile. Store new source RAP in a separate stockpile until the material can be sampled and tested for comparison with the original recycled mix design data. New source RAP may also be placed against the existing stockpile in a linear manner provided it is sampled for mix design conformity prior to its use in the recycled mix. Unprocessed RAP is asphalt material that was not milled and/or has not been processed to obtain a uniform gradation and binder content and is not representative of the RAP used during the applicable mix design. Unprocessed RAP shall not be incorporated into any JMFs prior to processing. Different sources of unprocessed RAP may be stockpiled together provided it is generally free of contamination and will be processed prior to use in a recycled mix. RAP contamination in the form of excessive dirt, debris, clean stone, concrete, etc. will not be allowed. Incidental amounts of dirt, concrete, and clean stone may be acceptable. Unprocessed RAP may be processed and then classified as a new source RAP as described above. Field approval of new source RAP will be based on Table 1012-2 below and volumetric mix properties on the mix with the new source RAP included. Provided the Table 1012-2 tolerances are met, volumetric properties of the new mix will then be performed. If all volumetric mix properties meet the mix design criteria for that mix type, the new source RAP may continue to be used. If the gradation, binder content, or any of the volumetric mix properties are not within the allowable tolerances of Table 1012-2, do not use the new source RAP unless approved by the Engineer. The Contractor may elect to either not use the stockpile, to request an adjustment to the JMF, or to redesign the mix. TABLE 1012-2 NEW SOURCE RAP GRADATION and BINDER TOLERANCES (Apply Tolerances to Mix Design Data) | (Apply Tolerances to MA Design Data) | | | | | | | | | | |--------------------------------------|-----------|--------|--------------------|------|--------|-----------------------|--------|--------|------------| | Mix | 0-20% RAP | | $20^{+}$ -30 % RAP | | | 30 <sup>+</sup> % RAP | | | | | Type | | | | | | | | | | | Sieve | Base | Inter. | Surf. | Base | Inter. | Surf. | Base | Inter. | Surf. | | (mm) | | | | | | | - " ' | | | | P <sub>b</sub> % | | ± 0.7% | | | ± 0.4% | | ± 0.3% | | | | 25.0 | ±10 | - | - | ±7 | - | - | ±5 | - | - | | 19.0 | ±10 | ±10 | - | ±7 | ±7 | | ±5 | ±5 | - | | 12.5 | - | ±10 | ±10 | - | ±7 | ±7 | - | ±5 | ±5 | | 9.5 | - | - | ±10 | - | - | ±7 | - | - | ±5 | | 4.75 | ±10 | - | ±10 | ±7 | - | ±7 | ±5 | - | ±5 | | 2.36 | ±8 | ±8 | ±8 | ±5 | ±5 | ±5 | ±4 | ±4 | ±4 | | 1.18 | ±8 | ±8 | ±8 | ±5 | ±5 | ±5 | ±4 | ±4 | ±4 | | 0.300 | ±8 | ±8 | ±8 | ±5 | ±5 | ±5 | ±4 | ±4 | ±4 | | 0.150 | - | - | ±8 | _ | - | ±5 | - | - | <u>±</u> 4 | | 0.075 | ±4 | ±4 | ±4 | ±2 | ±2 | ±2 | ±1.5 | ±1.5 | ±1.5 | | | | | | | | | | | | ## ASPHALT BINDER CONTENT OF ASPHALT PLANT MIXES: (11-21-00) SP6 R15 The approximate asphalt binder content of the asphalt concrete plant mixtures used on this project will be as follows: | Asphalt Concrete Base Course | Type B 25.0 | 4.3% | |--------------------------------------|--------------|------| | Asphalt Concrete Intermediate Course | Type I 19.0 | 4.7% | | Asphalt Concrete Surface Course | Type S 4.75A | 7.0% | | Asphalt Concrete Surface Course | Type SF 9.5A | 6.5% | | Asphalt Concrete Surface Course | Type S 9.5 | 6.0% | | Asphalt Concrete Surface Course | Type S 12.5 | 5.5% | The actual asphalt binder content will be established during construction by the Engineer within the limits established in the 2006 Standard Specifications. ## **ASPHALT PLANT MIXTURES:** (7-1-95) SP6 R20 Place asphalt concrete base course material in trench sections with asphalt pavement spreaders made for the purpose or with other equipment approved by the Engineer. ## PRICE ADJUSTMENT - ASPHALT BINDER FOR PLANT MIX: (11-21-00) SP6 R25 Price adjustments for asphalt binder for plant mix will be made in accordance with Section 620 of the 2006 Standard Specifications. The base price index for asphalt binder for plant mix is \$ 419.67 per ton. This base price index represents an average of F.O.B. selling prices of asphalt binder at supplier's terminals on **December 1, 2009**. #### **MASONRY DRAINAGE STRUCTURES:** (10-16-07) SP8 R01 Revise the 2006 Standard Specifications as follows: Page 8-31, Article 840-4 Measurement and Payment, add the following at the end of the second paragraph: For that portion of *Masonry Drainage Structure* measured above a height of 10.0 feet, payment will be made at 1.3 times the contract unit price per linear foot for *Masonry Drainage Structure*. # BORROW EXCAVATION AND SHPO DOCUMENTATION FOR BORROW/WASTE SITES: (12-18-07) (4-15-08) SP8 R02 Revise the 2006 Standard Specifications as follows: #### **Division 2 Earthwork** Page 2-16, Subarticle 230-1(D), add the words: The Contractor specifically waives as the first words of the sentence. # Page 2-17, Article 230-4(B) Contractor Furnished Sources, first paragraph, first sentence replace with the following: Prior to the approval of any borrow sources developed for use on any project, obtain certification from the State Historic Preservation Officer of the State Department of Cultural Resources certifying that the removal of the borrow material from the borrow sources(s) will have no effect on any known district, site building, structure, or object, architectural and/or archaeological that is included or eligible for inclusion in the National Register of Historic Places. #### **Division 8 Incidentals** ## Page 8-9, Article 802-2 General Requirements, add the following as the 1st paragraph: Prior to the removal of any waste from any project, obtain certification from the State Historic Preservation Officer of the State Department of Cultural Resources certifying that the deposition of the waste material to the proposed waste area will have no effect on any known district, site building, structure, or object, architectural and/or archaeological that is included or eligible for inclusion in the National Register of Historic Places. Furnish a copy of this certification to the Engineer prior to performing any work in the proposed waste site. # Page 8-10, Article 802-2, General Requirements, 4th paragraph, add the following as the 2nd sentence: The Department's borrow and waste site reclamation procedures for contracted projects is available on the NCDOT website and shall be used for all borrow and waste sites on this project. ## **ENDWALLS:** (5-20-08) SP8 R25 Revise the Standard Specifications as follows: #### Page 8-28, Article 838-4 Replace the 1st and 2nd paragraph with the following: *Endwalls* will be measured and paid for in cubic yards of concrete or brick that have been completed and accepted. This quantity will be computed from the dimensions shown on the plans or from revised authorized dimensions. Where precast concrete units have been approved and are used in lieu of cast-in-place units the quantity to be paid for will be computed the same as if cast-in-place units were used, as no reduction in pay quantity will be made due to the use of precast in lieu of cast in place endwalls. Reinforced Endwalls will be measured and paid for in cubic yards of concrete or brick that have been completed and accepted. This quantity will be computed from the dimensions shown on the plans or from revised authorized dimensions. Where precast concrete units have been approved and are used in lieu of cast-in-place units the quantity to be paid for will be computed the same as if cast-in-place units were used, as no reduction in pay quantity will be made due to the use of precast in lieu of reinforced cast in place endwalls. ## **GUARDRAIL ANCHOR UNITS, TYPE 350:** (4-20-04) SP8 R65 ## **Description** Furnish and install guardrail anchor units in accordance with the details in the plans, the applicable requirements of Section 862 of the 2006 Standard Specifications, and at locations shown in the plans. #### **Materials** The Contractor may at his option, furnish any one of the guardrail anchor units. Guardrail anchor unit (ET-2000) as manufactured by: Trinity Industries, Inc. 2525 N. Stemmons Freeway Dallas, Texas 75207 Telephone: 800-644-7976 The guardrail anchor unit (SKT 350) as manufactured by: Road Systems, Inc. 3616 Old Howard County Airport Big Spring, Texas 79720 Telephone: 915-263-2435 Prior to installation the Contractor shall submit to the Engineer: - (A) FHWA acceptance letter for each guardrail anchor unit certifying it meets the requirements of NCHRP Report 350, Test Level 3, in accordance with Section 106-2 of the 2006 Standard Specifications. - (B) Certified working drawings and assembling instructions from the manufacturer for each guardrail anchor unit in accordance with Section 105-2 of the 2006 Standard Specifications. No modifications shall be made to the guardrail anchor unit without the express written permission from the manufacturer. Perform installation in accordance with the details in the plans, and details and assembling instructions furnished by the manufacturer. #### **Construction Methods** Guardrail end delineation is required on all approach and trailing end sections for both temporary and permanent installations. Guardrail end delineation consists of yellow reflective sheeting applied to the entire end section of the guardrail in accordance with Section 1088-3 of the 2006 Standard Specifications and is incidental to the cost of the guardrail anchor unit. ## Measurement and Payment Measurement and payment will be made in accordance with Articles 862-6 of the 2006 Standard Specifications. Payment will be made under: Pay Item Guardrail Anchor Units, Type 350 Pay Unit Each ## STREET SIGNS AND MARKERS AND ROUTE MARKERS: (7-1-95) SP9 R01 Move any existing street signs, markers, and route markers out of the construction limits of the project and install the street signs and markers and route markers so that they will be visible to the traveling public if there is sufficient right of way for these signs and markers outside of the construction limits. Near the completion of the project and when so directed by the Engineer, move the signs and markers and install them in their proper location in regard to the finished pavement of the project. Stockpile any signs or markers that cannot be relocated due to lack of right of way, or any signs and markers that will no longer be applicable after the construction of the project, at locations directed by the Engineer for removal by others. The Contractor shall be responsible to the owners for any damage to any street signs and markers or route markers during the above described operations. No direct payment will be made for relocating, reinstalling, and/or stockpiling the street signs and markers and route markers as such work shall be considered incidental to other work being paid for by the various items in the contract. ## **AGGREGATE PRODUCTION:** (11-20-01) SP10 R05 Provide aggregate from a producer who uses the current Aggregate Quality Control/Quality Assurance Program that is in effect at the time of shipment. No price adjustment is allowed to contractors or producers who use the program. Participation in the program does not relieve the producer of the responsibility of complying with all requirements of the 2006 Standard Specifications. Copies of this procedure are available upon request from the Materials and Test Unit. ## CONCRETE BRICK AND BLOCK PRODUCTION: (11-20-01 SP10 R10 Provide concrete brick and block from a producer who uses the current Solid Concrete Masonry Brick/Unit Quality Control/Quality Assurance Program that is in effect on the date that material is received on the project. No price adjustment is allowed to contractors or producers who use the program. Participation in the program does not relieve the producer of the responsibility of complying with all requirements of the 2006 Standard Specifications. Copies of this procedure are available upon request from the Materials and Test Unit. ## PORTLAND CEMENT CONCRETE (Alkali-Silica Reaction): (2-20-07) SP10 R16 Revise the 2006 Standard Specifications as follows: Article 1024-1(A), replace the 2nd paragraph with the following: Certain combinations of cement and aggregate exhibit an adverse alkali-silica reaction. The alkalinity of any cement, expressed as sodium-oxide equivalent, shall not exceed 1.0 percent. For mix designs that contain non-reactive aggregates and cement with an alkali content less than 0.6%, straight cement or a combination of cement and fly ash, cement and ground granulated blast furnace slag or cement and microsilica may be used. The pozzolan quantity shall not exceed the amount shown in Table 1024-1. For mixes that contain cement with an alkali content between 0.6% and 1.0%, and for mixes that contain a reactive aggregate documented by the Department, regardless of the alkali content of the cement, use a pozzolan in the amount shown in Table 1024-1. Obtain the list of reactive aggregates documented by the Department at:http://www.ncdot.org/doh/operations/materials/pdf/quarryasrprob.pdf | | Table 1024-1 | | | |-----------------------------------------------|--------------------------------------------------------------------------------------------------|--|--| | Pozzolans for Use in Portland Cement Concrete | | | | | Pozzolan | Rate | | | | Class F Fly Ash | 20% by weight of required cement content, with 1.2 lbs Class F fly ash per lb of cement replaced | | | | Ground Granulated Blast Furnace Slag | 35%-50% by weight of required cement content with 1 lb slag per lb of cement replaced | | | | Microsilica | 4%-8% by weight of required cement content, with 1 lb microsilica per lb of cement replaced | | | ## **GLASS BEADS:** (7-18-06) SP10 R35 Revise the 2006 Standard Specifications as follows: #### Page 10-223, 1087-4(C) Gradation & Roundness Replace the second sentence of the first paragraph with the following: All Drop-On and Intermixed Glass Beads shall be tested in accordance with ASTM D1155. Delete the last paragraph. ## **ENGINEERING FABRICS TABLE 1056-1:** (7-18-06 SP10 R40 Revise the 2006 Standard Specifications as follows: Page 10-100, Table 1056-1, replace the values for Trapezoidal Tear Strength with the following: | Physical Property | ASTM<br>Test<br>Method | Type 1 | Type 2 | Type 3 | Type 4 | |-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------|--------------|-------------------------|-----------------------| | THE SECOND CONTROL OF | Harrist Control of the State | | | Class A Class B | | | Typical Applications | | Shoulder Drain | Under Riprap | Temporary Silt<br>Fence | Soil<br>Stabilization | | Trapezoidal Tear Strength | D4533 | <i>45</i> lb | <i>75</i> lb | | <i>75</i> lb | # **QUALIFICATION OF WELDS AND PROCEDURES:** [7-21-09] SP10 R43 Page 10-143, Subarticle 1072-20(D) Qualification of Welds and Procedures, replace the third sentence of the first paragraph with the following: For all prequalified field welds, submit Welding Procedure Specifications (WPS) for each joint configuration for approval at least 30 days prior to performing any welding. In lieu of this, use the WPS provided and preapproved by the Department. These preapproved WPS are available from the Materials and Tests Unit or at: http://www.ncdot.org/doh/operations/materials/structural/appr\_proc.html. Use non-prequalified welds only if approved by the Engineer. Submit WPS for all non-prequalified welds to the Engineer for approval. At no cost to the Department, demonstrate their adequacy in accordance with the requirements of the Bridge Welding Code. #### PORTABLE CONCRETE BARRIER: (2-20-07) SP10 R50 The 2006 Standard Specifications is revised as follows: Page 10-245, Article 1090-1(A) General, add the following after the first sentence: The requirement for approved galvanized connectors will be waived if the barrier remains the property of the Contractor. #### **PAVEMENT MARKING LINES:** (11-21-06) (Rev. 9-18-07) SP12 R01 Revise the 2006 Standard Specifications as follows: Page 12-2, 1205-3(D) Time Limitations for Replacement, add the following at the beginning of the chart: | Facility Type | Marking Type | Replacement Deadline | | | | |-------------------------------------|--------------|------------------------------------|--|--|--| | Full-control-of-access multi-lane | All markings | By the end of each workday's | | | | | roadway (4 or more total lanes) and | including | operation if the lane is opened to | | | | | ramps, including Interstates | symbols | traffic | | | | Page 12-14, Subarticle 1205-10, Measurement and Payment, delete the first sentence of the first paragraph and replace with the following: Pavement Marking Lines will be measured and paid for as the actual number of linear feet of pavement marking lines per application that has been satisfactorily placed and accepted by the Engineer.