Project U-4020

Watauga County

Project Special Provisions Culvert and Walls

Table of Contents

		Page
		#
1	Falsework and Formwork (7-18-06)	1
2	Submittal of Working Drawings (9-16-08)	6
3	Crane Safety (8-15-05)	13
4	Grout for Structures (7-12-07)	13
5	Soldier Pile Retaining Walls (SPECIAL)	16
6	Gravity Retaining Walls (SPECIAL)	22
7	48" Chain Link Fence (SPECIAL)	23

Except for provisions #5 and #6.

178

PROJECT SPECIAL PROVISIONS CULVERT AND WALLS

PROJECT U-4020

WATAUGA COUNTY

FALSEWORK AND FORMWORK

(7-18-06)

1.0 DESCRIPTION

Use this Special Provision as a guide to develop temporary works submittals required by the Standard Specifications or other provisions; no additional submittals are required herein. Such temporary works include, but are not limited to, falsework and formwork.

Falsework is any temporary construction used to support the permanent structure until it becomes self-supporting. Formwork is the temporary structure or mold used to retain plastic or fluid concrete in its designated shape until it hardens. Access scaffolding is a temporary structure that functions as a work platform that supports construction personnel, materials, and tools, but is not intended to support the structure. Scaffolding systems that are used to temporarily support permanent structures (as opposed to functioning as work platforms) are considered to be falsework under the definitions given. Shoring is a component of falsework such as horizontal, vertical, or inclined support members. Where the term "temporary works" is used, it includes all of the temporary facilities used in bridge construction that do not become part of the permanent structure.

Design and construct safe and adequate temporary works that will support all loads imposed and provide the necessary rigidity to achieve the lines and grades shown on the plans in the final structure.

2.0 MATERIALS

Select materials suitable for temporary works; however, select materials that also ensure the safety and quality required by the design assumptions. The Engineer has authority to reject material on the basis of its condition, inappropriate use, safety, or nonconformance with the plans. Clearly identify allowable loads or stresses for all materials or manufactured devices on the plans. Revise the plan and notify the Engineer if any change to materials or material strengths is required.

3.0 DESIGN REQUIREMENTS

A. Working Drawings

Provide working drawings for items as specified in the contract, or as required by the Engineer, with design calculations and supporting data in sufficient detail to permit a structural and safety review of the proposed design of the temporary work.

When concrete placement is involved, include data such as the drawings of proposed sequence, rate of placement, direction of placement, and location of all construction joints. Submit the number of copies as called for by the contract.

When required, have the drawings and calculations prepared under the guidance of, and sealed by, a North Carolina Registered Professional Engineer who is knowledgeable in temporary works design.

Design falsework and formwork requiring submittals in accordance with the 1995 AASHTO Guide Design Specifications for Bridge Temporary Works except as noted herein.

1. Wind Loads

Table 2.2 of Article 2.2.5.1 is modified to include wind velocities up to 110 mph (177 km/hr). In addition, Table 2.2A is included to provide the maximum wind speeds by county in North Carolina.

Pressure, lb/ft² (kPa) for Indicated Wind Velocity, Height Zone mph (km/hr) feet (m) above ground 70 80 90 100 110 (112.7)(128.7)(144.8)(160.9)(177.0)0 to 30 (0 to 9.1) 15 20 25 30 35 (0.72)(0.96)(1.20)(1.44)(1.68)30 to 50 (9.1 to 15.2) 20 25 30 35 40 (0.96)(1.20)(1.44)(1.68)(1.92)50 to 100 (15.2 to 30.5) 25 30 35 40 45 (1.20)(1.44)(1.68)(1.92)(2.15)over 100 (30.5) 30 40 35 45 50 (1.44)(1.68)(1.92)(2.15)(2.39)

Table 2.2 - Wind Pressure Values

2. Time of Removal

The following requirements replace those of Article 3.4.8.2.

Do not remove forms until the concrete has attained strengths required in Article 420-16 of the Standard Specifications and these Special Provisions.

Do not remove forms until the concrete has sufficient strength to prevent damage to the surface.

Table 2.2A - Steady State Maximum Wind Speeds by Counties in North Carolina

	Table 2/2/1 Steady State 1/18/11/14 Speeds by Countries in 1/01/11 Car Simulation				
COUNTY	25 YR (mph) (km/hr)	COUNTY	25 YR (mph) (km/hr)	COUNTY	25 YR (mph) (km/hr)
Alamance	70 (112.7)	Franklin	70 (112.7)	Pamlico	100 (160.9)
Alexander	70 (112.7)	Gaston	70 (112.7)	Pasquotank	100 (160.9)
Alleghany	70 (112.7)	Gates	90 (144.8)	Pender	100 (160.9)
Anson	70 (112.7)	Graham	80 (128.7)	Perquimans	100 (160.9)
Ashe	70 (112.7)	Granville	70 (112.7)	Person	70 (112.7)
Avery	70 (112.7)	Greene	80 (128.7)	Pitt	90 (144.8)
Beaufort	100 (160.9)	Guilford	70 (112.7)	Polk	80 (128.7)
Bertie	90 (144.8)	Halifax	80 (128.7)	Randolph	70 (112.7)
Bladen	90 (144.8)	Harnett	70 (112.7)	Richmond	70 (112.7)
Brunswick	100 (160.9)	Haywood	80 (128.7)	Robeson	80 (128.7)
Buncombe	80 (128.7)	Henderson	80 (128.7)	Rockingham	70 (112.7)
Burke	70 (112.7)	Hertford	90 (144.8)	Rowan	70 (112.7)
Cabarrus	70 (112.7)	Hoke	70 (112.7)	Rutherford	70 (112.7)
Caldwell	70 (112.7)	Hyde	110 (177.0)	Sampson	90 (144.8)
Camden	100 (160.9)	Iredell	70 (112.7)	Scotland	70 (112.7)
Carteret	110 (177.0)	Jackson	80 (128.7)	Stanley	70 (112.7)
Caswell	70 (112.7)	Johnston	80 (128.7)	Stokes	70 (112.7)
Catawba	70 (112.7)	Jones	100 (160.9)	Surry	70 (112.7)
Cherokee	80 (128.7)	Lee	70 (112.7)	Swain	80 (128.7)
Chatham	70 (112.7)	Lenoir	90 (144.8)	Transylvania	80 (128.7)
Chowan	90 (144.8)	Lincoln	70 (112.7)	Tyrell	100 (160.9)
Clay	80 (128.7)	Macon	80 (128.7)	Union	70 (112.7)
Cleveland	70 (112.7)	Madison	80 (128.7)	Vance	70 (112.7)
Columbus	90 (144.8)	Martin	90 (144.8)	Wake	70 (112.7)
Craven	100 (160.9)	McDowell	70 (112.7)	Warren	70 (112.7)
Cumberland	80 (128.7)	Mecklenburg	70 (112.7)	Washington	100 (160.9)
Currituck	100 (160.9)	Mitchell	70 (112.7)	Watauga	70 (112.7)
Dare	110 (177.0)	Montgomery	70(112.7)	Wayne	80 (128.7)
Davidson	70 (112.7)	Moore	70 (112.7)	Wilkes	70 (112.7)
Davie	70 (112.7)	Nash	80 (128.7)	Wilson	80 (128.7)
Duplin	90 (144.8)	New Hanover	100 (160.9)	Yadkin	70 (112.7)
Durham	70 (112.7)	Northampton	80 (128.7)	Yancey	70 (112.7)
Edgecombe	80 (128.7)	Onslow	100 (160.9)		
Forsyth	70 (112.7)	Orange	70 (112.7)		

3

Note on the working drawings any anchorages, connectors, inserts, steel sleeves or other such devices used as part of the falsework or formwork that remains in the permanent structure. If the plan notes indicate that the structure contains the necessary corrosion protection required for a Corrosive Site, epoxy coat, galvanize, metallize or otherwise protect these devices as directed by the Engineer. Any coating required by the Engineer will be considered incidental to the various pay items requiring temporary works.

B. Review and Approval

The Engineer is responsible for the review and approval of temporary works' drawings.

Submit the working drawings sufficiently in advance of proposed use to allow for their review, revision (if needed), and approval without delay to the work.

Do not start construction of any temporary work for which working drawings are required until the drawings have been approved. Such approval does not relieve the Contractor of the responsibility for the accuracy and adequacy of the working drawings.

The time period for review of the working drawings does not begin until complete drawings and design calculations, when required, are received by the Engineer.

On the drawings, show all information necessary to allow the design of any component to be checked independently as determined by the Engineer.

If requested by the Engineer, submit with the working drawings manufacturer's catalog data listing the weight of all construction equipment that will be supported on the temporary work. Show anticipated total settlements and/or deflections of falsework and forms on the working drawings. Include falsework footing settlements, joint take-up, and deflection of beams or girders. Falsework hangers that support concentrated loads and are installed at the edge of thin top flange concrete girders (such as bulb tee girders) shall be spaced so as not to exceed 75% of the manufacturer's stated safe working load. Use of dual leg hangers (such as Meadow Burke HF-42 and HF-43) are not allowed. Design the falsework and forms supporting deck slabs and overhangs on girder bridges so that there will be no differential settlement between the girders and the deck forms during placement of deck concrete.

4.0 CONSTRUCTION REQUIREMENTS

All requirements of Section 420 of the Standard Specifications apply.

Construct temporary works in conformance with the approved working drawings. Ensure that the quality of materials and workmanship employed is consistent with that assumed in the design of the temporary works. Do not weld falsework members to any portion of the permanent structure unless approved. Show any welding to the permanent structure on the approved construction drawings.

Provide tell-tales attached to the forms and extending to the ground, or other means, for accurate measurement of falsework settlement. Make sure that the anticipated compressive settlement and/or deflection of falsework does not exceed 1 inch (25 mm). For cast-in-place concrete structures, make sure that the calculated deflection of falsework flexural members does not exceed 1/240 of their span regardless of whether or not the deflection is compensated by camber strips.

A. Maintenance and Inspection

Inspect and maintain the temporary work in an acceptable condition throughout the period of its use. Certify that the manufactured devices have been maintained in a condition to allow them to safely carry their rated loads. Clearly mark each piece so that its capacity can be readily determined at the job site.

Perform an in-depth inspection of an applicable portion(s) of the temporary works, in the presence of the Engineer, not more than 24 hours prior to the beginning of each concrete placement. Inspect other temporary works at least once a month to ensure that they are functioning properly. Have a North Carolina Registered Professional Engineer inspect the cofferdams, shoring, sheathing, support of excavation structures, and support systems for load tests prior to loading.

B. Foundations

Determine the safe bearing capacity of the foundation material on which the supports for temporary works rest. If required by the Engineer, conduct load tests to verify proposed bearing capacity values that are marginal or in other high-risk situations.

The use of the foundation support values shown on the contract plans of the permanent structure is permitted if the foundations are on the same level and on the same soil as those of the permanent structure.

Allow for adequate site drainage or soil protection to prevent soil saturation and washout of the soil supporting the temporary works supports.

If piles are used, the estimation of capacities and later confirmation during construction using standard procedures based on the driving characteristics of the pile is permitted. If preferred, use load tests to confirm the estimated capacities; or, if required by the Engineer conduct load tests to verify bearing capacity values that are marginal or in other high risk situations.

The Engineer reviews and approves the proposed pile and soil bearing capacities.

5.0 REMOVAL

Unless otherwise permitted, remove and keep all temporary works upon completion of the work. Do not disturb or otherwise damage the finished work.

Remove temporary works in conformance with the contract documents. Remove them in such a manner as to permit the structure to uniformly and gradually take the stresses due to its own weight.

6.0 METHOD OF MEASUREMENT

Unless otherwise specified, temporary works will not be directly measured.

7.0 BASIS OF PAYMENT

Payment at the contract unit prices for the various pay items requiring temporary works will be full compensation for the above falsework and formwork.

SUBMITTAL OF WORKING DRAWINGS

(9-16-08)

1.0 GENERAL

Submit working drawings in accordance with Article 105-2 of the *Standard Specifications* and this provision. For this provision, "submittals" refers to only those listed in this provision. The list of submittals contained herein does not represent a list of required submittals for the project. Submittals are only necessary for those items as required by the contract. Make submittals that are not specifically noted in this provision directly to the Resident Engineer. Either the Structure Design Unit or the Geotechnical Engineering Unit or both units will jointly review submittals.

If a submittal contains variations from plan details or specifications or significantly affects project cost, field construction or operations, discuss the submittal with and submit all copies to the Resident Engineer. State the reason for the proposed variation in the submittal. To minimize review time, make sure all submittals are complete when initially submitted. Provide a contact name and information with each submittal. Direct any questions regarding submittal requirements to the Resident Engineer, Structure Design Unit contacts or the Geotechnical Engineering Unit contacts noted below.

In order to facilitate in-plant inspection by NCDOT and approval of working drawings, provide the name, address and telephone number of the facility where fabrication will actually be done if different than shown on the title block of the submitted working drawings. This includes, but is not limited to, precast concrete items, prestressed concrete items and fabricated steel or aluminum items.

2.0 ADDRESSES AND CONTACTS

For submittals to the Structure Design Unit, use the following addresses:

Via US mail:

Mr. G. R. Perfetti, P. E. State Bridge Design Engineer North Carolina Department of Transportation Structure Design Unit 1581 Mail Service Center Raleigh, NC 27699-1581

Attention: Mr. P. D. Lambert, P. E.

Via other delivery service:

Mr. G. R. Perfetti, P. E. State Bridge Design Engineer North Carolina Department of Transportation Structure Design Unit 1000 Birch Ridge Drive Raleigh, NC 27610

Attention: Mr. P. D. Lambert, P. E.

For submittals to the Geotechnical Engineering Unit, use the following addresses:

For projects in Divisions 1-7, use the following Eastern Regional Office address:

Via US mail:

Mr. K. J. Kim, Ph. D., P. E. Eastern Regional Geotechnical Manager North Carolina Department of Transportation Geotechnical Engineering Unit Eastern Regional Office 1570 Mail Service Center Raleigh, NC 27699-1570 Via other delivery service:

Mr. K. J. Kim, Ph. D., P. E.
Eastern Regional Geotechnical
Manager
North Carolina Department
of Transportation
Geotechnical Engineering Unit
Eastern Regional Office
3301 Jones Sausage Road, Suite 100
Garner, NC 27529

For projects in Divisions 8-14, use the following Western Regional Office address:

Via US mail:

Mr. John Pilipchuk, L. G., P. E. Western Regional Geotechnical Manager
North Carolina Department of Transportation
Geotechnical Engineering Unit Western Regional Office 5253 Z Max Boulevard Harrisburg, NC 28075

Via other delivery service:

Mr. John Pilipchuk, L. G., P. E. Western Region Geotechnical Manager
North Carolina Department of Transportation
Geotechnical Engineering Unit Western Regional Office
5253 Z Max Boulevard
Harrisburg, NC 28075

3

Direct any questions concerning submittal review status, review comments or drawing markups to the following contacts:

Primary Structures Contact:

Paul Lambert

(919) 250 - 4041

(919) 250 – 4082 facsimile

plambert@ncdot.gov

Secondary Structures Contacts:

James Gaither

(919) 250 - 4042

David Stark

(919) 250 - 4044

Eastern Regional Geotechnical Contact (Divisions 1-7):

K. J. Kim

(919) 662 - 4710

(919) 662 - 3095 facsimile

kkim@ncdot.gov

Western Regional Geotechnical Contact (Divisions 8-14):

John Pilipchuk

(704) 455 - 8902

(704) 455 – 8912 facsimile

jpilipchuk@ncdot.gov

3.0 SUBMITTAL COPIES

Furnish one complete copy of each submittal, including all attachments, to the Resident Engineer. At the same time, submit the number of hard copies shown below of the same complete submittal directly to the Structure Design Unit and/or the Geotechnical Engineering Unit.

The first table below covers "Structure Submittals". The Resident Engineer will receive review comments and drawing markups for these submittals from the Structure Design Unit. The second table in this section covers "Geotechnical Submittals". The Resident Engineer will receive review comments and drawing markups for these submittals from the Geotechnical Engineering Unit.

Unless otherwise required, submit one set of supporting calculations to either the Structure Design Unit or the Geotechnical Engineering Unit unless both units require submittal copies in which case submit a set of supporting calculations to each unit. Provide additional copies of any submittal as directed by the Engineer.

STRUCTURE SUBMITTALS

Submittal	Copies Required by Structure Design Unit	Copies Required by Geotechnical Engineering Unit	Contract Reference Requiring Submittal ¹
Arch Culvert Falsework	5	0	Plan Note, SN Sheet & "Falsework and Formwork"
Box Culvert Falsework ⁷	5	0	Plan Note, SN Sheet & "Falsework and Formwork"
Cofferdams	6	2	Article 410-4
Evazote Joint Seals 6	9	0	"Evazote Joint Seals"
Expansion Joint Seals (hold down plate type with base angle)	9	0	"Expansion Joint Seals"
Expansion Joint Seals (modular)	2, then 9	0	"Modular Expansion Joint Seals"
Expansion Joint Seals (strip seals)	9	0	"Strip Seals"
Falsework & Forms ² (substructure)	8	0	Article 420-3 & "Falsework and Formwork"
Falsework & Forms (superstructure)	8	0	Article 420-3 & "Falsework and Formwork"
Girder Erection over Railroad	5	0	Railroad Provisions
Maintenance and Protection of Traffic Beneath Proposed Structure	8	0	"Maintenance and Protection of Traffic Beneath Proposed Structure at Station"
Metal Bridge Railing	8	0	Plan Note
Metal Stay-in-Place Forms	8	0	Article 420-3
Metalwork for Elastomeric Bearings ^{4,5}	7	0	Article 1072-10

Miscellaneous Metalwork ^{4,5}	7	0	Article 1072-10
Optional Disc Bearings 4	8	0	"Optional Disc Bearings"
Overhead Signs	13	0	Article 903-3(C) & Applicable Provisions
Pile Splicers	7	2	Subarticle 450-7(C) & "Piles"
Pile Points	7	2	Subarticle 450-7(D) & "Piles"
Placement of Equipment on Structures (cranes, etc.)	7	0	Article 420-20
Pot Bearings 4	8	0	"Pot Bearings"
Precast Concrete Box Culverts	2, then 1 reproducible	0	"Optional Precast Reinforced Concrete Box Culvert at Station"
Precast Retaining Wall Panels	10	1	Article 1077-2
Prestressed Concrete Cored Slab (detensioning sequences) 3	6	0	Article 1078-11
Prestressed Concrete Deck Panels	6 and 1 reproducible	0	Article 420-3
Prestressed Concrete Girder (strand elongation and detensioning sequences)	6	0	Articles 1078-8 and 1078- 11
Removal of Existing Structure over Railroad	5	0	Railroad Provisions
Revised Bridge Deck Plans (adaptation to prestressed deck panels)	2, then 1 reproducible	0	Article 420-3
Revised Bridge Deck Plans (adaptation to modular expansion joint seals)	2, then 1 reproducible	0	"Modular Expansion Joint Seals"
Sound Barrier Wall Casting Plans	10	0	Article 1077-2 & "Sound Barrier Wall"
Sound Barrier Wall Steel Fabrication Plans ⁵	7	0	Article 1072-10 & "Sound Barrier Wall"
Structural Steel ⁴	2, then 7	0	Article 1072-10

			Article 400-3 &
			"Construction,
Temporary Detour Structures	10	2	Maintenance and Removal
-			of Temporary Structure at
			Station"
TFE Expansion Bearings 4	8	. 0	Article 1072-10

FOOTNOTES

- 1. References are provided to help locate the part of the contract where the submittals are required. References in quotes refer to the provision by that name. Articles and subarticles refer to the *Standard Specifications*.
- 2. Submittals for these items are necessary only when required by a note on plans.
- 3. Submittals for these items may not be required. A list of pre-approved sequences is available from the producer or the Materials & Tests Unit.
- 4. The fabricator may submit these items directly to the Structure Design Unit.
- 5. The two sets of preliminary submittals required by Article 1072-10 of the *Standard Specifications* are not required for these items.
- 6. Submittals for Fabrication Drawings are not required. Submittals for Catalogue Cuts of Proposed Material are required. See Section 5.A of the referenced provision.
- 7. Submittals are necessary only when the top slab thickness is 18" or greater.

GEOTECHNICAL SUBMITTALS

Submittal ¹	Copies Required by Geotechnical Engineering Unit	Copies Required by Structure Design Unit	Contract Reference Requiring Submittal ²
Crosshole Sonic Logging (CSL) Reports	1	0	"Crosshole Sonic Logging"
Drilled Pier Construction Sequence Plans	1	0	"Drilled Piers"
Pile Driving Analyzer (PDA) Reports	2	0	"Pile Driving Analyzer"
Pile Driving Equipment Data ³	1	0	Article 450-5 & "Piles"
Retaining Walls	8	2	Applicable Provisions
Contractor Designed Shoring	7	2	"Temporary Shoring", "Anchored Temporary Shoring" & "Temporary Soil Nail Walls"

FOOTNOTES

- 1. With the exception of "Pile Driving Equipment Data", electronic copies of geotechnical submittals are required. See referenced provision.
- 2. References are provided to help locate the part of the contract where the submittals are required. References in quotes refer to the provision by that name. Articles refer to the *Standard Specifications*.
- 3. Download Pile Driving Equipment Data Form from following link: http://www.ncdot.org/doh/preconstruct/highway/geotech/formdet/ Submit one hard copy of the completed form to the Resident Engineer. Submit a second copy of the completed form electronically, by facsimile or via US Mail or other delivery service to the Geotechnical Engineering Unit. Electronic submission is preferred. See second page of form for submittal instructions.

CRANE SAFETY (8-15-05)

Comply with the manufacturer specifications and limitations applicable to the operation of any and all cranes and derricks. Prime contractors, sub-contractors, and fully operated rental companies shall comply with the current Occupational Safety and Health Administration regulations (OSHA).

Submit all items listed below to the Engineer prior to beginning crane operations involving critical lifts. A critical lift is defined as any lift that exceeds 75 percent of the manufacturer's crane chart capacity for the radius at which the load will be lifted or requires the use of more than one crane. Changes in personnel or equipment must be reported to the Engineer and all applicable items listed below must be updated and submitted prior to continuing with crane operations.

CRANE SAFETY SUBMITTAL LIST

- A. <u>Competent Person:</u> Provide the name and qualifications of the "Competent Person" responsible for crane safety and lifting operations. The named competent person will have the responsibility and authority to stop any work activity due to safety concerns.
- B. <u>Riggers:</u> Provide the qualifications and experience of the persons responsible for rigging operations. Qualifications and experience should include, but not be limited to, weight calculations, center of gravity determinations, selection and inspection of sling and rigging equipment, and safe rigging practices.
- C. <u>Crane Inspections:</u> Inspection records for all cranes shall be current and readily accessible for review upon request.
- D. <u>Certifications:</u> By July 1, 2006, crane operators performing critical lifts shall be certified by NC CCO (National Commission for the Certification of Crane Operators), or satisfactorily complete the Carolinas AGC's Professional Crane Operator's Proficiency Program. Other approved nationally accredited programs will be considered upon request. All crane operators shall also have a current CDL medical card. Submit a list of anticipated critical lifts and corresponding crane operator(s). Include current certification for the type of crane operated (small hydraulic, large hydraulic, small lattice, large lattice) and medical evaluations for each operator.

GROUT FOR STRUCTURES

(7-12-07)

1.0 DESCRIPTION

This special provision addresses grout for use in structures, including continuous flight auger (CFA) piles, micropiles, soil nail and anchored retaining walls and backfilling crosshole sonic logging (CSL) tubes or grout pockets, shear keys, dowel holes and recesses for cored slabs and box beams. This provision does not apply to grout placed in post-tensioning ducts for bridge beams, girders, or decks. Provide grout composed of portland cement, water and at the Contractor's option, fine aggregate and/or pozzolan. If necessary,

use set controlling admixtures. Proportion, mix and place grout in accordance with the plans, the applicable section of the *Standard Specifications* or special provision for the application and this provision.

2.0 MATERIALS

Refer to Division 10 of the Standard Specifications:

Item	Article
Portland Cement	1024-1
Water	1024-4
Fine Aggregate	1014-1
Fly Ash	1024-5
Ground Granulated Blast Furnace Slag	1024-6
Admixtures	1024-3

At the Contractor's option, use an approved packaged grout in lieu of the materials above with the exception of the water. Contact the Materials and Tests (M&T) Unit for a list of approved packaged grouts. Consult the manufacturer to determine if the packaged grout selected is suitable for the application and meets the compressive strength and shrinkage requirements.

3.0 REQUIREMENTS

Unless required elsewhere in the Contract, provide non-metallic grout with minimum compressive strengths as follows:

Property	Requirement
Compressive Strength @ 3 days	2500 psi (17.2 MPa)
Compressive Strength @ 28 days	4500 psi (31.0 MPa)

For applications other than micropiles, soil nails and ground anchors, use non-shrink grout with shrinkage of less than 0.15%.

When using approved packaged grout, a grout mix design submittal is not required. Submit grout mix designs in terms of saturated surface dry weights on M&T Form 312U in accordance with the applicable section of the *Standard Specifications* or special provision for the structure. Use an approved testing laboratory to determine the grout mix proportions. Adjust proportions to compensate for surface moisture contained in the aggregates at the time of mixing. Changes in the saturated surface dry mix proportions will not be permitted unless a revised grout mix design submittal is accepted.

For each grout mix design, provide laboratory test results for compressive strength, density, flow and if applicable, aggregate gradation and shrinkage. Submit compressive strength for at least 3 cube and 2 cylinder specimens at the age of 3, 7, 14 and 28 days for a total of at least 20 specimens tested. Perform laboratory tests in accordance with the following:

Property	Test Method
Compressive Strength	AASHTO T106 and T22
Density	AASHTO T133
Flow for Sand Cement Grout	ASTM C939 (as modified below)
Flow for Neat Cement Grout	Marsh Funnel and Cup
(no fine aggregate)	API RP 13B-1, Section 2.2
Aggregate Gradation for Sand Cement Grout	AASHTO T27
Shrinkage for Non-shrink Grout	ASTM C1090

When testing grout for flow in accordance with ASTM C939, modify the flow cone outlet diameter from ½ to ¾ inch (13 to 19 mm).

When grout mix designs are submitted, the Engineer will review the mix designs and notify the Contractor as to their acceptability. Do not use grout mix designs until written acceptance has been received. Acceptance of grout mix designs or use of approved packaged grouts does not relieve the Contractor of responsibility to furnish a product that meets the Contract requirements.

Upon written request from the Contractor, a grout mix design accepted and used satisfactorily on a Department project may be accepted for use on other projects.

4.0 SAMPLING AND PLACEMENT

The Engineer will determine the locations to sample grout and the number and type of samples collected for field and laboratory testing. Use API RP 13B-1 for field testing grout flow and density of neat cement grout. The compressive strength of the grout will be considered the average compressive strength test results of 3 cube or 2 cylinder specimens at 28 days.

Do not place grout if the grout temperature is less than 50°F (10°C) or more than 90°F (32°C) or if the air temperature measured at the location of the grouting operation in the shade away from artificial heat is below 40°F (4°C).

Provide grout at a rate that permits proper handling, placing and finishing in accordance with the manufacturer's recommendations unless directed otherwise by the Engineer. Use grout free of any lumps and undispersed cement. Agitate grout continuously before placement.

Control grout delivery so the interval between placing batches in the same component does not exceed 20 minutes. Place grout before the time between adding the mixing water and placing the grout exceeds that in the table below.

ELAPSED TIME FOR PLACING GROUT (with continuous agitation)			
	apsed Time		
Air or Grout Temperature Whichever is Higher	No Set Retarding Admixture Used	Set Retarding Admixture Used	
90°F (32°C) or above	30 min.	1 hr. 15 min.	
80°F (27°C) through 89°F (31°C)	45 min.	1 hr. 30 min.	
79°F (26°C) or below	60 min.	1 hr. 45 min.	

5.0 MISCELLANEOUS

Comply with Articles 1000-9 through 1000-12 of the *Standard Specifications* to the extent applicable for grout in lieu of concrete.

SOLDIER PILE RETAINING WALLS

(SPECIAL)

1.0 GENERAL

A soldier pile retaining wall consists of steel H piles driven or placed in drilled holes and partially filled with concrete and either precast concrete panels set in the pile flanges or a cast-in-place reinforced concrete face connected to the front of the piles. Timber lagging is typically used for temporary support of excavations during construction. Construct soldier pile retaining walls based on actual elevations and dimensions in accordance with the contract drawings and this special provision. For this provision, "soldier pile wall" refers to a soldier pile retaining wall. Also, "concrete facing" refers to a cast-in-place reinforced concrete face.

2.0 SUBMITTALS

Provide the soldier pile wall installation plan at least 30 calendar days before conducting the soldier pile wall preconstruction meeting. Provide 4 hard copies of the soldier pile wall installation plan. Do not begin soldier pile wall construction until the installation plan is accepted and the preconstruction meeting is held.

A. Soldier Pile Wall Installation Plan Submittal

Provide project specific installation information including a detailed construction sequence for each wall. For drilled-in piles, submit installation details including drilling equipment and the method for stabilizing holes. Also, submit the method for temporary support of excavations during construction, if applicable, and any other information shown on the plans or requested by the Engineer.

If alternate installation procedures are proposed or necessary, a revised installation plan submittal may be required. If the work deviates from the accepted submittal without prior approval, the Engineer may suspend soldier pile wall construction until a revised plan is submitted and accepted.

3.0 MATERIALS

Provide Type 3 Manufacturer's Certifications in accordance with Article 106-3 of the *Standard Specifications* for all soldier pile wall materials with the exception of steel piles. Load, transport, unload and store soldier pile wall materials such that they are kept clean and free of damage.

A. Timber Lagging

Use timber lagging that meets the requirements of Article 1082-1 of the Standard Specifications.

B. Steel Piles

Use steel HP piles and W shapes meeting the requirements of Articles 1084-1 and 1072-4 of the *Standard Specifications*. All piles shall be manufactured from Grade 50 steel. Provide welded stud shear connectors in accordance with Articles 1072-8 and 1072-20 of the *Standard Specifications*.

For drilled-in piles, use excavatable flowable fill in accordance with Article 340-2 of the *Standard Specifications* and Class A Concrete in accordance with Article 1000-4 of the *Standard Specifications* except as modified herein. Provide Class A concrete with a slump of 6 to 8 inches. Use an approved high-range water reducer to achieve this slump.

C. Wall Drainage Network

The wall drainage network consists of drain strips, drains and outlet components. Provide minimum average roll values (MARV) in accordance with ASTM D4759 for test reports. Identify, store and handle drain strips in accordance with ASTM D4873. Drain strips with defects, flaws, deterioration or damage will be rejected. Do not leave drain strips uncovered for more than 7 days.

Use at least 12 inch wide prefabricated geocomposite drain strips consisting of a non-woven polypropylene geotextile bonded to one side of an HDPE or polystyrene drainage core, e.g., sheet drain. Provide drain strips with cores meeting the following requirements.

Core Property	Test Method	Requirement (MARV)
(a) Thickness	ASTM D5199	¼ - ½ inch
Compressive Strength	(b) ASTM D1621	40 psi min
Flow Rate (with a gradient of 1.0)	(c) ASTM D4716	5 gpm min*

^{*} per ft of width tested

Use drain and outlet materials meeting the requirements of Section 816 of the *Standard Specifications*.

D. Stone Backfill

Use stone backfill that meets the requirements of Class VI Select Material in accordance with Section 1016 of the *Standard Specifications*.

E. Leveling Pads

Use Class VI Select Material in accordance with Section 1016 of the *Standard Specifications* for aggregate leveling pads.

F. Concrete Facing

Provide concrete facing meeting the requirements of Section 1000 of the *Standard Specifications*. Use Class A Concrete in accordance with Article 1000-4 of the *Standard Specifications*. Provide uncoated reinforcing steel meeting the requirements of Section 1070 of the *Standard Specifications*.

G. Joint Materials

Use joint materials in accordance with Section 1028 of the Standard Specifications.

4.0 SOLDIER PILE WALL PRECONSTRUCTION MEETING

Before starting soldier pile wall construction, conduct a preconstruction meeting to discuss the construction and inspection of the soldier pile walls. Schedule this meeting after all soldier pile wall submittals have been accepted. The Resident or Bridge Maintenance Engineer, Bridge Construction Engineer, Geotechnical Operations Engineer, Contractor and Soldier Pile Wall Contractor Superintendent will attend this preconstruction meeting.

5.0 CONSTRUCTION METHODS

Control drainage during construction in the vicinity of soldier pile walls. Collect and direct run off away from soldier pile walls and areas above and behind walls. Contain and maintain wall backfill and protect material from erosion.

Perform all necessary clearing and grubbing in accordance with Section 200 of the *Standard Specifications*. Notify the Engineer before blasting in the vicinity of soldier pile walls. Perform blasting in accordance with the contract.

Do not excavate behind soldier pile walls unless a permanent cut slope is shown on the contract drawings. If overexcavation occurs and is not approved, repair walls at no additional cost to the Department with a method proposed by the Contractor and accepted by the Engineer. A revised soldier pile wall installation plan submittal may be required.

Install piles before excavating. Cure concrete for drilled-in piles a minimum of 7 days before proceeding with soldier pile wall construction.

Use equipment and methods reviewed and accepted in the installation plan or approved by the Engineer. Inform the Engineer of any deviations from the accepted plan.

A. Pile Installation

Install piles in accordance with the accepted submittals and this provision. Do not splice piles. If necessary, cut off piles at elevations shown in contract drawings. Clearly mark each pile to insure the correct pile size and length in installed in the correct location.

For drilled-in piles, excavate holes with the minimum dimensions shown contract drawings. Perform pile excavation to required elevations and place piles horizontally and vertically within 1 inch of plan location with no negative batter. If overexcavation occurs vertically, fill to required elevations with stone backfill before setting piles. After placing piles in drilled holes, fill around piles with concrete to the bottom of leveling pad. Remove any fluid above the concrete and fill remaining portions of holes with flowable fill.

1. Pile Excavation

Use equipment of adequate capacity and capable of drilling through soil and non-soil including rock, boulders, debris, man-made objects and any other materials encountered. Blasting is not permitted to advance excavations. Blasting for core removal is only permitted when approved by the Engineer. Dispose of drilling spoils in accordance with Section 802 of the *Standard Specifications* and as directed by the Engineer. Drilling spoils consist of all excavated materials including fluids removed from excavations by pumps or drilling tools.

If unstable, caving or sloughing soils are anticipated or encountered, stabilize excavations with either slurry or steel casing. When using slurry, submit slurry details including product information, manufacturer's recommendations for use, slurry equipment details and written approval from the slurry supplier that the mixing water is acceptable before beginning drilling. When using steel casing, use either the sectional type or one continuous corrugated or non-corrugated piece. Steel casings should consist of clean watertight steel of ample strength to withstand handling and driving stresses and the pressures imposed by concrete, earth and

backfill. Use steel casings with an outside diameter equal to the hole size and a minimum wall thickness of ¼ inch.

2. Concrete Placement

Before placing concrete, support and center piles in excavations and remove any fluid from holes. Check the water inflow rate at the bottom of holes after all pumps have been removed. If the inflow rate is less than 6" per half hour, remove any fluid and free fall concrete into excavations. Ensure that concrete flows completely around piles. If the water inflow rate is greater than 6" per half hour, propose and obtain acceptance of a concrete placement procedure before placing concrete. Place concrete in a continuous manner and remove all casings.

B. Excavation

Construct soldier pile walls from the top down by removing material in front of walls and in between piles as needed in accordance with the following.

Excavate in staged horizontal lifts with heights not to exceed 5 ft. Use timber lagging or some other approved method for temporary support of excavations in accordance with the contract drawings or approved installation plan. Install temporary support within 24 hours of excavating each lift unless approved otherwise by the Engineer. The installation may be delayed if it can be demonstrated that the delay will not adversely affect the excavation face stability. If the excavation face will be exposed for more than 24 hours, use polyethylene sheets anchored at the top and bottom of the lift to protect the face from changes in moisture content.

If the excavation face becomes unstable at any time, suspend soldier pile wall construction and temporarily stabilize the face by immediately placing an earth berm against the unstable face. Soldier pile wall construction may not proceed until remedial measures are proposed by the Contractor and accepted by the Engineer. A revised soldier pile wall installation plan submittal may be required.

Do not excavate subsequent lifts until the temporary support for the preceding lift has been installed.

C. Wall Drainage Network

Install wall drainage networks as shown in the accepted submittals. Place and secure geocomposite drain strips with the geotextile side facing away from the wall face. Ensure that drain strips continuously contact the surface to which they are attached and allow for full flow the entire height of the wall. Discontinuous drain strips are not allowed. If splices are needed, overlap drain strips a minimum of 12" such that flow is not impeded.

Construct drains in accordance with Section 816 of the *Standard Specifications*. Connect drain strips to drains by embedding strip ends at least 6" into the stone. Provide drains with positive drainage toward outlets.

D. Leveling Pads and Drains

Construct leveling pads and drains at elevations and with dimensions shown on the contract drawings. Construct drains in accordance with Section 816 of the *Standard Specifications*. Compact standard size no. 57 stone for aggregate leveling pads with a vibratory compactor to the satisfaction of the Engineer.

E. Concrete Facing

Construct cast-in-place reinforced concrete facing in accordance with the contract drawings and Section 420 of the *Standard Specifications*. Do not remove forms until concrete achieves a minimum compressive strength of 2400 psi. Provide a simulated rock architectural finish to the exposed face of all walls. Construct a sample panel for review and acceptance by the engineer before constructing the facing on the walls.

Construct concrete facing joints at a maximum spacing of 30 ft unless required otherwise on the plans. Half-inch thick expansion joints in accordance with Article 420-12 of the *Standard Specifications* are required every third joint (90 feet maximum spacing). Half-inch deep grooved contraction joints in accordance with Subarticle 825-10(B) of the *Standard Specifications* are required for the remaining joints. Stop reinforcement 2" from either side of expansion joints. Seal joints above and behind soldier pile walls between concrete facing and ditches or pavements with joint sealer. Construction joints where shown on the contract drawings or as proposed in the wall installation plan, shall be constructed in accordance with the contract drawings and Article 420-10 of the Standard Specifications.

F. Backfill

For fill sections or if a temporary slope is shown in the accepted submittals, backfill the concrete facing in accordance with Article 410-8 of the *Standard Specifications*. Otherwise, backfill behind the lagging with stone backfill. Ensure that standard size no. 57 stone fills all voids between the lagging and the excavation face. Compact the stone to the satisfaction of the Engineer. Do not flush stone with water to facilitate compaction

6.0 MEASUREMENT AND PAYMENT

Soldier Pile Retaining Walls will be measured and paid for in square feet. The quantity of soldier pile walls will be measured as the exposed face area with the wall height equal to the difference between the top of wall elevation and the finished grade at the bottom of wall. The top of wall elevation is defined as the top of concrete facing. No payment will be made for portions of soldier pile walls below finished grade.

The contract unit price bid for Soldier Pile Retaining Walls will be full compensation for submittals, furnishing labor, tools, equipment and materials, installing piles, excavating, providing temporary support of excavations, wall drainage networks, reinforcement, leveling pads, concrete facing, backfill and any incidentals necessary to construct soldier

pile walls in accordance with this provision. The contract unit price bid for Soldier Pile Retaining Walls will also be full compensation providing architectural facing.

Payment will be made under:

Pay Item	Pay Unit
Soldier Pile Retaining Walls - Wall No. 1	Square Foot
Soldier Pile Retaining Walls – Wall No. 2	Square Foot
Soldier Pile Retaining Walls – Wall No. 3	Square Foot
Soldier Pile Retaining Walls – Wall No. 4	Square Foot
Soldier Pile Retaining Walls – Wall No. 4A	Square Foot

GRAVITY RETAINING WALLS

(SPECIAL)

Revise the Standard Specifications as follows:

Page 4-80, Article 453-1; replace 1st sentence with the following:

Construct gravity retaining walls of cast-in-place concrete and a brick veneer, if required, based on actual elevations and dimensions in accordance with the plans.

Page 4-81; replace Article 453-3 with the following:

Excavate as necessary for gravity retaining walls. Notify the Engineer when foundation excavation is complete. Do not place concrete until obtaining approval of the excavation depth and foundation material. Where foundation material is found to be unacceptable, undercut the foundation material and backfill with an approved select material as directed by the Engineer.

Construct gravity retaining walls in accordance with Section 420. Use Class A Concrete and construct joints at a maximum spacing of 30 ft unless required otherwise on the plans. Half-inch thick expansion joints in accordance with Article 420-10 are required every third joint. Half-inch deep grooved contraction joints in accordance with Subarticle 825-10(B) are required for the remaining joints.

Construct 3" diameter weep holes on 10 ft centers along gravity retaining walls. Exit weep holes just above finished grade and slope holes at 1" per foot through walls so water drains out of the front of walls. Extend top of walls 6" above where finished grade intersects the back of gravity retaining walls unless required otherwise on the plans.

Do not remove forms until concrete achieves a minimum compressive strength of 2400 psi. Unless required otherwise on the plans, provide a Class 2 Surface Finish for roadway faces of walls in accordance with Article 420-17. Seal joints above and behind gravity retaining walls between walls and ditches or pavements with joint sealer.

If a brick veneers is required as shown on the plans, construct brick masonry in accordance with Section 830. Anchor brick veneers with approved brick to concrete type anchors according to the manufacturer's specifications with a minimum vertical spacing of 16" and a minimum horizontal spacing of 32" with each row staggered 16" from the row of anchors above and below.

48"CHAIN LINK FENCE

(SPECIAL)

Construct the chain link fence in accordance with the applicable sections of the Standard Specifications, the details shown on the plan, and this special provision.

The quantity of chain link fence will be the actual number of linear feet of fence, measured in place from end post to end post, which has been completed and accepted. All posts used for the chain link fence are included in the price of the fence and will not be paid separately. There will be no measurement made for installing pipe sleeves in headwall and grouting fence posts as such work is considered incidental.

Work includes but is not limited to furnishing, installing, and grouting pipe sleeves in headwall, furnishing and installing fence fabric, tie wires, stretcher bars, stretcher bar bands, tie rods, turnbuckles, brace rails, posts, post caps, brackets, fittings and any other materials necessary to complete the work as described in the plans and this special provision.

Payment will be made under:	
48" Chain Link Fence	Linear Foot