PROJECT SPECIAL PROVISIONS #### **ROADWAY** #### **CLEARING AND GRUBBING - METHOD III:** (4-6-06) SP2 R02 Perform clearing on this project to the limits established by Method "III" shown on Standard No. 200.03 of the 2006 Roadway Standard Drawings. #### **LUMP SUM GRADING:** Lump sum grading shall be performed in accordance with Section 226 Comprehensive Grading of the 2006 Standard Specifications except as follows: Delete all references to Section 225, Unclassified Excavation. #### **EMBANKMENTS:** (5-16-06) SP2R18 Revise the 2006 Standard Specifications as follows: Page 2-22, Article 235-4(B) Embankment Formation, add the following: (16) Do not place rock or broken pavement in embankment areas where piles or drilled shaft foundations are to be constructed. This shall include but not be limited to piles and foundations for structures, metal signal poles, overhead sign structures, and high mount lighting. # **SHALLOW UNDERCUT:** (2-19-02) (Rev 7-18-06) SP2 R35 Perform undercut excavation and place a combination of fabric for soil stabilization and Class IV Subgrade Stabilization at locations as directed. Work includes performing undercut excavation, disposing of unsuitable material, furnishing and placing fabric for soil stabilization; and furnishing, placing and compacting Class IV Subgrade Stabilization. #### Materials **Item**Fabric for Soil Stabilization Class IV Subgrade Stabilization # Section 270 1016-3, Class IV, or Material meeting gradation requirements of Table 1010-1, Column C #### **Construction Methods** Perform undercut excavation in accordance with Section 225 and/or Section 226. Place fabric for soil stabilization in accordance with Section 270. Place Class IV Subgrade Stabilization by back dumping material on previously placed fabric. Compact material to 95% of AASHTO T-99, Method "D" density or compact material to the highest density that can be reasonably obtained. # **Measurement and Payment** Undercut Excavation will be measured and paid for in accordance with Section 225 and/or Section 226 of the 2006 Standard Specifications. Fabric for Soil Stabilization will be measured and paid for in accordance with Article 270-4 of the 2006 Standard Specifications. Class IV Subgrade Stabilization, as accepted in place, will be measured and paid for by the ton in accordance with Section 106-7 of the 2006 Standard Specifications. Payment will be made under: # Pay Item Undercut Excavation Fabric for Soil Stabilization Class IV Subgrade Stabilization # Pay Unit Cubic Yard Square Yard Ton #### **FALSE SUMPS:** (7-1-95) SP2 R40 Construct false sumps in accordance with the details in the plans and at locations shown in the plans or at other locations as directed by the Engineer. Payment for the work of construction of the false sumps will be made at the contract unit price per cubic yard for *Unclassified Excavation* or *Borrow Excavation* depending on the source of material, or included in *Grading-Lump Sum*. #### SHOULDER AND FILL SLOPE MATERIAL: (5-21-02) SP2 R50 #### **Description** Perform the required shoulder and slope construction for this project in accordance with the applicable requirements of Section 560 and Section 235 of the 2006 Standard Specifications except as follows: Construct the top 6 inches of shoulder and fill slopes with soils capable of supporting vegetation. Provide soil with a P.I. greater than 6 and less than 25 and with a pH ranging from 5.5 to 6.8. Remove stones and other foreign material 2 inches or larger in diameter. All soil is subject to test and acceptance or rejection by the Engineer. Obtain material from within the project limits or approved borrow source. #### Compensation When the Contractor elects to obtain material from an area located beneath a proposed fill sections which does not require excavation for any reason other than to generate acceptable shoulder and fill slope material, the work of performing the excavation will be considered incidental to the item of *Borrow Excavation* or *Shoulder Borrow*. If there is no pay item for *Borrow* or *Shoulder Excavation* in the contract, this work will be considered incidental to *Unclassified Excavation*. Stockpile the excavated material in a manner to facilitate measurement by the Engineer. Fill the void created by the excavation of the shoulder and fill slope material with suitable material. Payment for material used from the stockpile will be made at the contract unit price for *Borrow Excavation* or *Shoulder Borrow*, then the material will be paid for at the contract unit price for *Unclassified Excavation*. The material used to fill the void created by the excavation of the shoulder and fill slope material will be made at the contract unit price for *Unclassified Excavation*, or *Shoulder Borrow*, depending on the source of the material. Material generated from undercut excavation, unclassified excavation or clearing and grubbing operations that is placed directly on shoulders or slope areas, will not be measured separately for payment, as payment for the work requiring the excavation will be considered adequate compensation for depositing and grading the material on the shoulders or slopes. When undercut excavation is performed at the direction of the Engineer and the material excavated is found to be suitable for use as shoulder and fill slope material, and there is no area on the project currently prepared to receive the material generated by the undercut operation, the Contractor may construct a stockpile for use as borrow at a later date. Payment for the material used from the stockpile will be made at the contract unit price for *Borrow Excavation* or *Shoulder Borrow*. When shoulder material is obtained from borrow sources or from stockpiled material, payment for the work of shoulder construction will be made at the contract unit price per cubic yard for *Borrow Excavation* or *Shoulder Borrow* in accordance with the applicable provisions of Section 230 or Section 560 of the 2006 Standard Specifications. #### **ROCK PLATING:** This work consists of rock plating slopes at locations shown on the plans and as directed by the Engineer. The Contractor will be required to walk or track the slope with equipment capable of compacting the slopes to a degree satisfactory to the Engineer. The fabric shall be placed by unrolling down the slope in a direction perpendicular to the centerline. Fabric shall be buried at the top and embedded at the bottom using dimensions and orientation as shown on the detail. It is preferable that the length of fabric down the slope be continuous. If length of fabric is not sufficient, such as at the end of a roll, an overlap of 3 ft. is required with the upper fabric placed over the lower as shown on the detail. #### Filter Fabric The filter fabric shall meet the physical requirements of Type 2 Engineering Fabric as stated in Section 1056 of the 2006 Standard Specifications. #### Rock The rock shall be plain rip rap meeting the size requirements for Class II Rip Rap. In placing the rock slope protection, the Contractor shall take care not to tear or damage the fabric and in no case shall the rock be allowed to fall from a height greater than 3 ft. #### Measurement and Payment The quantity of rock plating to be paid for will be the actual number of square yards of *Filter Fabric for Drainage* and tons of *Plain Rip Rap, Class II* which have been placed and accepted. The quantity of rock plating will be paid for at the contract unit price per square yards of *Filter Fabric for Drainage* and tons of *Plain Rip Rap, Class II*. Such price shall be full compensation for all work and materials covered by this provision. # **PIPE TESTING:** 4-17-07 SP3R33 Revise the 2006 Standard Specifications as follows: Page 3-3, Article 300-6, add the following: The Department reserves the right to perform forensic testing on any installed pipe. #### **PIPE ALTERNATES:** (7-18-06) (Rev 4-17-07) SP3 R36 #### **Description** The Contractor may substitute Aluminized Corrugated Steel Pipe, Type IR or HDPE Pipe, Type S or Type D up to 48 inches in diameter in lieu of concrete pipe in accordance with the following requirements. #### Material | Item | Section | |---|--------------| | HDPE Pipe, Type S or D | 1032-10 | | Aluminized Corrugated Steel Pipe, Type IR | 1032-3(A)(7) | Aluminized Corrugated Steel Pipe will not be permitted in counties listed in Article 310-2 of the 2006 Standard Specifications. #### **Construction Methods** Aluminized Corrugated Steel Pipe Culverts and HDPE Pipe Culverts shall be installed in accordance with the requirements of Section 300 of the 2006 Standard Specifications for Method A, except that the minimum cover shall be at least 12 inches. Aluminized Corrugated Steel Pipe Culvert and HDPE Pipe Culvert will not be permitted for use under travelways, including curb and gutter. # Measurement and Payment | "Aluminized Corrugated Steel Pipe Culvert to be paid for will be the actual number of | |---| | linear feet installed and accepted. Measurement will be in accordance with Section 310-6 of the | | 2006 Standard Specifications. | | | | "HDPE Pipe Culvert to be paid for will be the actual number of linear feet installed and | | accepted. Measurement will be in accordance with Section 310-6 of the 2006 Standard | | Specifications. | | | Payment will be made under: | Pay Item | Pay Unit | |--|-------------| | " Aluminized Corrugated Steel Pipe Culverts, " Thick | Linear Foot | | " HDPE Pipe Culverts | Linear Foot | # REINFORCED BRIDGE APPROACH FILL: (3-18-03) (Rev.7-18-06) SP4 R01 #### **Description** This work consists of all work necessary to construct reinforced bridge approach fills in accordance with these provisions and the plans, and as directed by the Engineer. #### **Materials** #### Geomembrane Provide geomembrane that is impermeable, composed of polyethylene polymers or polyvinyl chloride, and meets the following physical requirements: | Property | Requirements | Test Method | |--|--|--| | Thickness Tensile Strength at Break Puncture Strength Moisture Vapor Transmission Rate | 25 mils Minimum
100 lb/inch Minimum
40 lbs Minimum
0.018 ounce/yard per Day Maximum | ASTM D1593
ASTM D638
ASTM D 4833
ASTM E96 | #### Fabric Refer to Section 1056 for Type 2 Engineering Fabric and the following: Use a woven fabric consisting of strong rot-proof synthetic fibers such as polypropylene, polyethylene, or polyester formed into a stable network such that the filaments or yarns retain their relative positions to each other. | Fabric Property | Requirements | Test Method | |-------------------|---------------------------|-------------| | Minimum Flow Rate | 2 gallons/min/square foot | ASTM D 4491 | Lamination of fabric sheets to produce the physical requirements of a fabric layer will not be accepted. Furnish letters of certification from the manufacturer with each shipment of the fabric and geomembrane attesting that the material meets the requirements of this provision; however, the material is subject to inspection, test, or rejection by the Engineer at any time. During all periods of shipment and storage, wrap the geomembrane and fabric in a heavy-duty protective covering to protect the material from ultraviolet rays. After the protective wrapping has been removed, do not leave the material uncovered under any circumstances for longer than 4 days. #### Select Material Provide select material meeting the requirements of Class III, Type 1 or Type 2, or Class V select material of Section 1016 of the 2006 Standard Specifications. When select material is required under water, use select material class V only, up to one foot above the existing water elevation. 4 inch Diameter Corrugated Drainage Pipe and Fittings Provide pipe and fittings that meet all the applicable requirements of Section 815 or 816 of the 2006 Standard Specifications. #### **Construction Methods** Place the geomembrane and fabric as shown on the plans or as directed by the Engineer. Perform the excavation for the fabric reinforced fill to the limits shown on the plans. Provide an excavated surface free of obstructions, debris, pockets, stumps, and cleared of all vegetation. The geomembrane or fabric will be rejected if it has defects, rips, holes, flaws, deterioration or damage incurred during manufacture, transportation, handling or storage. Lay all layers smooth, and free from tension, stress, folds, wrinkles or creases. Place all the fabric layers with the machine direction (roll direction) parallel to the centerline of the roadway. A minimum roll width of 10.0 feet for the fabric is required. Overlap geomembrane or fabric splices parallel to the centerline of the roadway a minimum of 18 inches. Geomembrane or fabric splices parallel to the backwall face will not be allowed. Deposit and spread select material in successive, uniform, approximately horizontal layers of not more than 10 inches in depth, loose measurement, for the full width of the cross section, and keep each layer approximately level. Place and compact each layer of select material fill no more than 10 inches thick with low ground pressure equipment. Use hand operated equipment to compact the fill material within three feet of the backwall and wingwalls as directed by the Engineer. Compact select material to a density equal to at least 95% of that obtained by compacting a sample of the material in accordance with AASHTO T99 as modified by the Department. Compact the top eight inches of select material to a density to at least 100% of that obtained by compacting a sample of the material in accordance with AASHTO T99 as modified by the Department. Density requirements are not applicable to select material, class V; however compact the fill with at least four passes of low ground pressure equipment on the entire surface as directed by the Engineer. The compaction of each layer of select material shall be inspected and approved by the Department prior to the placement of the next fill layer. No equipment will be allowed to operate on the drainage pipe or any geomembrane/fabric layer until it is covered with at least six inches of fill material. Compaction shall not damage the drainage pipe, geomembrane, or fabric under the fill. Cover the geomembrane/fabric with a layer of fill material within four days after placement of the geomembrane/fabric. Geomembrane and fabric that are damaged as a result of installation will be replaced as directed by the Department at no additional cost. Place the geomembrane on the ground, and attach and secure it tightly to the vertical face of the backwall and wingwalls with adhesives, duct-tape, nails or any other method approved by the Engineer. Place the first fabric layer on the surface of the geomembrane with the same dimensions of the geomembrane. No material or void is allowed between the geomembrane and the first fabric layer. Place and fold the remaining fabric layers on the edges as shown on the plans or as directed by the Engineer. Provide vertical separation between fabric layers as specified on the plans. The number of fabric layers will be shown in the plans. Place four inch diameter perforated drainage pipe along the base of the backwall and sloped to drain as shown on the plans. Completely wrap perforated drainage pipe and #78M stone with Type 2 Engineering Fabric as shown on the plan detail. Install a pipe sleeve through the bottom of or under the wing wall prior to placing concrete for the wing wall. The pipe sleeve shall be of adequate strength to withstand the wingwall load. Place the pipe sleeve in position to allow the drainage pipe to go through the wing wall with a proper slope. Connect four-inch diameter nonperforated (plain) drainage pipe with a coupling to the perforated pipe near the inside face of the wingwall. Place the nonperforated drainage pipe through the pipe sleeve, extend down to the toe of the slope and connect, to a ditch or other drainage systems as directed by the Engineer. For bridge approaches in cut sections where no side slope is available, direct the drainage pipe outlet to the end slope down to the toe using elbows as directed by the Engineer. # Measurement and Payment Reinforced Bridge Approach Fill, Station ____ will be paid for at the contract lump sum price. Such price and payment will be full compensation for both approach fills at each bridge installation, including but not limited to furnishing, placing and compacting select material, furnishing and placing geomembrane and woven fabric, furnishing and placing pipe sleeve, drainage pipe, and stone, furnishing and installing concrete pads at the end of outlet pipes, excavation and any other items necessary to complete the work. Payment will be made under: | Pay Item | Pay Unit | |--|----------| | Reinforced Bridge Approach Fill, Station | Lump Sum | # **ASPHALT PAVEMENTS - SUPERPAVE:** (7-18-06) (Rev 9-19-06) SP6 R01 Revise the 2006 Standard Specifications as follows: Page 6-2, Article 600-9 Measurement and Payment Delete the second paragraph. Page 6-12, 609-5(C)2(c) add after (AASHTO T 209): or ASTM D 2041 Page 6-13, last line on page & Page 6-14, Subarticle 609-5(C)(2)(e), delete and substitute the following: - (e) Retained Tensile Strength (TSR) (AASHTO T 283 Modified), add subarticle (1) Option 1 before the first paragraph. - (1) Option 1 Add subarticle (2) Option 2 and the following sentence as the first sentence of the second paragraph: (2) Option 2 Mix sampled from truck at plant with one set of specimens prepared by the Contractor and then tested jointly by QA and QC at a mutually agreed upon lab site within the first 7 calendar days after beginning production of each new mix design. Page 6-28, 610-3(A) Mix Design-General, third sentence of the fourth paragraph: Substitute 20% for 15% First, second and third sentences of the fifth paragraph: Substitute 20% for 15% Page 6-44, 610-8, third full paragraph, replace the first sentence with the following: Use the 30 foot minimum length mobile grade reference system or the non-contacting laser or sonar type ski with at least four referencing stations mounted on the paver at a minimum length of 24 feet to control the longitudinal profile when placing the initial lanes and all adjacent lanes of all layers, including resurfacing and asphalt in-lays, unless otherwise specified or approved. Page 6-54, Article 620-4, add the following pay item: # Pay Item Pay Unit Asphalt Binder for Plant Mix, Grade PG 70-28 Ton Page 6-69, Table 660-1 Material Application Rates and Temperatures, add the following: | Type of Coat | Grade of Asphalt | Asphalt Rate gal/yd ² | Application
Temperature °F | Aggregate Size | Aggregate Rate
lb./sq. yd. Total | | |--------------|------------------|----------------------------------|-------------------------------|----------------------|-------------------------------------|--| | Sand Seal | CRS-2 or CRS-2P | 0.22-0.30 | 150-175 | Blotting Sand | 12-15 | | Page 6-75, 660-9(B), add the following as sub-item (5) #### (5) Sand Seal Place the fully required amount of asphalt material in one application and immediately cover with the seal coat aggregate. Uniformly spread the fully required amount of aggregate in one application and correct all non-uniform areas prior to rolling. Immediately after the aggregate has been uniformly spread, perform rolling. When directed, broom excess aggregate material from the surface of the seal coat. When the sand seal is to be constructed for temporary sealing purposes only and will not be used by traffic, other grades of asphalt material meeting the requirements of Articles 1020-6 and 1020-7 may be used in lieu of the grade of asphalt required by Table 660-1 when approved. Page 10-41, Table 1012-1, add the following: | Mix | Course Aggregate | Fine Aggregate Angularity | Sand Equivalent | Flat & Elongated 5:1 Ratio | |---------|---------------------|---------------------------|-----------------|----------------------------| | Type | Angularity (b) ASTM | % Minimum AASHTO | % Minimum | % Maximum ASTM | | | D5821 | T304 Method A | AASHTO T176 | D4791 Section 8.4 | | S 9.5 D | 100/100 | 45 | 50 | 10 | Page 10-45, Replace Table 1012-2 with the following: TABLE 1012-2 NEW SOURCE RAP GRADATION and BINDER TOLERANCES (Apply Tolerances to Mix Design Data) | Mix
Type | 0 | 0-20% RAP 21-25% RAP 26%+ RA | | | | | 21-25% RAP | | P | |--------------------|--------------|------------------------------|-------|----------|----------|--------------|------------|--------------|------------| | Sieve
(mm) | Base | Inter. | Surf. | Base | Inter. | Surf. | Base | Inter. | Surf. | | P _b , % | | ± 0.7% | | | ± 0.4% | | | ± 0.3% | | | 1 1/2"
(37.5) | ±10 | - | - | ±7 | - | - | ±5 | - | - | | 3/4"
(19.0) | ±10 | ±10 | - | ±7 | ±7 | - | ±5 | ±5 | - | | 1/2"
(12.5) | - | ±10 | ±6 | - | ±7 | ±3 | -
- | ±5 | ±2 | | 3/8"
(9.5) |
- | -
- | ±8 | - | - | ±5 | _ | - | <u>±</u> 4 | | No. 4
(4.75) | ±10 | - | ±10 | ±7 | - | ±7 | ±5 | - | ±5 | | No. 8 (2.36) | ±8 | ±8 | ±8 | ±5 | ±5 | ±5 | ±4 | ±4 | ±4 | | No.16
(1.18) | ±8 | ±8 | ±8 | ±5 | ±5 | ±5 | ±4 | ±4 | ±4 | | No. 30 (0.600) | ±8 | ±8 | ±8 | ±5 | ±5 | ±5 | ±4 | ±4 | ±4 | | No. 50 (0.300) | - | - | ±8 | - | <u>-</u> | ±5 | - | = : | <u>±</u> 4 | | No. 200
(0.075) | ±4 | ±4 | ±4 | ±2 | ±2 | ±2 | ±1.5 | ±1.5 | ±1.5 | # **ASPHALT BINDER CONTENT OF ASPHALT PLANT MIXES:** (11-21-00) SP6 R15 The approximate asphalt binder content of the asphalt concrete plant mixtures used on this project will be as follows: | Asphalt Concrete Base Course | Type B 25.0 | 4.3% | |--------------------------------------|--------------|------| | Asphalt Concrete Intermediate Course | Type I 19.0 | 4.7% | | Asphalt Concrete Surface Course | Type S 4.75A | 7.0% | | Asphalt Concrete Surface Course | Type SF 9.5A | 6.5% | | Asphalt Concrete Surface Course | Type S 9.5 | 6.0% | | Asphalt Concrete Surface Course | Type S 12.5 | 5.5% | The actual asphalt binder content will be established during construction by the Engineer within the limits established in the 2006 Standard Specifications. # **ASPHALT PLANT MIXTURES:** (7-1-95) SP6 R20 Place asphalt concrete base course material in trench sections with asphalt pavement spreaders made for the purpose or with other equipment approved by the Engineer. # PRICE ADJUSTMENT - ASPHALT BINDER FOR PLANT MIX: (11-21-00) SP6 R25 Price adjustments for asphalt binder for plant mix will be made in accordance with Section 620 of the 2006 Standard Specifications. The base price index for asphalt binder for plant mix is \$ 317.86 per ton. This base price index represents an average of F.O.B. selling prices of asphalt binder at supplier's terminals on July 1, 2007. # **GUARDRAIL ANCHOR UNITS, TYPE 350:** $\overline{(4-20-04)}$ SP8 R65 #### **Description** Furnish and install guardrail anchor units in accordance with the details in the plans, the applicable requirements of Section 862 of the 2006 Standard Specifications, and at locations shown in the plans. #### Materials The Contractor may at his option, furnish any one of the guardrail anchor units. Guardrail anchor unit (ET-2000) as manufactured by: Trinity Industries, Inc. 2525 N. Stemmons Freeway Dallas, Texas 75207 Telephone: 800-644-7976 The guardrail anchor unit (SKT 350) as manufactured by: Road Systems, Inc. 3616 Old Howard County Airport Big Spring, Texas 79720 Telephone: 915-263-2435 Prior to installation the Contractor shall submit to the Engineer: - (A) FHWA acceptance letter for each guardrail anchor unit certifying it meets the requirements of NCHRP Report 350, Test Level 3, in accordance with Section 106-2 of the 2006 Standard Specifications. - (B) Certified working drawings and assembling instructions from the manufacturer for each guardrail anchor unit in accordance with Section 105-2 of the 2006 Standard Specifications. No modifications shall be made to the guardrail anchor unit without the express written permission from the manufacturer. Perform installation in accordance with the details in the plans, and details and assembling instructions furnished by the manufacturer. #### **Construction Methods** Guardrail end delineation is required on all approach and trailing end sections for both temporary and permanent installations. Guardrail end delineation consists of yellow reflective sheeting applied to the entire end section of the guardrail in accordance with Section 1088-3 of the 2006 Standard Specifications and is incidental to the cost of the guardrail anchor unit. ## Measurement and Payment Measurement and payment will be made in accordance with Articles 862-6 of the 2006 Standard Specifications. Payment will be made under: Pay Item Pay Unit Guardrail Anchor Units, Type 350 Each #### PREFORMED SCOUR HOLE WITH LEVEL SPREADER APRON: (10-15-02) (Rev 7-18-06) SP8 R105 #### **Description** Construct and maintain preformed scour holes with spreader aprons at the locations shown on the plans and in accordance with the details in the plans. Work includes excavation, shaping and maintaining the hole and apron, furnishing and placing filter fabric, rip rap (class as specified in the plans) and permanent soil reinforcement matting. #### Materials | Item | Section | |---------------|---------| | Plain rip rap | 1042 | | Filter Fabric | 1056 | The permanent soil reinforcement matting shall be permanent erosion control reinforcement mat and shall be constructed of 100% coconut fiber stitch bonded between a heavy duty UV stabilized cuspated (crimped) netting overlaid with a heavy duty UV stabilized top net. The three nettings shall be stitched together on 1.5 inch centers UV stabilized polyester thread to form a permanent three dimensional structure. The mat shall have the following physical properties: | Property | Test Method | Value Unit | |---|----------------|------------| | Ground Cover | Image Analysis | 93 % | | Thickness | ASTM D1777 | 0.63 in | | Mass Per Unit Area | ASTM D3776 | 0.92 lb/sy | | Tensile Strength | ASTM D5035 | 480 lb/ft | | Elongation | ASTM D5035 | 49 % | | Tensile Strength | ASTM D5035 | 960 lb/ft | | Elongation | ASTM D5035 | 31 % | | Tensile Strength | ASTM D1682 | 177 lbs | | Elongation | ASTM D1682 | 22 % | | Resiliency | ASTM D1777 | >80 % | | UV Stability * | ASTM D4355 | 151 lbs | | Color(Permanent Net) | | UV Black | | Porosity (Permanent Net) | Calculated | >95 % | | Minimum Filament Diameter (permanent net) | Measured | 0.03 in | ^{*}ASTM D1682 Tensile Strength and % strength retention of material after 1000 hours of exposure in a Xenon-arc weatherometer. A certification (Type 1, 2, or 3) from the manufacturer showing: - (A) the chemical and physical properties of the mat used, and - (B) conformance of the mat with this specification will be required. # **Soil Preparation** All areas to be protected with the mat shall be brought to final grade and seeded in accordance with Section 1660. The surface of the soil shall be smooth, firm, stable and free of rocks, clods, roots or other obstructions that would prevent the mat from lying in direct contact with the soil surface. Areas where the mat is to be placed will not need to be mulched. # Measurement and Payment Preformed Scour Holes with Level Spreader Aprons will be measured and paid for shall be the actual number that has been incorporated into the completed and accepted work. Such price and payment will be full compensation for all work covered by this provision. Payment will be made under: Pay Item Pay Unit Preformed Scour Hole with Level Spreader Aprons Each #### **AGGREGATE PRODUCTION:** (11-20-01) SP10 R05 Provide aggregate from a producer who uses the current Aggregate Quality Control/Quality Assurance Program that is in effect at the time of shipment. No price adjustment is allowed to contractors or producers who use the program. Participation in the program does not relieve the producer of the responsibility of complying with all requirements of the 2006 Standard Specifications. Copies of this procedure are available upon request from the Materials and Test Unit. # **CONCRETE BRICK AND BLOCK PRODUCTION:** (11-20-01) SP10 R10 Provide concrete brick and block from a producer who uses the current Solid Concrete Masonry Brick/Unit Quality Control/Quality Assurance Program that is in effect on the date that material is received on the project. No price adjustment is allowed to contractors or producers who use the program. Participation in the program does not relieve the producer of the responsibility of complying with all requirements of the 2006 Standard Specifications. Copies of this procedure are available upon request from the Materials and Test Unit. #### PORTLAND CEMENT CONCRETE (Alkali-Silica Reaction): 2-20-07 SP10 R16 Revise the 2006 Standard Specifications as follows: Article 1024-1(A), replace the 2nd paragraph with the following: Certain combinations of cement and aggregate exhibit an adverse alkali-silica reaction. The alkalinity of any cement, expressed as sodium-oxide equivalent, shall not exceed 1.0 percent. For mix designs that contain non-reactive aggregates and cement with an alkali content less than 0.6%, straight cement or a combination of cement and fly ash, cement and ground granulated blast furnace slag or cement and microsilica may be used. The pozzolan quantity shall not exceed the amount shown in Table 1024-1. For mixes that contain cement with an alkali content between 0.6% and 1.0%, and for mixes that contain a reactive aggregate documented by the Department, regardless of the alkali content of the cement, use a pozzolan in the amount shown in Table 1024-1. Obtain the list of reactive aggregates documented by the Department at:http://www.ncdot.org/doh/operations/materials/pdf/quarryasrprob.pdf | | Table 1024-1 | | | | |---|--|--|--|--| | Pozzolans for Use in Portland Cement Concrete | | | | | | Pozzolan | Rate | | | | | Class F Fly Ash | 20% by weight of required cement content, with 1.2 lbs Class F fly ash per lb of cement replaced | | | | | Ground Granulated Blast Furnace Slag | 35%-50% by weight of required cement content with 1 lb slag per lb of cement replaced | | | | | Microsilica | 4%-8% by weight of required cement content, with 1 lb microsilica per lb of cement replaced | | | | # **GLASS BEADS:** (7-18-06) SP10 R35 Revise the 2006 Standard Specifications as follows: Page 10-223, 1087-4(C) Gradation & Roundness Replace the second sentence of the first paragraph with the following: All Drop-On and Intermixed Glass Beads shall be tested in accordance with ASTM D1155. Delete the last paragraph. # **ENGINEERING FABRICS TABLE 1056-1:** (7-18-06) SP10 R40 Revise the 2006 Standard Specifications as follows: Page 10-100, Table 1056-1, replace the values for Trapezoidal Tear Strength with the following: | Physical Property | ASTM
Test
Method | Type 1 | Type 2 | Type 3 | | Type 4 | |---------------------------|------------------------|----------------|--------------|-------------------------|------------|-----------------------| | | | | | Class
A | Class
B | | | Typical Applications | | Shoulder Drain | Under Riprap | Temporary Silt
Fence | | Soil
Stabilization | | Trapezoidal Tear Strength | D4533 | <i>45</i> lb | 75 lb | | | 75 lb | # PAVEMENT MARKING LINES MEASUREMENT AND PAYMENT: (11-21-06) SP 12 R01 Revise the 2006 Standard Specifications as follows: Page 12-14, Subarticle 1205-10, delete the first sentence of the first paragraph and replace with the following: Pavement Marking Lines will be measured and paid for as the actual number of linear feet of pavement marking lines per application that has been satisfactorily placed and accepted by the Engineer. #### PERMANENT SEEDING AND MULCHING: (7-1-95) SP16 R01 The Department desires that permanent seeding and mulching be established on this project as soon as practical after slopes or portions of slopes have been graded. As an incentive to obtain an early stand of vegetation on this project, the Contractor's attention is called to the following: For all permanent seeding and mulching that is satisfactorily completed in accordance with the requirements of Section 1660, Seeding and Mulching, and within the following percentages of elapsed contract times, an additional payment will be made to the Contractor as an incentive additive. The incentive additive will be determined by multiplying the number of acres of seeding and mulching satisfactorily completed times the contract unit bid price per acre for Seeding and Mulching times the appropriate percentage additive. | Percentage of | Percentage | | | |------------------------------|------------|--|--| | Elapsed Contract Time | Additive | | | | 0% - 30% | 30% | | | | 30.01% - 50% | 15% | | | Percentage of elapsed contract time is defined as the number of calendar days from the date of availability of the contract to the date the permanent seeding and mulching is acceptably completed divided by the total original contract time.