PRELIMINARY SITE ASSESSMENT PARCEL 6, HILLARY MCKAY PROPERTY 2483 US HIGHWAY 1 RICHMOND COUNTY, NORTH CAROLINA WBS ELEMENT: 34438.1.1; NCDOT PROJECT: R-2502 A

Prepared for:
NC Department of Transportation
Geotechnical Engineering Unit
GeoEnvironmental Section
1589 Mail Service Center
Raleigh, North Carolina 27699-1589

Prepared by:
Solutions-IES
1101 Nowell Road
Raleigh, North Carolina 27607

Solutions-IES Project No. 3260.06A3.NDOT

September 20, 2006

Dottie Schmitt

Environmental Specialist

SEAL 022585

O CONTROL OF ESSION SEAL OZOSSES

AND CONTROL OZOSSES

CONTROL OZOSSES

CONTROL OZOSSES

AND CONTROL OZOSSES

CO

Sheri L. Krong R.B. Project Manager

TABLE OF CONTENTS

1
1
2
3
3
•

FIGURES

FIGURE 1 – SITE LOCATION MAP

FIGURE 2 – SITE MAP

FIGURE 3 – SOIL BORING LOCATIONS

APPENDICES

APPENDIX A – PHOTOGRAPHS

APPENDIX B – GEOPHYSICAL INVESTIGATION

APPENDIX C – BORING LOGS

APPENDIX D – GPS COORDINATES OF BORING LOCATIONS

APPENDIX E – LABORATORY ANALYTICAL REPORTS

Parcel 6, WBS Element: 344381.1; NCDOT Project: R-2502A

1.0 INTRODUCTION

The North Carolina Department of Transportation (NCDOT) is widening the existing alignment of US Highway 1 near the towns of Marston and Hoffman, located in Richmond County, North Carolina. Acquisition of properties within the right-of-way is necessary prior to road construction. On July 19, 2006, Solutions-IES submitted a proposal (NC06554P) to conduct Preliminary Site Assessments (PSAs) on ten parcels of land located within the proposed right-of-way that are of concern to the NCDOT. This report summarizes the results of field activities conducted during the PSA for a portion of the property identified by NCDOT as Parcel 6, Hillary McKay Property (**Figure 1**). The right-of-way portion of this property (i.e., the Study Area) is more clearly identified on **Figure 2**. The scope of work executed at the Study Area was performed in general accordance with Solutions-IES proposal NC06554P and was initiated based on a Notice to Proceed issued by the NCDOT Geotechnical Engineering Unit on July 20, 2006 under contract 7000007053, dated June 5, 2006.

2.0 BACKGROUND AND SITE DESCRIPTION

The subject property is located at 2483 US Highway 1, on the north side of US Highway 1, east of Mercer Street in Richmond County, North Carolina (site). According to Solutions-IES field observations, the site contains two abandoned buildings, one garage and one vacant house. A concrete loading dock is located at the back of the garage, on the northwest side of the building. The surface of the site is primarily covered with grass. Photographs of the site are presented in **Appendix A**.

According to information provided in a Phase I Site Assessment (S&ME, Inc. "Limited Phase I Environmental Site Assessment", February 5, 1999), the property formerly operated as a gasoline station and automotive garage. A 700-gallon underground storage tank (UST) and its associated pump island were located south of the garage, approximately 38 feet north of the centerline of US Highway 1, within the existing right-of-way. Reportedly, the UST was removed in the late 1980s or early 1990s. As a UST had previously been located on the site, there is a possibility that petroleum fuels were used on the property. Therefore, there is a possibility that these constituents may have been released from to the subsurface in the vicinity of the proposed right-of-way.

3.0 FIELD ACTIVITIES

Prior to mobilizing to the site to conduct subsurface sampling, Solutions-IES contacted North Carolina One Call to locate underground utilities in the proposed right-of-way. Pyramid Environmental & Engineering, P.C. (Pyramid) was contracted to perform an electromagnetic survey of the subsurface in the proposed right-of-way and easement area. Pyramid surveyed the site on July 27, 2006 and August 16, 2006. The electromagnetic survey equipment (EM61) and ground penetrating radar (GPR) identified various magnetic anomalies within the study area but did not suggest the presence of metallic tanks, such as USTs. The EM61 images are included in **Appendix B**, Figures 2 and 3. A GPR image was not included in the report.

After reviewing the background information and geophysical data, Solutions-IES elected to analyze soil samples collected at designated locations within the Study Area for total petroleum hydrocarbons (TPH). These activities were conducted on August 24, 2006. A total of seven soil borings (borings P6-B1 through P6-B7) were advanced at the site in the locations depicted on **Figure 3**. These borings were labeled with the prefix "P6" to identify their location on Parcel 6. All seven borings were advanced with a truck-mounted Geoprobe[®] to a total depth of 8 feet below ground surface (ft bgs).

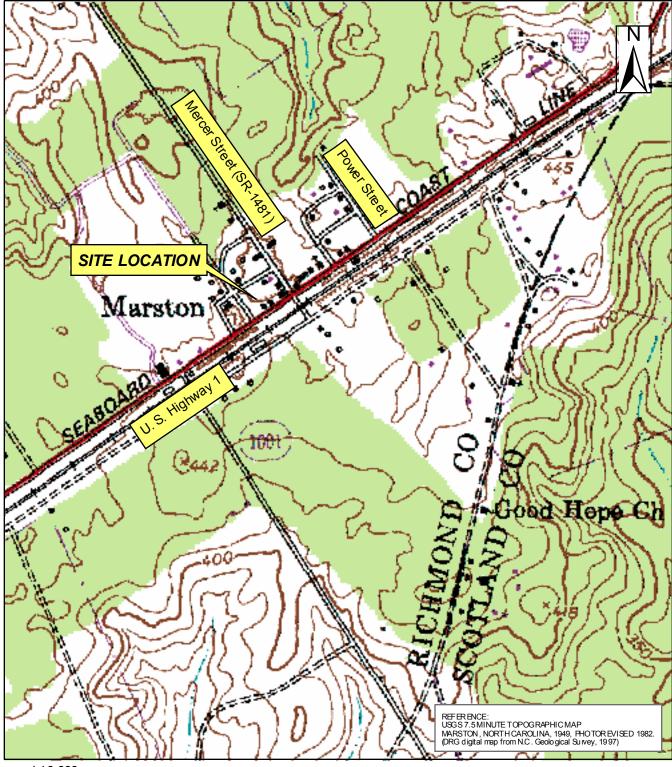
Soil samples were obtained from each boring using a MacroCore[®] sampler fitted with single-use, disposable polyvinyl chloride (PVC) liners. Each liner was 4 feet in length. Upon retrieval, a portion of each soil sample was placed in a resealable plastic bag. The bag was sealed and placed at ambient temperature for field screening with a flame ionization detector (FID). The remaining portion of each 2-foot interval was left in the PVC liner, wrapped in plastic and placed on ice for possible laboratory analysis.

Volatile organic compounds (VOCs) were allowed to accumulate in the headspace of each bag for approximately 20 minutes, after which time the headspace of each sealed bag was scanned with the FID. The FID readings were entered on the boring logs along with the soil description and indications of staining or odors, if present. Soils from the borings at the Parcel 6 Study Area generally consisted of fine silty sand (SM). Logs for each boring are presented in **Appendix C.** The GPS coordinates for the borings are provided in **Appendix D.**

Headspace screening of the soil samples with the FID did not indicate the presence of volatile vapors. No distinguishable odors were noted in these samples.

Soil samples for laboratory analysis were retained from each boring at the 6-8 foot interval. The samples selected for analysis were from the deepest interval sampled. The samples were placed in laboratory-supplied containers and stored on ice pending shipment to Prism Laboratories, Inc. in Charlotte, NC. Sample information was recorded on the chain-of-custody and the samples were submitted for chemical analysis of total petroleum hydrocarbons (TPH) gasoline range organics (GRO) by Modified EPA Method 5030/8015 and TPH diesel range organics (DRO) by Modified EPA Method 3550/8015.

4.0 SAMPLING RESULTS


Analytical data for the soil samples obtained from the site revealed no detections of TPH DRO or TPH GRO at concentrations above the laboratory reporting limits. Laboratory reports associated with these samples are presented in **Appendix E**.

5.0 DISCUSSION AND CONCLUSIONS

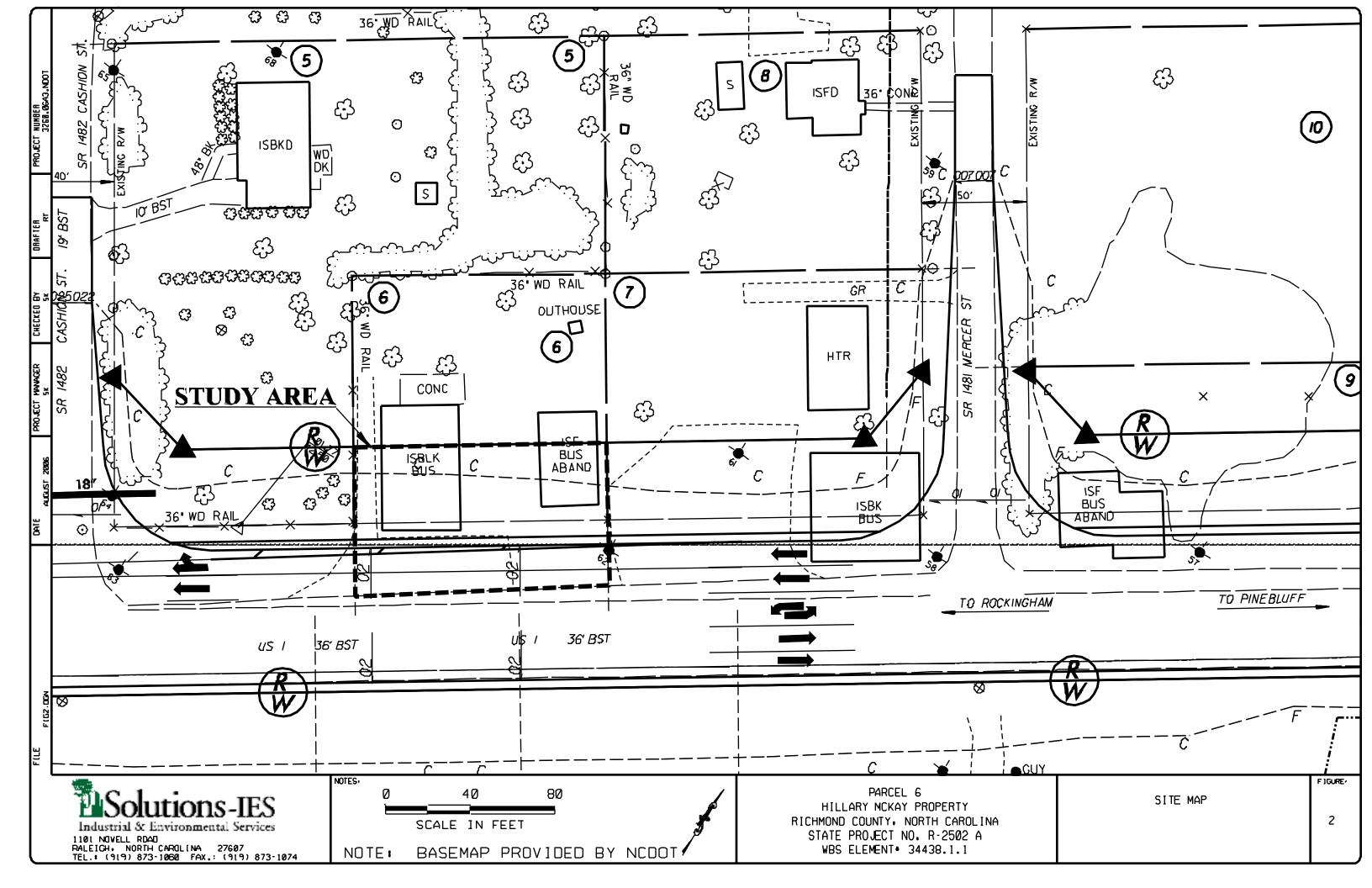
The geophysical survey conducted at the site did not reveal buried metallic equipment such as USTs within the Study Area. The survey did suggest metallic anomalies consistent with the presence miscellaneous buried metal debris.

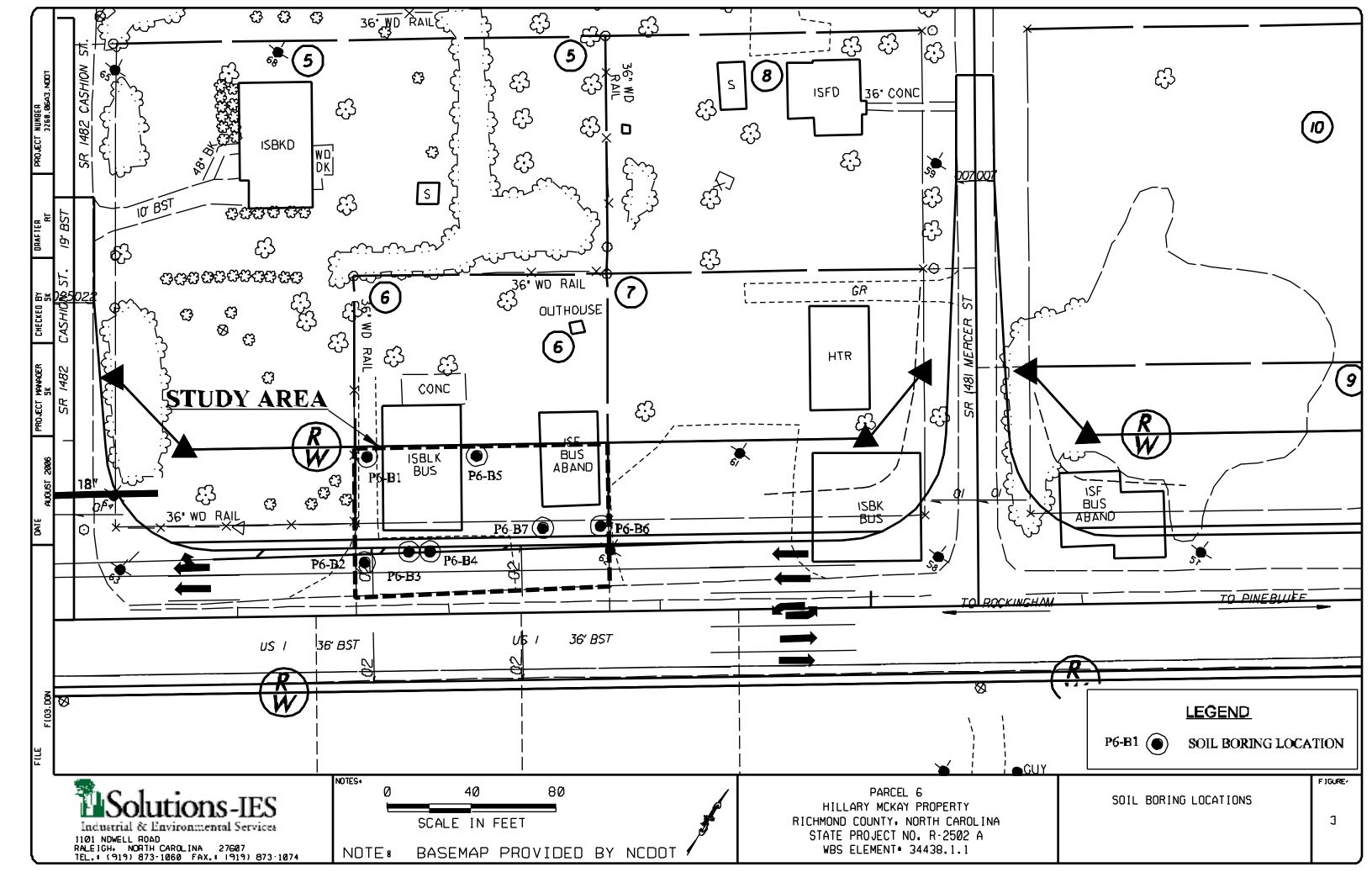
Solutions-IES installed seven soil borings at the site to determine the presence or absence of petroleum contamination in the Study Area at Parcel 6, as well as document soil conditions. Analytical data for soil samples submitted for chemical analysis showed that TPH GRO and TPH DRO were not detectable above the laboratory reporting limits. Based on current information, additional assessment is not recommended.

1:10,000

SITE LOCATION MAP

PARCEL 6


HILLARY MCKAY PROPERTY


RICHMOND COUNTY, NORTH CAROLINA

STATE PROJECT NO. R-2502 A, WBS ELEMENT# 34438.1.1

1101 Nowell Road, Raleigh, NC 27609 Phone (919) 873-1060, Fax (919) 873-1074				
Cre ated by: Checked by:		Project: 3260.0 Date: SEPTE	6A3.NDOT MBER 2006	
File: Figure 1.mxd Software: ESRI ArcMap 9.1	FIGURE	1		

APPENDIX A PHOTOGRAPHS

Photograph 1– View of Parcel 6 from east to west along US Highway 1.

Photograph 2– View of Parcel 6 from west to east along US Highway 1.

APPENDIX B GEOPHYSICAL INVESTIGATION

GEOPHYSICAL INVESTIGATION REPORT

GEOPHYSICAL SURVEYS FOR THE DETECTION OF METALLIC USTS

US 1 from SR 1001 to the Richmond County Line Richmond, North Carolina State Project Number U-3459

September 1, 2006

Report prepared for:

Sheri Knox, PE Solutions IES

1101 Nowell Rd. Raleigh, NC 27607

Prepared by:

Douglas Canavello, PG

Reviewed by:

Tim Leatherman, PG

PYRAMID ENVIRONMENTAL & ENGINEERING, P.C. 700 NORTH EUGENE ST. GREENSBORO, NC 27401 (336) 335-3174

Solutions IES

GEOPHYSICAL SURVEYS FOR THE DETECTION OF METALLIC USTS US 1 from SR 1001 to the Richmond County Line State Project Number U-3456

TABLE OF CONTENTS

1	Λ	IN	r_D	ΔD	TT	OT:	\mathbf{r}	N 1
	()	IIN	ı Ku		, , ,			IIN

2.0 FIELD METHODOLOGY

3.0 DISCUSSION OF RESULTS

- 3.1 Parcel 6 Hillary McKay Property
- 3.2 Parcel 9 K.J. Lewis Property
- 3.3 Parcel 21 James Brigman Property
- 3.4 Parcel 48 Roy Barry Bostick Property
- 3.5 Parcel 50 Pansy Ernest Property
- 3.6 Parcel 51 Church of Deliverance Property
- 3.7 Parcel 61 Cooper & Brown Inc. Property
- 3.8 Parcel 70 Delia Lassiter Property
- 3.9 Parcel 22 Ivey Little Property
- 3.10 Parcel 68 James Pugh Property

4.0 SUMMARY & CONCLUSIONS

5.0 LIMITATIONS

FIGURES

Figure 1	Site & Geophysical Equipment Photos
Figure 2	Parcel 6 – Hillary McKay Property – EM61 Bottom Coil Results
Figure 3	Parcel 6 – Hillary McKay Property – EM61 Differential Results
Figure 4	Parcel 9 – K.J. Lewis Property – EM61 Bottom Coil Results
Figure 5	Parcel 9 – K.J. Lewis Property – EM61 Differential Results
Figure 6	Parcel 9 – K.J. Lewis Property – Photo & GPR Image of UST Locations
Figure 7	Parcel 21 – James Brigman Property – EM 61 Bottom Coil Results
Figure 8	Parcel 21 – James Brigman Property – EM 61 Differential Results

Figure 9	Parcel 21 – James Brigman Property – Photo & GPR Image of UST Locations
Figure 10	Parcel 48 – Roy Barry Bostick Property – EM61 Metal Detection Results
Figure 11	Parcels 50 & 51 – Earnest & Church Properties – EM 61 Bottom Coil Results

FIGURES (continued)

Figure 12	Parcels 50 & 51 – Earnest & Church Properties – EM 61 Bottom Coil Results
Figure 13	Parcels 50 & 51 – Earnest & Church Properties – Photo & GPR Image of UST
	Locations
Figure 14	Parcel 61 – Cooper & Brown Inc. Property – EM 61 Bottom Coil Results
Figure 15	Parcel 61 – Cooper & Brown Inc. Property – EM 61 Differential Results
Figure 16	Parcel 70 – Delia Lassiter Property – EM 61 Bottom Coil Results
Figure 17	Parcel 70 – Delia Lassiter Property – EM 61 Differential Results
Figure 18	Parcel 22 – Ivey Little Property – EM 61 Bottom Coil Results
Figure 19	Parcel 22 – Ivey Little Property – EM 61 Differential Results
Figure 20	Parcel 68 – James Pugh Property – EM 61 Metal Detection Results

1.0 INTRODUCTION

Pyramid Environmental & Engineering, PC conducted geophysical investigations for Solutions IES during the period of July 26 through August 28, 2006, within the proposed Right-of-Way (ROW) areas at 10 sites located in Richmond County, North Carolina. The work was done as part of the North Carolina Department of Transportation (NCDOT) road-widening project under State Project number U-3459. The sites are located along the northern or western sides of US 1 from SR 1001 to the Richmond County Line. The geophysical surveys were conducted to determine if unknown metallic underground storage tanks (UST's) were present beneath the proposed ROW area of each site.

Solutions IES representative Ms. Sheri Knox, PE provided maps during the week of July 24, 2006 that outlined the geophysical survey area of each site. Ms. Knox also provided project management during the geophysical investigation of the sites. Geophysical surveys were conducted within the proposed ROW areas at the following 10 sites that are listed from the southern-most site to the northern-most site.

	Property Owner	<u>Parcel</u>	<u>Present Use of Property</u>
	Hillary McKay Property	(Parcel 6)	Grass-covered lot with garage
	K.J. Lewis Property	(Parcel 9)	Vacant, wooded lot
	James Brigman Property	(Parcel 21)	Vacant, grass-covered Lot
	Roy Barry Bostick Property	y (Parcel 48)	Grass-covered lot and
garage			
	Pansy Ernest Property	(Parcel 50)	Grass-covered lot with vacant store
	Church of Deliverance Prop. (Parcel 51)		Asphalt lot with active church
	Cooper & Brown Inc. Prop.	(Parcel 61)	Vacant lot and
commerci	al building		

Geophysical Investigation Report – Richmond County, NC Sites

Delia Lassiter Property	(Parcel 70)	Vacant lot and building
Ivey Little Property	(Parcel 22)	Vacant lot and building
James Pugh Property	(Parcel 68)	Vacant, wooded lot

Photographs of the above sites along with photographs of the geophysical equipment used for this project are presented in **Figure 1**.

2.0 FIELD METHODOLOGY

Prior to conducting the geophysical investigations, a 10-foot by 10-foot or 10-foot by 20-foot survey grid was established across the proposed ROW areas of the 10 sites using water-based marking paint or pin flags. These marks were used as X-Y coordinates for location control when collecting the geophysical data and establishing base maps for the geophysical results.

The geophysical investigations consisted of electromagnetic (EM) induction-metal detection surveys and ground penetrating radar (GPR) surveys. The EM surveys were performed using a Geonics EM61-MK1 metal detection instrument. According to the instrument specifications, the EM61 can detect a metal drum down to a maximum depth of approximately 8 feet. The EM61 data were digitally collected at each site along parallel northerly-southerly or easterly-westerly trending survey lines spaced five feet apart. The data were downloaded to a computer and reviewed in the filed and office using the Geonics DAT61W and Surfer for Windows Version 7.0 software programs.

Contour plots of the EM61 bottom coil results and the EM61 differential results for each site are included in this report. The bottom coil results represent the most sensitive component of the EM61 instrument and detect metal objects regardless of size. The bottom coil response can be used to

Geophysical Investigation Report – Richmond County, NC Sites

09/01/06

delineate metal conduits or utility lines, small, isolated metal objects, and areas containing insignificant metal debris.

The differential results are obtained from the difference between the top and bottom coils of the EM61 instrument. The differential results focus on the larger metal objects such as drums and USTs and ignore the smaller insignificant metal objects.

GPR surveys were conducted across selected EM61 differential anomalies and steel-reinforced concrete using a GSSI SIR-2000 unit equipped with a 400 MHz antenna. Surveys were also performed across several areas where parked vehicles that obstructed the EM61 survey had since been removed. GPR data were digitally collected in a continuous mode along X and/or Y survey lines, spaced two to five feet apart using a vertical scan of 512 samples, at a rate of 48 scans per second. An 80 MHz high pass filter and an 800 MHz low pass filter were used during data acquisition with the 400 MHz antenna. GPR data were collected down to a maximum depth of approximately five feet, based on an estimated two-way travel time of 9 nanoseconds per foot.

The GPR data were downloaded to a field computer and later reviewed in the office using Radprint and Radan 5.0 software programs. The locations of GPR survey areas or individual GPR survey lines are shown as solid, purple polygons or solid purple lines, respectively, on the EM 61 differential contour plots. The approximate perimeters of probable or possible USTs, based on the geophysical results, were marked and labeled in the field using orange, water-based marking paint and pin flags (when possible). The approximate locations of probable or possible USTs are shown as magentacolored rectangles on the EM 61 bottom coil and differential contour plots.

Geophysical Investigation Report – Richmond County, NC Sites

During the weeks of August 7, August 14, and August 28, preliminary contour plots of the EM61 bottom coil and the differential results were emailed to Ms. Knox.

3.0 <u>DISCUSSION OF RESULTS</u>

3.1 Parcel 6 – Hillary McKay Property

The Hillary McKay Property (Parcel 6) contains a former auto repair garage and a vacant wooden building. The ROW area consists of a flat-lying grass surface. The bottom coil results and the differential results are presented in **Figures 2 and 3**, respectively. GPR surveys conducted around the perimeter of the garage and wooden building, suggest that the EM 61 anomalies surrounding the two buildings are in response to the structures and perhaps buried miscellaneous metal debris. The remaining EM 61 anomalies are probably in response to buried miscellaneous metal debris. The geophysical results suggest that the proposed ROW area at Parcel 6 does not contain metallic UST's.

3.2 Parcel 9 – K.J. Lewis Property

The K.J. Lewis property (Parcel 9) is located immediately north of the Mercer Road and US 1 intersection, approximately 200 feet northeast of Parcel 6. The property consists of an abandoned building along the edge of US 1, which is surrounded by dense wooded terrain. A former pump island area is located in front of the building. The EM61 bottom coil results and the differential results are presented in **Figures 4 and 5**, respectively. Due to limited access to the site, the geophysical investigation was limited to the front portion of the property that is located along US 1.

Geophysical Investigation Report – Richmond County, NC Sites 09/01/06

Pyramid Environmental & Engineering, PC

The geophysical investigation detected the probable presence of two USTs located adjacent to the pump island area. The first UST is centered near grid coordinates X=84 Y=27, and buried approximately 1.5 feet below surface. The second UST is centered near grid coordinates X=103 Y=27, and is buried approximately 2.0 feet below surface. This latter UST appears to be lie partially beneath the former pump island area. The approximate locations of the USTs are shown as magentacolored rectangles in Figures 4 and 5. Based on the GPR results, the probable USTs are approximately 10 feet long and 4 feet wide. A photograph showing the approximate locations of the two probable USTs and the image of GPR survey lines Y=27.5, which intersects the probable USTs, are presented in **Figure 6**.

The EM61 differential anomaly centered near grid coordinates X=118 Y=29, may possibly be in response to a UST or large metal object. However, GPR surveys could not be conducted across this EM anomaly due to the limited access caused by the dense wooded terrain. The approximate location of this possible UST is shown as a dashed, magenta-colored rectangle in Figures 4 and 5, and in the site photograph that is presented in Figure 6.

The remaining portion of the geophysical survey area does not appear to contain significant, buried, metal objects.

3.3 Parcel 21 – James Brigman Property

Geophysical Investigation Report – Richmond County, NC Sites

The James Brigman property (Parcel 21) consists of an open, grass and asphalt-covered lot located along the western side of US 1. The EM61 bottom coil results and the differential results are presented in **Figures 7 and 8**, respectively.

GPR surveys conducted across the linear, EM61 bottom coil anomalies that intersect grid coordinates X=62 Y=70, X=66 Y=94, X=84 Y=94, and X=87.5 Y=75, suggest the anomalies are probably in response to buried utility lines or conduits. GPR data also suggest that the high amplitude anomalies centered near grid coordinates X=77 Y=84, and X=93 Y=66, are probably in response to buried miscellaneous metal objects or junction areas for the conduits or utility lines.

GPR surveys conducted across the large, high amplitude anomaly centered near X=45 Y=75, detected the probable presence of four metallic USTs. The four probable USTs are centered near grid coordinates X=43 Y=80, X=50 Y=80, X=42 Y=73, and X=48 Y=73. Based on the GPR data, the USTs appear to be approximately 9 feet long and 3.5 to 4 feet wide and buried approximately 1.5 to 2.0 feet below surface. The approximate locations of the probable USTs are shown as magenta-colored rectangles in Figures 7 and 8. A photograph showing the approximate locations of the four probable USTs and the image of GPR survey lines Y=80, which intersects the two probable USTs centered near X=43 Y=80, and X=50 Y=80, are presented in **Figure 9**.

The remaining EM 61 anomalies recorded within the proposed ROW area are probably in response to miscellaneous metal debris.

3.4 Parcel 48 – Roy Barry Bostick Property

Geophysical Investigation Report – Richmond County, NC Sites

09/01/06

The Roy Barry Bostick property (Parcel 48) consists of a red, brick building surrounded by flat-lying grass-covered terrain. The parcel is located along the northwestern side of US 1 approximately 300 feet southwest of the US 1 and Tilley Street intersection. The EM 61 bottom coil results and the differential results are presented in **Figure 10**.

GPR surveys conducted across the EM61 anomaly centered near grid coordinates X=295 Y=60, suggest that the anomaly is probably in response to one or more large diameter (12 or more inches) conduits buried approximately 1.0 feet below surface. There is a possibility (although unlikely) that the anomaly may be in response to a very small UST centered near grid coordinates X=290 Y=59. The location of the possible, but unlikely UST is shown as a magenta-colored square in Figure 10.

GPR surveys conducted along the edge of the brick building suggest that the EM61 anomalies recorded in this area are probably in response to the building and/or buried miscellaneous debris. The remaining EM61 anomalies recorded within the proposed ROW area at Parcel 48 are probably in response to known cultural features and/or buried miscellaneous debris.

3.5 Parcel 50 – Pansy Ernest Property

The Pansy Ernest property (Parcel 50) is located on the western corner of the Tilley Street and US1 intersection. The parcel contains the former Little Grace's Variety store surrounded by a flay-lying grass-covered, terrain. An occupied house is located immediately west of the property. The EM61 bottom coil results and the differential results are presented in **Figures 11 and 12**, respectively. Please note that Figures 11 and 12 also contain the EM61 results for Church of Deliverance property (Parcel 51).

Geophysical Investigation Report – Richmond County, NC Sites 09/01/06

Pyramid Environmental & Engineering, PC

GPR surveys conducted across the backyard of Parcel 50 suggest the linear EM61 bottom coil anomalies intersecting grid coordinates X=570 Y=115, X=570 Y=126, X=580 Y=90, and X=586 Y=125, are probable in response to buried conduits or lines. Similarly, the locations of the linear EM61 anomalies intersecting grid coordinates X= 622 Y=80, X=622 Y=120, and X=640 Y=35, suggest these anomalies are probably in response to buried utility lines.

GPR surveys conduct across the high amplitude anomalies centered near grid coordinates X=575 Y=105, and X=590 Y=113, suggest the anomalies are probably in response to the "junction" of conduits and/or other miscellaneous objects. Although not confirmed by the GPR results, the EM61 anomaly located at X=575 Y=105, may be in response to a possible septic tank.

GPR surveys conducted across the EM61 anomaly centered near grid coordinates X=567 Y=55, detected the probably presence of two USTs buried approximately 0.75 feet below surface. The approximate locations of the probably USTs are shown as magenta-colored rectangles in Figures 11 and 12 and each UST appears to be approximately eight feet long and three feet wide. A photograph showing the approximate locations of the two probable USTs and the image of GPR survey line Y=55, which intersects the probable USTs, are presented in **Figure 13**.

The remaining EM 61 anomalies recorded within the proposed ROW area at Parcel 50 are probably in response to known cultural features or buried miscellaneous metal debris.

3.6 Parcel 51 – Church of Deliverance Property

Geophysical Investigation Report – Richmond County, NC Sites 09/01/06

The Church of Deliverance property (Parcel 51) contains an active church building surrounded by a grass, gravel or asphalt-covered parking area. The property is located on the northern corner of the Tilley Street and US 1 intersection immediately across the street from the Pansy Ernest property (Parcel 50). The EM 61 bottom coil results and the differential results for Parcel 51 are presented in **Figures 11 and 12**, respectively along with the EM 61 results for Parcel 50.

The linear EM 61 bottom coil anomalies intersecting grid coordinates X=670 Y=50, X=700 Y=30, and X=700 Y=65, are probably in response to buried utility lines or conduits. GPR surveys conducted across the EM 61 differential anomaly centered near X=705 Y=105, and along the front edge of the church building suggest the anomalies are probably in response to miscellaneous debris and the building respectively.

The remaining EM 61 anomalies recorded within the proposed ROW area at Parcel 51 are probably in response to know cultural features or miscellaneous buried debris. The geophysical results also suggest that the proposed ROW area does not contain metallic USTs.

3.7 Parcel 61 – Cooper & Brown Inc. Property

The Cooper & Brown Inc. property (Parcel 61) is located on the western side of the US 1 and Little Road intersection. The proposed ROW area of Parcel 61 contains a vacant business building surrounded by flat-lying, grass or asphalt surfaces. A concrete pad is located in front of the building and probably identifies the former pump island area. An occupied house lies to the northwest of the proposed ROW area.

Geophysical Investigation Report – Richmond County, NC Sites

09/01/06

The EM61 bottom coil results and the differential results are presented in **Figures 14 and 15**, respectively. The linear EM61 bottom coil anomalies intersecting grid coordinates X=130 Y=34, X=142 Y=105, X=186 Y=100, X=210 Y=42, and X=213 Y=83, are probably in response to buried utility lines or conduits. The high amplitude anomalies centered near grid coordinates X=75 Y=67, and X=80 Y=50, are probably in response to steel reinforced concrete. GPR surveys conducted across these two areas did not detect the presence of USTs.

GPR surveys conducted across the high amplitude anomaly centered near X=226 Y=116, suggest the anomaly is probably in response to steel reinforced concrete and/or to the metal conduits that are visible at the surface. GPR surveys conducted along the perimeter of the building suggest that the EM61 anomalies are probably in response to the building and/or to miscellaneous debris. The remaining EM61 anomalies are probably in response to known cultural features and/or to buried miscellaneous metal debris.

The geophysical results suggest that the proposed ROW area at Parcel 61 does not contain metallic USTs.

3.8 Parcel 70 – Delia Lassiter Property

The Delia Lassiter Property (Parcel 70) contains a vacant building surrounded primarily by grass yard and an asphalt driveway. An occupied house lies immediately north of the proposed ROW area. The EM61 bottom coil results and the differential results are presented in **Figures 16 and 17**, respectively.

Geophysical Investigation Report – Richmond County, NC Sites

The linear EM61 anomaly intersecting grid coordinates X=90 Y=110, is probably in response to a buried utility line or conduit. The remaining EM anomalies are probably in response to known cultural features or to buried miscellaneous debris. The geophysical results suggest that the proposed ROW area at the Delia Lassiter property does not contain metallic USTs.

3.9 Parcel 22 – Ivey Little Property

The Ivey Little property (Parcel 22) is located along the northwest side of US 1 and consists of a vacant building surrounded by a gravel-covered driveway and grass-covered fields. The EM61 bottom coil results and the differential results are presented in **Figures 18 and 19**, respectively.

The linear EM 61 anomaly intersecting grid coordinates X=354 Y=35, is probably in response to a buried utility line or conduit. The remaining EM anomalies are probably in response to known cultural features or to buried miscellaneous debris. The geophysical results suggest that the proposed ROW area at the Ivey Little property does not contain metallic USTs.

3.10 Parcel 68 – James Pugh Property

The James Pugh Property (Parcel 68) is a former gas station site located on the northern side of US 1, approximately 0.25 miles west of the US 1 and Special Forces Way intersection. The site consists primarily of grass, trees and brush with a former pump island pad located near the edge of US 1. The EM 61 bottom coil results and the differential results are presented in **Figure 20**.

GPR surveys conducted across the EM61 anomalies centered grid coordinates X=305 Y=35, and X=321 Y=37, suggest the anomalies are probably in response to the pump island pad and to the

Geophysical Investigation Report – Richmond County, NC Sites 09/01/06

buried pump island-related equipment. GPR surveys conducted across the EM61 anomaly centered near grid coordinates X=534 Y=92, suggest the anomaly is probably in response to buried miscellaneous debris or object. The remaining EM61 anomalies are probably in response to known cultural features and miscellaneous metal debris.

The geophysical investigation conducted at Parcel 68 suggests that the proposed ROW areadoes not contain metallic USTs.

4.0 <u>SUMMARY & CONCLUSIONS</u>

Our evaluation of the EM61 and GPR data collected across the proposed ROW areas at the 10 sites along US1 in Richmond County, North Carolina provides the following summary and conclusions:

- The EM61 and GPR surveys provided reliable results for the detection of metallic USTs within the surveyed portions of the proposed ROW areas of each site.
- GPR surveys were conducted across selected EM61 differential anomalies and across areas containing steel reinforced concrete.
- Linear EM 61 anomalies at the 10 sites are probably in response to buried utility lines and/or conduits. The majority of non-linear anomalies are probably in response to known cultural features or miscellaneous metal objects.

Geophysical Investigation Report – Richmond County, NC Sites

• The geophysical results suggest the proposed ROW areas at the following properties do not contain metallic USTs:

Hillary McKay Property (Parcel 6)

Church of Deliverance Property (Parcel 51)

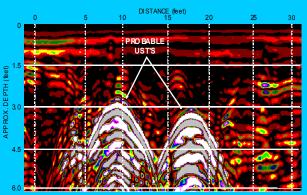
Cooper & Brown Inc. Property (Parcel 61)

Delia Lassiter Property (Parcel 70)

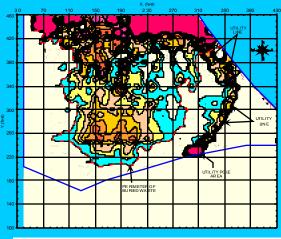
Ivey Little Property (Parcel 22)

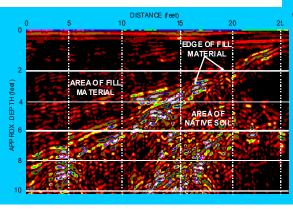
James Pugh Property (Parcel 68)

- W.J. Lewis Property (Parcel 9): Geophysical results suggest the probable presence of two USTs located adjacent to the pump island area. The first UST is centered near grid coordinates X=84 Y=27, and buried approximately 1.5 feet below surface. The second UST is centered near grid coordinates X=103 Y=27, and is buried approximately 2.0 feet below surface. The EM61 differential anomaly centered near grid coordinates X=118 Y=29, may possibly be in response to a UST or large metal object. However, GPR surveys could not be conducted across this EM anomaly due to the limited access caused by the dense wooded terrain.
- James Brigman Property (Parcel 21): Geophysical results detected the probable presence of four metallic USTs centered near grid coordinates X=43 Y=80, X=50 Y=80, X=42 Y=73, and X=48 Y=73. Based on the GPR data, the USTs appear to be approximately 9 feet longand 3.5 to 4 feet wide and buried approximately 1.5 to 2.0 feet below surface.


- Roy Barry Bostick Property (Parcel 48): GPR surveys conducted across the EM61 anomaly centered near grid coordinates X=295 Y=60, suggest that the anomaly is probably in response to one or more large diameter (12 or more inches) conduits buried approximately 1.0 feet below surface. There is a possibility (although unlikely) that the anomaly may be in response to a very small UST centered near grid coordinates X=290 Y=59.
- Pansy Ernest Property (Parcel 50): Geophysical results suggest the probable presence of two USTs centered near grid coordinates X=567 Y=55, and buried approximately 0.75 feet below surface. The USTs appear to be approximately eight feet long and three feet wide.

5.0 <u>LIMITATIONS</u>


EM61 and GPR surveys have been performed and this report prepared for Solutions IES in accordance with generally accepted guidelines for EM61 and GPR surveys. It is generally recognized that the results of the EM61 and GPR are non-unique and may not represent actual subsurface conditions. The EM61 and GPR results obtained for this project do not conclusively define the locations of all metallic USTs but only suggest where some of the metallic USTs may be present. The EM61 and GPR anomalies, interpreted as probable or possible USTs or tanks, may be attributed to other surface or subsurface conditions or cultural interference.


09/01/06

FIGURES

GRAPHIC SCALE IN FEET

Parcel 6 - Hillary McKay Property

Parcel 9 - K.J. Lewis Property

Parcel 21 - James Brigman Property

Parcel 48 - Roy Barry Bostick Property

Parcel 50 - Pansy Earnest Property

Parcel 51 - Church of Deliverance Property

Parcel 61 - Cooper & Brown Property

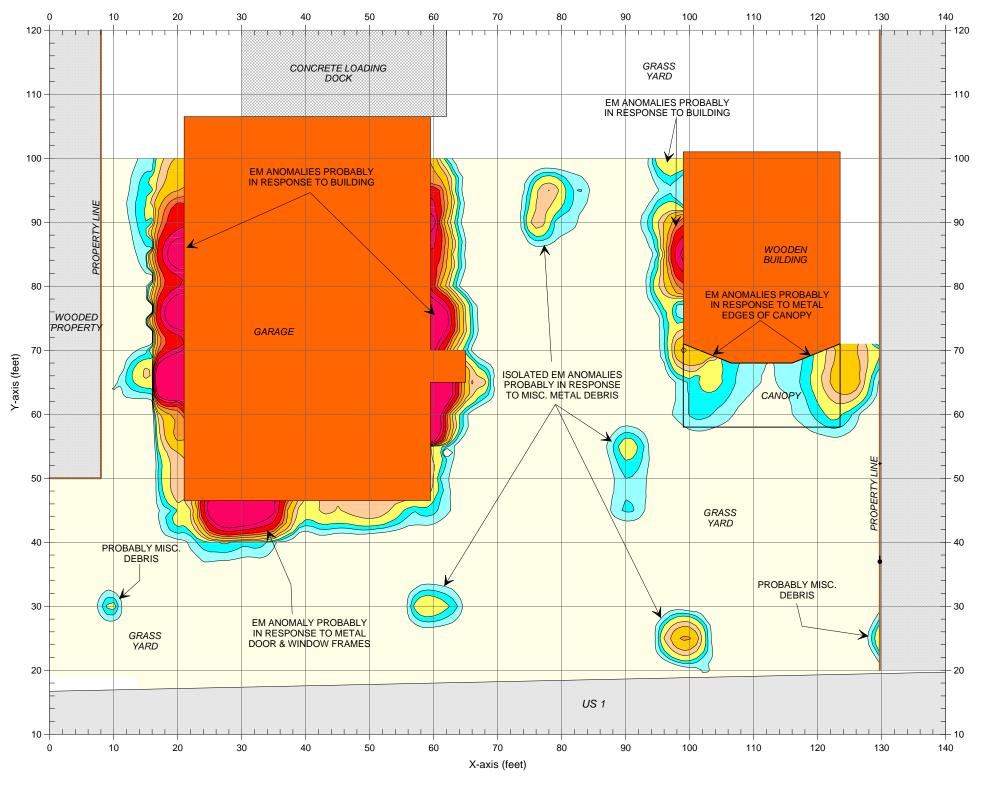
Parcel 70 - Delia Lassiter Property

Parcel 22 - Ivey Little Property

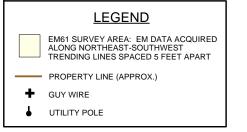
Parcel 68 - James Pugh Property

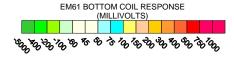
GEOPHYSICAL EQUIPMENT

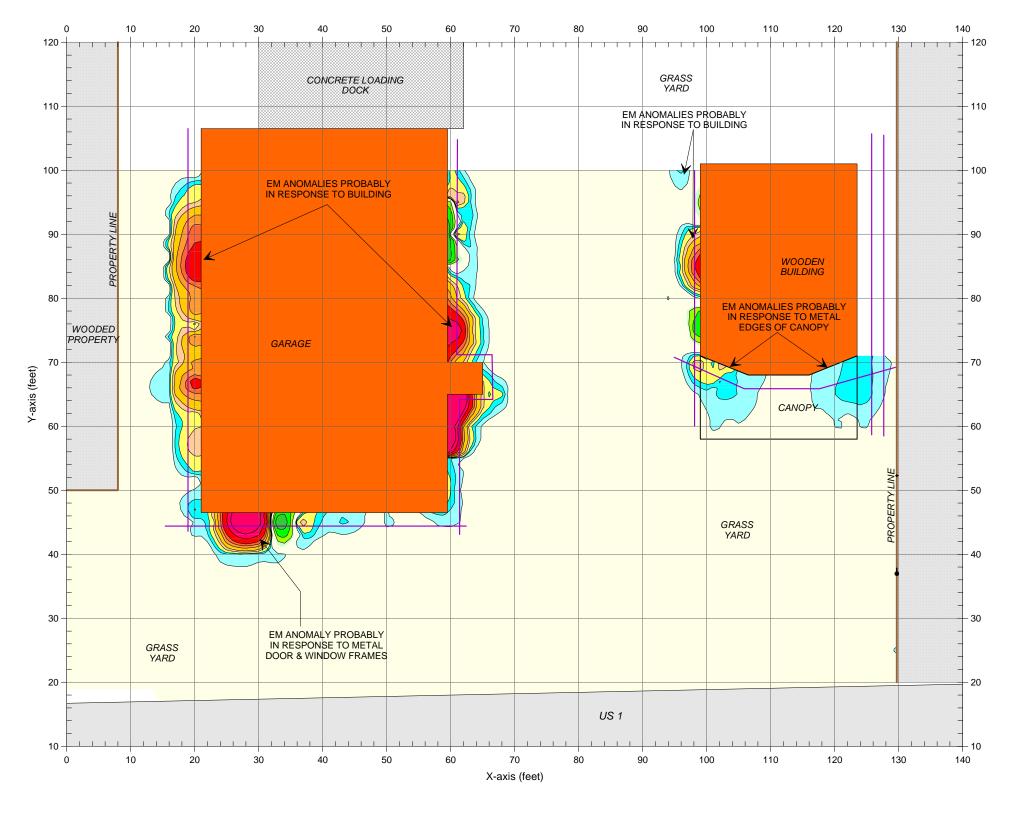
The photo shows the Geonics EM61 metal detector that was used to conduct the metal detection survey at the sites in Richmond County, North Carolina.


The photos show the SIR-2000 GPR system equipped with a 400 MHz antenna that was used to conduct the ground penetrating radar investigation at the sites in Richmond County, North Carolina.

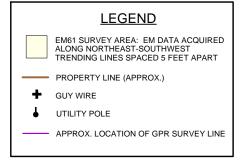
2			
ркми	СН.КВ		FIGURE
08/31/06			2006-200
3TA 0	YAJ	DMC	J-NO.
SOLUTIONS IES	US 1 - RICHMOND COUNTY SITES	MARSTON & HOFFMAN	GEOPHYSICAL RESULTS
ССІЕИТ	SITE	YTIO	ЭЛПТ

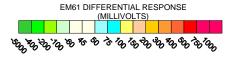

SITE PHOTOGRAPHS


This figure shows the photographs of the ten sites located near Marston and Hoffman, North Carolina where geophysical investigations were conducted within the ROW areas for the detection of metallic USTs.


Note: The contour plot shows the bottom coil (most sensitive) response of the EM61 instrument in millivolts (mV). The bottom coil response shows buried metallic objects regardless of size. The EM metal detection data were collected on July 27, 2006 using a Geonics EM61 instrument. Ground penetrating radar (GPR) data were acquired on August 16, 2006 using a Geophysical Survey Systems SIR 2000 instrument with a 400 MHz antenna.

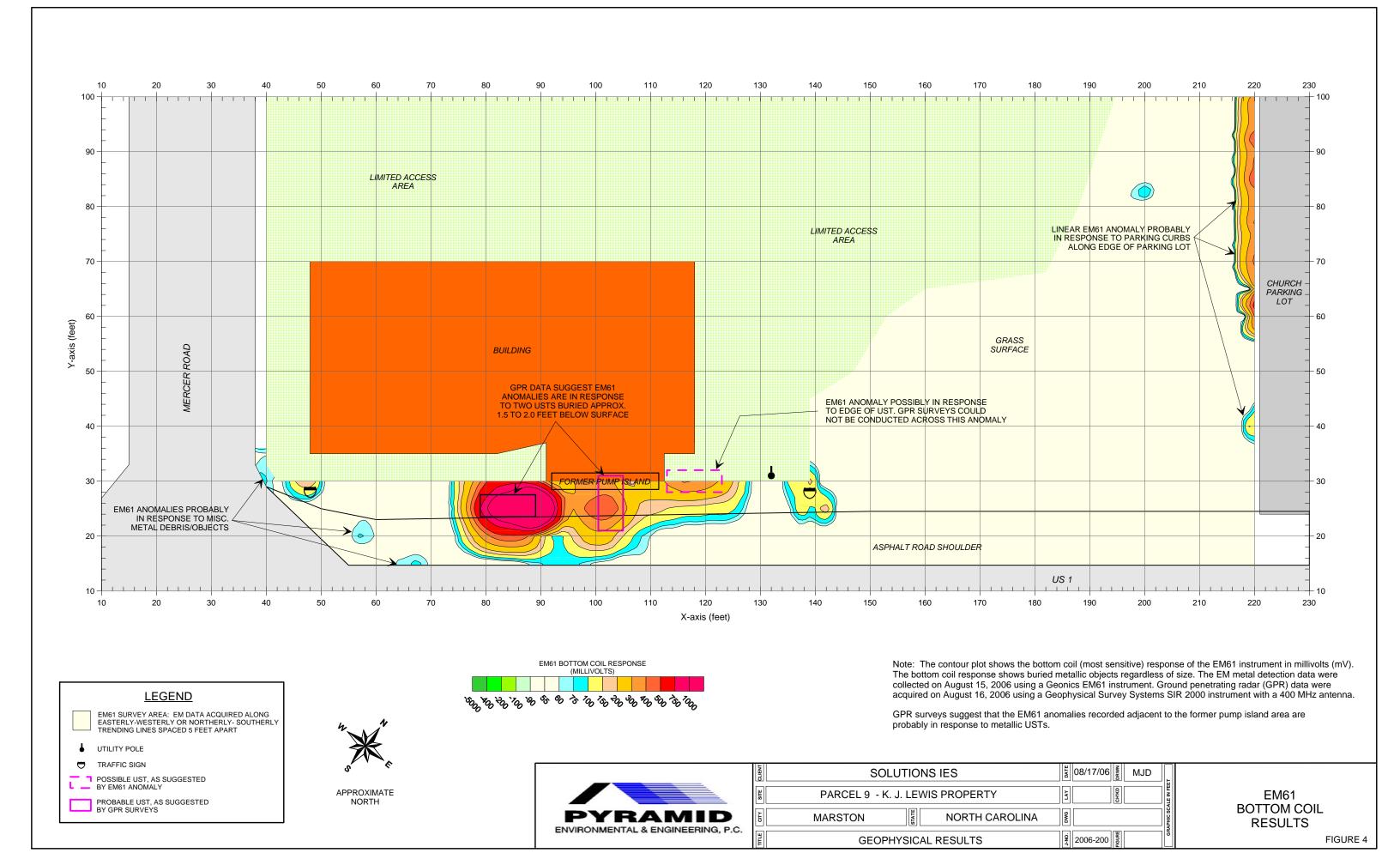
The geophysical investigation suggests that the survey area does not contain metallic USTs.

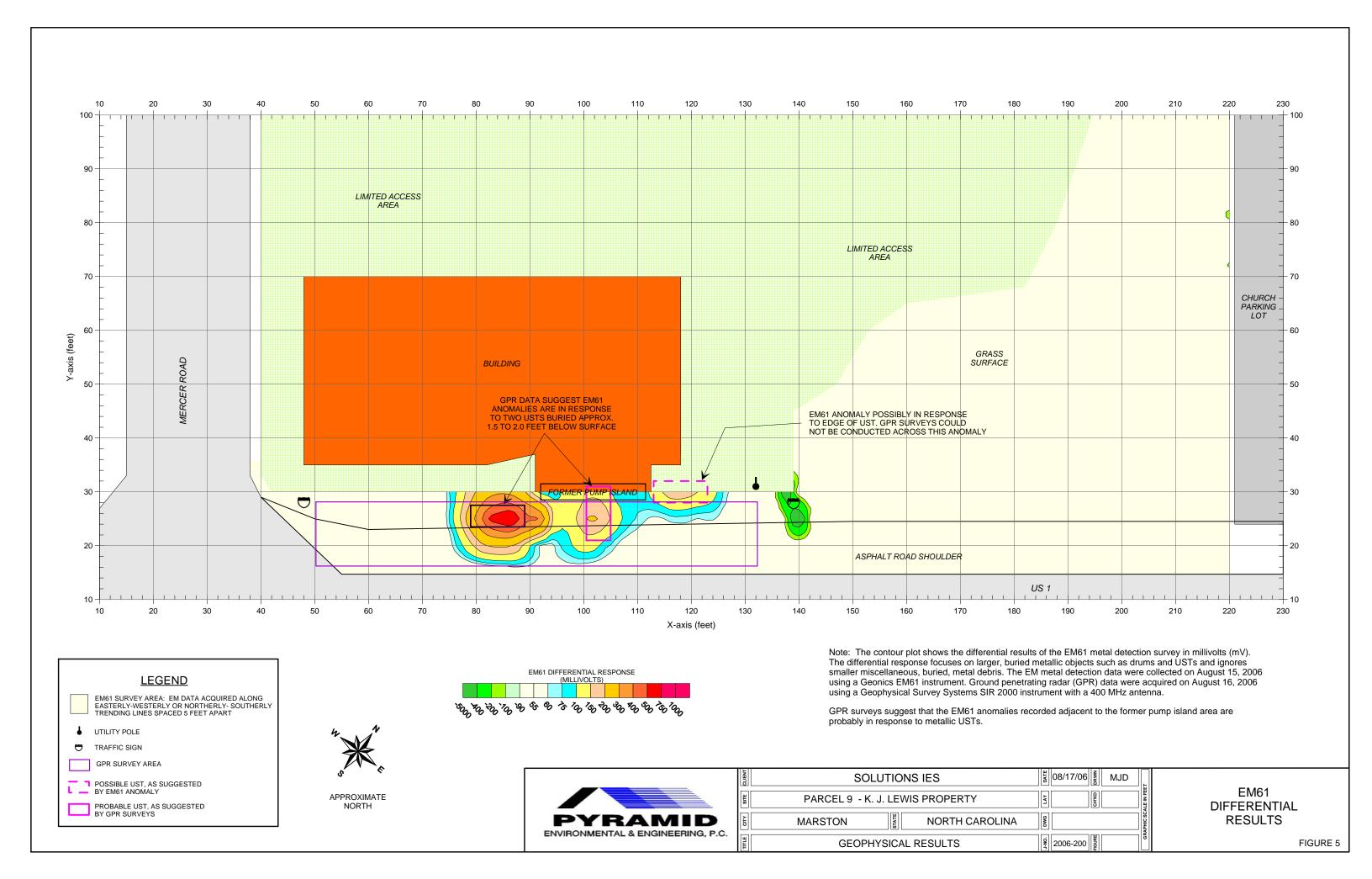



	CLIENT	SOLUTIONS IES	08/01/06 MJD		
	SITE	PARCEL 6 - HILLARY MCKAY PROPERTY	CHKD	LE IN FEE	
	CITY	MARSTON NORTH CAROLINA	DWG	VPHIC SCA	
C.	TITLE	GEOPHYSICAL RESULTS	2006-200	GRA	

EM61 BOTTOM COIL RESULTS

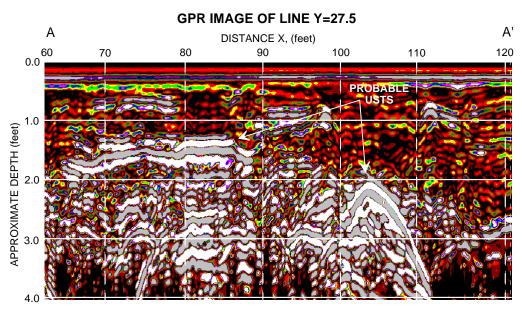
Note: The contour plot shows the differential results of the EM61 metal detection survey in millivolts (mV). The differential response focuses on larger, buried metallic objects such as drums and USTs and ignores smaller miscellaneous, buried, metal debris. The EM metal detection data were collected on July 27, 2006 using a Geonics EM61 instrument. Ground penetrating radar (GPR) data were acquired on August 16, 2006 using a Geophysical Survey Systems SIR 2000 instrument with a 400 MHz antenna.

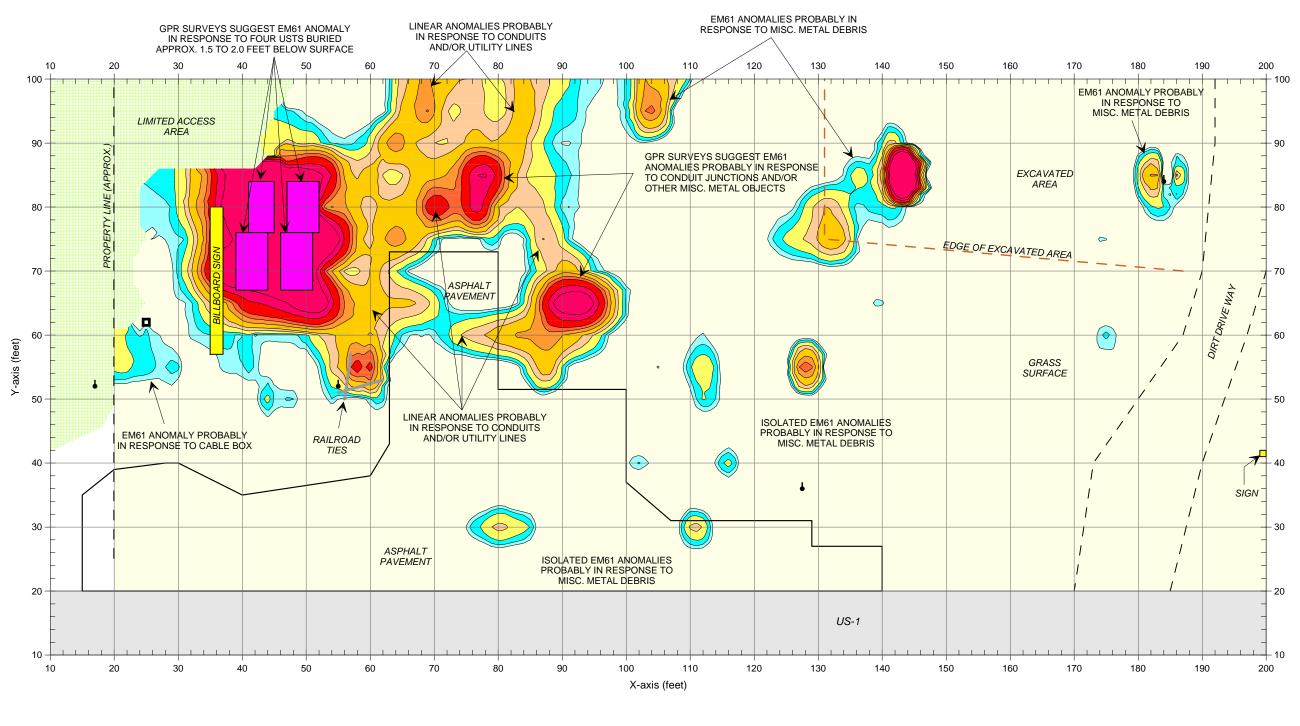

The geophysical investigation suggests that the survey area does not contain metallic USTs.

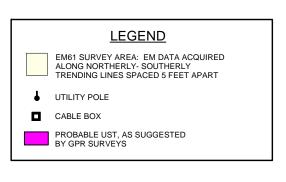


	CLIENT	SOLUTIONS IES	08/01/06 NMJD	F	
	SITE	PARCEL 6 - HILLARY MCKAY PROPERTY	CH'KD	ALE IN FEE	
	CITY	MARSTON	DWG	APHIC SCA	
).	TITLE	GEOPHYSICAL RESULTS	(Signal 2006-200 Signal 2006	GR	

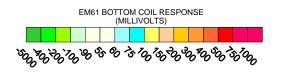
EM61 DIFFERENTIAL RESULTS


FIGURE 3

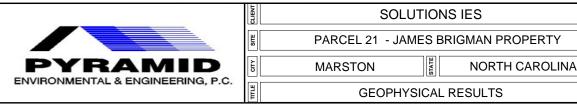

The photograph shows the locations of two probable USTs and one possible UST buried 1.5 to 2.0 feet below surface, as suggested by the geophysical results at Parcel 9.



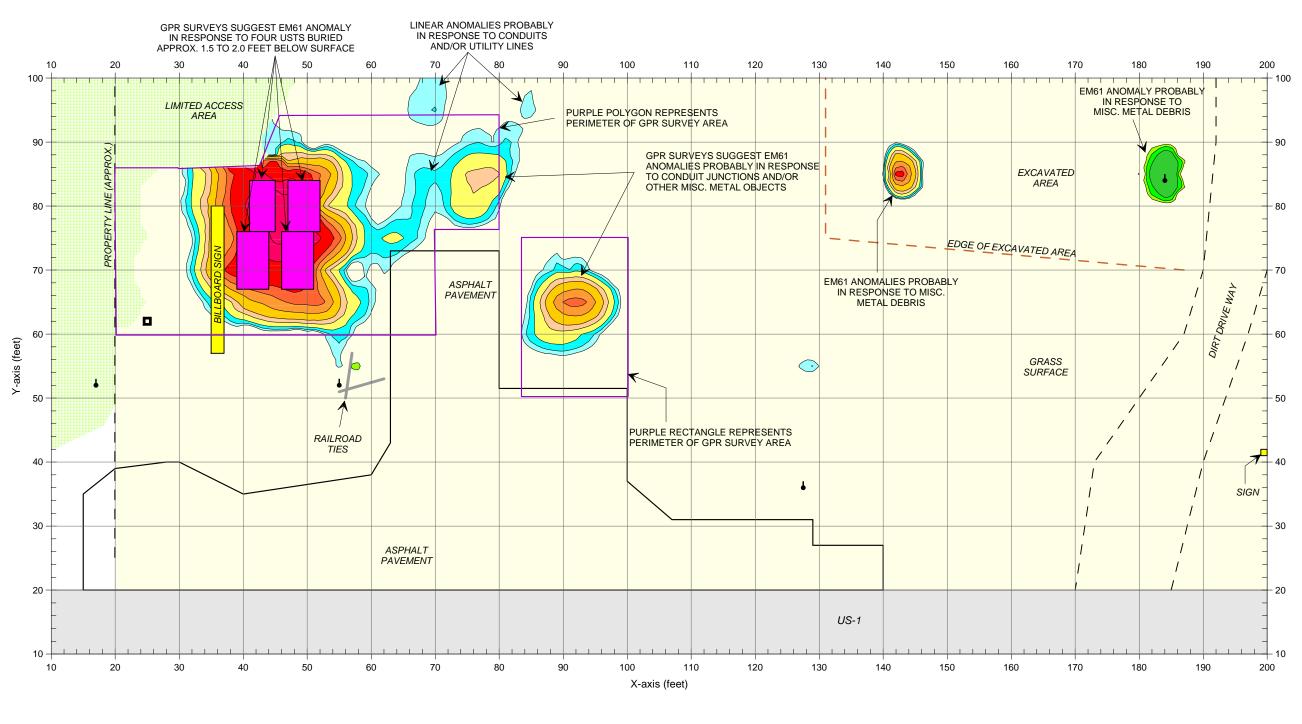
The GPR image obtained along a portion of survey line Y=27.5, shows the anomalies that are probably in response to USTs near X=84 and X=103, and buried approximately 1.5 and 2.0 feet below surface, respectively. The location of this GPR image is shown with a solid purple line in the above photograph.

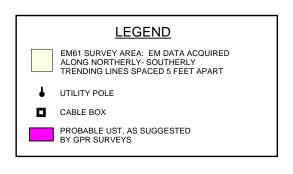


CLIEN	SOLUTIONS IES	08/26/05	.
SITE	PARCEL 9 - K. J. LEWIS PROPERTY	CHKO	
CITY	MARSTON E NORTH CAROLINA	Dwe	
TITLE	GEOPHYSICAL RESULTS	9 2006-200 R	

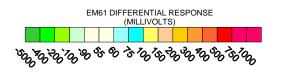


Note: The contour plot shows the bottom coil (most sensitive) response of the EM61 instrument in millivolts (mV). The bottom coil response shows buried metallic objects regardless of size. The EM metal detection data were collected on August 15, 2006 using a Geonics EM61 instrument. Ground penetrating radar (GPR) data were acquired on August 16, 2006 using a Geophysical Survey Systems SIR 2000 instrument with a 400 MHz antenna.


GPR surveys suggest that the large, high amplitude, EM61 anomaly in the southwest portion of the survey area is probably in response to four metallic USTs.


[2006-200

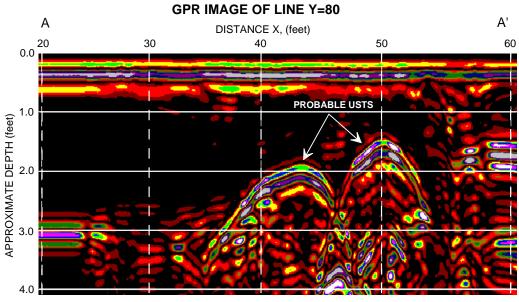
MJD



EM61 BOTTOM COIL RESULTS

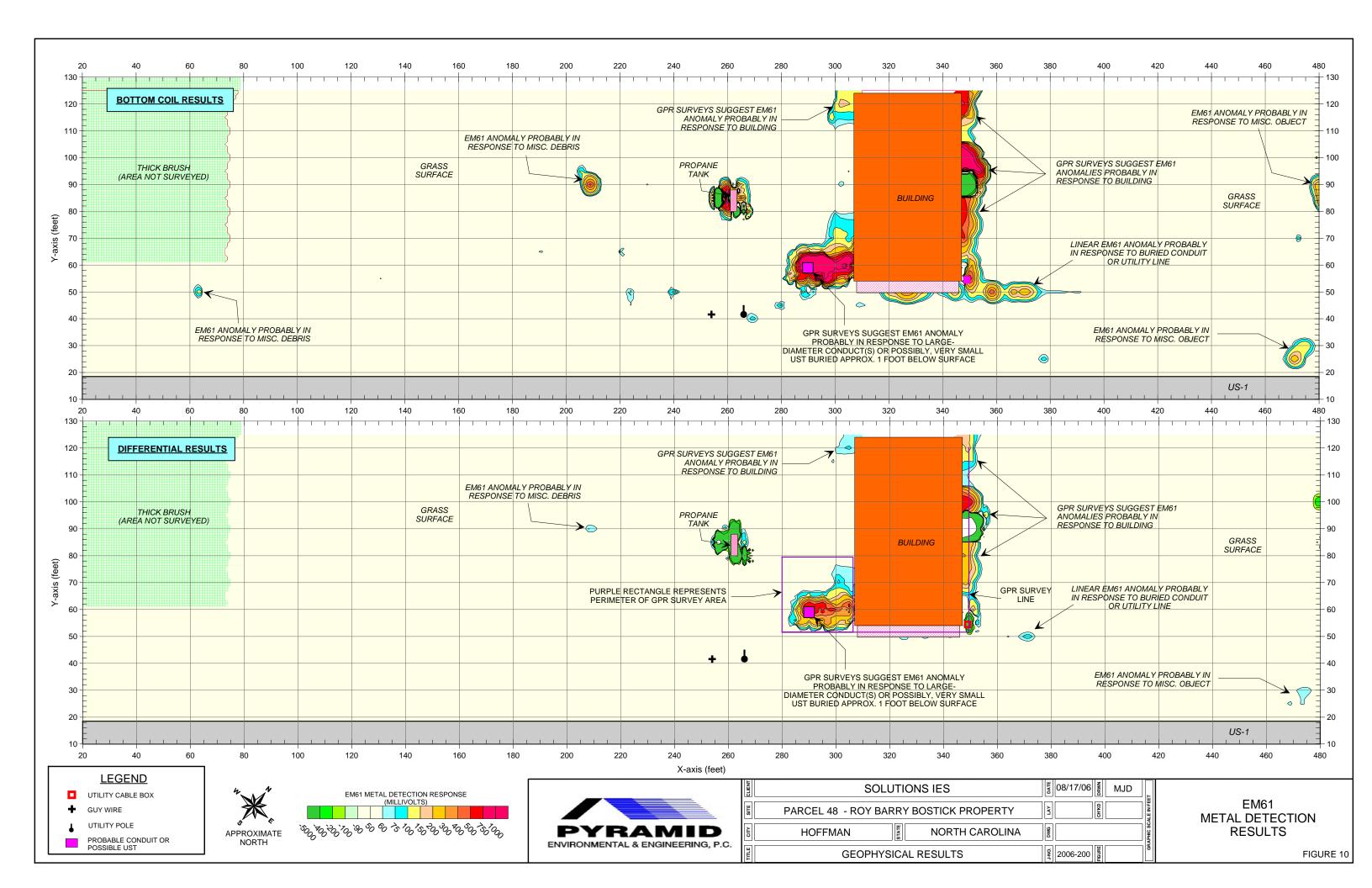
Note: The contour plot shows the differential results of the EM61 metal detection survey in millivolts (mV). The differential response focuses on larger, buried metallic objects such as drums and USTs and ignores smaller miscellaneous, buried, metal debris. The EM metal detection data were collected on August 15, 2006 using a Geonics EM61 instrument. Ground penetrating radar (GPR) data were acquired on August 16, 2006 using a Geophysical Survey Systems SIR 2000 instrument with a 400 MHz antenna.

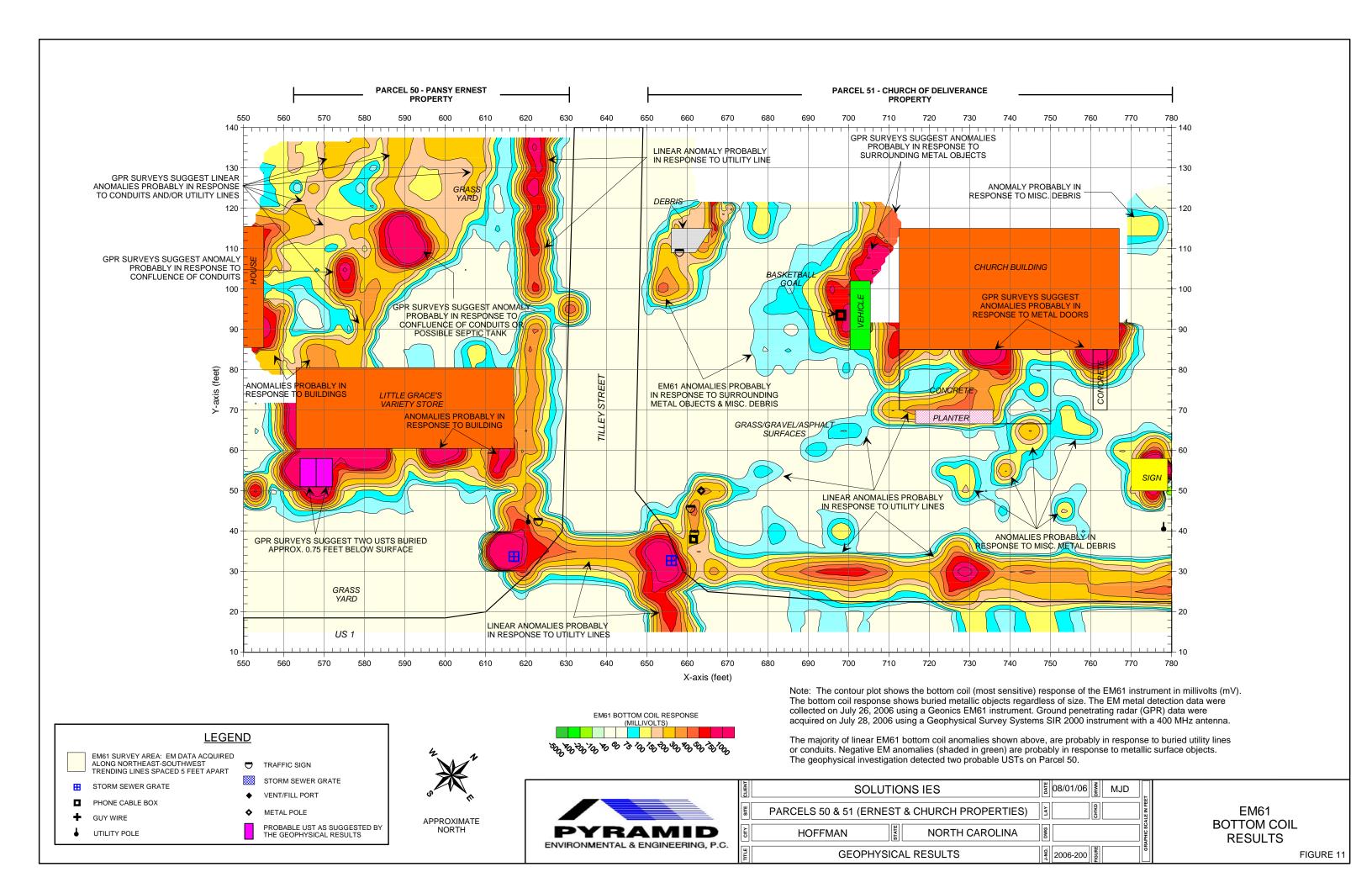
GPR surveys suggest that the large, high amplitude, EM61 anomaly in the southwest portion of the survey area is probably in response to four metallic USTs.

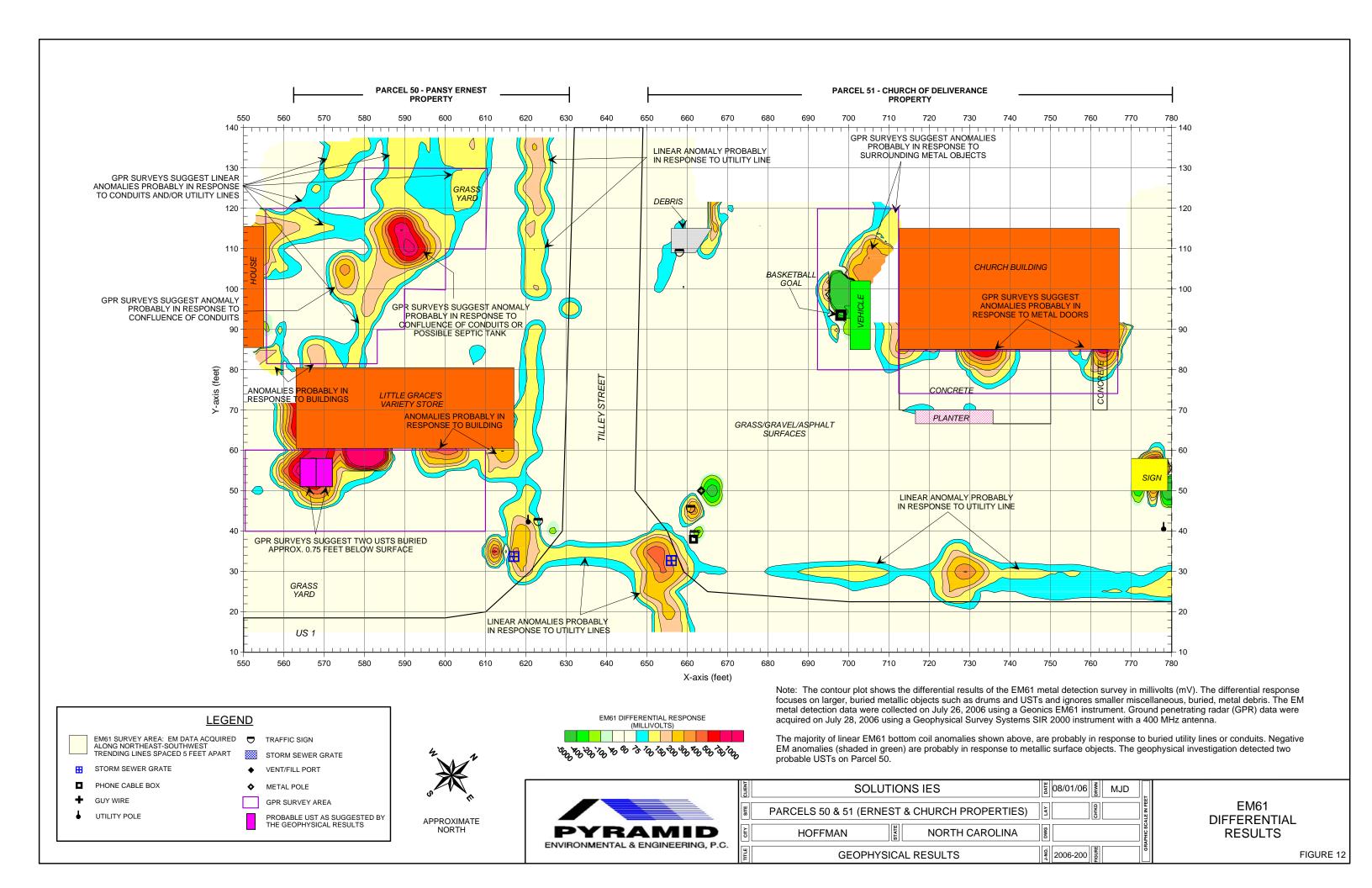


	CLIENT	SOLUTIONS IES	08/17/06 NM MJD	F
	SITE	PARCEL 21 - JAMES BRIGMAN PROPERTY	CHKD	ILE IN FEE
>	CITY	MARSTON	DWG	APHIC SCA
P.C.	ПТСЕ	GEOPHYSICAL RESULTS		GRA

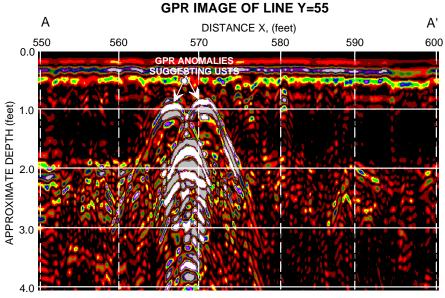
EM61 DIFFERENTIAL RESULTS

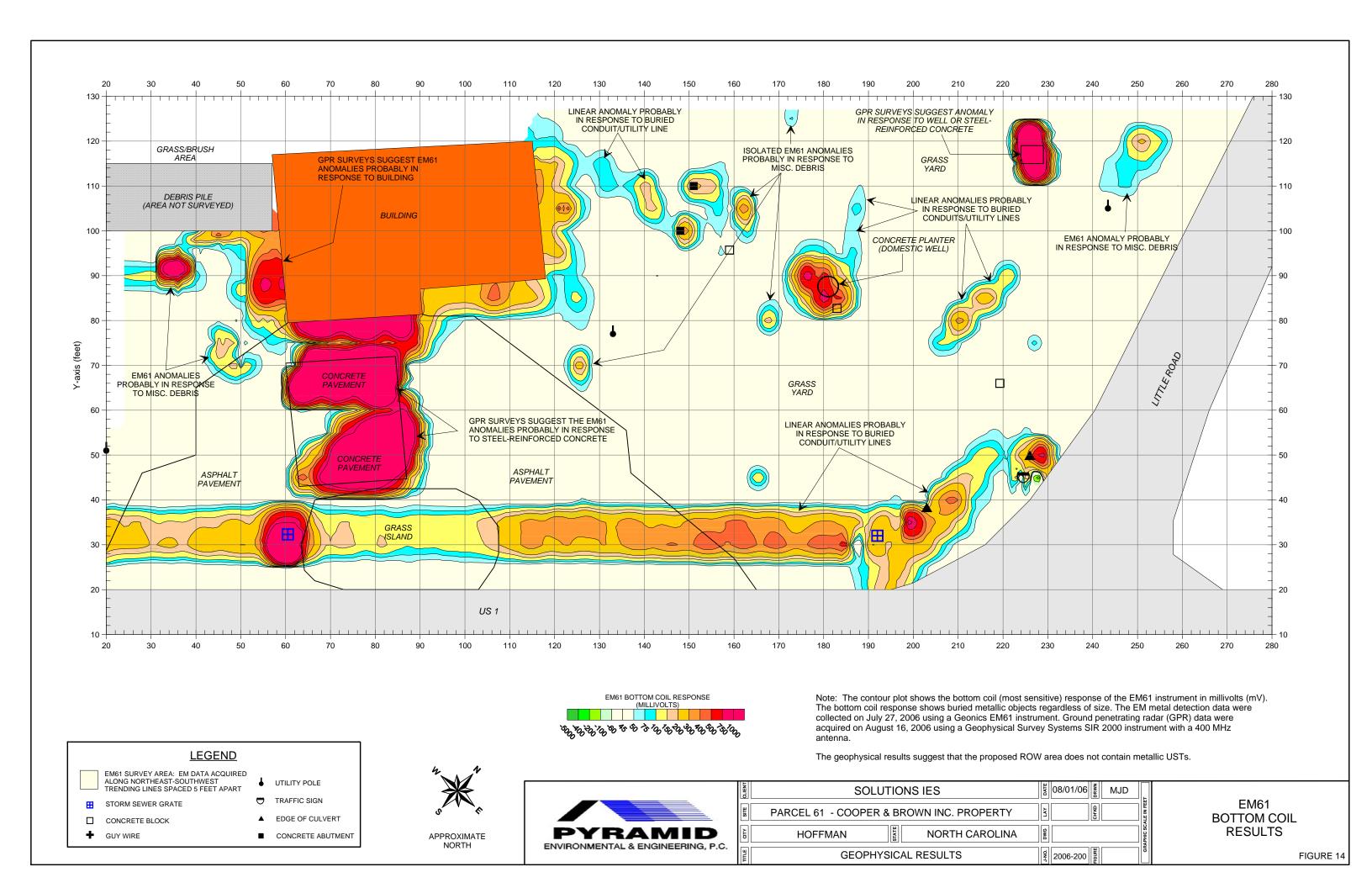

The photograph shows the location of four probable USTs buried 1.75 to 2.0 feet below surface, as suggested by the geophysical results at Parcel 21.

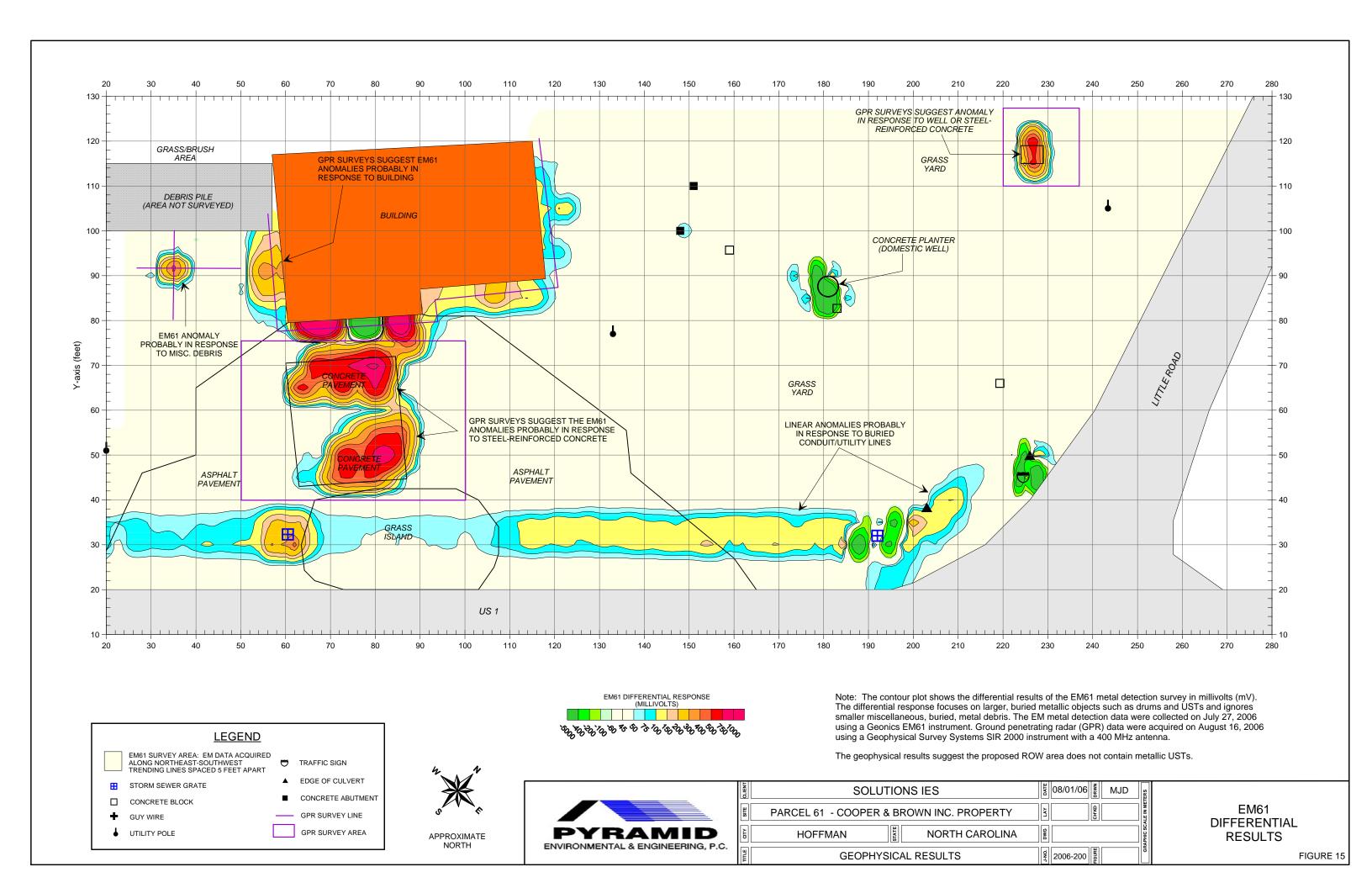


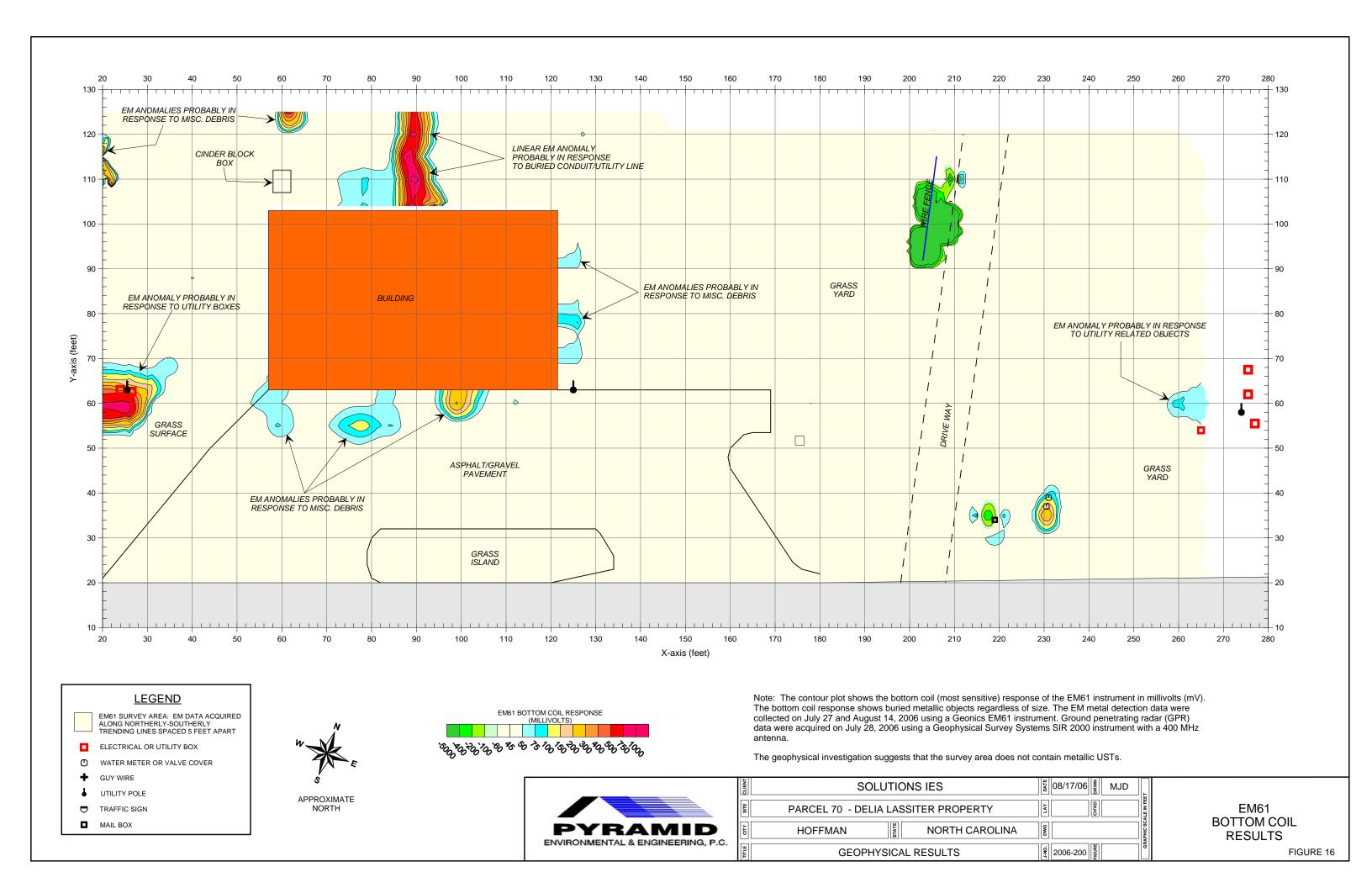

The GPR image obtained along a portion of survey line Y=80, shows the anomalies that are probably in response to USTs near X=43 and X=50, and buried approximately 2.0 and 1.5 feet below surface, respectively. The location of this GPR image is shown with a solid purple line in the above photograph.

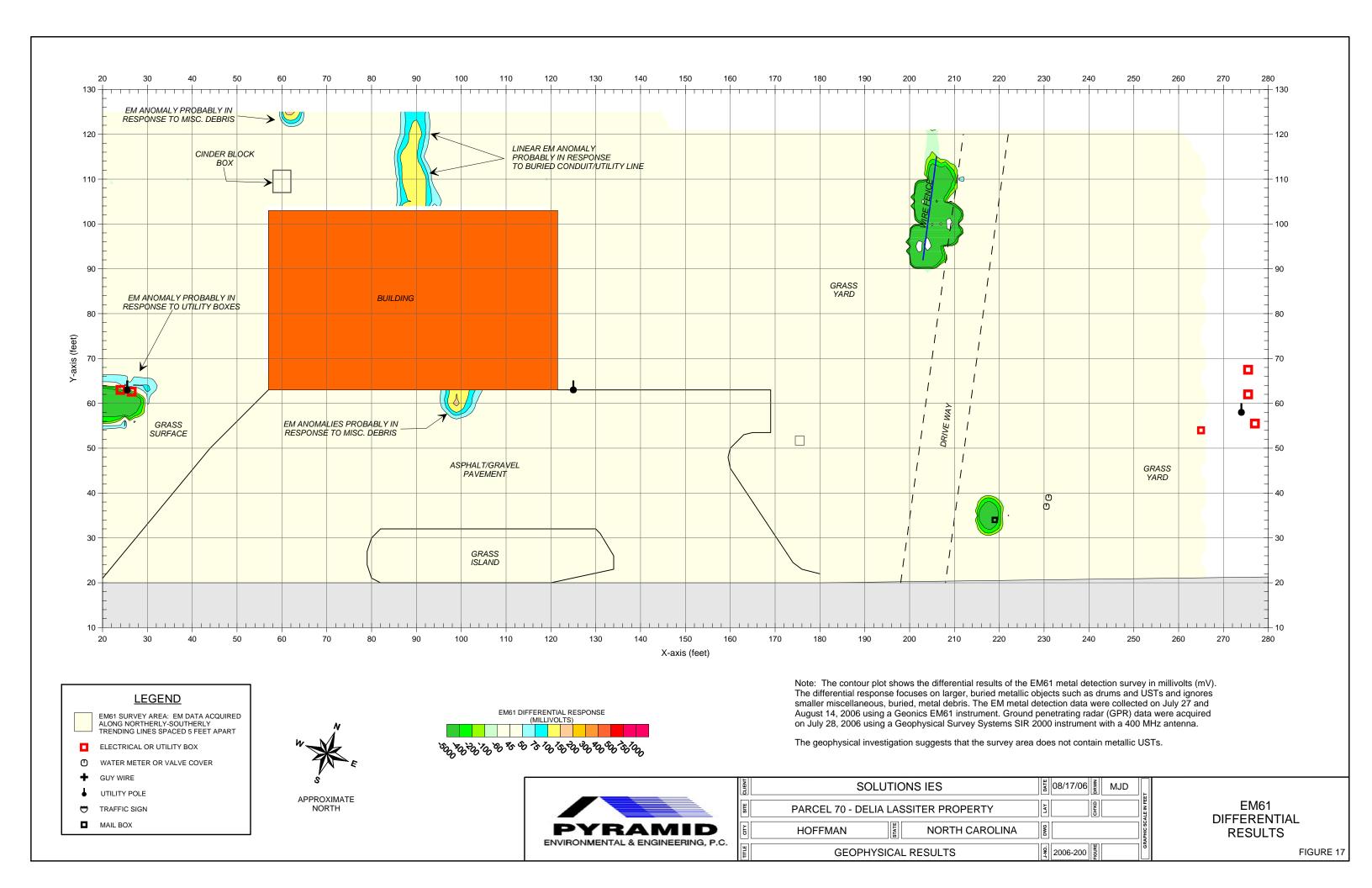
Ī	CLIENT	SOLUTIONS IES	EET
l	SITE	PARCEL 21 - JAMES BRIGMAN PROPERTY	E IN
l	CITY	MARSTON	GRAPHIC SCA
l	III.	GEOPHYSICAL RESULTS	GRA

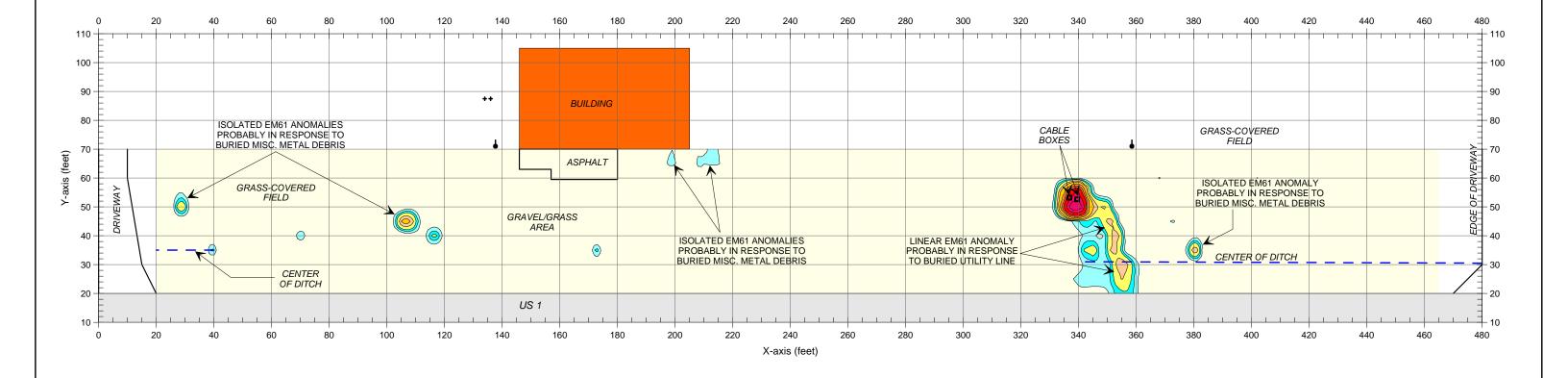


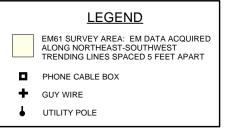

The photograph shows the location of two probable USTs buried approx. 0.75 feet below surface, as suggested by the geophysical results at Parcel 50.

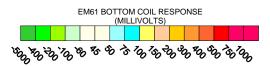


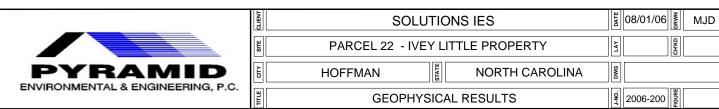

The GPR image obtained along survey line Y=55 shows the anomalies that are probably in response to USTs near X=566 and X=570, and buried approximately 0.75 feet below surface. The location of this GPR image is shown with a solid purple line in the above photograph.

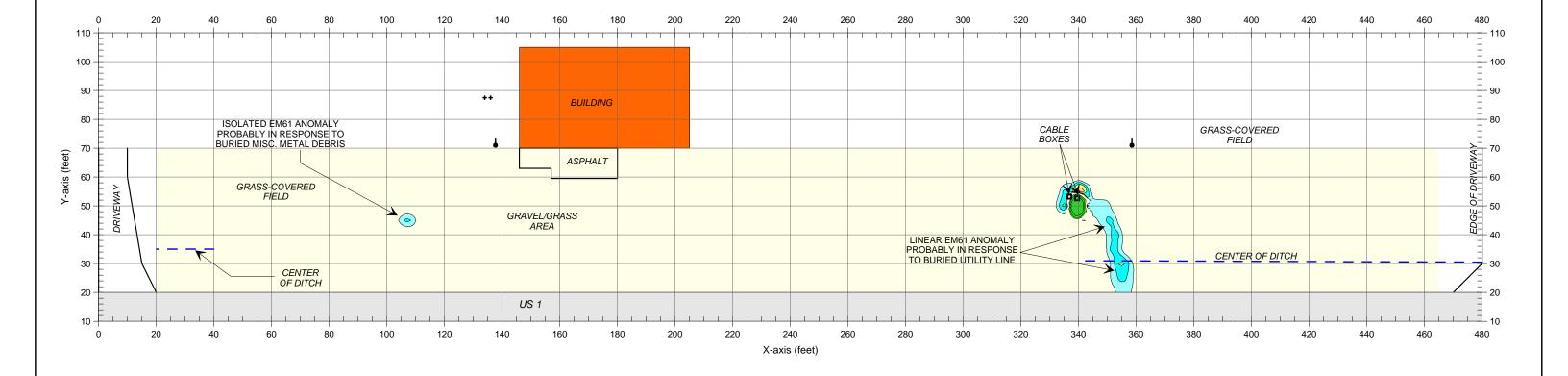


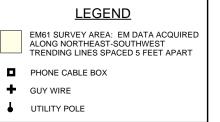

CLIENT	SOLUTIONS IES	08/26/05	
SITE	PARCEL 50 (PANSY ERNEST PROPERTY)	OH'KD OH'KD	ALE IN PE
СПТ	MARSTON NORTH CAROLINA	DMG	APHIC SC
тте	GEOPHYSICAL RESULTS	2006-200	g



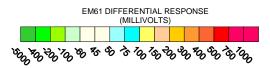




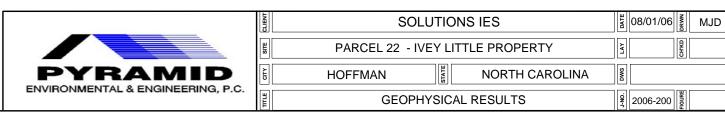

Note: The contour plot shows the bottom coil (most sensitive) response of the EM61 instrument in millivolts (mV). The bottom coil response shows buried metallic objects regardless of size. The EM metal detection data were collected on July 27, 2006 using a Geonics EM61 instrument. Ground penetrating radar (GPR) data were acquired on July 28, 2006 using a Geophysical Survey Systems SIR 2000 instrument with a 400 MHz antenna.

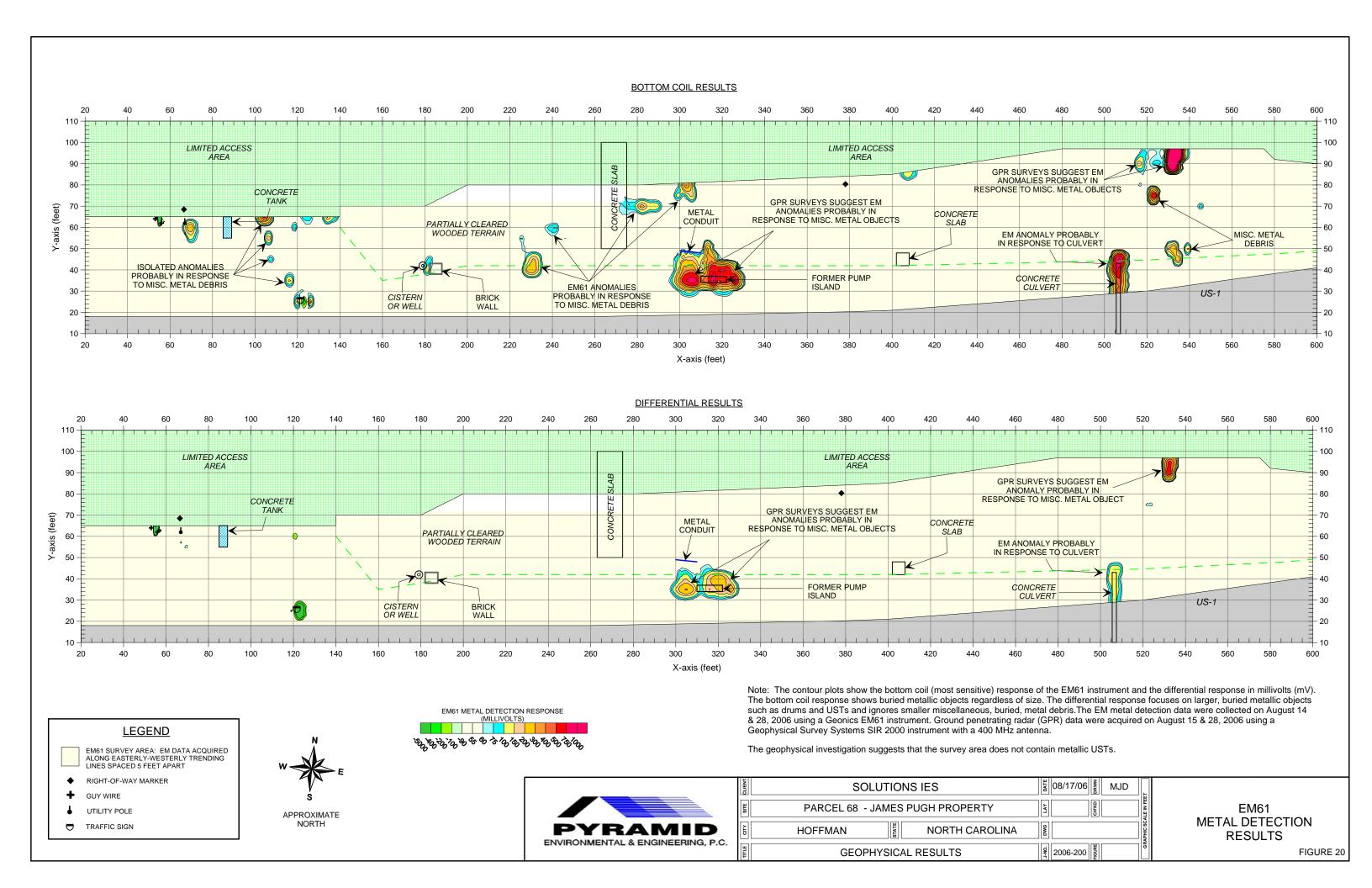

[2006-200

The geophysical investigation suggests that the survey area does not contain metallic USTs.



EM61 **BOTTOM COIL** RESULTS





Note: The contour plot shows the differential results of the EM61 metal detection survey in millivolts (mV). The differential response focuses on larger, buried metallic objects such as drums and USTs and ignores smaller miscellaneous, buried, metal debris. The EM metal detection data were collected on July 27, 2006 using a Geonics EM61 instrument. Ground penetrating radar (GPR) data were acquired on July 28, 2006 using a Geophysical Survey Systems SIR 2000 instrument with a 400 MHz antenna.

The geophysical investigation suggests that the survey area does not contain metallic USTs.

EM61 DIFFERENTIAL RESULTS

APPENDIX C
BORING LOGS

Project: Richmond County PSA's Solutions-IES Project No.: 3260.06A3.NDOT

Boring Number: 1

Client: NCDOT

WBS # 34438.1.1

State Project # R-2502B Drilling Method: Direct Push

Sampler Type: Macro Core

Logged By: K.B

County: Richmond

Boring Date: 08/24/06

Site: Parcel 6

Checked By: JP

Initial Water Level: NA

Stabilized Water Level: NA

Cave In Depth: NA

Total Depth of Boring: 8' bgs

	SUBSURFACE PROFILE	SAM	PLE		£	
Depth it. bgs	Description	Sample Interval	% Recovery	PID Field Screen	Lab Sample Depth	Well Data
0	Ground Surface					
1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 -	SM Moist, brown, fine silty sand SM Moist, brown and tan, fine silty sand		100	0		
3-1-1	SM Moist, orange, fine silty sand		100	o		
5			100	0		
7			100	0		
9-1 10-1 11-1 12-1 13-1 15-1 16-1						

Project: Richmond County PSA's

Solutions-IES Project No.: 3260.06A3.NDOT

Boring Number: 2

Client: NCDOT WBS # 34438.1.1

State Project # R-2502B

Drilling Method: Direct Push Sampler Type: Macro Core

Logged By: K.B

County: Richmond

Boring Date: 08/24/06

Site: Parcel 6

Checked By: \

Initial Water Level: NA

Stabilized Water Level: NA

Cave In Depth: NA

Total Depth of Boring: 8' bgs

Loggo		SUBSURFACE PROFILE		PLE	DID 5: 110	ŧ	
Depth ft. bgs	USCS Symbol	Description	Sample Interval	% Recovery	PID Field Screen	Lab Sample Depth	Well Data
0-		Ground Surface					
1-		SM Moist, brown, fine silty sand SM Moist, tan and brown, fine silty sand		100	0		
3-		SM Moist, orange, fine silty sand		100	0		
5-		SM Moist, tan, fine silty sand		100	0		
7-				100	0		
9							
10-							
12- 13-	1						
14- 15-							
16-							

Project: Richmond County PSA's

Solutions-IES Project No.: 3260.06A3.NDOT

Boring Number: 3

Initial Water Level: NA Stabilized Water Level: NA

Client: NCDOT WBS # 34438.1.1

State Project # R-2502B

Drilling Method: Direct Push Sampler Type: Macro Core

Logged By: K.B.

County: Richmond

Boring Date: 08/24/06

Site: Parcel 6 Checked By: N

Cave In Depth: NA

Total Depth of Boring: 8' bgs

SAMPLE SUBSURFACE PROFILE Sample Depth PID Field Screen Symbol ppm • 250 500 750 Recovery Well Data Depth Description Sample Interval FID Field Screen ft. bgs USCS Lab 250 500 750 Ground Surface SM Moist, brown, fine silty sand 100 Moist, orange, fine silty sand 100 Moist, tan, fine silty sand 100 6. 100 9 10-11-12-13-14 15 16

Project: Richmond County PSA's

Solutions-IES Project No.: 3260.06A3.NDOT

Boring Number: 4

Client: NCDOT

WBS # 34438.1.1

State Project # R-2502B

Drilling Method: Direct Push

Sampler Type: Macro Core

Logged By: K.B

County: Richmond

Boring Date: 08/24/06

Site: Parcel 6

Checked By: JP

Initial Water Level: NA

Stabilized Water Level: NA

Cave In Depth: NA

Total Depth of Boring: 8' bgs

Loggo		SUBSURFACE PROFILE	SAM	PLE	DID FILLIO	£	
Depth ft. bgs	USCS Symbol	Description	Sample Interval	% Recovery	PID Field Screen	Lab Sample Depth	Well Data
0-		Ground Surface					
1-		SM Moist, brown, fine silty sand SM Moist, tan, fine silty sand		100	o		
3-		SM Moist, orange, fine silty sand SM Moist, tan and orange, fine silty sand		100	0		
5-		Moist, tair and orange, fine sity said		100	0		
6- 7-		SM Moist, tan, fine silty sand		100	0		
9 10 11							
12- 13-							
14- 15-							

Project: Richmond County PSA's

Solutions-IES Project No.: 3260.06A3.NDOT

Boring Number: 5

Client: NCDOT

WBS # 34438.1.1

State Project # R-2502B

Drilling Method: Direct Push

Sampler Type: Macro Core

Logged By: K.B

County: Richmond

Boring Date: 08/24/06

Site: Parcel 6

Checked By:

Initial Water Level: NA Stabilized Water Level: NA

Cave In Depth: NA

Total Depth of Boring: 8' bgs

	SUBSURFACE PROFILE	SAM	PLE	DID Field Comme	th	
Depth ft. bgs	Description	Sample Interval	% Recovery	PID Field Screen	Lab Sample Depth	Well Data
0	Ground Surface					
1-11-1 1-11-1 2-11-1	SM Moist, brown, fine silty sand SM Moist, tan and brown, fine silty sand		100	o		==
3 - 1 - 1	SM Moist, orange, fine silty sand		100	o		
5-1-1-6	SM Moist, tan, fine silty sand		100	o		
7-11			100	o		
9- 10- 11- 12- 13- 14- 15-						

Project: Richmond County PSA's

Solutions-IES Project No.: 3260.06A3.NDOT

Boring Number: 6

Client: NCDOT

WBS # 34438.1.1

State Project # R-2502B Drilling Method: Direct Push

Sampler Type: Macro Core

Logged By: K.B

County: Richmond

Boring Date: 08/24/06

Site: Parcel 6

Checked By:

Initial Water Level: NA

Stabilized Water Level: NA

Cave In Depth: NA

Total Depth of Boring: 8' bgs

	SUBSURFACE PROFILE	SAM	PLE	DID Field Corner	ŧ	
Depth ft. bgs	Description	Sample Interval	% Recovery	PID Field Screen	Lab Sample Depth	Well Data
0	Ground Surface	—				
1 1 1 2 1 1 2 1 1	SM Moist, brown, fine silty sand SM Moist, tan and orange, fine silty sand	Ш	100	0		
3 - 1	SM Moist, orange, fine silty sand	Ш	100	o		
5	SM Moist, tan, fine silty sand		100	o		
7			100	0		
9 10 11 12 13 14 15 16 16 16 16 16 16 16 16 16 16 16 16 16						

Project: Richmond County PSA's

Solutions-IES Project No.: 3260.06A3.NDOT

Boring Number: 7

Client: NCDOT

WBS # 34438.1.1 State Project # R-2502B

Drilling Method: Direct Push

Sampler Type: Macro Core

Logged By: K.B

County: Richmond

Boring Date: 08/24/06

Site: Parcel 6

Checked By: W

Initial Water Level: NA Stabilized Water Level: NA

Cave In Depth: NA

Total Depth of Boring: 8' bgs

	SUBSURFACE PROFILE	SAM	PLE	DID 5:-14 0	th	
Depth ft. bgs	Description	Sample Interval	% Recovery	PID Field Screen	Lab Sample Depth	Well Data
0	Ground Surface					
1-1-1	SM Moist, brown, fine silty sand SM Moist, brown and orange, fine silty sand		100	o		
3	SM Moist, orange, fine silty sand		100	0		7:
5	SM Moist, tan, fine silty sand		100	0	,	
7			100	0		3
9 10 11 12 13 14 15 16 16 16 16 16 16 16 16 16 16 16 16 16						

APPENDIX D GPS COORDINATES OF BORING LOCATIONS

Appendix D

GPS Coordinates of Boring Locations Parcel 6-Hillary McKay Property 2483 U.S. Highway 1

Richmond County, North Carolina

WBS Element: 34438.1.1; NCDOT Project R-2502A

Boring Identification	Northing	Easting
P6-B1	34.98782848	-79.58251954
P6-B2	34.98779445	-79.58267167
P6-B3	34.98766788	-79.58259934
P6-B4	34.98774667	-79.5826254
P6-B5	34.98776956	-79.58256019
P6-B6	34.98790962	-79.58254695
P6-B7	34.9878838	-79.58240119

Notes:

APPENDIX E LABORATORY ANALYTICAL REPORTS

Case Narrative

Date:

09/05/06

Company: N. C. Department of Transportation

Contact:

Sheri Knox

Address: c/o Solution - IES 1101 Nowell Road

Raleigh, NC 27607

Client Project ID:

NCDOT Parcel 6

Prism COC Group No:

G0806790

Collection Date(s):

08/24/06

Lab Submittal Date(s):

08/25/06

Client Project Name Or No: Richmond Co. WBS# 34438.1.1

This data package contains the analytical results for the project identified above and includes a Case Narrative, Laboratory Report and Quality Control Data totaling 10 pages. A chain-of-custody is also attached for the samples submitted to Prism for this project.

Data qualifiers are flagged individually on each sample. A key reference for the data qualifiers appears at the end of this case narrative. Quality control statements and/or sample specific remarks are included in the sample comments section of the laboratory report for each sample affected.

Semi Volatile Analysis

No Anomalies Reported

Volatile Analysis

No Anomalies Reported

Metals Analysis

N/A

Wet Lab and Micro Analysis

N/A

Please call if you have	e any questions relating to this analytical re	эроп.			1
Date Reviewed by:	Paula A. Gilleland	Project Manager:	Angela D. Overcash	i	//
Signature:	Paule J. Dillehard	Signature:	a	\mathcal{A}	
Review Date:	09/05/06	Approval Date:	09/05/06	/	
					·

Data Qualifiers Key Reference:

B: Compound also detected in the method blank.

- #: Result outside of the QC limits.
- DO: Compound diluted out.
 - E: Estimated concentration, calibration range exceeded.
 - J: The analyte was positively identified but the value is estimated below the reporting limit.
- H: Estimated concentration with a high bias.
- L: Estimated concentration with a low bias.
- M: A matrix effect is present.

Notes: This report should not be reproduced, except in its entirety, without the writtten consent of Prism Laboratories, Inc. The results in this report relate only to the samples submitted for analysis.

Laboratory Report

09/01/06

N. C. Department of Transportation

Attn: Sheri Knox c/o Solution - IES 1101 Nowell Road Raleigh, NC 27607 Project Name: Richmond Co.

Project ID:

NCDOT Parcel 6

Project No.:

WBS# 34438.1.1

Sample Matrix: Soil

Client Sample ID: P6.B1 6-8 Prism Sample ID: 159512

COC Group:

G0806790

Time Collected:

08/24/06 8:00

Time Submitted: 08/25/06 15:35

Parameter	Result	Units	Report Limit	MDL	Dilution Factor	Method	Analysis Date/Time	Analyst	Batch ID
Percent Solids Determination Percent Solids	97.1	%			1	SM2540 G	08/29/06 14:30	Ibrown	
Diesel Range Organics (DRO) by GO Diesel Range Organics (DRO)	C <u>-FID</u> BRL	mg/kg	7.2	1.8	1	8015B	08/28/06 21:21	jvogel	Q17363
Diesel Range Organics (DNO)	DKL	mg/kg	7.2	1.0	'	00100	00/20/00 21.21	Jvogei	Q17303
Sample Preparation:			49.64	g /	2 mL	3550B	08/28/06 9:00	dpope	P16217
					Surrogate	1	% Recovery	Cont	rol Limits
					o-Terphen	yl	109		18 - 130
Sample Weight Determination									
Weight 1	5.31	g			1	GRO	08/28/06 0:00	lbrown	
Weight 2	5.18	g			1	GRO	08/28/06 0:00	lbrown	
Gasoline Range Organics (GRO) by	GC-FID								
Gasoline Range Organics (GRO)	BRL	mg/kg	7.2	2.8	50	8015B	08/31/06 4:54	grappaccioli	Q17406
					Surrogate		% Recovery	Cont	rol Limits
					aaa-TFT		102		55 - 129

Sample Comment(s):

BRL = Below Reporting Limit

J = Estimated value between the Reporting Limit and the MDL

The results in this report relate only to the samples submitted for analysis and meet state certification requirements other than NELAC certification except for those instances indicated in the case narrative and/or test comments.

All results are reported on a dry-weight basis

Laboratory Report

09/01/06

N. C. Department of Transportation

Attn: Sheri Knox c/o Solution - IES 1101 Nowell Road Raleigh, NC 27607

Project Name: Richmond Co.

Project ID: Project No.:

NCDOT Parcel 6 WBS# 34438.1.1

Sample Matrix: Soil

Client Sample ID: P6.B2 6-8 Prism Sample ID: 159513

COC Group:

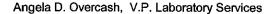
G0806790

Time Collected:

08/24/06 8:10

Time Submitted: 08/25/06

Parameter	Result	Units	Report Limit	MDL	Dilution Factor	Method	Analysis Date/Time	Analyst	Batch ID
Percent Solids Determination Percent Solids	92.2	%			1	SM2540 G	08/29/06 14:30	lbrown	
Diesel Range Organics (DRO) by G									
Diesel Range Organics (DRO)	BRL	mg/kg	7.6	1.8	1	8015B	08/28/06 21:59	jvogel	Q17363
Sample Preparation:			50.37	g /	2 mL	3550B	08/28/06 9:00	dpope	P16217
					Surrogate	•	% Recovery	Cont	rol Limits
					o-Terphen	yl	107	4	18 - 130
Sample Weight Determination									
Weight 1	5.02	g			1	GRO	08/28/06 0:00	lbrown	
Weight 2	4.80	g			1	GRO	08/28/06 0:00	lbrown	
Gasoline Range Organics (GRO) by	GC-FID								
Gasoline Range Organics (GRO)	BRL	mg/kg	7.6	3.0	50	8015B	08/31/06 5:36	grappaccioli	Q17406
					Surrogate	ı	% Recovery	Cont	rol Limits
					aaa-TFT		97		55 - 129


Sample Comment(s):

BRL = Below Reporting Limit

J = Estimated value between the Reporting Limit and the MDL

The results in this report relate only to the samples submitted for analysis and meet state certification requirements other than NELAC certification except for those instances indicated in the case narrative and/or test comments.

All results are reported on a dry-weight basis

Laboratory Report

09/01/06

N. C. Department of Transportation

Attn: Sheri Knox c/o Solution - IES 1101 Nowell Road Raleigh, NC 27607 Project Name: Richmond Co.
Project ID: NCDOT Parcel 6

Project No.: WBS# 34438.1.1

Sample Matrix: Soil

Client Sample ID: P6.B3 6-8
Prism Sample ID: 159514
COC Group: G0806790

Time Collected: 08/24/06 8:25 Time Submitted: 08/25/06 15:35

Parameter	Result	Units	Report Limit	MDL	Dilution Factor	Method	Analysis Date/Time	Analyst	Batch ID
Percent Solids Determination Percent Solids	96.3	%			1	SM2540 G	08/29/06 14:30	lbrown	
Diesel Range Organics (DRO) by Go Diesel Range Organics (DRO)	C-FID BRL	mg/kg	7.3	1.8	1	8015B	08/28/06 23:14	jvogel	Q17363
Sample Preparation:			49.96	g /	2 mL	3550B	08/28/06 9:00	dpope	P16217
					Surrogate	•	% Recovery	Cont	rol Limits
					o-Terphen	yl	110	4	18 - 130
Sample Weight Determination Weight 1	5.14	g			1	GRO	08/28/06 0:00	Ibrown	
Weight 2	4.96	g			1	GRO	08/28/06 0:00	Ibrown	
Gasoline Range Organics (GRO) by Gasoline Range Organics (GRO)	GC-FID BRL	mg/kg	7.3	2.8	50	8015B	08/31/06 6:19	grappaccioli	Q17406
					Surrogate	:	% Recovery	Cont	rol Limits
					aaa-TFT		107	(55 - 129

Sample Comment(s):

BRL = Below Reporting Limit

J = Estimated value between the Reporting Limit and the MDL

The results in this report relate only to the samples submitted for analysis and meet state certification requirements other than NELAC certification except for those instances indicated in the case narrative and/or test comments.

All results are reported on a dry-weight basis

Laboratory Report

09/01/06

N. C. Department of Transportation

Attn: Sheri Knox c/o Solution - IES 1101 Nowell Road Raleigh, NC 27607 Project Name: Richmond Co.
Project ID: NCDOT Parcel 6

Project No.: WBS# 34438.1.1

Sample Matrix: Soil

Client Sample ID: P6.B4 6-8
Prism Sample ID: 159515
COC Group: G0806790

Time Collected: 08/24/06 8:35 Time Submitted: 08/25/06 15:35

Parameter	Result	Units	Report Limit	MDL	Dilution Factor	Method	Analysis Date/Time	Analyst	Batch ID
Percent Solids Determination						*****		_	
Percent Solids	97.2	%			1	SM2540 G	08/29/06 14:30	Ibrown	
Diesel Range Organics (DRO) by Go	C-FID								
Diesel Range Organics (DRO)	BRL	mg/kg	7.2	1.7	1	8015B	08/28/06 23:51	jvogel	Q17363
Sample Preparation:			49.93	g /	2 mL	3550B	08/28/06 9:00	dpope	P16217
					Surrogate	1	% Recovery	Cont	rol Limits
					o-Terphen	yl	106		8 - 130
Sample Weight Determination									
Weight 1	4.85	g			1	GRO	08/28/06 0:00	lbrown	
Weight 2	4.98	g			1	GRO	08/28/06 0:00	lbrown	
Gasoline Range Organics (GRO) by	GC-FID								
Gasoline Range Organics (GRO)	BRL	mg/kg	7.2	2.8	50	8015B	08/31/06 7:03	grappaccioli	Q17406
					Surrogate		% Recovery	Cont	rol Limits
					aaa-TFT		108	5	5 - 129

Sample Comment(s):

BRL = Below Reporting Limit

J = Estimated value between the Reporting Limit and the MDL

The results in this report relate only to the samples submitted for analysis and meet state certification requirements other than NELAC certification except for those instances indicated in the case narrative and/or test comments.

All results are reported on a dry-weight basis

Laboratory Report

09/01/06

N. C. Department of Transportation

Attn: Sheri Knox c/o Solution - IES 1101 Nowell Road Raleigh, NC 27607 Project Name: Richmond Co.

Project ID: Project No.:

NCDOT Parcel 6 WBS# 34438.1.1

Sample Matrix: Soil

Client Sample ID: P6.B5 6-8
Prism Sample ID: 159516

COC Group:

G0806790

Time Collected:

08/24/06 8:45

Time Submitted: 08/25/06 15:35

Parameter	Result	Units	Report Limit	MDL	Dilution Factor	Method	Analysis Date/Time	Analyst	Batch ID
Percent Solids Determination									
Percent Solids	97.4	%			1	SM2540 G	08/29/06 14:30	Ibrown	
Diesel Range Organics (DRO) by G	C-FID								
Diesel Range Organics (DRO)	BRL	mg/kg	7.2	1.7	1	8015B	08/29/06 0:29	jvogel	Q17363
Sample Preparation:			49.58	g /	2 mL	3550B	08/28/06 9:00	dpope	P16217
					Surrogate	,	% Recovery	Cont	rol Limits
					o-Terphen	yl	116	4	8 - 130
Sample Weight Determination									
Weight 1	5.31	g			1	GRO	08/28/06 0:00	lbrown	
Weight 2	5.07	g			1	GRO	08/28/06 0:00	lbrown	
Gasoline Range Organics (GRO) by	/ GC-FID								
Gasoline Range Organics (GRO)	BRL	mg/kg	7.2	2.8	50	8015B	08/31/06 7:46	grappaccioli	Q17406
					Surrogate		% Recovery	Cont	rol Limits
					aaa-TFT		103		5 - 129

Sample Comment(s):

BRL = Below Reporting Limit

J = Estimated value between the Reporting Limit and the MDL

The results in this report relate only to the samples submitted for analysis and meet state certification requirements other than NELAC certification except for those instances indicated in the case narrative and/or test comments.

All results are reported on a dry-weight basis

Laboratory Report

09/01/06

N. C. Department of Transportation

Attn: Sheri Knox c/o Solution - IES 1101 Nowell Road Raleigh, NC 27607 Project Name: Richmond Co. Project ID: **NCDOT Parcel 6**

Project No.:

WBS# 34438.1.1

Sample Matrix: Soil

Client Sample ID: P6.B6 6-8 Prism Sample ID: 159517

COC Group:

G0806790

Time Collected: Time Submitted: 08/25/06

08/24/06 9:00 15:35

Parameter	Result	Units	Report Limit	MDL	Dilution Factor	Method	Analysis Date/Time	Analyst	Batch ID
Percent Solids Determination									
Percent Solids	85.5	%			1	SM2540 G	08/29/06 14:30	lbrown	
Diesel Range Organics (DRO) by G	C-FID								
Diesel Range Organics (DRO)	BRL	mg/kg	8.2	2.0	1	8015B	08/29/06 1:06	jvogel	Q17363
Sample Preparation:		•	49.5	g /	2 mL	3550B	08/28/06 9:00	dpope	P16217
					Surrogate	1	% Recovery	Cont	rol Limits
					o-Terphen	yl	106	2	18 - 130
Sample Weight Determination									
Weight 1	5.17	g			1	GRO	08/28/06 0:00	lbrown	
Weight 2	5.06	g			1	GRO	08/28/06 0:00	lbrown	
Gasoline Range Organics (GRO) by	GC-FID								
Gasoline Range Organics (GRO)	BRL	mg/kg	8.2	3.2	50	8015B	09/01/06 4:59	grappaccioli	Q17439
					Surrogate		% Recovery	Cont	rol Limits
					aaa-TFT		91	Į.	55 - 129

Sample Comment(s):

BRL = Below Reporting Limit

J = Estimated value between the Reporting Limit and the MDL

The results in this report relate only to the samples submitted for analysis and meet state certification requirements other than NELAC certification except for those instances indicated in the case narrative and/or test comments.

All results are reported on a dry-weight basis

Laboratory Report

09/01/06

N. C. Department of Transportation

Attn: Sheri Knox c/o Solution - IES 1101 Nowell Road Raleigh, NC 27607 Project Name: Richmond Co.
Project ID: NCDOT Parcel 6

Project No.:

WBS# 34438.1.1

Sample Matrix: Soil

Client Sample ID: P6.B7 6-8 Prism Sample ID: 159518

COC Group:

G0806790

Time Collected:

08/24/06

Time Submitted: 08/25/06

9:10 15:35

Parameter	Result	Units	Report Limit	MDL	Dilution Factor	Method	Analysis Date/Time	Analyst	Batch ID
Percent Solids Determination								_	
Percent Solids	98.0	%			1	SM2540 G	08/29/06 14:30	lbrown	
Diesel Range Organics (DRO) by GO	C-FID								
Diesel Range Organics (DRO)	BRL	mg/kg	7.1	1.7	1	8015B	08/29/06 1:43	jvogel	Q17363
Sample Preparation	ı :		5	0 g /	2 mL	3550B	08/28/06 9:00	dpope	P16217
					Surrogate	1	% Recovery	Cont	rol Limits
					o-Terphen	yl	108	4	18 - 130
Sample Weight Determination									
Weight 1	4.25	g			1	GRO	08/28/06 0:00	Ibrown	
Weight 2	3.53	g			1	GRO	08/28/06 0:00	Ibrown	
Gasoline Range Organics (GRO) by	GC-FID								
Gasoline Range Organics (GRO)	BRL	mg/kg	7.1	2.8	50	8015B	08/31/06 17:14	grappaccioli	Q17439
					Surrogate		% Recovery	Cont	rol Limits
					aaa-TFT		109		55 - 129

Sample Comment(s):

BRL = Below Reporting Limit

J = Estimated value between the Reporting Limit and the MDL

The results in this report relate only to the samples submitted for analysis and meet state certification requirements other than NELAC certification except for those instances indicated in the case narrative and/or test comments.

All results are reported on a dry-weight basis

Level II QC Report

9/1/2006

N. C. Department of Transportation

Attn: Sheri Knox c/o Solution - IES 1101 Nowell Road Raleigh, NC 27607 Project Name: Richmond Co.

Project ID: NCDOT Parcel 6

Project No.: WBS# 34438.1.1

COC Group Number: G0806790

Date/Time Submitted: 8/25/2006 15:35

Diesel Range Organics (DRO) by GC-FID, method 8015B

Method Bla	ank	Result	RL	Control Limit	Units				QC Batch ID
				Litting	Onus				
	Diesel Range Organics (DRO)	NĐ	7	<3.5	mg/kg				Q17363
Laboratory	Control Sample		_			Recovery			
		Result	Spike Amount	Units	Recovery %	Range %			QC Batch ID
	Diesel Range Organics (DRO)	42.43	40	mg/kg	106	53 - 118			Q17363
Matrix Spik	Ke		Cailea		_	Recovery			OC Batals
Sample ID:		Result	Spike Amount	Units	Recovery %	Range %			QC Batch ID
159518	Diesel Range Organics (DRO)	38.73	40	mg/kg	97	52 - 119			Q17363
Matrix Spik	re Duplicate		Spike			Recovery Range	DDD	RPD Range	QC Batch
Sample ID:	e	Result	Amount	Units	Recovery %	%	RPD %	%	ID
159518	Diesel Range Organics (DRO)	36.69	40	mg/kg	92	52 - 119	5	0 - 25	Q17363
<u>Gasoline R</u>	ange Organics (GRO) by GC-FID,	method 80	015B						
		method 80	015B RL	Control Limit	Units				QC Batch
					Units mg/kg				1D
Method Bla	ank	Result	RL 7	Limit	mg/kg	Recovery			Q17406
Method Bla	Gasoline Range Organics (GRO)	Result	RL	Limit		Recovery Range %			1D
Method Bla	Gasoline Range Organics (GRO)	Result ND	RL 7 Spike	Limit <3.5	mg/kg Recovery	Range			Q17406
Method Bla	Gasoline Range Organics (GRO) Control Sample Gasoline Range Organics (GRO)	Result ND	RL 7 Spike Amount 50	<3.5 Units	mg/kg Recovery %	Range % 67 - 116 Recovery			Q17406 QC Batch ID Q17406
Method Bla	Gasoline Range Organics (GRO) Control Sample Gasoline Range Organics (GRO)	Result ND	RL 7 Spike Amount	<3.5 Units	mg/kg Recovery %	Range % 67 - 116			Q17406
Method Bla Laboratory Matrix Spik	Gasoline Range Organics (GRO) Control Sample Gasoline Range Organics (GRO)	Result ND Result 45	RL 7 Spike Amount 50 Spike	<3.5 Units mg/kg	mg/kg Recovery 90	Range % 67 - 116 Recovery Range			QC Batch ID QC Batch ID
Method Bla Laboratory Matrix Spik Sample ID: 159499	Gasoline Range Organics (GRO) Control Sample Gasoline Range Organics (GRO)	Result ND Result 45	RL 7 Spike Amount 50 Spike Amount 50	Vnits mg/kg	mg/kg Recovery % 90 Recovery % 103	Range % 67 - 116 Recovery Range % 57 - 113		RPD Ranne	QC Batch ID Q17406
Method Bla Laboratory Matrix Spik Sample ID: 159499	Gasoline Range Organics (GRO) Control Sample Gasoline Range Organics (GRO) Ge Gasoline Range Organics (GRO)	Result ND Result 45	RL 7 Spike Amount 50 Spike Amount	Vnits mg/kg	mg/kg Recovery 90 Recovery	Range % 67 - 116 Recovery Range % 57 - 113	RPD %	RPD Range %	QC Batch ID QC Batch QC Batch
Method Bla Laboratory Matrix Spik Sample ID: 159499 Matrix Spik	Gasoline Range Organics (GRO) Control Sample Gasoline Range Organics (GRO) Ge Gasoline Range Organics (GRO)	Result ND Result 45 Result 51.7	RL 7 Spike Amount 50 Spike Amount 50 Spike	Units Units mg/kg Units mg/kg	mg/kg Recovery % 90 Recovery 103	Range % 67 - 116 Recovery Range % 57 - 113 Recovery Range		Range	QC Batch ID Q17406 QC Batch ID Q17406 QC Batch ID Q17406

449 Springbrook Road - P.O. Box 240543 - Charlotte, NC 28224-0543 Phone: 704/529-6364 - Toll Free Number: 1-800/529-6364 - Fax: 704/525-0409

Level II QC Report

9/1/2006

N. C. Department of Transportation

Attn: Sheri Knox c/o Solution - IES 1101 Nowell Road Raleigh, NC 27607 Project Name: Richmond Co.

Project ID: NCDOT Parcel 6

Project No.: WBS# 34438.1.1

COC Group Number: G0806790

Date/Time Submitted: 8/25/2006 15:35

Gasoline Range Organics (GRO) by GC-FID, method 8015B

Method Bla	ank	Result	RL	Control Limit	Units	·			QC Batch ID
	Gasoline Range Organics (GRO)	ND	7	<3.5	mg/kg				Q17439
Laboratory	Control Sample	Result	Spike Amount	Units	Recovery %	Recovery Range %			QC Batch ID
	Gasoline Range Organics (GRO)	43.95	50	mg/kg	88	67 - 116			Q17439
Matrix Spik	Ke		Spike			Recovery Range			QC Batch
Sample ID:		Result	Amount	Units	Recovery %	%			ID
159757	Gasoline Range Organics (GRO)	42.5	50	mg/kg	85	57 - 113			Q17439
Matrix Spik	re Duplicate		Suit-			Recovery		RPD	
Sample ID:		Result	Spike Amount	Units	Recovery %	Range %	RPD %	Range %	QC Batch ID
159757	Gasoline Range Organics (GRO)	42.55	50	mg/kg	85	57 - 113	0	0 - 23	Q17439

#-See Case Narrative

Phone: 704/529-6364 - Toll Free Number: 1-800/529-6364 - Fax: 704/525-0409

449 Springbrook Road • P.O. Box 240543 • Charlotte, NC 28224-0543 Phone: 704/529-6364 • Fox: 704/526-0409 Client Company Name: 59, 077 GN 5- 165 Futi Service Analytical & Environmental Solutions Report To/Contact Name: SHERLI KNOX Reporting Address: 1/01 Nowell

Email (Yes) (No) Email Address ANDX & SOLEMBER - ICT CO 1VC Phone: 914873 1860 Fax (Yes) (No): 9188731074 Site Location Physical Address; Location Physical Site Location Name: MCDor Chacks 6 AUE 194, NC 27607 EDD Type: PDF Excel Other

(SOIL, WATER OR SLUDGE)

COLLECTED MILITARY HOURS

DATE COLLECTED

CLIENT SAMPLE DESCRIPTION

2105

000 0180 2280

3/24/00 Steatoc

6.81.6.0 P6.82.6.8 2880

0/20/00

8.9, 78.90

30/52/8

8.9. 28.90

2480 0400

5/24/00 8/24/00

8.01.85.00

0410

8/24/06

8.9.18.90 8.9.98.70

MATRIX

CHAIN OF CUSTODY RECORI

page 🟒 of 📫 quote f to ensure proper billing: ...

UST Project: (Yes) (No *Please ATTACH any project specific reporting (QC LEVEL I II III IV) provisions and/or QC Requirements 6 - Kichmond CO Address: STATE DRIELT 11-2502 AGR UCDOT- WBS # 34438.1. Project Name: NGNT DARCEZ Short Hold Analysis: (Yes) (No) Invoice To:

_	1	1	_			Ī		ī	
	8	8	E	I d	3	9	E	100	
,	seldu	olve)	OPER		8	₹.	OPER.	10	
4	BTA	ž.			S	e:	8	100	
	9	E	200	Ž	9	Š	N.	1000	
e de la constante de la consta	9	H.,		֓֞֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓	Ş.	ď.	HS U	*	
35	2	du.	S			¥.	peg	100	
			9	<u>0</u>		SPAC	100	200	
	124	7.5 11.	(0) (0)	2.		9	4 5	3	
3	N.	V.	V)	V.			Y		
1	強化	排作	T.			ŽI N	e e le Sa le	4000	
- 2	27 27 22		ľ	132		1		469	
2					\$	١		4	
	1.5	. 60	cites		- 23	3		1	

SONNEL	لا 2		`.		PRISIK	LAB ID NO.	154512	154513	159514	SATIC	159516	15951	159518			`	PRESS DOWN FIRMLY . 3 COPIES	PRISM USE ONLY	September 200
LING PER	드	Ν	. 9	2		2											FIRMLY	PRISML	Site Arrival Time:
ENT/SAMP	USACE	ОТНЕЯ	N 20	3	•	HEMARKS									. :		SS DOWN		
IN BY CLI	NELAC	တ္တ	ited: YES		`								·				PRE		Additional Comments:
TO BE FILLED IN BY CLIENT/SAMPLING PERSONNEL	Certification:		Water Chlorinated: YES NO	non ord	ANALYSES REQUESTED					·							7- 10.S		Windulls.
Τ.	$\overline{}$	 ì		8	ANALYSE	30							-				Affiliation Surrages 165	nges must b	WEE &
BK 3. NO.		o-Approved	inds and hollds ERVICES		,	200	У Х	×	×	χ ×	×	× X	メメ				Affiliation	ove. Any che alized.	enc
urchase Order No./Billing Reference 5260, Opril 3, NOOT	equested bue bate D1 bay D2 bays D3 bays D4 bays A45 bays M2 bays D4 bays M2 bays D4 bays M2 bay	norming bays — Libes Days Librarian 10 days Librarians days amines received after 15:00 will be processed next histories day	UTATO CONTROL OF THE PARTIES AND CONTROL OF THE PROPERTY OF THE CARDING SERVICES	C. TO CLIENT)	PRESERVA.	TIVES	Move.	1					*				P*	rism to proceed with the analyses as requested above. Any changes must be irges for any changes after analyses have been initialized.	
ng Reference	y Ozbays (Jays LI Standa Will he prodess	DUSINGES CAYS,	BORATORIES, II			4 1W.08	_			_		→	-			(Print Name) Kert & Ruchauth	analyses as ter analyses f	,
ler No./Bill	Date 0102	dafter 15:00	is based on	BY PRISM L	SAMPLE CONTAINER	ON	5	3	3	3	3	₩	~		-		Kenis	ed with the	,
urchase Orc	equested Due D Morking Dour	norking bays amiles receive	urnaround time (SEE REVE	MENDERE	SAMPI	*TYPE SEE BELOW	G	G	G	Ç	G	9 .	Q				(Print Name)	hism to prochiges for any	od By: Ghanpaus

9-42-06 TRIK COOKENS SHOULD BE TWEED SKUIT WITH CUSTOOP SEALS FOR TRANSFORTATION TO THE LABORATORY. NOT ACCEPTED AND VERIFIED AGAINST COC UMTIL RECEIVED AT THE LABORATORY.

Sampled By

Sampler's Signaturé

Teld Tech

SEE REVERSE FOR TERMS & CONDITIONS

OTHER:

DNC DSC

ONC OSC ONC OSC

RCRA:

SOLID WASTE:

DRINKING WATER:

Olber

☐ Prism Field Service GROUNDWATER:

ONC OSC

DNC DSC DNC DSC DNC DSC

UST:

O Fed Ex DUPS NPDES:

LANDFILL

G-4846346

OFIGINAL

ONTAINER TYPE CODES: A= Amber C = Clear G = Glass P = Plastic; TL = Telfon-Lined Cap VOA= Volatile Organics Analysis (Zero Head Space)