PRELIMINARY SITE ASSESSMENT PARCEL 21, JAMES BRIGMAN PROPERTY 2589 US HIGHWAY 1 RICHMOND COUNTY, NORTH CAROLINA WBS ELEMENT: 34438.1.1; NCDOT PROJECT: R-2502A

Prepared for:
NC Department of Transportation
Geotechnical Engineering Unit
GeoEnvironmental Section
1589 Mail Service Center
Raleigh, North Carolina 27699-1589

Prepared by: Solutions-IES 1101 Nowell Road Raleigh, North Carolina 27607

Solutions-IES Project No. 3260.06A3.NDOT

September 28, 2006

Dottie R. Schmitt

Environmental Specialist

Sheri L. Knox, Photosist Project Manager

TABLE OF CONTENTS

1.0	INTRODUCTION	. 1
2.0	BACKGROUND AND SITE DESCRIPTION	. 1
	FIELD ACTIVITIES	
	SAMPLING RESULTS	
	DISCUSSION AND CONCLUSIONS	
3.0	DISCUSSION AND CONCLUSIONS	

TABLES

TABLE 1 – SUMMARY OF FIELD SCREENING RESULTS FOR SOIL

TABLE 2 – SUMMARY OF SOIL ANALYTICAL RESULTS

FIGURES

FIGURE 1 – SITE LOCATION MAP

FIGURE 2 – SITE MAP

FIGURE 3 – SOIL BORING LOCATIONS

APPENDICES

APPENDIX A – PHOTOGRAPHS

APPENDIX B – GEOPHYSICAL INVESTIGATION

APPENDIX C – BORING LOGS

APPENDIX D – GPS COORDINATES OF BORING LOCATIONS

APPENDIX E – LABORATORY ANALYTICAL REPORTS

 $T: \label{thm:local_transform} T: \label{thm:local_transform} T: \label{transform} T: \labe$

1.0 INTRODUCTION

The North Carolina Department of Transportation (NCDOT) is widening the existing alignment of US Highway 1 near the towns of Marston and Hoffman, located in Richmond County, North Carolina. Acquisition of properties within the right-of-way is necessary prior to road construction. On July 19, 2006, Solutions-IES submitted a proposal (NC06554P) to conduct Preliminary Site Assessments (PSAs) on ten parcels of land located within the proposed right-of-way that are of concern to the NCDOT. This report summarizes the results of field activities conducted during the PSA for a portion of the property identified by NCDOT as Parcel 21, James Brigman Property (**Figure 1**). The right-of-way portion of this property (i.e., the Study Area) is more clearly identified on **Figure 2**. The scope of work executed at the Study Area was performed in general accordance with Solutions-IES proposal NC06554P and was initiated based on a Notice to Proceed issued by the NCDOT Geotechnical Engineering Unit on July 20, 2006 under contract 7000007053, dated June 5, 2006.

2.0 BACKGROUND AND SITE DESCRIPTION

The subject property is located at 2589 US Highway 1 in Richmond County, North Carolina (site). According to Solutions-IES field observations, the site is currently vacant and covered with a mixture of grass and heavy vegetation. Overhead electric lines are present within the right-of-way. Photographs of the Study Area at the site are presented in **Appendix A**.

According to information provided in a Phase I Site Assessment (S&ME, Inc. "Limited Phase I Environmental Site Assessment", February 5, 1999) the site probably operated as a gas station, as well as a smoke shop and body-piercing establishment in the past. The report also suggested that a pump island was likely present within the Study Area located approximately 50 feet west of the centerline of US Highway 1. Monitor wells were not observed at the site during the Phase I Site Assessment. Since background information indicated the possible presence of a gas station, petroleum constituents may have been released to the subsurface in the vicinity of the proposed right-of-way.

3.0 FIELD ACTIVITIES

Prior to mobilizing to the site to conduct subsurface sampling, Solutions-IES contacted North Carolina One Call to locate underground utilities within the proposed right-of-way. Pyramid Environmental & Engineering, P.C. (Pyramid) was contracted to perform an electromagnetic survey of the subsurface in the proposed right-of-way and easement area. Pyramid surveyed the site on August 15 and 16, 2006. The electromagnetic survey equipment (EM61) identified various magnetic anomalies within the study area. Pyramid returned to the site to perform a ground penetrating radar (GPR) survey utilizing a "Geophysical Survey Systems SIR 2000" instrument. Results of the surveys suggested the presence of four probable buried metallic tanks, such as USTs. The EM61 images are included in **Appendix B**, Figures 7 and 8. A GPR image is included in **Appendix B**, Figure 9.

After reviewing the background information and geophysical data, Solutions-IES elected to analyze soil samples collected at designated locations within the Study Area for total petroleum hydrocarbons (TPH). These activities were conducted on August 23, 2006. No evidence of an underground storage tank (UST) system (e.g., vent pipes and/or pump islands) was observed during the site visit. A total of 11 soil borings (borings P21-B1 through P21-B11) were advanced at the site in the locations depicted on **Figure 3**. These borings were labeled with the prefix "P21" to identify the samples as having originated from within the Study Area of Parcel 21. Each of these borings was advanced to a depth of between 8 and 12 feet below ground surface (ft bgs) with a truck-mounted Geoprobe®.

Soil samples were obtained from each boring using a MacroCore® sampler fitted with single-use, disposable polyvinyl chloride (PVC) liners. Each liner was 4 feet in length. Upon retrieval, a portion of each 2-foot interval was placed in separate resealable plastic bags. These bags were sealed and placed at ambient temperature for field screening with a flame ionization detector (FID). The remaining portion of each 2-foot interval was left in the PVC liner, wrapped in plastic and placed on ice for possible laboratory analysis.

Volatile organic compounds (VOCs) were allowed to accumulate in the headspace of each bag for approximately 20 minutes, after which time the headspace of each sealed bag was scanned with the FID. The FID readings were entered on the boring logs along with the soil description and indications of staining or odors, if present. Logs for each boring are presented in **Appendix C.** Soils collected from the

borings within the Study Area of Parcel 21 generally consisted of silty sand (SM). The GPS coordinates for the borings are provided in **Appendix D**.

Headspace screening of the soil samples with the FID revealed the presence of volatile vapors at low concentrations in several of the samples. Concentrations ranged from not detected to 11 parts per million (P21-B4 at 6-8 ft bgs). These measurements are presented in **Table 1**. No distinguishable odors were noted in the samples.

Soil samples for laboratory analysis were obtained from each boring at the sample intervals identified in **Table 1**. These samples were selected for analysis as they presented the highest FID measurements within the borings, or, if no volatile vapors were present, were obtained from deepest depth within the boring. The samples were placed in laboratory-supplied containers and stored on ice pending shipment to Prism Laboratories, Inc. (Prism) in Charlotte, NC. Sample information was recorded on the chain-of-custody and the samples were submitted for chemical analysis of TPH gasoline range organics (GRO) by Modified EPA Method 5030/8015 and TPH diesel range organics (DRO) by Modified EPA Method 3550/8015.

4.0 SAMPLING RESULTS

Analytical data for the soil samples obtained from the site revealed no detections of TPH DRO or TPH GRO at concentrations above the laboratory reporting limits. These data are summarized in **Table 2**. Laboratory analytical reports associated with these samples are presented in **Appendix E**.

5.0 DISCUSSION AND CONCLUSIONS

The geophysical survey conducted at the site revealed the potential presence of four buried metallic USTs within the study area. The survey also suggested metallic anomalies consistent with the presence of buried conduits or utilities or buried miscellaneous debris.

Solutions-IES advanced 11 soil borings at the site to determine the presence or absence of petroleum contamination within the Study Area at Parcel 21, as well as document soil conditions. Analytical data for soil samples submitted for chemical analysis showed that TPH GRO and TPH DRO were not detectable above the laboratory reporting limits. Based on current information, additional assessment is not recommended.

TABLE 1 SUMMARY OF FIELD SCREENING RESULTS FOR SOIL

Parcel 21, James Brigman Property Richmond County, North Carolina

WBS Element: 34438.1.1; State Project: R-2502 A

Sample Collection Dates: 08/24/2006

Sanda David Dala Garad		Soil Borings									
Sample Depth Below Ground Surface	P21B1	P21B2	P21B3	P21B4	P21B5	P21B6	P21B7	P21B8	P21B9	P21B10	P21B11
Surface		FID Reading (ppm)									
0 - 2 feet	ND	ND	ND	6.8	0.2	0.2	0.3	0.2	ND	1.0	1.0
2 - 4 feet	ND	ND	ND	2.2	0.1	0.6	0.6	0.6	ND	1.2	1.5
4 - 6 feet	ND	ND	0.6	7.8	NR	1.0	1.0	0.6	ND	1.6	2.2
6 - 8 feet	ND	ND	0.4	11	NR	1.4	1.2	0.8	ND	1.4	2.0
8 - 10 feet	ND	ND	0.9	8	0.8	1.0	NS	NS	NS	NS	NS
10 - 12 feet	0.3	ND	0.9	2	0.7	1.1	NS	NS	NS	NS	NS

Notes:

FID = Flame Ionization Detector

FID readings were obtained with a Photovac MicroFID Flame Ionization Detector

ND = Not detected

NR = No recovery

NS = No sample taken

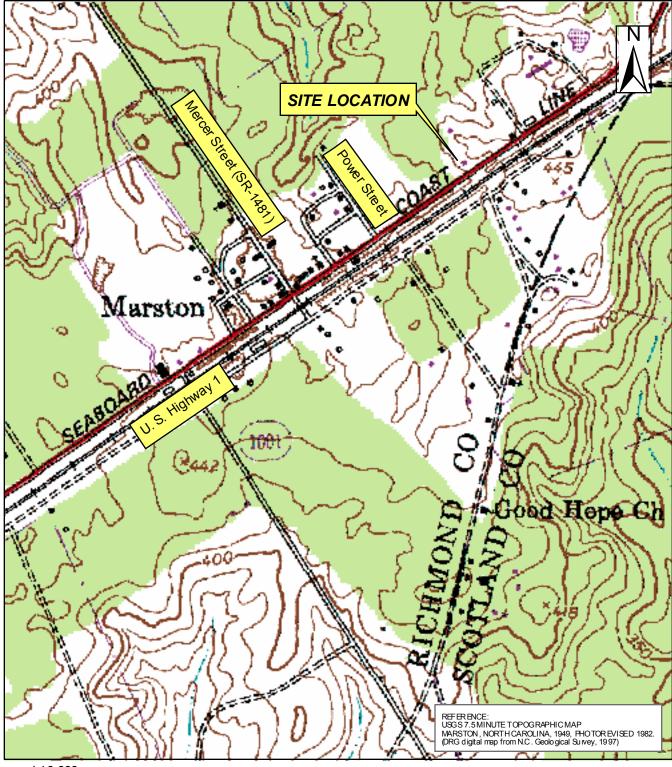
ppm = parts per million

Samples denoted by shaded cells were submitted for laboratory analysis.

TABLE 2 SUMMARY OF SOIL ANALYTICAL RESULTS

Parcel 21, James Brigman Property Richmond County, North Carolina

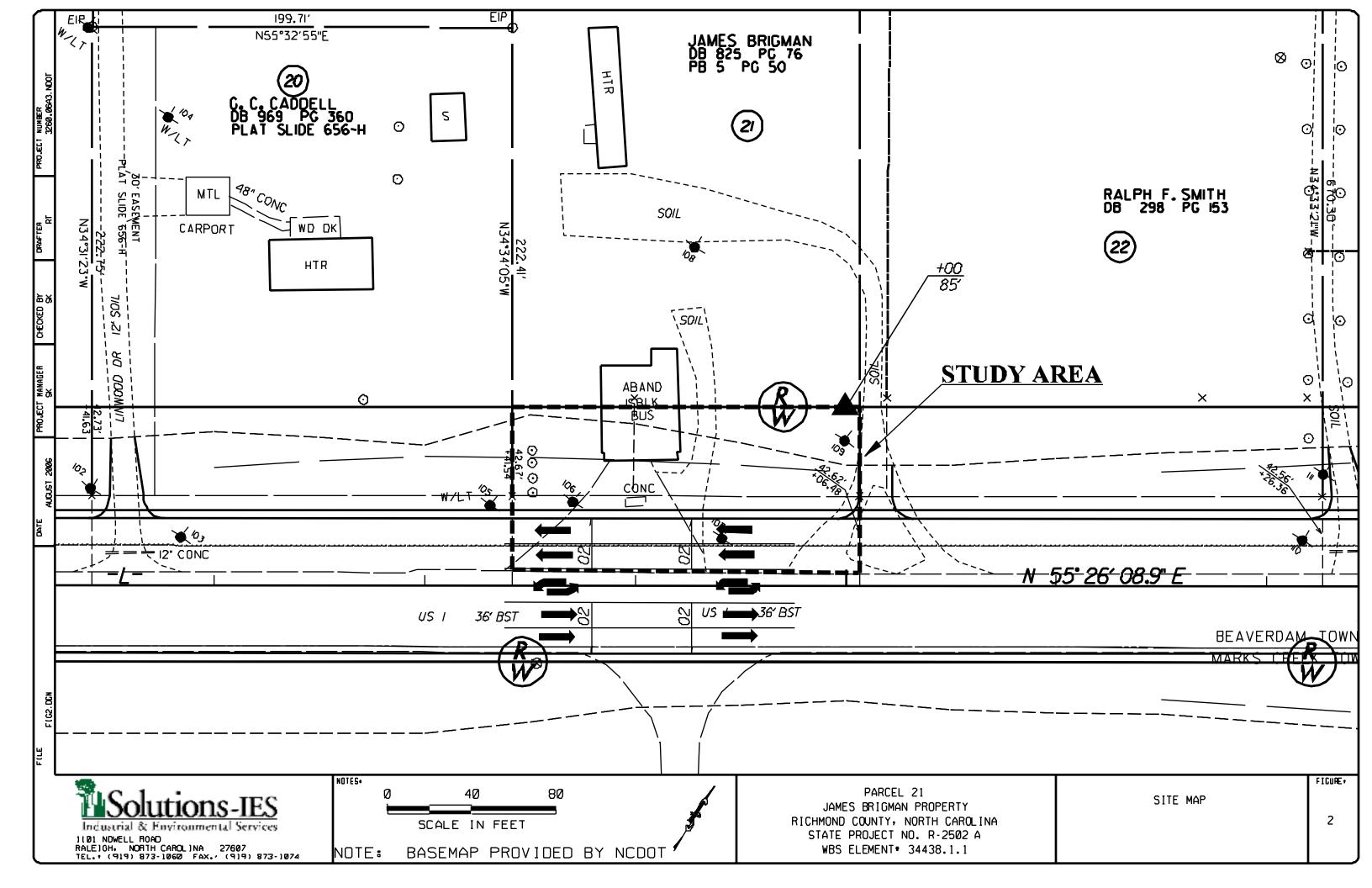
WBS Element: 34438.1.1; State Project: R-2502 A

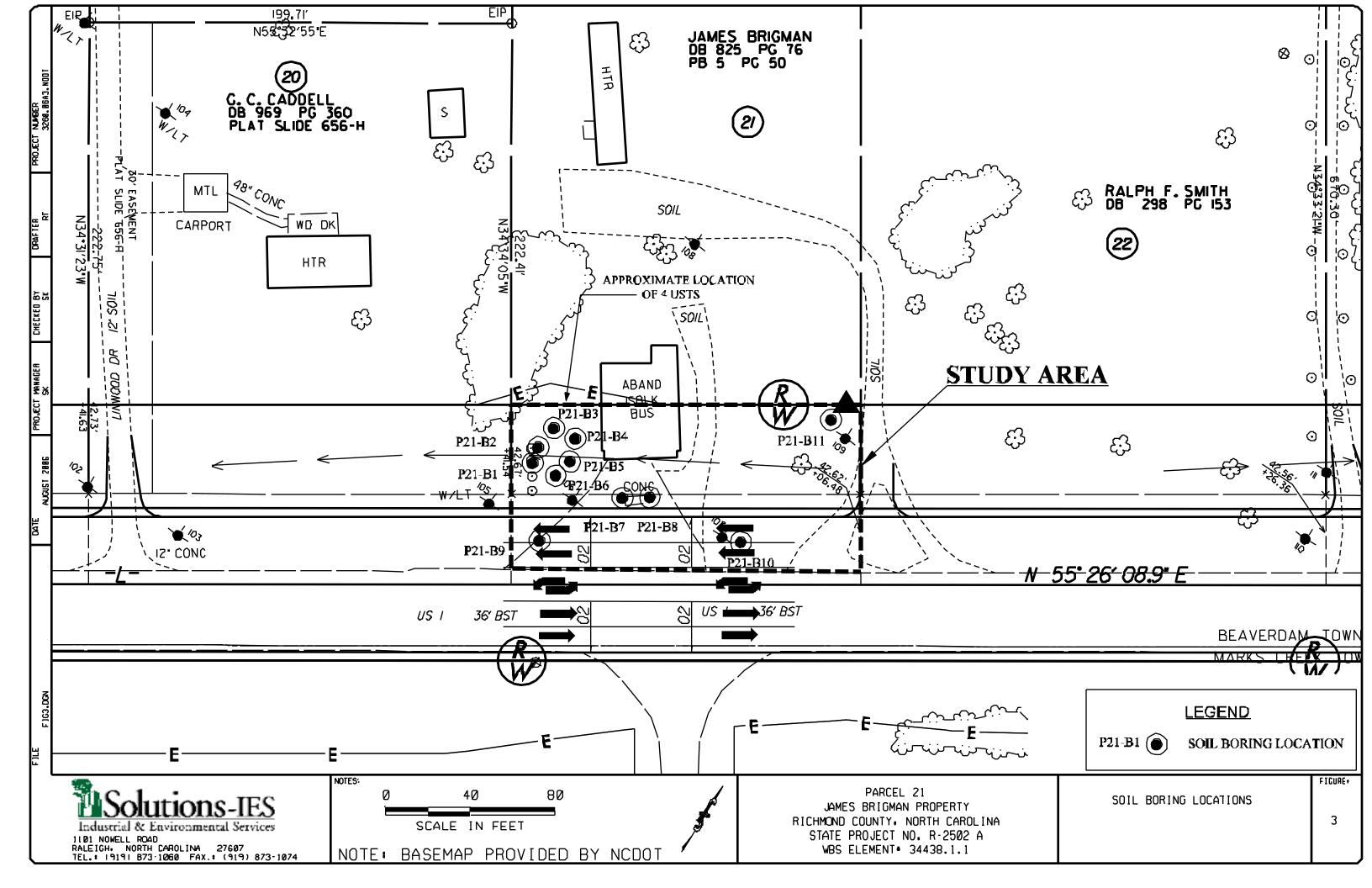

Sample Info	mation	Total Petroleum Hydrocarbons				
Boring Number	Depth (ft bgs)	Gasoline Range ¹ (mg/kg)	Diesel Range ² (mg/kg)			
P21-B1	10 - 12	< 7.7	< 7.7			
P21-B2	10 - 12	< 7.2	< 7.2			
P21-B3	10 - 12	< 7.4	< 7.4			
P21-B4	6 - 8	< 7.7	< 7.7			
P21-B5	8 - 10	< 8.8	< 8.8			
P21-B6	6 - 8	< 8.4	< 8.4			
P21-B7	6 - 8	< 7.3	< 7.3			
P21-B8	6 - 8	< 7.3	< 7.3			
P21-B9	4 - 6	< 8.4	< 8.4			
P21-B10	4 - 6	< 7.2	< 7.2			

Notes:

- 1. Total Petroleum Hydrocarbons (TPH) Method 5030/8015MOD Gasoline Range Hydrocarbons
- 2. Total Petroleum Hydrocarbons (TPH) Method 3545/8015MOD Diesel Range Hydrocarbons mg/kg = milligram per kilogram

ft bgs = feet below ground surface




1:10,000

SITE LOCATION MAP PARCEL 21 JAMES BRIGMAN PROPERTY RICHMOND COUNTY, NORTH CAROLINA STATE PROJECT NO. R-2502 A, WBS ELEMENT# 34438.1.1

1101 Nowell Road, Raleigh, NC 27609 Phone (919) 873-1060, Fax (919) 873-1074							
Cre ated by: Checked by:		Project: 3260.06A3.NDOT Date: SEPTEMBER 2006					
File: Software:	Figure 1.mxd ESRI ArcMap 9.1	FIGURE	1				

APPENDIX A PHOTOGRAPHS

Photograph 1 – Looking west at Parcel 21. Borings locations outlining suspected UST locations are marked with pink flags.

Photograph 2 – Looking west across US High way 1 at Parcel 21.

APPENDIX B GEOPHYSICAL INVESTIGATION

GEOPHYSICAL INVESTIGATION REPORT

GEOPHYSICAL SURVEYS FOR THE DETECTION OF METALLIC USTS

US 1 from SR 1001 to the Richmond County Line Richmond, North Carolina State Project Number U-3459

September 1, 2006

Report prepared for:

Sheri Knox, PE Solutions IES

1101 Nowell Rd. Raleigh, NC 27607

Prepared by:

Douglas Canavello, PG

Reviewed by:

Tim Leatherman, PG

PYRAMID ENVIRONMENTAL & ENGINEERING, P.C. 700 NORTH EUGENE ST. GREENSBORO, NC 27401 (336) 335-3174

Solutions IES

GEOPHYSICAL SURVEYS FOR THE DETECTION OF METALLIC USTS US 1 from SR 1001 to the Richmond County Line State Project Number U-3456

TABLE OF CONTENTS

1	Λ	IN	r_D	ΔD	TT	OT:	\mathbf{r}	N 1
	()	IIN	ı Ku		, , ,			IIN

2.0 FIELD METHODOLOGY

3.0 DISCUSSION OF RESULTS

- 3.1 Parcel 6 Hillary McKay Property
- 3.2 Parcel 9 K.J. Lewis Property
- 3.3 Parcel 21 James Brigman Property
- 3.4 Parcel 48 Roy Barry Bostick Property
- 3.5 Parcel 50 Pansy Ernest Property
- 3.6 Parcel 51 Church of Deliverance Property
- 3.7 Parcel 61 Cooper & Brown Inc. Property
- 3.8 Parcel 70 Delia Lassiter Property
- 3.9 Parcel 22 Ivey Little Property
- 3.10 Parcel 68 James Pugh Property

4.0 SUMMARY & CONCLUSIONS

5.0 LIMITATIONS

FIGURES

Figure 1	Site & Geophysical Equipment Photos
Figure 2	Parcel 6 – Hillary McKay Property – EM61 Bottom Coil Results
Figure 3	Parcel 6 – Hillary McKay Property – EM61 Differential Results
Figure 4	Parcel 9 – K.J. Lewis Property – EM61 Bottom Coil Results
Figure 5	Parcel 9 – K.J. Lewis Property – EM61 Differential Results
Figure 6	Parcel 9 – K.J. Lewis Property – Photo & GPR Image of UST Locations
Figure 7	Parcel 21 – James Brigman Property – EM 61 Bottom Coil Results
Figure 8	Parcel 21 – James Brigman Property – EM 61 Differential Results

Figure 9	Parcel 21 – James Brigman Property – Photo & GPR Image of UST Locations
Figure 10	Parcel 48 – Roy Barry Bostick Property – EM61 Metal Detection Results
Figure 11	Parcels 50 & 51 – Earnest & Church Properties – EM 61 Bottom Coil Results

FIGURES (continued)

Figure 12	Parcels 50 & 51 – Earnest & Church Properties – EM 61 Bottom Coil Results
Figure 13	Parcels 50 & 51 – Earnest & Church Properties – Photo & GPR Image of UST
	Locations
Figure 14	Parcel 61 – Cooper & Brown Inc. Property – EM 61 Bottom Coil Results
Figure 15	Parcel 61 – Cooper & Brown Inc. Property – EM 61 Differential Results
Figure 16	Parcel 70 – Delia Lassiter Property – EM 61 Bottom Coil Results
Figure 17	Parcel 70 – Delia Lassiter Property – EM 61 Differential Results
Figure 18	Parcel 22 – Ivey Little Property – EM 61 Bottom Coil Results
Figure 19	Parcel 22 – Ivey Little Property – EM 61 Differential Results
Figure 20	Parcel 68 – James Pugh Property – EM 61 Metal Detection Results

1.0 INTRODUCTION

Pyramid Environmental & Engineering, PC conducted geophysical investigations for Solutions IES during the period of July 26 through August 28, 2006, within the proposed Right-of-Way (ROW) areas at 10 sites located in Richmond County, North Carolina. The work was done as part of the North Carolina Department of Transportation (NCDOT) road-widening project under State Project number U-3459. The sites are located along the northern or western sides of US 1 from SR 1001 to the Richmond County Line. The geophysical surveys were conducted to determine if unknown metallic underground storage tanks (UST's) were present beneath the proposed ROW area of each site.

Solutions IES representative Ms. Sheri Knox, PE provided maps during the week of July 24, 2006 that outlined the geophysical survey area of each site. Ms. Knox also provided project management during the geophysical investigation of the sites. Geophysical surveys were conducted within the proposed ROW areas at the following 10 sites that are listed from the southern-most site to the northern-most site.

	Property Owner	<u>Parcel</u>	<u>Present Use of Property</u>
	Hillary McKay Property	(Parcel 6)	Grass-covered lot with garage
	K.J. Lewis Property	(Parcel 9)	Vacant, wooded lot
	James Brigman Property	(Parcel 21)	Vacant, grass-covered Lot
	Roy Barry Bostick Property	y (Parcel 48)	Grass-covered lot and
garage			
	Pansy Ernest Property	(Parcel 50)	Grass-covered lot with vacant store
	Church of Deliverance Prop	. (Parcel 51)	Asphalt lot with active church
	Cooper & Brown Inc. Prop.	(Parcel 61)	Vacant lot and
commerci	al building		

Geophysical Investigation Report – Richmond County, NC Sites

Delia Lassiter Property	(Parcel 70)	Vacant lot and building
Ivey Little Property	(Parcel 22)	Vacant lot and building
James Pugh Property	(Parcel 68)	Vacant, wooded lot

Photographs of the above sites along with photographs of the geophysical equipment used for this project are presented in **Figure 1**.

2.0 FIELD METHODOLOGY

Prior to conducting the geophysical investigations, a 10-foot by 10-foot or 10-foot by 20-foot survey grid was established across the proposed ROW areas of the 10 sites using water-based marking paint or pin flags. These marks were used as X-Y coordinates for location control when collecting the geophysical data and establishing base maps for the geophysical results.

The geophysical investigations consisted of electromagnetic (EM) induction-metal detection surveys and ground penetrating radar (GPR) surveys. The EM surveys were performed using a Geonics EM61-MK1 metal detection instrument. According to the instrument specifications, the EM61 can detect a metal drum down to a maximum depth of approximately 8 feet. The EM61 data were digitally collected at each site along parallel northerly-southerly or easterly-westerly trending survey lines spaced five feet apart. The data were downloaded to a computer and reviewed in the filed and office using the Geonics DAT61W and Surfer for Windows Version 7.0 software programs.

Contour plots of the EM61 bottom coil results and the EM61 differential results for each site are included in this report. The bottom coil results represent the most sensitive component of the EM61 instrument and detect metal objects regardless of size. The bottom coil response can be used to

Geophysical Investigation Report – Richmond County, NC Sites

09/01/06

delineate metal conduits or utility lines, small, isolated metal objects, and areas containing insignificant metal debris.

The differential results are obtained from the difference between the top and bottom coils of the EM61 instrument. The differential results focus on the larger metal objects such as drums and USTs and ignore the smaller insignificant metal objects.

GPR surveys were conducted across selected EM61 differential anomalies and steel-reinforced concrete using a GSSI SIR-2000 unit equipped with a 400 MHz antenna. Surveys were also performed across several areas where parked vehicles that obstructed the EM61 survey had since been removed. GPR data were digitally collected in a continuous mode along X and/or Y survey lines, spaced two to five feet apart using a vertical scan of 512 samples, at a rate of 48 scans per second. An 80 MHz high pass filter and an 800 MHz low pass filter were used during data acquisition with the 400 MHz antenna. GPR data were collected down to a maximum depth of approximately five feet, based on an estimated two-way travel time of 9 nanoseconds per foot.

The GPR data were downloaded to a field computer and later reviewed in the office using Radprint and Radan 5.0 software programs. The locations of GPR survey areas or individual GPR survey lines are shown as solid, purple polygons or solid purple lines, respectively, on the EM 61 differential contour plots. The approximate perimeters of probable or possible USTs, based on the geophysical results, were marked and labeled in the field using orange, water-based marking paint and pin flags (when possible). The approximate locations of probable or possible USTs are shown as magentacolored rectangles on the EM 61 bottom coil and differential contour plots.

Geophysical Investigation Report – Richmond County, NC Sites

During the weeks of August 7, August 14, and August 28, preliminary contour plots of the EM61 bottom coil and the differential results were emailed to Ms. Knox.

3.0 <u>DISCUSSION OF RESULTS</u>

3.1 Parcel 6 – Hillary McKay Property

The Hillary McKay Property (Parcel 6) contains a former auto repair garage and a vacant wooden building. The ROW area consists of a flat-lying grass surface. The bottom coil results and the differential results are presented in **Figures 2 and 3**, respectively. GPR surveys conducted around the perimeter of the garage and wooden building, suggest that the EM 61 anomalies surrounding the two buildings are in response to the structures and perhaps buried miscellaneous metal debris. The remaining EM 61 anomalies are probably in response to buried miscellaneous metal debris. The geophysical results suggest that the proposed ROW area at Parcel 6 does not contain metallic UST's.

3.2 Parcel 9 – K.J. Lewis Property

The K.J. Lewis property (Parcel 9) is located immediately north of the Mercer Road and US 1 intersection, approximately 200 feet northeast of Parcel 6. The property consists of an abandoned building along the edge of US 1, which is surrounded by dense wooded terrain. A former pump island area is located in front of the building. The EM61 bottom coil results and the differential results are presented in **Figures 4 and 5**, respectively. Due to limited access to the site, the geophysical investigation was limited to the front portion of the property that is located along US 1.

Geophysical Investigation Report – Richmond County, NC Sites 09/01/06

Pyramid Environmental & Engineering, PC

The geophysical investigation detected the probable presence of two USTs located adjacent to the pump island area. The first UST is centered near grid coordinates X=84 Y=27, and buried approximately 1.5 feet below surface. The second UST is centered near grid coordinates X=103 Y=27, and is buried approximately 2.0 feet below surface. This latter UST appears to be lie partially beneath the former pump island area. The approximate locations of the USTs are shown as magentacolored rectangles in Figures 4 and 5. Based on the GPR results, the probable USTs are approximately 10 feet long and 4 feet wide. A photograph showing the approximate locations of the two probable USTs and the image of GPR survey lines Y=27.5, which intersects the probable USTs, are presented in **Figure 6**.

The EM61 differential anomaly centered near grid coordinates X=118 Y=29, may possibly be in response to a UST or large metal object. However, GPR surveys could not be conducted across this EM anomaly due to the limited access caused by the dense wooded terrain. The approximate location of this possible UST is shown as a dashed, magenta-colored rectangle in Figures 4 and 5, and in the site photograph that is presented in Figure 6.

The remaining portion of the geophysical survey area does not appear to contain significant, buried, metal objects.

3.3 Parcel 21 – James Brigman Property

Geophysical Investigation Report – Richmond County, NC Sites

The James Brigman property (Parcel 21) consists of an open, grass and asphalt-covered lot located along the western side of US 1. The EM61 bottom coil results and the differential results are presented in **Figures 7 and 8**, respectively.

GPR surveys conducted across the linear, EM61 bottom coil anomalies that intersect grid coordinates X=62 Y=70, X=66 Y=94, X=84 Y=94, and X=87.5 Y=75, suggest the anomalies are probably in response to buried utility lines or conduits. GPR data also suggest that the high amplitude anomalies centered near grid coordinates X=77 Y=84, and X=93 Y=66, are probably in response to buried miscellaneous metal objects or junction areas for the conduits or utility lines.

GPR surveys conducted across the large, high amplitude anomaly centered near X=45 Y=75, detected the probable presence of four metallic USTs. The four probable USTs are centered near grid coordinates X=43 Y=80, X=50 Y=80, X=42 Y=73, and X=48 Y=73. Based on the GPR data, the USTs appear to be approximately 9 feet long and 3.5 to 4 feet wide and buried approximately 1.5 to 2.0 feet below surface. The approximate locations of the probable USTs are shown as magenta-colored rectangles in Figures 7 and 8. A photograph showing the approximate locations of the four probable USTs and the image of GPR survey lines Y=80, which intersects the two probable USTs centered near X=43 Y=80, and X=50 Y=80, are presented in **Figure 9**.

The remaining EM 61 anomalies recorded within the proposed ROW area are probably in response to miscellaneous metal debris.

3.4 Parcel 48 – Roy Barry Bostick Property

Geophysical Investigation Report – Richmond County, NC Sites

09/01/06

The Roy Barry Bostick property (Parcel 48) consists of a red, brick building surrounded by flat-lying grass-covered terrain. The parcel is located along the northwestern side of US 1 approximately 300 feet southwest of the US 1 and Tilley Street intersection. The EM 61 bottom coil results and the differential results are presented in **Figure 10**.

GPR surveys conducted across the EM61 anomaly centered near grid coordinates X=295 Y=60, suggest that the anomaly is probably in response to one or more large diameter (12 or more inches) conduits buried approximately 1.0 feet below surface. There is a possibility (although unlikely) that the anomaly may be in response to a very small UST centered near grid coordinates X=290 Y=59. The location of the possible, but unlikely UST is shown as a magenta-colored square in Figure 10.

GPR surveys conducted along the edge of the brick building suggest that the EM61 anomalies recorded in this area are probably in response to the building and/or buried miscellaneous debris. The remaining EM61 anomalies recorded within the proposed ROW area at Parcel 48 are probably in response to known cultural features and/or buried miscellaneous debris.

3.5 Parcel 50 – Pansy Ernest Property

The Pansy Ernest property (Parcel 50) is located on the western corner of the Tilley Street and US1 intersection. The parcel contains the former Little Grace's Variety store surrounded by a flay-lying grass-covered, terrain. An occupied house is located immediately west of the property. The EM61 bottom coil results and the differential results are presented in **Figures 11 and 12**, respectively. Please note that Figures 11 and 12 also contain the EM61 results for Church of Deliverance property (Parcel 51).

Geophysical Investigation Report – Richmond County, NC Sites 09/01/06

Pyramid Environmental & Engineering, PC

GPR surveys conducted across the backyard of Parcel 50 suggest the linear EM61 bottom coil anomalies intersecting grid coordinates X=570 Y=115, X=570 Y=126, X=580 Y=90, and X=586 Y=125, are probable in response to buried conduits or lines. Similarly, the locations of the linear EM61 anomalies intersecting grid coordinates X= 622 Y=80, X=622 Y=120, and X=640 Y=35, suggest these anomalies are probably in response to buried utility lines.

GPR surveys conduct across the high amplitude anomalies centered near grid coordinates X=575 Y=105, and X=590 Y=113, suggest the anomalies are probably in response to the "junction" of conduits and/or other miscellaneous objects. Although not confirmed by the GPR results, the EM61 anomaly located at X=575 Y=105, may be in response to a possible septic tank.

GPR surveys conducted across the EM61 anomaly centered near grid coordinates X=567 Y=55, detected the probably presence of two USTs buried approximately 0.75 feet below surface. The approximate locations of the probably USTs are shown as magenta-colored rectangles in Figures 11 and 12 and each UST appears to be approximately eight feet long and three feet wide. A photograph showing the approximate locations of the two probable USTs and the image of GPR survey line Y=55, which intersects the probable USTs, are presented in **Figure 13**.

The remaining EM 61 anomalies recorded within the proposed ROW area at Parcel 50 are probably in response to known cultural features or buried miscellaneous metal debris.

3.6 Parcel 51 – Church of Deliverance Property

Geophysical Investigation Report – Richmond County, NC Sites 09/01/06

The Church of Deliverance property (Parcel 51) contains an active church building surrounded by a grass, gravel or asphalt-covered parking area. The property is located on the northern corner of the Tilley Street and US 1 intersection immediately across the street from the Pansy Ernest property (Parcel 50). The EM 61 bottom coil results and the differential results for Parcel 51 are presented in **Figures 11 and 12**, respectively along with the EM 61 results for Parcel 50.

The linear EM 61 bottom coil anomalies intersecting grid coordinates X=670 Y=50, X=700 Y=30, and X=700 Y=65, are probably in response to buried utility lines or conduits. GPR surveys conducted across the EM 61 differential anomaly centered near X=705 Y=105, and along the front edge of the church building suggest the anomalies are probably in response to miscellaneous debris and the building respectively.

The remaining EM 61 anomalies recorded within the proposed ROW area at Parcel 51 are probably in response to know cultural features or miscellaneous buried debris. The geophysical results also suggest that the proposed ROW area does not contain metallic USTs.

3.7 Parcel 61 – Cooper & Brown Inc. Property

The Cooper & Brown Inc. property (Parcel 61) is located on the western side of the US 1 and Little Road intersection. The proposed ROW area of Parcel 61 contains a vacant business building surrounded by flat-lying, grass or asphalt surfaces. A concrete pad is located in front of the building and probably identifies the former pump island area. An occupied house lies to the northwest of the proposed ROW area.

Geophysical Investigation Report – Richmond County, NC Sites

09/01/06

The EM61 bottom coil results and the differential results are presented in **Figures 14 and 15**, respectively. The linear EM61 bottom coil anomalies intersecting grid coordinates X=130 Y=34, X=142 Y=105, X=186 Y=100, X=210 Y=42, and X=213 Y=83, are probably in response to buried utility lines or conduits. The high amplitude anomalies centered near grid coordinates X=75 Y=67, and X=80 Y=50, are probably in response to steel reinforced concrete. GPR surveys conducted across these two areas did not detect the presence of USTs.

GPR surveys conducted across the high amplitude anomaly centered near X=226 Y=116, suggest the anomaly is probably in response to steel reinforced concrete and/or to the metal conduits that are visible at the surface. GPR surveys conducted along the perimeter of the building suggest that the EM61 anomalies are probably in response to the building and/or to miscellaneous debris. The remaining EM61 anomalies are probably in response to known cultural features and/or to buried miscellaneous metal debris.

The geophysical results suggest that the proposed ROW area at Parcel 61 does not contain metallic USTs.

3.8 Parcel 70 – Delia Lassiter Property

The Delia Lassiter Property (Parcel 70) contains a vacant building surrounded primarily by grass yard and an asphalt driveway. An occupied house lies immediately north of the proposed ROW area. The EM61 bottom coil results and the differential results are presented in **Figures 16 and 17**, respectively.

Geophysical Investigation Report – Richmond County, NC Sites

The linear EM61 anomaly intersecting grid coordinates X=90 Y=110, is probably in response to a buried utility line or conduit. The remaining EM anomalies are probably in response to known cultural features or to buried miscellaneous debris. The geophysical results suggest that the proposed ROW area at the Delia Lassiter property does not contain metallic USTs.

3.9 Parcel 22 – Ivey Little Property

The Ivey Little property (Parcel 22) is located along the northwest side of US 1 and consists of a vacant building surrounded by a gravel-covered driveway and grass-covered fields. The EM61 bottom coil results and the differential results are presented in **Figures 18 and 19**, respectively.

The linear EM 61 anomaly intersecting grid coordinates X=354 Y=35, is probably in response to a buried utility line or conduit. The remaining EM anomalies are probably in response to known cultural features or to buried miscellaneous debris. The geophysical results suggest that the proposed ROW area at the Ivey Little property does not contain metallic USTs.

3.10 Parcel 68 – James Pugh Property

The James Pugh Property (Parcel 68) is a former gas station site located on the northern side of US 1, approximately 0.25 miles west of the US 1 and Special Forces Way intersection. The site consists primarily of grass, trees and brush with a former pump island pad located near the edge of US 1. The EM 61 bottom coil results and the differential results are presented in **Figure 20**.

GPR surveys conducted across the EM61 anomalies centered grid coordinates X=305 Y=35, and X=321 Y=37, suggest the anomalies are probably in response to the pump island pad and to the

Geophysical Investigation Report – Richmond County, NC Sites 09/01/06

buried pump island-related equipment. GPR surveys conducted across the EM61 anomaly centered near grid coordinates X=534 Y=92, suggest the anomaly is probably in response to buried miscellaneous debris or object. The remaining EM61 anomalies are probably in response to known cultural features and miscellaneous metal debris.

The geophysical investigation conducted at Parcel 68 suggests that the proposed ROW areadoes not contain metallic USTs.

4.0 <u>SUMMARY & CONCLUSIONS</u>

Our evaluation of the EM61 and GPR data collected across the proposed ROW areas at the 10 sites along US1 in Richmond County, North Carolina provides the following summary and conclusions:

- The EM61 and GPR surveys provided reliable results for the detection of metallic USTs within the surveyed portions of the proposed ROW areas of each site.
- GPR surveys were conducted across selected EM61 differential anomalies and across areas containing steel reinforced concrete.
- Linear EM 61 anomalies at the 10 sites are probably in response to buried utility lines and/or conduits. The majority of non-linear anomalies are probably in response to known cultural features or miscellaneous metal objects.

Geophysical Investigation Report – Richmond County, NC Sites

• The geophysical results suggest the proposed ROW areas at the following properties do not contain metallic USTs:

Hillary McKay Property (Parcel 6)

Church of Deliverance Property (Parcel 51)

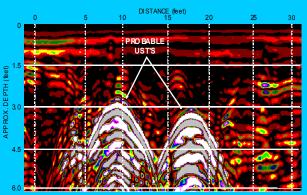
Cooper & Brown Inc. Property (Parcel 61)

Delia Lassiter Property (Parcel 70)

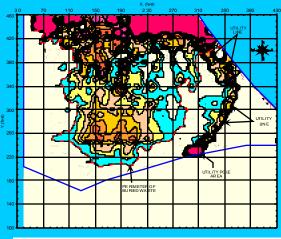
Ivey Little Property (Parcel 22)

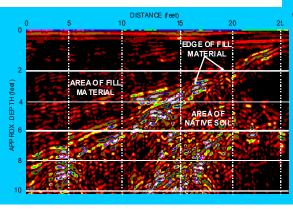
James Pugh Property (Parcel 68)

- W.J. Lewis Property (Parcel 9): Geophysical results suggest the probable presence of two USTs located adjacent to the pump island area. The first UST is centered near grid coordinates X=84 Y=27, and buried approximately 1.5 feet below surface. The second UST is centered near grid coordinates X=103 Y=27, and is buried approximately 2.0 feet below surface. The EM61 differential anomaly centered near grid coordinates X=118 Y=29, may possibly be in response to a UST or large metal object. However, GPR surveys could not be conducted across this EM anomaly due to the limited access caused by the dense wooded terrain.
- James Brigman Property (Parcel 21): Geophysical results detected the probable presence of four metallic USTs centered near grid coordinates X=43 Y=80, X=50 Y=80, X=42 Y=73, and X=48 Y=73. Based on the GPR data, the USTs appear to be approximately 9 feet longand 3.5 to 4 feet wide and buried approximately 1.5 to 2.0 feet below surface.


- Roy Barry Bostick Property (Parcel 48): GPR surveys conducted across the EM61 anomaly centered near grid coordinates X=295 Y=60, suggest that the anomaly is probably in response to one or more large diameter (12 or more inches) conduits buried approximately 1.0 feet below surface. There is a possibility (although unlikely) that the anomaly may be in response to a very small UST centered near grid coordinates X=290 Y=59.
- Pansy Ernest Property (Parcel 50): Geophysical results suggest the probable presence of two USTs centered near grid coordinates X=567 Y=55, and buried approximately 0.75 feet below surface. The USTs appear to be approximately eight feet long and three feet wide.

5.0 <u>LIMITATIONS</u>


EM61 and GPR surveys have been performed and this report prepared for Solutions IES in accordance with generally accepted guidelines for EM61 and GPR surveys. It is generally recognized that the results of the EM61 and GPR are non-unique and may not represent actual subsurface conditions. The EM61 and GPR results obtained for this project do not conclusively define the locations of all metallic USTs but only suggest where some of the metallic USTs may be present. The EM61 and GPR anomalies, interpreted as probable or possible USTs or tanks, may be attributed to other surface or subsurface conditions or cultural interference.


09/01/06

FIGURES

GRAPHIC SCALE IN FEET

Parcel 6 - Hillary McKay Property

Parcel 9 - K.J. Lewis Property

Parcel 21 - James Brigman Property

Parcel 48 - Roy Barry Bostick Property

Parcel 50 - Pansy Earnest Property

Parcel 51 - Church of Deliverance Property

Parcel 61 - Cooper & Brown Property

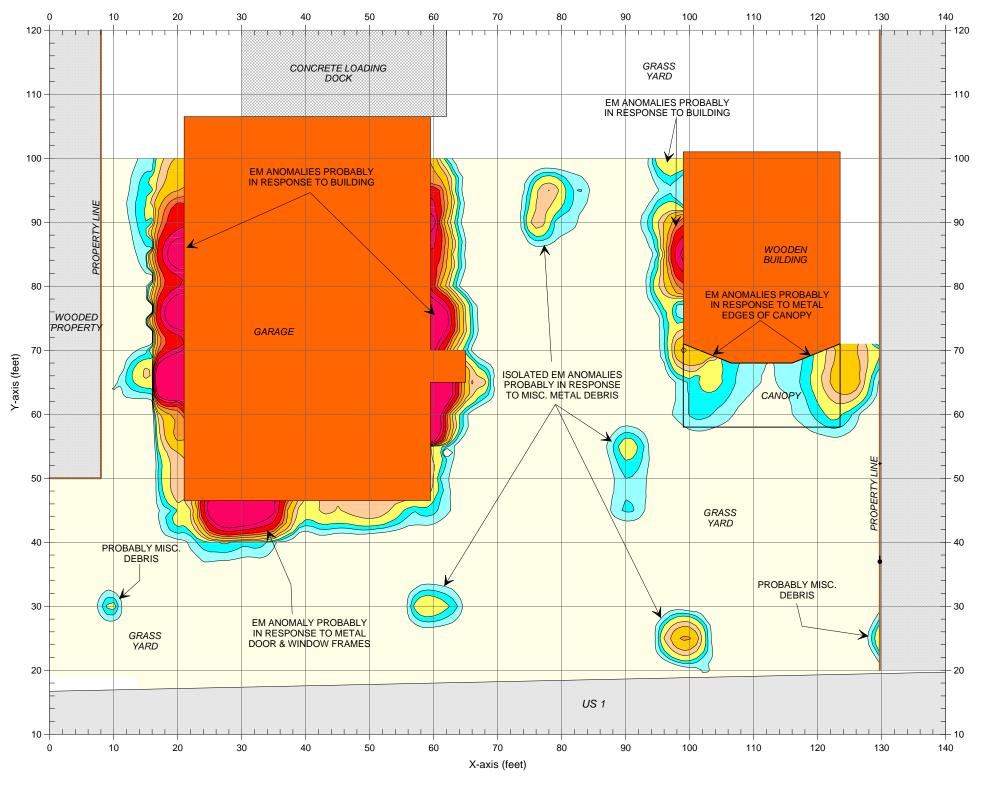
Parcel 70 - Delia Lassiter Property

Parcel 22 - Ivey Little Property

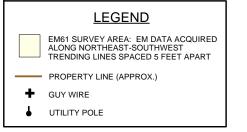
Parcel 68 - James Pugh Property

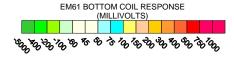
GEOPHYSICAL EQUIPMENT

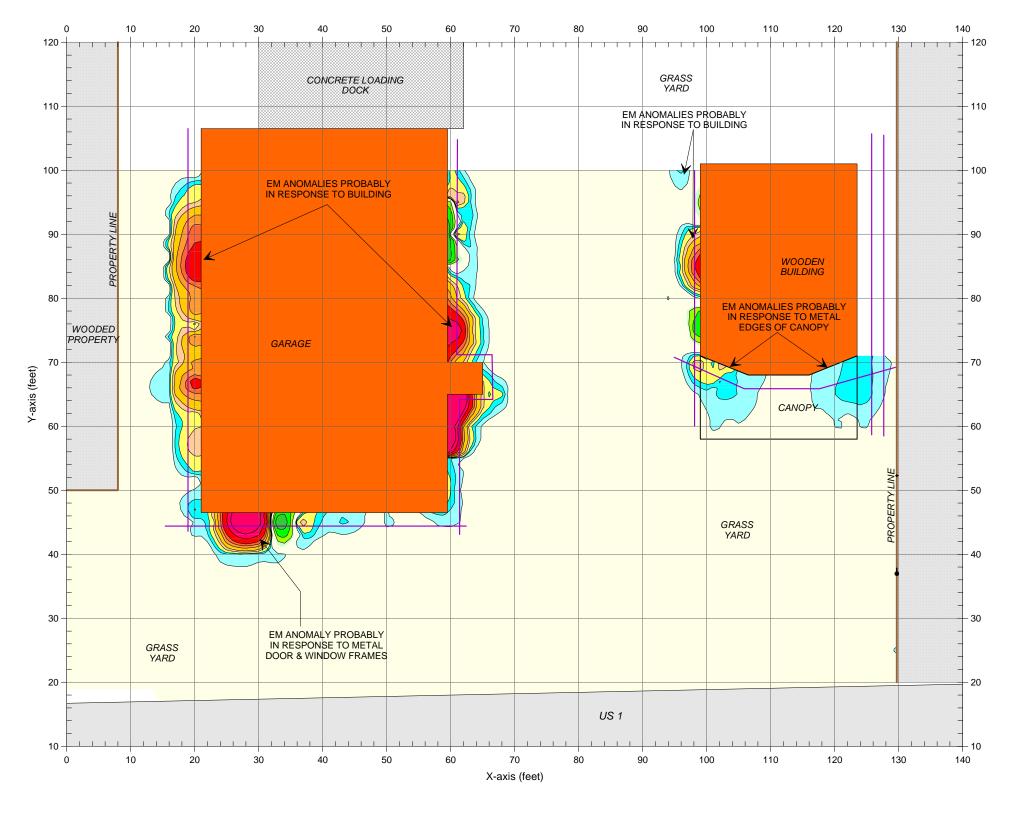
The photo shows the Geonics EM61 metal detector that was used to conduct the metal detection survey at the sites in Richmond County, North Carolina.


The photos show the SIR-2000 GPR system equipped with a 400 MHz antenna that was used to conduct the ground penetrating radar investigation at the sites in Richmond County, North Carolina.

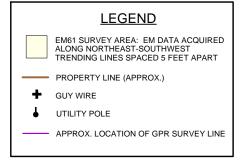
2			
ркми	СН.КВ		FIGURE
08/31/06			2006-200
3TA 0	YAJ	DMC	J-NO.
SOLUTIONS IES	US 1 - RICHMOND COUNTY SITES	MARSTON & HOFFMAN	GEOPHYSICAL RESULTS
ССІЕИТ	SITE	YTIO	ЭЛПТ

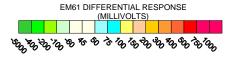

SITE PHOTOGRAPHS


This figure shows the photographs of the ten sites located near Marston and Hoffman, North Carolina where geophysical investigations were conducted within the ROW areas for the detection of metallic USTs.


Note: The contour plot shows the bottom coil (most sensitive) response of the EM61 instrument in millivolts (mV). The bottom coil response shows buried metallic objects regardless of size. The EM metal detection data were collected on July 27, 2006 using a Geonics EM61 instrument. Ground penetrating radar (GPR) data were acquired on August 16, 2006 using a Geophysical Survey Systems SIR 2000 instrument with a 400 MHz antenna.

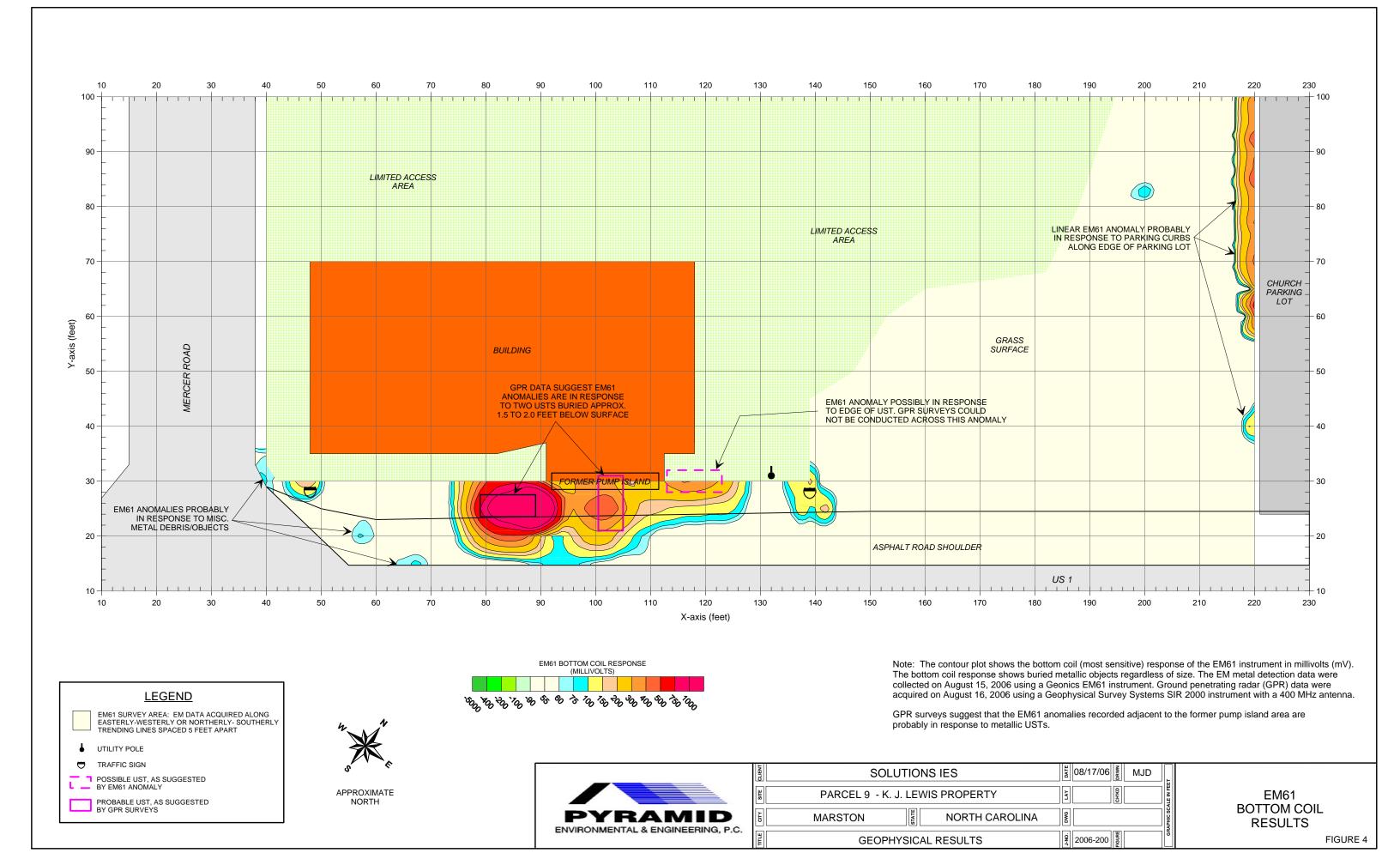
The geophysical investigation suggests that the survey area does not contain metallic USTs.

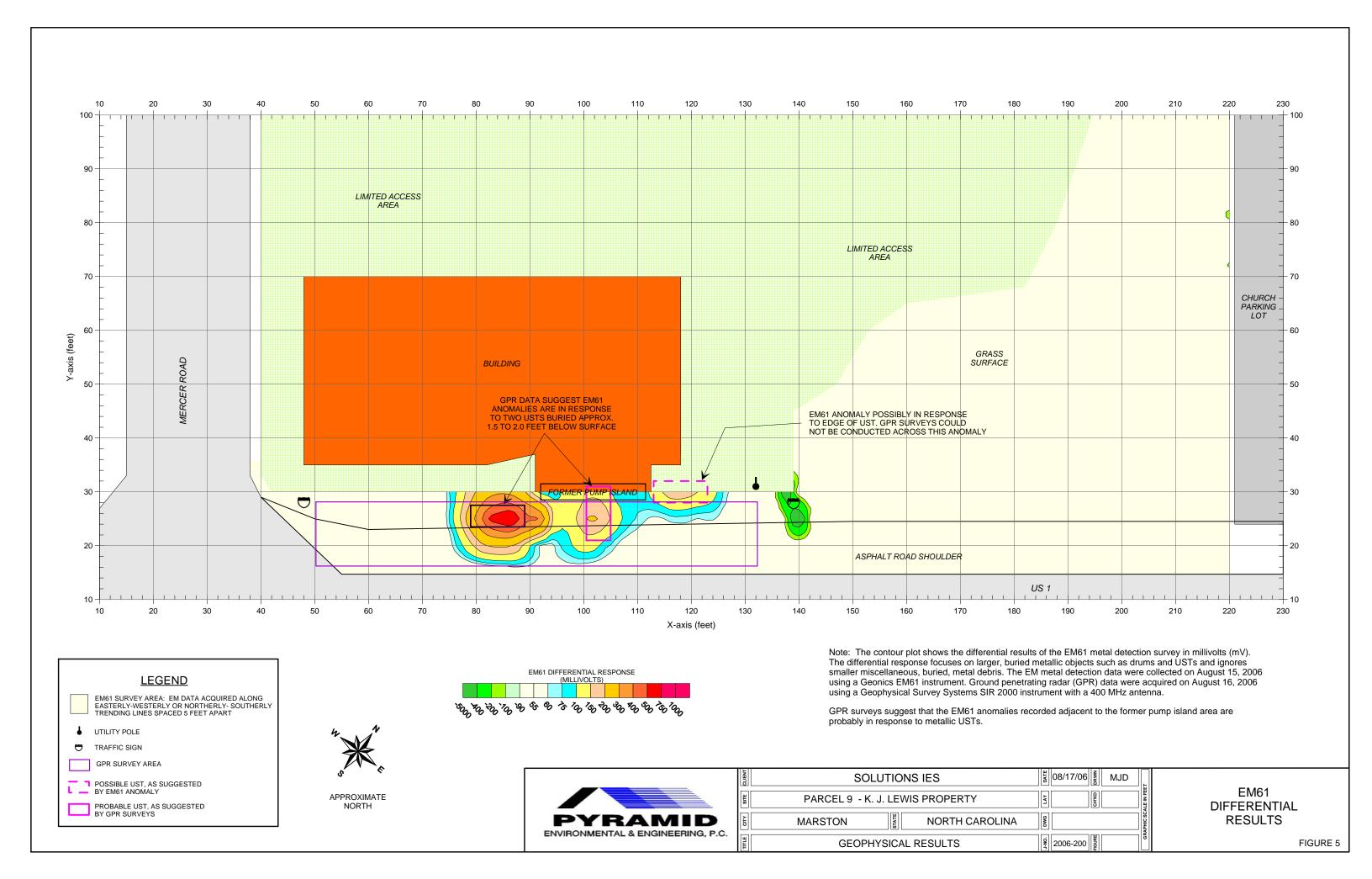



	CLIENT	SOLUTIONS IES	08/01/06 MJD		
	SITE	PARCEL 6 - HILLARY MCKAY PROPERTY	CHKD	LE IN FEE	
	CITY	MARSTON NORTH CAROLINA	DWG	VPHIC SCA	
C.	TITLE	GEOPHYSICAL RESULTS	2006-200	GRA	

EM61 BOTTOM COIL RESULTS

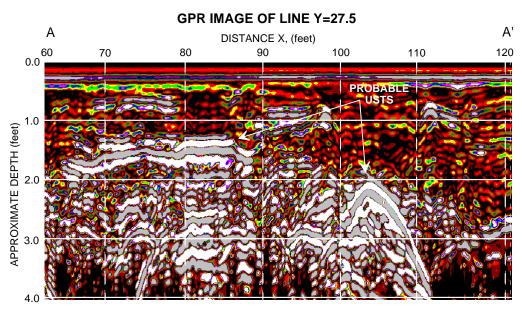
Note: The contour plot shows the differential results of the EM61 metal detection survey in millivolts (mV). The differential response focuses on larger, buried metallic objects such as drums and USTs and ignores smaller miscellaneous, buried, metal debris. The EM metal detection data were collected on July 27, 2006 using a Geonics EM61 instrument. Ground penetrating radar (GPR) data were acquired on August 16, 2006 using a Geophysical Survey Systems SIR 2000 instrument with a 400 MHz antenna.

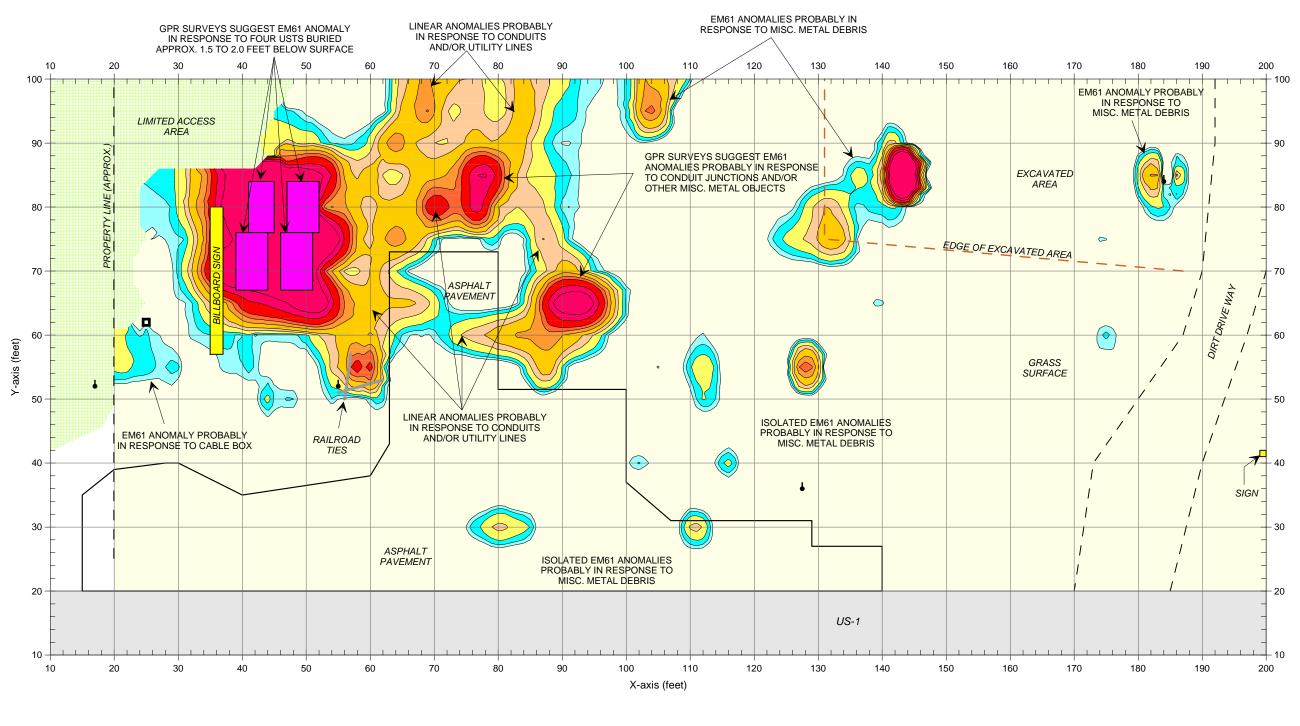

The geophysical investigation suggests that the survey area does not contain metallic USTs.

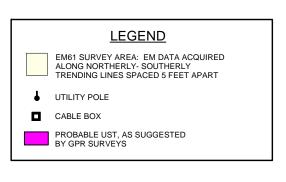


	CLIENT	SOLUTIONS IES	08/01/06 NMJD	F	
	SITE	PARCEL 6 - HILLARY MCKAY PROPERTY	CH'KD	ALE IN FEE	
) .	CITY	MARSTON	DWG	APHIC SCA	
	TITLE	GEOPHYSICAL RESULTS	(Signal 2006-200 Signal 2006	GR	

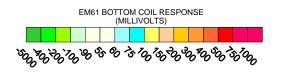
EM61 DIFFERENTIAL RESULTS


FIGURE 3

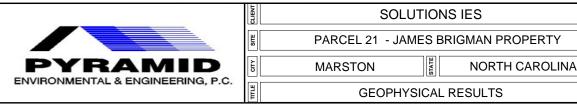

The photograph shows the locations of two probable USTs and one possible UST buried 1.5 to 2.0 feet below surface, as suggested by the geophysical results at Parcel 9.



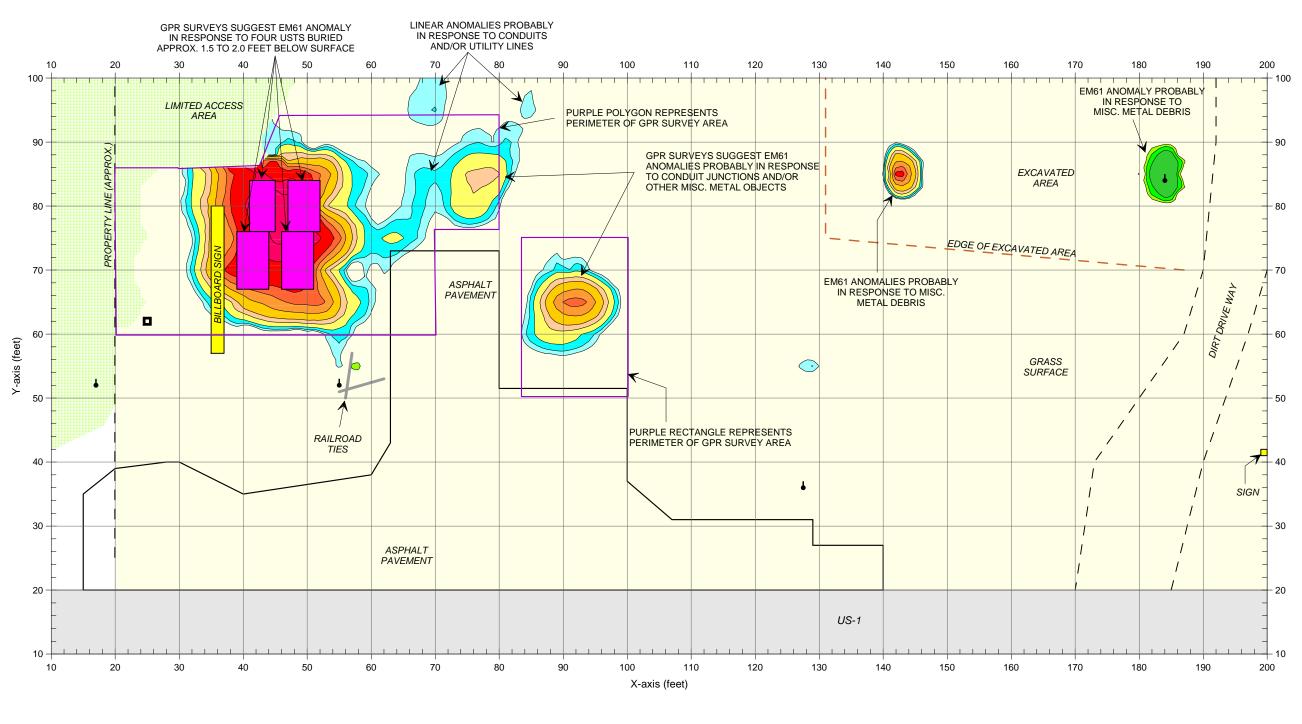
The GPR image obtained along a portion of survey line Y=27.5, shows the anomalies that are probably in response to USTs near X=84 and X=103, and buried approximately 1.5 and 2.0 feet below surface, respectively. The location of this GPR image is shown with a solid purple line in the above photograph.

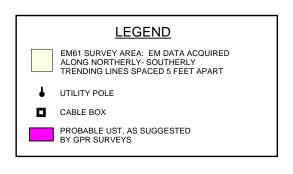


CLIEN	SOLUTIONS IES	08/26/05	.
SITE	PARCEL 9 - K. J. LEWIS PROPERTY	CHKO	
CITY	MARSTON E NORTH CAROLINA	Dwe	
TITLE	GEOPHYSICAL RESULTS	9 2006-200 R	

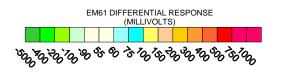


Note: The contour plot shows the bottom coil (most sensitive) response of the EM61 instrument in millivolts (mV). The bottom coil response shows buried metallic objects regardless of size. The EM metal detection data were collected on August 15, 2006 using a Geonics EM61 instrument. Ground penetrating radar (GPR) data were acquired on August 16, 2006 using a Geophysical Survey Systems SIR 2000 instrument with a 400 MHz antenna.


GPR surveys suggest that the large, high amplitude, EM61 anomaly in the southwest portion of the survey area is probably in response to four metallic USTs.


[2006-200

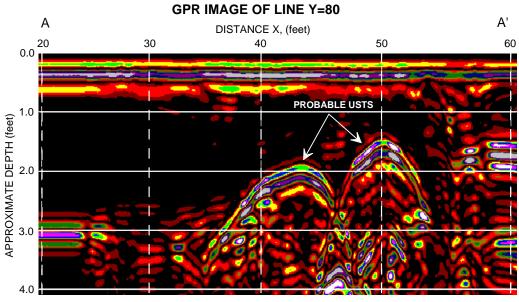
MJD



EM61 BOTTOM COIL RESULTS

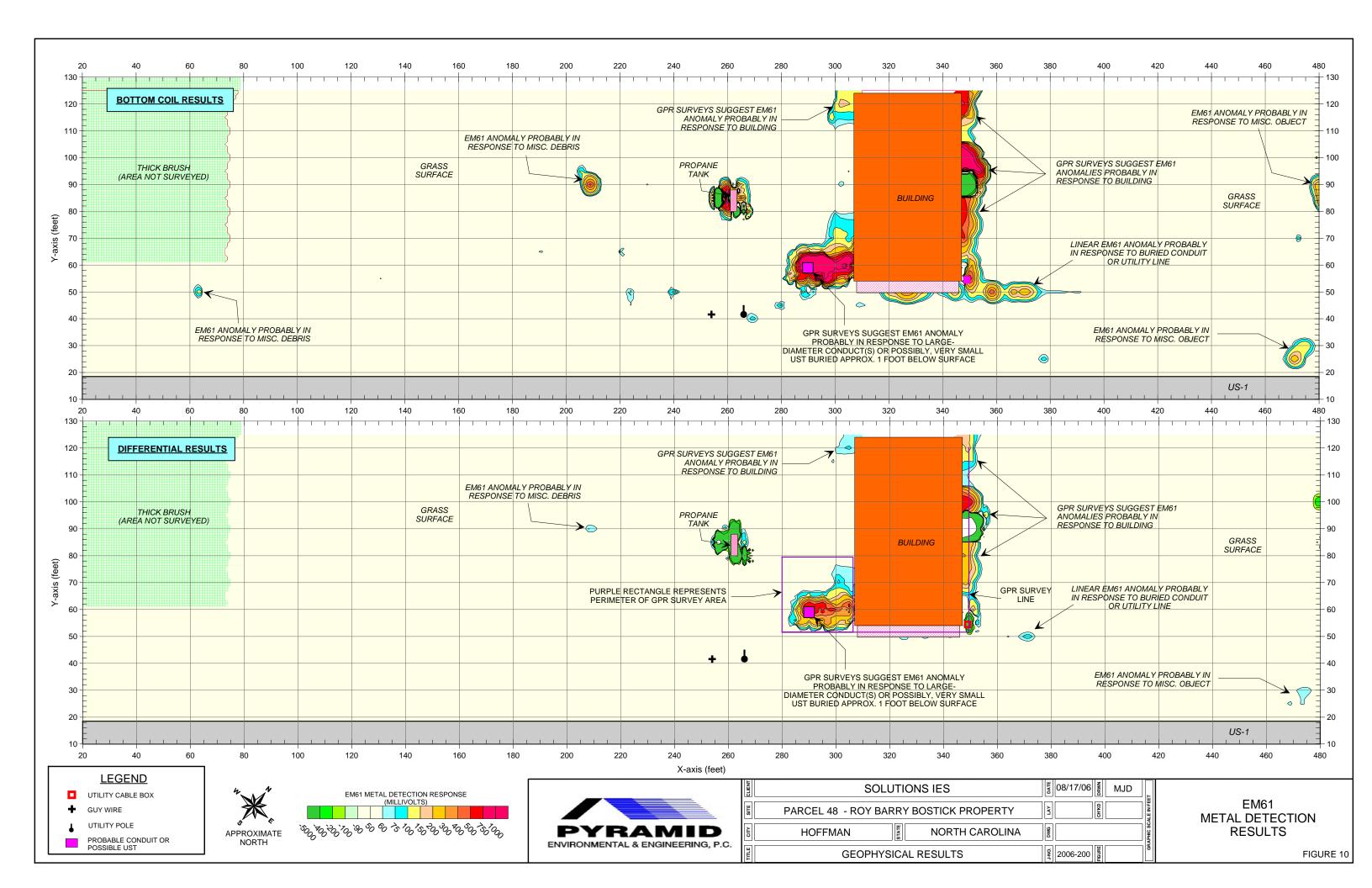
Note: The contour plot shows the differential results of the EM61 metal detection survey in millivolts (mV). The differential response focuses on larger, buried metallic objects such as drums and USTs and ignores smaller miscellaneous, buried, metal debris. The EM metal detection data were collected on August 15, 2006 using a Geonics EM61 instrument. Ground penetrating radar (GPR) data were acquired on August 16, 2006 using a Geophysical Survey Systems SIR 2000 instrument with a 400 MHz antenna.

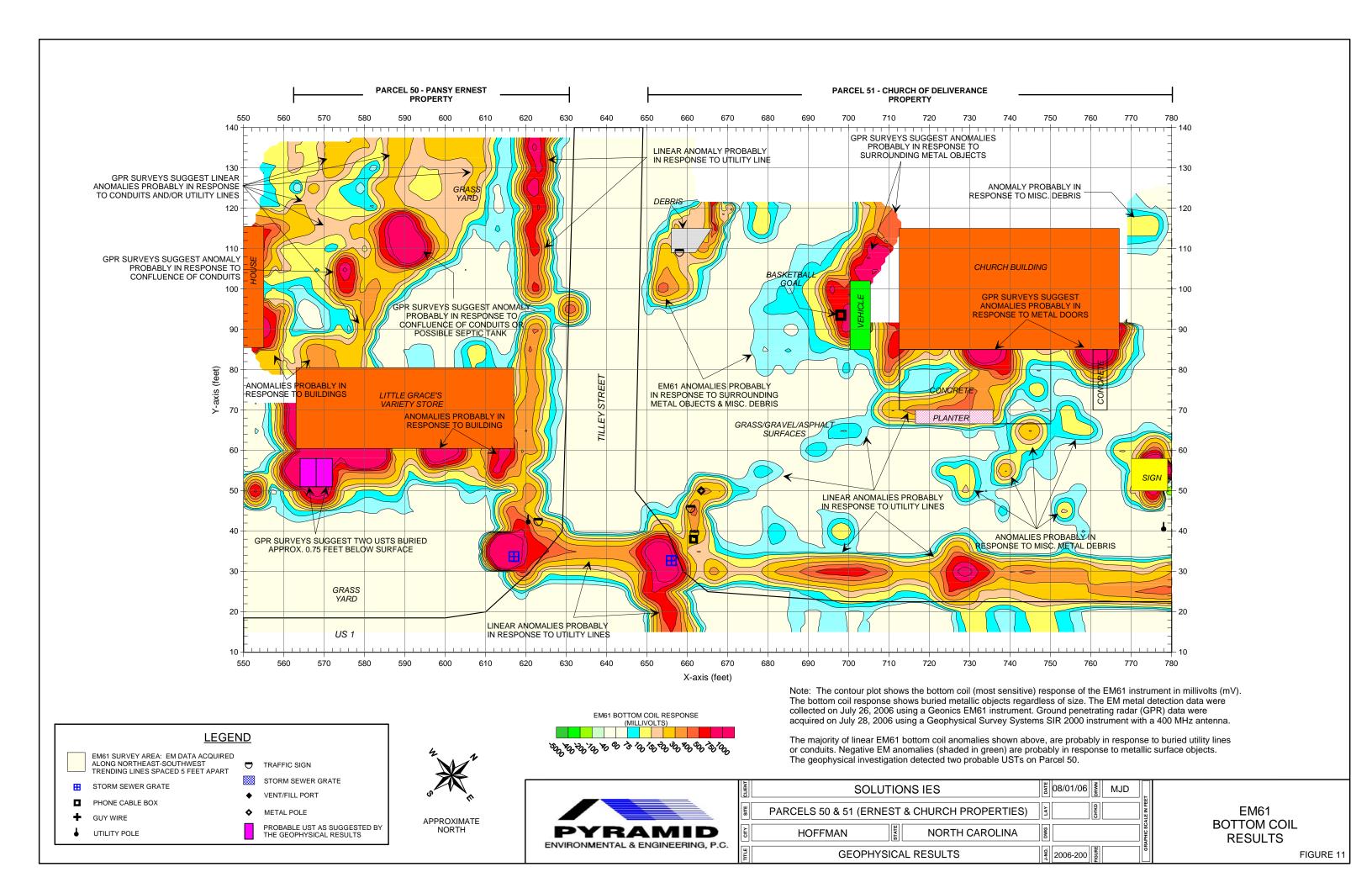
GPR surveys suggest that the large, high amplitude, EM61 anomaly in the southwest portion of the survey area is probably in response to four metallic USTs.

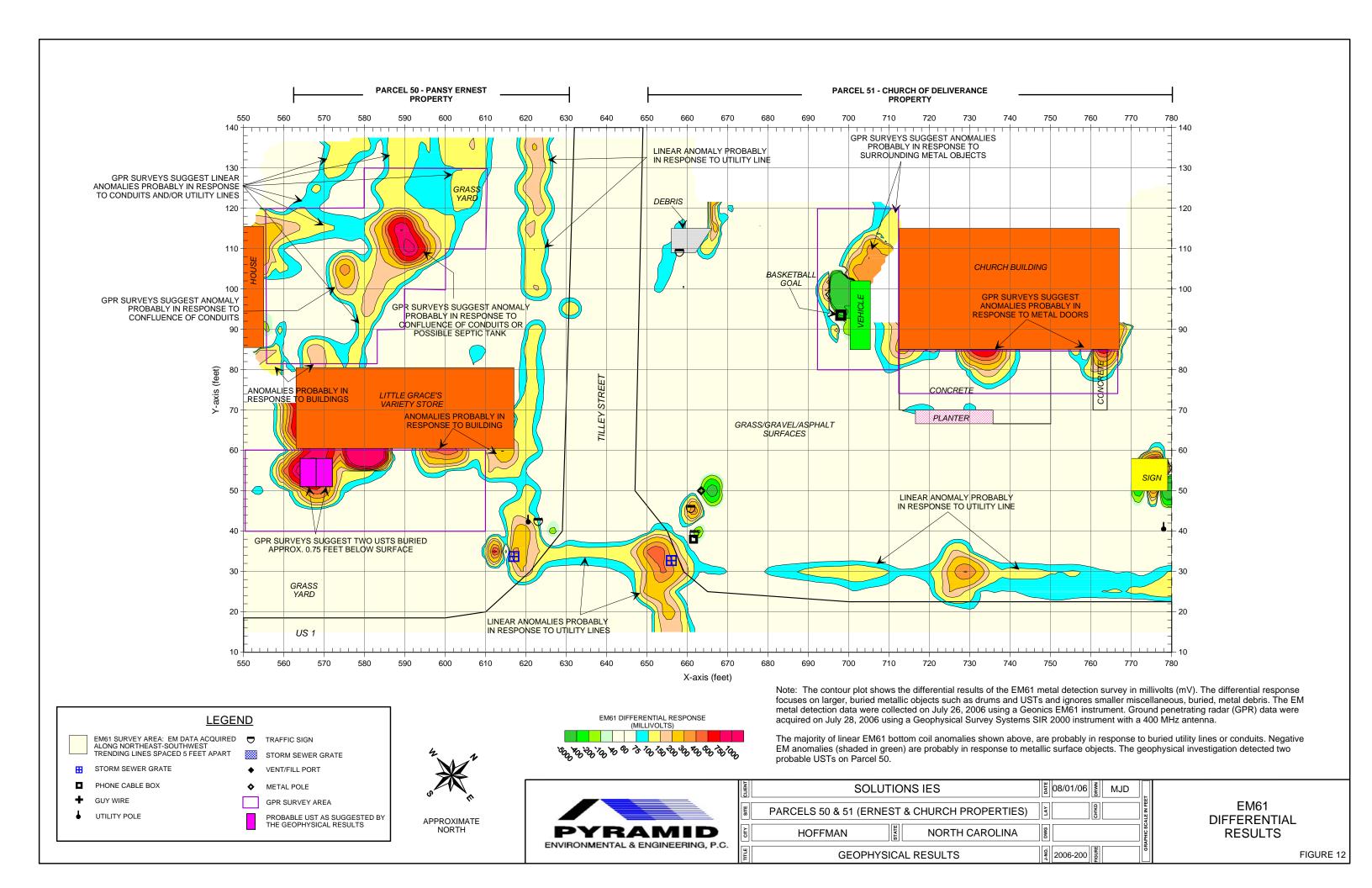


	CLIENT	SOLUTIONS IES	08/17/06 NM MJD	F
	SITE	PARCEL 21 - JAMES BRIGMAN PROPERTY	CHKD	ILE IN FEE
>	CITY	MARSTON	DWG	APHIC SCA
P.C.	ПТСЕ	GEOPHYSICAL RESULTS		GRA

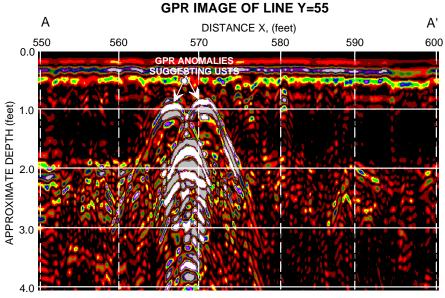
EM61 DIFFERENTIAL RESULTS

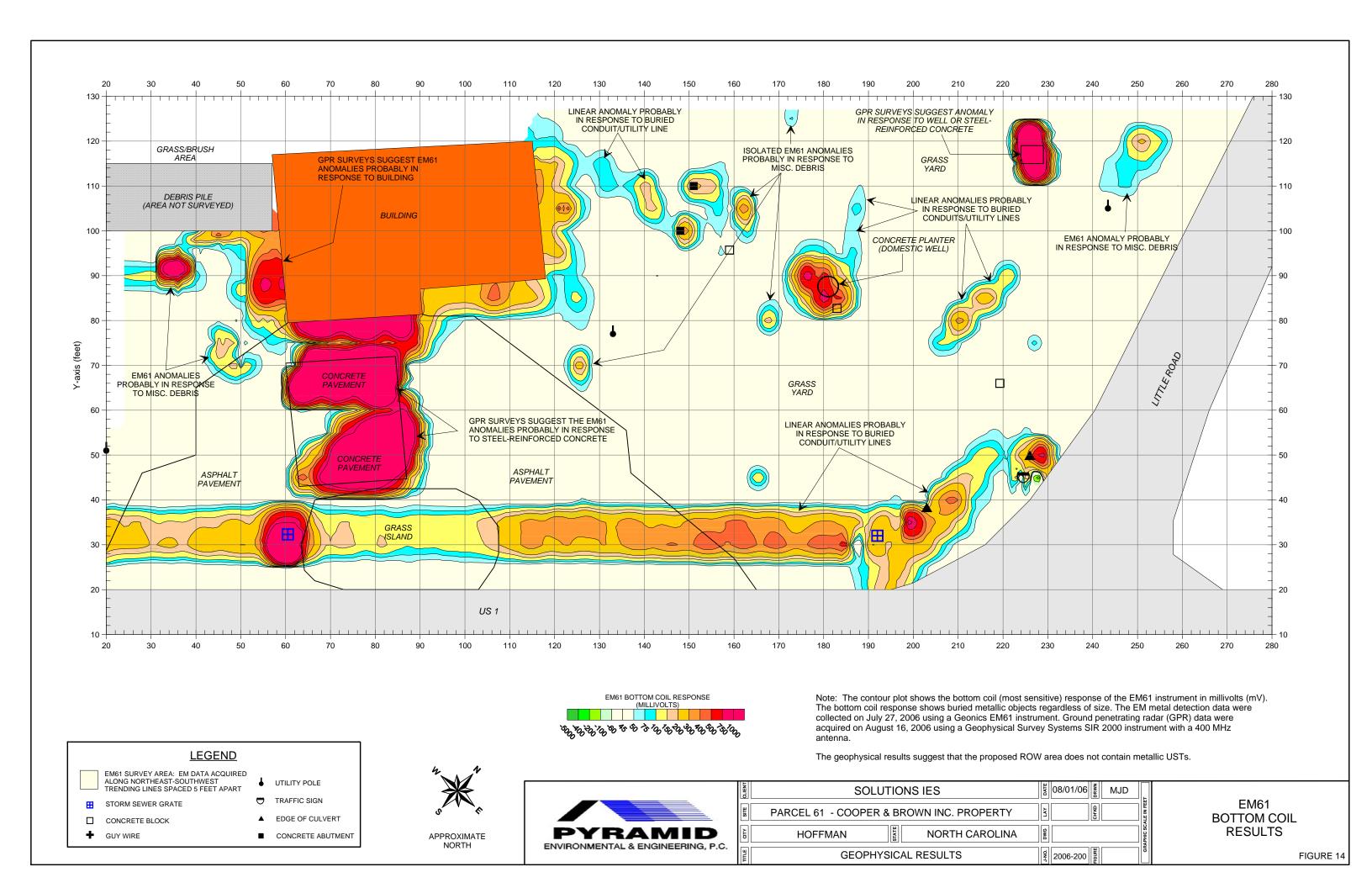

The photograph shows the location of four probable USTs buried 1.75 to 2.0 feet below surface, as suggested by the geophysical results at Parcel 21.

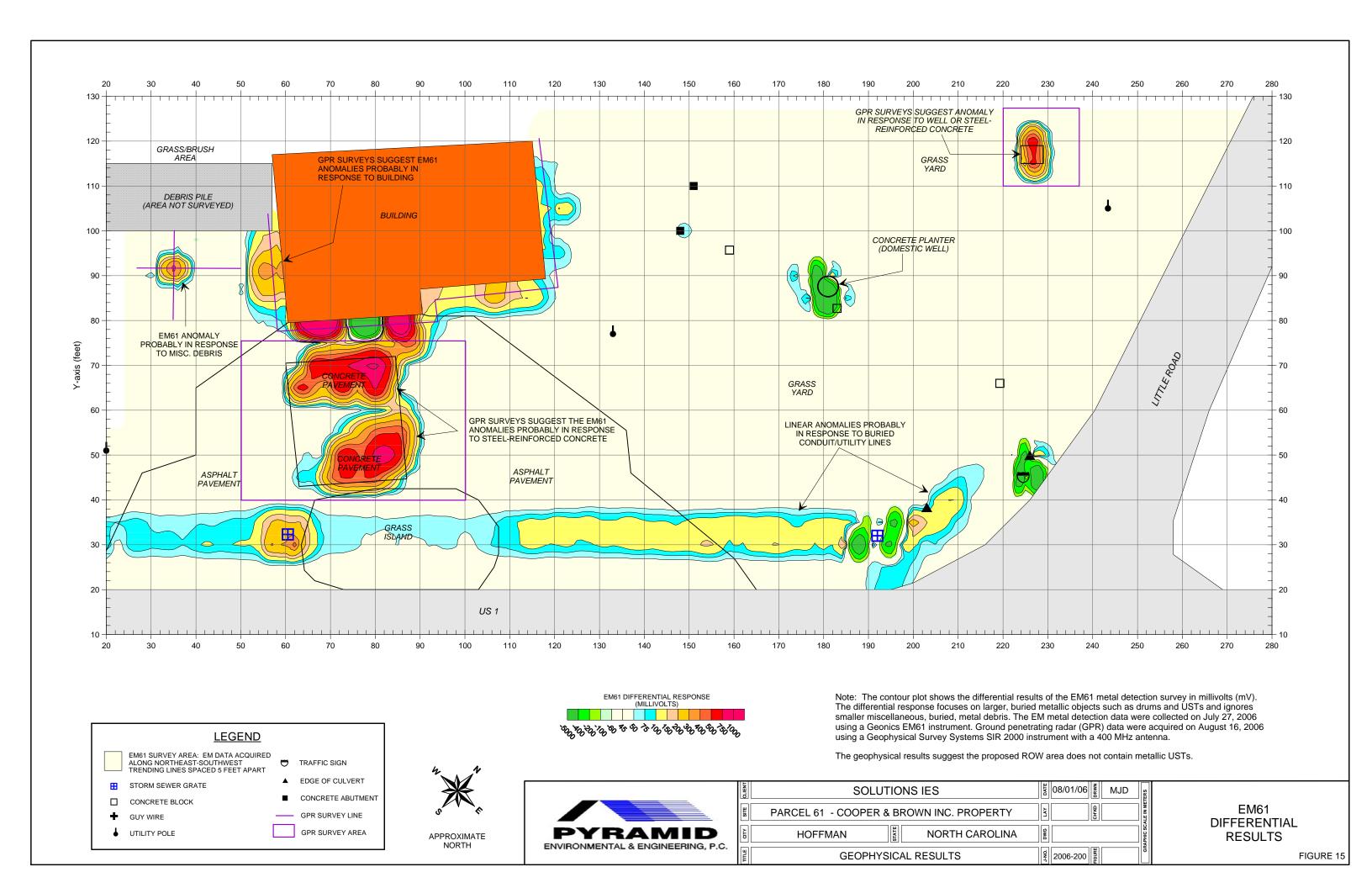


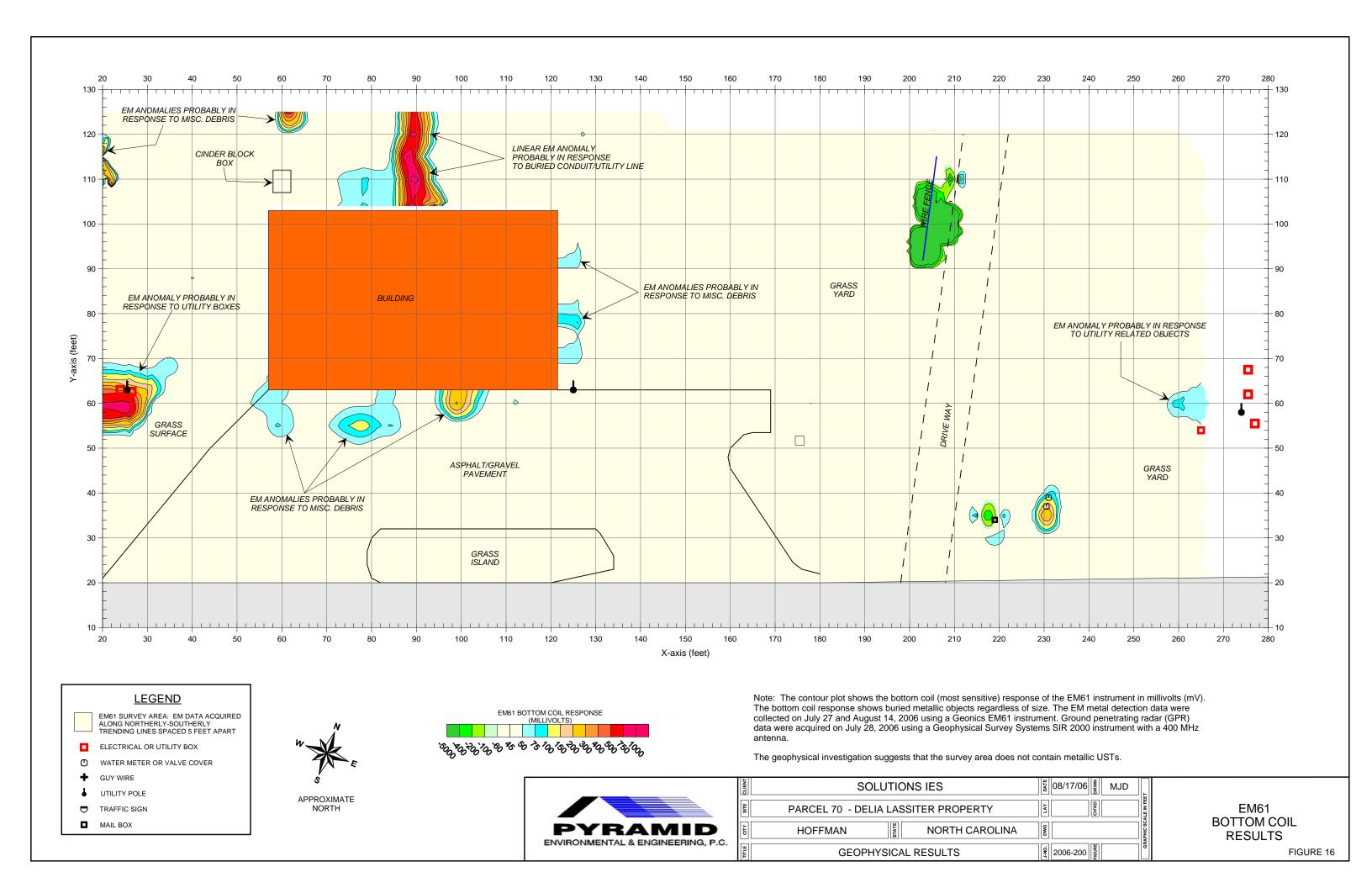

The GPR image obtained along a portion of survey line Y=80, shows the anomalies that are probably in response to USTs near X=43 and X=50, and buried approximately 2.0 and 1.5 feet below surface, respectively. The location of this GPR image is shown with a solid purple line in the above photograph.

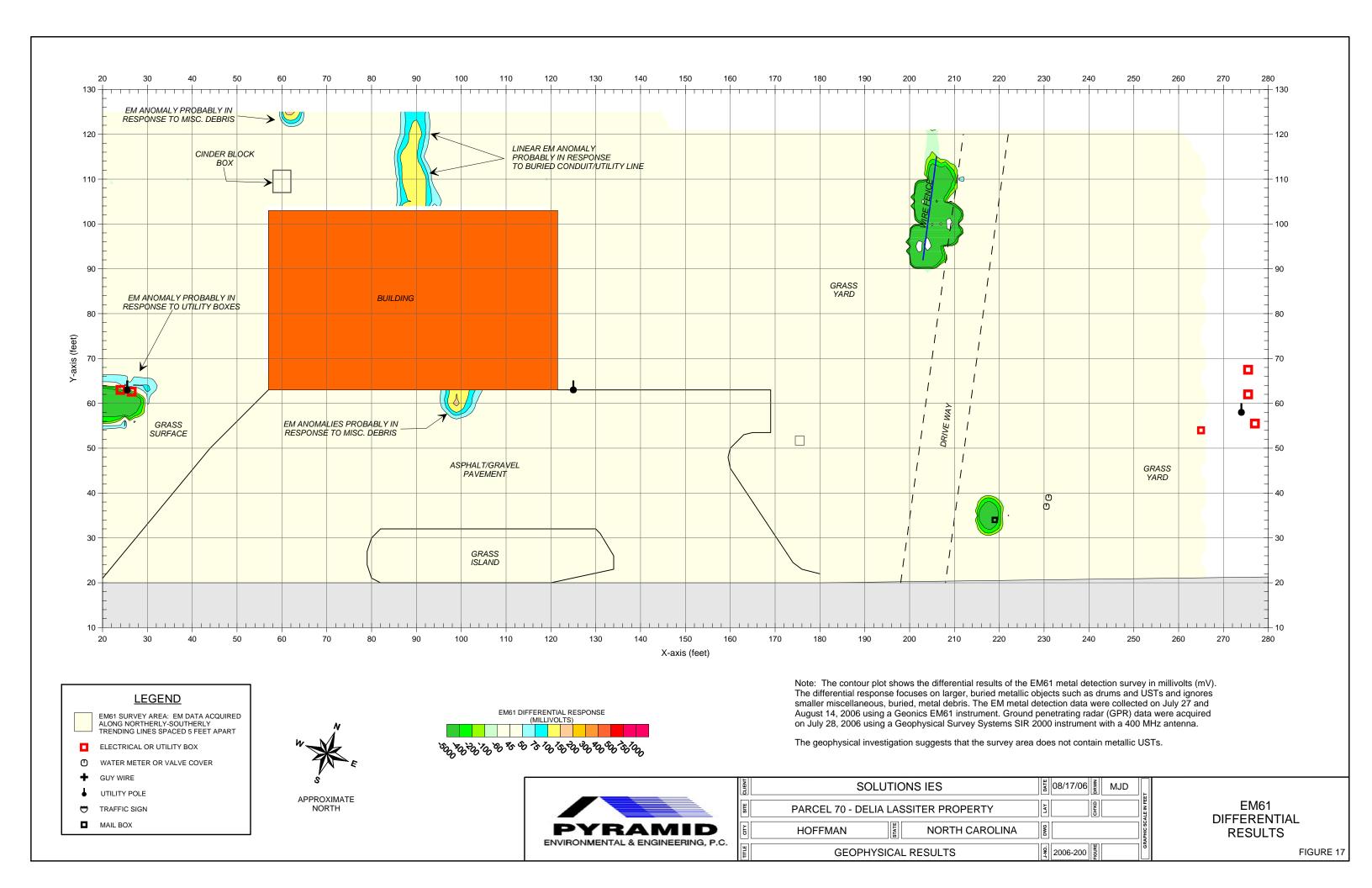
Ī	CLIENT	SOLUTIONS IES	EET
l	SITE	PARCEL 21 - JAMES BRIGMAN PROPERTY	E IN
l	CITY	MARSTON	GRAPHIC SCA
l	III.	GEOPHYSICAL RESULTS	GRA

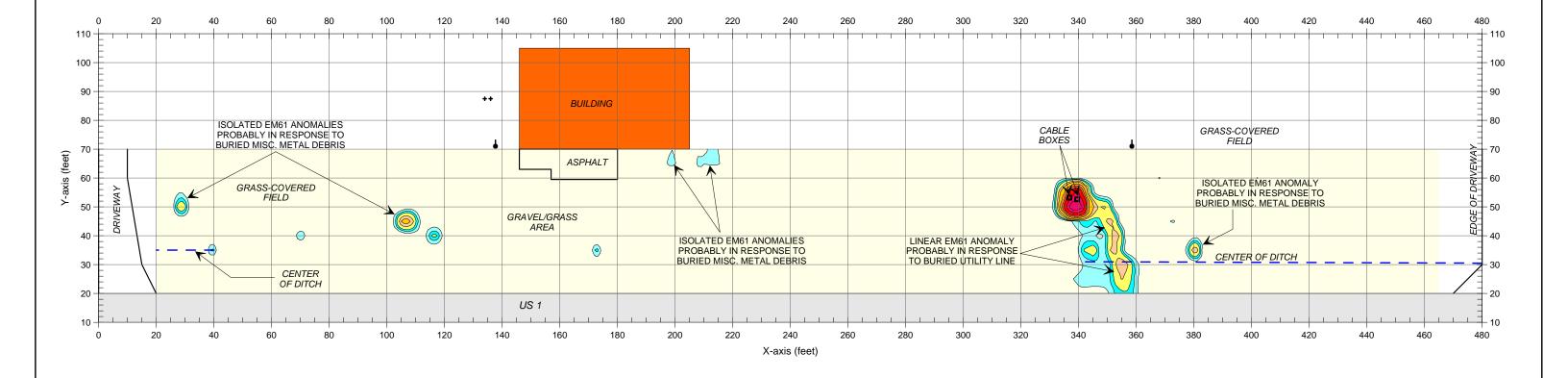


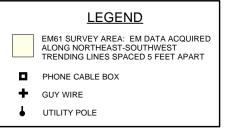

The photograph shows the location of two probable USTs buried approx. 0.75 feet below surface, as suggested by the geophysical results at Parcel 50.

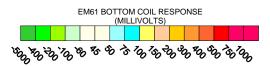


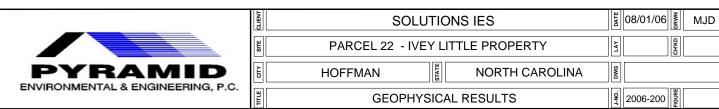

The GPR image obtained along survey line Y=55 shows the anomalies that are probably in response to USTs near X=566 and X=570, and buried approximately 0.75 feet below surface. The location of this GPR image is shown with a solid purple line in the above photograph.

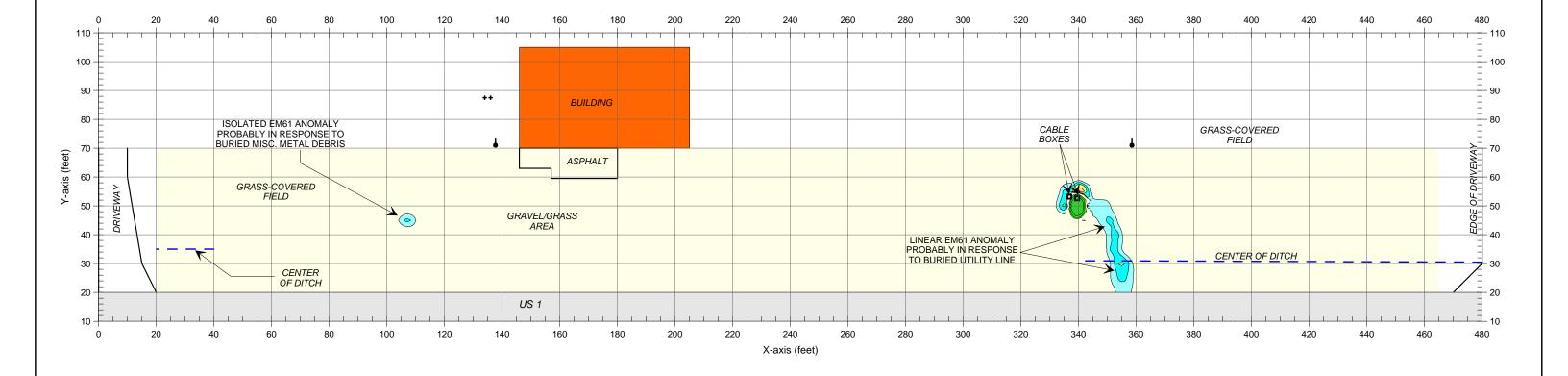


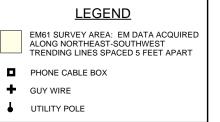

CLIENT	SOLUTIONS IES	08/26/05	
SITE	PARCEL 50 (PANSY ERNEST PROPERTY)	OH'KD CH'KD	ALE IN PE
СПТ	MARSTON NORTH CAROLINA	DMG	APHIC SC
тте	GEOPHYSICAL RESULTS	2006-200	g



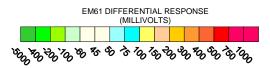




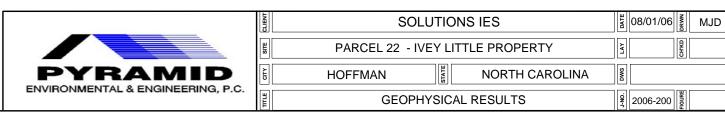

Note: The contour plot shows the bottom coil (most sensitive) response of the EM61 instrument in millivolts (mV). The bottom coil response shows buried metallic objects regardless of size. The EM metal detection data were collected on July 27, 2006 using a Geonics EM61 instrument. Ground penetrating radar (GPR) data were acquired on July 28, 2006 using a Geophysical Survey Systems SIR 2000 instrument with a 400 MHz antenna.

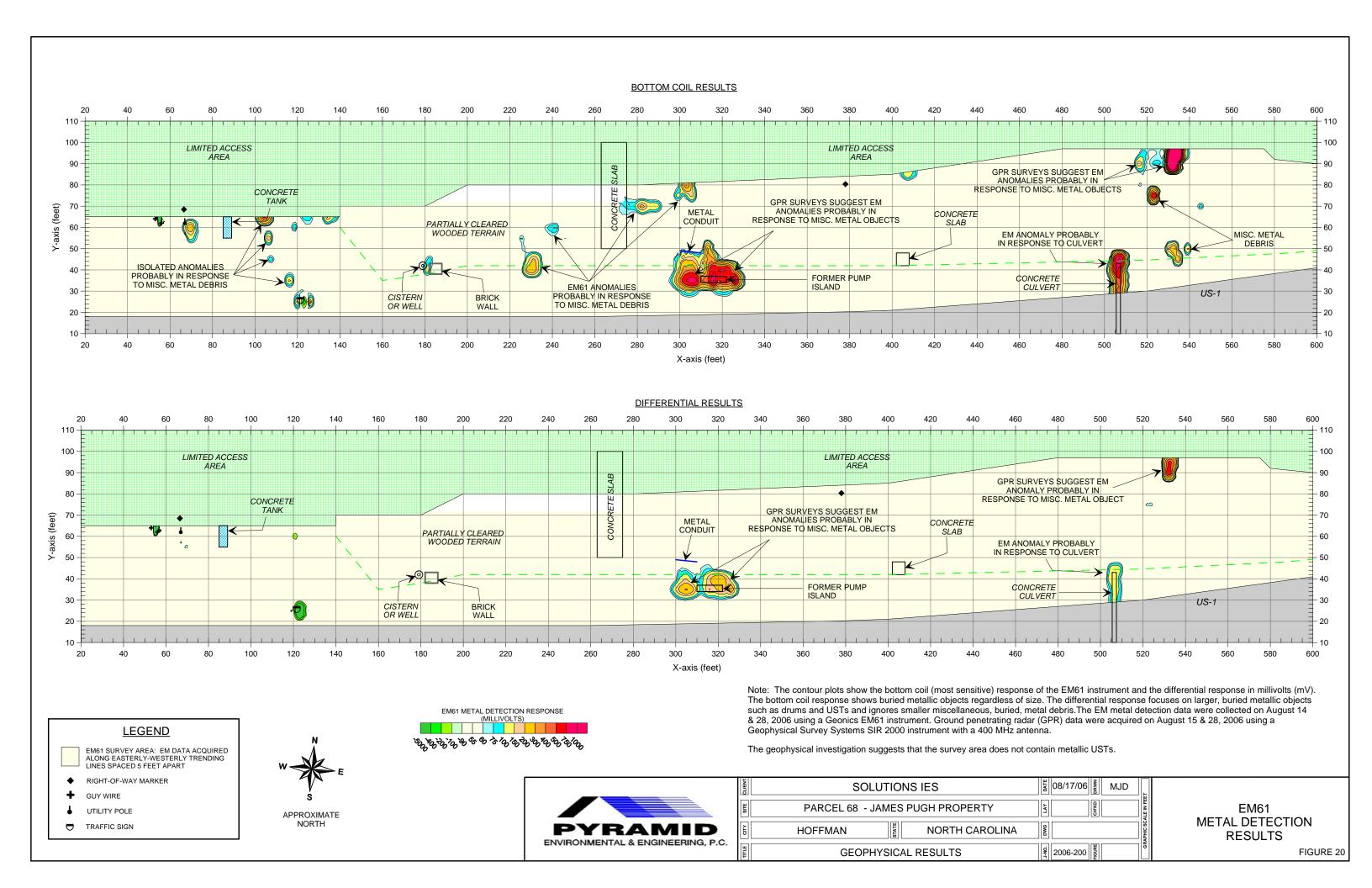

[2006-200

The geophysical investigation suggests that the survey area does not contain metallic USTs.



EM61 **BOTTOM COIL** RESULTS





Note: The contour plot shows the differential results of the EM61 metal detection survey in millivolts (mV). The differential response focuses on larger, buried metallic objects such as drums and USTs and ignores smaller miscellaneous, buried, metal debris. The EM metal detection data were collected on July 27, 2006 using a Geonics EM61 instrument. Ground penetrating radar (GPR) data were acquired on July 28, 2006 using a Geophysical Survey Systems SIR 2000 instrument with a 400 MHz antenna.

The geophysical investigation suggests that the survey area does not contain metallic USTs.

EM61 DIFFERENTIAL RESULTS

APPENDIX C
BORING LOGS

Solutions-IES Project No.: 3260.06A3.NDOT

Boring Number: 1

Client: NCDOT WBS # 34438.1.1

State Project # R-2502A Drilling Method: Direct Push Sampler Type: Macro Core

Project: Richmond County PSA's

Logged By: K B

County: Richmond

Boring Date: 08/24/06 Site: Parcel 21

Checked Ry: \

Initial Water Level: NA Stabilized Water Level: NA

Cave In Depth: NA

Total Depth of Boring: 12' bgs

Logge	а ву.		JN		Total Depth of B	oring:	12' bgs
		SUBSURFACE PROFILE	SAM	PLE		£	
Depth ft. bgs	USCS Symbol	Description	Sample Interval	% Recovery	PID Field Screen	Lab Sample Depth	Well Data
0-		Ground Surface					
1-		SM Moist, brown and orange, fine silty sand		100	0		
3-				100	0		
5-				100	o		
7-				100	0		
9-		SM		100	0		
10- 11- 12-		Moist, orange, fine silty sand		100	0		
13							
14-							
16							

Project: Richmond County PSA's Solutions-IES Project No.: 3260.

Solutions-IES Project No.: 3260.06A3.NDOT Boring Number: 2

Client: NCDOT WBS # 34438.1.1

State Project # R-2502A

Drilling Method: Direct Push

Sampler Type: Macro Core

Logged By: K.B

County: Richmond Boring Date: 08/24/06

Site: Parcel 21
Checked By: \(\infty \)

Initial Water Level: NA Stabilized Water Level: NA

Cave In Depth: NA

Total Depth of Boring: 12' bgs

Logge	а ву.	: K.B Checked By	JO		Total Depth of B	oring:	12' bgs
		SUBSURFACE PROFILE	SAM	PLE		5	
Depth ft. bgs	USCS Symbol	Description	Sample Interval	% Recovery	PID Field Screen	Lab Sample Depth	Well Data
0-		Ground Surface					
1-		SM Moist, brown and orange, fine silty sand		100	0		
3 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 -				100	0		
5				100	0		
7-				100	0		
9-				100	0		
11-		SM Moist, tan and orange, fine silty sand		100	o		
13 14 15	1						
16-							

Project: Richmond County PSA's Solutions-IES Project No.: 3260.06A3.NDOT

Boring Number: 3

Client: NCDOT WBS # 34438.1.1

State Project # R-2502A Drilling Method: Direct Push

Sampler Type: Macro Core

Logged By: K.B

County: Richmond Boring Date: 08/24/06

Site: Parcel 21 Checked By: Initial Water Level: NA Stabilized Water Level: NA

Cave In Depth: NA

Total Depth of Boring: 12' bgs

Loggea By		-		Total Depth of B	oring:	12 bgs
	SUBSURFACE PROFILE	SAM	PLE	DID FI-14 C	£	
Depth bgs	Description	Sample Interval	% Recovery	PID Field Screen	Lab Sample Depth	Well Data
0	Ground Surface					
1-111	SM Moist, orange, fine silty sand		100	0		
3			100	0		
5	SM Moist, tan and brown, fine silty sand		100	1		
7			100	0		
9-1-1-1	SM		100	1		
11 111	Moist, brown and tan, fine silty sand SM	$-\Pi$	100	1		
12	Moist, orange and tan, fine silty sand					
14-						
16-						

Solutions-IES Project No.: 3260.06A3.NDOT

Project: Richmond County PSA's

Boring Number: 4

Client: NCDOT WBS # 34438.1.1

State Project # R-2502A Drilling Method: Direct Push Sampler Type: Macro Core

Logged By: K.B

County: Richmond Boring Date: 08/24/06

Site: Parcel 21 Checked By: Initial Water Level: NA Stabilized Water Level: NA

Cave In Depth: NA

Total Depth of Boring: 12' bgs

Logged	г Бу.		-		l otal Depth of B	oring:	12 bgs
		SUBSURFACE PROFILE	SAM	PLE	PID Field Screen	pth	
Depth ft. bgs	USCS Symbol	Description	Sample Interval	% Recovery	• ppm • 250 500 750 FID Field Screen • ppm • 250 500 750	Lab Sample Depth	Well Data
0-		Ground Surface					
1-1		SM Moist, brown, fine silty sand		100 -	7		
3-1		SM Moist, tan and brown, fine silty sand		100	2		
5				100	8		
7-		SM Moist, tan and orange, fine silty sand		100	11		
9				100	8		
10-1				100	2		
13-							
14-							
16-							

Solutions-IES Project No.: 3260.06A3.NDOT

Boring Number: 5

Client: NCDOT WBS # 34438.1.1

State Project # R-2502A Drilling Method: Direct Push Sampler Type: Macro Core

Project: Richmond County PSA's

Logged By: K.B

County: Richmond

Boring Date: 08/24/06

Site: Parcel 21
Checked By: W

Initial Water Level: NA Stabilized Water Level: NA

Cave In Depth: NA

Total Depth of Boring: 12' bgs

Logged	т Ву.	,	M		Total Depth of B	oring:	12' bgs
		SUBSURFACE PROFILE	SAN	IPLE		=	
Depth ft. bgs	USCS Symbol	Description	Sample Interval	% Recovery	PID Field Screen	Lab Sample Depth	Well Data
0-		Ground Surface					
1-1		SM Moist, brown, fine silty sand SM Moist, tan and brown, fine silty sand		100	0		
3				100	o		
5		No recovery		0	0		
7-				0	0		* ₂ =
9 10		SM Moist, tan, fine silty sand		100	1		
11 -		SM		100	1		
13-		Moist, orange, fine silty sand					
14-							
16-							

Project: Richmond County PSA's

Solutions-IES Project No.: 3260.06A3.NDOT

Boring Number: 6

Client: NCDOT WBS # 34438.1.1

State Project # R-2502A

Drilling Method: Direct Push Sampler Type: Macro Core

Logged By: K.B

County: Richmond

Boring Date: 08/24/06

Site: Parcel 21

Checked By: VO

Initial Water Level: NA Stabilized Water Level: NA

Cave In Depth: NA

Total Depth of Boring: 12' bas

PID Field Screen da ⊕ ppm ● □ □ ≥ 250 500 750 ⊕	Logge	л Бу.				Total Depth of B	loring:	12' bgs
Ground Surface SM Moist, brown and orange, fine silty sand 100 100 100 100 100 100 100 1			SUBSURFACE PROFILE	SAN	IPLE		£	
SM Moist, brown and orange, fine silty sand 100 100 100 100 100 100 100 1	Depth ft. bgs	USCS Symbol	Description	Sample Interval	% Recovery	* ppm * 250 500 750 FID Field Screen	Lab Sample Dep	Well Data
Moist, brown and orange, fine silty sand 100 100 100 100 100 100 100 1	0		Ground Surface					
3	1-		SM		100	0		
6	3				100	0		
8 1 1 1 9 1 100 1	4				100	1		
Moist, tan and orange, fine silty sand 10 11 12 13 14	7-				100	1		
11 100 1	=				100	1		
14-	=				100	1		
	=							
16-	15-							

Project: Richmond County PSA's

Solutions-IES Project No.: 3260.06A3.NDOT

Boring Number: 7

Client: NCDOT WBS # 34438.1.1

State Project # R-2502A

Drilling Method: Direct Push Sampler Type: Macro Core

Logged By: K.B

County: Richmond

Boring Date: 08/24/06

Site: Parcel 21 Checked By: Initial Water Level: NA Stabilized Water Level: NA

Cave In Depth: NA

Total Depth of Boring: 8' bgs

Depth ft. bgs	SUBSURFACE PROFILE	SAM		PID Field Screen	e Depth	
nscs	Description	Sample Interval	% Recovery	FID Field Screen ppm 250 500 750	Lab Sample Depth	Well Data
0	Ground Surface					
0	Asphalt					
1-11	SM Moist, orange, fine silty sand		100	0		i e
2 3 44					ĺ	
3-1-1	SM Moist, brown and orange, fine silty sand		100	1		
5	SM Moist, orange, fine silty sand		100	1		
6-11-11 7-11-11-11-11-11-11-11-11-11-11-11-11-11	SM	-11	100	1		
8 4 4 4	Moist, tan, fine silty sand					
10-						
12-						
14-						
	I and the second	1	I		1	l
15-						

Project: Richmond County PSA's

Solutions-IES Project No.: 3260.06A3.NDOT

Boring Number: 8

Client: NCDOT

WBS # 34438.1.1

State Project # R-2502A

Drilling Method: Direct Push

Sampler Type: Macro Core

Logged By: K.B

County: Richmond

Boring Date: 08/24/06

Site: Parcel 21

Checked By: 30

Initial Water Level: NA

Stabilized Water Level: NA

Cave In Depth: NA

Total Depth of Boring: 8' bgs

	SUBSURFACE PROFILE	SAM	PLE	DID Field Correct	th	
Depth ft. bgs	Description	Sample Interval	% Recovery	PID Field Screen	Lab Sample Depth	Well Data
0	Ground Surface					
1 2 2	SM Moist, brown, fine silty sand		100	0		
3 = 111	SM Moist, orange, fine silty sand		100	1		
5	Moist, brown and tan, fine silty sand SM Moist, orange, fine silty sand SM		100	1		
7-11	Moist, orange, fine silty sand		100	1		
9 10 11 12 13 14 15						

Project: Richmond County PSA's Solutions-IES Project No.: 3260.06A3.NDOT

Boring Number: 9

Client: NCDOT WBS # 34438.1.1

State Project # R-2502A Drilling Method: Direct Push

Sampler Type: Macro Core

Logged By: K.B.

County: Richmond

Boring Date: 08/24/06

Site: Parcel 21 Checked By: Initial Water Level: NA Stabilized Water Level: NA

Cave In Depth: NA

Logge	d By		Checked By:	Ou		Total Depth of B	oring:	8' bgs
		SUBSURFACE PROFILE		SAM	PLE		£	
Depth ft. bgs	USCS Symbol	Description		Sample Interval	% Recovery	PID Field Screen	Lab Sample Depth	Well Data
0-		Ground Surface						
1-		SM Moist, brown and tan, fine silty sa	nd		100	0		
3		SM Moist, orange, medium silty sand			100	o		
5		SM Moist, dark brown, fine silty sand SM Moist, orange, fine silty sand			100	0		
7-		CM			100	o		
10 11 12 13 14 14		SM Moist, tan, fine silty sand						
15- 16-								

Project: Richmond County PSA's

Solutions-IES Project No.: 3260.06A3.NDOT

Boring Number: 10

Client: NCDOT WBS # 34438.1.1

State Project # R-2502A Drilling Method: Direct Push

Sampler Type: Macro Core

Logged By: K.B

County: Richmond

Boring Date: 08/24/06

Site: Parcel 21 Checked By: JD Initial Water Level: NA Stabilized Water Level: NA

Cave In Depth: NA

Total Depth of Boring: 8' bgs

Logge	и Бу	, ,	*		Total Depth of B	oring:	B' bgs
		SUBSURFACE PROFILE	SAM	PLE		£	
Depth ft. bgs	USCS Symbol	Description	Sample Interval	% Recovery	PID Field Screen	Lab Sample Depth	Well Data
0-		Ground Surface					
1-		SM Moist, brown and tan, fine silty sand		100	1		
3		SM Moist, orange, fine silty sand SM Moist, dark brown, fine silty sand		100	1		
5-		SM Moist, tan and orange, fine silty sand		100	2		
7-		SM Moist, tan, fine silty sand		100	1		
10-11-12-13-13-13-1		more, terr, mile only deriv					
14-							

Project: Richmond County PSA's

Solutions-IES Project No.: 3260.06A3.NDOT

Boring Number: 11

Client: NCDOT WBS # 34438.1.1

State Project # R-2502A

Drilling Method: Direct Push Sampler Type: Macro Core

Logged By: K.B

County: Richmond

Boring Date: 08/24/06

Site: Parcel 21

Initial Water Level: NA Stabilized Water Level: NA

Cave In Depth: NA

Total Depth of Boring: 8' bgs

Logge	d By.	K.B	Checked By: JP		Total Depth of B	oring:	8' bgs
		SUBSURFACE PROFILE	SAN	IPLE		£	
Depth ft. bgs	USCS Symbol	Description	Sample	% Recovery	PID Field Screen	Lab Sample Depth	Well Data
0-		Ground Surface					
1-		SM Moist, brown, fine silty sand		100	1		
3-		SM Moist, tan, fine silty sand SM Moist, orange, fine silty sand		100	2		
5-				100	2		
6- 7- 8-		SM Moist, orange and tan, fine silty sa SM Moist, tan and orange, fine silty sa		100	2		·
9-							
11-							
13 14							
15- 16-							

APPENDIX D GPS COORDINATES OF BORING LOCATIONS

Appendix D GPS Coordinates of Boring Locations Parcel 21, James Brigman Property 2589 U.S. Highway 1

Richmond County, North Carolina WBS Element: 34438.1.1; NCDOT Project R-2502A

Boring Identification	Northing	Easting
P21-B1	34.99196151	-79.57554731
P21-B2	34.99200384	-79.57550833
P21-B3	34.99200921	-79.57550330
P21-B4	34.99200770	-79.57550179
P21-B5	34.99195036	-79.57549978
P21-B6	34.99199932	-79.57537254
P21-B7	34.99198708	-79.57538646
P21-B8	34.99188901	-79.57545846
P21-B9	34.99204868	-79.57519501
P21-B10	34.99226402	-79.57520407
P21-B11	34.99196009	-79.57527825

Notes:

APPENDIX E LABORATORY ANALYTICAL REPORTS

Case Narrative

Date:

09/01/06

Company: N. C. Department of Transportation

Contact:

Sheri Knox

Address: c/o Solution - IES

1101 Nowell Road Raleigh, NC 27607 **Client Project ID:**

NCDOT Parcel 21

Prism COC Group No:

G0806789

Collection Date(s):

08/24/06

Lab Submittal Date(s):

08/25/06

Client Project Name Or No: Richmond Co. WBS# 34438.1.1

This data package contains the analytical results for the project identified above and includes a Case Narrative, Laboratory Report and Quality Control Data totaling 13 pages. A chain-of-custody is also attached for the samples submitted to Prism for this project,

Data qualifiers are flagged individually on each sample. A key reference for the data qualifiers appears at the end of this case narrative. Quality control statements and/or sample specific remarks are included in the sample comments section of the laboratory report for each sample affected.

Semi Volatile Analysis

No Anomalies Reported

Volatile Analysis

No Anomalies Reported

Metals Analysis

N/A

Wet Lab and Micro Analysis

N/A

Please call if you have any questions relating to this analytical report.

Date Reviewed by:

Robbi A. Jones

Project Manager:

Signature:

Review Date:

Signature:

Approval Date:

09/01/06

Data Qualifiers Key Reference:

- B: Compound also detected in the method blank.
- #: Result outside of the QC limits.
- DO: Compound diluted out.
 - E: Estimated concentration, calibration range exceeded.
 - J: The analyte was positively identified but the value is estimated below the reporting limit.
 - H: Estimated concentration with a high bias.
 - L: Estimated concentration with a low bias.
- M: A matrix effect is present.

Notes: This report should not be reproduced, except in its entirety, without the writtten consent of Prism Laboratories, Inc. The results in this report relate only to the samples submitted for analysis.

Laboratory Report

09/01/06

N. C. Department of Transportation

Attn: Sheri Knox c/o Solution - IES 1101 Nowell Road Raleigh, NC 27607 Project Name: Richmond Co.

Project ID: Project No.: NCDOT Parcel 21 WBS# 34438.1.1

Sample Matrix: Soil

Client Sample ID: P21.B1 10-12

Prism Sample ID: 159501

COC Group:

G0806789

Time Collected:

08/24/06

Time Submitted:

08/25/06 15:35

10:00

Parameter	Result	Units	Report Limit	MDL	Dilution Factor	Method	Analysis Date/Time	Analyst	Batch ID
Percent Solids Determination Percent Solids	91.1	%			1	SM2540 G	08/29/06 14:30	lbrown	
<u>Diesel Range Organics (DRO) by G</u> Diesel Range Organics (DRO)	GC-FID BRL	mg/kg	7.7	1.9	1	8015B	08/29/06 16:45	jvogel	Q17404
Sample Preparatio	n:		5	0 g /	2 mL	3550 B	08/29/06 8:30	dpope	P16228
					Surrogate		% Recovery	Cont	rol Limits
					o-Terphen	yl	117	4	8 - 130
Sample Weight Determination									
Weight 1	5.53	g			1	GRO	08/28/06 0:00	lbrown	
Weight 2	5.33	g			1	GRO	08/28/06 0:00	Ibrown	
Gasoline Range Organics (GRO) b	y GC-FID								
Gasoline Range Organics (GRO)	BRL	mg/kg	7.7	3.0	50	8015B	08/30/06 19:50	grappaccioli	Q17406
					Surrogate		% Recovery	Cont	rol Limits
					aaa-TFT		102		5 - 129

Sample Comment(s):

BRL = Below Reporting Limit

J = Estimated value between the Reporting Limit and the MDL

The results in this report relate only to the samples submitted for analysis and meet state certification requirements other than NELAC certification except for those instances indicated in the case narrative and/or test comments.

All results are reported on a dry-weight basis

Laboratory Report

09/01/06

N. C. Department of Transportation

Attn: Sheri Knox c/o Solution - IES 1101 Nowell Road Raleigh, NC 27607 Project Name: Richmond Co.

Project ID: Project No.: WBS# 34438.1.1

NCDOT Parcel 21

Sample Matrix: Soil

Client Sample ID: P21.B2 10-12

Prism Sample ID: 159502

COC Group: Time Collected: G0806789

08/24/06 10:15

Time	Submitted:	08/2	5/06

15:35

Parameter	Result	Units	Report Limit	MDL	Dilution Factor	Method	Analysis Date/Time	Analyst	Batch ID
Percent Solids Determination Percent Solids	96.8	%			1	SM2540 G	08/29/06 14:30	lbrown	
Diesel Range Organics (DRO) by G Diesel Range Organics (DRO)	<u>C-FID</u> BRL	11	7.2	1.8	4	8015B	00/00/00 47/00	h	047404
blesel Range Organics (DRO)	BKL	mg/kg	1.2	1.0	1	80108	08/29/06 17:22	jvogel	Q17404
Sample Preparation:			49.58	g /	2 mL	3550B	08/29/06 8:30	dpope	P16228
*					Surrogate	1	% Recovery	Cont	rol Limits
					o-Terphen	yl	98	4	8 - 130
Sample Weight Determination									
Weight 1	5.09	g			1	GRO	08/28/06 0:00	lbrown	
Weight 2	4.93	g			1	GRO	08/28/06 0:00	lbrown	
Gasoline Range Organics (GRO) by	GC-FID								
Gasoline Range Organics (GRO)	BRL	mg/kg	7.2	2.8	50	8015B	08/30/06 20:32	grappaccioli	Q17406
					Surrogate		% Recovery	Cont	rol Limits
					aaa-TFT		129		55 - 129

Sample Comment(s):

BRL = Below Reporting Limit

J = Estimated value between the Reporting Limit and the MDL

The results in this report relate only to the samples submitted for analysis and meet state certification requirements other than NELAC certification except for those instances indicated in the case narrative and/or test comments.

All results are reported on a dry-weight basis

Laboratory Report

09/01/06

N. C. Department of Transportation

Attn: Sheri Knox c/o Solution - IES 1101 Nowell Road Raleigh, NC 27607

Project Name: Richmond Co.

Project ID:

NCDOT Parcel 21

Project No.:

WBS# 34438.1.1

Sample Matrix: Soil

Client Sample ID: P21.B3 10-12

Prism Sample ID: 159503

COC Group: Time Collected: G0806789 10:35

08/24/06

Time Submitted: 08/25/06 15:35

Parameter	Result	Units	Report Limit	MDL	Dilution Factor	Method	Analysis Date/Time	Analyst	Batch ID
Percent Solids Determination Percent Solids	95.2	%			1	SM2540 G	08/29/06 14:30	lbrown	
<u>Diesel Range Organics (DRO) by G</u> Diesel Range Organics (DRO)	<u>C-FID</u> BRL	mg/kg	7.4	1.8	1	8015B	08/29/06 17:59	jvogel	Q17404
Sample Preparation:			50.01	g /	2 mL	3550 B	08/29/06 8:30	dpope	P16228
					Surrogate		% Recovery	Cont	rol Limits
					o-Terphen	yl	116		8 - 130
Sample Weight Determination									
Weight 1	4.90	g			1	GRO	08/28/06 0:00	lbrown	
Weight 2	5.16	g			1	GRO	08/28/06 0:00	lbrown	
Gasoline Range Organics (GRO) by	GC-FID								
Gasoline Range Organics (GRO)	BRL	mg/kg	7.4	2.9	50	8015B	08/30/06 21:14	grappaccioli	Q17406
					Surrogate		% Recovery	Cont	rol Limits
					aaa-TFT		125	F	5 - 129

Sample Comment(s):

BRL = Below Reporting Limit

J = Estimated value between the Reporting Limit and the MDL

The results in this report relate only to the samples submitted for analysis and meet state certification requirements other than NELAC certification except for those instances indicated in the case narrative and/or test comments.

All results are reported on a dry-weight basis

Laboratory Report

09/01/06

N. C. Department of Transportation

Attn: Sheri Knox c/o Solution - IES 1101 Nowell Road Raleigh, NC 27607 Project Name: Richmond Co.

Project ID:

NCDOT Parcel 21

Project No.: WBS# 34438.1.1 Sample Matrix: Soil

Client Sample ID: P21.B4 6-8 Prism Sample ID: 159504

COC Group:

G0806789

Time Collected: Time Submitted: 08/25/06

08/24/06

11:00 15:35

Parameter	Result	Units	Report Limit	MDL	Dilution Factor	Method	Analysis Date/Time	Analyst	Batch ID
Percent Solids Determination Percent Solids	05.0	%			1	SM2540 G	00/00/00 44:00	lbrown	
Percent Solids	95.0	%			1	SM2540 G	08/29/06 14:30	ROPOWA	
Diesel Range Organics (DRO) by G									
Diesel Range Organics (DRO)	BRL	mg/kg	7.4	1.8	1	8015B	08/29/06 20:53	jvogel	Q17404
Sample Preparation:			50.11	g /	2 mL	3550B	08/29/06 8:30	dpope	P16228
					Surrogate	•	% Recovery	Cont	rol Limits
					o-Terphen	yl	122	4	18 - 130
Sample Weight Determination									
Weight 1	4.68	g			1	GRO	08/28/06 0:00	lbrown	
Weight 2	5.21	g			1	GRO	08/28/06 0:00	lbrown	
Gasoline Range Organics (GRO) by	/ GC-FID								
Gasoline Range Organics (GRO)	BRL	mg/kg	7.4	2.9	50	8015 B	08/30/06 21:56	grappaccioli	Q17406
					Surrogate		% Recovery	Cont	rol Limits
					aaa-TFT		127	F	55 - 129

Sample Comment(s):

BRL = Below Reporting Limit

J = Estimated value between the Reporting Limit and the MDL

The results in this report relate only to the samples submitted for analysis and meet state certification requirements other than NELAC certification except for those instances indicated in the case narrative and/or test comments.

All results are reported on a dry-weight basis

Laboratory Report

09/01/06

N. C. Department of Transportation

Attn: Sheri Knox c/o Solution - IES 1101 Nowell Road Raleigh, NC 27607 Project Name: Richmond Co.

Project ID:

NCDOT Parcel 21

Project No.:

WBS# 34438.1.1

Sample Matrix: Soil

Client Sample ID: P21.B5 8-10

Prism Sample ID: 159505

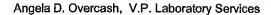
G0806789

COC Group: Time Collected:

08/24/06 11:20

Time Submitted:	08/25/06	15:35
-----------------	----------	-------

Parameter	Result	Units	Report Limit	MDL	Dilution Factor	Method	Analysis Date/Time	Analyst	Batch ID
Percent Solids Determination Percent Solids	90.5	%			1	SM2540 G	08/29/06 14:30	ibrown	
Diesel Range Organics (DRO) by G	<u>C-FID</u>								
Diesel Range Organics (DRO)	BRL	mg/kg	7.7	1.9	1	8015B	08/29/06 21:30	jvogel	Q17404
Sample Preparation:			50.01	g /	2 mL	3550B	08/29/06 8:30	dpope	P16228
					Surrogate)	% Recovery	Cont	rol Limits
					o-Terphen	yl	113	2	18 - 130
Sample Weight Determination					4	000			
Weight 1	5.07	g			1	GRO	08/28/06 0:00	lbrown	
Weight 2	5.03	· g			1	GRO	08/28/06 0:00	lbrown	
Gasoline Range Organics (GRO) by	GC-FID								
Gasoline Range Organics (GRO)	BRL	mg/kg	7.7	3.0	50	8015B	08/31/06 0:01	grappaccioli	Q17406
					•				
					Surrogate	,	% Recovery	Cont	rol Limits


Sample Comment(s):

BRL = Below Reporting Limit

J = Estimated value between the Reporting Limit and the MDL

The results in this report relate only to the samples submitted for analysis and meet state certification requirements other than NELAC certification except for those instances indicated in the case narrative and/or test comments.

All results are reported on a dry-weight basis

Laboratory Report

09/01/06

N. C. Department of Transportation

Attn: Sheri Knox c/o Solution - IES 1101 Nowell Road Raleigh, NC 27607 Project Name:

Richmond Co.

Project ID: Project No.: **NCDOT Parcel 21**

WBS# 34438.1.1

Sample Matrix: Soil

Client Sample ID: P21.B6 6-8 Prism Sample ID: 159506

COC Group:

G0806789

Time Collected: Time Submitted: 08/25/06

08/24/06

11:30 15:35

Parameter	Result	Units	Report Limit	MDL	Dilution Factor	Method	Analysis Date/Time	Analyst	Batch ID
Percent Solids Determination									
Percent Solids	79.7	%			1	SM2540 G	08/29/06 14:30	ibrown	
Diesel Range Organics (DRO) by G	C-FID								
Diesel Range Organics (DRO)	BRL	mg/kg	8.8	2.1	1	8015B	08/29/06 22:07	jvogel	Q17404
Sample Preparation:			50.06	g /	2 mL	3550B	08/29/06 8:30	dpope	P16228
					Surrogate	ı	% Recovery	Cont	rol Limits
					o-Terphen	yl	95		l8 - 130
Sample Weight Determination									
Weight 1	4.72	g			1	GRO	08/28/06 0:00	lbrown	
Weight 2	5.82	g			1	GRO	08/28/06 0:00	lbrown	
Gasoline Range Organics (GRO) by	y GC-FID								
Gasoline Range Organics (GRO)	BRL	mg/kg	8.8	3.4	50	8015B	08/31/06 0:42	grappaccioli	Q17406
					Surrogate		% Recovery	Cont	rol Limits
					aaa-TFT		104		55 - 129

Sample Comment(s):

BRL = Below Reporting Limit

J = Estimated value between the Reporting Limit and the MDL

The results in this report relate only to the samples submitted for analysis and meet state certification requirements other than NELAC certification except for those instances indicated in the case narrative and/or test comments.

All results are reported on a dry-weight basis

Laboratory Report

09/01/06

N. C. Department of Transportation

Attn: Sheri Knox c/o Solution - IES 1101 Nowell Road Raleigh, NC 27607

Project Name: Richmond Co.

Project ID: Project No.:

NCDOT Parcel 21 WBS# 34438.1.1

Sample Matrix: Soil

Client Sample ID: P21.B7 6-8

Prism Sample ID: 159507

COC Group:

G0806789

Time Collected:

08/24/06 13:35

Time Submitted:

08/25/06 15:35

Parameter	Result	Units	Report Limit	MDL	Dilution Factor	Method	Analysis Date/Time	Analyst	Batch ID
Percent Solids Determination									
Percent Solids	83.4	%			1	SM2540 G	08/29/06 14:30	lbrown	
Diesel Range Organics (DRO) by G									
Diesel Range Organics (DRO)	BRL	mg/kg	8.4	2.0	1	8015B	08/29/06 22:44	jvogel	Q17404
Sample Preparation:			49.84	g /	2 mL	3550B	08/29/06 8:30	dpope	P16228
					Surrogate)	% Recovery	Cont	rol Limits
					o-Terphen	yl	97		1 8 - 130
Sample Weight Determination									
Weight 1	5.71	g			1	GRO	08/28/06 0:00	Ibrown	
Weight 2	4.65	g			1	GRO	08/28/06 0:00	lbrown	
Gasoline Range Organics (GRO) b	y GC-FID								
Gasoline Range Organics (GRO)	BRL	mg/kg	8.4	3.3	50	8015B	08/31/06 1:23	grappaccioli	Q17406
					Surrogate		% Recovery	Cont	rol Limits
					aaa-TFT		88		55 - 129

Sample Comment(s):

BRL = Below Reporting Limit

J = Estimated value between the Reporting Limit and the MDL

The results in this report relate only to the samples submitted for analysis and meet state certification requirements other than NELAC certification except for those instances indicated in the case narrative and/or test comments.

All results are reported on a dry-weight basis

Laboratory Report

09/01/06

N. C. Department of Transportation

Attn: Sheri Knox c/o Solution - IES 1101 Nowell Road Raleigh, NC 27607 Project Name: Richmond Co.

Project ID: Project No.: NCDOT Parcel 21

Sample Matrix: Soil

Prism Sample ID: 159508 WBS# 34438.1.1

COC Group:

G0806789

Time Collected:

Client Sample ID: P21.B8 6-8

08/24/06

Time Submitted: 08/25/06

15:35

13:45

Parameter	Result	Units	Report Limit	MDL	Dilution Factor	Method	Analysis Date/Time	Analyst	Batch ID
Percent Solids Determination Percent Solids	96.1	%			1	SM2540 G	08/29/06 14:30	lbrown	
Diesel Range Organics (DRO) by G			7.0	4.0		0045			
Diesel Range Organics (DRO)	BRL	mg/kg	7.3	1.8	1	8015B	08/29/06 23:21	jvogel	Q17404
Sample Preparation:			49.93	g /	2 mL	3550B	08/29/06 8:30	dpope	P16228
					Surrogate)	% Recovery	Cont	rol Limits
					o-Terphen	yl	94	4	18 - 130
Sample Weight Determination									
Weight 1	5.39	g			1	GRO	08/28/06 0:00	lbrown	
Weight 2	5.37	g			1	GRO	08/28/06 0:00	lbrown	
Gasoline Range Organics (GRO) by	GC-FID								
Gasoline Range Organics (GRO)	BRL	mg/kg	7.3	2.8	50	8015B	08/31/06 2:05	grappaccioli	Q17406
					Surrogate		% Recovery	Cont	rol Limits
					aaa-TFT		97		5 - 129

Sample Comment(s):

BRL = Below Reporting Limit

J = Estimated value between the Reporting Limit and the MDL

The results in this report relate only to the samples submitted for analysis and meet state certification requirements other than NELAC certification except for those instances indicated in the case narrative and/or test comments.

All results are reported on a dry-weight basis

Laboratory Report

09/01/06

N. C. Department of Transportation

Attn: Sheri Knox c/o Solution - IES 1101 Nowell Road Raleigh, NC 27607 Project Name: Richmond Co.

Project ID: Project No.: NCDOT Parcel 21 WBS# 34438.1.1

Sample Matrix: Soil

Client Sample ID: P21.B9 6-8

Prism Sample ID: 159509

G0806789

COC Group: Time Collected:

08/24/06 14:00

Time Submitted: 08/25/06

15:35

Parameter	Result	Units	Report Limit	MDL	Dilution Factor	Method	Analysis Date/Time	Analyst	Batch ID
Percent Solids Determination Percent Solids	96.3	%			1	SM2540 G	08/29/06 14:30	lbrown	
Diesel Range Organics (DRO) by O	GC-FID BRL	mg/kg	7.3	1.8	1	8015B	08/29/06 23:58	jvogel	Q17404
Sample Preparation:			49.83	g /	2 mL	3550B	08/29/06 8:30	dpope	P16228
					Surrogate	•	% Recovery	Cont	rol Limits
					o-Terphen	yl	96	4	18 - 130
Sample Weight Determination									
Weight 1	5.19	g			1	GRO	08/28/06 0:00	lbrown	
Weight 2	5.13	g			1	GRO	08/28/06 0:00	ibrown	
Gasoline Range Organics (GRO) b	y GC-FID								
Gasoline Range Organics (GRO)	BRL	mg/kg	7.3	2.8	50	8015B	08/31/06 2:47	grappaccioli	Q17406
					Surrogate	.	% Recovery	Cont	rol Limits
					aaa-TFT		100		55 - 129

Sample Comment(s):

BRL = Below Reporting Limit

J = Estimated value between the Reporting Limit and the MDL

The results in this report relate only to the samples submitted for analysis and meet state certification requirements other than NELAC certification except for those instances indicated in the case narrative and/or test comments.

All results are reported on a dry-weight basis

Laboratory Report

09/01/06

N. C. Department of Transportation

Attn: Sheri Knox c/o Solution - IES 1101 Nowell Road Raleigh, NC 27607 Project Name: Richmond Co.

Project ID: Project No.: WBS# 34438.1.1

NCDOT Parcel 21

Sample Matrix: Soil

Prism Sample ID: 159510

Client Sample ID: P21.B10 4-6

COC Group:

G0806789

Time Collected:

08/24/06

Time Submitted:

08/25/06

14:05 15:35

Parameter	Result	Units	Report Limit	MDL	Dilution Factor	Method	Analysis Date/Time	Analyst	Batch ID
Percent Solids Determination Percent Solids	83.4	%			1	SM2540 G	08/29/06 14:30	lbrown	
Diesel Range Organics (DRO) by G	C-FID								
Diesel Range Organics (DRO)	BRL	mg/kg	8.4	2.0	1	8015B	08/30/06 0:35	jvogel	Q17404
Sample Preparation:			49.97	g /	2 mL	3550B	08/29/06 8:30	dpope	P16228
					Surrogate	•	% Recovery	Con	trol Limits
					o-Terphen	yl	90		48 - 130
Sample Weight Determination									
Weight 1	5.27	g			1	GRO	08/28/06 0:00	lbrown	
Weight 2	4.98	g			1	GRO	08/28/06 0:00	lbrown	
Gasoline Range Organics (GRO) b	y GC-FID								
Gasoline Range Organics (GRO)	BRL	mg/kg	8.4	3.3	50	8015B	08/31/06 3:29	grappaccioli	Q17406
					Surrogate		% Recovery	Coni	trol Limits
					aaa-TFT		94	;	55 - 129

Sample Comment(s):

BRL = Below Reporting Limit

J = Estimated value between the Reporting Limit and the MDL

The results in this report relate only to the samples submitted for analysis and meet state certification requirements other than NELAC certification except for those instances indicated in the case narrative and/or test comments.

All results are reported on a dry-weight basis

Laboratory Report

09/01/06

N. C. Department of Transportation

Attn: Sheri Knox c/o Solution - IES 1101 Nowell Road Raleigh, NC 27607

Project Name: Richmond Co.

Project ID: Project No.: NCDOT Parcel 21

WBS# 34438.1.1

Sample Matrix: Soil

Client Sample ID: P21.B11 4-6

Prism Sample ID: 159511

COC Group:

G0806789

Time Collected: Time Submitted:

08/24/06

08/25/06 15:35

14:15

Parameter	Result	Units	Report Limit	MDL	Dilution Factor	Method	Analysis Date/Time	Analyst	Batch ID
Percent Solids Determination Percent Solids	97.1	%			1	SM2540 G	08/29/06 14:30	lbrown	
Diesel Range Organics (DRO) by GO Diesel Range Organics (DRO)	:-FID BRL	mg/kg	7.2	1.8	1	8015B	08/30/06 1:12	jvogel	Q17404
Sample Preparation:			49.98	g /	2 mL	3550B	08/29/06 8:30	dpope	P16228
					Surrogate	•	% Recovery	Cont	rol Limits
					o-Terphen	yl	97	4	18 - 130
Sample Weight Determination Weight 1	4.74	g			1	GRO	08/28/06 0:00	lbrown	
Weight 2	4.62	g			1	GRO	08/28/06 0:00	lbrown	
Gasoline Range Organics (GRO) by Gasoline Range Organics (GRO)	GC-FID BRL	mg/kg	7.2	2.8	50	8015B	08/31/06 4:11	grappaccioli	Q17406
					Surrogate		% Recovery	Cont	rol Limits
					aaa-TFT		93	5	55 - 129

Sample Comment(s):

BRL = Below Reporting Limit

J = Estimated value between the Reporting Limit and the MDL

The results in this report relate only to the samples submitted for analysis and meet state certification requirements other than NELAC certification except for those instances indicated in the case narrative and/or test comments.

All results are reported on a dry-weight basis

Level II QC Report

9/1/2006

N. C. Department of Transportation

Attn: Sheri Knox c/o Solution - IES 1101 Nowell Road

Raleigh, NC 27607

Project Name: Richmond Co.

Project ID:

NCDOT Parcel 21

Project No.: WBS# 34438.1.1 COC Group Number: G0806789

Date/Time Submitted: 8/25/2006 15:35

Diesel Range Organics (DRO) by GC-FID, method 8015B

	ank	Result	RL	Control Limit	Units				QC Batch ID
	Diesel Range Organics (DRO)	ND	7	<3.5	mg/kg				Q17404
Laboratory	/ Control Sample	Result	Spike Amount	Units	Recovery %	Recovery Range %			QC Batch ID
	Diesel Range Organics (DRO)	42.63	40	mg/kg	107	53 - 118			Q17404
Matrix Spile Sample tD:	ke	Result	Spike Amount	Units	Recovery %	Recovery Range %			QC Batch ID
159502	Diesel Range Organics (DRO)	36.05	40	mg/kg	90	52 - 119			Q17404
Matrix Spil	ke Duplicate	Result	Spike Amount	Units	Recovery %	Recovery Range %	RPD %	RPD Range %	QC Batch ID
159502	Diesel Range Organics (DRO)	33.95	40	mg/kg	85	52 - 119	6	0 - 25	Q17404
		method 80	<u> </u>						
Method Bla				Control Limit	Linits				QC Batch
Method Bla		Result ND	RL 7	Control Limit	Units mg/kg				ID
Method Bla	ank	Result	RL	Limit		Recovery Range %			ID
	ank Gasoline Range Organics (GRO)	Result ND Result	RL 7 Spike	<3.5	mg/kg Recovery	Range			Q17406
	Gasoline Range Organics (GRO) Control Sample Gasoline Range Organics (GRO)	Result ND Result	RL 7 Spike Amount	<3.5 Units	mg/kg Recovery %	Range %			Q17406 QC Batch ID
Laboratory Matrix Spik	Gasoline Range Organics (GRO) Control Sample Gasoline Range Organics (GRO)	Result ND Result 45	RL 7 Spike Amount 50 Spike	<3.5 Units mg/kg	mg/kg Recovery % 90	Range % 67 - 116 Recovery Range			QC Batch ID
Laboratory Matrix Spili Sample ID: 159499	Gasoline Range Organics (GRO) Control Sample Gasoline Range Organics (GRO)	Result ND Result 45	RL 7 Spike Amount 50 Spike Amount 50	Limit <3.5 Units mg/kg Units	Recovery % 90 Recovery % 103	Range % 67 - 116 Recovery Range % 57 - 113			QC Batch ID Q17406
Laboratory Matrix Spili Sample ID: 159499	Gasoline Range Organics (GRO) Control Sample Gasoline Range Organics (GRO) Gasoline Range Organics (GRO)	Result ND Result 45	7 Spike Amount 50 Spike Amount	Limit <3.5 Units mg/kg Units	Recovery 90 Recovery	Range % 67 - 116 Recovery Range % 57 - 113	RPD %	RPD Range %	QC Batch ID QC Batch QC Batch

#-See Case Narrative

Full Service Analytical & Environmental Solutions

449 Springbrook Road • P.O. Box 240543 • Charlotte, NC 28224-0543 Phone: 704/529-6364 • Fax: 704/525-0409

Client Company Name: SOLUTIONS-1ET

Report To/Contact Name: Shells KNOX Reporting Address: 1101 Milwell (44)

Phone: 212 23 106 o Fax (Yes) (No): 919 613 1074

Email (Yes) (No) Email Address SHUDK @ SOUTTONG - KES

EDD Type: PDF - Excel Other

Site Location Name: NCDT PARCEL 21

Site Location Physical Address: ACHMUNA CO, NC

CHAIN OF CUSTODY RECORD

LAB USE ONLY

PAGE 🖊 OF 🚣 QUOTE # TO ENSURE PROPER BILLING: 👝

Project Name: NCDorf PAMBE 21 - Rich Mond Qu.
Short Hold Analysis: (Yes) (No) UST Project: (Yes) (No)
*Please ATTACH any project specific reporting (QC LEVEL I II III IV)
provisions and/or QC Requirements
Invoice To: NCDor - WSS#3438.1. |
Address: STATE Majacr # U-2502 AFB

Purchase Order No./Billing Reference 3260,0643, NOST	<u>გ</u>
Requested Due Date (11 Day (12 Days (13 Days (14 Days, 125 Days)	Š
"Working Days" G-9 Days G Standard 10 days G Bush WorkThast Be	<u>-</u>
Samples received after 15:00 will be processed next business day	
Turnaround time is based on business days, excluding weekends and holidays.	×a
(SEE REVERSE FOR TERMS & CONDITIONS REGARDING SERVICES RENDERED BY PRISM LABORATORIES, INC. TO CLIENT)	San
RENDERED BY PRISM LABORATORIES, INC. TO CLIENT)	S.

SAMPLE CONTAINER

MATRIX

COLLECTED

DATE

CLIENT

(SOIL,

		_
		ı
		ı
100		l.
100		
1 1		П
100		П
6.6		ľ
500		1
45.2		Н
1		ľ
		ľ
Y		! !
		1
		!!
100	1	ì
22	1	
65.54	ı	1
	1	IJ
1		١,
	1	I.
	1	
32	1	. 1
	1	1
		ı
	-	
	-1	i
	1	-
3	- 1	7
	ı	
1	ı	
1	ľ	
- 1	1	
1	- 1	

TILES recid W/OLT HEADS

TO BE FILLED IN BY CLIENT/SAMPLING PERSONNEL	101	IO BE FILL	ED IN BY	CLE	NT/SAMPL	NG PERS	SONNEL
O 3 Days O 4 Days (N 5 Days	ays.	Certification: NELAC_	n: NELA		USACE	교	NC R
gard 10 days Pre-Approved Ssed next business day.	3		SC	. ხ 	ОТНЕВ	N/A	
s, excluding weekends and holidays.	idays.	Water Chlorinated: YES_	rinated: \	ĒS	 		ě
ONS REGARDING SERVICES 3, INC. TO CLIENT)		Sample Iced Upon Collection: YES	d Upon Co	llectic	n: YES	8	
DDECEDIA	ANALY	ANALYSES REQUESTED	TED	`			PRISM
TIVES	30				REMARKS		LAB ID NO.
)	, , , , , , , , , , , , , , , , , , , ,	-			

		_				_			.,				
LAB ID NO.	System	1595 m2	154562	1595.05L	154560	1745@L	54567	(547@R	1595009	15454	3 COPIES	SE ONLY	je.
REMARKS											PRESS DOWN FIRMLY · 3 COPIES	PRISM USE ONLY	nents: Site Arrival Time
									-		PRES	'n	Additional Comments:
											/es		
											Socurpousies	nust be	Sate Military/Hours
200	×	×	×	×	X	×	×	×	×	×		ıy changes n	Pate F.
25	<u></u>	×	×	X	×	X	X	<	×	人	Affiliation	ove. An tialized.	
TIVES	Metromot								_	>	hanns	as requested at	
SIZE	40ml	~								>	esus Brehant	he analyses after analyse	0
NO.	N	2	W	V	3	N	M	Μ	~	\sim	Key	ed with t	1
*TYPE SEE BELOW	9	S	P	G	B	P	S	Ġ	G	<u>ۍ</u>	Sampled By (Print Name)	Prism to proce arges for any	Received By: (Signature)
WATER OR SLUDGE)	5016					-				8	Sampled By	orization for lere will be ch	Recei
MILITARY	1000	1015	1035	1100	1120	1130	1335	1345	1400	1405	R	dy is your auth	
СОГГЕСТЕВ	8/24/06	8/24/06	8/24/08	8/24/06	8/24/06	8/24/06	8/24/06	8/24/06	8/24/06	8/24/00	× ,	Chain of Custor he Prism Projec	
SAMPLE DESCRIPTION COLLECTED	P21-81.10.12	P21+82 110.12 8/24/06	P21-83.10.12	P21-84.68	P21-85.8.10	P21-B6-6.8	P21-87 . 6-8	P21-88-6-8	8-7-89-6-8	021.810.4-6	Sampler's Signature	Upon relinquishing, this Chain of Custody is your authorization for Prism to proceed with the analyses as requested above. Any changes must be submitted in writing to the Prism Project Manager. There will be charges for any changes after analyses have been initialized.	Relinquished By, Bignature)

ORIGINAL

OTHER:

LANDFILL

CERCLA

RCRA:

SOLID WASTE:

DRINKING WATER:

An Prism Field Service

☐ Hand-delivered

OFEREX OUPS
NPDES: U

UST:

GROUNDWATER:

G4806769

polebás should be taped shut with custody/seals for transportation to the laboratory. Ccepted and verified against coc until/beceived at the laboratory.

eld Tech Fee

Villeage

Full Service Analytical & Environmental Solutions

449 Springbrook Road • P.O. Box 240543 • Charlotte, NC 28224-0543 Phone: 704/529-6364 • Fax: 704/525-0409

Client Company Name: Solutions 163

Report To/Contact Name: Shere Reporting Address: 🟒

Phone: 9/9873/02/2 Fax (Yes) (No): 9/9873/024 40 27607 Site Location Site Location EDD Type: F Email (Yes)

CHAIN OF CUSTODY RECORD

LAB USE ONLY

PAGE 20F2_ QUOTE # TO ENSURE PROPER BILLING:

*Please ATTACH any project specific reporting (QC LEVEL I II III IV) STATE PRAJECT U-2502 A&B Project Name: MCDOT PARLER 21 - RICHMONA UST Project: 1000T - WBS # 34438.1, provisions and/or QC Requirements (Yes) (No) Short Hold Analysis: Invoice To:_ Address:

Purchase Order No./Billing Reference 5260, 0643, NAOT

Turnacound filme is based on business days, excluding weekends and holidays. Turnacound filme is based on business days, excluding weekends and holidays. Turnacound filme is based on business days, excluding weekends and holidays. Sample containes facurations recurations recurations recurations are actions and and a series of the filment of the f	Turnatound time is based on business day, excluding weekends and holidays. Turnatound time is based on business day, excluding weekends and holidays. REPRINTED BY PRISM LABORATORIES, INC. TO CLIENT) ON "TYPE IE) SEE BELLOW ON SIZE AWA"A AMALYSES REQUESTED AWA"A AWA"A AMALYSES REQUESTED AWA"A AWA"A AMALYSES REQUESTED AWA"A AWA"A AMALYSES REQUESTED AWA"A AMALYSES REQUESTED AWA"A AWA"A AMALYSES REQUESTED AWA"A AWA"A AMALYSES REQUESTED AWA"A AMALYSES REQUESTED AWA"A AMALYSES REQUESTED AWA"A AMALYSES REQUESTED AMALYS	Email (Yes) (No) Email Address 55% EDD Type: PDF Other.	Email (Yes) (No) Email Address SKNDk & SOLUTIONS - 165 Purchase Order No./Billing Reference 5260, 06/H 3, NOOT EMAIL (Yes) (No) Email Address SKNDk & SOLUTIONS - 165 Pays C 10 Day C 20 Days C 20 D	2/25-165	Purchase Ord Requested Due	er No./Bi Date 🗅 1 I	Illing Reference Day Cl 2 Day 9 Days Cl Sta	ence <i>5260.</i> s □3 Days □4 Indard 10 days □	1 Day (AS) Rush Work Pre-Approve	Days Must Be	To BE Certific	FILLED I	TO BE FILLED IN BY CLIENT/SAMPLING PERSONNEL Certification: NELACUSACEFLNC_ SCOTHERN/A	NG PERSC	NC K
NO. SIZE PRESERVA- NO. SIZE TIVES ROAL MERCAN ROAL MARKANAI ROAL MARKANAI ROAL MARKANAI ROAL BURNANA Affiliation Solutions - 1 E2	REQUESTED REMAR REMAR WS - 16-7	Site Location Physical Address: <i>Cithmand Co. MC</i>	1.4	20, UC	Samples receive Furnaround time (SEE REVER RENDEREE	d after 15:0 is based o ise FOR TEI BY PRISM	00 will be proc n business da RMS & CONDIT LABORATORIE	essed next busine tys, excluding wee FIONS REGARDING ES, INC. TO CLIENT	ess day. ekends and h services	olidays.	Water	Chlorinat Floed Up		ON ON	
NO. SIZE TIVES (SV N) 3 to m/ Methand K K Kur Buthan Sourier 12	REMAR	TIME	1 _	MATRIX	SAMPL	E CONTAI	NER	DDECEDY/A		ANA	LYSES RE	QUESTED			PRISM
3 tom Mothers XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	PRESS DOWN	COLLECTED MILITARY HOURS		WATER OR SLUDGE)	*TYPE SEE BELOW	NO.	SIZE	TIVES	3	30			REMARKS		LAB D NO.
Kui Buthra Attiliation Souriers-1E3	PRESS DOWN	8/24/06 1415		2016	B	W	tomy	Motheral	X	X					11848
Kevil Buthran Attiliation Souriors-1ED	PRESS DOWN														
Kevil Buthran Attiliation Sowniers-1ED	PRESS DOWN														
Kevil Buthra Attiliation Sowniers-1ED	PRESS DOWN		_												
Kevil Buthra Attiliation Souriors-1E3	PRESS DOWN														
Kevil Buthron Attiliation Sowniers-1ED	PRESS DOWN														
Kevil Buttana Attiliation Sowniers-1ED	ms - /e/														
Kevil Budana Attiliation Sowners-1ED	PRESS DOWN														
Kevir Buddara Attiliation Sowniers-1123	PRESS DOWN					-									
Kervit Buchnia Attiliation Sourmors-1ET	PRESS DOWN														
		1		Sampled By	(Print Name)	Ken	1 Buch	Maria	Affiliation		Whir	5-110	PRESS DOWN F	IRMILY -	COPIES

Upon relingusubmitted in Relinquished Relinquis

OTHER: G WBACT89 LANDFILL

RANSPORTATION TO THE LABORATORY

leid Tech Fee:

Mileage:

ONC OSC

ONC OSC

ONC OSC

RCRA:

SOLID WASTE:

DRINKING WATER:

GRÓUNDWATER:

☐ Fed Ex ☐ UPS ☐ Hand-delivered

ST

NPDES:

LAINICITO