30 ## PROJECT SPECIAL PROVISIONS #### **ROADWAY** ### **CLEARING AND GRUBBING – METHOD II:** (9-17-02) (Rev 3-18-08) SP2 R01 Perform clearing on this project to the limits established by Method "II" shown on Standard No. 200.02 of the 2006 Roadway Standard Drawings. Revise the 2006 Standard Specifications as follows: ## Page 2-2, Article 200-3, Clearing, add the following as the 6th paragraph: At bridge sites, clear the entire width of the right of way beginning at a station 3 feet back of the beginning extremity of the structure and ending at a station 3 feet beyond the ending extremity of the structure. ### **BURNING RESTRICTIONS:** (7-1-95) SP2 R05 Open burning is not permitted on any portion of the right-of-way limits established for this project. Do not burn the clearing, grubbing or demolition debris designated for disposal and generated from the project at locations within the project limits, off the project limits or at any waste or borrow sites in this county. Dispose of the clearing, grubbing and demolition debris by means other than burning, according to state or local rules and regulations. ### RIP RAP ENERGY DISSIPATER: (9-16-08) SPI ### **Description** This work consists of the construction and maintenance of an armored outlet structure located at culvert outlets or ditch termini. ### **Materials** Refer to Division 10 of the Standard Specifications: | Item | Section | |------------------------------------|--------------| | Class I Riprap | Section 1042 | | Filter Fabric for Drainage, Type 2 | Section 1056 | ### **Construction Methods** Riprap Energy dissipaters shall be constructed in accordance with the detail shown in the plans or as directed. From the outlet invert of a culvert or bottom of a ditch excavation will drop to a specified depth. Excavation will continue to widen through the dissipater. Rip rap will be placed along the banks and bottom of the dissipater and along the apron. Excavate ditch in accordance with Section 204 of the Standard Specifications. The quantity of energy dissipater material may be affected by site conditions during construction of the project. The quantity of materials may be increased, decreased, or eliminated at the direction of the Engineer. Such variations in quantity will not be considered as alterations in the details of construction or a change in the character of the work. ### Measurement and Payment Class I Riprap will be measured and paid for in accordance with Section 876 of the Standard Specifications. Filter Fabric for Drainage will be measured and paid for in accordance with Section 876 of the Standard Specifications. Drainage Ditch Excavation will be measured and paid for in accordance with Section 240 of the Standard Specifications. Such price and payment will be full compensation for all work covered by this section, including, but not limited to furnishing all materials, labor, equipment, and incidentals necessary to construct the riprap energy dissipater. ### **EMBANKMENTS:** (5-16-06) (Rev 7-21-09) SP2 R18 Revise the *Standard Specifications* as follows: Page 2-22, Article 235-3 Materials, add the following as the second sentence of the second paragraph: Aerate and dry material containing moisture content in excess of what is required to achieve embankment stability and specified density. ## Page 2-22, Subarticle 235-4(B) Embankment Formation, add the following: (16) Do not place rock or broken pavement in embankment areas where piles or drilled shaft foundations are to be constructed. This shall include but not be limited to piles and foundations for structures, metal signal poles, overhead sign structures, and high mount lighting. ### **TEMPORARY DETOURS:** (7-1-95) (Rev 4-15-08) SP2 R30 Construct temporary detours required on this project in accordance with the typical sections in the plans or as directed. Payment for the construction of the detours will be made at the contract unit prices for the various items involved. After the detours have served their purpose, remove the portions deemed unsuitable for use as a permanent part of the project as directed by the Engineer. Salvage and stockpile the aggregate base course removed from the detours at locations within the right of way, as directed by the Engineer, for removal by State Forces. Pipe culverts removed from the detours remain the property of the Contractor. Remove pipe culverts from the project when they are no longer needed. Place pavement and earth material removed from the detour in embankments or dispose of in waste areas furnished by the Contractor. Aggregate base course and earth material that is removed will be measured and will be paid for at the contract unit price per cubic yard for Unclassified Excavation. Pavement that is removed will be measured and will be paid for at the contract unit price per square yard for Removal of Existing Pavement. Pipe culverts that are removed will be measured and will be paid for at the contract unit price per linear foot for *Pipe Removal*. Such prices and payments will be full compensation for the work of removing, salvaging, and stockpiling aggregate base course; removing pipe culverts; and for placing earth material and pavement in embankments or disposing of earth material and pavement in waste areas. ### **SELECT GRANULAR MATERIAL:** Select Granular Material used shall be in accordance with Section 265 of the Specifications except that Class II Select Material shall not be used. Payment will be made at the contract unit price per cubic yard for "Select Granular Material, Class III". #### **FALSE SUMPS:** (7-1-95) SP2 R40 Construct false sumps in accordance with the details in the plans and at locations shown in the plans or at other locations as directed by the Engineer. Payment for the work of construction of the false sumps will be made at the contract unit price per cubic yard for *Unclassified Excavation* or *Borrow Excavation* depending on the source of material, or included in *Grading-Lump Sum*. ### SHOULDER AND FILL SLOPE MATERIAL: (5-21-02) SP2 R45 C ### **Description** Perform the required shoulder and slope construction for this project in accordance with the applicable requirements of Section 560 and Section 235 of the 2006 Standard Specifications except as follows: Construct the top 6 inches of shoulder and fill slopes with soils capable of supporting vegetation. Provide soil with a P.I. greater than 6 and less than 25 and with a pH ranging from 5.5 to 6.8. Remove stones and other foreign material 2 inches or larger in diameter. All soil is subject to test and acceptance or rejection by the Engineer. Obtain material from within the project limits or approved borrow source. ### Compensation When the Contractor elects to obtain material from an area located beneath a proposed fill sections which does not require excavation for any reason other than to generate acceptable shoulder and fill slope material, the work of performing the excavation will be considered incidental to the item of Borrow Excavation or Shoulder Borrow. If there is no pay item for Borrow or Shoulder Excavation in the contract, this work will be considered incidental to Unclassified Excavation. Stockpile the excavated material in a manner to facilitate measurement by the Engineer. Fill the void created by the excavation of the shoulder and fill slope material with suitable material. Payment for material used from the stockpile will be made at the contract unit price for Borrow Excavation or Shoulder Borrow, then the material will be paid for at the contract unit price for Unclassified Excavation. The material used to fill the void created by the excavation of the shoulder and fill slope material will be made at the contract unit price for Unclassified Excavation, Borrow Excavation, or Shoulder Borrow, depending on the source of the material. Material generated from undercut excavation, unclassified excavation or clearing and grubbing operations that is placed directly on shoulders or slope areas, will not be measured separately for payment, as payment for the work requiring the excavation will be considered adequate compensation for depositing and grading the material on the shoulders or slopes. When undercut excavation is performed at the direction of the Engineer and the material excavated is found to be suitable for use as shoulder and fill slope material, and there is no area on the project currently prepared to receive the material generated by the undercut operation, the Contractor may construct a stockpile for use as borrow at a later date. Payment for the material used from the stockpile will be made at the contract unit price for *Borrow Excavation* or *Shoulder Borrow*. When shoulder material is obtained from borrow sources or from stockpiled material, payment for the work of shoulder construction will be made at the contract unit price per cubic yard for *Borrow Excavation* or *Shoulder Borrow* in accordance with the applicable provisions of Section 230 or Section 560 of the 2006 Standard Specifications. ### **SUBSURFACE DRAINAGE – UNDERDRAIN:** Six-inch perforated underdrain is as shown on Roadway Design Standard Drawing No. 815.03. Underdrain pipe should be installed 6 feet below subgrade or as deep as practical to allow for sufficient out-fall. Allow underdrain to function for 30 days prior to the earliest occurrences of either undercutting, proof rolling, or any embankment construction. Payment will be made under Section 815-4 of the NCDOT Standard Specifications. ### **GEOGRID REINFORCED SLOPES** (SPECIAL) #### 1. DESCRIPTION This work consists of furnishing and installing geogrid reinforcement for stabilizing the steepened embankment slopes in accordance with these provisions and the plans and as directed by the Engineer. Geogrid reinforcement shall be used from Station 37+00 -L- \pm to 41+00 -L- \pm along the left side of the embankment to stabilize the proposed 2:1 fill slope. Permanent turf reinforcement matting will be required
on the face of the reinforced slope at this location as shown on the plans. A preconstruction conference shall be scheduled with representatives of the Contractor, Resident Engineer, Roadside Environment Unit, and Geotechnical Engineering Unit to discuss construction details and quality control measures. #### 2. MATERIALS ### 2.1 Geogrid The geogrid shall be composed of polypropylene, high density polyethylene or polyester. The geogrid shall be a regular network of integrally connected elements with aperture geometry sufficient to permit significant mechanical interlock with the surrounding soil. The geogrid shall have high flexural rigidity and high tensile modulus in relation to the soil being reinforced and shall also have a high continuity of tensile strength through all of its elements. The geogrid shall be dimensionally stable and able to retain its geometry under construction stresses. The material shall have high resistance to ultraviolet degradation and to all forms of chemical and biological degradation encountered in the soil being reinforced. The Contractor shall furnish a Type 2 Typical Certified Mill Test Report for the secondary geogrid in accordance with Section 106-3 of the NCDOT Standard Specifications; however, the material shall be subject to inspection, test, or rejection by the Engineer at any time. ### Geogrid Secondary Geogrid shall provide a minimum tensile strength of 600 lb/ft at five (5) percent strain and a minimum ultimate tensile strength of 1200 lb/ft determined in accordance with ASTM D 4595. These strength values are in the cross-machine direction (i.e., cross-roll direction). Secondary geogrid shall provide a minimum machine direction tensile (i.e., along roll direction) strength of 400 lb/ft at five (5) percent strain and a minimum ultimate tensile strength of 800 lb/ft determined in accordance with ASTM D 4595. ### 2.2 Permanent Turf Reinforcement Matting The product shall be a permanent erosion control reinforcement mat and shall be constructed of synthetic fibers evenly distributed throughout the mat between a bottom UV stabilized netting and a heavy duty UV stabilized top net. The matting shall be stitched together with UV stabilized polypropylene thread to form a permanent three dimensional structure. The mat shall have the following minimum physical properties: | Property | Test Method | Value | Unit | |----------------------------|--------------------|-------|----------| | Light Penetration | ASTM D6567 | 15 | % | | Thickness | ASTM D6525 | 0.5 | in | | Mass Per Unit Area | ASTM D6566 | 0.625 | lb/sy | | Tensile Strength | ASTM D6818 | 385 | lb/ft | | Elongation (Maximum) | ASTM D6818 | 49 | % | | Resiliency | ASTM D6524 | >70 | % | | UV Stability * | ASTM D4355 | >80 | % | | Porosity (Permanent Net) | Calculated | >85 | % | | Minimum Filament | Measured | 0.03 | in | | Maximum Permissible Shear | Performance Test | >8 | lb/ft2 | | Stress (Vegetated) | | | | | Maximum Allowable Velocity | Performance Test | >16 | ft/sec | ^{*}ASTM D1682 Tensile Strength and % strength retention of material after 1000 hours of exposure. Submit a certification from the manufacturer showing: - (A) the chemical and physical properties of the mat used, and - (B) conformance of the mat with this specification. #### 2.2.1 Anchors Stakes, reinforcement bars, or staples shall be used as anchors. #### Wooden Stakes: Provide hardwood stakes 1 ft. to 2 ft. long with a 2 in. x 2 in. nominal square cross section. One end of the stake must be sharpened or beveled to facilitate driving through the turf reinforcement mat and down into the underlying soil. The other end of the stake needs to have a 1 in. to 2 in. long head at the top with a 1 in. to 2 in. notch following to catch and secure the coir fiber mat. #### Steel Reinforcement Bars: Provide uncoated #3 steel reinforcement bars 2 ft. nominal length. The bars shall have a 4 in. diameter bend at one end with a 4 in. straight section at the tip to catch and secure the coir fiber mat. ### Staples: Provide staples made of 0.1 in. diameter new steel wire formed into a u shape not less than 1 ft. in length with a throat of 1 in. width. ### 3. CONSTRUCTION During all periods of shipment and storage, the geogrid shall be protected from temperatures greater than 140° F, direct sunlight, mud, wet cement, epoxy, or other materials which may alter its physical properties. At the time of installation, the geogrid shall be rejected if it has defects, tears, punctures, flaws, deterioration or damage incurred during manufacturing, transportation or storage. Any geogrid damaged during storage or installation shall be replaced by the Contractor at no additional cost to the Department. The proper geogrid shall be placed and pulled tight at the proper location and orientation as shown on the plans and as directed by the Engineer. Correct orientation (machine direction) of the geogrid shall be verified by the Contractor. The geogrid shall be secured in-place to prevent movement during fill operations. The geogrid shall be secured with staples, pins, sandbags, or fill, or as directed by the Engineer. Tolerance in spacing of geogrid layers shall be within 2 in. at any place unless otherwise noted in the plans. Soil meeting the requirements for Coastal Plain Borrow as required by the plans and this specification is required on top of each geogrid layer to the limits shown on the plans. Placement and compaction of borrow material fill shall conform to all applicable requirements of the NCDOT Standard Specifications. The entire embankment should be constructed simultaneously with the geogrid reinforced slopes. The fill shall be placed, spread, and compacted in a manner that prevents the development of wrinkles or movement of the geogrid. No equipment shall be allowed to operate directly on the geogrid. A minimum fill thickness of 6 in. is required prior to operation of any equipment or vehicle over the geogrid. Turning of vehicles shall be kept to a minimum, and sudden braking and sharp turning shall be avoided. Damaged geogrids shall be replaced at no cost to the Department. ### Reinforced Slope The first layer of the secondary geogrid shall be placed on the existing ground surface with machine direction (roll direction) parallel to the slope face. Subsequent layers of secondary geogrid shall be placed horizontally as shown on the plans and as directed by the Engineer. Spacing between geogrid layers is as shown on the plan elevation view. Vertical spacing between geogrid layers shall be no more than 1 ft. Tolerance in spacing of geogrid layers shall be within 2 in. at any place unless otherwise noted in the plans. The geogrid shall be placed in continuous strips in the direction specified in the plans. No overlaps or connections shall be permitted in the geogrid layers in the direction parallel to the slope face (see details in the plan). Rolls of geogrid shall be butted up next to each other (end to end) as shown on the plans and as directed by the Engineer. ### 4. FACE OF SLOPE Face the geogrid reinforced slope with permanent turf reinforcement matting as shown on the plans. Permanent turf reinforcement matting must be anchored on a 4 ft. by 4 ft. square spacing. Matting shall be installed in accordance with Subarticle 1631-3(B) of the *Standard Specifications*. All areas to be protected with the mat shall be brought to final grade and seeded in accordance with Section 1660 of the *Standard Specifications*. The surface of the soil shall be smooth, firm, stable and free of rocks, clods, roots or other obstructions that would prevent the mat from lying in direct contact with the soil surface. Areas where the mat is to be placed will not need to be mulched. ### 5. MEASUREMENT AND PAYMENT Secondary Geogrid Reinforcement to be measured and paid for will be the total number of square yard of geogrid correctly placed in the completed embankment as shown on the plans or as directed by the Engineer. No measurement will be made of geogrid reinforcement installed lengths longer than that shown on the plans. No separate measurement will be made of overlapping geogrid for payment purposes. The quantity of secondary geogrid, measured as provided above, will be paid for at the contract unit price per square yard for "Secondary Geogrid Reinforcement". Such prices and payments will be full compensation for all the work required by this provision including but not limited to: furnishing all materials, labor, equipment, and tools; placing and installing geogrids; hauling, placing and compacting fill; and all incidentals necessary to complete the work. Permanent Turf Reinforcement Mat will be measured and paid for as the actual number of square yard measured along the surface of the ground over which Permanent Turf Reinforcement Mat is installed and accepted. Overlaps will not be included in the measurement, and will be considered as incidental to the work. Furnishing and installing turf reinforcement matting anchors is incidental to the cost of the matting. Such payment shall be full compensation for furnishing and installing the mat, including overlaps, and for all required maintenance. ### Pay Items: | Secondary Geogrid Reinforcement | Square Yard | |----------------------------------|-------------| | Permanent Turf Reinforcement Mat | Square Yard | ### PERMANENT TURF REINFORCEMENT MAT: (SPECIAL) ### **Description** This work consists of furnishing and placing *Permanent Turf Reinforcement Mat*, of the type specified, over previously prepared areas as directed. #### **Materials** ### 1. Permanent Turf Reinforcement Mat The product shall be a permanent erosion control reinforcement mat and shall be constructed of synthetic fibers evenly distributed throughout the mat between a bottom UV stabilized netting and a heavy duty UV stabilized top net. The matting shall be stitched together with UV stabilized polypropylene thread
to form a permanent three dimensional structure. The mat shall have the following minimum physical properties: | Property | Test Method | Value | Unit | |----------------------------|--------------------|-------|--------| | Light Penetration | ASTM D6567 | 15 | % | | Thickness | ASTM D6525 | 0.50 | in | | Mass Per Unit Area | ASTM D6566 | 0.625 | lb/sy | | Tensile Strength | ASTM D6818 | 385 | lb/ft | | Elongation (Maximum) | ASTM D6818 | 49 | % | | Resiliency | ASTM D6524 | >70 | % | | UV Stability * | ASTM D4355 | >80 | % | | Porosity (Permanent Net) | Calculated | >85 | % | | Minimum Filament | Measured | 0.03 | in | | Maximum Permissible Shear | Performance Test | >8.0 | lb/ft2 | | Stress (Vegetated) | | | | | Maximum Allowable Velocity | Performance Test | >16.0 | ft/sec | ^{*}ASTM D1682 Tensile Strength and % strength retention of material after 1000 hours of exposure. Submit a certification from the manufacturer showing: - (A) the chemical and physical properties of the mat used, and - (B) conformance of the mat with this specification. ### 2. Anchors Stakes, reinforcement bars, or staples shall be used as anchors. ### Wooden Stakes: Provide hardwood stakes 1 ft. to 2 ft. long with a 2 in. x 2 in. nominal square cross section. One end of the stake must be sharpened or beveled to facilitate driving through the turf reinforcement mat and down into the underlying soil. The other end of the stake needs to have a 1 in. to 2 in. long head at the top with a 1 in. to 2 in. notch following to catch and secure the coir fiber mat. ### Steel Reinforcement Bars: Provide uncoated #3 steel reinforcement bars 2 ft. nominal length. The bars shall have a 4 in. diameter bend at one end with a 4 in. straight section at the tip to catch and secure the coir fiber mat. Staples: Provide staples made of 0.1 in. diameter new steel wire formed into a u shape not less than 1 ft. in length with a throat of 1 in. width. 39 #### **Construction Methods** Face the slope with Permanent Turf Reinforcement Mat as required. The mat must be anchored on a 4 ft. by 4 ft. square spacing. The mat shall be installed in accordance with Subarticle 1631-3(B) of the Standard Specifications. All areas to be protected with the mat shall be brought to final grade and seeded in accordance with Section 1660 of the *Standard Specifications*. The surface of the soil shall be smooth, firm, stable and free of rocks, clods, roots or other obstructions that would prevent the mat from lying in direct contact with the soil surface. Areas where the mat is to be placed will not need to be mulched. ### Measurement and Payment Permanent Turf Reinforcement Mat will be measured and paid for as the actual number of square yards measured along the surface of the ground over which Permanent Turf Reinforcement Mat is installed and accepted. Overlaps will not be included in the measurement, and will be considered as incidental to the work. Such payment shall be full compensation for furnishing and installing the mat, including overlaps, anchors and for all required maintenance. Payment will be made under: Pay Item Pay Unit Permanent Turf Reinforcement Mat Square Yard **FLOWABLE FILL:** (9-17-02) (Rev 8-21-07) ### **Description** This work consists of all work necessary to place flowable fill in accordance with these provisions, the plans, and as directed. #### Materials Provide flowable fill material in accordance with Article 340-2 of the 2006 Standard Specifications. ### **Construction Methods** Discharge flowable fill material directly from the truck into the space to be filled, or by other approved methods. The mix may be placed full depth or in lifts as site conditions dictate. The Contractor shall provide a method to plug the ends of the existing pipe in order to contain the flowable fill. ### Measurement and Payment At locations where flowable fill is called for on the plans and a pay item for flowable fill is included in the contract, *flowable fill* will be measured in cubic yards and paid for as the actual number of cubic yards that have been satisfactorily placed and accepted. Such price and payment will be full compensation for all work covered by this provision including but not limited to the mix design, furnishing, hauling, placing and containing the flowable fill. Payment will be made under: Pay Item Flowable Fill Pay Unit Cubic Yard ## **PIPE TESTING:** 4-17-07 SP3 R33 Revise the 2006 Standard Specifications as follows: Page 3-3, Article 300-6, add the following as a new paragraph before (A): The Department reserves the right to perform forensic testing on any installed pipe. #### PIPE ALTERNATES: (7-18-06) (Rev 4-17-07) SP3 R36 #### Description The Contractor may substitute Aluminized Corrugated Steel Pipe, Type IR or HDPE Pipe, Type S or Type D up to 48 inches in diameter in lieu of concrete pipe in accordance with the following requirements. ### Material ItemSectionHDPE Pipe, Type S or D1032-10Aluminized Corrugated Steel Pipe, Type IR1032-3(A)(7) Aluminized Corrugated Steel Pipe will not be permitted in counties listed in Article 310-2 of the 2006 Standard Specifications. #### **Construction Methods** Aluminized Corrugated Steel Pipe Culverts and HDPE Pipe Culverts shall be installed in accordance with the requirements of Section 300 of the 2006 Standard Specifications for Method A, except that the minimum cover shall be at least 12 inches. Aluminized Corrugated Steel Pipe Culvert and HDPE Pipe Culvert will not be permitted for use under travelways, including curb and gutter. ### **Measurement and Payment** "Aluminized Corrugated Steel Pipe Culvert to be paid for will be the actual number of linear feet installed and accepted. Measurement will be in accordance with Section 310-6 of the 2006 Standard Specifications. "HDPE Pipe Culvert to be paid for will be the actual number of linear feet installed and accepted. Measurement will be in accordance with Section 310-6 of the 2006 Standard Specifications. Payment will be made under: | Pay Item | | Pay Unit | |--|---------|-------------| | " Aluminized Corrugated Steel Pipe Culverts, _ | " Thick | Linear Foot | | " HDPE Pipe Culverts | | Linear Foot | ## **REINFORCED BRIDGE APPROACH FILL:** (3-18-03) (Rev 9-16-08) SP4 R01 A ### **Description** This work consists of all work necessary to construct reinforced bridge approach fills in accordance with these provisions and the plans, and as directed by the Engineer. #### Materials ### (A) Geomembrane Provide geomembrane that is impermeable, composed of polyethylene polymers or polyvinyl chloride, and meets the following physical requirements: | Property | Requirements | Test Method | |----------------------------------|-----------------------------|--------------------| | Thickness | 25 mils Minimum | ASTM D1593 | | Tensile Strength at Break | 100 lb/inch Minimum | ASTM D638 | | Puncture Strength | 40 lbs Minimum | ASTM D 4833 | | Moisture Vapor Transmission Rate | 0.018 oz/yd per Day Maximum | ASTM E96 | ### (B) Fabric Refer to Section 1056 for Type 2 Engineering Fabric and the following: Use a woven fabric consisting of strong rot-proof synthetic fibers such as polypropylene, polyethylene, or polyester formed into a stable network such that the filaments or yarns retain their relative positions to each other. Fabric PropertyRequirementsTest MethodMinimum Flow Rate2 gallons/min/square footASTM D 4491 Lamination of fabric sheets to produce the physical requirements of a fabric layer will not be accepted. Furnish letters of certification from the manufacturer with each shipment of the fabric and geomembrane attesting that the material meets the requirements of this provision; however, the material is subject to inspection, test, or rejection by the Engineer at any time. During all periods of shipment and storage, wrap the geomembrane and fabric in a heavy-duty protective covering to protect the material from ultraviolet rays. After the protective wrapping has been removed, do not leave the material uncovered under any circumstances for longer than 4 days. ## (C) Select Material Provide select material meeting the requirements of Class III, Type 1 or Type 2, or Class V select material of Section 1016 of the 2006 Standard Specifications. When select material is required under water, use select material class V only, up to one foot above the existing water elevation. ## (D) 4 inch Diameter Corrugated Drainage Pipe and Fittings Provide pipe and fittings that meet all the applicable requirements of Section 815 or 816 of the 2006 Standard Specifications. #### **Construction Methods** Place the geomembrane and fabric as shown on the plans or as directed by the Engineer. Perform the excavation for the fabric reinforced fill to the limits shown on the plans. Provide an excavated surface free of obstructions, debris, pockets, stumps, and cleared of all vegetation. The geomembrane or fabric will be rejected if it has defects, rips, holes, flaws, deterioration or damage incurred during manufacture, transportation, handling or storage. Lay all layers smooth, and free from tension, stress, folds, wrinkles or creases. Place all the fabric layers with the machine direction (roll direction) parallel to the centerline of the roadway. A minimum roll width of 10.0 feet for the fabric is required. Overlap geomembrane or fabric splices parallel to the centerline of the roadway a minimum of 18 inches. Geomembrane or fabric splices parallel to the backwall face will not be allowed. Deposit and spread select material in successive, uniform, approximately horizontal layers of not more than 10 inches in depth, loose measurement, for the full width of the cross section, and keep each layer approximately level. Place and compact each layer of select material fill no more than 10 inches thick with low ground pressure equipment. Use hand operated equipment to compact the fill material within
three feet of the backwall and wingwalls as directed by the Engineer. Compact select material to a density equal to at least 95% of that obtained by compacting a sample of the material in accordance with AASHTO T99 as modified by the Department. Compact the top eight inches of select material to a density to at least 100% of that obtained by compacting a sample of the material in accordance with AASHTO T99 as modified by the Department. Density requirements are not applicable to select material, class V; however compact the fill with at least four passes of low ground pressure equipment on the entire surface as directed by the Engineer. The compaction of each layer of select material shall be inspected and approved by the Department prior to the placement of the next fill layer. No equipment will be allowed to operate on the drainage pipe or any geomembrane/fabric layer until it is covered with at least six inches of fill material. Compaction shall not damage the drainage pipe, geomembrane, or fabric under the fill. Cover the geomembrane/fabric with a layer of fill material within four days after placement of the geomembrane/fabric. Geomembrane and fabric that are damaged as a result of installation will be replaced as directed by the Department at no additional cost. Place the geomembrane on the ground, and attach and secure it tightly to the vertical face of the backwall and wingwalls with adhesives, duct-tape, nails or any other method approved by the Engineer. Place the first fabric layer on the surface of the geomembrane with the same dimensions of the geomembrane. No material or void is allowed between the geomembrane and the first fabric layer. Place and fold the remaining fabric layers on the edges as shown on the plans or as directed by the Engineer. Provide vertical separation between fabric layers as specified on the plans. The number of fabric layers will be shown in the plans. Place four inch diameter perforated drainage pipe along the base of the backwall and sloped to drain as shown on the plans. Completely wrap perforated drainage pipe and #78M stone with Type 2 Engineering Fabric as shown on the plan detail. Install a pipe sleeve through the bottom of or under the wing wall prior to placing concrete for the wing wall. The pipe sleeve shall be of adequate strength to withstand the wingwall load. Place the pipe sleeve in position to allow the drainage pipe to go through the wing wall with a proper slope. Connect four-inch diameter nonperforated (plain) drainage pipe with a coupling to the perforated pipe near the inside face of the wingwall. Place the nonperforated drainage pipe through the pipe sleeve, extend down to the toe of the slope and connect, to a ditch or other drainage systems as directed by the Engineer. For bridge approaches in cut sections where no side slope is available, direct the drainage pipe outlet to the end slope down to the toe using elbows as directed by the Engineer. ### Measurement and Payment | Reinforced Bridge Approach Fill, Station | will be paid for at the contract lump sum price. | |--|---| | Such price and payment will be full comper | nsation for both approach fills at each bridge | | installation, including but not limited to furni | shing, placing and compacting select material, | | furnishing and placing geomembrane and wov | ven fabric, furnishing and placing pipe sleeve, | | drainage pipe, and stone, furnishing and insta
excavation and any other items necessary to com- | lling concrete pads at the end of outlet pipes, plete the work. | | excavation and any other items necessary to com- | piete the work. | Payment will be made under: Pay Item Reinforced Bridge Approach Fill, Station Pay Unit Lump Sum ## FINE GRADING SUBGRADE, SHOULDERS AND DITCHES: (7-21-09) SP5R01 Revise the Standard Specifications as follows: Page 5-1, Article 500-1 Description, replace the first sentence with the following: Perform the work covered by this section including but not limited to preparing, grading, shaping, manipulating moisture content, and compacting either an unstabilized or stabilized roadbed to a condition suitable for placement of base course, pavement, and shoulders. ### **AGGREGATE BASE COURSE:** 12-19-06 SP5 R03 Revise the 2006 Standard Specifications as follows: Page 5-11, Article 520-5 Hauling and Placing Aggregate Base Material, 6th paragraph, replace the first sentence with the following: Base course that is in place on November 15 shall have been covered with a subsequent layer of pavement structure or with a sand seal. Base course that has been placed between November 16 and March 15 inclusive shall be covered within 7 calendar days with a subsequent layer of pavement structure or with a sand seal. ## **ASPHALT PAVEMENTS - SUPERPAVE:** (7-18-06)(Rev 5-19-09) SP6 R01 Revise the 2006 Standard Specifications as follows: Page 6-2, Article 600-9 Measurement and Payment, delete the second paragraph. Page 6-12, Subarticle 609-5(C)2, Required Sampling and Testing Frequencies, first partial paragraph at the top of the page, delete last sentence and add the following: If the Engineer allows the mix to remain in place, payment will be made in accordance with Article 105-3. ## Page 6-12, Subarticle 609-5(C)2, QUALITY CONTROL MINIMUM SAMPLING AND TESTING SCHEDULE ### First paragraph, delete and replace with the following. Sample and test the completed mixture from each mix design per plant per year at the following minimum frequency during mix production: ### Second paragraph, delete the fourth sentence, and replace with the following When daily production of each mix design exceeds 100 tons and a regularly scheduled full test series random sample location for that mix design does not occur during that day's production, perform at least one partial test series consisting of Items A and B in the schedule below. ## Page 6-12, Subarticle 609-5(C)2(c) Maximum Specific Gravity, add after (AASHTO T 209): or ASTM D 2041 ## Page 6-13, last line and on page and Page 6-14, Subarticle 609-5(C)(2)(e) Tensile Strength Ratio (TSR), add a heading before the first paragraph as follows: (i) Option 1 ## Insert the following immediately after the first paragraph: (ii) Option 2 Mix sampled from truck at plant with one set of specimens prepared by the Contractor and then tested jointly by QA and QC at a mutually agreed upon lab site within the first 7 calendar days after beginning production of each new mix design. ## Second paragraph, delete and replace with the following: Test all TSR specimens required by either option noted above on either a recording test press or a test press that maintains the peak load reading after the specimen has broken. Subarticle 609-5(C)(3) Control Charts, delete the second sentence of the first paragraph and replace with the following: For mix incorporated into the project, record full test series data from all regularly scheduled random samples or directed samples that replace regularly scheduled random samples, on control charts the same day the test results are obtained. # Page 6-15, Subarticle 609-5(C)(3) Control Charts, first paragraph on this page, delete the last sentence and substitute the following: Denote the moving average control limits with a dash green line and the individual test limits with a dash red line. ### Subarticle 609-5(C)(3)(a), (b) and (c), replace (a) (b) and (c) with the following: (a) A change in the binder percentage, aggregate blend, or G_{mm} is made on the JMF, or, - (b) When the Contractor elects to stop or is required to stop production after one or two moving average values, respectively, fall outside the moving average limits as outlined in subarticle 609-5(C)6 or, - (c) If failure to stop production after two consecutive moving averages exceed the moving average limits occurs, but production does stop at a subsequent time, reestablish a new moving average beginning at the actual production stop point. ## Subarticle 609-5(C)(4) Control Limits, replace the first paragraph and the CONTROL LIMITS Table on page 6-16 with the following. The following are established as control limits for mix production. Apply the individual limits to the individual test results. Control limits for the moving average limits are based on a moving average of the last 4 data points. Apply all control limits to the applicable target source. #### **CONTROL LIMITS** | Mix Control Criteria | Target Source | Moving
Average Limit | Individual Limit | |--|------------------|-------------------------|------------------| | 2.36 mm Sieve | JMF | ±4.0 % | ±8.0 % | | 0.075mm Sieve | JMF | ±1.5 % | ±2.5 % | | Binder Content | JMF | ±0.3 % | ±0.7 % | | VTM @ N _{des} | JMF | ±1.0 % | ±2.0 % | | VMA @ N _{des} | Min. Spec. Limit | -0.5% | -1.0% | | P _{0.075} / P _{be} Ratio | 1.0 | ±0.4 | ±0.8 | | %G _{mm} @ N _{ini} | Max. Spec. Limit | N/A | +2.0% | | TSR | Min. Spec. Limit | N/A | - 15% | Page 6-16, Subarticle 609-5(C)(5) Warning Bands, delete this subarticle in its entirety. Pages 6-16 through 6-19, Subarticle 609-5(C)(6), delete the word "warning" and substitute the words "moving average". # Page 6-16, Subarticle 609-5(C)(6) Corrective Actions, first paragraph, first sentence, delete and replace with the following: Immediately notify the Engineer when moving averages exceed the moving average limits. ## Page 6-17, third full paragraph, delete and replace with the following: Failure to stop production when required due to an individual mix test not meeting the specified requirements will subject all mix from the stop point tonnage to the point when the next individual test is back on or within the moving average limits, or to the tonnage point when production is actually stopped, whichever occurs first, to being considered unacceptable. ## Sixth full
paragraph, delete the first, second, and third sentence and replace with the following: Immediately notify the Engineer when any moving average value exceeds the moving average limit. If two consecutive moving average values for any one of the mix control criteria fall outside the moving average limits, cease production of that mix, immediately notify the Engineer of the stoppage, and make adjustments. The Contractor may elect to stop production after only one moving average value falls outside the moving average limits. ## Page 6-18, Subarticle 609-5(C)(6) Corrective Actions second full paragraph, delete and replace with the following: If the process adjustment improves the property in question such that the moving average after four additional tests is on or within the moving average limits, the Contractor may continue production with no reduction in payment ## Page 6-18, delete the third and fourth full paragraphs, including the Table for Payment for Mix Produced in the Warning Bands and substitute the following: If the adjustment does not improve the property in question such that the moving average after four additional individual tests is outside the moving average limits, the mix will be evaluated for acceptance in accordance with Article 105-3. Reduced payment for or removal of the mix in question will be applied starting from the plant sample tonnage at the stop point to the sample tonnage when the moving average is on or within the moving average limits. In addition, any mix that is obviously unacceptable will be rejected for use in the work. ## Page 6-19, First paragraph, delete and replace with the following: Failure to stop production and make adjustments when required due to two consecutive moving average values falling outside the moving average limits will subject all mix produced from the stop point tonnage to the tonnage point when the moving average is back on or within the moving average limits or to the tonnage point when production is actually stopped, whichever occurs first, to being considered unacceptable. Remove this material and replaced with materials that comply with the Specifications at no additional costs to the Department, unless otherwise approved. Payment will be made for the actual quantities of materials required to replace the removed quantities, not to exceed the original amounts. ## Page 6-20, Subarticle 609-5(D)(1) General, delete the third full paragraph, and replace with the following: Perform the sampling and testing at the minimum test frequencies as specified above. Should the density testing frequency fail to meet the minimum frequency as specified above, all mix without the required density test representation will be considered unsatisfactory. If the Engineer allows the mix to remain in place, payment will be made in accordance with Article 105-3. ## Page 6-22, Subarticle 609-5(D)(4) Nuclear Gauge Density Procedures, third paragraph, insert the following as the second sentence: Determine the Daily Standard Count in the presence of the QA Roadway Technician or QA Nuclear Gauge Technician on days when a control strip is being placed. ## Page 6-23, Subarticle 609-5(D)(5) Limited Production Procedure, delete the first paragraph including (a), (b), (c) and substitute the following: Proceed on limited production when, for the same mix type and on the same contract, one of the following conditions occur (except as noted in the first paragraph below). - (a) Two consecutive failing lots, except on resurfacing* - (b) Three consecutive failing lots on resurfacing* - (c) Two consecutive failing nuclear control strips. - * Resurfacing is defined as the first new uniform layer placed on an existing pavement. ## Page 6-25, Article 609-6 Quality Assurance, Density Quality Assurance, insert the following items after item (E): - (F) By retesting Quality Control core samples from control strips (either core or nuclear) at a frequency of 100% of the frequency required of the Contractor; - (G) By observing the Contractor perform all standard counts of the Quality Control nuclear gauge prior to usage each nuclear density testing day; or - (H) By any combination of the above ## Page 6-28, Subarticle 610-3(A) Mix Design-General, delete the fourth and fifth paragraphs and replace with the following: Reclaimed Asphalt Pavement (RAP) or Reclaimed Asphalt Shingles (RAS) may be incorporated into asphalt plant mixes in accordance with Article 1012-1 and the following applicable requirements. Reclaimed asphalt pavement (RAP) may constitute up to 50% of the total material used in recycled mixtures, except for mix Type S 12.5D, Type S 9.5D, and mixtures containing reclaimed asphalt shingle material (RAS). Reclaimed asphalt shingle (RAS) material may constitute up to 6% by weight of total mixture for any mix. When both RAP and RAS are used, do not use a combined percentage of RAS and RAP greater than 20% by weight of total mixture, unless otherwise approved. When the percent of binder contributed from RAS or a combination of RAS and RAP exceeds 20% but not more than 30% of the total binder in the completed mix, the virgin binder PG grade shall be one grade below (both high and low temperature grade) the binder grade specified in Table 610-2 for the mix type. When the percent of binder contributed from RAS or a combination of RAS and RAP exceeds 30% of the total binder in the completed mix, the Engineer will establish and approve the virgin binder PG grade. Use approved methods to determine if any binder grade adjustments are necessary to achieve the performance grade for the specified mix type. For Type S 12.5D and Type S 9.5D mixes, the maximum percentage of reclaimed asphalt material is limited to 20% and shall be produced using virgin asphalt binder grade PG 76-22. For all other recycled mix types, the virgin binder PG grade shall be as specified in Table 610-2A for the specified mix type. When the percentage of RAP is greater than 20% but not more than 30% of the total mixture, use RAP meeting the requirements for processed or fractionated RAP in accordance with the requirements of Section 1012-1. When the percentage of RAP is greater than 30% of the total mixture, use an approved stockpile of RAP in accordance with Section 1012-1(C). Use approved test methods to determine if any binder grade adjustments are necessary to achieve the performance grade for the specified mix type. The Engineer will establish and approve the virgin asphalt binder grade to be used. Page 6-34, Insert the following immediately after Table 610-2: TABLE 610-2A SUPERPAVE MIX DESIGN CRITERIA | | Percentage of RAP in Mix | | | |--|--------------------------|--------------------------------|--------------| | | Category 1 | Category 2 | Category 3 | | Mix Type | % RAP ≤20% | $20.1\% \le \% RAP \le 30.0\%$ | %RAP > 30.0% | | All A and B Level
Mixes, I19.0C, B25.0C | PG 64 -22 | PG 64 -22 | TBD | | S9.5C, S12.5C, I19.0D | PG 70 -22 | PG 64-22 | TBD | | S 9.5D and S12.5D | PG 76-22 | N/A | N/A | Note: (1) Category 1 RAP has been processed to a maximum size of 2 inches. - (2) Category 2 RAP has been processed to a maximum size of 1 inch by either crushing and or screening to reduce variability in the gradations. - (3) Category 3 RAP has been processed to a maximum size of 1 inch, fractionating the RAP into 2 or more sized stockpiles ## Page 6-35, Table 610-3 delete and replace with the following: TABLE 610-3 ASPHALT PLACEMENT- MINIMUM TEMPERATURE REQUIREMENTS | Asphalt Concrete Mix Type | Minimum Air
Temperature | Minimum Surface
Temperature | |-------------------------------------|----------------------------|--------------------------------| | ACBC, Type B 25.0B, C, B 37.5C | 35°F | 35°F | | ACIC, Type I 19.0B, C, D | 35°F | 35°F | | ACSC, Type S 4.75A, SF 9.5A, S 9.5B | 40°F | 50°F* | | ACSC, Type S 9.5C, S 12.5C | 45°F | 50°F | | ACSC, Type S 9.5D, S 12.5D | 50°F | 50°F | ^{* 35°}F if surface is soil or aggregate base for secondary road construction. ## Page 6-44, Article 610-8 Spreading and Finishing, third full paragraph, replace the first sentence with the following: Use the 30 foot minimum length mobile grade reference system or the non-contacting laser or sonar type ski with at least four referencing stations mounted on the paver at a minimum length of 24 feet to control the longitudinal profile when placing the initial lanes and all adjacent lanes of all layers, including resurfacing and asphalt in-lays, unless otherwise specified or approved. # Page 6-50, Article 610-13 Density Acceptance, delete the second paragraph and replace with the following: As an exception, when the first layer of mix is a surface course and is being placed directly on an unprimed aggregate or soil base, the layer will be included in the "Other" construction category. ### Page 6-53, Article 620-4 Measurement and Payment: Sixth paragraph, delete the last sentence. ## Seventh paragraph, delete the paragraph and replace with the following: The adjusted contract unit price will then be applied to the theoretical quantity of asphalt binder authorized for use in the plant mix placed during the partial payment period involved, except that where recycled plant mix is used, the adjusted unit price will be applied only to the theoretical number of tons of additional asphalt binder materials required by the job mix formula. ## Page 6-54, Article 620-4 Measurement and Payment, add the following pay item: Pay Item Asphalt Binder for Plant Mix, Grade PG 70-28 Pay Unit Ton ## Page 6-69, Table 660-1 Material Application Rates and Temperatures, add the following: | Type of
Coat | Grade of Asphalt | Asphalt Rate
gal/yd² | Application
Temperature
°F | Aggregate
Size | Aggregate
Rate lb./sq. yd.
Total | |-----------------|------------------|-------------------------|----------------------------------|-------------------|--| | Sand Seal | CRS-2 or |
0.22-0.30 | 150-175 | Blotting | 12-15 | | Dana Doar | CRS-2P | 0.22 0.30 | 130 173 | Sand | | ## Page 6-75, Subarticle 660-9(B), add the following as sub-item (5) ## (5) Sand Seal Place the fully required amount of asphalt material in one application and immediately cover with the seal coat aggregate. Uniformly spread the fully required amount of aggregate in one application and correct all non-uniform areas prior to rolling. Immediately after the aggregate has been uniformly spread, perform rolling. When directed, broom excess aggregate material from the surface of the seal coat. When the sand seal is to be constructed for temporary sealing purposes only and will not be used by traffic, other grades of asphalt material meeting the requirements of Articles 1020-6 and 1020-7 may be used in lieu of the grade of asphalt required by Table 660-1 when approved. ## Page 6-76, Article 661-1 Description, add the following as the 2nd paragraph: Provide and conduct the quality control and required testing for acceptance of the UBWC in accordance with "Quality Management System for Asphalt Pavements (OGAFC, PADL, and Ultra-Thin HMA Version)", included in the contract. ### Page 6-80, Subarticle 661-3(A) Equipment, add the following as the first paragraph: Use asphalt mixing plants in accordance with Article 610-5. Page 10-41, Table 1012-1, delete the last row of entries for OGAFC and add the following: | Mix Type | Coarse Aggregate Angularity (b) ASTM D5821 | Fine Aggregate
Angularity % Minimum
AASHTO T304 Method
A | Sand Equivalent
% Minimum
AASHTO T176 | Flat & Elongated 5:1 Ratio
% Maximum
ASTM D4791 Section 8.4 | |----------|--|---|---|---| | S 9.5 D | 100/100 | 45 | 50 | 10 | | OGAFC | 100/100 | N/A | N/A | 10 | | UBWC | 100/85 | 40 | 45 | 10 | ## Delete Note (c) under the Table 1012-1 and replace with the following: (c) Does not apply to Mix Types SF 9.5A and S 9.5B. ## Page 10-43, Subarticle 1012-1(F): Reclaimed Asphalt Shingle Material (RAS), insert the following immediately following the first paragraph: ## (1) Mix Design RAS Incorporate RAS from stockpiles that have been tested for uniformity of gradation and binder content prior to use in an asphalt mix design. ### (2) Mix Production RAS New Source RAS is defined as acceptable material which was not included in the stockpile when samples were taken for mix design purposes. Process new source RAS so that all materials will pass a 1/2" sieve prior to introduction into the plant mixer unit. After a stockpile of processed RAS has been sampled and mix designs made from these samples, do not add new source RAS to the original stockpile without prior field testing to insure gradation and binder uniformity. Sample and test new source RAS before blending with the existing stockpile. Store new source RAS in a separate stockpile until the material can be sampled and tested for comparison with the original recycled mix design data. New source RAS may also be placed against the existing stockpile in a linear manner provided it is sampled for mix design conformity prior to its use in the recycled mix. RAS contamination including but not limited to excessive dirt, debris, clean stone, concrete will not be allowed. Field approval of new source RAS will be based on the table below and volumetric mix properties on the mix with the new source RAS included. Provided these tolerances are met, volumetric properties of the new mix will then be performed. If all volumetric mix properties meet the mix design criteria for that mix type, the new source RAS may continue to be used. If the gradation, binder content, or any of the volumetric mix properties are not within the allowable tolerances of the table below, do not use the new source RAS unless approved by the Engineer. The Contractor may elect to either not use the stockpile, to request an adjustment to the JMF, or to redesign the mix. NEW SOURCE RAS GRADATION and BINDER TOLERANCES (Apply Tolerances to Mix Design Data) | (Apply Tolerances to Mix Design Data) | | | | | |---------------------------------------|------------|--|--|--| | 0-6%] | RAS | | | | | P _b % | ±1.6% | | | | | Sieve Size (mm) | Tolerance | | | | | 9.5 | ±1 | | | | | 4.75 | ±5 | | | | | 2.36 | ±4 | | | | | 1.18 | <u>±</u> 4 | | | | | 0.300 | ±4 | | | | | 0.150 | ±4 | | | | | 0.075 | ±2.0 | | | | Page 10-43 through 10-45, Subarticle 1012-1(G), delete this in its entirety and replace with the following: ## (G) Reclaimed Asphalt Pavement (RAP) ### (1) Mix Design RAP Incorporate RAP from stockpiles or other sources that have been tested for uniformity of gradation and binder content prior to use in an asphalt mix design. Use reclaimed asphalt pavement that meets all requirements specified for *one of* the following *two* classifications. ### (a) Millings Existing reclaimed asphalt pavement (RAP) that is removed from its original location by a milling process as specified in Section 607. Millings should be such that it has a uniform gradation and binder content and all materials will pass a 2" sieve prior to introduction into the plant mixer unit. ### (b) Processed RAP RAP that is processed in some manner (possibly by crushing and/or use of a blending method) to produce a uniform gradation and binder content in the RAP prior to use in a recycled mix. Process RAP so that all materials have a uniform gradation and binder content and will pass a 1" sieve prior to introduction into the plant mixer unit. ## (c) Fractionated RAP Fractionated RAP is defined as having two or more RAP stockpiles, where the RAP is divided into coarse and fine fractions. Grade RAP so that all materials will pass a 1" sieve. The coarse RAP stockpile shall only contain material retained on a 3/8" screen, unless otherwise approved. The fine RAP stockpile shall only contain material passing the 3/8" screen, unless otherwise approved. The Engineer may allow the Contractor to use an alternate to the 3/8" screen to fractionate the RAP. The maximum percentages of fractionated RAP may be comprised of coarse, fine, or the combination of both. Utilize a separate cold feed bin for each stockpile of fractionated RAP used. ## (d) Approved Stockpiled RAP Approved Stockpiled RAP is defined as fractionated RAP which has been isolated and tested for asphalt content, gradation, and asphalt binder characteristics with the intent to be used in mix designs with greater than 30% RAP materials. Fractionate the RAP in accordance with Section 1012-1(G)(c). Utilize a separate cold feed bin for each approved stockpile of RAP used. Perform extraction tests at a rate of 1 per 1000 tons of RAP, with a minimum of 5 tests per stockpile to determine the asphalt content and gradation. Separate stockpiles of RAP material by fine and coarse fractions. Erect and maintain a sign satisfactory to the Engineer on each stockpile to identify the material. Assure that no deleterious material is allowed in any stockpile. The Engineer may reject by visual inspection any stockpiles that are not kept clean, separated, and free of foreign materials. Submit requests for RAP stockpile approval to the Engineer with the following information at the time of the request: - (1) Approximate tons of materials in stockpile - (2) Name or Identification number for the stockpile - (3) Asphalt binder content and gradation test results - (4) Asphalt characteristics of the Stockpile. For the Stockpiled RAP to be considered for approval, the gradation and asphalt content shall be uniform. Individual test results, when compared to the averages, will be accepted if within the tolerances listed below: APPROVED STOCKPILED RAP GRADATION and BINDER TOLERANCES (Apply Tolerances to Mix Design Data) | (2) | (Lippiy 10101 tilled 5 to 11111 2 to 1511 2 to 1511 | | | | | | |------------------|---|--|--|--|--|--| | P _b % | ±0.3% | | | | | | | Sieve Size (mm) | Percent Passing | | | | | | | 25.0 | ±5% | | | | | | | 19.0 | ±5% | | | | | | | 12.5 | ±2% | | | | | | | 9.5 | ±2% | | | | | | | 4.75 | ±5% | | | | | | | 2.36 | ±4% | | | | | | | 1.18 | ±4% | | | | | | | 0.300 | ±4% | | | | | | | 0.150 | ±4% | | | | | | | 0.075 | ±1.5% | | | | | | | | | | | | | | Note: If more than 20% of the individual sieves are out of the gradation tolerances, or if more than 20% of the asphalt binder content test results fall outside the appropriate tolerances, the RAP shall not be used in HMA unless the RAP representing the failing tests is removed from the stockpile. Do not add additional material to any approved RAP stockpile, unless otherwise approved by the Engineer. Maintain at the plant site a record system for all approved RAP stockpiles. Include at a minimum the following: Stockpile identification and a sketch of all stockpile areas at the plant site; all RAP test results (including asphalt content, gradation, and asphalt binder characteristics). ### (2) Mix Production RAP During mix production, use RAP that meets the criteria for one of the following categories: ### (a) Mix Design RAP RAP contained in the mix design stockpiles as described above may be used in all applicable JMFs. These stockpiles have been pretested: however, they are subject to required QC/QA testing in accordance with Subarticle 609-5(C)(2). ## (b) New Source RAP New Source RAP is defined as any acceptable material that was not included in the stockpile or other source when samples were taken for mix design purposes. Process new source RAP so that all materials have a uniform gradation and binder content and will pass a 2" sieve prior to introduction into the plant mixer unit. After a stockpile of millings, processed RAP, or fractionated RAP has been sampled and mix designs made from these samples, do not add new source RAP to the original
stockpile without prior field testing to insure gradation and binder uniformity. Sample and test new source RAP before blending with the existing stockpile. Store new source RAP in a separate stockpile until the material can be sampled and tested for comparison with the original recycled mix design data. New source RAP may also be placed against the existing stockpile in a linear manner provided it is sampled for mix design conformity prior to its use in the recycled mix. Unprocessed RAP is asphalt material that was not milled and/or has not been processed to obtain a uniform gradation and binder content and is not representative of the RAP used during the applicable mix design. Unprocessed RAP shall not be incorporated into any JMFs prior to processing. Different sources of unprocessed RAP may be stockpiled together provided it is generally free of contamination and will be processed prior to use in a recycled mix. RAP contamination in the form of excessive dirt, debris, clean stone, concrete, etc. will not be allowed. Incidental amounts of dirt, concrete, and clean stone may be acceptable. Unprocessed RAP may be processed and then classified as a new source RAP as described above. Field approval of new source RAP will be based on Table 1012-2 below and volumetric mix properties on the mix with the new source RAP included. Provided the Table 1012-2 tolerances are met, volumetric properties of the new mix will then be performed. If all volumetric mix properties meet the mix design criteria for that mix type, the new source RAP may continue to be used. If the gradation, binder content, or any of the volumetric mix properties are not within the allowable tolerances of Table 1012-2, do not use the new source RAP unless approved by the Engineer. The Contractor may elect to either not use the stockpile, to request an adjustment to the JMF, or to redesign the mix. | TABLE 1012-2 | | | | | | |--|--|--|--|--|--| | NEW SOURCE RAP GRADATION and BINDER TOLERANCES | | | | | | | (Apply Tolerances to Mix Design Data) | | | | | | | Mix
Type | 0-20% RAP | | 20 ⁺ -30 % RAP | | 30 ⁺ % RAP | | | | | |------------------|-----------|------------|---------------------------|------|-----------------------|--|------------|------------|------------| | Sieve (mm) | Base | Inter. | Surf. | Base | Inter. | Surf. | Base | Inter. | Surf. | | P _b % | ± 0.7% | | ± 0.4% | | ± 0.3% | | | | | | 25.0 | ±10 | - | - | ±7 | - | - | ±5 | - | - | | 19.0 | ±10 | ±10 | - | ±7 | ±7 | - | ±5 | ±5 | _ | | 12.5 | _ | ±6 | ±6 | _ | ±3 | ±3 . | - | <u>+2</u> | ±2 | | 9.5 | _ | - | ±8 | - | - | ±5 | - | - | <u>±</u> 4 | | 4.75 | ±10 | - | ±10 | ±7 | _ | ±7 | ±5 | _ | ±5 | | 2.36 | ±8 | ±8 | ±8 | ±5 | ±5 | ±5 | ±4 | <u>±</u> 4 | ±4 | | 1.18 | ±8 | ±8 | ±8 | ±5 | ±5 | ±5 | <u>±</u> 4 | <u>±</u> 4 | <u>±</u> 4 | | 0.300 | ±8 | ±8 | ±8 | ±5 | ±5 | ±5 | <u>±</u> 4 | <u>+</u> 4 | <u>±</u> 4 | | 0.150 | _ | - | ±8 | - | - | ±5 | - | - | <u>±</u> 4 | | 0.075 | ±4 | <u>±</u> 4 | ±4 | ±2 | ±2 | <u>+2</u> | ±1.5 | ±1.5 | ±1.5 | | | | | | | | THE PARTY AND ADDRESS OF | | | | ## ASPHALT PAVEMENTS - WARM MIX ASPHALT SUPERPAVE: SP6 R02 Warm Mix Asphalt (WMA) is defined as additives or processes that allow a reduction in the temperature at which asphalt mixtures are produced and placed. WMA is allowed for use at the Contractor's option when shown on the plans or in the project provisions. Notify the Engineer at least 2 weeks before producing the Warm Mix so the Engineer can arrange a preconstruction meeting. Discuss special testing requirements necessary for warm mix asphalt at the pre-pave meeting. Included at the pre-pave meeting the Contractor's QC manager, Paving Superintendent, and manufacturer's representative for the process or additive used for producing warm mix asphalt, the Department's Roadway Construction Engineer, Resident Engineer, State Pavement Construction, and Quality Assurance Supervisor. Require a manufacturer's representative for the process or additive used to be present on site at the plant during the initial production and on the roadway during the laydown of the warm mix asphalt. Revise the 2006 Standard Specifications as follows: ## Page 6-8, Article 609-1 Description, insert the following as the second paragraph. Warm Mix Asphalt (WMA) is defined as additives or processes that allow a reduction in the temperature at which asphalt mixtures are produced and placed. WMA is allowed for use at the Contractor's option when shown in the contract documents. ## Page 6-9, Article 609-4 Field Verification of Mixture and Job Mix Formula Adjustments, ### Second paragraph, insert the following immediately after the first sentence. When producing a WMA, field verification testing will also consist of performing a Tensile Strength Ratio (TSR) testing in accordance with AASHTO T283 as Modified by the Department. ## Third paragraph, delete the third sentence and replace with the following: Verification is considered satisfactory for HMA when all volumetric properties except ${}^{\circ}G_{mm}@N_{ini}$ are within the applicable mix design criteria, and the gradation, binder content, and ${}^{\circ}G_{mm}@N_{ini}$ are within the individual limits for the mix type being produced. Verification is considered satisfactory for WMA when all volumetric properties except ${}^{\circ}G_{mm}@N_{ini}$ are within the applicable mix design criteria, the TSR is equal to or above the minimum design criteria, and the gradation, binder content, and ${}^{\circ}G_{mm}@N_{ini}$ are within the individual limits for the mix type being produced. ## Page 6-12, Subarticle 609-5(C)2(d) Bulk Specific Gravity of Compacted Specimens, add after (AASHTO T 312): When producing Warm Mix Asphalt, gyrate specimens to specified N_{des} compaction effort without reheating mix other than to desired compaction temperature. Record time needed to reheat samples (if any). ## Page 6-14, Subarticle 609-5(C)(2)(e) Tensile Strength Ratio, insert the following immediately after the third paragraph: When producing WMA, perform TSR testing at - i. Beginning of production for each JMF - ii. Monthly thereafter ### Page 6-27, Article 610-1 Description, insert the following as the third paragraph: Warm Mix Asphalt (WMA) is defined as additives or processes that allow a reduction in the temperature at which asphalt mixtures are produced and placed. Use WMA at the Contractor's option unless otherwise shown on the plans. ## Page 6-27, Article 610-2 Materials, insert the following at the end of this Article: Use only WMA additives or processes listed on the Department's approved list maintained by the Materials and Tests Unit. ## Page 6-31, Subarticle 610-3(B) Mix Design-Criteria, add the following as the fifth paragraph: When WMA is used, submit the mix design without including the WMA additive. ## Page 6-32, Subarticle 610-3(C) Job Mix Formula, Add the following as the second paragraph: When WMA is used, document the additive or process used and recommended rate on the JMF submittal. Verify the JMF based on plant produced mixture from the trial batch. ## Immediately following PG 76-22 335°F, add the following paragraph: When WMA is used, produce an asphalt mixture within the temperature range of 225°F and 275 °F. ## **ASPHALT BINDER CONTENT OF ASPHALT PLANT MIXES:** (11-21-00) SP6 R15 The approximate asphalt binder content of the asphalt concrete plant mixtures used on this project will be as follows: | Asphalt Concrete Base Course | Type B 25.0 | 4.3% | |--------------------------------------|--------------|------| | Asphalt Concrete Intermediate Course | Type I 19.0 | 4.7% | | Asphalt Concrete Surface Course | Type S 4.75A | 7.0% | | Asphalt Concrete Surface Course | Type SF 9.5A | 6.5% | | Asphalt Concrete Surface Course | Type S 9.5 | 6.0% | | Asphalt Concrete Surface Course | Type S 12.5 | 5.5% | The actual asphalt binder content will be established during
construction by the Engineer within the limits established in the 2006 Standard Specifications. ### **ASPHALT PLANT MIXTURES:** (7-1-95) SP6 R20 Place asphalt concrete base course material in trench sections with asphalt pavement spreaders made for the purpose or with other equipment approved by the Engineer. ## PRICE ADJUSTMENT - ASPHALT BINDER FOR PLANT MIX: $\overline{(11-21-00)}$ SP6 R25 Price adjustments for asphalt binder for plant mix will be made in accordance with Section 620 of the 2006 Standard Specifications. The base price index for asphalt binder for plant mix is \$412.00 per ton. This base price index represents an average of F.O.B. selling prices of asphalt binder at supplier's terminals on August 1, 2009. ### **MASONRY DRAINAGE STRUCTURES:** (10-16-07) SP8 R01 Revise the 2006 Standard Specifications as follows: Page 8-31, Article 840-4 Measurement and Payment, add the following at the end of the second paragraph: For that portion of *Masonry Drainage Structure* measured above a height of 10.0 feet, payment will be made at 1.3 times the contract unit price per linear foot for *Masonry Drainage Structure*. ## BORROW EXCAVATION AND SHPO DOCUMENTATION FOR BORROW/WASTE SITES: (12-18-07) (4-15-08) SP8 R02 Revise the 2006 Standard Specifications as follows: #### **Division 2 Earthwork** Page 2-16, Subarticle 230-1(D), add the words: The Contractor specifically waives as the first words of the sentence. ## Page 2-17, Article 230-4(B) Contractor Furnished Sources, first paragraph, first sentence replace with the following: Prior to the approval of any borrow sources developed for use on any project, obtain certification from the State Historic Preservation Officer of the State Department of Cultural Resources certifying that the removal of the borrow material from the borrow sources(s) will have no effect on any known district, site building, structure, or object, architectural and/or archaeological that is included or eligible for inclusion in the National Register of Historic Places. ### **Division 8 Incidentals** ### Page 8-9, Article 802-2 General Requirements, add the following as the 1st paragraph: Prior to the removal of any waste from any project, obtain certification from the State Historic Preservation Officer of the State Department of Cultural Resources certifying that the deposition of the waste material to the proposed waste area will have no effect on any known district, site building, structure, or object, architectural and/or archaeological that is included or eligible for inclusion in the National Register of Historic Places. Furnish a copy of this certification to the Engineer prior to performing any work in the proposed waste site. ## Page 8-10, Article 802-2, General Requirements, 4th paragraph, add the following as the 2nd sentence: The Department's borrow and waste site reclamation procedures for contracted projects is available on the NCDOT website and shall be used for all borrow and waste sites on this project. ## CONCRETE TRANSITIONAL SECTIONS FOR CATCH BASINS AND DROP INLETS: Revise the Standard Specifications as follows: ## Page 8-32, Article 840-4 Measurement and Payment, delete the eighth full paragraph and replace with the following: No separate payment will be made for Concrete Aprons as shown in Standard Drawings 840.17, 840.18, 840.19, 840.26, 840.27 and 840.28 and will be incidental to the other work in this section. ## Page 8-38, Article 852-4, Measurement and Payment, add the following as the fourth paragraph: Concrete Transitional Section for Catch Basin will be measured and paid for in units of each. Concrete Transitional Section for Drop Inlet will be measured and paid for in units of each. **Pay Unit** Each Payment will be made under: Pay Item Concrete Transitional Section for Catch Basin Concrete Transitional Section for Drop Inlet Each Revise the Roadway Standard Drawings as follows: On page 852.04, delete the statement: *CONCRETE APRON IS INCIDENTAL TO CONSTRUCTION OF THE DRAINAGE STRUCTURE and change *Pay Limits for Concrete Apron for Drop Inlets in two places on the drawing to Pay Limits for Concrete Transitional Section for Drop Inlet. On page 852.05, delete the statement: *CONCRETE APRON IS INCIDENTAL TO CONSTRUCTION OF THE DRAINAGE STRUCTURE and change *Concrete Apron for Catch Basin on the drawing to Concrete Transitional Section for Catch Basin. On page 852.06, delete the statement: *CONCRETE APRON IS INCIDENTAL TO CONSTRUCTION OF THE DRAINAGE STRUCTURE and change *Pay Limits for Concrete Apron for Drop Inlets in two places on the drawing to Pay Limits for Concrete Transitional Section for Drop Inlet. ### **ENDWALLS:** (5-20-08) SP8 R25 Revise the Standard Specifications as follows: ## Page 8-28, Article 838-4 Replace the 1st and 2nd paragraph with the following: Endwalls will be measured and paid for in cubic yards of concrete or brick that have been completed and accepted. This quantity will be computed from the dimensions shown on the plans or from revised authorized dimensions. Where precast concrete units have been approved and are used in lieu of cast-in-place units the quantity to be paid for will be computed the same as if cast-in-place units were used, as no reduction in pay quantity will be made due to the use of precast in lieu of cast in place endwalls. Reinforced Endwalls will be measured and paid for in cubic yards of concrete or brick that have been completed and accepted. This quantity will be computed from the dimensions shown on the plans or from revised authorized dimensions. Where precast concrete units have been approved and are used in lieu of cast-in-place units the quantity to be paid for will be computed the same as if cast-in-place units were used, as no reduction in pay quantity will be made due to the use of precast in lieu of reinforced cast in place endwalls. # CONVERT EXISTING DROP INLET TO TRAFFIC BEARING JUNCTION BOX WITH MANHOLE COVER: (1-1-02) (Rev. 7-18-06) SP8 R50 At the proper phase of construction, convert the existing drop inlet at locations indicated in the plans or where directed, to traffic bearing junction box with manhole cover in accordance with the details in the plans and the applicable requirements of Sections 840 and 859 of the 2006 Standard Specifications. Convert Existing Drop Inlet to Traffic Bearing Junction Box with Manhole Cover will be measured and paid for as each, completed and accepted. Such price and payment is considered full compensation for all equipment, materials, labor, tools, and incidentals necessary to complete each conversion satisfactorily. Payment will be made under: Pay Item Pay Unit Each Convert Existing Drop Inlet to Traffic Bearing Junction Box with Manhole Cover ## **CONVERT EXISTING DROP INLET TO JUNCTION BOX WITH MANHOLE COVER:** (1-1-02) (Rev. 7-18-06) SP8 R50 At the proper phase of construction, convert the existing drop inlet at locations indicated in the plans or where directed, to junction box with manhole cover in accordance with the details in the plans and the applicable requirements of Sections 840 and 859 of the 2006 Standard Specifications. Convert Existing Drop Inlet to Junction Box with Manhole Cover will be measured and paid for as each, completed and accepted. Such price and payment is considered full compensation for all equipment, materials, labor, tools, and incidentals necessary to complete each conversion satisfactorily. Payment will be made under: Pay Item Pay Unit Convert Existing Drop Inlet to Junction Box with Manhole Cover Each ## **GUARDRAIL ANCHOR UNITS, TYPE 350:** (4-20-04) SP8 R65 ## **Description** Furnish and install guardrail anchor units in accordance with the details in the plans, the applicable requirements of Section 862 of the 2006 Standard Specifications, and at locations shown in the plans. #### **Materials** The Contractor may at his option, furnish any one of the guardrail anchor units. Guardrail anchor unit (ET-2000) as manufactured by: Trinity Industries, Inc. 2525 N. Stemmons Freeway Dallas, Texas 75207 Telephone: 800-644-7976 The guardrail anchor unit (SKT 350) as manufactured by: Road Systems, Inc. 3616 Old Howard County Airport Big Spring, Texas 79720 Telephone: 915-263-2435 Prior to installation the Contractor shall submit to the Engineer: - (A) FHWA acceptance letter for each guardrail anchor unit certifying it meets the requirements of NCHRP Report 350, Test Level 3, in accordance with Section 106-2 of the 2006 Standard Specifications. - (B) Certified working drawings and assembling instructions from the manufacturer for each guardrail anchor unit in accordance with Section 105-2 of the 2006 Standard Specifications. No modifications shall be made to the guardrail anchor unit without the express written permission from the manufacturer. Perform installation in accordance with the details in the plans, and details and assembling instructions furnished by the manufacturer. #### **Construction Methods** Guardrail end delineation is required on all approach and trailing end sections for both temporary and permanent installations. Guardrail end delineation consists of yellow reflective sheeting applied to the entire end section of the guardrail in accordance with Section 1088-3 of the 2006 Standard Specifications and is incidental to the cost of the guardrail anchor unit. ## Measurement and Payment Measurement and payment will be made in accordance with Articles 862-6 of the 2006 Standard Specifications. Payment will be made under: ### Pay Item Pay Unit Guardrail Anchor Units, Type 350 Each . ### **IMPACT ATTENUATOR UNITS, TYPE 350:** (4-20-04) (Rev 7-18-06) SP8 R75 ### **Description** Furnish and install impact attenuator units and any components necessary to connect the impact attenuator units in accordance with the manufacturer's requirement, the details in the plans and at locations shown in the plans. ### **Materials** #### **NON-GATING IMPACT ATTENUATOR UNITS:** The impact attenuator unit (QUADGUARD) as manufactured by:
Energy Absorption Systems, Inc. One East Wacker Drive Chicago, Illinois 60601-2076 Telephone: 312-467-6750 The impact attenuator unit (TRACC) as manufactured by: Trinity Industries, Inc. 2525 N. Stemmons Freeway Dallas, Texas 75207 Telephone: 800-644-7976 ### **GATING IMPACT ATTENUATOR UNITS:** The impact attenuator unit (BRAKEMASTER) as manufactured by: Energy Absorption Systems, Inc. One East Wacker Drive Chicago, Illinois 60601-2076 Telephone: 312-467-6750 The impact attenuator unit (CAT) as manufactured by: Trinity Industries, Inc. 2525 N. Stemmons Freeway Dallas, Texas 75207 Telephone: 800-644-7976 Prior to installation the Contractor shall submit to the Engineer: - (A) FHWA acceptance letter for each impact attenuator unit certifying it meets the requirements of NCHRP Report 350, Test Level 3, in accordance with Article 106-2 of the 2006 Standard Specifications. - (B) Certified working drawings and assembling instructions from the manufacturer for each impact attenuator unit in accordance with Article 105-2 of the 2006 Standard Specifications. No modifications shall be made to the impact attenuator unit without the express written permission from the manufacturer. Perform installation in accordance with the details in the plans, and details and assembling instructions furnished by the manufacturer. #### **Construction Methods** If the median width is 40 feet or less, the Contractor shall supply one of the NON-GATING Impact Attenuator Units listed in the Materials Section herein. If the median width is greater than 40 feet, the Contractor may use any of the GATING or NON-GATING Impact Attenuator Units listed in the Materials Section herein. ## **Measurement and Payment** Impact Attenuator Unit, Type 350 will be measured and paid for at the contract unit price per each. Such prices and payment will be full compensation for all work covered by this provision including but not limited to furnishing, installing and all incidentals necessary to complete the work. Payment will be made under: Pay Item **Pay Unit** Impact Attenuator Unit, Type 350 Each FENCE: (3-6-06) **SP8 R86** Revise the 2006 Standard Specifications as follows: Page 8-54, Subarticle 866-3(A), second sentence, Add existing fencing after stumps # 72" CHAIN LINK FENCING WITH BARBED WIRE ON EXTENSION ARMS: (7-1-95) SP8 R100 #### **Description** Provide 72" chain link fencing with barbed wire on extension arms in accordance with the plans, Section 866 of the 2006 Standard Specifications, and the provisions herein. #### **Construction Methods** On all 72" fencing on this project, place three strands of barbed wire placed at the top of the fence fabric. Attach the barbed wire to extension arms that are to be fitted to the post tops. Provide extension arms constructed to locate the top most strand of barbed wire approximately 12 inches above and approximately 12 inches out from the top rail. Space all strands of barbed wire at an approximately equal distance from each other. Make provisions for supporting the top rail. The arm shall make a 45 degree angle with the post, and be an item of standard manufacture. Have samples of extension arms to be used on the project approved prior to their installation. Fabricate the extension arms from pressed steel or malleable wrought iron, or either of these materials in conjunction with a cast base. Provide a minimum weight of the arm material of 14 gauge. Provide a complete arm assembly of sufficient strength to support the barbed wire when stretched to proper tension. Galvanize all arms in accordance with ASTM A153. Erect extension arms so as to point away from the pavement. Splicing of barbed wire between the arms will not be permitted. Use a method of attaching barbed wire to the arms acceptable to the Engineer. ## **Measurement and Payment** No direct payment will be made for furnishing and installing the barbed wire and extension arms as such work will be considered incidental to other work being paid for by the various fencing items in the contract. ## PREFORMED SCOUR HOLE WITH LEVEL SPREADER APRON: (10-15-02) (Rev 6-17-08) SP8 R105 ## **Description** Construct and maintain preformed scour holes with spreader aprons at the locations shown on the plans and in accordance with the details in the plans. Work includes excavation, shaping and maintaining the hole and apron, furnishing and placing filter fabric, rip rap (class as specified in the plans) and permanent soil reinforcement matting. #### **Materials** | Item | Section | |---------------|---------| | Plain Rip Rap | 1042 | | Filter Fabric | 1056 | The permanent soil reinforcement matting shall be permanent erosion control reinforcement mat and shall be constructed of 100% coconut fiber stitch bonded between a heavy duty UV stabilized cuspated (crimped) netting overlaid with a heavy duty UV stabilized top net. The three nettings shall be stitched together on 1.5 inch centers UV stabilized polyester thread to form a permanent three dimensional structure. The mat shall have the following physical properties: | Property | Test Method | Value Unit | |--|------------------|-------------| | Light Penetration | ASTM D6567 | 15 % | | Thickness | ASTM D6525 | 0.50 in | | Mass Per Unit Area | ASTM D6566 | 0.625 lb/sy | | Tensile Strength | ASTM D6818 | 385 lb/ft | | Elongation (Maximum) | ASTM D6818 | 49 % | | Resiliency | ASTM D6524 | >70 % | | UV Stability * | ASTM 4355 | ≥80 % | | Porosity (Permanent Net) | Calculated | ≥85 % | | Minimum Filament | Measured | 0.03 in | | Maximum Permissible Shear Stress (Vegetated) | Performance Test | ≥8.0 lb/ft² | | Maximum Allowable Velocity | Performance Test | ≥16.0 ft/s | ^{*}ASTM D1682 Tensile Strength and % strength retention of material after 1000 hours of exposure. SP9 R02 Submit a certification from the manufacturer showing: - (A) the chemical and physical properties of the mat used, and - (B) conformance of the mat with this specification. #### **Soil Preparation** All areas to be protected with the mat shall be brought to final grade and seeded in accordance with Section 1660. The surface of the soil shall be smooth, firm, stable and free of rocks, clods, roots or other obstructions that would prevent the mat from lying in direct contact with the soil surface. Areas where the mat is to be placed will not need to be mulched. #### Measurement and Payment Preformed Scour Holes with Level Spreader Aprons will be measured and paid as the actual number that has been incorporated into the completed and accepted work. Such price and payment will be full compensation for all work covered by this provision. Payment will be made under: Pay Item Pay Unit Preformed Scour Hole with Level Spreader Aprons Each # STEEL U-CHANNEL POSTS: Revise the 2006 Standard Specifications as follows: Page 9-15 Subarticle 903-3(D) first paragraph, last sentence, delete the last sentence and add the Use posts of sufficient length to permit the appropriate sign mounting height. Spliced posts are not permitted on new construction. ## **SHIPPING SIGNS:** following: 5-15-07 SP9 R03 Revise the 2006 Standard Specifications as follows: Page 9-2, Section 901-3(A), General, add the following as the 7th paragraph: Ship all multi-panel signs to the project intact, completely assembled and ready to be hung. Fabricate signs taller than 12 ft as 2 separate signs with a horizontal splice, ready to be spliced and hung. No assembly other than a horizontal splice will be permitted. ## GALVANIZED HIGH STRENGTH BOLTS, NUTS AND WASHERS: $\overline{(2-17-09)}$ SP10 R02 Revise the Standard Specifications as follows: Page 10-126, Subarticle 1072-7(F)(3) Change the AASHTO reference to B 695 Class 55 Page 10-247, Table 1092-2, Steel Sign Materials, Change High Strength Bolts, Nuts & Washers ASTM Specifications for Galvanizing to B695 Class 55. Page 10-259, Subarticle 1094-1(A) Breakaway or Simple Steel Beam Sign Supports, replace the third paragraph with the following: Fabricate high strength bolts, nuts, and washers required for breakaway supports from steel in accordance with ASTM A325 and galvanize in accordance with AASHTO B 695 Class 55. Page 10-261, Article 1096-2 Steel Overhead Sign Structures, replace the last sentence with the following: The galvanizing shall meet the requirement of AASHTO B 695 Class 55 for fasteners and of ASTM A123 for other structural steel. ## **AGGREGATE PRODUCTION:** (11-20-01) SP10 R05 Provide aggregate from a producer who uses the current Aggregate Quality Control/Quality Assurance Program that is in effect at the time of shipment. No price adjustment is allowed to contractors or producers who use the program. Participation in the program does not relieve the producer of the responsibility of complying with all requirements of the 2006 Standard Specifications. Copies of this procedure are available upon request from the Materials and Test Unit. #### **CONCRETE BRICK AND BLOCK PRODUCTION:** (11-20-01) SP10 R10 Provide concrete brick and block from a producer who uses the current Solid Concrete Masonry Brick/Unit Quality Control/Quality Assurance Program that is in effect on the date that material is received on the project. No price adjustment is allowed to contractors or producers who use the program. Participation in the program does not relieve the producer of the responsibility of complying with all requirements of the 2006 Standard Specifications. Copies of this procedure are available upon request from the Materials and Test Unit. # **PORTLAND CEMENT CONCRETE (Alkali-Silica Reaction):** (2-20-07) SP10 R16 Revise the 2006 Standard Specifications as follows: Article 1024-1(A), replace the 2nd paragraph with the following: Certain combinations of cement and aggregate exhibit an adverse alkali-silica reaction. The alkalinity of any cement, expressed as sodium-oxide equivalent, shall not exceed 1.0 percent. For mix designs that contain non-reactive aggregates and cement with an alkali content
less than 0.6%, straight cement or a combination of cement and fly ash, cement and ground granulated blast furnace slag or cement and microsilica may be used. The pozzolan quantity shall not exceed the amount shown in Table 1024-1. For mixes that contain cement with an alkali content between 0.6% and 1.0%, and for mixes that contain a reactive aggregate documented by the Department, regardless of the alkali content of the cement, use a pozzolan in the amount shown in Table 1024-1. Obtain the list of reactive aggregates documented by the Department at:http://www.ncdot.org/doh/operations/materials/pdf/quarryasrprob.pdf | Table 1024-1 | | | |---|--|--| | Pozzolans for Use in Portland Cement Concrete | | | | Pozzolan | Rate | | | Class F Fly Ash | 20% by weight of required cement content, with 1.2 lbs Class F fly ash per lb of cement replaced | | | Ground Granulated Blast Furnace Slag | 35%-50% by weight of required cement content with 1 lb slag per lb of cement replaced | | | Microsilica | 4%-8% by weight of required cement content, with 1 lb microsilica per lb of cement replaced | | # **GLASS BEADS:** (7-18-06) SP10 R35 Revise the 2006 Standard Specifications as follows: ## Page 10-223, 1087-4(C) Gradation & Roundness Replace the second sentence of the first paragraph with the following: All Drop-On and Intermixed Glass Beads shall be tested in accordance with ASTM D1155. Delete the last paragraph. ## **ENGINEERING FABRICS TABLE 1056-1:** (7-18-06) SP10 R40 Revise the 2006 Standard Specifications as follows: Page 10-100, Table 1056-1, replace the values for Trapezoidal Tear Strength with the following: | Physical Property | ASTM
Test
Method | Туре 1 | Type 2 | Тур | oe 3 | Type 4 | |---------------------------|------------------------|----------------|--|---------|-----------|-----------------------| | | | | MALL LATE LANGE TO THE PARTY OF | Class A | Class B | | | Typical Applications | | Shoulder Drain | Under Riprap | • | rary Silt | Soil
Stabilization | | Trapezoidal Tear Strength | D4533 | 45 lb | <i>75</i> lb | | | <i>75</i> lb | ## PRECAST DRAINAGE STRUCTURES - MACRO-SYNTHETIC FIBERS (7-15-08)(Rev 11-18-08) SP 10 R42 ## **Description** Substitute as an option, macro-synthetic fibers in lieu of 4" x 4" W1.4 x W1.4 welded wire fabric reinforcement for selected precast concrete products in accordance with the following requirements. #### **Materials** Item Portland Cement Concrete Section 1077-5 - (A) Substitute macro-synthetic fibers only for steel reinforcement with an area of steel of 0.12 in²/ft or less in the following items: - (1) Precast Drainage Structure units in accordance with the requirements of Standard Drawing 840.45. - (2) Precast Manhole 4.0' Riser Sections in accordance with the requirements of Standard Drawing 840.52. All other requirements, including reinforcement for these precast concrete items will remain the same. (B) Submittal Submit to the Department for approval by the precast producer and fiber manufacturer, independently performed test results certifying the macro-synthetic fibers and the precast concrete products meet the requirements listed herein: # (C) Macro-Synthetic Fibers (1) Manufacture from virgin polyolefins (polypropylene and polyethylene) and comply with ASTM C 1116.4.1.3. Fibers manufactured from materials other than polyolefins Submit test results certifying resistance to long-term deterioration when in contact with the moisture and alkalies present in cement paste and/or the substances present in airentraining and chemical admixtures. - (2) Fiber length no less than 1-1/2 inch. - (3) Macro-synthetic fibers aspect ratio (length divided by the equivalent diameter of the fiber) between 45 and 150. - (4) Macro-synthetic fibers Minimum tensile strength of 40 ksi when tested in accordance with ASTM D 3822. - (5) Macro-synthetic fibers minimum modulus of elasticity of 400 ksi when tested in accordance with ASTM D 3822. ## (D) Fiber Reinforced Concrete - (1) Approved structural fibers may be used as a replacement of steel reinforcement in allowable structures of NCDOT Standards 840.45 and 840.52. The dosage rate, in pounds of fibers per cubic yard, shall be as per recommended by the fiber manufacturer to provide a minimum average residual strength (in accordance with ASTM C 1399) of concrete of no less than that of the concrete with the steel reinforcement that is being replaced, but no less than 5 lbs. per cubic yard. Submit the recommendations of the manufacturer that correlate the toughness of steel-reinforced concrete with that of the recommended dosage rate for the fiber-reinforced concrete. - (2) Fiber reinforced concrete 4.5% air content, \pm 1.5% tolerance. - (3) Fiber reinforced concrete develop a minimum compressive strength 4000 psi in 28 days. - (4) Workability of the concrete mix determine in accordance with ASTM C995. The flow time not be less than 7 seconds or greater than 25 seconds. - (5) Assure the fibers are well dispersed and prevent fiber balling during production. After introduction of all other ingredients, add the plastic concrete and mix the plastic concrete for at least 4 minutes or for 50 revolutions at standard mixing speed. ## Measurement and Payment No separate payment will be made for substitution of macro-fiber synthetic reinforcement for the steel reinforcing. The price bid for the precast units will be full compensation for furnishing and incorporating the macro-fiber synthetic reinforcement. ## **QUALIFICATION OF WELDS AND PROCEDURES:** (7-21-09) SP10 R43 Page 10-143, Subarticle 1072-20(D) Qualification of Welds and Procedures, replace the third sentence of the first paragraph with the following: For all prequalified field welds, submit Welding Procedure Specifications (WPS) for each joint configuration for approval at least 30 days prior to performing any welding. In lieu of this, use the WPS provided and preapproved by the Department. These preapproved WPS are available from the Materials and Tests Unit or at: http://www.ncdot.org/doh/operations/materials/structural/appr_proc.html. Use non-prequalified welds only if approved by the Engineer. Submit WPS for all non-prequalified welds to the Engineer for approval. At no cost to the Department, demonstrate their adequacy in accordance with the requirements of the Bridge Welding Code. ## **PAINT SAMPLING AND TESTING:** (8-15-06) SP10 R45 Revise the 2006 Standard Specifications as follows: Page 10-190, Article 1080-4, Delete the first paragraph and replace with the following: All paint will be sampled, either at the point of manufacture or at the point of destination. Inspection and sampling will be performed at the point of manufacture wherever possible. The Contractor shall not begin painting until the analysis of the paint has been performed, and the paint has been accepted. #### **PORTABLE CONCRETE BARRIER:** (2-20-07) SP10 R50 The 2006 Standard Specifications is revised as follows: Page 10-245, Article 1090-1(A) General, add the following after the first sentence: The requirement for approved galvanized connectors will be waived if the barrier remains the property of the Contractor. #### PORTABLE CONCRETE BARRIER TO REMAIN IN PLACE: The portable concrete barrier at the Gruber Road Fort Bragg access points shall remain in place upon completion of the project. The Contractor shall not remove the portable concrete barrier at these locations. #### **TEMPORARY SHORING:** (2-20-07) (Rev. 9-25-07) SP11 R02 ## **Description** Design and construct temporary shoring in accordance with the contract. Temporary shoring includes standard shoring, temporary mechanically stabilized earth (MSE) walls and non-anchored temporary shoring. Trench boxes are not considered temporary shoring. "Standard shoring" refers to standard temporary shoring
and standard temporary MSE walls. Notes on plans may restrict the use of one or both types of standard shoring. Notes on plans may also require or prohibit temporary MSE walls. Unless noted otherwise on the plans, temporary shoring is required as shown on the plans and to maintain traffic. Temporary shoring to maintain traffic is defined as shoring necessary to provide lateral support to the side of an excavation or embankment parallel to an open travelway when a theoretical 2:1 (H:V) slope from the bottom of the excavation or embankment intersects the existing ground line closer than 5 ft from the edge of pavement of the open travelway. This provision is not applicable to anchored temporary shoring or the installation of pipes, drop inlets and utilities unless noted otherwise on the plans. Provide all shoring submittals before beginning work. #### **Materials** ## (A) Certifications, Storage and Handling Provide Type 7 Contractor's Certifications in accordance with Article 106-3 of the *Standard Specifications* for all shoring materials used with the exception of reinforcing fabrics and geogrids. Furnish Type 2 Typical Certified Mill Test Reports in accordance with Article 106-3 of the *Standard Specifications* for all seam strengths and reinforcing fabric and geogrid properties. Provide minimum average roll values (MARV) in accordance with ASTM D4759 for test reports. For testing reinforcing fabric and geogrids, a lot is defined as a single day's production. Load, transport, unload and store shoring materials such that they are kept clean and free of damage. Identify, store and handle all geogrids and geotextile fabrics in accordance with ASTM D4873. Geogrids and fabrics with defects, flaws, deterioration or damage will be rejected. Do not leave fabrics or geogrids uncovered for more than 7 days. ## (B) Shoring Backfill Use shoring backfill for the construction of all temporary shoring including backfilling behind non-anchored temporary shoring and in the reinforced zone for temporary MSE walls. Unless backfilling around culverts, use shoring backfill that meets the requirements of Class II Type I, Class III, Class V or Class VI select material in accordance with Section 1016 of the *Standard Specifications* or AASHTO M145 for soil classification A-2-4 with a maximum plasticity index (PI) of 6. For backfilling around culverts, use shoring backfill as defined herein except for A-2-4 soil. ## (C) Non-anchored Temporary Shoring Use steel shapes, plates and piles that meet the requirements of ASTM A36 and steel sheet piles that meet the requirements of Article 1084-2 of the *Standard Specifications*. Use timber lagging with a minimum allowable bending stress of 1000 psi that meets the requirements of Article 1082-1 of the *Standard Specifications*. For standard temporary shoring, use pile sections and lengths and lagging sizes as shown on the plans. # (D) Temporary MSE Walls Use welded wire reinforcement forms, facings, mesh and mats that meet the requirements of AASHTO M55 or M221. Use connector bars and wires for welded wire wall components and support struts that meet the requirements of AASHTO M32. For standard temporary MSE walls, use wire gauges, strut sizes and welded wire components as shown on the plans. ## (1) Geotextile Fabrics Use geotextile fabrics that meet the requirements of Article 1056-1 of the Standard Specifications. ## (a) Reinforcing Fabric The reinforcement direction (RD) is defined as the direction perpendicular to the wall face and the cross-reinforcement direction (CRD) is defined as the direction parallel to the wall face. Use woven polyester or polypropylene fabric that meets the following properties: | Property | Test Method | Requirement (MARV) | |---|-------------|------------------------| | Wide Width Tensile | ASTM D4595 | Varies – | | Strength @ Ultimate (RD) | | 200 lb/in min | | Wide Width Tensile
Strength @ Ultimate (CRD) | ASTM D4595 | 100 lb/in min | | Trapezoidal Tear Strength | ASTM D4533 | 100 lb min | | CBR Puncture Strength | ASTM D6241 | 600 lb min | | UV Resistance after 500 hrs | ASTM D4355 | 70 % | | Apparent Opening Size (AOS), US Sieve | ASTM D4751 | 20 min – 70 max | | Permittivity | ASTM D4491 | 0.20 sec ⁻¹ | For standard temporary MSE walls (temporary fabric wall) use reinforcing fabric wide width tensile strengths and lengths in the RD as shown on the plans. ## (b) Retention Fabric Retain shoring backfill at the face of temporary MSE walls with retention fabric. Use fabric that meets the requirements of Class 3 and the UV resistance, AOS and permittivity for separation geotextile in accordance with AASHTO M288. ## (2) SierraScape Temporary Wall Use uniaxial (UX) geogrids composed of high-density polyethylene (HDPE) manufactured by Tensar Earth Technologies. Test geogrids in accordance with ASTM D6637. Use connection rods manufactured by Tensar Earth Technologies to transfer the load between the facings and geogrids. For standard temporary MSE walls (SierraScape temporary wall) use geogrid types and lengths as shown on the plans. ## (3) Terratrel Temporary Wall Use ribbed reinforcing steel strips manufactured by The Reinforced Earth Company that meet the requirements of ASTM A572, Grade 65. Use connector rods that meet the requirements of AASHTO M31, Grade 60 and hair pin connectors that meet the requirements of ASTM A1011, Grade 50. Use bolts, nuts and washers that meet the requirements of AASHTO M164. For standard temporary MSE walls (Terratrel temporary wall) use ribbed steel strip size and lengths, rod lengths and diameters, hairpin connectors, bolts, nuts and washers as shown on the plans. #### **Embedment** "Embedment" is defined as the depth of shoring below the bottom of the excavation or the grade in front of the shoring. For cantilever shoring, embedment is the depth of the piling below the grade in front of the shoring. For temporary MSE walls, embedment is the difference between the grade elevation in front of the wall and the elevation of the bottom of the reinforced zone. #### **Portable Concrete Barriers** Provide portable concrete barriers in accordance with the plans and if shoring is located within the clear zone as defined in the *AASHTO Roadside Design Guide*. Use NCDOT portable concrete barriers (PCBs) in accordance with Roadway Standard Drawing No. 1170.01 and Section 1170 of the *Standard Specifications*. Use Oregon Tall F-Shape Concrete Barriers in accordance with detail drawing and special provision obtained from: http://www.ncdot.org/doh/preconstruct/wztc/DesRes/English/DesResEng.html The clear distance is defined as the horizontal distance from the back face of the barrier to the edge of pavement and the minimum required clear distance is shown on the traffic control plans. At the Contractor's option or if the minimum required clear distance is not available, set an unanchored PCB against the traffic side of the shoring and design shoring for traffic impact or use the "surcharge case with traffic impact" for the standard temporary shoring. An anchored PCB or Oregon barrier is required for barriers above and behind temporary MSE walls. ## **Contractor Designed Shoring** "Contractor designed shoring" is defined as non-anchored temporary shoring or temporary MSE walls designed by the Contractor. Unless prohibited or required, Contractor designed shoring is optional. Contractor designed shoring is required when notes on plans prohibit the use of standard shoring. Non-anchored Contractor designed shoring is prohibited when notes on plans require the use of temporary MSE walls and Contractor designed temporary MSE walls are prohibited when notes on plans prohibit the use of temporary MSE walls. Before beginning design, survey the shoring location to determine existing elevations and actual design heights. Submit design calculations and drawings including typical sections for review and acceptance showing details of the proposed design and construction sequence in accordance with Article 105-2 of the *Standard Specifications*. Have shoring designed, detailed and sealed by a Professional Engineer registered in the State of North Carolina. Submit 3 hard copies of design calculations and 10 hard copies of drawings and an electronic copy (pdf or jpeg format on CD or DVD) of both the calculations and drawings. Design non-anchored temporary shoring in accordance with the AASHTO Guide Design Specifications for Bridge Temporary Works and temporary MSE walls in accordance with the AASHTO Allowable Stress Design Standard Specifications for Highway Bridges. Use the following soil parameters for shoring backfill in the reinforced zone. Total Unit Weight = 120 pcf Friction Angle = 30 degrees Cohesion = 0 psf Design temporary shoring in accordance with the in-situ assumed soil parameters shown on the plans. Design shoring for a 3-year design service life and a traffic surcharge equal to 240 psf. This surcharge is not applicable for construction traffic. If a construction surcharge will be present within a horizontal distance equal to the height of the shoring, design the shoring for the required construction surcharge. If the edge of pavement or a structure to be protected is within a horizontal distance equal to the height of the shoring, design shoring for a maximum deflection of 3". Otherwise, design shoring for a maximum deflection of 6". For non-anchored temporary shoring, the top of shoring elevation is defined as the elevation where the grade intersects the back face of the shoring. For traffic impact, apply 2 kips/ft to the shoring 1.5 ft above the top of shoring elevation. When designing for traffic impact, extend shoring at least 32" above the top of shoring elevation. Otherwise, extend shoring at least 6" above the top of shoring elevation. ## **Standard Shoring** Unless notes on plans prohibit the use of one or both types of standard shoring, standard shoring is optional. Submit a "Standard
Temporary MSE Wall Selection Form" for each standard temporary MSE wall location and a "Standard Temporary Shoring Selection Form" for up to three standard temporary shoring locations. Submit selection forms at least 14 days before beginning shoring construction. Obtain standard shoring selection forms from: http://www.ncdot.org/doh/preconstruct/highway/geotech/formdet/standards.html ## (A) Standard Temporary Shoring Determine the shoring height, traffic impact, groundwater condition and slope or surcharge case for each standard temporary shoring location. Determine the minimum required extension, embedment and sheet pile section modulus or H pile section from the plans for each location. # (B) Standard Temporary MSE Walls Choose a standard temporary MSE wall from the multiple temporary MSE wall options shown in the plans. Do not use more than one option per wall location. Step bottom of reinforced zone in increments equal to vertical reinforcement spacing for the wall option chosen. Determine the wall height and slope or surcharge case for each section of standard temporary MSE wall. With the exception of either the first or last section of wall, use horizontal section lengths in increments equal to the following for the wall option chosen. | Standard Temporary MSE Wall Option | Increment | |------------------------------------|--------------------| | Temporary Fabric Wall | 9 ft min (varies) | | Hilfiker Temporary Wall | 10 ft min (varies) | | SierraScape Temporary Wall | 18 ft – 7 1/4 in | | Retained Earth Temporary Wall | 24 ft | | Terratrel Temporary Wall | 19 ft – 8 in | Determine the appropriate facings and/or forms and reinforcement length, spacing, strength, type, density and/or size from the plans for each wall section. #### **Construction Methods** When using an anchored PCB, anchor the barrier in accordance with Roadway Standard Drawing 1170.01 and Section 1170 of the Standard Specifications. Control drainage during construction in the vicinity of temporary shoring. Collect and direct run off away from temporary MSE walls, shoring and shoring backfill. # (A) Non-anchored Temporary Shoring Install and interlock sheet piling or install piles as shown on the plans or accepted submittals with a tolerance of 1/2 inch per foot from vertical. Contact the Engineer if the design embedment is not achieved. If piles are placed in drilled holes, perform pile excavation to the required elevations and backfill excavations with concrete and lean sand grout. Remove grout as necessary to install timber lagging. Install timber lagging with a minimum bearing distance of 3" on each pile flange. Backfill voids behind lagging with shoring backfill. Perform welding in accordance with the accepted submittals and Article 1072-20 of the *Standard Specifications*. ## (1) Pile Excavation Excavate a hole with a diameter that will result in at least 3" of clearance around the entire pile. Use equipment of adequate capacity and capable of drilling through soil and non-soil including rock, boulders, debris, man-made objects and any other materials encountered. Blasting is not permitted to advance excavations. Blasting for core removal is permitted only when approved by the Engineer. Dispose of drilling spoils in accordance with Section 802 of the *Standard Specifications*. Drilling spoils consist of all excavated material including water removed from excavations by either pumping or drilling tools. If unstable, caving or sloughing soils are encountered, stabilize excavations with clean watertight steel casing. Steel casings may be either sectional type or one continuous corrugated or non-corrugated piece. Provide casings of ample strength to withstand handling and driving stresses and the pressures imposed by concrete, earth or backfill. Use steel casings with an outside diameter equal to the hole size and a minimum wall thickness of 1/4 inch. Before placing concrete, check the water inflow rate in the excavation after any pumps have been removed. If the inflow rate is less than 6" per half hour, remove any water and free fall the concrete into the excavation. Ensure that concrete flows completely around the pile. If the water inflow rate is greater than 6" per half hour, propose and obtain approval of the concrete placement procedure before placing concrete. Center the pile in the excavation and fill the excavation with Class A concrete in accordance with Section 1000 of the *Standard Specifications* except as modified herein. Provide concrete with a slump of 6 to 8 inches. Use an approved high- range water reducer to achieve this slump. Place concrete in a continuous manner to the bottom of shoring or the elevations shown on the accepted submittals. Fill the remainder of the excavation with a lean sand grout and remove all casings. ## **(B)** Temporary MSE Walls The Engineer may require a wall preconstruction meeting to discuss the construction and inspection of the temporary MSE walls. If required, conduct the meeting with the Site Superintendent, the Resident or Bridge Maintenance Engineer, the Bridge Construction Engineer and the Geotechnical Operations Engineer before beginning wall construction. Perform all necessary clearing and grubbing in accordance with Section 200 of the *Standard Specifications*. Excavate as necessary as shown on the plans or accepted submittals. Notify the Engineer when foundation excavation is complete. Do not place shoring backfill or first reinforcement layer until obtaining approval of the excavation depth and foundation material. If applicable, install foundations located within the reinforced zone in accordance with the plans or accepted submittals. Erect and maintain facings and forms as shown on the plans or accepted submittals. Stagger vertical joints of facings and forms to create a running bond when possible unless shown otherwise on the plans or accepted submittals. Place facings and forms as near to vertical as possible with no negative batter. Construct temporary MSE walls with a vertical and horizontal tolerance of 3" when measured with a 10 ft straight edge and an overall vertical plumbness (batter) and horizontal alignment of less than 6". Place reinforcement at locations and elevations shown on the plans or accepted submittals and in slight tension free of kinks, folds, wrinkles or creases. Repair or replace any damaged reinforcement. Contact the Engineer when existing or future structures such as foundations, pavements, pipes, inlets or utilities will interfere with reinforcement. To avoid structures, deflect, skew and modify reinforcement. Do not splice reinforcement in the reinforcement direction (RD), i.e., parallel to the wall face. Seams are allowed in the cross-reinforcement direction (CRD). Bond or sew adjacent reinforcing fabric together or overlap fabric a minimum of 18" with seams oriented perpendicular to the wall face. Place shoring backfill in 8 to 10 inch thick lifts and compact in accordance with Subarticle 235-4(C) of the *Standard Specifications*. Use only hand operated compaction equipment within 3 ft of the wall face. Do not damage reinforcement when placing and compacting shoring backfill. End dumping directly on the reinforcement is not permitted. Do not operate heavy equipment on reinforcement until it is covered with at least 10" of shoring backfill. Do not use sheepsfoot, grid rollers or other types of compaction equipment with feet. 81 Cover reinforcing and retention fabric with at least 3" of shoring backfill. Place top reinforcement layer between 4 and 24 inches below top of wall as shown on the plans or accepted submittals. Bench temporary MSE walls into the sides of excavations where applicable. If the top of wall is within 5 ft of finished grade, remove top form or facing and incorporate the top reinforcement layer into the fill when placing fill in front of the wall. Temporary MSE walls remain in place permanently unless required otherwise. # **Measurement and Payment** Temporary Shoring will be measured and paid for at the contract unit price per square foot of exposed face area at locations shown on the plans or required by the Engineer. For temporary MSE walls, the wall height will be measured as the difference between the top and bottom of wall and does not include the embedded portions of the wall or any pavement thickness above the wall. For all other temporary shoring, the shoring height will be measured as the difference between the top and bottom of shoring elevation. The bottom of shoring elevation is defined as where the grade intersects the front face of the shoring. The top of shoring elevation is defined as where the grade intersects the back face of the shoring. No payment will be made for any extension of shoring above the top of shoring or any embedment below the bottom of shoring. Such price and payment will be full compensation for furnishing all labor, tools, equipment, materials and all incidentals necessary to design and install the temporary shoring and complete the work as described in this provision. No payment will be made for temporary shoring not shown on the plans or required by the Engineer including shoring for OSHA reasons or the Contractor's convenience. No value engineering proposals will be accepted based solely on revising or eliminating the shoring locations shown on the plans or the estimated quantities shown in the bid item sheets as a result of actual field measurements or site conditions. No additional payment will be made for anchoring PCBs or providing Oregon barriers in lieu of unanchored PCBs. Additional costs for anchoring PCBs or providing Oregon barriers will be considered incidental to *Temporary Shoring*. Payment will be made under: Pay Item **Temporary Shoring** Pay Unit **Square Foot** ## **CHANGEABLE MESSAGE SIGNS:** $\overline{(11-21-06)}$ SP11 R11 Revise the 2006 Standard Specifications as follows: Page 11-9, Article 1120-3, Replace the 3rd sentence with the following: Sign operator will adjust
flash rate so that no more than two messages will be displayed and be legible to a driver when approaching the sign at the posted speed. #### **PAVEMENT MARKING LINES:** (11-21-06) (Rev. 9-18-07) SP12 R01 Revise the 2006 Standard Specifications as follows: Page 12-2, 1205-3(D) Time Limitations for Replacement, add the following at the beginning of the chart: | Facility Type | Marking Type | Replacement Deadline | |-------------------------------------|--------------|------------------------------------| | Full-control-of-access multi-lane | All markings | By the end of each workday's | | roadway (4 or more total lanes) and | including | operation if the lane is opened to | | ramps, including Interstates | symbols | traffic | Page 12-14, Subarticle 1205-10, Measurement and Payment, delete the first sentence of the first paragraph and replace with the following: Pavement Marking Lines will be measured and paid for as the actual number of linear feet of pavement marking lines per application that has been satisfactorily placed and accepted by the Engineer. ## **COORDINATION OF LIGHTING WORK:** (7-1-95) SP14 R01 Complete the required work as described in the contract, so that lighting is maintained for all areas shown on the plans by either the existing or the proposed lights. Use care in working around the lights and circuitry and phase operations so that the lighting systems will not be disrupted. Make repairs or replacements in conformance with the contract. Should the Contractor fail to make such repairs within the time allowed, the Department will cause the necessary repairs to be made by others. The costs of such repairs will be deducted from any monies due the Contractor on the next subsequent monthly or final payment. # EXCAVATION, TRENCHING, PIPE LAYING, & BACKFILLING FOR UTILITIES: (2-17-09) SP15 R01 Revise the 2006 Standard Specifications as follows: Page 15-5, Article 1505-4 Repair of Pavements, Sidewalks and Driveways, first paragraph, add at the end of the first sentence in accordance with Section 848. # Page 15-6, Article 1505-6 Measurement and Payment, Second paragraph, Delete (5) Repair of Sidewalks and Driveways in its entirety. # Add as the eighth paragraph: __" Concrete Sidewalk and __" Concrete Driveways will be measured and paid for in accordance with Article 848-4. ## PERMANENT SEEDING AND MULCHING: (7-1-95) SP16 R01 The Department desires that permanent seeding and mulching be established on this project as soon as practical after slopes or portions of slopes have been graded. As an incentive to obtain an early stand of vegetation on this project, the Contractor's attention is called to the following: For all permanent seeding and mulching that is satisfactorily completed in accordance with the requirements of Section 1660, Seeding and Mulching, and within the following percentages of elapsed contract times, an additional payment will be made to the Contractor as an incentive additive. The incentive additive will be determined by multiplying the number of acres of seeding and mulching satisfactorily completed times the contract unit bid price per acre for Seeding and Mulching times the appropriate percentage additive. | Percentage of Elapsed Contract Time | Percentage Additive | |-------------------------------------|---------------------| | 0% - 30% | 30% | | 30.01% - 50% | 15% | Percentage of elapsed contract time is defined as the number of calendar days from the date of availability of the contract to the date the permanent seeding and mulching is acceptably completed divided by the total original contract time.