# **Project Special Provisions Structure**

# **Table of Contents**

|                                            |              | Page |
|--------------------------------------------|--------------|------|
|                                            |              | #    |
| Adhesively Anchored Anchor Bolts or Dowels | s (10-12-01) | 1    |
| Epoxy Protective Coating (10-12-01)        | )            | 3    |
| Falsework and Formwork (10-12-01           | )            | 5    |
| Submittal of Working Drawings (6-7         | -05)         | 11   |
| Elastomeric Bearings (10-03-02)            |              | 17   |
| Prestressed Concrete Members (3-04-0       | 05)          | 17   |
| Prestressed Concrete Piles (8-13-04)       |              | 18   |
| Crane Safety (08-15-05)                    |              | 18   |
| Construction of Superstructure (SPECI      | AL)          | 19   |
| Construction of Substructure (SPECIA)      | L)           | 19   |
| Bearing Piles (SPECIAL)                    |              | 19   |
| Pile Driving Analyzer (SPECIAL)            |              | 25   |
| Embedded Data Collectors (SPECIA)          | L)           | 30   |



# PROJECT SPECIAL PROVISIONS STRUCTURES

PROJECT B-1381

SAMPSON COUNTY

# ADHESIVELY ANCHORED ANCHOR BOLTS OR DOWELS

(10-12-01)

#### 1.0 DESCRIPTION

The work covered by this Special Provision consists of furnishing all necessary labor, equipment, and materials and performing all operations necessary for installing anchor bolts/dowels in concrete using an adhesive bonding system in accordance with the details shown on the plans and with the requirements of this specification unless otherwise directed.

Submit a description of the proposed adhesive bonding system to the Engineer for review, comments and acceptance. Include in the description the bolt type and its deformations, equipment, manufacturer's recommended hole diameter, embedment depth, material specifications, and any other material, equipment or procedure not covered by the plans or these specifications. List the properties of the adhesive, including density, minimum and maximum temperature application, setting time, shelf life, pot life, shear strength and compressive strength. If bars/dowels containing a corrosion protective coating are required, provide an adhesive that does not contain any chemical elements that are detrimental to the coating and include a statement to this effect in the submittal.

# 2.0 MATERIALS

Use an adhesive bonding system that has been tested for a tensile strength of 125% of the specified anchor bolt/dowel yield load. Provide certification that, for the particular bolt grade, diameter and embedment depth required, the anchor system will not fail by adhesive failure and that the anchor bolt/dowel will not move. The minimum concrete compressive strength is 3000 psi (20.7 MPa) for certification and anchorage selection.

Package components of the adhesive so that one whole container of each component mixes to form one batch of adhesive. Use containers designed so that all of the contents may be removed easily and sealed tightly to prevent leakage. Furnish adhesive material requiring hand mixing in two separate containers designated as Component A and Component B. Provide a self contained cartridge or capsule consisting of two components which are automatically mixed as they are dispensed, as in the case of a cartridge, or drilled into, as in the case of a capsule.

Clearly label each container with the manufacturer's name, date of manufacture, batch number, batch expiration date, direction for use, and warnings and precautions concerning the contents as required by State or Federal Laws and Regulations.

# 3.0 PROCEDURE

# A. Drilling of Holes into Concrete

When directed, use a jig or fixture to ensure the holes are positioned and aligned correctly during the drilling process. Upon approval, adjusting hole locations to avoid reinforcing steel is permitted.

Drill the holes with a pneumatic drill unless another drilling method is approved. Follow the manufacturer's recommendations regarding the diameter of the drilled hole.

Immediately after completion of drilling, blow all dust and debris out of the holes with oil-free compressed air using a wand extending to the bottom of the hole. Remove all dust from the sides of the holes by brushing the holes with a stiff-bristled brush of a sufficient size and then blow the hole free of dust. Repeat this procedure until the hole is completely clean. Check each hole with a depth gauge to ensure proper embedment depth.

Repair spalled or otherwise damaged concrete using approved methods.

# B. Inspection of Holes

Inspect each hole immediately prior to placing the adhesive and the anchor bolts/dowels. Ensure all holes are dry and free of dust, dirt, oil, and grease. Rework any hole that does not meet the requirements of this Special Provision.

# C. Mixing of Adhesive

Mix the adhesive in strict conformance with the manufacturer's instructions.

#### D. Embedment of Anchor Bolt/Dowel

Clean each anchor bolt/dowel so that it is free of all rust, grease, oil, and other contaminants.

Unless otherwise shown on the plans, the minimum anchor bolt/dowel embedment depth is such that the adhesive develops at least 125% of the anchor bolt/dowel yield load as determined by the manufacturer.

Insert the anchor bolt/dowel the specified depth into the hole and slightly agitate it to ensure wetting and complete encapsulation. After insertion of the anchor bolt/dowel, strike off any excessive adhesive flush with the concrete face. Should the adhesive fail to fill the hole, add additional adhesive to the hole to allow a flush strike-off.

Do not disturb the anchor bolts/dowels while adhesive is hardening.

#### 4.0 FIELD TESTING

When specified on the plans, test the installed anchor bolts/dowels for adequate adhesive as specified below. Inform the Engineer when the tests will be performed at least 2 days prior to testing. Conduct the tests in the presence of the Engineer.

Use a calibrated hydraulic centerhole jack system for testing. Place the jack on a plate washer that has a hole at least 1/8 inch (3 mm) larger than the hole drilled into the concrete. Position the plate washer on center to allow an unobstructed pull. Position the anchor bolts/dowels and the jack on the same axis. Have an approved testing agency calibrate the jack within 6 months prior to testing. Supply the Engineer with a certificate of calibration.

In the presence of the Engineer, field test 10% of the first 50 anchor bolts/dowels prior to installing any additional anchors. For testing, apply and hold briefly 90% of the anchor bolt/dowel yield load shown on the plans. No visible signs of movement of the anchor bolts/dowels is permitted under this load. Upon receiving satisfactory results from these tests, install the remaining anchors. Test a minimum of 2% of the remaining anchors as previously described.

Record data for each anchor bolt/dowel tested on the report form entitled "Installation Test Report of Adhesively Anchored Anchor Bolts or Dowels". Obtain this form from the North Carolina Department of Transportation Materials and Tests Engineer. Submit a copy of the completed report forms to the Engineer.

Final acceptance of the adhesively anchored system is based on the conformance of the pull test to the requirements of this specification. Failure to meet the criteria of this specification is grounds for rejection.

# 5.0 BASIS OF PAYMENT

No separate measurement or payment will be made for furnishing, installing, and testing anchor bolts/dowels.

Payment at the contract unit prices for the various pay items will be full compensation for all materials, equipment, tools, labor, and incidentals necessary to complete the above work.

# **EPOXY PROTECTIVE COATING**

(10-12-01)

# 1.0 DESCRIPTION

This work consists of preparing the concrete surface and furnishing and applying an epoxy protective coating to the surfaces described in this Special Provision. When epoxy protective coating is required, cure the top surfaces of the bent or end bent caps in accordance with the Standard Specifications, but do not use the Membrane Curing Compound method.

# 2.0 MATERIALS

Use an epoxy coating that meets the most recently published NCDOT Specification on the date of advertisement. Use the epoxy coating that meets NCDOT-Type 4A Flexible, epoxy coating, moisture insensitive.

Provide a certification for the proposed epoxy showing that it meets NCDOT-Type 4A.

The following companies have epoxies that meet Type 4A Specifications:

- E-Bond Epoxy, Inc. Fort Lauderdale, Florida 33307
- Permagile Industries Plainview, NY 11803
- Poly-Carb Cleveland, OH 44139
- Tamms, Inc. Mentor, OH 44060
- Adhesive Engineering Cleveland, OH 44122-5554
- Kaufman Products
   Baltimore, MD 21226-1131
- Prime Resins Lithonia, GA 30058
- Sika Corporation Lyndhurst, N. J. 07071

A copy of the specifications for Epoxy Resin Systems is available from the Materials and Tests Unit.

# 3.0 SURFACES

With the exception of cored slab bridges, apply the epoxy protective coating to the top surface area, including chamfer area, of bent caps under expansion joints and of end bent caps, excluding areas under elastomeric bearings. For cored slab bridges, do not apply the epoxy protective coating to the bent or end bent caps. Also, apply epoxy protective coating to the ends of prestressed concrete members as noted on the plans.

Use extreme care to keep the area under the elastomeric bearings free of the epoxy protective coating. Do not apply the epoxy protective coating in the notch at the ends of the prestressed concrete girders.

Thoroughly clean all dust, dirt, grease, oil, laitance, and other objectionable material from the concrete surfaces to be coated. Air-blast all surfaces immediately prior to applying the protective coating.

Only use cleaning agents pre-approved by the Engineer.

#### 4.0 APPLICATION

Apply epoxy protective coating only when the air temperature is at least 40°F (4°C) and rising, but less than 95°F (35°C) and the surface temperature of the area to be coated is at least 40°F (4°C). Remove any excess or free standing water from the surfaces before applying the coating. Apply one coat of epoxy protective coating at a rate such that it covers between 100 and 200 ft<sup>2</sup>/gal (2.5 and 5 m<sup>2</sup>/liter).

Note: Under certain combinations of circumstances, the cured epoxy protective coating may develop "oily" condition on the surface due to amine blush. This condition is not detrimental to the applied system.

Apply the coating so that the entire designated surface of the concrete is covered and all pores filled. To provide a uniform appearance, use the exact same material on all visible surfaces.

#### 5.0 BASIS OF PAYMENT

No separate measurement or payment will be made for preparing, furnishing and applying the epoxy protective coating to the concrete surfaces.

Payment at the contract unit prices for the various pay items will be full compensation for the above work including all materials, equipment, tools, labor, and incidentals necessary to complete the work.

# **FALSEWORK AND FORMWORK**

(10-12-01)

#### 1.0 DESCRIPTION

Use this Special Provision as a guide to develop temporary works submittals required by the Standard Specifications or other provisions; no additional submittals are required herein. Such temporary works include, but are not limited to, falsework and formwork.

Falsework is any temporary construction used to support the permanent structure until it becomes self-supporting. Formwork is the temporary structure or mold used to retain plastic or fluid concrete in its designated shape until it hardens. Access scaffolding is a temporary structure that functions as a work platform that supports construction personnel, materials, and tools, but is not intended to support the structure. Scaffolding systems that are used to temporarily support permanent structures (as opposed to functioning as work platforms) are considered to be falsework under the definitions given. Shoring is a

component of falsework such as horizontal, vertical, or inclined support members. Where the term "temporary works" is used, it includes all of the temporary facilities used in bridge construction that do not become part of the permanent structure.

Design and construct safe and adequate temporary works that will support all loads imposed and provide the necessary rigidity to achieve the lines and grades shown on the plans in the final structure.

#### 2.0 MATERIALS

Select materials suitable for temporary works; however, select materials that also ensure the safety and quality required by the design assumptions. The Engineer has authority to reject material on the basis of its condition, inappropriate use, safety, or nonconformance with the plans. Clearly identify allowable loads or stresses for all materials or manufactured devices on the plans. Revise the plan and notify the Engineer if any change to materials or material strengths is required.

# 3.0 DESIGN REQUIREMENTS

# A. Working Drawings

Provide working drawings for items as specified in the contract, or as required by the Engineer, with design calculations and supporting data in sufficient detail to permit a structural and safety review of the proposed design of the temporary work.

When concrete placement is involved, include data such as the drawings of proposed sequence, rate of placement, direction of placement, and location of all construction joints. Submit the number of copies as called for by the contract.

When required, have the drawings and calculations prepared under the guidance of, and sealed by, a North Carolina Registered Professional Engineer who is knowledgeable in temporary works design.

6

Design falsework and formwork requiring submittals in accordance with the 1995 AASHTO Guide Design Specifications for Bridge Temporary Works except as noted herein.

# 1. Wind Loads

Table 2.2 of Article 2.2.5.1 is modified to include wind velocities up to 110 mph (177 km/hr). In addition, Table 2.2A is included to provide the maximum wind speeds by county in North Carolina.

**Table 2.2 - Wind Pressure Values** 

| Height Zone              | Pressure, lb/ft² (kPa) for Indicated Wind Velocity, mph (km/hr) |         |         |         |         |
|--------------------------|-----------------------------------------------------------------|---------|---------|---------|---------|
| feet (m) above ground    | 70                                                              | 80      | 90      | 100     | 110     |
|                          | (112.7)                                                         | (128.7) | (144.8) | (160.9) | (177.0) |
| 0 to 30 (0 to 9.1)       | 15                                                              | 20      | 25      | 30      | 35      |
|                          | (0.72)                                                          | (0.96)  | (1.20)  | (1.44)  | (1.68)  |
| 30 to 50 (9.1 to 15.2)   | 20                                                              | 25      | 30      | 35      | 40      |
|                          | (0.96)                                                          | (1.20)  | (1.44)  | (1.68)  | (1.92)  |
| 50 to 100 (15.2 to 30.5) | 25                                                              | 30      | 35      | 40      | 45      |
|                          | (1.20)                                                          | (1.44)  | (1.68)  | (1.92)  | (2.15)  |
| over 100 (30.5)          | 30                                                              | 35      | 40      | 45      | 50      |
|                          | (1.44)                                                          | (1.68)  | (1.92)  | (2.15)  | (2.39)  |

# 2. Time of Removal

The following requirements replace those of Article 3.4.8.2.

Do not remove forms until the concrete has attained strengths required in Article 420-17 of the Standard Specifications and these Special Provisions.

Do not remove forms until the concrete has sufficient strength to prevent damage to the surface.

Table 2.2A - Steady State Maximum Wind Speeds by Counties in North Carolina

| COUNTY     | 25 YR<br>(mph)<br>(km/hr) | COUNTY      | 25 YR<br>(mph)<br>(km/hr) | COUNTY       | 25 YR<br>(mph)<br>(km/hr) |
|------------|---------------------------|-------------|---------------------------|--------------|---------------------------|
| Alamance   | 70 (112.7)                | Franklin    | 70 (112.7)                | Pamlico      | 100 (160.9)               |
| Alexander  | 70 (112.7)                | Gaston      | 70 (112.7)                | Pasquotank   | 100 (160.9)               |
| Alleghany  | 70 (112.7)                | Gates       | 90 (144.8)                | Pender       | 100 (160.9)               |
| Anson      | 70 (112.7)                | Graham      | 80 (128.7)                | Perquimans   | 100 (160.9)               |
| Ashe       | 70 (112.7)                | Granville   | 70 (112.7)                | Person       | 70 (112.7)                |
| Avery      | 70 (112.7)                | Greene      | 80 (128.7)                | Pitt         | 90 (144.8)                |
| Beaufort   | 100 (160.9)               | Guilford    | 70 (112.7)                | Polk         | 80 (128.7)                |
| Bertie     | 90 (144.8)                | Halifax     | 80 (128.7)                | Randolph     | 70 (112.7)                |
| Bladen     | 90 (144.8)                | Harnett     | 70 (112.7)                | Richmond     | 70 (112.7)                |
| Brunswick  | 100 (160.9)               | Haywood     | 80 (128.7)                | Robeson      | 80 (128.7)                |
| Buncombe   | 80 (128.7)                | Henderson   | 80 (128.7)                | Rockingham   | 70 (112.7)                |
| Burke      | 70 (112.7)                | Hertford    | 90 (144.8)                | Rowan        | 70 (112.7)                |
| Cabarrus   | 70 (112.7)                | Hoke        | 70 (112.7)                | Rutherford   | 70 (112.7)                |
| Caldwell   | 70 (112.7)                | Hyde        | 110 (177.0)               | Sampson      | 90 (144.8)                |
| Camden     | 100 (160.9)               | Iredell     | 70 (112.7)                | Scotland     | 70 (112.7)                |
| Carteret   | 110 (177.0)               | Jackson     | 80 (128.7)                | Stanley      | 70 (112.7)                |
| Caswell    | 70 (112.7)                | Johnston    | 80 (128.7)                | Stokes       | 70 (112.7)                |
| Catawba    | 70 (112.7)                | Jones       | 100 (160.9)               | Surry        | 70 (112.7)                |
| Cherokee   | 80 (128.7)                | Lee         | 70 (112.7)                | Swain        | 80 (128.7)                |
| Chatham    | 70 (112.7)                | Lenoir      | 90 (144.8)                | Transylvania | 80 (128.7)                |
| Chowan     | 90 (144.8)                | Lincoln     | 70 (112.7)                | Tyrell       | 100 (160.9)               |
| Clay       | 80 (128.7)                | Macon       | 80 (128.7)                | Union        | 70 (112.7)                |
| Cleveland  | 70 (112.7)                | Madison     | 80 (128.7)                | Vance        | 70 (112.7)                |
| Columbus   | 90 (144.8)                | Martin      | 90 (144.8)                | Wake         | 70 (112.7)                |
| Craven     | 100 (160.9)               | McDowell    | 70 (112.7)                | Warren       | 70 (112.7)                |
| Cumberland | 80 (128.7)                | Mecklenburg | 70 (112.7)                | Washington   | 100 (160.9)               |
| Currituck  | 100 (160.9)               | Mitchell    | 70 (112.7)                | Watauga      | 70 (112.7)                |
| Dare       | 110 (177.0)               | Montgomery  | 70(112.7)                 | Wayne        | 80 (128.7)                |
| Davidson   | 70 (112.7)                | Moore       | 70 (112.7)                | Wilkes       | 70 (112.7)                |
| Davie      | 70 (112.7)                | Nash        | 80 (128.7)                | Wilson       | 80 (128.7)                |
| Duplin     | 90 (144.8)                | New Hanover | 100 (160.9)               | Yadkin       | 70 (112.7)                |
| Durham     | 70 (112.7)                | Northampton | 80 (128.7)                | Yancey       | 70 (112.7)                |
| Edgecombe  | 80 (128.7)                | Onslow      | 100 (160.9)               |              |                           |
| Forsyth    | 70 (112.7)                | Orange      | 70 (112.7)                |              |                           |

Note on the working drawings any anchorages, connectors, inserts, steel sleeves or other such devices used as part of the falsework or formwork that remains in the permanent structure. If the plan notes indicate that the structure contains the necessary corrosion protection required for a Corrosive Site, epoxy coat, galvanize, metallize or otherwise protect these devices as directed by the Engineer. Any coating required by the Engineer will be considered incidental to the various pay items requiring temporary works.

# B. Review and Approval

The Engineer is responsible for the review and approval of temporary works' drawings.

Submit the working drawings sufficiently in advance of proposed use to allow for their review, revision (if needed), and approval without delay to the work.

Do not start construction of any temporary work for which working drawings are required until the drawings have been approved. Such approval does not relieve the Contractor of the responsibility for the accuracy and adequacy of the working drawings.

The time period for review of the working drawings does not begin until complete drawings and design calculations, when required, are received by the Engineer.

On the drawings, show all information necessary to allow the design of any component to be checked independently as determined by the Engineer.

If requested by the Engineer, submit with the working drawings manufacturer's catalog data listing the weight of all construction equipment that will be supported on the temporary work. Show anticipated total settlements and/or deflections of falsework and forms on the working drawings. Include falsework footing settlements, joint takeup, and deflection of beams or girders. Design the falsework and forms supporting deck slabs and overhangs on girder bridges so that there will be no differential settlement between the girders and the deck forms during placement of deck concrete.

# 4.0 CONSTRUCTION REQUIREMENTS

All requirements of Section 420 of the Standard Specifications apply.

Construct temporary works in conformance with the approved working drawings. Ensure that the quality of materials and workmanship employed is consistent with that assumed in the design of the temporary works. Do not weld falsework members to any portion of the permanent structure unless approved. Show any welding to the permanent structure on the approved construction drawings.

Provide tell-tales attached to the forms and extending to the ground, or other means, for accurate measurement of falsework settlement. Make sure that the anticipated compressive settlement and/or deflection of falsework does not exceed 1 inch (25 mm). For cast-in-place concrete structures, make sure that the calculated deflection of falsework

B-1381 104

flexural members does not exceed 1/240 of their span regardless of whether or not the deflection is compensated by camber strips.

# A. Maintenance and Inspection

Inspect and maintain the temporary work in an acceptable condition throughout the period of its use. Certify that the manufactured devices have been maintained in a condition to allow them to safely carry their rated loads. Clearly mark each piece so that its capacity can be readily determined at the job site.

Perform an in-depth inspection of an applicable portion(s) of the temporary works, in the presence of the Engineer, not more than 24 hours prior to the beginning of each concrete placement. Inspect other temporary works at least once a month to ensure that they are functioning properly. Have a North Carolina Registered Professional Engineer inspect the cofferdams, shoring, sheathing, support of excavation structures, and support systems for load tests prior to loading.

#### B. Foundations

Determine the safe bearing capacity of the foundation material on which the supports for temporary works rest. If required by the Engineer, conduct load tests to verify proposed bearing capacity values that are marginal or in other high-risk situations.

The use of the foundation support values shown on the contract plans of the permanent structure is permitted if the foundations are on the same level and on the same soil as those of the permanent structure.

Allow for adequate site drainage or soil protection to prevent soil saturation and washout of the soil supporting the temporary works supports.

If piles are used, the estimation of capacities and later confirmation during construction using standard procedures based on the driving characteristics of the pile is permitted. If preferred, use load tests to confirm the estimated capacities; or, if required by the Engineer conduct load tests to verify bearing capacity values that are marginal or in other high risk situations.

The Engineer reviews and approves the proposed pile and soil bearing capacities.

#### 5.0 REMOVAL

Unless otherwise permitted, remove and keep all temporary works upon completion of the work. Do not disturb or otherwise damage the finished work.

Remove temporary works in conformance with the contract documents. Remove them in such a manner as to permit the structure to uniformly and gradually take the stresses due to its own weight.

#### 6.0 METHOD OF MEASUREMENT

Unless otherwise specified, temporary works will not be directly measured.

#### 7.0 BASIS OF PAYMENT

Payment at the contract unit prices for the various pay items requiring temporary works will be full compensation for the above falsework and formwork.

# SUBMITTAL OF WORKING DRAWINGS

(6-7-05)

# 1.0 GENERAL

Submit working drawings in accordance with Article 105-2 of the Standard Specifications and the requirements of this Special Provision. The list of submittals contained herein does not represent a list of required submittals for this project. Submittals are only necessary for those items as required by the Standard Specifications, other Special Provisions, or contract plans. Make submittals that are not specifically noted in this Special Provision directly to the Resident Engineer.

If submittals contain variations from plan details or specifications, significantly affect project cost, or significantly affect field construction or operations, discuss them with, and submit them through, the Resident Engineer. State the reason for the proposed variation in the submittals. To minimize overall review time, make sure all working drawing submittals are complete when first submitted. Provide a contact name and phone number with each submittal. Direct any questions regarding working drawing submittal requirements to the Resident Engineer, Structure Design Unit contacts or the Geotechnical Engineering Unit contacts noted below.

In order to facilitate in-plant inspection by NCDOT and approval of working drawings, the Contractor shall provide the name, address, and telephone number of the facility where fabrication will actually be done, if different than shown on the title block of the submitted working drawings. This includes, but is not limited to, precast concrete items, prestressed concrete items, and fabricated steel or aluminum items.

# 2.0 WORKING DRAWINGS SUBMITTAL CONTACTS

All submittals noted herein are reviewed by the Structure Design Unit and/or the Geotechnical Engineering Unit.

For submittals to the Structure Design Unit, use the following addresses:

Via US mail:

Mr. G. R. Perfetti, P. E. State Bridge Design Engineer North Carolina Department of Transportation

of Transportation Structure Design Unit 1581 Mail Service Center Raleigh, NC 27699-1581

Attention: Mr. P. D. Lambert, P. E.

Via other delivery service:

Mr. G. R. Perfetti, P. E.

State Bridge Design Engineer North Carolina Department

of Transportation
Structure Design Unit
1000 Birch Ridge Drive
Raleigh, NC 27610

Attention: Mr. P. D. Lambert, P. E.

For submittals to the Geotechnical Engineering Unit, use the following addresses:

For projects in Divisions 1-7, use the following Eastern Regional Office address:

Via US mail:

Mr. K. J. Kim, Ph. D., P. E.

Eastern Regional Geotechnical

Manager

North Carolina Department

of Transportation

Geotechnical Engineering Unit

Eastern Regional Office

1570 Mail Service Center

Raleigh, NC 27699-1570

Via other delivery service:

Mr. K. J. Kim, Ph. D., P. E.

Eastern Regional Geotechnical

Manager

North Carolina Department

of Transportation

Geotechnical Engineering Unit

Eastern Regional Office

3301 Jones Sausage Road, Suite 100

Garner, NC 27529

For projects in Divisions 8-14, use the following Western Regional Office address:

Via US mail:

Mr. John Pilipchuk, L. G., P. E.

Western Regional Geotechnical

Manager

North Carolina Department

of Transportation

Geotechnical Engineering Unit

Western Regional Office 5253 Z Max Boulevard

Harrisburg, NC 28075

Via other delivery service:

Mr. John Pilipchuk, L. G., P. E.

Western Region Geotechnical

Manager

North Carolina Department

of Transportation

Geotechnical Engineering Unit

Western Regional Office

5253 Z Max Boulevard

Harrisburg, NC 28075

B-1381 107

Direct any questions concerning submittal review status, review comments, or drawing markups to the following contacts:

Primary Structures Contact:

Paul Lambert

(919) 250 - 4041

(919) 250 – 4082 facsimile plambert@dot.state.nc.us

**Secondary Structures Contacts:** 

James Gaither

(919) 250 - 4042

Man-Pan Hui

(919) 250 - 4044

Eastern Regional Geotechnical Contact (Divisions 1-7):

K. J. Kim

(919) 662 - 4710

(919) 662 – 3095 facsimile kkim@dot.state.nc.us

Western Regional Geotechnical Contact (Divisions 8-14):

John Pilipchuk (704) 455 – 8902

(704) 455 – 8912 facsimile jpilipchuk@dot.state.nc.us

# 3.0 SUBMITTAL COPIES

The quantities provided in this Special Provision act as a guide in the submittal process.

Unless otherwise required by the contract, submit two sets of supporting calculations to the Structure Design Unit.

Furnish one complete copy of the submittal, including all attachments, to the Resident Engineer. If requested, provide additional copies of any submittal. At the same time, submit the following number of copies directly to the Structure Design Unit and/or the Geotechnical Engineering Unit:

| Working Drawing<br>Submittal                                  | Copies<br>Required by<br>Structure<br>Design Unit | Copies Required by Geotechnical Engineering Unit | Contract Reference<br>Requiring Submittal <sup>1</sup> |
|---------------------------------------------------------------|---------------------------------------------------|--------------------------------------------------|--------------------------------------------------------|
| Arch Culvert Falsework                                        | 5                                                 | 0                                                | Plan Note & SN Sheet                                   |
| Box Culvert Falsework <sup>2</sup>                            | 5                                                 | 0                                                | Plan Note & SN Sheet                                   |
| Cofferdams <sup>4</sup>                                       | 6                                                 | 1                                                | Articles 410-5 and 420-8                               |
| Expansion Joint Seals (hold down plate type with base angle)  | 9                                                 | 0                                                | "Expansion Joint Seals"                                |
| Expansion Joint Seals (modular)                               | 2, then 9                                         | 0                                                | "Modular Expansion Joint<br>Seals"                     |
| Expansion Joint Seals (strip seals)                           | 9                                                 | 0                                                | "Strip Seals"                                          |
| Falsework & Forms (superstructure)                            | 8                                                 | 0                                                | Article 420-3                                          |
| Falsework & Forms <sup>2</sup> (substructure)                 | 8                                                 | 0                                                | Article 420-3                                          |
| Mechanically Stabilized<br>Earth Retaining Walls <sup>4</sup> | 7                                                 | 1                                                | "MSE Retaining Walls"                                  |
| Metal Bridge Railing                                          | 8                                                 | 0                                                | Plan Note                                              |
| Metal Stay-in-Place Forms                                     | 8                                                 | 0                                                | Article 420-3                                          |
| Metalwork for Elastomeric Bearings <sup>5,6</sup>             | 7                                                 | 0                                                | Article 1072-10                                        |
| Miscellaneous Metalwork <sup>5,6</sup>                        | 7                                                 | 0                                                | Article 1072-10                                        |
| Overhead Sign Assemblies                                      | 13                                                | 0                                                | Article 903-3(C)                                       |
| Pile Points                                                   | 7                                                 | 1                                                | Article 450-8(D) & "Steel Pile Points"                 |
| Placement of Equipment on Structures (cranes, etc.)           | 7                                                 | 0                                                | Article 420-20                                         |

B-1381 109

| Precast Concrete Box Culverts                                                    | 2, then<br>1 reproducible | 0 | "(Optional) Precast Reinforced Concrete Box Culvert at Station"                           |
|----------------------------------------------------------------------------------|---------------------------|---|-------------------------------------------------------------------------------------------|
| Precast Retaining Wall Panels                                                    | 10                        | 0 | Article 1077-2                                                                            |
| Pot bearings <sup>5</sup>                                                        | 8                         | 0 | "Pot Bearings"                                                                            |
| Prestressed Concrete Deck<br>Panels                                              | 6 and<br>1 reproducible   | 0 | Article 420-3                                                                             |
| Proprietary retaining walls <sup>4</sup>                                         | 9                         | 0 | Applicable Project Special Provision                                                      |
| Prestressed Concrete Girder<br>(strand elongation and<br>detensioning sequences) | 6                         | 0 | Articles 1078-8 and 1078-<br>11                                                           |
| Prestressed Concrete Cored Slab (detensioning sequences) <sup>3</sup>            | 6                         | 0 | Article 1078-11                                                                           |
| Revised Bridge Deck Plans<br>(adaptation to metal<br>stay-in-place forms)        | 2, then<br>1 reproducible | 0 | Article 420-3                                                                             |
| Revised Bridge Deck Plans<br>(adaptation to modular<br>expansion joint seals)    | 2, then<br>1 reproducible | 0 | "Modular Expansion Joint<br>Seals"                                                        |
| Soil Nail Retaining Walls <sup>4</sup>                                           | 4                         | 1 | Applicable Project Special Provision                                                      |
| Sound Barrier Wall Steel<br>Fabrication Plans <sup>6</sup>                       | 7                         | 0 | Article 1072-10 & "Sound Barrier Wall"                                                    |
| Sound Barrier Wall Casting<br>Plans                                              | 10                        | 0 | Article 1077-2 & "Sound Barrier Wall"                                                     |
| Structural Steel <sup>5</sup>                                                    | 2, then 7                 | 0 | Article 1072-10                                                                           |
| TFE Expansion Bearings <sup>5</sup>                                              | 8                         | 0 | Article 1072-10                                                                           |
| Temporary Detour Structures <sup>4</sup>                                         | 10                        | 1 | Article 400-3 & "Construction, Maintenance and Removal of Temporary Structure at Station" |
| Temporary Shoring <sup>4</sup>                                                   | 6                         | 1 | Article 410-4 & "Temporary Shoring for Maintenance of Traffic"                            |

|                                               | <i>f</i> |   |                                      |
|-----------------------------------------------|----------|---|--------------------------------------|
| Temporary Fabric or Wire Walls 8              | 0        | 2 | Applicable Project Special Provision |
| Permanent Anchored Tieback<br>Retaining Walls | 4        | 1 | Applicable Project Special Provision |
| Evazote Joint Seals <sup>7</sup>              | 9        | 0 | Applicable Project Special Provision |
| Optional Disc Bearings 5                      | 8        | 0 | "Optional Disc Bearings"             |
| Removal of Existing Structure over Railroad   | 5        | 0 | Railroad Special Provisions          |
| Drilled Pier Construction Sequence Plans 8    | 0        | 1 | "Drilled Piers"                      |
| Pile Hammers <sup>8</sup>                     | 0        | 1 | Article 450-6                        |
| Crosshole Sonic Logging (CSL) Reports 8       | 0        | 1 | "Crosshole Sonic Logging"            |
| Pile Driving Analyzer (PDA) Reports 8         | 0        | 1 | "Pile Driving Analyzer"              |

#### **FOOTNOTES**

B-1381

- 1. References are provided to help locate the part of the contract where the working drawing submittals are required. References in quotes refer to the Project Special Provision by that name. Articles refer to the Standard Specifications.
- 2. Submittals for these items are necessary only when plan notes require them.
- 3. Submittals for these items may not be required. A list of pre-approved sequences is available from the producer or the Materials and Tests Unit.
- 4. These submittals are reviewed by the Structure Design Unit and the Geotechnical Engineering Unit. If NCDOT Shoring Standards are used, working drawings need not be submitted, but the Shoring Selection Form should be forwarded to the Geotechnical Engineering Unit.
- 5. The fabricator may submit these items directly to the Structure Design Unit.
- 6. The two sets of preliminary submittals required by Article 1072-10 of the Standard Specifications are not required for these items.
- 7. Submittals for Fabrication Drawings are not required. Submission of Catalogue Cuts of Proposed Material is required. See Section 5.A of the Project Special Provision.
- 8. Submittals for these items are reviewed by the Geotechnical Engineering Unit only and correspondence regarding these items should be directed to and will come from the Geotechnical Engineering Unit.

# **ELASTOMERIC BEARINGS**

(10-03-02)

Use elastomeric bearings in accordance with Article 1079-2 of the Standard Specifications except as follows:

TABLE 1079-2 NATURAL RUBBER ELASTOMER REQUIREMENTS

| Grade (durometer)   | 50    | 60    |
|---------------------|-------|-------|
| PHYSICAL PROPERTIES | 50 +5 | 60 +5 |
| Hardness ASTM D2240 | -5    | -5    |

# PRESTRESSED CONCRETE MEMBERS

3-04-05

In Section 1078-12 of the Standard Specifications. After the first sentence of "5," place the following:

"Conduit may be rigid one-piece or rigid two-piece (split sheathed). Do not use flexible conduit."

In Section 1078-13 of the Standard Specifications, after the fourth paragraph add the following paragraph:

"When handling the prestressed concrete members, a temporary stress of  $5\sqrt{f_{ci}}$  is permitted, where  $f_{ci}$  is the strength of concrete at release, in psi."

In Section 1078-5 of the Standard Specifications, place the following two sentences after the first paragraph:

"When casting holes through the top flange of Bulb Tee Girders for overhang or interior bay falsework hanger rods use rigid PVC conduits with a wall thickness of approximately 1/8 inch. Do not use thin wall material. Secure conduits in the forms so that they do not migrate out of the proper location. Other methods of forming holes may be proposed but are subject to the Engineer's approval."

"When casting dowel rod holes in cored slab or box beam members use material that creates round, vertical holes of the specified diameter and in the correct location. Do not use material that deforms, collapses or shifts position during casting of the member."

# PRESTRESSED CONCRETE PILES

(8-13-04)

In Section 450–11, "Basis of Payment" of the Standard Specifications. When the plans indicate the Engineer is determining the length of piles revise "(B) Cutting off Piles" as follows:

Change the sentence in the second paragraph to read:

"...payment for cutting off each pile will be made at an amount equal to the contract unit price per linear foot (per 0.3 meter) for furnishing and driving the pile which has been cut off."

CRANE SAFETY (8-15-05)

Comply with the manufacturer specifications and limitations applicable to the operation of any and all cranes and derricks. Prime contractors, sub-contractors, and fully operated rental companies shall comply with the current Occupational Safety and Health Administration regulations (OSHA).

Submit all items listed below to the Engineer prior to beginning crane operations involving critical lifts. A critical lift is defined as any lift that exceeds 75 percent of the manufacturer's crane chart capacity for the radius at which the load will be lifted or requires the use of more than one crane. Changes in personnel or equipment must be reported to the Engineer and all applicable items listed below must be updated and submitted prior to continuing with crane operations.

#### CRANE SAFETY SUBMITTAL LIST

- A. <u>Competent Person:</u> Provide the name and qualifications of the "Competent Person" responsible for crane safety and lifting operations. The named competent person will have the responsibility and authority to stop any work activity due to safety concerns.
- B. <u>Riggers:</u> Provide the qualifications and experience of the persons responsible for rigging operations. Qualifications and experience should include, but not be limited to, weight calculations, center of gravity determinations, selection and inspection of sling and rigging equipment, and safe rigging practices.
- C. <u>Crane Inspections:</u> Inspection records for all cranes shall be current and readily accessible for review upon request.
- D. <u>Certifications</u>: By July 1, 2006, crane operators performing critical lifts shall be certified by NC CCO (National Commission for the Certification of Crane Operators), or satisfactorily complete the Carolinas AGC's Professional Crane Operator's Proficiency Program. Other approved nationally accredited programs will be considered upon request. All crane operators shall also have a current CDL medical card. Submit a list of anticipated critical lifts and corresponding crane operator(s). Include current certification for the type of crane operated (small hydraulic, large hydraulic, small lattice, large lattice) and medical evaluations for each operator.

# **CONSTRUCTION OF SUPERSTRUCTURE**

(SPECIAL)

Furnish and erect prestressed concrete cored slabs and elastomeric bearings. Construct all parapets and metal rails on the bridge.

Complete all work in accordance with the contract plans and the Standard Specifications except payment for these items will be as described below.

No measurement will be made for these items. The price and payment below will be full compensation for all items required to complete the work described above.

Payment will be made under:

Construction of Superstructure.....Lump Sum

# **CONSTRUCTION OF SUBSTRUCTURE**

(SPECIAL)

Furnish and place all reinforcing steel and concrete necessary to construct all end bents and bents. Exclude all piles, PDA Testing, PDA Assistance, Pile Plates, and Pile Redriving from the pay item.

Complete all work in accordance with the contract plans and the Standard Specifications except payment for these items will be as described below.

No measurement will be made for these items. The price and payment below will be full compensation for all items required to complete the work described above.

Payment will be made under:

Construction of Substructure.....Lump Sum

# **BEARING PILES**

(SPECIAL)

Please note - All references to Section 450 refer to this document: Bearing Piles Special Provision (November 20, 2006). All other references refer to the Standard Specification for Roads and Structures (January 2002) North Carolina Department of Transportation, Raleigh.

# 450-1 DESCRIPTION.

Furnish and drive bearing piles as shown on the plans and as directed by the Engineer to the required bearing and penetration. Furnish, weld, and attach pipe pile plates and splicers; provide collars, hardware, concrete, reinforcing steel, and all other materials; furnish all equipment; preauger through embankments; install piles vertically or on a batter; galvanize, cut off, splice, place concrete and reinforcing steel; construct pile trestles; furnish and place temporary bracing;

# B-1381 114

remove any obstructions; and abandon, remove, replace, and restrike or redrive piles as necessary.

#### 450-2 MATERIALS.

Refer to Division 10 of the Standard Specification for Roads and Structures (January 2002):

| Prestressed concrete piles, steel pipe piles | Section | 1084 |
|----------------------------------------------|---------|------|
| Portland cement concrete                     | Section | 1000 |

#### 450-3 PREPARATION FOR DRIVING.

If applicable, completely excavate for the cap and/or footing before installing piles. If applicable and unless noted otherwise on the plans, construct the embankment to the bottom of cap or footing elevation for a horizontal distance of 15 m (50 ft) from any pile except where fill slopes are within 15 m (50 feet) of a pile. If preaugering through an embankment is necessary before driving prestressed concrete piles, submit the preaugering and pile installation methods with the proposed pile driving methods and equipment for approval.

#### 450-4 DETERMINATION OF PILE LENGTH.

The estimated total pile lengths per structure shown on the plans are for bid purposes only. Determine pile lengths and furnish piling of sufficient length to obtain the required bearing and penetration and the required embedment into the cap or footing as shown on the plans. As an option and at no cost to the Department, make investigations as necessary to determine the required pile lengths.

# 450-5 DRIVING EQUIPMENT.

Submit the proposed pile driving methods and equipment including the pile driving hammer, hammer cushion, pile helmet and cushion (if any). Do not submit more than two pile driving hammers per pile type per submittal. Submit this information for approval at least 20 working days before driving piles. All equipment is subject to satisfactory field performance.

Drive bearing piles with approved driving equipment using steam, air, or diesel hammers. Use pile driving hammers with an energy that will not overstress the piles during driving and provide the required driving resistance ranging from 36 to 96 blows per 300 mm (one foot), unless approved otherwise by the Engineer. Use a variable energy hammer to drive prestressed concrete piles.

Operate steam, air, or diesel hammers at the length of stroke and number of blows per minute required by the Engineer. Operate air and steam hammers within 10% of the manufacturer's rated speed in blows per minute or the rate approved by the Engineer.

20

Provide plant and equipment for air or steam hammers with sufficient capacity to maintain, under working conditions, the volume and pressure specified by the manufacturer. Equip the plant and equipment with accurate pressure gauges that are easily accessible. Use striking parts of air and steam hammers which weigh at least 1/3 the weight of the pile helmet and pile, with a minimum weight of 1,250 kg (2,750 pounds).

Equip open-end (single acting) diesel hammers with a graduated scale (jump stick) extending above the ram cylinder, graduated rings or grooves on the ram, or an electric sound activated remote measuring instrument to allow the Engineer to visually determine hammer stroke at all times during pile driving operations.

Equip closed-end (double acting) diesel hammers with a calibrated bounce chamber pressure gauge, in good working order, mounted near ground level and easily read by the Engineer. Also, provide a current calibrated chart or graph equating bounce chamber pressure and gauge hose length to equivalent energy for the closed-end diesel hammer used. Submit this chart or graph with the proposed pile driving methods and equipment required above.

Protect and hold pile heads in position with an approved pile helmet. Make sure that the pile helmet closely fits the top of the pile and extends down the sides of the pile a sufficient distance to hold the pile in position. Protect the heads of concrete piles from direct impact with an approved pile cushion.

#### 450-6 ACCURACY OF DRIVING.

Drive piles so that the axial alignment is within 20 mm per meter (¼ inch per foot) from the vertical or batter shown on the plans. Horizontally, keep the pile within 75 mm (3 inches) of the plan location longitudinally and transversely. Maintain pile embedment in the cap or footing to within 75 mm (3 inches) more or 50 mm (2 inches) less than that shown on the plans. No additional payment is made for increased cap or footing dimensions necessary due to piles driven out of position.

# 450-7 CONSTRUCTION REQUIREMENTS.

# (A) General:

Unless otherwise approved or directed by the Engineer, do not drive piles within 15 m (50 feet) of cast-in-place concrete until the concrete attains an age of at least 3 curing days. When approved by the Engineer, the Contractor may use vibratory hammers to install the initial portions of steel piles. The Engineer will approve the depth of pile installation with the vibratory hammer. Do not use vibratory hammers to install prestressed concrete piles.

The Engineer will inspect the capblock before beginning each pile driving project and periodically throughout the duration of the project, depending on driving conditions, as determined by the Engineer. Expose the hammer cushion for inspection as directed by the Engineer. Replace or repair any hammer cushion that is less than 25% of the original thickness.

Do not exceed the allowable pile driving stresses during the entire driving time. Allowable pile driving stresses are defined in the AASHTO Standard Specifications for Highway Bridges. Drive piles to the required tip elevation or penetration into natural ground, whichever is lower, in a continuous operation unless stopped due to exceeding the maximum blow count or allowable pile driving stresses, insufficient pile length, or other reasons approved by the Engineer. Once the required embedment is achieved, the Engineer may require the Contractor to stop driving and wait before restriking to allow for soil setup.

Use a pile cushion made of pine plywood with a 100 mm (4 inch) minimum thickness for driving prestressed concrete piles. When using a pile cushion, provide a new cushion for each pile unless approved otherwise by the Engineer. Replace the pile cushion if, during the driving of any pile, the cushion is either compressed more than one-half the original thickness or begins to burn.

Redrive any pile raised or moved laterally by the driving of adjacent piles.

# (B) Prestressed Concrete Piles:

Handle, transport, and store prestressed concrete piles by methods that do not damage the pile and support the piles at the pick-up points shown on the plans or along their full length. Replace piles damaged in handling or driving unless they are repaired to an acceptable condition.

When driving or cutting off piles below the elevation shown on the plans, build up the pile section to the plan elevation as shown on the plans unless otherwise directed by the Engineer.

Cut off piles not driven to grade perpendicular to the axis of the pile by means that do not result in spalling or other damage to the pile.

# (C) Steel Piles:

Handle and store steel piles by methods that do not damage the pile. Store the piles above ground upon platforms, blocks, or other supports and keep the piles free from dirt, grease, and other foreign matter, and protect insofar as is practicable from corrosion. Do not damage coatings on steel piles. Protect coatings when driving piles through templates in an approved manner.

When shown on the plans, galvanize steel piles in accordance with Section 1076. Prepare the pile surface and provide materials in accordance with the applicable portions of this section.

Furnish plates for pipe piles when shown on the plans or as directed by the Engineer. Weld plates to the bottom of pipe piles as shown on the plans. Use pipe pile plates with a thickness as shown on the plans and that meet the requirements of ASTM A709, Grade 50.

22

Cut off piles at the required elevations along a plane normal to the axis of the pile. Use approved methods for cutting off piles.

Use welded butt splices for steel piles as shown on the plans. Weld in accordance with the requirements of Article 1072-20 of the Standard Specification for Roads and Structures (January 2002). Do not use more than 3 pieces (2 splices) of steel pile in making up one full length pile.

# (D) Redriving Piles:

Once the required pile embedment has been achieved, the Contractor may choose to or the Engineer may require restriking or redriving piles. If the Contractor chooses to stop driving and then restrike or redrive piles, no payment will be made for restrikes or redrives. If the Engineer requires the Contractor to stop driving and then restrike or redrive piles, payment will be made in accordance with Section 450-10. When the Engineer requires restrikes or redrives, the Engineer will determine the time to wait after stopping driving and the number of restrikes or redrives. However, the maximum number of restrikes or redrives per pile during any 48 hour period will not exceed three. The minimum time separation between restrikes or redrives required by the Engineer is 4 hours.

Use the same approved pile driving methods, equipment and compressed pile cushion from the previous drive to restrike or redrive the pile unless the cushion is unacceptable due to deterioration, in which case use another acceptable cushion. Do not use a cold diesel hammer for a restrike or redrive, unless in the opinion of the Engineer, it is impractical to do otherwise. In general, warm up the hammer by applying at least twenty (20) blows to a previously driven pile or timber mats on the ground.

# 450-8 PENETRATION AND WAVE EQUATION.

When no tip elevation is shown on the plans, drive piles to the required bearing capacity and a penetration of at least 3 m (10 feet) into natural ground unless otherwise directed by the Engineer. When a tip elevation is shown on the plans, drive piles to the required bearing capacity and the specified tip elevation. When noted on the plans, drive piles to additional capacity to account for downdrag or negative skin friction and scour.

Natural ground within an area of new embankment is defined as the bottom of the embankment or bottom of footing on piles, whichever is lower.

The Engineer will use the wave equation analysis to evaluate the suitability of the proposed pile driving methods and equipment to evaluate pile driving stresses and estimate the driving resistance at the required bearing capacity. The required driving resistance, in blows per meter (foot) or any equivalent set, is based upon the bearing capacity shown on the plans with a minimum factor of safety of 2 plus any additional capacity to account for downdrag or negative skin friction and scour, when applicable. The Engineer will provide the required driving resistance based upon the wave equation analysis and pile driving analyzer results, if applicable, using the approved pile driving methods and equipment.

Stop driving piles when practical refusal is reached, unless otherwise directed by the Engineer. Practical refusal is defined as 180 blows per 300 mm (one foot) or any equivalent set.

# 450-9 METHOD OF MEASUREMENT.

The quantity of piles to be paid for will be the actual number of linear meters (linear feet) of piles or galvanized piles incorporated into the completed and accepted structure. This quantity is measured as the length of pile before driving minus any pile cut-offs. No payment will be made for pile cut-offs or cutting off piles. However, once the required bearing and penetration has been achieved, the Contractor may drive the remaining portion of a pile to grade in lieu of cutting off the pile provided the remaining portion does not exceed 1.5 m (5 feet) and the pile can be driven without damaging the pile or reaching the maximum blow count or practical refusal. When this occurs, the additional length of pile driven will be measured as described above.

The quantity of pipe pile plates to be paid for will be the actual number of plates incorporated into the completed and accepted structure.

The quantity of pile redrives to be paid for will be the actual number of restrikes or redrives required by the Engineer. No payment will be made for restrikes or redrives when the Contractor chooses to restrike or redrive piles.

No payment will be made for any defective or rejected piles or any piles driven for falsework, bracing, or temporary work bridges.

#### 450-10 BASIS OF PAYMENT.

The prices and payments below will be full compensation for all items required to provide bearing piles including but not limited to those items contained in Section 450-1.

The quantity of piles, measured as provided in Section 450-9, will be paid for at the contract unit prices per linear meter for "305 mm Prestressed Concrete Piles", or "PP 610 X 12.7 Steel Piles".

The quantity of pipe pile plates, measured as provided in Section 450-9, will be paid for at the contract unit price per each for "Pipe Pile Plates".

The quantity of pile redrives, measured as provided in Section 450-9, will be paid for at the contract unit price per each for "Pile Redrives".

# Payment will be made under:

| 305 mm Prestressed Concrete Piles | Linear Meter |
|-----------------------------------|--------------|
| PP 610 X 12.7 Steel Piles         | Linear Meter |
| Pipe Pile Plates                  |              |
| Pile Redrives                     |              |

# PILE DRIVING ANALYZER

(SPECIAL)

#### 1.0 GENERAL

This special provision governs driving piles with a pile dynamic analyzer (PDA) in accordance with the plans and as directed by the Engineer. The PDA test method is described in ASTM D4945, "Standard Test Method for High-Strain Dynamic Testing of Piles". Install piles in accordance with the Bearing Pile Special Provision (November 20, 2006) and this provision.

Submit the proposed pile driving methods and equipment (Pile Driving Equipment Data Form) in accordance with the Submittal of Working Drawings Special Provision and the Standard Specifications. The Engineer will respond with preliminary approval or rejection of the proposed pile driving methods and equipment within 10 calendar days. Preliminary approval is required before driving piles with a PDA. Notify the Engineer of the pile driving schedule a minimum of 14 calendar days in advance.

Either a PDA Consultant or the NCDOT Geotechnical Engineering Unit, as directed by the Engineer, shall perform PDA testing and analysis. If required, retain a PDA Consultant and submit experience documentation with the proposed pile driving methods and equipment.

The Engineer will determine the number of piles and which piles to be tested with the PDA based upon the subsurface conditions and the pile installation sequence and progress.

The Engineer will complete the review of the proposed pile driving methods and equipment and provide the required driving resistance within 10 calendar days after the Engineer receives the PDA report or the Geotechnical Engineering Unit completes the PDA testing. A PDA report for PDA testing on multiple piles may be required as directed by the Engineer before the 10 day time period begins.

# 2.0 Prequalification and Experience Requirements

Use a PDA Consultant prequalified by the Contractual Services Unit of the Department for Pile Driving Analyzer work (work code 3060).

Submit documentation that the PDA Consultant has successfully completed at least 5 PDA testing projects within the last 3 years of a scope and complexity similar to that anticipated for this project. Documentation should include the General Contractor and Owner's name

and current contact information with descriptions of each past project. Also, submit documentation of experience with PDA manufactured by Pile Dynamics, Inc and the Case Pile Wave Analysis Program (CAPWAP).

Provide a list of PDA Operators and the Project Engineer that will be assigned to this project. Submit documentation for each PDA Operator verifying employment with the PDA Consultant and a minimum of 1 year experience in collecting PDA data with past projects of scope and complexity similar to that anticipated for this project. Submit documentation for the Project Engineer verifying employment with the PDA Consultant, registration as professional engineer in North Carolina and a minimum of 5 years experience in PDA testing and analysis with past projects of scope and complexity similar to that anticipated for this project. Documentation should include resumes, references, certifications, project lists, experience descriptions and details, etc.

#### 3.0 Preparation for PDA Testing

Provide piles for PDA testing that are 1.5 m (5 ft) longer, or as directed by the Engineer, than the estimated pile lengths shown on the plans. Supply 110 V, 60 Hz, 30 Amp of AC electrical power to operate the PDA equipment. Direct current welders or non-constant power sources are unacceptable.

Provide a suitable shelter to protect the PDA equipment and operator from conditions of sun, water, wind and temperature. The shelter should have a minimum floor size of 2 m x 2 m (6 ft x 6 ft) and a minimum roof height of 2.5 m (8 ft). If necessary, heat or cool the shelter to maintain a temperature between 10 and 30 degrees C (50 and 85 degrees F). Place the shelter within 23 m (75 ft) of the pile such that the PDA cables reach the computer and the operator can clearly observe the pile. The Engineer may waive the shelter requirement if weather conditions allow.

Drill up to a total of 16 bolt holes in either 2 or 4 sides of the pile, as directed by the PDA Consultant or the Engineer, at an approximate distance equal to 3 times the pile diameter below the head of the pile. If the PDA Consultant or the Engineer choose to drill the bolt holes, provide the necessary equipment, tools and assistance to do so. A hammer drill is required for concrete piles and up to 2 hours may be required to drill the holes.

Lift, align and rotate the pile to be tested with the PDA as directed by the PDA Consultant or the Engineer. Place the pile in the leads and template so that the PDA instruments and their accompanying wires will not be damaged.

The PDA Consultant or the Engineer will furnish the PDA measuring instruments and materials for installing the instruments. Attach the PDA instruments as directed by the PDA Consultant or the Engineer after the pile is placed in the leads and the template.

#### 4.0 PDA TESTING

Use only the preliminarily approved pile driving methods and equipment to drive piles with the PDA instruments attached. Drive the pile as directed by the PDA Operator or the Engineer in order to measure the wavespeed of the pile.

Drive the pile to the required bearing capacity and specified tip elevation, if applicable, as shown on the plans or as directed by the PDA Consultant or the Engineer. During pile driving, the PDA will be used to evaluate, including but not limited to, the following: hammer performance, bearing capacity, distribution of soil resistance, pile driving stresses, energy transfer, pile integrity and various soil parameters such as quake and damping.

The PDA Operator or the Engineer may require the Contractor to modify the pile installation procedure during driving as follows:

- Reduce the hammer energy
- Drive deeper or shallower because of variations in the subsurface conditions
- Readjust the transducers
- Realign the pile

The Contractor is responsible in terms of both actual expense and time delays for any damage to the PDA instruments and supporting equipment due to the Contractor's fault or negligence. Replace any damaged equipment at no additional cost to the Department.

#### 5.0 REDRIVING PILES

When directed by the Engineer, reattach the PDA instruments and restrike or redrive the pile in accordance with Section 4.0 above and Subarticle 450-7(D) of the Bearing Pile Special Provision (November 20, 2006). Obtain the required stroke and penetration (at least 150 mm or 6 in) or as directed by the PDA Operator or the Engineer. The PDA Operator or the Engineer will record dynamic measurements during restriking and redriving. The Engineer may require restriking and redriving more than once on the same pile. The Engineer will determine when PDA testing has been satisfactorily completed.

# 6.0 CAPWAP ANALYSIS AND PDA REPORT

The PDA Consultant shall perform analysis of the PDA raw data with the CAPWAP (version 2006 or later). At a minimum, analysis is required for a hammer blow near the end of initial drive and for each restrike and redrive. Additional CAPWAP analysis may be required as determined by the PDA Consultant or the Engineer.

Submit three hard copies and an electronic copy (pdf or jpeg format on CD or DVD) of a PDA report sealed by the Project Engineer within 7 calendar days after field testing is complete. The PDA report shall include but not be limited to the following:

#### A. Title Sheet

- NCDOT TIP number and WBS element number
- Project description
- County

- Bridge station number
- Pile location
- Personnel
- Report date
- B. Introduction
- C. Site and Subsurface Conditions (including water table elevation)
- D. Pile Details
  - Pile type and length
  - Required bearing capacity and factor of safety
  - Concrete compressive strength and/or steel pile yield strength
  - Pile splice type and locations
  - Pile batter
  - Installation methods including use of jetting, preaugering, spudding, vibratory hammer, template, barge, etc.

# E. Driving Details

- Hammer make, model and type
- Hammer and pile cushion type and thickness
- Pile helmet weight
- Hammer efficiency and operation data including fuel settings, bounce chamber pressure, blows per minute, equipment volume and pressure
- Ground or mud line elevation and template reference elevation at the time of driving
- Final pile tip elevation
- Driving resistance (ram stroke, blows per foot (0.3 meter) and set for last 10 hammer blows)
- Restrike and redrive information
- F. PDA field work details
- G. CAPWAP analysis results
  - Table showing percent skin and tip, skin and toe damping, skin and toe quake and match quality

# H. Summary/Conclusions

#### I. Attachments

- Boring log(s)
- Pile Driving Equipment Data Form (from Contractor)
- Field pile driving inspection data (from Engineer)
- Accelerometer and strain gauge locations
- Accelerometer and strain gauge serial numbers and calibration information
- PDA hardware model and CAPWAP software version information
- Electronic copy of all PDA raw data and executable CAPWAP input and output files (version 2006 format)

#### 7.0 MEASUREMENT AND PAYMENT

The complete and accepted PDA testing will be paid for at the unit bid price for "PDA Testing" per each. Include in the unit bid price for "PDA Testing" all costs for providing the PDA, PDA instruments and materials for installing the instruments and recording the dynamic measurements the first time the pile is tested with the PDA. Costs for providing these items for the same pile after the pile is initially tested with the PDA will be considered incidental to the unit bid price for "Pile Redrives". Also include in the unit bid price for "PDA Testing" all costs for performing the CAPWAP analysis on data collected during initial drive, restrikes and redrives and preparing and submitting the PDA report. No payment for "PDA Testing" will be made if the PDA report submitted is incomplete as described in Section 6.0. No payment for "PDA Testing" will be made if the Department performs PDA testing. If the Department does not perform PDA testing, the number of "PDA Testing" per pile will be equal to one.

The complete and accepted PDA assistance will be paid for at the unit bid price for "PDA Assistance" per each. Include in the unit bid price for "PDA Assistance" all costs for PDA preparation and support including all materials, labor, tools, equipment, mobilization and incidentals necessary to complete the work described in this provision excluding the costs for the PDA testing described above. Costs for PDA preparation and support for restrikes and redrives will not be paid for separately. The number of "PDA Assistance" per pile will be equal to one for each pile tested with the PDA.

The cost of the pile and the installation including driving, restriking and redriving will be paid for separately in accordance with the Standard Specifications and will not be part of these PDA pay items.

# **EMBEDDED DATA COLLECTORS**

(SPECIAL)

#### 1.0 GENERAL

This special provision governs the use of embedded data collectors (EDC) in accordance with the plans and as directed by the Engineer. EDC consist of strain gauges and accelerometers embedded in prestressed concrete piles to measure force and acceleration. For more information about EDC, contact the following:

Smart Structures, Inc. 324 2<sup>nd</sup> Street Pike, Unit #13 Southampton, PA 18966 (866) 640-2993 www.smart-structures-inc.com

EDC are required for the same prestressed concrete piles tested with the pile driving analyzer (PDA). The Department will retain the following EDC Consultant to perform the EDC testing and analysis.

Applied Foundation Testing, PLLC

201 Shannon Oaks Circle, Suite 200 Cary, NC 27511 (919) 654-7381 www.testpile.com

Do not use the EDC Consultant shown above for the PDA Consultant on the prestressed concrete piles.

#### 2.0 NOTIFICATIONS

The EDC Consultant will provide and install the EDC during pile fabrication. Notify the Engineer of the pile fabrication schedule a minimum of 14 calendar days in advance. The EDC Consultant will record dynamic measurements during initial drive, restrikes and redrives. Notify the Engineer of the pile driving schedule in accordance with the Pile Driving Analyzer Special Provision.

# 3.0 MEASUREMENT AND PAYMENT

There will be no payment for the EDC. The Department will contract with the EDC Consultant directly to provide the EDC and associated installation, recording, analysis and reporting.

The cost of the PDA will be paid for separately in accordance with the Pile Driving Analyzer Special Provision (November 20, 2006). The cost of the pile and the installation including driving, restriking and redriving will be paid for separately in accordance with the Standard Specifications.