Project R-2809A **Wake County** # **Project Special Provisions Structure** # **Table of Contents** | | | Page | |---|-----------|------| | | | # | | Sound Barrier Wall (02-04-03) | | 1 | | Submittal of Working Drawings (6-7-05) | | 3 | | Metric Structural Steel (10-12-01) | | 9 | | Steel H Piles (8-15-05) | | 10 | | Grout for Structures (7-12-07) | | 10 | | Continuous Flight Auger Piles for Sound Barrier Walls | (SPECIAL) | 12 | # PROJECT SPECIAL PROVISIONS STRUCTURES PROJECT R-2809A WAKE COUNTY # **SOUND BARRIER WALL** (2-04-03) #### 1.0 DESCRIPTION This work consists of furnishing precast panels, structural steel, concrete, and all other materials; handling, transporting, fabricating, galvanizing, and storing materials; furnishing erection drawings, backfilling, shaft excavation, and erecting and installing the sound barrier wall members and all other materials as required by the plans, Standard Specifications and this Special Provision. The plans allow for a choice of a 10 ft (3.1 m) or 15 ft (4.6 m) pile spacing. Pile spacings greater than 15 ft (4.6 m) will not be permitted for any reasons. Once selected, use the pile spacing throughout the entire length of the wall unless the Engineer approves otherwise. #### 2.0 MATERIALS AND FABRICATION Provide materials and fabricate members in accordance with the requirements of Division 10 of the Standard Specifications for Roads and Structures. Provide precast panels that are 4 inches $\pm \frac{1}{4}$ inch $(102 \pm 6 \text{ mm})$ thick with an exposed aggregate finish on one face. Install this face in the wall facing the roadway. The depth of the exposure is required to range from 0 to 1/4 inch (0 mm to 6 mm). Furnish three $12" \times 12" (300 \text{ mm x } 300 \text{ mm})$ samples for approval which establish the acceptable variations in color, texture, and uniformity. After the color, texture, and uniformity of the furnished samples are approved, produce a full scale panel unit meeting design requirements. This mock-up and the furnished samples establish the base or standard quality for acceptance of the panels. When producing the final installed panels, use fine and coarse aggregate, retarder, and cement from the same source as those used in the approved sample panels. # 3.0 CONSTRUCTION METHODS Complete the final survey of existing ground profile after clearing the wall area but prior to submitting any working drawings. Submit the final groundline survey with the working drawings. If the Department is responsible for the survey, the Engineer field verifies the existing ground profile along the sound barrier wall. Contact the Engineer to obtain the survey information. Otherwise, complete the existing ground survey to determine the number and heights of the precast panels. Provide consistent pile spacing throughout the length of the wall. Use odd pile spacings, if necessary, only at the ends of the wall and at turning points as approved by the Engineer. If necessary, employ special measures to ensure the stability of the shaft between the time of excavation and the time of pile placement and concrete backfilling. Use temporary casings, install the pile and backfill the hole immediately after the shaft is excavated, install well points, or take other measures. If caving occurs, discontinue the shaft excavation operation until special anti-caving measures are implemented. Shaft excavation involves penetration into soil, weathered rock, or hard rock. Regardless of the class of material encountered, excavate the shafts to the full plan depth. #### 4.0 WORKING DRAWINGS Submit casting drawings for the precast face panels for approval in accordance with Article 1077-2 of the Standard Specifications prior to casting. Show the inserts, method of handling, and support details used for transportation on casting drawings. Submit metalwork fabrication drawings for approval prior to fabrication of steel wall components. Submit an erection plan and concrete face panel placing plan, including location of various heights of panels, for review and acceptance prior to fabrication of metalwork. Submit five sets of detail drawings. # 5.0 METHOD OF MEASUREMENT Payment will be made under: The quantity of sound barrier wall to be paid for will be the actual square feet (square meters) of precast panels used in the completed and accepted wall. Measurement will be made of the total area of precast panels used in the wall. #### 6.0 BASIS OF PAYMENT The quantity of sound barrier wall, measured as provided above, will be paid for at the contract unit price bid per square foot (square meter) for "Sound Barrier Wall". The unit price bid per square foot (square meter) will be full compensation for all work covered by this Special Provision including, but not limited to, furnishing precast panels, structural steel, concrete, and all other materials; handling, transporting, fabricating, galvanizing, and storing materials; furnishing erection drawings, backfilling, shaft excavation, and erecting and installing the sound barrier wall members. |
 | | | | |--------------------|---|-------------|----------------| | Sound Barrier Wall | S | Square Feet | (Square Meter) | # SUBMITTAL OF WORKING DRAWINGS (6-7-05) # 1.0 GENERAL Submit working drawings in accordance with Article 105-2 of the Standard Specifications and the requirements of this Special Provision. The list of submittals contained herein does not represent a list of required submittals for this project. Submittals are only necessary for those items as required by the Standard Specifications, other Special Provisions, or contract plans. Make submittals that are not specifically noted in this Special Provision directly to the Resident Engineer. If submittals contain variations from plan details or specifications, significantly affect project cost, or significantly affect field construction or operations, discuss them with, and submit them through, the Resident Engineer. State the reason for the proposed variation in the submittals. To minimize overall review time, make sure all working drawing submittals are complete when first submitted. Provide a contact name and phone number with each submittal. Direct any questions regarding working drawing submittal requirements to the Resident Engineer, Structure Design Unit contacts or the Geotechnical Engineering Unit contacts noted below. In order to facilitate in-plant inspection by NCDOT and approval of working drawings, the Contractor shall provide the name, address, and telephone number of the facility where fabrication will actually be done, if different than shown on the title block of the submitted working drawings. This includes, but is not limited to, precast concrete items, prestressed concrete items, and fabricated steel or aluminum items. # 2.0 WORKING DRAWINGS SUBMITTAL CONTACTS All submittals noted herein are reviewed by the Structure Design Unit and/or the Geotechnical Engineering Unit. For submittals to the Structure Design Unit, use the following addresses: Via US mail: Mr. G. R. Perfetti, P. E. State Bridge Design Engineer North Carolina Department of Transportation Structure Design Unit 1581 Mail Service Center Raleigh, NC 27699-1581 Attention: Mr. P. D. Lambert, P. E. Via other delivery service: Mr. G. R. Perfetti, P. E. State Bridge Design Engineer North Carolina Department of Transportation Structure Design Unit 1000 Birch Ridge Drive Raleigh, NC 27610 Attention: Mr. P. D. Lambert, P. E. For submittals to the Geotechnical Engineering Unit, use the following addresses: For projects in Divisions 1-7, use the following Eastern Regional Office address: Via US mail: Via other delivery service: Mr. K. J. Kim, Ph. D., P. E. Eastern Regional Geotechnical Manager North Carolina Department of Transportation Geotechnical Engineering Unit Eastern Regional Office 1570 Mail Service Center Raleigh, NC 27699-1570 Eastern Regional Geotechnical Manager North Carolina Department Mr. K. J. Kim, Ph. D., P. E. of Transportation Geotechnical Engineering Unit Eastern Regional Office 3301 Jones Sausage Road, Suite 100 Garner, NC 27529 For projects in Divisions 8-14, use the following Western Regional Office address: Via US mail: Via other delivery service: Mr. John Pilipchuk, L. G., P. E. Western Regional Geotechnical Manager North Carolina Department of Transportation Geotechnical Engineering Unit Western Regional Office 5253 Z Max Boulevard Harrisburg, NC 28075 Mr. John Pilipchuk, L. G., P. E. Western Region Geotechnical Manager North Carolina Department of Transportation Geotechnical Engineering Unit Western Regional Office 5253 Z Max Boulevard Harrisburg, NC 28075 Direct any questions concerning submittal review status, review comments, or drawing markups to the following contacts: **Primary Structures Contact:** Paul Lambert (919) 250 - 4041 (919) 250 – 4082 facsimile plambert@dot.state.nc.us **Secondary Structures Contacts:** James Gaither (919) 250 - 4042 Man-Pan Hui (919) 250 - 4044 Eastern Regional Geotechnical Contact (Divisions 1-7): K. J. Kim (919) 662 - 4710 (919) 662 - 3095 facsimile kkim@dot.state.nc.us Western Regional Geotechnical Contact (Divisions 8-14): John Pilipchuk (704) 455 – 8902 (704) 455 – 8912 facsimile jpilipchuk@dot.state.nc.us # 3.0 SUBMITTAL COPIES The quantities provided in this Special Provision act as a guide in the submittal process. Unless otherwise required by the contract, submit two sets of supporting calculations to the Structure Design Unit. 5 Furnish one complete copy of the submittal, including all attachments, to the Resident Engineer. If requested, provide additional copies of any submittal. At the same time, submit the following number of copies directly to the Structure Design Unit and/or the Geotechnical Engineering Unit: | Working Drawing
Submittal | Copies
Required by
Structure
Design Unit | Copies Required by Geotechnical Engineering Unit | Contract Reference
Requiring Submittal ¹ | |--|---|--|--| | Arch Culvert Falsework | 5 | 0 | Plan Note & SN Sheet | | Box Culvert Falsework ² | 5 | 0 | Plan Note & SN Sheet | | Cofferdams ⁴ | 6 | 1 | Articles 410-5 and 420-8 | | Expansion Joint Seals (hold down plate type with base angle) | 9 | 0 | "Expansion Joint Seals" | | Expansion Joint Seals (modular) | 2, then 9 | 0 | "Modular Expansion Joint Seals" | | Expansion Joint Seals (strip seals) | 9 | 0 | "Strip Seals" | | Falsework & Forms (superstructure) | 8 | 0 | Article 420-3 | | Falsework & Forms ² (substructure) | 8 | 0 | Article 420-3 | | Mechanically Stabilized Earth Retaining Walls ⁴ | 7 | 1 | "MSE Retaining Walls" | | Metal Bridge Railing | 8 | 0 | Plan Note | | Metal Stay-in-Place Forms | 8 | 0 | Article 420-3 | | Metalwork for Elastomeric
Bearings ^{5,6} | 7 | 0 | Article 1072-10 | | Miscellaneous Metalwork ^{5,6} | 7 | 0 | Article 1072-10 | | Overhead Sign Assemblies | 13 | 0 | Article 903-3(C) | | Pile Points | 7 | 1 | Article 450-8(D) & "Steel Pile Points" | | Placement of Equipment on Structures (cranes, etc.) | 7 | 0 | Article 420-20 | | Precast Concrete Box Culverts | 2, then
1 reproducible | 0 | "(Optional) Precast Reinforced Concrete Box Culvert at Station" | |--|---------------------------|---|---| | Precast Retaining Wall Panels | 10 | 0 | Article 1077-2 | | Pot bearings ⁵ | 8 | 0 | "Pot Bearings" | | Prestressed Concrete Deck
Panels | 6 and
1 reproducible | 0 | Article 420-3 | | Proprietary retaining walls ⁴ | 9 | 0 | Applicable Project Special Provision | | Prestressed Concrete Girder (strand elongation and detensioning sequences) | 6 | 0 | Articles 1078-8 and 1078-
11 | | Prestressed Concrete Cored Slab (detensioning sequences) 3 | 6 | 0 | Article 1078-11 | | Revised Bridge Deck Plans
(adaptation to metal
stay-in-place forms) | 2, then
1 reproducible | 0 | Article 420-3 | | Revised Bridge Deck Plans (adaptation to modular expansion joint seals) | 2, then 1 reproducible | 0 | "Modular Expansion Joint Seals" | | Soil Nail Retaining Walls ⁴ | 4 | 1 | Applicable Project Special Provision | | Sound Barrier Wall Steel
Fabrication Plans ⁶ | 7 | 0 | Article 1072-10 & "Sound Barrier Wall" | | Sound Barrier Wall Casting
Plans | 10 | 0 | Article 1077-2 & "Sound Barrier Wall" | | Structural Steel ⁵ | 2, then 7 | 0 | Article 1072-10 | | TFE Expansion Bearings ⁵ | 8 | 0 | Article 1072-10 | | Temporary Detour Structures ⁴ | 10 | 1 | Article 400-3 & "Construction, Maintenance and Removal of Temporary Structure at Station" | | Temporary Shoring ⁴ | 6 | 1 | Article 410-4 & "Temporary Shoring for Maintenance of Traffic" | | Temporary Fabric or Wire Walls ⁸ | 0 | 2 | Applicable Project Special Provision | |--|---|---|--------------------------------------| | Permanent Anchored Tieback
Retaining Walls ⁴ | 4 | 1 | Applicable Project Special Provision | | Evazote Joint Seals ⁷ | 9 | 0 | Applicable Project Special Provision | | Optional Disc Bearings 5 | 8 | 0 | "Optional Disc Bearings" | | Removal of Existing Structure over Railroad | 5 | 0 | Railroad Special Provisions | | Drilled Pier Construction Sequence Plans 8 | 0 | 1 | "Drilled Piers" | | Pile Hammers ⁸ | 0 | 1 | Article 450-6 | | Crosshole Sonic Logging (CSL) Reports 8 | 0 | 1 | "Crosshole Sonic Logging" | | Pile Driving Analyzer (PDA) Reports 8 | 0 | 1 | "Pile Driving Analyzer" | #### **FOOTNOTES** - 1. References are provided to help locate the part of the contract where the working drawing submittals are required. References in quotes refer to the Project Special Provision by that name. Articles refer to the Standard Specifications. - 2. Submittals for these items are necessary only when plan notes require them. - 3. Submittals for these items may not be required. A list of pre-approved sequences is available from the producer or the Materials and Tests Unit. - 4. These submittals are reviewed by the Structure Design Unit and the Geotechnical Engineering Unit. If NCDOT Shoring Standards are used, working drawings need not be submitted, but the Shoring Selection Form should be forwarded to the Geotechnical Engineering Unit. - 5. The fabricator may submit these items directly to the Structure Design Unit. - 6. The two sets of preliminary submittals required by Article 1072-10 of the Standard Specifications are not required for these items. - 7. Submittals for Fabrication Drawings are not required. Submission of Catalogue Cuts of Proposed Material is required. See Section 5.A of the Project Special Provision. - 8. Submittals for these items are reviewed by the Geotechnical Engineering Unit only and correspondence regarding these items should be directed to and will come from the Geotechnical Engineering Unit. 8 # METRIC STRUCTURAL STEEL (10-12-01) The structural steel for this project is specified in SI (Metric) units with plate thickness designated in millimeters in accordance with AASHTO M160M. The substitution of structural steel in US Customary nominal thickness is permitted for primary and secondary members defined as follows: - Primary members members such as webs and flanges of plate girders, transverse and bearing stiffeners, girder field splice plates, and connector plates for curved girders. - Secondary members members such as connector plates for straight girders, bearing plates and miscellaneous hardware. Such substitution is limited to the values shown in the following table. | Material Specified Metric (mm) | Primary Members
US Customary (in) | Secondary Members
US Customary (in) | |--------------------------------|--------------------------------------|--| | 8 | 3/8 | * | | 9 | 3/8 | * | | 10 | 7/16 | 3/8 | | 11 | 7/16 | * | | 12 | 1/2 | * | | 14 | 9/16 | * | | 16 | 11/16 | 5/8 | | 18 | 3/4 | 11/16 | | 20 | 13/16 | 3/4 | | 22 | 7/8 | * | | 25 | 1 | * | | 28 | 1-1/8 | * | | 30 | 1-3/16 | * | | 32 | 1-5/16 | 1-1/4 | | 35 | 1-7/16 | 1-3/8 | | 38 | 1-1/2 | * | | 40 | 1-5/8 | * | | 45 | 1-13/16 | * | | 50 | 2 | * | | 55 | 2-1/4 | * | | 60 | 2-3/8 | * | | 70 | 2-13/16 | 2-3/4 | There will be no additional payment for any extra weight incurred as a result of any substitution. STEEL H PILES 8-15-05 In Section 1084-3 "Steel Bearing Piles" of the Standard Specifications, revise the first sentence as follows: Steel bearing piles must meet the requirements of ASTM A572 or ASTM A588 and have a grade of 50 [345]. # **GROUT FOR STRUCTURES** 7-12-07 #### 1.0 DESCRIPTION This special provision addresses grout for use in structures, including continuous flight auger (CFA) piles, micropiles, soil nail and anchored retaining walls and backfilling crosshole sonic logging (CSL) tubes or grout pockets, shear keys, dowel holes and recesses for cored slabs and box beams. This provision does not apply to grout placed in post-tensioning ducts for bridge beams, girders, or decks. Provide grout composed of portland cement, water and at the Contractor's option, fine aggregate and/or pozzolan. If necessary, use set controlling admixtures. Proportion, mix and place grout in accordance with the plans, the applicable section of the *Standard Specifications* or special provision for the application and this provision. #### 2.0 MATERIALS Refer to Division 10 of the Standard Specifications: | Item | Article | |--------------------------------------|---------| | Portland Cement | 1024-1 | | Water | 1024-4 | | Fine Aggregate | 1014-1 | | Fly Ash | 1024-5 | | Ground Granulated Blast Furnace Slag | 1024-6 | | Admixtures | 1024-3 | At the Contractor's option, use an approved packaged grout in lieu of the materials above with the exception of the water. Contact the Materials and Tests (M&T) Unit for a list of approved packaged grouts. Consult the manufacturer to determine if the packaged grout selected is suitable for the application and meets the compressive strength and shrinkage requirements. # 3.0 REQUIREMENTS Unless required elsewhere in the Contract, provide non-metallic grout with minimum compressive strengths as follows: | Property | Requirement | |--------------------------------|---------------------| | Compressive Strength @ 3 days | 2500 psi (17.2 MPa) | | Compressive Strength @ 28 days | 4500 psi (31.0 MPa) | For applications other than micropiles, soil nails and ground anchors, use non-shrink grout with shrinkage of less than 0.15%. When using approved packaged grout, a grout mix design submittal is not required. Submit grout mix designs in terms of saturated surface dry weights on M&T Form 312U in accordance with the applicable section of the *Standard Specifications* or special provision for the structure. Use an approved testing laboratory to determine the grout mix proportions. Adjust proportions to compensate for surface moisture contained in the aggregates at the time of mixing. Changes in the saturated surface dry mix proportions will not be permitted unless a revised grout mix design submittal is accepted. For each grout mix design, provide laboratory test results for compressive strength, density, flow and if applicable, aggregate gradation and shrinkage. Submit compressive strength for at least 3 cube and 2 cylinder specimens at the age of 3, 7, 14 and 28 days for a total of at least 20 specimens tested. Perform laboratory tests in accordance with the following: | Property | Test Method | |--|---| | Compressive Strength | AASHTO T106 and T22 | | Density | AASHTO T133 | | Flow for Sand Cement Grout | ASTM C939 (as modified below) | | Flow for Neat Cement Grout (no fine aggregate) | Marsh Funnel and Cup
API RP 13B-1, Section 2.2 | | Aggregate Gradation for Sand Cement Grout | AASHTO T27 | | Shrinkage for Non-shrink Grout | ASTM C1090 | When testing grout for flow in accordance with ASTM C939, modify the flow cone outlet diameter from ½ to ¾ inch (13 to 19 mm). When grout mix designs are submitted, the Engineer will review the mix designs and notify the Contractor as to their acceptability. Do not use grout mix designs until written acceptance has been received. Acceptance of grout mix designs or use of approved packaged grouts does not relieve the Contractor of responsibility to furnish a product that meets the Contract requirements. Upon written request from the Contractor, a grout mix design accepted and used satisfactorily on a Department project may be accepted for use on other projects. #### 4.0 SAMPLING AND PLACEMENT The Engineer will determine the locations to sample grout and the number and type of samples collected for field and laboratory testing. Use API RP 13B-1 for field testing grout flow and density of neat cement grout. The compressive strength of the grout will be considered the average compressive strength test results of 3 cube or 2 cylinder specimens at 28 days. Do not place grout if the grout temperature is less than 50°F (10°C) or more than 90°F (32°C) or if the air temperature measured at the location of the grouting operation in the shade away from artificial heat is below 40°F (4°C). Provide grout at a rate that permits proper handling, placing and finishing in accordance with the manufacturer's recommendations unless directed otherwise by the Engineer. Use grout free of any lumps and undispersed cement. Agitate grout continuously before placement. Control grout delivery so the interval between placing batches in the same component does not exceed 20 minutes. Place grout before the time between adding the mixing water and placing the grout exceeds that in the table below. | ELAPSED TIME FOR PLACING GROUT (with continuous agitation) | | | |--|---------------------------------------|------------------------------------| | Maximum Elapsed Time | | | | Air or Grout Temperature Whichever is Higher | No Set Retarding
Admixture
Used | Set Retarding
Admixture
Used | | 90°F (32°C) or above | 30 min. | 1 hr. 15 min. | | 80°F (27°C) through 89°F (31°C) | 45 min. | 1 hr. 30 min. | | 79°F (26°C) or below | 60 min. | 1 hr. 45 min. | #### 5.0 MISCELLANEOUS Comply with Articles 1000-8 through 1000-11 of the *Standard Specifications* to the extent applicable for grout in lieu of concrete. # CONTINUOUS FLIGHT AUGER PILES FOR SOUND BARRIER WALLS (SPECIAL) #### 1.0 GENERAL This special provision governs the construction of continuous flight auger (CFA) piles. CFA piles are constructed by drilling a borehole with a continuous flight hollow stem auger and filling the borehole by pumping grout through the auger as it is withdrawn. After completing grout placement, reinforcement is inserted into the column of fluid grout. At the Contractor's option, construct CFA piles for sound barrier walls in lieu of pile excavation. Install CFA piles with the required depth in accordance with the Contract. Use a CFA Pile Subcontractor prequalified by the Contractual Services Unit of the Department for CFA pile work (work code 3110). For this provision, "pile" refers to a CFA pile and "reinforcement" refers to steel piles. #### 2.0 CFA PILE INSTALLATION PLAN SUBMITTAL Provide 4 hard copies and an electronic copy (pdf or jpg format on CD or DVD) of the CFA pile installation plan submittal. Submit the installation plan at least 20 working days before starting CFA pile construction. Do not begin pile construction until the CFA pile installation plan is accepted. Submit detailed project specific information including the following. - 1.List and sizes of proposed equipment including CFA drilling rigs, augers and other drilling tools and grouting equipment. - 2. Step-by-step description of CFA pile installation and sequence of pile construction. - 3.Methods for placing reinforcement with procedures for supporting and positioning the reinforcement. - 4.Minimum grout volume factor. The grout volume factor is equal to the grout volume placed divided by the theoretical grout volume for each depth increment. A grout volume factor of at least 1.15 is required. - 5. Equipment and procedures for monitoring and recording grout volume. - 6.Examples of construction records to be provided in accordance with Section 6.0. - 7. Procedures for containment and disposal of drilling spoils in accordance with Section 802 of the *Standard Specifications*. - 8. Grout mix design including laboratory test results in accordance with the Grout for Structures Special Provision. - 9. Other information shown on the plans or requested by the Engineer. If alternate installation procedures are proposed or necessary, a revised CFA pile installation plan submittal may be required. If the work deviates from the accepted submittal without prior approval, the Engineer may suspend CFA pile construction until a revised plan is submitted and accepted. #### 3.0 MATERIALS Use steel piles meeting the requirements of Section 1084 of the Standard Specifications. Use grout in accordance with the Contract. #### 4.0 CFA PILE PRECONSTRUCTION MEETING Before starting CFA pile construction, conduct a preconstruction meeting to discuss the installation and monitoring of the CFA piles. Schedule this meeting after all CFA pile submittals have been accepted and the CFA Pile Subcontractor has mobilized to the site. The Resident or Bridge Maintenance Engineer, Bridge Construction Engineer, Geotechnical Operations Engineer, General Contractor and the CFA Pile Subcontractor Superintendent, Drill Rig Operators and Project Manager will attend this preconstruction meeting. #### 5.0 CONSTRUCTION METHODS Use equipment and methods reviewed and accepted in the CFA pile installation plan or approved by the Engineer. Inform the Engineer of any deviations from the accepted plan. Dispose of drilling spoils and excess waste grout in accordance with Section 802 of the *Standard Specifications* and as directed by the Engineer. Drilling spoils consist of all excavated material including water removed from boreholes. # A. Drilling Use CFA piling rigs capable of drilling through whatever materials are encountered to the dimensions and depths shown on the plans or otherwise required by the Engineer. Use single helix hollow stem augers with uniform diameters and continuous flights from the top of the auger to the bottom tip of the cutting face. Provide augers with flights and teeth that cut the bottom of the borehole flat. Augers with outside diameters at least 97% of the pile design diameter are required. Augers capable of installing piles to a depth 20% greater than plan depth are also required. Unless piles are installed with a hydraulic fixed mast installation platform and the stem to which the auger is fixed has an outside diameter 10" (250 mm) or greater, at least one guide connected to the leads of the CFA piling rig is required. Prevent the leads from rotating during drilling and grouting. Seal the grout injection port to prevent entry during drilling. Keep the hollow stem of augers clean when drilling. Clearly mark augers or leads every foot (0.3 m) along their length with markings visible to the unaided eye from the ground. Check for correct pile location and alignment before beginning drilling. Do not begin drilling until enough grout to complete the pile is on the project site. Advance the auger into the ground at a continuous rate. Do not raise the auger until beginning grout placement. Control the auger rotation speed to prevent excess spoil from being transported to the ground surface and surrounding soil being drawn laterally into the borehole. If muck, organics, soft soil or other unsuitable materials are encountered within 5 ft (1.5 m) of the ground surface, contact the Engineer as these materials can cause problems with top of pile construction. If auger refusal is encountered before reaching plan depth, stop the auger rotation and inform the Engineer. Unless it is determined otherwise, refusal is defined as less than 1 ft (0.3 m) of auger penetration per minute. # B. Grouting Remove all oil, rust inhibitors, residual drilling slurries and similar foreign materials from holding tanks/hoppers, stirring devices, pumps and lines and all other equipment in contact with grout before use. Place a screen between the ready mix truck and the grout pump to remove large particles or cement balls using a mesh that has openings no larger than 3/4 inch (19 mm). Use a positive displacement piston type pump with a known volume per stroke that can develop peak pressures at the pump of at least 350 psi (2.4 MPa). Size the pump to maintain a smooth continuous delivery of grout while limiting pressure variations (particularly pressure drops) due to pump strokes. At the beginning of construction, provide the grout volume delivered by each pump stroke and verify this value is within 3% of the actual volume. Recalibrate the grout volume per pump stroke during construction as necessary or directed by the Engineer. Place grout in accordance with the Contract and accepted submittals. Pump grout without difficulty to fill any soft or porous zones and with sufficient pressure to ensure a continuous monolithic pile with at least the plan cross section from the maximum borehole depth to the top of the grout column. Provide grout free of segregation, intrusions, contamination, structural damage or inadequate consolidation (honeycombing). Begin placing grout within 5 minutes after the auger has reached plan depth. At the beginning of grout placement, lift the auger 6 to 12 inches (150 to 300 mm) and remove the sealing device by applying grout pressure or with a steel bar. Do not lift the auger beyond this range in order to minimize soil movement. After grout flow is initiated, reinsert the auger to the original depth. Pump grout continuously while extracting the auger at a smooth steady rate. Maintain a positive grout pressure at the auger injection point at all times. If rotation occurs while removing the auger, rotate the auger in the same direction as during drilling. If grout placement is suspended for any reason, inform the Engineer and redrill the CFA pile. Monitor the depth of the auger injection point while counting pump strokes during grouting. Record the grout volume and factor versus depth of the auger injection point in increments of 5 ft (1.5 m) or less. # C. Top of Pile Finishing and Protection After placing grout, remove all excess grout and spoil from and place a temporary form within the top of the grout column. Use a form 3 to 5 ft (1 to 1.5 m) long with a diameter equal to or larger than the pile diameter. Place the form with equal lengths above and below the ground surface. Recheck the top of the grout and remove any foreign material. After the grout has reached initial set as determined by the Engineer, remove the form without disturbing the ground surface around the pile. After placing the reinforcement, square the top of the CFA pile with the pile axis while grout is still fluid or by cutting off hardened grout. Construct the top of CFA pile to the elevation shown on the plans. # D. Reinforcement Provide reinforcement for CFA piles consisting of steel piles as shown on the plans and accepted submittals. Place reinforcement as a unit while the grout is still fluid. Lower or gently push reinforcement into the grout. Do not vibrate or drive the reinforcement. Support the reinforcement at the ground surface until the grout strength reaches 2,500 psi (17.2 MPa). Contact the Engineer if reinforcement can not be properly inserted to the required depth. # 6.0 CONSTRUCTION RECORDS Provide 2 original hard copies of CFA pile construction records including the following after completing each pile. - 1. Names of CFA Pile Subcontractor, Superintendent, Drill Rig Operator and Project Manager - 2. Project description, county, NCDOT Contract, TIP and WBS element number - 3. Wall station and number and pile location and identifier - 4. The grout volume and factor versus depth of the auger injection point in increments of 5 ft (1.5 m) or less - 5. CFA pile diameter, length and tip elevation, top of pile and ground surface elevations - 6. Auger diameter and theoretical volume of the borehole - 7. Grout temperature and flow for each ready mix truck - 8. Size, length, top elevation and grade of reinforcement - 9. Date and time drilling begins and ends, grout is mixed and arrives on-site, pumping grout begins and ends and reinforcement is placed - 10. Weather conditions including air temperature at time of grout placement - 11. All other pertinent details related to CFA pile construction After completing all CFA piles for a sound barrier wall, submit electronic copies (pdf or jpg format on CD or DVD) of all corresponding construction records. #### 7.0 CFA PILE ACCEPTANCE CFA pile acceptance is based on the following criteria. - 1. Grout volume factor is greater than the minimum required for any 5 ft (1.5 m) depth increment. - 2. Grout is in accordance with the Contract and does not have any evidence of segregation, intrusions, contamination, structural damage or inadequate consolidation (honeycombing). - 3. CFA pile and reinforcement location, alignment and elevations are within tolerances for sound barrier walls for pile excavation and steel piles are in accordance with the Contract and accepted submittals. If the Engineer determines a CFA pile is unacceptable or unsatisfactory, additional testing, remedial measures or replacement piles are required at no additional cost to the Department. Obtain approval for remediation proposals before performing work. No compensation will be made for losses or damages for remedial work or investigation of unacceptable or unsatisfactory piles. # 8.0 MEASUREMENT AND PAYMENT Include the cost of the CFA piles in the unit bid price for "Sound Barrier Wall". No separate payment will be made for the CFA piles. Include in this unit bid price all costs for submittals, monitoring and recording, labor, tools, equipment, reinforcement and grout complete and in place and all incidentals necessary to drill and construct CFA piles in accordance with this provision. No additional payment will be made for drilling through non-soil materials or any costs associated with unacceptable CFA piles.