PROJECT SPECIAL PROVISIONS

ROADWAY

CLEARING AND GRUBBING - METHOD II:

(9-17-02) (Rev 3-18-08)

SP2 R01

Perform clearing on this project to the limits established by Method "II" shown on Standard No. 200.02 of the 2006 Roadway Standard Drawings.

Revise the 2006 Standard Specifications as follows:

Page 2-2, Article 200-3, Clearing, add the following as the 6th paragraph:

At bridge sites, clear the entire width of the right of way beginning at a station 3 feet back of the beginning extremity of the structure and ending at a station 3 feet beyond the ending extremity of the structure.

EMBANKMENTS:

(5-16-06) (Rev 7-21-09)

SP2R18

Revise the *Standard Specifications* as follows:

Page 2-22, Article 235-3 Materials, add the following as the second sentence of the second paragraph:

Aerate and dry material containing moisture content in excess of what is required to achieve embankment stability and specified density.

Page 2-22, Subarticle 235-4(B) Embankment Formation, add the following:

(16) Do not place rock or broken pavement in embankment areas where piles or drilled shaft foundations are to be constructed. This shall include but not be limited to piles and foundations for structures, metal signal poles, overhead sign structures, and high mount lighting.

SHALLOW UNDERCUT:

(9-18-07) (Rev. 3-18-08)

SP2 R35 B

Description

Undercut to a depth of 6 to 24 inches and place fabric for soil stabilization and Class IV Subgrade Stabilization at locations shown on the plans or as directed by the Engineer.

Materials

Refer to Division 10 of the Standard Specifications.

Item	Section
Select Material, Class IV	1016
Fabric for Soil Stabilization, Type 4	1056

Use Class IV Select Material for Class IV Subgrade Stabilization. If Class IV Subgrade Stabilization does not meet the requirements of Article 1010-2 of the *Standard Specifications*, the Engineer, at his discretion, may consider the material reasonably acceptable in accordance with Article 105-3 of the *Standard Specifications*.

Construction Methods

Perform undercut excavation in accordance with Section 226 of the *Standard Specifications*. Place fabric for soil stabilization in accordance with Article 270-3 of the *Standard Specifications* before backfilling. Backfill with Class IV Subgrade Stabilization by end dumping subgrade stabilization material on the fabric. Do not operate heavy equipment on the fabric until it is covered with Class IV Subgrade Stabilization. Compact subgrade stabilization material to 92% of AASHTO T180 as modified by the Department or to the highest density that can be reasonably obtained.

Maintain Class IV Subgrade Stabilization in an acceptable condition and minimize the use of heavy equipment on subgrade stabilization material in order to avoid damaging the backfill. Provide and maintain drainage ditches and drains as required to prevent entrapment of water in backfill.

Measurement and Payment

Class IV Subgrade Stabilization will be measured and paid for at the contract unit price per ton. The quantity to be paid for will be the actual number of tons of subgrade stabilization material that has been incorporated into the completed and accepted work. The material will be measured by being weighed in trucks on certified platform scales or other certified weighing devices. This work includes but is not limited to furnishing, hauling, handling, placing, compacting and maintaining the subgrade stabilization material.

Undercut Excavation will be measured and paid for in accordance with Section 226 of the Standard Specifications, except that where Shallow Undercut Excavation is removed and backfilled as provided in this provision, the second sentence of the sixth paragraph of Article 226-3 will not apply, as payment for the backfill will be made at the contract unit price per ton for "Class IV Subgrade Stabilization".

Fabric for Soil Stabilization will be measured and paid for in accordance with Section 270 of the Standard Specifications.

Payment will be made under:

Pay ItemPay UnitClass IV Subgrade StabilizationTon

FLOWABLE FILL:

(9-17-02) (Rev 8-21-07)

SP3 R30

Description

This work consists of all work necessary to place flowable fill in accordance with these provisions, the plans, and as directed.

Materials

Provide flowable fill material in accordance with Article 340-2 of the 2006 Standard Specifications.

Construction Methods

Discharge flowable fill material directly from the truck into the space to be filled, or by other approved methods. The mix may be placed full depth or in lifts as site conditions dictate. The Contractor shall provide a method to plug the ends of the existing pipe in order to contain the flowable fill.

Measurement and Payment

At locations where flowable fill is called for on the plans and a pay item for flowable fill is included in the contract, *flowable fill* will be measured in cubic yards and paid for as the actual number of cubic yards that have been satisfactorily placed and accepted. Such price and payment will be full compensation for all work covered by this provision including but not limited to the mix design, furnishing, hauling, placing and containing the flowable fill.

Payment will be made under:

Pay Item

Flowable Fill

Pay Unit

Cubic Yard

PIPE TESTING:

4-17-07

SP3 R33

Revise the 2006 Standard Specifications as follows:

Page 3-3, Article 300-6, add the following as a new paragraph before (A):

The Department reserves the right to perform forensic testing on any installed pipe.

ASPHALT PAVEMENTS - SUPERPAVE:

(7-18-06)(Rev 5-19-09)

SP6 R01

Revise the 2006 Standard Specifications as follows:

Page 6-2, Article 600-9 Measurement and Payment, delete the second paragraph.

Page 6-12, Subarticle 609-5(C)2, Required Sampling and Testing Frequencies, first partial paragraph at the top of the page, delete last sentence and add the following:

If the Engineer allows the mix to remain in place, payment will be made in accordance with Article 105-3.

Page 6-12, Subarticle 609-5(C)2, QUALITY CONTROL MINIMUM SAMPLING AND TESTING SCHEDULE

First paragraph, delete and replace with the following.

Sample and test the completed mixture from each mix design per plant per year at the following minimum frequency during mix production:

Second paragraph, delete the fourth sentence, and replace with the following

When daily production of each mix design exceeds 100 tons and a regularly scheduled full test series random sample location for that mix design does not occur during that day's production, perform at least one partial test series consisting of Items A and B in the schedule below.

Page 6-12, Subarticle 609-5(C)2(c) Maximum Specific Gravity, add after (AASHTO T 209):

or ASTM D 2041

Page 6-13, last line and on page and Page 6-14, Subarticle 609-5(C)(2)(e) Tensile Strength Ratio (TSR), add a heading before the first paragraph as follows:

(i) Option 1

Insert the following immediately after the first paragraph:

(ii) Option 2

Mix sampled from truck at plant with one set of specimens prepared by the Contractor and then tested jointly by QA and QC at a mutually agreed upon lab site within the first 7 calendar days after beginning production of each new mix design.

Second paragraph, delete and replace with the following:

Test all TSR specimens required by either option noted above on either a recording test press or a test press that maintains the peak load reading after the specimen has broken.

Subarticle 609-5(C)(3) Control Charts, delete the second sentence of the first paragraph and replace with the following:

For mix incorporated into the project, record full test series data from all regularly scheduled random samples or directed samples that replace regularly scheduled random samples, on control charts the same day the test results are obtained.

Page 6-15, Subarticle 609-5(C)(3) Control Charts, first paragraph on this page, delete the last sentence and substitute the following:

Denote the moving average control limits with a dash green line and the individual test limits with a dash red line.

Subarticle 609-5(C)(3)(a), (b) and (c), replace (a) (b) and (c) with the following:

- (a) A change in the binder percentage, aggregate blend, or G_{mm} is made on the JMF, or,
- (b) When the Contractor elects to stop or is required to stop production after one or two moving average values, respectively, fall outside the moving average limits as outlined in subarticle 609-5(C)6 or,
- (c) If failure to stop production after two consecutive moving averages exceed the moving average limits occurs, but production does stop at a subsequent time, reestablish a new moving average beginning at the actual production stop point.

Subarticle 609-5(C)(4) Control Limits, replace the first paragraph and the CONTROL LIMITS Table on page 6-16 with the following.

The following are established as control limits for mix production. Apply the individual limits to the individual test results. Control limits for the moving average limits are based on a moving average of the last 4 data points. Apply all control limits to the applicable target source.

COL	NTR	M.	$\mathbf{I}.\mathbf{I}$	MITS

Mix Control Criteria	Target Source	Moving Average Limit	Individual Limit
2.36 mm Sieve	JMF	±4.0 %	±8.0 %
0.075mm Sieve	JMF	±1.5 %	±2.5 %
Binder Content	JMF	±0.3 %	±0.7 %
VTM @ N _{des}	JMF	±1.0 %	±2.0 %
VMA @ N _{des}	Min. Spec. Limit	-0.5%	-1.0%
P _{0.075} / P _{be} Ratio	1.0	±0.4	±0.8
%G _{mm} @N _{ini}	Max. Spec. Limit	N/A	+2.0%
TSR	Min. Spec. Limit	N/A	- 15%

Page 6-16, Subarticle 609-5(C)(5) Warning Bands, delete this subarticle in its entirety.

Pages 6-16 through 6-19, Subarticle 609-5(C)(6), delete the word "warning" and substitute the words "moving average".

Page 6-16, Subarticle 609-5(C)(6) Corrective Actions, first paragraph, first sentence, delete and replace with the following:

Immediately notify the Engineer when moving averages exceed the moving average limits.

Page 6-17, third full paragraph, delete and replace with the following:

Failure to stop production when required due to an individual mix test not meeting the specified requirements will subject all mix from the stop point tonnage to the point when the next individual test is back on or within the moving average limits, or to the tonnage point when production is actually stopped, whichever occurs first, to being considered unacceptable.

Sixth full paragraph, delete the first, second, and third sentence and replace with the following:

Immediately notify the Engineer when any moving average value exceeds the moving average limit. If two consecutive moving average values for any one of the mix control criteria fall outside the moving average limits, cease production of that mix, immediately notify the Engineer of the stoppage, and make adjustments. The Contractor may elect to stop production after only one moving average value falls outside the moving average limits.

Page 6-18, Subarticle 609-5(C)(6) Corrective Actions second full paragraph, delete and replace with the following:

If the process adjustment improves the property in question such that the moving average after four additional tests is on or within the moving average limits, the Contractor may continue production with no reduction in payment

Page 6-18, delete the third and fourth full paragraphs, including the Table for Payment for Mix Produced in the Warning Bands and substitute the following:

If the adjustment does not improve the property in question such that the moving average after four additional individual tests is outside the moving average limits, the mix will be evaluated for acceptance in accordance with Article 105-3. Reduced payment for or removal of the mix in question will be applied starting from the plant sample tonnage at the stop point to the sample tonnage when the moving average is on or within the moving average limits. In addition, any mix that is obviously unacceptable will be rejected for use in the work.

Page 6-19, First paragraph, delete and replace with the following:

Failure to stop production and make adjustments when required due to two consecutive moving average values falling outside the moving average limits will subject all mix produced from the stop point tonnage to the tonnage point when the moving average is back on or within the moving average limits or to the tonnage point when production is actually stopped, whichever occurs first, to being considered unacceptable. Remove this material and replaced with materials that comply with the Specifications at no additional costs to the Department, unless otherwise approved. Payment will be made for the actual quantities of materials required to replace the removed quantities, not to exceed the original amounts.

Page 6-20, Subarticle 609-5(D)(1) General, delete the third full paragraph, and replace with the following:

Perform the sampling and testing at the minimum test frequencies as specified above. Should the density testing frequency fail to meet the minimum frequency as specified above, all mix without the required density test representation will be considered unsatisfactory. If the Engineer allows the mix to remain in place, payment will be made in accordance with Article 105-3.

Page 6-22, Subarticle 609-5(D)(4) Nuclear Gauge Density Procedures, third paragraph, insert the following as the second sentence:

Determine the Daily Standard Count in the presence of the QA Roadway Technician or QA Nuclear Gauge Technician on days when a control strip is being placed.

Page 6-23, Subarticle 609-5(D)(5) Limited Production Procedure, delete the first paragraph including (a), (b), (c) and substitute the following:

Proceed on limited production when, for the same mix type and on the same contract, one of the following conditions occur (except as noted in the first paragraph below).

- (a) Two consecutive failing lots, except on resurfacing*
- (b) Three consecutive failing lots on resurfacing*
- (c) Two consecutive failing nuclear control strips.
 - * Resurfacing is defined as the first new uniform layer placed on an existing pavement.

Page 6-25, Article 609-6 Quality Assurance, Density Quality Assurance, insert the following items after item (E):

- (F) By retesting Quality Control core samples from control strips (either core or nuclear) at a frequency of 100% of the frequency required of the Contractor;
- (G) By observing the Contractor perform all standard counts of the Quality Control nuclear gauge prior to usage each nuclear density testing day; or
- (H) By any combination of the above

Page 6-28, Subarticle 610-3(A) Mix Design-General, delete the fourth and fifth paragraphs and replace with the following:

Reclaimed Asphalt Pavement (RAP) or Reclaimed Asphalt Shingles (RAS) may be incorporated into asphalt plant mixes in accordance with Article 1012-1 and the following applicable requirements.

Reclaimed asphalt pavement (RAP) may constitute up to 50% of the total material used in recycled mixtures, except for mix Type S 12.5D, Type S 9.5D, and mixtures containing reclaimed asphalt shingle material (RAS). Reclaimed asphalt shingle (RAS) material may constitute up to 6% by weight of total mixture for any mix. When both RAP and RAS are used, do not use a combined percentage of RAS and RAP greater than 20% by weight of total mixture, unless otherwise approved. When the percent of binder contributed from RAS or a combination of RAS and RAP exceeds 20% but not more than 30% of the total binder in the completed mix, the virgin binder PG grade shall be one grade below (both high and low temperature grade) the binder grade specified in Table 610-2 for the mix type. When the percent of binder contributed from RAS or a combination of RAS and RAP exceeds 30% of the total binder in the completed mix, the Engineer will establish and approve the virgin binder PG grade. Use approved methods to determine if any binder grade adjustments are necessary to achieve the performance grade for the specified mix type.

For Type S 12.5D and Type S 9.5D mixes, the maximum percentage of reclaimed asphalt material is limited to 20% and shall be produced using virgin asphalt binder grade PG 76-22. For all other recycled mix types, the virgin binder PG grade shall be as specified in Table 610-2A for the specified mix type.

When the percentage of RAP is greater than 20% but not more than 30% of the total mixture, use RAP meeting the requirements for processed or fractionated RAP in accordance with the requirements of Section 1012-1.

When the percentage of RAP is greater than 30% of the total mixture, use an approved stockpile of RAP in accordance with Section 1012-1(C). Use approved test methods to determine if any binder grade adjustments are necessary to achieve the performance grade for the specified mix type. The Engineer will establish and approve the virgin asphalt binder grade to be used.

Page 6-34, Insert the following immediately after Table 610-2:

TABLE 610-2A SUPERPAVE MIX DESIGN CRITERIA

	Percentage of RAP in Mix				
	Category 1	Category 2	Category 3		
Mix Type	% RAP ≤20%	$20.1\% \le \% RAP \le 30.0\%$	%RAP > 30.0%		
All A and B Level Mixes, I19.0C, B25.0C	PG 64 -22	PG 64 -22	TBD		
S9.5C, S12.5C, I19.0D	PG 70 -22	PG 64-22	TBD		
S 9.5D and S12.5D	PG 76-22	N/A	N/A		

Note: (1) Category 1 RAP has been processed to a maximum size of 2 inches.

- (2) Category 2 RAP has been processed to a maximum size of 1 inch by either crushing and or screening to reduce variability in the gradations.
- (3) Category 3 RAP has been processed to a maximum size of 1 inch, fractionating the RAP into 2 or more sized stockpiles

Page 6-35, Table 610-3 delete and replace with the following:

TABLE 610-3 ASPHALT PLACEMENT- MINIMUM TEMPERATURE REQUIREMENTS

Asphalt Concrete Mix Type	Minimum Air Temperature	Minimum Surface Temperature
ACBC, Type B 25.0B, C, B 37.5C	35°F	35°F
ACIC, Type I 19.0B, C, D	35°F	35°F
ACSC, Type S 4.75A, SF 9.5A, S 9.5B	40°F	50°F*
ACSC, Type S 9.5C, S 12.5C	45°F	50°F
ACSC, Type S 9.5D, S 12.5D	50°F	50°F

^{* 35°}F if surface is soil or aggregate base for secondary road construction.

Page 6-44, Article 610-8 Spreading and Finishing, third full paragraph, replace the first sentence with the following:

Use the 30 foot minimum length mobile grade reference system or the non-contacting laser or sonar type ski with at least four referencing stations mounted on the paver at a minimum length of 24 feet to control the longitudinal profile when placing the initial lanes and all adjacent lanes of all layers, including resurfacing and asphalt in-lays, unless otherwise specified or approved.

Page 6-50, Article 610-13 Density Acceptance, delete the second paragraph and replace with the following:

As an exception, when the first layer of mix is a surface course and is being placed directly on an unprimed aggregate or soil base, the layer will be included in the "Other" construction category.

Page 6-53, Article 620-4 Measurement and Payment:

Sixth paragraph, delete the last sentence.

Seventh paragraph, delete the paragraph and replace with the following:

The adjusted contract unit price will then be applied to the theoretical quantity of asphalt binder authorized for use in the plant mix placed during the partial payment period involved, except that where recycled plant mix is used, the adjusted unit price will be applied only to the theoretical number of tons of additional asphalt binder materials required by the job mix formula.

Page 6-54, Article 620-4 Measurement and Payment, add the following pay item:

Pay Item	Pay Unit
Asphalt Binder for Plant Mix, Grade PG 70-28	Ton

Page 6-69, Table 660-1 Material Application Rates and Temperatures, add the following:

Type of Coat	Grade of Asphalt	Asphalt Rate gal/yd²	Application Temperature °F	Aggregate Size	Aggregate Rate lb./sq. yd. Total
Sand Seal	CRS-2 or CRS-2P	0.22-0.30	150-175	Blotting Sand	12-15

Page 6-75, Subarticle 660-9(B), add the following as sub-item (5)

(5) Sand Seal

Place the fully required amount of asphalt material in one application and immediately cover with the seal coat aggregate. Uniformly spread the fully required amount of aggregate in one application and correct all non-uniform areas prior to rolling.

Immediately after the aggregate has been uniformly spread, perform rolling.

When directed, broom excess aggregate material from the surface of the seal coat.

When the sand seal is to be constructed for temporary sealing purposes only and will not be used by traffic, other grades of asphalt material meeting the requirements of Articles 1020-6 and 1020-7 may be used in lieu of the grade of asphalt required by Table 660-1 when approved.

Page 6-76, Article 661-1 Description, add the following as the 2nd paragraph:

Provide and conduct the quality control and required testing for acceptance of the UBWC in accordance with "Quality Management System for Asphalt Pavements (OGAFC, PADL, and Ultra-Thin HMA Version)", included in the contract.

Page 6-80, Subarticle 661-3(A) Equipment, add the following as the first paragraph:

Use asphalt mixing plants in accordance with Article 610-5.

Page 10-41, Table 1012-1, delete the last row of entries for OGAFC and add the following:

Mix Type	Coarse Aggregate Angularity ^(b) ASTM D5821	Fine Aggregate Angularity % Minimum AASHTO T304 Method A	Sand Equivalent % Minimum AASHTO T176	Flat & Elongated 5:1 Ratio % Maximum ASTM D4791 Section 8.4
S 9.5 D	100/100	45	50	10
OGAFC	100/100	N/A	N/A	10
UBWC	100/85	40	45	10

Delete Note (c) under the Table 1012-1 and replace with the following:

(c) Does not apply to Mix Types SF 9.5A and S 9.5B.

Page 10-43, Subarticle 1012-1(F): Reclaimed Asphalt Shingle Material (RAS), insert the following immediately following the first paragraph:

(1) Mix Design RAS

Incorporate RAS from stockpiles that have been tested for uniformity of gradation and binder content prior to use in an asphalt mix design.

(2) Mix Production RAS

New Source RAS is defined as acceptable material which was not included in the stockpile when samples were taken for mix design purposes. Process new source RAS so that all materials will pass a 1/2" sieve prior to introduction into the plant mixer unit.

After a stockpile of processed RAS has been sampled and mix designs made from these samples, do not add new source RAS to the original stockpile without prior field testing to insure gradation and binder uniformity. Sample and test new source RAS before blending with the existing stockpile.

Store new source RAS in a separate stockpile until the material can be sampled and tested for comparison with the original recycled mix design data. New source RAS may also be placed against the existing stockpile in a linear manner provided it is sampled for mix design conformity prior to its use in the recycled mix.

RAS contamination including but not limited to excessive dirt, debris, clean stone, concrete will not be allowed.

Field approval of new source RAS will be based on the table below and volumetric mix properties on the mix with the new source RAS included. Provided these tolerances are met, volumetric properties of the new mix will then be performed. If all volumetric mix properties meet the mix design criteria for that mix type, the new source RAS may continue to be used.

If the gradation, binder content, or any of the volumetric mix properties are not within the allowable tolerances of the table below, do not use the new source RAS unless approved by the Engineer. The Contractor may elect to either not use the stockpile, to request an adjustment to the JMF, or to redesign the mix.

NEW SOURCE RAS GRADATION and BINDER TOLERANCES (Apply Tolerances to Mix Design Data)

	0-6% RAS				
P _b %	±1.6%				
Sieve Size (mm)	Tolerance				
9.5	*±1				
4.75	±5				
2.36	±4				
1.18	±4				
0.300	±4				
0.150	±4				
0.075	±2.0				

Page 10-43 through 10-45, Subarticle 1012-1(G), delete this in its entirety and replace with the following:

(G) Reclaimed Asphalt Pavement (RAP)

(1) Mix Design RAP

Incorporate RAP from stockpiles or other sources that have been tested for uniformity of gradation and binder content prior to use in an asphalt mix design. Use reclaimed asphalt pavement that meets all requirements specified for *one of* the following *two* classifications.

(a) Millings

Existing reclaimed asphalt pavement (RAP) that is removed from its original location by a milling process as specified in Section 607. Millings should be such that it has a uniform gradation and binder content and all materials will pass a 2" sieve prior to introduction into the plant mixer unit.

(b) Processed RAP

RAP that is processed in some manner (possibly by crushing and/or use of a blending method) to produce a uniform gradation and binder content in the RAP prior to use in a recycled mix. Process RAP so that all materials have a uniform gradation and binder content and will pass a 1" sieve prior to introduction into the plant mixer unit.

(c) Fractionated RAP

Fractionated RAP is defined as having two or more RAP stockpiles, where the RAP is divided into coarse and fine fractions. Grade RAP so that all materials will pass a 1" sieve. The coarse RAP stockpile shall only contain material retained on a 3/8" screen, unless otherwise approved. The fine RAP stockpile shall only contain material passing the 3/8" screen, unless otherwise approved. The Engineer may allow the Contractor to use an alternate to the 3/8" screen to fractionate the RAP. The maximum percentages of fractionated RAP may be comprised of coarse, fine, or the combination of both. Utilize a separate cold feed bin for each stockpile of fractionated RAP used.

(d) Approved Stockpiled RAP

Approved Stockpiled RAP is defined as fractionated RAP which has been isolated and tested for asphalt content, gradation, and asphalt binder characteristics with the intent to be used in mix designs with greater than 30% RAP materials. Fractionate the RAP in accordance with Section 1012-1(G)(c). Utilize a separate cold feed bin for each approved stockpile of RAP used.

Perform extraction tests at a rate of 1 per 1000 tons of RAP, with a minimum of 5 tests per stockpile to determine the asphalt content and gradation. Separate stockpiles of RAP material by fine and coarse fractions. Erect and maintain a sign satisfactory to the Engineer on each stockpile to identify the material. Assure that no deleterious material is allowed in any stockpile. The Engineer may reject by visual inspection any stockpiles that are not kept clean, separated, and free of foreign materials.

Submit requests for RAP stockpile approval to the Engineer with the following information at the time of the request:

- (1) Approximate tons of materials in stockpile
- (2) Name or Identification number for the stockpile
- (3) Asphalt binder content and gradation test results
- (4) Asphalt characteristics of the Stockpile.

For the Stockpiled RAP to be considered for approval, the gradation and asphalt content shall be uniform. Individual test results, when compared to the averages, will be accepted if within the tolerances listed below: APPROVED STOCKPILED RAP GRADATION and BINDER TOLERANCES
(Apply Tolerances to Mix Design Data)

P _b %	±0.3%
Sieve Size (mm)	Percent Passing
25.0	±5%
19.0	±5%
12.5	±2%
9.5	±2%
4.75	±5%
2.36	±4%
1.18	±4%
0.300	±4%
0.150	±4%
0.075	±1.5%

Note: If more than 20% of the individual sieves are out of the gradation tolerances, or if more than 20% of the asphalt binder content test results fall outside the appropriate tolerances, the RAP shall not be used in HMA unless the RAP representing the failing tests is removed from the stockpile.

Do not add additional material to any approved RAP stockpile, unless otherwise approved by the Engineer.

Maintain at the plant site a record system for all approved RAP stockpiles. Include at a minimum the following: Stockpile identification and a sketch of all stockpile areas at the plant site; all RAP test results (including asphalt content, gradation, and asphalt binder characteristics).

(2) Mix Production RAP

During mix production, use RAP that meets the criteria for one of the following categories:

(a) Mix Design RAP

RAP contained in the mix design stockpiles as described above may be used in all applicable JMFs. These stockpiles have been pretested: however, they are subject to required QC/QA testing in accordance with Subarticle 609-5(C)(2).

(b) New Source RAP

New Source RAP is defined as any acceptable material that was not included in the stockpile or other source when samples were taken for mix design purposes. Process new source RAP so that all materials have a uniform gradation and binder content and will pass a 2" sieve prior to introduction into the plant mixer unit.

After a stockpile of millings, processed RAP, or fractionated RAP has been sampled and mix designs made from these samples, do not add new source RAP to the original stockpile without prior field testing to insure gradation and binder uniformity. Sample and test new source RAP before blending with the existing stockpile.

Store new source RAP in a separate stockpile until the material can be sampled and tested for comparison with the original recycled mix design data. New source RAP may also be placed against the existing stockpile in a linear manner provided it is sampled for mix design conformity prior to its use in the recycled mix.

Unprocessed RAP is asphalt material that was not milled and/or has not been processed to obtain a uniform gradation and binder content and is not representative of the RAP used during the applicable mix design. Unprocessed RAP shall not be incorporated into any JMFs prior to processing. Different sources of unprocessed RAP may be stockpiled together provided it is generally free of contamination and will be processed prior to use in a recycled mix. RAP contamination in the form of excessive dirt, debris, clean stone, concrete, etc. will not be allowed. Incidental amounts of dirt, concrete, and clean stone may be acceptable. Unprocessed RAP may be processed and then classified as a new source RAP as described above.

Field approval of new source RAP will be based on Table 1012-2 below and volumetric mix properties on the mix with the new source RAP included. Provided the Table 1012-2 tolerances are met, volumetric properties of the new mix will then be performed. If all volumetric mix properties meet the mix design criteria for that mix type, the new source RAP may continue to be used.

If the gradation, binder content, or any of the volumetric mix properties are not within the allowable tolerances of Table 1012-2, do not use the new source RAP unless approved by the Engineer. The Contractor may elect to either not use the stockpile, to request an adjustment to the JMF, or to redesign the mix.

TABLE 1012-2 NEW SOURCE RAP GRADATION and BINDER TOLERANCES (Apply Tolerances to Mix Design Data)

Mix Type	C)-20% RA	P	20	⁺ -30 % R	AP	30	0 ⁺ % RAF	
Sieve (mm)	Base	Inter.	Surf.	Base	Inter.	Surf.	Base	Inter.	Surf.
P _b %		± 0.7%			± 0.4%	L		± 0.3%	
25.0	±10		-	±7	-	-	±5	-	-
19.0	±10	±10	-	±7	±7	-	±5	±5	-
12.5	-	±6	±6	-	±3	±3	-	±2	±2
9.5	-	-	±8	-	-	±5	-	-	±4
4.75	±10	-	±10	±7	-	±7	±5	-	±5
2.36	±8	±8	±8	±5	±5	±5	±4	±4	±4
1.18	±8	±8	±8	±5	±5	±5	±4	±4	±4
0.300	±8	±8	±8	±5	±5	±5	±4	±4	±4
0.150	-	-	±8	-	-	±5	-	-	±4
0.075	±4	±4	±4	±2	±2	±2	±1.5	±1.5	±1.5
	410								

ASPHALT PAVEMENTS - WARM MIX ASPHALT SUPERPAVE:

(5-19-09)

SP6 R02

Warm Mix Asphalt (WMA) is defined as additives or processes that allow a reduction in the temperature at which asphalt mixtures are produced and placed. WMA is allowed for use at the Contractor's option when shown on the plans or in the project provisions.

Notify the Engineer at least 2 weeks before producing the Warm Mix so the Engineer can arrange a preconstruction meeting. Discuss special testing requirements necessary for warm mix asphalt at the pre-pave meeting. Included at the pre-pave meeting the Contractor's QC manager, Paving Superintendent, and manufacturer's representative for the process or additive used for producing warm mix asphalt, the Department's Roadway Construction Engineer, Resident Engineer, State Pavement Construction, and Quality Assurance Supervisor.

Require a manufacturer's representative for the process or additive used to be present on site at the plant during the initial production and on the roadway during the laydown of the warm mix asphalt.

Revise the 2006 Standard Specifications as follows:

Page 6-8, Article 609-1 Description, insert the following as the second paragraph.

Warm Mix Asphalt (WMA) is defined as additives or processes that allow a reduction in the temperature at which asphalt mixtures are produced and placed. WMA is allowed for use at the Contractor's option when shown in the contract documents.

Page 6-9, Article 609-4 Field Verification of Mixture and Job Mix Formula Adjustments,

Second paragraph, insert the following immediately after the first sentence.

When producing a WMA, field verification testing will also consist of performing a Tensile Strength Ratio (TSR) testing in accordance with AASHTO T283 as Modified by the Department.

Third paragraph, delete the third sentence and replace with the following:

Verification is considered satisfactory for HMA when all volumetric properties except $\%G_{mm}@N_{ini}$ are within the applicable mix design criteria, and the gradation, binder content, and $\%G_{mm}@N_{ini}$ are within the individual limits for the mix type being produced. Verification is considered satisfactory for WMA when all volumetric properties except $\%G_{mm}@N_{ini}$ are within the applicable mix design criteria, the TSR is equal to or above the minimum design criteria, and the gradation, binder content, and $\%G_{mm}@N_{ini}$ are within the individual limits for the mix type being produced.

Page 6-12, Subarticle 609-5(C)2(d) Bulk Specific Gravity of Compacted Specimens, add after (AASHTO T 312):

When producing Warm Mix Asphalt, gyrate specimens to specified N_{des} compaction effort without reheating mix other than to desired compaction temperature. Record time needed to reheat samples (if any).

Page 6-14, Subarticle 609-5(C)(2)(e) Tensile Strength Ratio, insert the following immediately after the third paragraph:

When producing WMA, perform TSR testing at

- i. Beginning of production for each JMF
- ii. Monthly thereafter

Page 6-27, Article 610-1 Description, insert the following as the third paragraph:

Warm Mix Asphalt (WMA) is defined as additives or processes that allow a reduction in the temperature at which asphalt mixtures are produced and placed. Use WMA at the Contractor's option unless otherwise shown on the plans.

Page 6-27, Article 610-2 Materials, insert the following at the end of this Article:

Use only WMA additives or processes listed on the Department's approved list maintained by the Materials and Tests Unit.

Page 6-31, Subarticle 610-3(B) Mix Design-Criteria, add the following as the fifth paragraph:

When WMA is used, submit the mix design without including the WMA additive.

Page 6-32, Subarticle 610-3(C) Job Mix Formula, Add the following as the second paragraph:

When WMA is used, document the additive or process used and recommended rate on the JMF submittal. Verify the JMF based on plant produced mixture from the trial batch.

Immediately following PG 76-22 335°F, add the following paragraph:

When WMA is used, produce an asphalt mixture within the temperature range of 225°F and 275 °F.

ASPHALT BINDER CONTENT OF ASPHALT PLANT MIXES:

(11-21-00

SP6 R15

The approximate asphalt binder content of the asphalt concrete plant mixtures used on this project will be as follows:

Asphalt Concrete Base Course	Type B 25.0	4.3%
Asphalt Concrete Intermediate Course	Type I 19.0	4.7%
Asphalt Concrete Surface Course	Type S 4.75A	7.0%
Asphalt Concrete Surface Course	Type SF 9.5A	6.5%
Asphalt Concrete Surface Course	Type S 9.5	6.0%
Asphalt Concrete Surface Course	Type S 12.5	5.5%

The actual asphalt binder content will be established during construction by the Engineer within the limits established in the 2006 Standard Specifications.

PRICE ADJUSTMENT - ASPHALT BINDER FOR PLANT MIX:

SP6 R25

Price adjustments for asphalt binder for plant mix will be made in accordance with Section 620 of the 2006 Standard Specifications.

The base price index for asphalt binder for plant mix is \$ 358.46 per ton.

This base price index represents an average of F.O.B. selling prices of asphalt binder at supplier's terminals on **June 1, 2009**.

BORROW EXCAVATION AND SHPO DOCUMENTATION FOR BORROW/WASTE SITES:

(12-18-07) (4-15-08) SP8 R02

Revise the 2006 Standard Specifications as follows:

Division 2 Earthwork

Page 2-16, Subarticle 230-1(D), add the words: The Contractor specifically waives as the first words of the sentence.

Page 2-17, Article 230-4(B) Contractor Furnished Sources, first paragraph, first sentence replace with the following:

Prior to the approval of any borrow sources developed for use on any project, obtain certification from the State Historic Preservation Officer of the State Department of Cultural Resources certifying that the removal of the borrow material from the borrow sources(s) will have no effect on any known district, site building, structure, or object, architectural and/or archaeological that is included or eligible for inclusion in the National Register of Historic Places.

Division 8 Incidentals

Page 8-9, Article 802-2 General Requirements, add the following as the 1st paragraph:

Prior to the removal of any waste from any project, obtain certification from the State Historic Preservation Officer of the State Department of Cultural Resources certifying that the deposition of the waste material to the proposed waste area will have no effect on any known district, site building, structure, or object, architectural and/or archaeological that is included or eligible for inclusion in the National Register of Historic Places. Furnish a copy of this certification to the Engineer prior to performing any work in the proposed waste site.

Page 8-10, Article 802-2, General Requirements, 4th paragraph, add the following as the 2nd sentence:

The Department's borrow and waste site reclamation procedures for contracted projects is available on the NCDOT website and shall be used for all borrow and waste sites on this project.

GROUT FOR HDPE PIPE LINER: (4-15-08)

SPI 10-2

Description

Furnish and install grout between the HDPE Pipe and the Steel Pipe as shown in the plans.

Materials

Use a grout which has a minimum compressive strength of 3,000 psi at three days and which meets the applicable requirements of Subarticle 1054-6 of the *Standard Specifications*.

Construction Methods

Place the grout by pumping, pouring or other approved method.

Measurement and Payment

Grout will be measured and paid for as the number of cubic yards that is incorporated around the HDPE pipe liner. The number of cubic yards of grout is computed from dimensions in the plans.

Payment will be made under:

Pay Item

Grout

Pay Unit Cubic Yard

42" WELDED STEEL PIPE UNDER THE TRACKS OF ACL RAILWAY:

(7-12-07)

SPI

The 42" Welded Steel Pipe required under the tracks of ACL Railway shall conform with Section 330 of the *Standard Specifications*. The thickness of the wall shall be 0.625 inches.

The pipe shall be installed by dry boring and jacking under the tracks as shown in the plans. The pipe shall be carefully dry bored true to the line and grade given. The bore shall be held to a minimum to insure that there will be no settlement. Pipe which has been damaged due to the Contractor's operation shall be removed and replaced at the Contractor's expense. All voids around the outside of the pipe shall be completely filled to the satisfaction of the Engineer.

The Contractor shall notify J. D. Kirkland Division Engineer, CSX Railway Co 100 Center Street Apex, NC 27502 Office (919) 362-9402 Cell (843) 250-0264 email jd_kirkland@csx.com 15 days before any work is begun on the railroad's right of way. This will enable them to have a representative present, if they so desire, while the work is being performed to determine if the work is being performed in accordance with the approved plans and Special Provisions. The railroad will advise the Contractor when the work is to be done between trains and provide a flagman, if required.

The quantity of pipe to be paid for will be the actual number of linear feet of pipe which has been incorporated in the completed and accepted work. Measurement will be made by counting the number of joints used and multiplying by the length of the joint. Where partial joints are used, measurement will be made along the longest length of the partial joint to the nearest 0.1 of a foot.

The quantity of pipe measured as provided for above will be paid for at the contract unit price per linear foot for 42" Welded Steel Pipe, 0.625" Thick, Grade B, (Under RR). Such price and payment will be full compensation for all work described herein including dry boring, jacking, tools, materials, labor, workmanship and all other incidentals necessary to complete the work.

The Contractor shall submit two (2) sets of detailed plans and a written description of his proposed method of pipe installation for approval by the Engineer and the Railway Company. Plans should include the size and location of any required jacking pits and-shoring f or support of the railroad roadbed if necessary.

" HDPE PIPE LINER:

SPI 3-3

Description

Furnish, haul and install all pipe, fittings, couplings and other material; construct joint connections; and clean out the steel pipe for the HDPE Pipe Liner inside the steel pipe as shown in the plans.

Materials

Refer to Division 10:

Item

Section

High Density Polyethylene Pipe

Article 1044-7

Construction Methods

Install the pipe in accordance with Section 310 of the Standard Specifications.

Measurement and Payment

Pipe liner will be measured and paid for as the actual number of linear feet of pipe liner that has been incorporated into the completed and accepted work.

Measurement of pipe liner will be made by counting the number of joints used and multiplying the length of the joint to obtain the number of linear feet of pipe liner installed and accepted. Measurements of partial joints are made along the longest length of the partial joint to the nearest 0.1 of a foot.

Payment will be made under:

Pay Item
-inch High Density Polyethylene Pipe Culvert

Pay Unit
Linear Foot

AGGREGATE PRODUCTION:

(11-20-01)

Provide aggregate from a producer who uses the current Aggregate Quality Control/Quality Assurance Program that is in effect at the time of shipment.

No price adjustment is allowed to contractors or producers who use the program. Participation in the program does not relieve the producer of the responsibility of complying with all requirements of the 2006 Standard Specifications. Copies of this procedure are available upon request from the Materials and Test Unit.

CONCRETE BRICK AND BLOCK PRODUCTION:

 $\overline{(11-20-01)}$

SP10 R10

SP10 R05

Provide concrete brick and block from a producer who uses the current Solid Concrete Masonry Brick/Unit Quality Control/Quality Assurance Program that is in effect on the date that material is received on the project.

No price adjustment is allowed to contractors or producers who use the program. Participation in the program does not relieve the producer of the responsibility of complying with all requirements of the 2006 Standard Specifications. Copies of this procedure are available upon request from the Materials and Test Unit.

PORTLAND CEMENT CONCRETE (Alkali-Silica Reaction):

(2-20-07)

SP10 R16

Revise the 2006 Standard Specifications as follows:

Article 1024-1(A), replace the 2nd paragraph with the following:

Certain combinations of cement and aggregate exhibit an adverse alkali-silica reaction. The alkalinity of any cement, expressed as sodium-oxide equivalent, shall not exceed 1.0 percent. For mix designs that contain non-reactive aggregates and cement with an alkali content less than 0.6%, straight cement or a combination of cement and fly ash, cement and ground granulated blast furnace slag or cement and microsilica may be used. The pozzolan quantity shall not exceed the amount shown in Table 1024-1. For mixes that contain cement with an alkali content between 0.6% and 1.0%, and for mixes that contain a reactive aggregate documented by the Department, regardless of the alkali content of the cement, use a pozzolan in the amount shown in Table 1024-1.

Obtain the list of reactive aggregates documented by the Department at: http://www.ncdot.org/doh/operations/materials/pdf/quarryasrprob.pdf

Table 1024-1					
Pozzolans for Use in Portland Cement Concrete					
Pozzolan	Rate				
Class F Fly Ash	20% by weight of required cement content, with 1.2 lbs Class F fly ash per lb of cement replaced				
Ground Granulated Blast Furnace Slag	35%-50% by weight of required cement content with 1 lb slag per lb of cement replaced				
Microsilica	4%-8% by weight of required cement content, with 1 lb microsilica per lb of cement replaced				

GLASS BEADS:

(7-18-06)

SP10 R35

Revise the 2006 Standard Specifications as follows:

Page 10-223, 1087-4(C) Gradation & Roundness

Replace the second sentence of the first paragraph with the following:

All Drop-On and Intermixed Glass Beads shall be tested in accordance with ASTM D1155.

Delete the last paragraph.

ENGINEERING FABRICS TABLE 1056-1:

(7-18-06

SP10 R40

Revise the 2006 Standard Specifications as follows:

Page 10-100, Table 1056-1, replace the values for Trapezoidal Tear Strength with the following:

Physical Property	ASTM Test Method	Type 1	Type 2	Type 3		Type 4
			Manager 1 1 - Congress, man to 1984 9 3 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5	Class A	Class B	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
Typical Applications		Shoulder Drain	Under Riprap	Tempor Fer	ary Silt	Soil Stabilization
Trapezoidal Tear Strength	D4533	<i>45</i> lb	<i>75</i> lb			<i>75</i> lb

PRECAST DRAINAGE STRUCTURES - MACRO-SYNTHETIC FIBERS

(7-15-08)(Rev 11-18-08)

SP 10 R42

Description

Substitute as an option, macro-synthetic fibers in lieu of 4" x 4" W1.4 x W1.4 welded wire fabric reinforcement for selected precast concrete products in accordance with the following requirements.

Materials

ItemSectionPortland Cement Concrete1077-5

- (A) Substitute macro-synthetic fibers only for steel reinforcement with an area of steel of 0.12 in²/ft or less in the following items:
 - (1) Precast Drainage Structure units in accordance with the requirements of Standard Drawing 840.45.
 - (2) Precast Manhole 4.0' Riser Sections in accordance with the requirements of Standard Drawing 840.52.

All other requirements, including reinforcement for these precast concrete items will remain the same.

(B) Submittal Submit to the Department for approval by the precast producer and fiber manufacturer, independently performed test results certifying the macro-synthetic fibers and the precast concrete products meet the requirements listed herein:

(C) Macro-Synthetic Fibers

(1) Manufacture from virgin polyolefins (polypropylene and polyethylene) and comply with ASTM C 1116.4.1.3.

Fibers manufactured from materials other than polyolefins Submit test results certifying resistance to long-term deterioration when in contact with the moisture and alkalies present in cement paste and/or the substances present in airentraining and chemical admixtures.

- (2) Fiber length no less than 1-1/2 inch.
- (3) Macro-synthetic fibers aspect ratio (length divided by the equivalent diameter of the fiber) between 45 and 150.

- (4) Macro-synthetic fibers Minimum tensile strength of 40 ksi when tested in accordance with ASTM D 3822.
- (5) Macro-synthetic fibers minimum modulus of elasticity of 400 ksi when tested in accordance with ASTM D 3822.

(D) Fiber Reinforced Concrete

- (1) Approved structural fibers may be used as a replacement of steel reinforcement in allowable structures of NCDOT Standards 840.45 and 840.52. The dosage rate, in pounds of fibers per cubic yard, shall be as per recommended by the fiber manufacturer to provide a minimum average residual strength (in accordance with ASTM C 1399) of concrete of no less than that of the concrete with the steel reinforcement that is being replaced, but no less than 5 lbs. per cubic yard. Submit the recommendations of the manufacturer that correlate the toughness of steel-reinforced concrete with that of the recommended dosage rate for the fiber-reinforced concrete.
- (2) Fiber reinforced concrete 4.5% air content, $\pm 1.5\%$ tolerance.
- (3) Fiber reinforced concrete develop a minimum compressive strength 4000 psi in 28 days.
- (4) Workability of the concrete mix determine in accordance with ASTM C995. The flow time not be less than 7 seconds or greater than 25 seconds.
- (5) Assure the fibers are well dispersed and prevent fiber balling during production. After introduction of all other ingredients, add the plastic concrete and mix the plastic concrete for at least 4 minutes or for 50 revolutions at standard mixing speed.

Measurement and Payment

No separate payment will be made for substitution of macro-fiber synthetic reinforcement for the steel reinforcing. The price bid for the precast units will be full compensation for furnishing and incorporating the macro-fiber synthetic reinforcement.

QUALIFICATION OF WELDS AND PROCEDURES: (7-21-09)

SP10 R43

Page 10-143, Subarticle 1072-20(D) Qualification of Welds and Procedures, replace the third sentence of the first paragraph with the following:

For all prequalified field welds, submit Welding Procedure Specifications (WPS) for each joint configuration for approval at least 30 days prior to performing any welding. In lieu of this, use the WPS provided and preapproved by the Department. These preapproved WPS are available from the Materials and Tests Unit or at:

http://www.ncdot.org/doh/operations/materials/structural/appr_proc.html. Use non-prequalified welds only if approved by the Engineer. Submit WPS for all non-prequalified welds to the Engineer for approval. At no cost to the Department, demonstrate their adequacy in accordance with the requirements of the Bridge Welding Code.

CHANGEABLE MESSAGE SIGNS:

(11-21-06)

SP11 R11

Revise the 2006 Standard Specifications as follows:

Page 11-9, Article 1120-3, Replace the 3rd sentence with the following:

Sign operator will adjust flash rate so that no more than two messages will be displayed and be legible to a driver when approaching the sign at the posted speed.

PAVEMENT MARKING LINES:

(11-21-06) (Rev. 9-18-07)

SP12 R01

Revise the 2006 Standard Specifications as follows:

Page 12-2, 1205-3(D) Time Limitations for Replacement, add the following at the beginning of the chart:

Facility Type	Marking Type	Replacement Deadline
Full-control-of-access multi-lane	All markings	By the end of each workday's
roadway (4 or more total lanes) and	including	operation if the lane is opened to
ramps, including Interstates	symbols	traffic

Page 12-14, Subarticle 1205-10, Measurement and Payment, delete the first sentence of the first paragraph and replace with the following:

Pavement Marking Lines will be measured and paid for as the actual number of linear feet of pavement marking lines per application that has been satisfactorily placed and accepted by the Engineer.

NOTE TO CONTRACTOR:

The Contractor shall be aware that The City of Fayetteville will be responsible for construction of the sidewalks on this project. Sidewalk construction will be coordinated between the Engineer, the Contractor, and The City of Fayetteville. Sidewalk construction may be performed in phases in designated areas.

The Contractor on this project shall cooperate with The City of Fayetteville and its Contractor to the extent that the work can be carried out to the best advantage of all concerned