Project Special Provisions Culvert # **Table of Contents** | | Page | |--|------| | | # | | Falsework and Formwork (7-18-06) | 1 | | Submittal of Working Drawings (9-16-08) | 6 | | Crane Safety (8-15-05) | 12 | | Grout for Structures (7-12-07) | 13 | | Precast Reinforced Concrete Three-Sided Culvert | 16 | | at Sta. 10+45.40 -L- (SPECIAL) | | | Architectural Concrete Surface Treatment (SPECIAL) | 21 | # PROJECT SPECIAL PROVISIONS CULVERT PROJECT B-4545 **HENDERSON COUNTY** # FALSEWORK AND FORMWORK (7-18-06) #### 1.0 DESCRIPTION Use this Special Provision as a guide to develop temporary works submittals required by the Standard Specifications or other provisions; no additional submittals are required herein. Such temporary works include, but are not limited to, falsework and formwork. Falsework is any temporary construction used to support the permanent structure until it becomes self-supporting. Formwork is the temporary structure or mold used to retain plastic or fluid concrete in its designated shape until it hardens. Access scaffolding is a temporary structure that functions as a work platform that supports construction personnel, materials, and tools, but is not intended to support the structure. Scaffolding systems that are used to temporarily support permanent structures (as opposed to functioning as work platforms) are considered to be falsework under the definitions given. Shoring is a component of falsework such as horizontal, vertical, or inclined support members. Where the term "temporary works" is used, it includes all of the temporary facilities used in bridge construction that do not become part of the permanent structure. Design and construct safe and adequate temporary works that will support all loads imposed and provide the necessary rigidity to achieve the lines and grades shown on the plans in the final structure. #### 2.0 MATERIALS Select materials suitable for temporary works; however, select materials that also ensure the safety and quality required by the design assumptions. The Engineer has authority to reject material on the basis of its condition, inappropriate use, safety, or nonconformance with the plans. Clearly identify allowable loads or stresses for all materials or manufactured devices on the plans. Revise the plan and notify the Engineer if any change to materials or material strengths is required. ## 3.0 DESIGN REQUIREMENTS # A. Working Drawings Provide working drawings for items as specified in the contract, or as required by the Engineer, with design calculations and supporting data in sufficient detail to permit a structural and safety review of the proposed design of the temporary work. When concrete placement is involved, include data such as the drawings of proposed sequence, rate of placement, direction of placement, and location of all construction joints. Submit the number of copies as called for by the contract. When required, have the drawings and calculations prepared under the guidance of, and sealed by, a North Carolina Registered Professional Engineer who is knowledgeable in temporary works design. Design falsework and formwork requiring submittals in accordance with the 1995 AASHTO Guide Design Specifications for Bridge Temporary Works except as noted herein. #### 1. Wind Loads Table 2.2 of Article 2.2.5.1 is modified to include wind velocities up to 110 mph (177 km/hr). In addition, Table 2.2A is included to provide the maximum wind speeds by county in North Carolina. Pressure, lb/ft² (kPa) for Indicated Wind Velocity, Height Zone mph (km/hr) 70 feet (m) above ground 80 90 100 110 (112.7)(128.7)(144.8)(160.9)(177.0)0 to 30 (0 to 9.1) 15 20 25 30 35 (0.72)(0.96)(1.20)(1.44)(1.68)30 to 50 (9.1 to 15.2) 20 25 30 35 40 (1.68)(0.96)(1.20)(1.44)(1.92)50 to 100 (15.2 to 30.5) 25 30 35 40 45 (1.20)(1.44)(1.68)(1.92)(2.15)30 40 over 100 (30.5) 35 45 50 (1.44)(1.68)(1.92)(2.15)(2.39) **Table 2.2 - Wind Pressure Values** ## 2. Time of Removal The following requirements replace those of Article 3.4.8.2. Do not remove forms until the concrete has attained strengths required in Article 420-16 of the Standard Specifications and these Special Provisions. Do not remove forms until the concrete has sufficient strength to prevent damage to the surface. Table 2.2A - Steady State Maximum Wind Speeds by Counties in North Carolina | COUNTY | 25 YR
(mph)
(km/hr) | COUNTY | 25 YR
(mph)
(km/hr) | COUNTY | 25 YR
(mph)
(km/hr) | |------------|---------------------------|-------------|---------------------------|--------------|---------------------------| | Alamance | 70 (112.7) | Franklin | 70 (112.7) | Pamlico | 100 (160.9) | | Alexander | 70 (112.7) | Gaston | 70 (112.7) | Pasquotank | 100 (160.9) | | Alleghany | 70 (112.7) | Gates | 90 (144.8) | Pender | 100 (160.9) | | Anson | 70 (112.7) | Graham | 80 (128.7) | Perquimans | 100 (160.9) | | Ashe | 70 (112.7) | Granville | 70 (112.7) | Person | 70 (112.7) | | Avery | 70 (112.7) | Greene | 80 (128.7) | Pitt | 90 (144.8) | | Beaufort | 100 (160.9) | Guilford | 70 (112.7) | Polk | 80 (128.7) | | Bertie | 90 (144.8) | Halifax | 80 (128.7) | Randolph | 70 (112.7) | | Bladen | 90 (144.8) | Harnett | 70 (112.7) | Richmond | 70 (112.7) | | Brunswick | 100 (160.9) | Haywood | 80 (128.7) | Robeson | 80 (128.7) | | Buncombe | 80 (128.7) | Henderson | 80 (128.7) | Rockingham | 70 (112.7) | | Burke | 70 (112.7) | Hertford | 90 (144.8) | Rowan | 70 (112.7) | | Cabarrus | 70 (112.7) | Hoke | 70 (112.7) | Rutherford | 70 (112.7) | | Caldwell | 70 (112.7) | Hyde | 110 (177.0) | Sampson | 90 (144.8) | | Camden | 100 (160.9) | Iredell | 70 (112.7) | Scotland | 70 (112.7) | | Carteret | 110 (177.0) | Jackson | 80 (128.7) | Stanley | 70 (112.7) | | Caswell | 70 (112.7) | Johnston | 80 (128.7) | Stokes | 70 (112.7) | | Catawba | 70 (112.7) | Jones | 100 (160.9) | Surry | 70 (112.7) | | Cherokee | 80 (128.7) | Lee | 70 (112.7) | Swain | 80 (128.7) | | Chatham | 70 (112.7) | Lenoir | 90 (144.8) | Transylvania | 80 (128.7) | | Chowan | 90 (144.8) | Lincoln | 70 (112.7) | Tyrell | 100 (160.9) | | Clay | 80 (128.7) | Macon | 80 (128.7) | Union | 70 (112.7) | | Cleveland | 70 (112.7) | Madison | 80 (128.7) | Vance | 70 (112.7) | | Columbus | 90 (144.8) | Martin | 90 (144.8) | Wake | 70 (112.7) | | Craven | 100 (160.9) | McDowell | 70 (112.7) | Warren | 70 (112.7) | | Cumberland | 80 (128.7) | Mecklenburg | 70 (112.7) | Washington | 100 (160.9) | | Currituck | 100 (160.9) | Mitchell | 70 (112.7) | Watauga | 70 (112.7) | | Dare | 110 (177.0) | Montgomery | 70(112.7) | Wayne | 80 (128.7) | | Davidson | 70 (112.7) | Moore | 70 (112.7) | Wilkes | 70 (112.7) | | Davie | 70 (112.7) | Nash | 80 (128.7) | Wilson | 80 (128.7) | | Duplin | 90 (144.8) | New Hanover | 100 (160.9) | Yadkin | 70 (112.7) | | Durham | 70 (112.7) | Northampton | 80 (128.7) | Yancey | 70 (112.7) | | Edgecombe | 80 (128.7) | Onslow | 100 (160.9) | | | | Forsyth | 70 (112.7) | Orange | 70 (112.7) | | | 54 Note on the working drawings any anchorages, connectors, inserts, steel sleeves or other such devices used as part of the falsework or formwork that remains in the permanent structure. If the plan notes indicate that the structure contains the necessary corrosion protection required for a Corrosive Site, epoxy coat, galvanize, metallize or otherwise protect these devices as directed by the Engineer. Any coating required by the Engineer will be considered incidental to the various pay items requiring temporary works. # B. Review and Approval The Engineer is responsible for the review and approval of temporary works' drawings. Submit the working drawings sufficiently in advance of proposed use to allow for their review, revision (if needed), and approval without delay to the work. Do not start construction of any temporary work for which working drawings are required until the drawings have been approved. Such approval does not relieve the Contractor of the responsibility for the accuracy and adequacy of the working drawings. The time period for review of the working drawings does not begin until complete drawings and design calculations, when required, are received by the Engineer. On the drawings, show all information necessary to allow the design of any component to be checked independently as determined by the Engineer. If requested by the Engineer, submit with the working drawings manufacturer's catalog data listing the weight of all construction equipment that will be supported on the temporary work. Show anticipated total settlements and/or deflections of falsework and forms on the working drawings. Include falsework footing settlements, joint take-up, and deflection of beams or girders. Falsework hangers that support concentrated loads and are installed at the edge of thin top flange concrete girders (such as bulb tee girders) shall be spaced so as not to exceed 75% of the manufacturer's stated safe working load. Use of dual leg hangers (such as Meadow Burke HF-42 and HF-43) are not allowed. Design the falsework and forms supporting deck slabs and overhangs on girder bridges so that there will be no differential settlement between the girders and the deck forms during placement of deck concrete. # 4.0 CONSTRUCTION REQUIREMENTS All requirements of Section 420 of the Standard Specifications apply. Construct temporary works in conformance with the approved working drawings. Ensure that the quality of materials and workmanship employed is consistent with that assumed in the design of the temporary works. Do not weld falsework members to any portion of the permanent structure unless approved. Show any welding to the permanent structure on the approved construction drawings. Provide tell-tales attached to the forms and extending to the ground, or other means, for accurate measurement of falsework settlement. Make sure that the anticipated compressive settlement and/or deflection of falsework does not exceed 1 inch (25 mm).
For cast-in-place concrete structures, make sure that the calculated deflection of falsework flexural members does not exceed 1/240 of their span regardless of whether or not the deflection is compensated by camber strips. # A. Maintenance and Inspection Inspect and maintain the temporary work in an acceptable condition throughout the period of its use. Certify that the manufactured devices have been maintained in a condition to allow them to safely carry their rated loads. Clearly mark each piece so that its capacity can be readily determined at the job site. Perform an in-depth inspection of an applicable portion(s) of the temporary works, in the presence of the Engineer, not more than 24 hours prior to the beginning of each concrete placement. Inspect other temporary works at least once a month to ensure that they are functioning properly. Have a North Carolina Registered Professional Engineer inspect the cofferdams, shoring, sheathing, support of excavation structures, and support systems for load tests prior to loading. #### B. Foundations Determine the safe bearing capacity of the foundation material on which the supports for temporary works rest. If required by the Engineer, conduct load tests to verify proposed bearing capacity values that are marginal or in other high-risk situations. The use of the foundation support values shown on the contract plans of the permanent structure is permitted if the foundations are on the same level and on the same soil as those of the permanent structure. Allow for adequate site drainage or soil protection to prevent soil saturation and washout of the soil supporting the temporary works supports. If piles are used, the estimation of capacities and later confirmation during construction using standard procedures based on the driving characteristics of the pile is permitted. If preferred, use load tests to confirm the estimated capacities; or, if required by the Engineer conduct load tests to verify bearing capacity values that are marginal or in other high risk situations. The Engineer reviews and approves the proposed pile and soil bearing capacities. #### 5.0 REMOVAL Unless otherwise permitted, remove and keep all temporary works upon completion of the work. Do not disturb or otherwise damage the finished work. Remove temporary works in conformance with the contract documents. Remove them in such a manner as to permit the structure to uniformly and gradually take the stresses due to its own weight. #### 6.0 METHOD OF MEASUREMENT Unless otherwise specified, temporary works will not be directly measured. #### 7.0 BASIS OF PAYMENT Payment at the contract unit prices for the various pay items requiring temporary works will be full compensation for the above falsework and formwork. # **SUBMITTAL OF WORKING DRAWINGS** (9-16-08) #### 1.0 GENERAL Submit working drawings in accordance with Article 105-2 of the *Standard Specifications* and this provision. For this provision, "submittals" refers to only those listed in this provision. The list of submittals contained herein does not represent a list of required submittals for the project. Submittals are only necessary for those items as required by the contract. Make submittals that are not specifically noted in this provision directly to the Resident Engineer. Either the Structure Design Unit or the Geotechnical Engineering Unit or both units will jointly review submittals. If a submittal contains variations from plan details or specifications or significantly affects project cost, field construction or operations, discuss the submittal with and submit all copies to the Resident Engineer. State the reason for the proposed variation in the submittal. To minimize review time, make sure all submittals are complete when initially submitted. Provide a contact name and information with each submittal. Direct any questions regarding submittal requirements to the Resident Engineer, Structure Design Unit contacts or the Geotechnical Engineering Unit contacts noted below. In order to facilitate in-plant inspection by NCDOT and approval of working drawings, provide the name, address and telephone number of the facility where fabrication will actually be done if different than shown on the title block of the submitted working drawings. This includes, but is not limited to, precast concrete items, prestressed concrete items and fabricated steel or aluminum items. #### 2.0 ADDRESSES AND CONTACTS For submittals to the Structure Design Unit, use the following addresses: Via US mail: Mr. G. R. Perfetti, P. E. State Bridge Design Engineer North Carolina Department of Transportation Structure Design Unit 1581 Mail Service Center Raleigh, NC 27699-1581 Attention: Mr. P. D. Lambert, P. E. Via other delivery service: Mr. G. R. Perfetti, P. E. State Bridge Design Engineer North Carolina Department of Transportation Structure Design Unit 1000 Birch Ridge Drive Raleigh, NC 27610 Attention: Mr. P. D. Lambert, P. E. For submittals to the Geotechnical Engineering Unit, use the following addresses: For projects in Divisions 1-7, use the following Eastern Regional Office address: Via US mail: Mr. K. J. Kim, Ph. D., P. E. Eastern Regional Geotechnical Manager North Carolina Department of Transportation Geotechnical Engineering Unit Eastern Regional Office 1570 Mail Service Center Raleigh, NC 27699-1570 Via other delivery service: Mr. K. J. Kim, Ph. D., P. E. Eastern Regional Geotechnical Manager North Carolina Department of Transportation Geotechnical Engineering Unit Eastern Regional Office 3301 Jones Sausage Road, Suite 100 Garner, NC 27529 For projects in Divisions 8-14, use the following Western Regional Office address: Via US mail: Mr. John Pilipchuk, L. G., P. E. Western Regional Geotechnical Manager North Carolina Department of Transportation Geotechnical Engineering Unit Western Regional Office 5253 Z Max Boulevard Harrisburg, NC 28075 Via other delivery service: Mr. John Pilipchuk, L. G., P. E. Western Region Geotechnical Manager North Carolina Department of Transportation Geotechnical Engineering Unit Western Regional Office 5253 Z Max Boulevard Harrisburg, NC 28075 **58** Direct any questions concerning submittal review status, review comments or drawing markups to the following contacts: Primary Structures Contact: Paul Lambert (919) 250 - 4041 (919) 250 - 4082 facsimile plambert@ncdot.gov Secondary Structures Contacts: James Gaither (919) 250 – 4042 David Stark (919) 250 – 4044 Eastern Regional Geotechnical Contact (Divisions 1-7): K. J. Kim (919) 662 - 4710 (919) 662 - 3095 facsimile kkim@ncdot.gov Western Regional Geotechnical Contact (Divisions 8-14): John Pilipchuk (704) 455 – 8902 (704) 455 – 8912 facsimile jpilipchuk@ncdot.gov #### 3.0 SUBMITTAL COPIES Furnish one complete copy of each submittal, including all attachments, to the Resident Engineer. At the same time, submit the number of hard copies shown below of the same complete submittal directly to the Structure Design Unit and/or the Geotechnical Engineering Unit. The first table below covers "Structure Submittals". The Resident Engineer will receive review comments and drawing markups for these submittals from the Structure Design Unit. The second table in this section covers "Geotechnical Submittals". The Resident Engineer will receive review comments and drawing markups for these submittals from the Geotechnical Engineering Unit. Unless otherwise required, submit one set of supporting calculations to either the Structure Design Unit or the Geotechnical Engineering Unit unless both units require submittal copies in which case submit a set of supporting calculations to each unit. Provide additional copies of any submittal as directed by the Engineer. # **STRUCTURE SUBMITTALS** | Submittal | Copies
Required by
Structure
Design Unit | Copies Required by Geotechnical Engineering Unit | Contract Reference
Requiring Submittal ¹ | |--|---|--|--| | Arch Culvert Falsework | 5 | 0 | Plan Note, SN Sheet & "Falsework and Formwork" | | Box Culvert Falsework ⁷ | 5 | 0 | Plan Note, SN Sheet & "Falsework and Formwork" | | Cofferdams | 6 | 2 | Article 410-4 | | Evazote Joint Seals ⁶ | 9 | 0 | "Evazote Joint Seals" | | Expansion Joint Seals (hold down plate type with base angle) | 9 | 0 | "Expansion Joint Seals" | | Expansion Joint Seals (modular) | 2, then 9 | 0 | "Modular Expansion Joint Seals" | | Expansion Joint Seals (strip seals) | 9 | 0 | "Strip Seals" | | Falsework & Forms ² (substructure) | 8 | 0 | Article 420-3 & "Falsework and Formwork" | | Falsework & Forms (superstructure) | 8 | 0 | Article 420-3 & "Falsework and Formwork" | | Girder Erection over Railroad | 5 | 0 | Railroad Provisions | | Maintenance and Protection of
Traffic Beneath Proposed
Structure | 8 | 0 | "Maintenance and
Protection of Traffic
Beneath Proposed Structure
at Station" | | Metal Bridge Railing | 8 | 0 | Plan Note | | Metal Stay-in-Place Forms | 8 | 0 | Article 420-3 | | Metalwork for Elastomeric
Bearings ^{4,5} | 7 | 0 | Article 1072-10 | | Miscellaneous Metalwork ^{4,5} | 7 | 0 | Article 1072-10 | |--|---------------------------|---|---| | Optional Disc Bearings 4 | 8 | 0 | "Optional Disc Bearings" | | Overhead Signs | 13 | 0 | Article 903-3(C) & Applicable Provisions | | Pile Splicers | 7 | 2 | Subarticle 450-7(C) & "Piles" | | Pile Points | 7 | 2 | Subarticle 450-7(D) & "Piles" | | Placement of Equipment on Structures (cranes, etc.) | 7 | 0 | Article 420-20 | | Pot Bearings ⁴ | 8 | 0 | "Pot Bearings" | | Precast Concrete Box Culverts | 2, then
1 reproducible | 0 | "Optional Precast Reinforced
Concrete Box Culvert at Station" | | Precast Retaining Wall Panels | 10 | 1 | Article 1077-2 | | Prestressed Concrete Cored Slab (detensioning sequences) 3 | 6 | 0 | Article 1078-11 | | Prestressed Concrete Deck Panels | 6 and
1 reproducible | 0 | Article 420-3 | | Prestressed Concrete Girder
(strand elongation and
detensioning sequences) | 6 | 0 | Articles 1078-8 and 1078-
11 | | Removal of Existing Structure over Railroad | 5 | 0 | Railroad Provisions | | Revised Bridge Deck Plans
(adaptation to prestressed deck
panels) | 2, then
1 reproducible | 0 | Article 420-3 | | Revised Bridge Deck Plans
(adaptation to modular
expansion joint seals) | 2, then
1 reproducible | 0 | "Modular Expansion Joint Seals" | | Sound Barrier Wall Casting Plans | 10 | 0 | Article 1077-2 & "Sound Barrier Wall" | | Sound Barrier Wall Steel
Fabrication Plans ⁵ | 7 | 0 | Article 1072-10 & "Sound Barrier Wall" | | Structural Steel ⁴ | 2, then 7 | 0 | Article 1072-10 | B-4545 | B-4545 | 61 | | | |-------------------------------------|----|---|---| | Temporary Detour Structures | 10 | 2 | Article 400-3 & "Construction, Maintenance and Removal of Temporary Structure at Station" | | TFE Expansion Bearings ⁴ | 8 | 0 | Article 1072-10 | #### **FOOTNOTES** D 4545 - 1. References are provided to help locate the part of the contract where the submittals are required. References in quotes refer to the provision by that name. Articles and subarticles refer to the *Standard Specifications*. - 2. Submittals for these items are necessary only when required by a note on plans. - 3. Submittals for these items may not be required. A list of pre-approved sequences is available from the producer or the Materials & Tests Unit. - 4. The fabricator may submit these items directly to the Structure Design Unit. - 5. The two sets of preliminary submittals required by Article 1072-10 of the *Standard Specifications* are not required for these items. - 6. Submittals for Fabrication Drawings are not required. Submittals for Catalogue Cuts of Proposed Material are required. See Section 5.A of the referenced provision. - 7. Submittals are necessary only when the top slab thickness is 18" or greater. ## **GEOTECHNICAL SUBMITTALS** 62 | Submittal ¹ | Copies Required by Geotechnical Engineering Unit | Copies
Required by
Structure
Design Unit | Contract Reference
Requiring Submittal ² | |---|--|---|---| | Crosshole Sonic Logging (CSL)
Reports | 1 | 0 | "Crosshole Sonic Logging" | | Drilled Pier Construction
Sequence Plans | 1 | 0 | "Drilled Piers" | | Pile Driving Analyzer (PDA)
Reports | 2 | 0 | "Pile Driving Analyzer" | | Pile Driving Equipment Data ³ | 1 | 0 | Article 450-5 & "Piles" | | Retaining Walls | 8 | 2 | Applicable Provisions | | Contractor Designed Shoring | 7 | 2 | "Temporary Shoring", "Anchored Temporary Shoring" & "Temporary Soil Nail Walls" | ## **FOOTNOTES** - 1. With the exception of "Pile Driving Equipment Data", electronic copies of geotechnical submittals are required. See referenced provision. - 2. References are provided to help locate the part of the contract where the submittals are required. References in quotes refer to the provision by that name. Articles refer to the *Standard Specifications*. - 3. Download Pile Driving Equipment Data Form from following link: http://www.ncdot.org/doh/preconstruct/highway/geotech/formdet/ Submit one hard copy of the completed form to the Resident Engineer. Submit a second copy of the completed form electronically, by facsimile or via US Mail or other delivery service to the Geotechnical Engineering Unit. Electronic submission is preferred. See second page of form for submittal instructions. CRANE SAFETY (8-15-05) Comply with the manufacturer specifications and limitations applicable to the operation of any and all cranes and derricks. Prime contractors, sub-contractors, and fully operated rental companies shall comply with the current Occupational Safety and Health Administration regulations (OSHA). Submit all items listed below to the Engineer prior to beginning crane operations involving critical lifts. A critical lift is defined as any lift that exceeds 75 percent of the manufacturer's crane chart capacity for the radius at which the load will be lifted or requires the use of more than one crane. Changes in personnel or equipment must be reported to the Engineer and all applicable items listed below must be updated and submitted prior to continuing with crane operations. #### CRANE SAFETY SUBMITTAL LIST - A. <u>Competent Person:</u> Provide the name and qualifications of the "Competent Person" responsible for crane safety and lifting operations. The named competent person will have the responsibility and authority to stop any work activity due to safety concerns. - B. <u>Riggers:</u> Provide the qualifications and experience of the persons responsible for rigging operations. Qualifications and experience should include, but not be limited to, weight calculations, center of gravity determinations, selection and inspection of sling and rigging equipment, and safe rigging practices. - C. <u>Crane Inspections:</u> Inspection records for all cranes shall be current and readily accessible for review upon request. - D. <u>Certifications</u>: By July 1, 2006, crane operators performing critical lifts shall be certified by NC CCO (National Commission for the Certification of Crane Operators), or satisfactorily complete the Carolinas AGC's Professional Crane Operator's Proficiency Program. Other approved nationally accredited programs will be considered upon request. All crane operators shall also have a current CDL medical card. Submit a list of anticipated critical lifts and corresponding crane operator(s). Include current certification for the type of crane operated (small hydraulic, large hydraulic, small lattice, large lattice) and medical evaluations for each operator. ### **GROUT FOR STRUCTURES** (7-12-07) ## 1.0 DESCRIPTION This special provision addresses grout for use in structures, including continuous flight auger (CFA) piles, micropiles, soil nail and anchored retaining walls and backfilling crosshole sonic logging (CSL) tubes or grout pockets, shear keys, dowel holes and recesses for cored slabs and box beams. This provision does not apply to grout placed in post-tensioning ducts for bridge beams, girders, or decks. Provide grout composed of portland cement, water and at the Contractor's option, fine aggregate and/or pozzolan. If necessary, use set controlling admixtures. Proportion, mix and place grout in accordance with the plans, the applicable section of the *Standard Specifications* or special provision for the application and this provision. ### 2.0 MATERIALS Refer to Division 10 of the Standard Specifications: | Item | Article | |--------------------------------------|---------| | Portland Cement | 1024-1 | | Water | 1024-4 | | Fine Aggregate | 1014-1 | | Fly Ash | 1024-5 | | Ground Granulated Blast Furnace Slag | 1024-6 | | Admixtures | 1024-3 | At the Contractor's option, use an approved packaged grout in lieu of the materials above with the exception of the water. Contact the Materials and Tests (M&T) Unit for a list of approved packaged grouts. Consult the manufacturer to determine if the packaged grout selected is suitable for the application and meets the compressive strength and shrinkage requirements. # 3.0 REQUIREMENTS Unless required elsewhere in the Contract, provide non-metallic grout with minimum compressive strengths as follows: | Property | Requirement | |--------------------------------|---------------------| | Compressive Strength @ 3 days | 2500 psi (17.2 MPa) | | Compressive Strength @ 28 days | 4500 psi (31.0 MPa) | For applications other than micropiles, soil nails and ground anchors, use non-shrink grout with shrinkage of less than 0.15%. When using approved packaged grout, a grout mix design submittal is not required. Submit grout mix designs in terms of saturated surface dry weights on M&T Form 312U in accordance with the applicable section of the *Standard Specifications* or special provision for the structure. Use an approved testing laboratory to determine the grout mix proportions. Adjust proportions to compensate for surface moisture contained in the aggregates at the time of mixing. Changes in the saturated surface dry mix proportions will not be permitted unless a revised grout mix design submittal is accepted. For each grout mix design, provide laboratory test results for compressive strength, density, flow and if applicable, aggregate gradation and shrinkage. Submit compressive strength for at least 3 cube and 2 cylinder specimens at the age of 3, 7, 14 and 28 days for a total of at least 20 specimens tested. Perform laboratory tests in accordance with the following: | Property | Test Method | |---|-------------------------------| | Compressive Strength | AASHTO T106 and T22 | | Density | AASHTO T133 | | Flow for Sand Cement Grout | ASTM C939 (as modified below) | | Flow for Neat Cement Grout | Marsh Funnel and Cup | | (no fine aggregate) | API RP 13B-1, Section 2.2 | | Aggregate Gradation for Sand Cement Grout | AASHTO T27 | | Shrinkage for Non-shrink Grout | ASTM C1090 | When testing grout for flow in accordance with ASTM C939, modify the flow cone outlet diameter from ½ to ¾ inch (13 to 19 mm). When grout mix designs are submitted, the Engineer will review the mix designs and notify the Contractor as to their acceptability. Do not use grout mix designs until written acceptance has been
received. Acceptance of grout mix designs or use of approved packaged grouts does not relieve the Contractor of responsibility to furnish a product that meets the Contract requirements. Upon written request from the Contractor, a grout mix design accepted and used satisfactorily on a Department project may be accepted for use on other projects. ## 4.0 SAMPLING AND PLACEMENT The Engineer will determine the locations to sample grout and the number and type of samples collected for field and laboratory testing. Use API RP 13B-1 for field testing grout flow and density of neat cement grout. The compressive strength of the grout will be considered the average compressive strength test results of 3 cube or 2 cylinder specimens at 28 days. Do not place grout if the grout temperature is less than 50°F (10°C) or more than 90°F (32°C) or if the air temperature measured at the location of the grouting operation in the shade away from artificial heat is below 40°F (4°C). Provide grout at a rate that permits proper handling, placing and finishing in accordance with the manufacturer's recommendations unless directed otherwise by the Engineer. Use grout free of any lumps and undispersed cement. Agitate grout continuously before placement. Control grout delivery so the interval between placing batches in the same component does not exceed 20 minutes. Place grout before the time between adding the mixing water and placing the grout exceeds that in the table below. | ELAPSED TIME FOR PLACING GROUT (with continuous agitation) | | | | |--|---------|---------------|--| | Maximum Elapsed Time | | | | | Air or Grout Temperature Whichever is Higher No Set Retarding Admixture Used Set Retarding Admixture Used Used | | | | | 90°F (32°C) or above | 30 min. | 1 hr. 15 min. | | | 80°F (27°C) through 89°F (31°C) | 45 min. | 1 hr. 30 min. | | | 79°F (26°C) or below | 60 min. | 1 hr. 45 min. | | ### 5.0 MISCELLANEOUS Comply with Articles 1000-9 through 1000-12 of the *Standard Specifications* to the extent applicable for grout in lieu of concrete. # PRECAST REINFORCED CONCRETE THREE-SIDED CULVERT AT STATION 10+45.40 –L- (SPECIAL) #### 1.0 GENERAL This Special Provision covers precast reinforced concrete three-sided culverts intended for the construction of culverts and for the conveyance of storm water. The work covered by this special provision consists of furnishing a precast reinforced concrete three-sided culvert, including all materials, labor, equipment, and incidentals necessary for the design, fabrication, and installation of the precast three-sided culvert sections in accordance with this Special Provision, the applicable parts of the Standard Specifications, and details shown on the plans. The culvert shall be a single span three-sided structure constructed of precast reinforced concrete members and/or prestressed concrete members and shall be subject to the requirements of Sections 1077, 1078, and any other applicable parts of the Standard Specifications with the exceptions and additions specified in this special provision. The Contractor shall design the precast culvert sections in accordance with AASHTO M259 and provide the size of the barrel as indicated on the plans. For culverts with less than 2 feet (0.6 m) of fill cover, design the precast culvert sections in accordance with AASHTO M273. Provide a precast three-sided culvert that meets the requirements of Section 1077 and any other applicable parts of the Standard Specifications. Precast wing walls will not be allowed. Detail the precast culvert with cast-in-place wings. The design of the precast or cast-in-place members is the responsibility of the Contractor and is subject to review, comments and approval. Submit two sets of detailed plans for review. Include all details in the plans, including the size and spacing of the required reinforcement necessary to build the precast reinforced three-sided culvert. Include details for the connection of cast-in-place concrete sections (e.g. footings, headwall barrier rails, wingwalls) to precast sections, and checked design calculations for the precast members complying with the latest AASHTO Standard Specifications and requirements detailed herein. Have a North Carolina Registered Professional Engineer check and seal the plans and design calculations. After the plans are reviewed and, if necessary, the corrections made, submit one set of reproducible tracings on 22" x 34" sheets to become the revised contract plans. A pre-installation meeting is required prior to installation. Representatives from the Contractor, the precast box manufacturer, and the Department should attend this meeting. The precast box manufacturer representative shall be on site during installation. #### 2.0 PRECAST REINFORCED CONCRETE THREE-SIDED CULVERT SECTIONS ## A. Types Precast reinforced concrete three-sided culvert sections manufactured in accordance with this Special Provision shall be 32' span by 10' rise arch structure. The invert and footings shall be constructed in accordance with the revised contract plans. # B. Design - 1. Design The section dimensions and reinforcement details are subject to the provisions of Section F. - 2. Placement of Reinforcement Provide a 1 inch (25 mm) concrete cover over the reinforcement subject to the provisions of Section F. Detail the clear distance of the end wires so it is not less than 1/2 inch (13 mm) nor more than 2 inches (51 mm) from the ends of the precast unit. Assemble reinforcement per the requirements of AASHTO M259, Section 7.3. The exposure of the ends of the wires used to position the reinforcement is not a cause for rejection. - 3. Laps and Spacing Use lap splices for the reinforcement. Detail the welded wire fabric sheet so that the center to center spacing is not less than 2 inches (50 mm) nor more than 4 inches (100 mm). Do not detail the longitudinal wires with a center to center spacing of more than 8 inches (200 mm). - 4. Footings, Headwall Barrier Rails, and Wingwalls Design for the footings, headwall barrier rails, and wingwalls shall be the responsibility of the Contractor. Footings, headwall barrier rails, and wingwalls shall be cast-in-place reinforced concrete. The design shall conform to the information shown on the plans, shall meet the three-sided culvert manufacturer's requirements, and be submitted to the Engineer for review. # C. Joints The precast reinforced concrete three-sided culvert segments shall be produced with flat-butt ends. Design and form the ends of the precast unit so that when the sections are laid together, they will make a continuous line of precast three-sided culvert sections with a smooth interior, free of appreciable irregularities along the length, all compatible with the permissible variations given in Section F. Seal the joint formed at the ends of the precast three-sided culvert sections with material approved by the Engineer. Show the recommended joint sealer material on the shop drawings when they are submitted for review. #### D. Manufacture Manufacture precast reinforced concrete three-sided culverts by either the wet cast method or dry cast method. - 1. Mixture In addition to the requirements of Section 1077 of the Standard Specifications, do not proportion the mix with less than 564 lb/yd³ (335 kg/m³) of portland cement. - 2. Strength Make sure that all concrete develops a minimum 28-day compressive strength of 5000 psi (34.5 MPa). Movement of the precast sections should be minimized during the initial curing period. Any damage caused by moving or handling during the initial curing phase will be grounds for rejection of that precast section. - 3. Air Entrainment Air entrain the concrete in accordance with Section 1077 5(A) of the Standard Specifications. For dry cast manufacturing, air entrainment is not required. - 4. Testing Test the concrete in accordance with the requirements of Section 1077 5(B). - 5. Handling Handling devices or holes are permitted in each box section for the purpose of handling and laying. Submit details of handling devices or holes for approval and do not cast any concrete until approval is granted. Remove all handling devices flush with concrete surfaces as directed. Fill holes in a neat and workmanlike manner with an approved non-metallic non-shrink grout, concrete, or hole plug. ### E. Physical Requirements Acceptability of precast sections is based on concrete cylinders made and tested in accordance with AASHTO T22 and AASHTO T23. #### F. Permissible Variations - 1. Flatness All external surfaces shall be flat, true, and plumb. Irregularities, depressions, or high spots on all external surfaces shall not exceed 1/2 inch (12 mm) in 8 feet (2.5 meters). - 2. Internal Dimensions Produce sections so that the internal and haunch dimensions do not vary more than 1/4 inch (6 mm) from the revised contract plan dimensions. - 3. Adjacent Sections Internal, external, and haunch dimensions for connecting sections shall not vary more than 1/2 inch (12 mm). - 4. Slab and Wall Thickness Produce sections so that the slab and wall thickness are not less than that shown on the revised contract plans by more than 5% or 3/16 inch (5 mm), whichever is greater. A thickness more than that required on the revised contract plans is not a cause for rejection. - 5. Length of Opposite Surfaces Produce sections so that variations in laying lengths of two opposite surfaces of the section meet the requirements of AASHTO M259, Section 11.3. - 6. Length of Section Produce sections so that the underrun in length of a section is not more than 1/2 inch (13 mm) in any section. - 7. Position of Reinforcement Produce sections so that the maximum variation in the position of the reinforcement is ±3/8" (±10 mm) for slab and wall thicknesses of 5 inches (125 mm) or less and ±1/2" (±13 mm) for slab and wall thicknesses greater than 5 inches (125
mm). Produce sections so that the concrete cover is never less than 5/8 inch (16 mm) as measured to the internal surface or the external surface. The preceding minimum cover limitations do not apply at the mating surfaces of the joint. - 8. Area of Reinforcement The steel reinforcement shall be the design steel as shown on the revised contract plans. Steel areas greater than those required are not cause for rejection. The permissible variation in diameter of any wire in finished fabric is prescribed for the wire before fabrication by either AASHTO M32 or M225. # G. Marking In addition to the requirements of AASHTO M259 Section 15, clearly mark the project number and culvert span and rise on each section. ## H. Installation 1. Footings – Install precast three-sided culvert sections on cast-in-place reinforced concrete footings. The footings shall have a smooth float finish and shall conform to the lines and grades shown on the plans. - 2. Placement of precast three-sided culvert sections arrange for a representative of the precast three-sided culvert manufacturer to be present on site during installation of all precast three-sided culvert sections. Place the precast three-sided culvert sections as shown on the revised contract plans. Take special care in setting the sections to the true line and grade. Set sections on 6" x 6" (150mm x 150mm) masonite or steel shims or other shims as approved by the Engineer located at support points, as recommended by the manufacturer. Provide 2" (51mm) of stacked shims between the footing and the bottom of the vertical walls. In case of irregularities between the two surfaces, provide a minimum of ½" (13mm) of shims under any point to assure a minimum of ½" (13mm) gap between the two surfaces. Fill the gap with non-shrink grout. - 3. External protection of joints Cover the flat-butt joints made by adjoining precast three-sided culvert sections with a minimum of 9" (230mm) wide joint wrap. Thoroughly clean the surface of the section from all dirt and dust before applying the joint material. The external wrap shall be in accordance with ASTM C-877 Specification for External Sealing Bands or an approved equal. Cover the joint from the bottom of one precast three-sided culvert section leg, across the top of the precast three-sided culvert section, and down to the bottom of the opposite precast three-sided culvert section leg. Minimize the number of laps. Where necessary, provide a minimum of 6" (150mm) long wrap laps and have the overlap running in the downward direction. Prime the section ends prior to placing the wrap material when the air temperature is below 50° F (10° C). Provide primer that is in accordance with the joint wrap manufacturer's recommendations and that is approved by the Engineer. During backfilling operations, keep the joint wrap material in its proper location. - 4. Excavation and select backfill Perform excavation and backfilling operations in accordance with the Standard Specifications. Excavation shall include foundation excavation for the construction of culvert and wing footings, and as directed by the Engineer, removal of any other material, including rock and boulders, necessary to construct the precast reinforced concrete three-sided culvert. Provide backfill that meets the requirements of Section 1016 of the Standard Specifications and that are in accordance with the precast reinforced concrete three-sided culvert manufacturer's recommendations. Select backfill shall be compacted in loose lifts not to exceed eight inches (200mm) and to a density not less than 95 percent of the maximum dry density as determined by AASHTO T-99 or ASTM D-698. Select backfill shall be placed to the existing natural ground elevation or as directed by the Engineer. The entire cost of excavation and providing select backfill, including hauling, furnishing, and placing backfill material shall be included in the lump sum price bid for "Precast Reinforced Concrete Three-Sided Culvert at Station 10+45.40 -L-." # 3.0 BASIS OF PAYMENT The precast reinforced concrete three-sided culvert as described on the plans and in this Special Provision excluding the footings will be paid for at the contract lump sum price for "Precast Reinforced Concrete Three-Sided Culvert at Station 10+45.40 –L-." The above price and payment will be full compensation for all work covered by this Special Provision, the plans and applicable parts of the Standard Specifications and shall include, but not be limited to, furnishing all labor, materials, equipment and other incidentals necessary to complete this work. Such price and payment will also be full compensation for concrete, reinforcing steel, labor, equipment and all other related materials necessary for the fabrication and installation of the precast three-sided culvert sections and the design and construction of cast in place headwall barrier rails, end curtain walls, and wingwalls. All excavation and select backfill shall be considered a part of this pay item. Payment is to be made under: Precast Reinforced Concrete Three-Sided Culvert at Station 10+45.40 –L-Lump Sum Design and construction of the footings and wing footings will be paid for at the contract unit price per cubic yard for "Class A Concrete". This price shall include, but not be limited to, furnishing all concrete, reinforcing steel, labor, equipment and all other related materials necessary to complete the work. Payment will be made under: # ARCHITECTURAL CONCRETE SURFACE TREATMENT (SPECIAL) ## 1.0 GENERAL The work covered by this special provision consists of constructing textured surfaces on formed reinforced concrete surfaces as indicated on the Plans and in this Special Provision. The Contractor shall furnish all materials, labor, equipment, and incidentals necessary for the construction of architectural concrete surface treatment using simulated stone masonry form liners (molds) and a compatible concrete coloring system. For information purposes only, a manufacturer of form liners and source of color application artist is HUNT VALLEY CONTRACTORS, INC., 3705 Crondall Lane, Owings Mills, MD 21117, Telephone 410-356-9677. The architectural concrete surface treatment should match the appearance (stone size and shape, stone color, and stone texture, pattern, and relief) of natural stone and rock to match a New England drystack pattern as directed by the Engineer. Grout pattern joints (mortar joints) and bed thickness should re-create the appearance and color of cast-in-place and/or precast concrete surfaces as indicated in the Plans, this Special Provision, or as directed by the Engineer. #### 2.0 SUBMITTALS Shop Drawings - The Contractor shall submit for review and acceptance, plan and elevation views and details showing overall simulated stone pattern, joint locations, form tie locations, and end, edge or other special conditions. The drawings should include typical cross sections of applicable surfaces, joints, corners, stone relief, stone size, pitch/working line, mortar joint and bed depths. If necessary, the Contractor shall revise the shop drawings until the proposed form liner patterns and arrangement have been accepted by the Engineer. Shop drawings should be of sufficient scale to show the detail of all stone and joints patterns. The size of the sheets used for the shop drawings shall be 22" x 34" (560mm x 864mm). The form liner shall be patterned such that long continuous horizontal or vertical lines do not occur on the finished exposed surface. The line pattern shall be random in nature and shall conceal construction joint lines. Special attention should be given to details for wrapping form liners around corners. Shop drawings shall be reviewed and accepted prior to fabrication of form liners. Sample Panels – After the shop drawings have been reviewed and accepted by the Engineer, the Contractor shall construct 24" x 24" (610mm x 610mm) transportable sample panel(s) at the project site. The materials used in construction of the sample panel(s) shall comply with section 420 of the Standard Specifications. The sample panel(s) shall be constructed using approved form liners. Sample panels will be required for each different form liner pattern that is to be used on the project. Any sample panel that is not accepted by the Engineer is to be removed from the project site and a new sample panel produced at no additional expense to the Department. Architectural surface treatments and patterns of the finished work shall achieve the same final effect as demonstrated on the accepted sample panel(s). Upon acceptance by the Engineer, the sample panel(s) shall be used as the quality standard for the project. After the acceptance of the completed structure, the Contractor shall dispose of the sample panels as directed by the Engineer. # 3.0 MATERIAL REQUIREMENTS Form Liner – The form liner shall be a high quality, re-useable product manufactured of high strength urethane rubber or other approved material which attaches easily to the form work system, and shall not compress more than ¼" (6mm) when concrete is poured at a rate of 10 vertical feet (3 vertical meters) per hour. The form liners shall be removable without causing deterioration of the surface or underlying concrete. Form Release Agent – Form release agent shall be a nonstaining petroleum distillate free from water, asphaltic, and other insoluble residue, or an equivalent product. Form release agents shall be compatible with the color system applied and any special surface finish. Form Ties - Form ties shall be set back a minimum of 2" (51 mm) from the finished concrete surface. The ties shall be designed so that all material in the device to a depth of at least 2" (51mm) back of the concrete face (bottom of simulated mortar groove) can be disengaged and removed without spalling or damaging the concrete. The Contractor shall submit the type of form ties to the Engineer for approval. Concrete color system/stain –
Special surface color system shall be performed using approved coloring systems/stains suitable for the purpose intended and applied in a manner consistent with the design intent of the project. The approved sample panel shall be the basis for determining the appropriate color/stain application. The coloring agent shall be a penetrating stain mix or other approved coloring system with a compatible finish designed for exterior application on old or new concrete with field evidence of resistance to moisture, acid or alkali, mildew, mold or fungus discoloration or degradation. The coloring agent shall be breathable, allowing moisture and vapor transmission. Final coloring system is subject to acceptance by the Engineer. **Quality Standards** - Manufacturer of simulated stone masonry form liners and custom coloring system shall have at least five years experience making stone masonry molds and color stains to create formed concrete surfaces to match natural stone shapes, surface textures and colors. The Contractor shall schedule a pre-installation conference with manufacturer representative and the Engineer to assure understanding of simulated stone masonry form liner use, color application, requirements for construction of sample panel(s), and to coordinate the work. The Contractor shall be required to disclose their source of simulated stone masonry manufacturer and final coloration contractor at the Preconstruction Conference. #### 4.0 CONSTRUCTION Form Liner Preparation – Prior to each concrete pour, the form liners shall be clean and free of build-up. Each liner shall be visually inspected for blemishes and tears. Repairs shall be made in accordance with the manufacturer's recommendations. Repairs shall be accepted by the Engineer before being used. Form liner panels that do not perform as intended or are no longer repairable shall be replaced. Form Liner Attachment – Form liners shall be securely attached to forms in accordance with the manufacturer's recommendations, with less than a ¼" (6 mm) seam. Blend form liner butt joints into the stone pattern and finish off the final concrete surface. Create no visible vertical or horizontal seams or conspicuous form liner butt joint marks. At locations where the form liners are joined, carefully blend to match the balance of the stone pattern. Form liners shall be installed to withstand anticipated concrete placement pressures without leakage and without causing physical or visual defects. Wall ties shall be coordinated with the form liner system. The Contractor shall have a technical representative from the form liner manufacturer on site for technical supervision during the installation and removal of form liners. Unless directed by the Engineer, installation and removal of form liners shall not be permitted if the technical representative is not present. Form Release – Form release agent shall be applied in accordance with the manufacturer's recommendations. The material shall be compatible with the form liner material and the concrete coloring system and in accordance with this Special Provision. Form release agent should be worked into all areas, especially pattern recesses. **Patching** – All form tie holes and other defects in finished uncolored surface shall be filled or repaired within 48 hours of form removal. Use patching materials and procedures in accordance with the manufacturer's recommendations. Surface Finish – All surfaces that are to receive coloring agent application shall be free of all laitency, dirt, dust, grease, efflorescence, paint or any other foreign material prior to the application of coloring agent. Cleaning of surfaces to be accomplished by pressure washing with water set at 3000 psi (20.7 MPa) to remove laitence. The fan nozzle shall be held perpendicular to the surface at a distance of 1 to 2 feet (300 to 600 mm). Sandblasting will not be permitted. Final surface shall be free of blemishes, discolorations, surface voids, and other irregularities. All patterns should be continuous without visual disruption. Reinforced concrete shall be finished in accordance with the Standard Specifications, except that curing of concrete should been done to accommodate the application of coloring and surface finish treatment. Grout pattern joints – Grout pattern joints shall be constructed to simulate the appearance of mortared joints produced in laid up masonry work. Grout pattern joints shall be produced in accordance with the form liner / concrete color system manufacturer. Color/Stain Application – Finished concrete and patches shall stand in place 30 days after form liners are removed prior to application of coloring/staining agent. Maintain the concrete temperature between 40°F (4°C) and 85°F (30°C) during color/stain application and for 48 hours after color/stain application. Consult the manufacturer's recommendations for preparation, application, curing, and storage of coloring agents/stains. The contractor shall provide a Color Application Artist who is trained in the special techniques to achieve realistic surface appearances. Treated surfaces located adjacent to exposed soil or pavement shall be temporarily covered to prevent dirt or soil splatter from rain. Following the completion of all work, repairs of any damage made by other construction operations shall be made to the form lined and colored surfaces as directed by the Engineer. Experience and Qualifications - The Contractor shall have a minimum of three consecutive years experience in architectural concrete surface treatment construction on similar types of projects. The Contractor shall furnish to the Engineer 5 references who were responsible for supervision of similar projects and will testify to the successful completion of these projects. Include name, address, telephone number, and specific type of application. ### 5.0 BASIS OF PAYMENT Architectural concrete surface treatment as described on the plans and in this Special Provision will be paid for at the lump sum price bid for "Architectural Concrete Surface Treatment". The above price and payment will be full compensation for all work covered by this Special Provision, the plans and applicable parts of the Standard Specifications and shall include, but not be limited to, furnishing all labor, materials, equipment, and other incidentals, including sample panels, necessary to complete this work. Payment will be made under: Architectural Concrete Surface Treatment.....Square Feet (Meters)