PROJECT SPECIAL PROVISIONS #### **ROADWAY** #### **CLEARING AND GRUBBING:** $\overline{(4-10-07)}$ SPI Clearing on this project shall be performed to the limits established by Method II for the wetland areas (west side) and Method III for upland areas (east side). Refer to *Roadway Standard Drawings* Numbers 200.02 and 200.03 for details. #### **BUILDING AND UNDERGROUND STORAGE TANK REMOVAL:** (1-1-02) (Rev.6-21-05) SP2 R15 #### **Building Removal** Remove the buildings and appurtenances listed below in accordance with Section 215 of the 2006 Standard Specifications and the following: Prior to removal of any building, comply with the notification requirements of *Title 40 Code of Federal Regulations*, Part 61, Subpart M, which are applicable to asbestos. Give notification to the North Carolina Department of Health and Human Services, Division of Public Health Epidemiology Branch and/or the appropriate county agency when the county performs enforcement of the Federal Regulation. Submit a copy of the notification to the Engineer prior to the building removal. Perform removal and disposal of asbestos in accordance with the requirements of *Title 40 Code of Federal Regulations*; comply with all Federal, State and local regulations when performing building removal and/or asbestos removal and disposal. Any fines resulting from violations of any regulation are the sole responsibility of the Contractor and the Contractor agrees to indemnify and hold harmless the Department against any assessment of such fines. The Department has performed asbestos assessments for building items identified below. Copies of this report may be obtained through the Division Right-of-Way Agent. When asbestos is discovered after the opening of bids for the project, the Engineer may have the work performed by others or the cost of asbestos removal and disposal will be paid for in accordance with Article 104-7 of the 2006 Standard Specifications. When a building has had or will have asbestos removed and the Contractor elects to remove the building such that it becomes a public area, the Contractor is responsible for any additional costs incurred including final air monitoring. #### **Underground Storage Tank Removal** Prior to removal of any Underground Storage Tank (UST), comply with the notification requirements of the *Title 40 Code of Federal Regulations*, Part 280.71(a). Give notification to the appropriate regional office of the North Carolina Department of Environment and Natural Resources, Division of Waste Management, UST Section. Submit a copy of the notification to the Engineer prior to the removal of the underground storage tank. Permanently close UST systems by removal and disposal in compliance with the regulations set forth in *Title 40, Code of Federal Regulations*, Part 280.71 and *North Carolina Administrative Code (NCAC)* Title 15A, Chapter 2, Subchapter 2N and any applicable local regulations. Assess Underground Storage Tank sites at closure for the presence of contamination as required in *NCAC* Title 15A, Chapter 2, Subchapter 2N, Section .0803 and as directed by the appropriate Regional Office of the Division of Waste Management. Remove and dispose of UST systems and contents in a safe manner in conformance with requirements of *American Petroleum Institute Bulletin 1604*, Removal and Disposal of Used Underground Petroleum Storage Tanks, Chapters 3 through 6. (Note: As an exception to these requirements, the filling of the tank with water as a means of expelling vapors from the tank as described in Section 4.2.6.1 of *American Petroleum Institute Bulletin 1604*, will not be allowed. Comply with all Federal, State and local regulations when performing UST removal and contaminated material disposal. Any fines resulting from violations of any regulation are the sole responsibility of the Contractor and the Contractor agrees to indemnify and hold harmless the Department against any assessment of such fines. Where underground storage tanks are indicated below, there will be no direct payment for the assessment or closure. When the contract does not indicate the presence of storage tanks and storage tanks are discovered after the opening of bids for the project, the Engineer may have the work performed by others or the cost of assessment, closure, and/or removal will be paid for in accordance with Article 104-7 of the 2006 Standard Specifications. Disposition of any contaminated material associated with underground storage tanks will be made as provided in Article 107-26 of the 2006 Standard Specifications. | В | ui | lc | ling | R | lemova | l | No. | 1 | | |---|----|----|------|---|--------|---|-----|---|--| |---|----|----|------|---|--------|---|-----|---|--| Left of Survey Station 28+25, Survey Line L 1.5SF Dwelling Parcel #005 Partially outside of Right of Way and/or Construction Line #### Building Removal No. 2 Left of Survey Station 31+85, Survey Line L Parcel #006 Storage Shed #### Building Removal No. 3 Left of Survey Station 32+20, Survey Line –L- 1SF Dwelling Parcel #006 Partially outside of Right of Way and/or Construction Line # Building Removal No. 4 Left of Survey Station 33+75, Survey Line –L- 1SF Dwelling Parcel #006 Partially outside of Right of Way and/or Construction Line # **EMBANKMENTS:** (5-16-06) SP2R18 Revise the 2006 Standard Specifications as follows: Page 2-22, Article 235-4(B) Embankment Formation, add the following: (16) Do not place rock or broken pavement in embankment areas where piles or drilled shaft foundations are to be constructed. This shall include but not be limited to piles and foundations for structures, metal signal poles, overhead sign structures, and high mount lighting. ### **SHOULDER AND FILL SLOPE MATERIAL:** (5-21-02) SP2 R50 # Description Perform the required shoulder and slope construction for this project in accordance with the applicable requirements of Section 560 and Section 235 of the 2006 Standard Specifications except as follows: Construct the top 6 inches of shoulder and fill slopes with soils capable of supporting vegetation. Provide soil with a P.I. greater than 6 and less than 25 and with a pH ranging from 5.5 to 6.8. Remove stones and other foreign material 2 inches or larger in diameter. All soil is subject to test and acceptance or rejection by the Engineer. Obtain material from within the project limits or approved borrow source. #### Compensation When the Contractor elects to obtain material from an area located beneath a proposed fill sections which does not require excavation for any reason other than to generate acceptable shoulder and fill slope material, the work of performing the excavation will be considered incidental to the item of *Borrow Excavation* or *Shoulder Borrow*. If there is no pay item for *Borrow* or *Shoulder Excavation* in the contract, this work will be considered incidental to *Unclassified Excavation*. Stockpile the excavated material in a manner to facilitate measurement by the Engineer. Fill the void created by the excavation of the shoulder and fill slope material with suitable material. Payment for material used from the stockpile will be made at the contract unit price for *Borrow Excavation* or *Shoulder Borrow*, then the material will be paid for at the contract unit price for *Unclassified Excavation*. The material used to fill the void created by the excavation of the shoulder and fill slope material will be made at the contract unit price for *Unclassified Excavation*, or *Shoulder Borrow*, depending on the source of the material. Material generated from undercut excavation, unclassified excavation or clearing and grubbing operations that is placed directly on shoulders or slope areas, will not be measured separately for payment, as payment for the work requiring the excavation will be considered adequate compensation for depositing and grading the material on the shoulders or slopes. When undercut excavation is performed at the direction of the Engineer and the material excavated is found to be suitable for use as shoulder and fill slope material, and there is no area on the project currently prepared to receive the material generated by the undercut operation, the Contractor may construct a stockpile for use as borrow at a later date. Payment for the material used from the stockpile will be made at the contract unit price for *Borrow Excavation* or *Shoulder Borrow*. When shoulder material is obtained from borrow sources or from stockpiled material, payment for the work of shoulder construction will be made at the contract unit price per cubic yard for *Borrow Excavation* or *Shoulder Borrow* in accordance with the applicable provisions of Section 230 or Section 560 of the 2006 Standard Specifications. # **NOTE TO CONTRACTOR:** #### 1. Undercut Excavation Undercut using dragline or other approved methods to prevent disturbance of the underlying soils. Do not operate heavy equipment directly on the base of the box cut. # 2. Extra Handling of Unclassified Excavation Aerate and dry an unclassified excavation material containing moisture content in excess of what is required to achieve embankment stability and specified density. #### **LIGHTWEIGHT AGGREGATE:** #### 1.0 GENERAL Furnish and place lightweight aggregate as shown on the plans, according to this provision, and as directed by the Engineer. Use ESCS (Expanded Shale Clay Slate) produced by the rotary kiln method conforming to ASTM C330 (latest edition). #### 2.0 MATERIAL PROPERTIES Lightweight aggregate must have a proven record of durability, and be non-corrosive, with the following properties: - Contains a maximum organic content of 0.1%. - Soundness Loss (AASHTO T104): Have a maximum soundness loss of less than 30% when subjected to four cycles of Magnesium Sulfate. - Abrasion Resistance (ASTM C131): Have a maximum percentage of abrasion loss of less than 40%. - Chloride Content (AASHTO T291): Have a chloride content less than 100 ppm. - Gradation (ASTM 136): Use an aggregate gradation from 3/4" to #4. Other gradations may be acceptable with approval by the Engineer. - Aggregate loose unit weight (ASTM C29): Have a loose unit weight less than 55 lbs/ft3. - In-place unit weight: (ASTM D4253, D4254): Have an in-place compacted dry unit weight between 55 and 60 lbs/ft3. Material must be compacted to a minimum 65% relative density as determined by ASTM D4253 and D4254. Use a vibratory table when determining the maximum index density and unit weight in accordance with ASTM D4253. Determine the minimum index density and unit weight in accordance with ASTM D4254. - Angle of Internal Friction (ASTM D3080): Minimum angle of internal friction of 40 degrees. Test a saturated representative sample (with particles larger than larger than 0.75 inch removed) in a round or square shear box that is a minimum of 12 inches across. - Resistivity (ASTM D1125): Have a resistivity greater than 3000 ohm-cm. - pH (ASTM D1293): Have a pH greater than five but less than 10. Before placing any backfill, furnish a Type IV certification in accordance with Article 106-3 of the Standard Specifications. Include a copy of all test results conducted in accordance with the above requirements in the certification. The Engineer determines how often NCDOT samples backfill material to assure compliance with gradation and other material properties. # 3.0 METHOD OF CONSTRUCTION Place lightweight fill in uniform layers. Compact as need to achieve the required density. Place layers not more than 12 inches in depth loose thickness and compact. Compact with three passes of an 8-10 ton vibratory roller in the vibratory mode, or as directed by the Engineer. In confined areas use vibratory plate compaction equipment (5 hp to 20 hp) with a minimum of two passes in 6" lifts for a 5 hp plate and 12" lifts for a 20 hp plate. Take all necessary precautions when working adjacent to the lightweight fill to ensure that the material is not over compacted. Construction equipment, other than for placement and compaction, must not operate on the exposed lightweight fill. #### 4.0 METHOD OF MEASUREMENT AND PAYMENT Lightweight aggregate will be measured and paid for per ton of "Lightweight Aggregate" that has been acceptably placed and compacted. Such price and payment will be full compensation for furnishing, hauling, placing, and compacting the fill and all incidentals necessary to complete the work. #### **EMBANKMENT MONITORING:** (7-1-95) (Rev 7-18-06) SP2 R75 #### **Settlement Gauges** Furnish and install Settlement Gauges as shown in the plans at locations designated in the plans. Place the base on a level surface near the natural ground as shown in the plans. Extend the $2\frac{1}{2}$ " ø metal pipe by adding pipe sections at threaded couplings as the embankment is progressed. Make sure that the top of the extension section is no less than 1 ft. above the embankment surface and no higher than 6 ft. Make the exposed length of pipe conspicuous to avoid chance of damage. Conduct operations in such a manner that the gauges are not damaged. Compact fill around the gauge pipes and plates to the same density as the surrounding material. Restore or replace any settlement gauge pipe damaged or destroyed due to fault or negligence on the part of the Contractor at no additional cost. No additional payment will be made for compaction of fill around and over the settlement gauges or for interference with the Contractor's operations resulting from settlement gauge installations. Perform installation operations such that the $2\frac{1}{2}$ " \emptyset pipe remains plumb. Provide ASTM A53 type F 2½" ø pipe, threaded with a black finish. #### **Measurement and Payment** Embankment Settlement Gauges will be measured as the actual number that have been incorporated into the completed and accepted work and will be paid for at the contract unit price per each. Such price and payment will be full compensation for all materials, labor, equipment and other incidentals necessary to complete the work satisfactorily. Payment will be made under: Pay ItemPay UnitEmbankment Settlement GaugeEach PIPE TESTING: 4-17-07 SP3R33 Revise the 2006 Standard Specifications as follows: Page 3-3, Article 300-6, add the following: The Department reserves the right to perform forensic testing on any installed pipe. # **REINFORCED BRIDGE APPROACH FILL:** (3-18-03) (Rev.7-18-06) SP4 R01 #### **Description** This work consists of all work necessary to construct reinforced bridge approach fills in accordance with these provisions and the plans, and as directed by the Engineer. #### **Materials** #### Geomembrane Provide geomembrane that is impermeable, composed of polyethylene polymers or polyvinyl chloride, and meets the following physical requirements: | Property | Requirements | Test Method | |---------------------------|-----------------------------------|--------------------| | Thickness | 25 mils Minimum | ASTM D1593 | | Tensile Strength at Break | 100 lb/inch Minimum | ASTM D638 | | Puncture Strength | 40 lbs Minimum | ASTM D 4833 | | Moisture Vapor | 0.018 ounce/yard per Day Maximum | ASTM E96 | | Transmission Rate | 0.016 ounce, yard per Day Waximum | | #### Fabric Refer to Section 1056 for Type 2 Engineering Fabric and the following: Use a woven fabric consisting of strong rot-proof synthetic fibers such as polypropylene, polyethylene, or polyester formed into a stable network such that the filaments or yarns retain their relative positions to each other. | Fabric Property | Requirements | Test Method | |-------------------|---------------------------|-------------| | Minimum Flow Rate | 2 gallons/min/square foot | ASTM D 4491 | Lamination of fabric sheets to produce the physical requirements of a fabric layer will not be accepted. Furnish letters of certification from the manufacturer with each shipment of the fabric and geomembrane attesting that the material meets the requirements of this provision; however, the material is subject to inspection, test, or rejection by the Engineer at any time. During all periods of shipment and storage, wrap the geomembrane and fabric in a heavy-duty protective covering to protect the material from ultraviolet rays. After the protective wrapping has been removed, do not leave the material uncovered under any circumstances for longer than 4 days. #### Select Material Provide select material meeting the requirements of Class III, Type 1 or Type 2, or Class V select material of Section 1016 of the 2006 Standard Specifications. When select material is required under water, use select material class V only, up to one foot above the existing water elevation. 4 inch Diameter Corrugated Drainage Pipe and Fittings Provide pipe and fittings that meet all the applicable requirements of Section 815 or 816 of the 2006 Standard Specifications. #### **Construction Methods** Place the geomembrane and fabric as shown on the plans or as directed by the Engineer. Perform the excavation for the fabric reinforced fill to the limits shown on the plans. Provide an excavated surface free of obstructions, debris, pockets, stumps, and cleared of all vegetation. The geomembrane or fabric will be rejected if it has defects, rips, holes, flaws, deterioration or damage incurred during manufacture, transportation, handling or storage. Lay all layers smooth, and free from tension, stress, folds, wrinkles or creases. Place all the fabric layers with the machine direction (roll direction) parallel to the centerline of the roadway. A minimum roll width of 10.0 feet for the fabric is required. Overlap geomembrane or fabric splices parallel to the centerline of the roadway a minimum of 18 inches. Geomembrane or fabric splices parallel to the backwall face will not be allowed. Deposit and spread select material in successive, uniform, approximately horizontal layers of not more than 10 inches in depth, loose measurement, for the full width of the cross section, and keep each layer approximately level. Place and compact each layer of select material fill no more than 10 inches thick with low ground pressure equipment. Use hand operated equipment to compact the fill material within three feet of the backwall and wingwalls as directed by the Engineer. Compact select material to a density equal to at least 95% of that obtained by compacting a sample of the material in accordance with AASHTO T99 as modified by the Department. Compact the top eight inches of select material to a density to at least 100% of that obtained by compacting a sample of the material in accordance with AASHTO T99 as modified by the Department. Density requirements are not applicable to select material, class V; however compact the fill with at least four passes of low ground pressure equipment on the entire surface as directed by the Engineer. The compaction of each layer of select material shall be inspected and approved by the Department prior to the placement of the next fill layer. No equipment will be allowed to operate on the drainage pipe or any geomembrane/fabric layer until it is covered with at least six inches of fill material. Compaction shall not damage the drainage pipe, geomembrane, or fabric under the fill. Cover the geomembrane/fabric with a layer of fill material within four days after placement of the geomembrane/fabric. Geomembrane and fabric that are damaged as a result of installation will be replaced as directed by the Department at no additional cost. Place the geomembrane on the ground, and attach and secure it tightly to the vertical face of the backwall and wingwalls with adhesives, duct-tape, nails or any other method approved by the Engineer. Place the first fabric layer on the surface of the geomembrane with the same dimensions of the geomembrane. No material or void is allowed between the geomembrane and the first fabric layer. Place and fold the remaining fabric layers on the edges as shown on the plans or as directed by the Engineer. Provide vertical separation between fabric layers as specified on the plans. The number of fabric layers will be shown in the plans. Place four inch diameter perforated drainage pipe along the base of the backwall and sloped to drain as shown on the plans. Completely wrap perforated drainage pipe and #78M stone with Type 2 Engineering Fabric as shown on the plan detail. Install a pipe sleeve through the bottom of or under the wing wall prior to placing concrete for the wing wall. The pipe sleeve shall be of adequate strength to withstand the wingwall load. Place the pipe sleeve in position to allow the drainage pipe to go through the wing wall with a proper slope. Connect four-inch diameter nonperforated (plain) drainage pipe with a coupling to the perforated pipe near the inside face of the wingwall. Place the nonperforated drainage pipe through the pipe sleeve, extend down to the toe of the slope and connect, to a ditch or other drainage systems as directed by the Engineer. For bridge approaches in cut sections where no side slope is available, direct the drainage pipe outlet to the end slope down to the toe using elbows as directed by the Engineer. #### **Measurement and Payment** | Reinforced Bridge Approach Fill, Station | will be paid for at the contract lump sum price. | |--------------------------------------------------|---------------------------------------------------| | Such price and payment will be full compensation | ation for the bridge approach fill at end bent #2 | | installation, including but not limited to furn | ishing, placing and compacting select material, | | furnishing and placing geomembrane and wo | ven fabric, furnishing and placing pipe sleeve, | | drainage pipe, and stone, furnishing and insta | alling concrete pads at the end of outlet pipes, | | excavation and any other items necessary to cor | nplete the work. | Payment will be made under: Pay ItemPay UnitReinforced Bridge Approach Fill, StationLump Sum #### **AGGREGATE BASE COURSE:** Revise the 2006 Standard Specifications as follows: SP5 R03 Page 5-11, Article 520-5 Hauling and Placing Aggregate Base Material, 6th paragraph, replace the first sentence with the following: Base course that is in place on November 15 shall have been covered with a subsequent layer of pavement structure or with a sand seal. Base course that has been placed between November 16 and March 15 inclusive shall be covered within 7 calendar days with a subsequent layer of pavement structure or with a sand seal. #### **ASPHALT PAVEMENTS - SUPERPAVE:** (7-18-06) (Rev 9-19-06) SP6 R01 Revise the 2006 Standard Specifications as follows: Page 6-2, Article 600-9 Measurement and Payment Delete the second paragraph. Page 6-12, 609-5(C)2(c) add after (AASHTO T 209): or ASTM D 2041 Page 6-13, last line on page & Page 6-14, Subarticle 609-5(C)(2)(e), delete and substitute the following: - (e) Retained Tensile Strength (TSR) (AASHTO T 283 Modified), add subarticle (1) Option 1 before the first paragraph. - (1) Option 1 Add subarticle (2) Option 2 and the following sentence as the first sentence of the second paragraph: (2) Option 2 Mix sampled from truck at plant with one set of specimens prepared by the Contractor and then tested jointly by QA and QC at a mutually agreed upon lab site within the first 7 calendar days after beginning production of each new mix design. Page 6-28, 610-3(A) Mix Design-General, third sentence of the fourth paragraph: Substitute 20% for 15% First, second and third sentences of the fifth paragraph: Substitute 20% for 15% Page 6-44, 610-8, third full paragraph, replace the first sentence with the following: Use the 30 foot minimum length mobile grade reference system or the non-contacting laser or sonar type ski with at least four referencing stations mounted on the paver at a minimum length of 24 feet to control the longitudinal profile when placing the initial lanes and all adjacent lanes of all layers, including resurfacing and asphalt in-lays, unless otherwise specified or approved. Page 6-54, Article 620-4, add the following pay item: Pay Item Pay Unit Asphalt Binder for Plant Mix, Grade PG 70-28 Ton Page 6-69, Table 660-1 Material Application Rates and Temperatures, add the following: | Type of Coat | Grade of Asphalt | Asphalt Rate gal/yd ² | Application
Temperature °F | Aggregate Size | Aggregate Rate
lb./sq. yd. Total | | |--------------|------------------|----------------------------------|-------------------------------|----------------|-------------------------------------|--| | Sand Seal | CRS-2 or CRS-2P | 0.22-0.30 | 150-175 | Blotting Sand | 12-15 | | Page 6-75, 660-9(B), add the following as sub-item (5) #### (5) Sand Seal Place the fully required amount of asphalt material in one application and immediately cover with the seal coat aggregate. Uniformly spread the fully required amount of aggregate in one application and correct all non-uniform areas prior to rolling. Immediately after the aggregate has been uniformly spread, perform rolling. When directed, broom excess aggregate material from the surface of the seal coat. When the sand seal is to be constructed for temporary sealing purposes only and will not be used by traffic, other grades of asphalt material meeting the requirements of Articles 1020-6 and 1020-7 may be used in lieu of the grade of asphalt required by Table 660-1 when approved. Page 10-41, Table 1012-1, add the following: | Mix | Course Aggregate | Fine Aggregate Angularity | Sand Equivalent | Flat & Elongated 5:1 Ratio | |---------|---------------------|---------------------------|-----------------|----------------------------| | Type | Angularity (b) ASTM | % Minimum AASHTO | % Minimum | % Maximum ASTM | | | D5821 | T304 Method A | AASHTO T176 | D4791 Section 8.4 | | S 9.5 D | 100/100 | 45 | 50 | 10 | Page 10-45, Replace Table 1012-2 with the following: # TABLE 1012-2 NEW SOURCE RAP GRADATION and BINDER TOLERANCES (Apply Tolerances to Mix Design Data) | Mix 0-20% RAP Type | | | | 21-25% RAP 26%+ RAP | | | P | | | |----------------------------------|------|--------|--------|---------------------|-------------|-------|------|--------|----------| | Sieve
(mm) | Base | Inter. | Surf. | Base | Inter. | Surf. | Base | Inter. | Surf. | | P _b , % 1 1/2" (37.5) | ±10 | ± 0.7% | -
- | ±7 | ± 0.4%
- | - | ±5 | ± 0.3% | - | | 3/4" (19.0) | ±10 | ±10 | _ | ±7 | ±7 | - | ±5 | ±5 | <u>-</u> | | 1/2"
(12.5) | _ | ±10 | ±6 | | ±7 | ±3 | | ±5 | ±2 | | 3/8"
(9.5) | - | | ±8 | | | ±5 | - | | ±4 | | No. 4
(4.75) | ±10 | - | ±10 | ±7 | - | ±7 | ±5 | - | ±5 | | No. 8 (2.36) | ±8 | ±8 | ±8 | ±5 | ±5 | ±5 | ±4 | ±4 | ±4 | | No.16
(1.18) | ±8 | ±8 | ±8 | ±5 | ±5 | ±5 | ±4 | ±4 | ±4 | | No. 30 (0.600) | ±8 | ±8 | ±8 | ±5 | ±5 | ±5 | ±4 | ±4 | ±4 | | No. 50 (0.300) | _ | | ±8 | - | - | ±5 | - | • | ±4 | | No. 200
(0.075) | ±4 | ±4 | ±4 | ±2 | ±2 | ±2 | ±1.5 | ±1.5 | ±1.5 | # **ASPHALT BINDER CONTENT OF ASPHALT PLANT MIXES:** SP6 R15 The approximate asphalt binder content of the asphalt concrete plant mixtures used on this project will be as follows: | Asphalt Concrete Base Course | Type B 25.0 | 4.3% | |--------------------------------------|--------------|------| | Asphalt Concrete Intermediate Course | Type I 19.0 | 4.7% | | Asphalt Concrete Surface Course | Type S 4.75A | 7.0% | | Asphalt Concrete Surface Course | Type SF 9.5A | 6.5% | | Asphalt Concrete Surface Course | Type S 9.5 | 6.0% | | Asphalt Concrete Surface Course | Type S 12.5 | 5.5% | The actual asphalt binder content will be established during construction by the Engineer within the limits established in the 2006 Standard Specifications. # **ASPHALT PLANT MIXTURES:** (7-1-95) SP6 R20 Place asphalt concrete base course material in trench sections with asphalt pavement spreaders made for the purpose or with other equipment approved by the Engineer. # PRICE ADJUSTMENT - ASPHALT BINDER FOR PLANT MIX: $\overline{(11-21-00)}$ SP6 R25 Price adjustments for asphalt binder for plant mix will be made in accordance with Section 620 of the 2006 Standard Specifications. The base price index for asphalt binder for plant mix is \$ 317.86 per ton. This base price index represents an average of F.O.B. selling prices of asphalt binder at supplier's terminals on **July 1, 2007**. #### **GUARDRAIL ANCHOR UNITS, TYPE 350:** $\overline{(4-20-04)}$ SP8 R65 #### **Description** Furnish and install guardrail anchor units in accordance with the details in the plans, the applicable requirements of Section 862 of the 2006 Standard Specifications, and at locations shown in the plans. #### **Materials** The Contractor may at his option, furnish any one of the guardrail anchor units. Guardrail anchor unit (ET-2000) as manufactured by: Trinity Industries, Inc. 2525 N. Stemmons Freeway Dallas, Texas 75207 Telephone: 800-644-7976 The guardrail anchor unit (SKT 350) as manufactured by: Road Systems, Inc. 3616 Old Howard County Airport Big Spring, Texas 79720 Telephone: 915-263-2435 Prior to installation the Contractor shall submit to the Engineer: - (A) FHWA acceptance letter for each guardrail anchor unit certifying it meets the requirements of NCHRP Report 350, Test Level 3, in accordance with Section 106-2 of the 2006 Standard Specifications. - (B) Certified working drawings and assembling instructions from the manufacturer for each guardrail anchor unit in accordance with Section 105-2 of the 2006 Standard Specifications. No modifications shall be made to the guardrail anchor unit without the express written permission from the manufacturer. Perform installation in accordance with the details in the plans, and details and assembling instructions furnished by the manufacturer. #### **Construction Methods** Guardrail end delineation is required on all approach and trailing end sections for both temporary and permanent installations. Guardrail end delineation consists of yellow reflective sheeting applied to the entire end section of the guardrail in accordance with Section 1088-3 of the 2006 Standard Specifications and is incidental to the cost of the guardrail anchor unit. #### **Measurement and Payment** Measurement and payment will be made in accordance with Articles 862-6 of the 2006 Standard Specifications. Payment will be made under: Pay Item Pay Unit Guardrail Anchor Units, Type 350 Each # **IMPACT ATTENUATOR UNITS, TYPE TL-2:** (4-11-07) SPI #### Description Furnish and install impact attenuator units and any components necessary to connect the impact attenuator units in accordance with the manufacturer's requirement, the details in the plans and at locations shown in the plans. #### Materials #### **NON-GATING IMPACT ATTENUATOR UNITS:** The impact attenuator unit (QUADGUARD) as manufactured by: Energy Absorption Systems, Inc. One East Wacker Drive Chicago, Illinois 60601-2076 Telephone: 312-467-6750 The impact attenuator unit (SHORT RACC) as manufactured by: Trinity Industries, Inc. 2525 N. Stemmons Freeway Dallas, Texas 75207 Telephone: 800-644-7976 Prior to installation the Contractor shall submit to the Engineer: - 1. FHWA acceptance letter for each impact attenuator unit certifying it meets the requirements of NCHRP Report 350, Test Level 2, in accordance with Section 106-2 of the *Standard Specifications*. - 2. Certified working drawings and assembling instructions from the manufacturer for each impact attenuator unit in accordance with Article 105-2 of the *Standard Specifications*. No modifications shall be made to the impact attenuator unit without the express written permission from the manufacturer. Perform installation in accordance with the details in the plans, and details and assembling instructions furnished by the manufacturer. #### **Measurement and Payment** Impact attenuator units will be measured and paid for at the contract unit price per each for *Impact Attenuator Unit, Type TL-2*. Such prices and payment will be full compensation for all work covered by this provision including but not limited to furnishing, installing and all incidentals necessary to complete the work. Payment will be made under: **Pay Item**Impact Attenuator Unit, Type TL-2 Pay Unit Each #### **AGGREGATE PRODUCTION:** (11-20-01) SP10 R05 Provide aggregate from a producer who uses the current Aggregate Quality Control/Quality Assurance Program that is in effect at the time of shipment. No price adjustment is allowed to contractors or producers who use the program. Participation in the program does not relieve the producer of the responsibility of complying with all requirements of the 2006 Standard Specifications. Copies of this procedure are available upon request from the Materials and Test Unit. # **CONCRETE BRICK AND BLOCK PRODUCTION:** (11-20-01) SP10 R10 Provide concrete brick and block from a producer who uses the current Solid Concrete Masonry Brick/Unit Quality Control/Quality Assurance Program that is in effect on the date that material is received on the project. No price adjustment is allowed to contractors or producers who use the program. Participation in the program does not relieve the producer of the responsibility of complying with all requirements of the 2006 Standard Specifications. Copies of this procedure are available upon request from the Materials and Test Unit. # **PORTLAND CEMENT CONCRETE (Alkali-Silica Reaction):** 2-20-07 SP10 R16 Revise the 2006 Standard Specifications as follows: Article 1024-1(A), replace the 2nd paragraph with the following: Certain combinations of cement and aggregate exhibit an adverse alkali-silica reaction. The alkalinity of any cement, expressed as sodium-oxide equivalent, shall not exceed 1.0 percent. For mix designs that contain non-reactive aggregates and cement with an alkali content less than 0.6%, straight cement or a combination of cement and fly ash, cement and ground granulated blast furnace slag or cement and microsilica may be used. The pozzolan quantity shall not exceed the amount shown in Table 1024-1. For mixes that contain cement with an alkali content between 0.6% and 1.0%, and for mixes that contain a reactive aggregate documented by the Department, regardless of the alkali content of the cement, use a pozzolan in the amount shown in Table 1024-1. Obtain the list of reactive aggregates documented by the Department at: http://www.ncdot.org/doh/operations/materials/pdf/quarryasrprob.pdf | Table 1024-1 Pozzolans for Use in Portland Cement Concrete | | | | | | |--|--|--|--|--|--| | Pozzolan Rate | | | | | | | Class F Fly Ash | 20% by weight of required cement content, with 1.2 lbs Class F fly ash per lb of cement replaced | | | | | | Ground Granulated Blast Furnace Slag | 35%-50% by weight of required cement content with 1 lb slag per lb of cement replaced | | | | | | Microsilica | 4%-8% by weight of required cement content, with 1 lb microsilica per lb of cement replaced | | | | | #### **GLASS BEADS:** (7-18-06) SP10 R35 Revise the 2006 Standard Specifications as follows: Page 10-223, 1087-4(C) Gradation & Roundness Replace the second sentence of the first paragraph with the following: All Drop-On and Intermixed Glass Beads shall be tested in accordance with ASTM D1155. Delete the last paragraph. # **ENGINEERING FABRICS TABLE 1056-1:** (7-18-06) SP10 R40 Revise the 2006 Standard Specifications as follows: Page 10-100, Table 1056-1, replace the values for Trapezoidal Tear Strength with the following: | Physical Property | ASTM
Test
Method | Type 1 | Type 2 | Type 3 Class Class | Type 4 | |---------------------------|------------------------|----------------|--------------|----------------------|-----------------------| | Typical Applications | | Shoulder Drain | Under Riprap | Temporary Silt Fence | Soil
Stabilization | | Trapezoidal Tear Strength | D4533 | <i>45</i> lb | <i>75</i> lb | | 75 lb | #### PAVEMENT MARKING LINES MEASUREMENT AND PAYMENT: (11-21-06) SP 12 R01 Revise the 2006 Standard Specifications as follows: Page 12-14, Subarticle 1205-10, delete the first sentence of the first paragraph and replace with the following: Pavement Marking Lines will be measured and paid for as the actual number of linear feet of pavement marking lines per application that has been satisfactorily placed and accepted by the Engineer.