
Project Special Provisions Structure

Table of Contents

		Page
		#
Thermal Sprayed Coatings (Metallization) at Station 13+67.5	0 -L- (SPECIAL)	1
Evazote Joint Seals (8-13-04)		5
Elastomeric Concrete (10-12-01)		10
Falsework and Formwork (7-18-06)		11
Submittal of Working Drawings (11-17-06)		17
Crane Safety (8-15-05)		24
Pile Excavation (7-18-06)		24
Shipping Steel Structural Members (7-18-06)		27
Grout for Structures (7-18-06)		28
High Strength Bolts (11-17-06)		30
Micropiles (SPECIAL)	•	30

PROJECT SPECIAL PROVISIONS STRUCTURES

PROJECT B-4013 ASHE COUNTY

THERMAL SPRAYED COATINGS (METALLIZATION) @ STA. 13+67.50 -L-

(SPECIAL)

1.0 DESCRIPTION

Apply a thermal sprayed coating (TSC) and sealer to metal surfaces as specified herein when called for on the plans or by other Special Provisions, or when otherwise approved by the Engineer in accordance with the SSPC-CS 23.00/AWS C2.23/NACE No. 12 Specification. Only Arc Sprayed application methods are used to apply TSC coatings, the Engineer must approve other methods of application.

2.0 QUALIFICATIONS

Only use NCDOT approved TSC Contractors meeting the following requirements:

- 1. Who have the capability of blast cleaning steel surfaces to SSPC SP-5 and SP-10 Finishes.
- 2. Who employ a Spray Operator(s) qualified in accordance with AWS C.16/C2.16M2002 and a Quality Control Inspector(s) who have documented training in the applicable test procedures of ASTM D-3276 and SSPC-CS 23.00.

A summary of the contractor's related work experience and the documents verifying each Spray Operator's and Quality Control Inspector's qualifications are submitted to the Engineer before any work is performed.

3.0 MATERIALS

Provide wire in accordance with the metallizing equipment manufacturer's recommendations. Use the wire alloy specified on the plans which meets the requirements in Annex C of the SSPC-CS 23.00 Specification. Have the contractor provide a certified analysis (NCDOT Type 2 Certification) for each lot of wire material.

Apply an approved sealer to all metallized surfaces in accordance with Section 9 of SSPC-CS 23. The sealer must either meet SSPC Paint 27 or is an alternate approved by the Engineer.

4.0 SURFACE PREPARATION AND TSC APPLICATION

Grind flame cut edges to remove the carbonized surface prior to blasting. Bevel all flame cut edges in accordance with Article 442-10(D) regardless of included angle. Blast clean surfaces to be metallized with grit or mineral abrasive in accordance with Steel Structures Painting Council SSPC SP-5/10(as specified) to impart an angular surface profile of 2.5 - 4.0 mils (0.063 - 0.100 mm). Surface preparation hold times are in accordance with Section 7.32 of SSPC-CS 23. If flash rusting occurs prior to metallizing, blast clean the metal surface again. Apply the thermal sprayed coating only when the surface temperature of the steel is at least 5°F (3°C) above the dew point.

At the beginning of each work period or shift, conduct bend tests in accordance with Section 6.5 of SSPC-CS 23.00. Any disbonding or delamination of the coating that exposes the substrate requires corrective action, additional testing, and the Engineer's approval before resuming the metallizing process.

Apply TSC with the alloy to the thickness specified on the plans or as provided in the table below. All spot results (the average of 3 to 5 readings) must meet the minimum requirement. No additional tolerance (as allowed by SSPC PA-2) is permitted. (For Steel Beams: For pieces with less than 200 ft² (18.6m²) measure 2 spots/surface per piece and for pieces greater than 200 ft² (18.6m²) add 1 additional spots/surface for each 500 ft² (46.5m²)).

Application	Thickness	Alloy	Seal Coat
Pot Bearings	8 mil	85/15 Zinc (W-Zn-Al-2)	0.5 mil
Armored Joint Angles	8 mil	85/15 Zinc (W-Zn-Al-2)	0.5 mil
Modular Joints	8 mil	99.99% Zn (W-Zn-1)	0.5 mil
Expansion Joint Seals	8 mil	99.99% Zn (W-Zn-1)	0.5 mil
Optional Disc Bearings	8 mil	85/15 Zinc (W-Zn-Al-2)	0.5 mil

When noted on the plans or as specified in the above chart, apply the sealer to all metallized surfaces in accordance with the manufacturer's recommendations and these provisions. Apply the seal coat only when the air temperature is above 40°F (4°C) and the surface temperature of the steel is at least 5°F (3°C) above the dew point. If the sealer is not applied within eight hours after the final application of TSC, the applicator verifies acceptable TSC surfaces and obtains approval from the Engineer before applying the sealer.

5.0 Inspection Frequency

The TSC Contractor must conduct the following tests at the specified frequency and the results documented in a format approved by the Engineer.

Test/Standard	Location	Frequency	Specification
Ambient Conditions	Site	Each Process	5°F (3°C) above the dew point
Abrasive Properties	Site	Each Day	Size, angularity, cleanliness
Surface Cleanliness SSPC Vis 1	All Surfaces	Visual All Surfaces	SSPC-SP-10 Atmospheric Service SSPC-SP - 5 Immersion Service
Surface Profile ASTM D-4417 Method C	Random Surfaces	3 per 500 ft ²	2.5 - 4.0 mils
Bend Test SSPC-CS 23.00	Site	5 per shift	Pass Visual
Thickness SSPC PA-2R SSPC-CS 23.00	Each Surface	Use the method in PA-2 Appendix 3 for Girders and Appendix 4 for frames and miscellaneous steel. See Note 1.	Zn - 8 mils minimum Al - 8 mils minimum Zn Al - 8 mils minimum Areas with more than twice the minimum thickness are inspected for compliance to the adhesion and cut testing requirements of this specification.
Adhesion ASTM 4541	Random Surfaces Splice Areas	1 set of 3 per 500 ft ²	Zn > 500 psi Al > 1000 psi Zn Al > 750 psi
Cut Test - SSPC-CS 23.00	Random Surfaces	3 sets of 3 per 500 ft ²	No peeling or delamination
Job Reference Std. SSPC-CS 23.00	Site	1 per job	Meets all the above requirements

6.0 REPAIRS

All Repairs are to be performed in accordance with the procedures below, depending on whether the repair surface is hidden or exposed. As an exception to the following, field welded splices on joint angles and field welding bearing plates to girders may be repaired in accordance with the procedures for hidden surfaces.

For hidden surfaces (including but not limited to interior girders, interior faces of exterior girders, and below-grade sections of piles):

- 1. Welding of metallized surfaces may be performed only if specifically permitted by the Engineer. Remove metallizing at the location of field welds by blast cleaning (SSPC SP-6 finish), or hand (SSPC SP-2 finish) or power tool cleaning (SSPC SP-3 finish) just prior to welding. Clean sufficiently to prevent contamination of the weld. All repairs to welded connections are metallized in accordance with SSPC CS 23.00.
- 2. Minor areas less than or equal to 0.1 ft² (9300mm²) exposing the substrate are metallized in accordance with SSPC CS 23.00 or painted in accordance with ASTM A780, "Repair of Damaged and Uncoated Areas of Hot Dip Galvanized Coatings."
- 3. Large areas greater than 0.1 ft² (9300mm²) exposing the substrate are metallized in accordance with SSPC CS 23.00.
- 4. Damaged (burnished) areas not exposing the substrate with less than the specified coating thickness are metallized in accordance with SSPC CS 23.00 or painted in accordance with ASTM A780, "Repair of Damaged and Uncoated Areas of Hot Dip Galvanized Coatings."
- 5. Damaged (burnished) areas not exposing the substrate with more than the specified coating thickness are not repaired.
- 6. Defective coating is repaired by either method 2 or 3 depending on the area of the defect.

For Exposed Surfaces (including but not limited to exterior faces of exterior girders and above-grade sections of piles):

- 1. Welding of metallized surfaces may be performed only if specifically permitted by the Engineer. Remove metallization at the location of field welds by blast cleaning (SSPC SP-6 finish), or hand (SSPC SP-2 finish) or power tool cleaning (SSPC SP-3 finish) just prior to welding. Clean sufficiently to prevent contamination of the weld. All repairs to welded connections are metallized in accordance with SSPC CS 23.00.
- 2. All areas exposing the substrate are metallized in accordance with SSPC CS 23.00
- 3. Defective coating is repaired by either method 2 or 3 depending on the area of the defect.

7.0 TWELVE MONTH OBSERVATION PERIOD

The contractor maintains responsibility for the coating system for a twelve (12) month observation period beginning upon the satisfactory completion of all the work required in the plans or as directed by the engineer. The contractor must guarantee the coating system under the payment and performance bond (refer to article 109-10). To successfully complete the observation period, the coating system must meet the following requirements after twelve(12) months service:

- No visible rust, contamination or application defect is observed in any coated area.
- Painted surfaces have a uniform color and gloss.
- Surfaces have an adhesion of no less than 500 psi (3.45 MPa) when tested in accordance with ASTM D-4541.

8.0 BASIS OF PAYMENT

Payment will be made at the lump sum price bid for "Thermal Sprayed Coatings (Metallization) at Station _____.". Such lump sum price will be full compensation for all materials, equipment, tools, labor, and incidentals necessary to complete the work.

EVAZOTE JOINT SEALS

(8-13-04)

1.0 SEALS

Use preformed seals compatible with concrete and resistant to abrasion, oxidation, oils, gasoline, salt and other materials that are spilled on or applied to the surface. Use a low-density closed cell, cross-linked ethylene vinyl acetate polyethylene copolymer nitrogen blown material for the seal.

Use seals manufactured with grooves 1/8" (3 mm) ± wide by 1/8" (3 mm) ± deep and spaced between 1/4 (6 mm) and 1/2 inch (13 mm) apart along the bond surface running the length of the joint. Use seals sized so that the depth of the seal meets the manufacturer's recommendation, but is not less than 70% of the uncompressed width. Provide a seal designed so that, when compressed, the center portion of the top does not extend upward above the original height of the seal by more than 1/4 inch (6 mm). Splice the seal using the heat welding method by placing the joint material ends against a teflon heating iron of 350°F (177°C) for 7 - 10 seconds, then pressing the ends together tightly. Do not test the welding until the material has completely cooled. Use material that resists weathering and ultraviolet rays. Provide a seal that has a working range of 30% tension and 60% compression and is watertight along its entire length including the ends.

Provide seals that meet the requirements given below.

TEST	TEST METHOD	REQUIREMENT
Elongation at break	ASTM D3575	210 ± 15%
Tensile strength, psi (kPa)	ASTM D3575	$110 \pm 15 \ (755 \pm 100)$
Compression Recovery (% of original width)	AASHTO T42 50% compr. for 22 hr. @ 73°F (23°C) 1/2 hr. recovery	87 ± 3
Weather/Deterioration	AASHTO T42 Accelerated Weathering	No deterioration for 10 years min.
Compression/Deflection	@ 50% deflection of original width	10 psi (69 kPa) min.
	@ 50% deflection of original width	60 psi (414 kPa) max.
Tear Strength, psi (kPa)	ASTM D624	$16 \pm 3 \ (110 \pm 20)$
Density	ASTM D545	2.8 to 3.4
Water Absorption (% vol/vol)	ASTM D3575 Total immersion for 3 months	3

Have the top of the evazote seal clearly shop marked. Inspect the evazote seals upon receipt to ensure that the marks are clearly visible upon installation.

2.0 ADHESIVES

Use a two component, 100% solid, modified epoxy adhesive with the seal that meets the requirements of ASTM C881, Type 1, Grade 3, Class B & C and has the following physical properties:

Tensile strength	3500 psi (24.1 MPa) min.
Compressive strength	
Shore D Hardness	
Water Absorption	0.25% by weight

Use an adhesive that is workable to 40°F (4°C). When installing in temperatures below 40°F (4°C) or for application on moist, difficult to dry concrete surfaces, use an adhesive specified by the manufacturer of the joint material.

3.0 SAWING THE JOINTS

When the plans call for sawing the joints, the joints shall be initially formed to a width as shown on the plans including the blockout for the elastomeric concrete. Complete placement of the elastomeric concrete after the reinforced concrete deck slab has cured for seven full days and reached a minimum strength of 3000 psi (20.7 Mpa).

Cure the elastomeric concrete for a minimum of 2 days prior to sawing the elastomeric concrete to the final width and depth as specified in the plans.

When sawing the joint to receive the evazote seal, always use a rigid guide to control the saw in the desired direction. To control the saw and to produce a straight line as indicated on the plans, anchor and positively connect a template or a track to the bridge deck. Do not saw the joint by visual means such as a chalk line. Fill the holes used for holding the template or track to the deck with an approved, flowable non-shrink, non-metallic grout.

Saw cut to the desired width and depth in one or two passes of the saw by placing and spacing two metal blades on the saw shaft to the desired width for compression seals.

The desired depth is the depth of the seal plus 1/4 inch (6 mm) above the top of the seal plus approximately 1 inch (25 mm) below the bottom of the seal. An irregular bottom of sawed joint is permitted as indicated on the plans. Grind exposed corners on saw cut edges to a 1/4" (6 mm) chamfer.

Remove any staining or deposited material resulting from sawing with a wet blade to the satisfaction of the Engineer.

Use extreme care to saw the joint straight to the desired width and to prevent any chipping or damage to sawed edges of the joint.

4.0 PREPARATIONS FOR SAWED JOINTS

When the plans call for sawing the joint, the Engineer thoroughly inspects the sawed joint opening for spalls, popouts, cracks, etc. Make all necessary repairs prior to blast cleaning and installing the seal.

Immediately before sealing, clean the joints by sandblasting with clean dry sand. Sandblast to provide a firm, clean joint surface free of curing compound, loose material and any foreign matter. Sandblast without causing pitting or uneven surfaces. The aggregate in the elastomeric concrete may be exposed after sandblasting.

After blasting, either brush the surface with clean brushes made of hair, bristle or fiber, blow the surface with compressed air, or vacuum the surface until all traces of blast products and abrasives are removed from the surface, pockets, and corners.

If nozzle blasting, use compressed air that does not contain detrimental amounts of water or oil.

Examine the blast cleaned surface and remove any traces of oil, grease or smudge deposited in the cleaning operations.

Bond the seal to the blast cleaned surface on the same day the surface is blast cleaned.

5.0 Preparations for Armored Joints

When the plans call for armored joints, form the joint and blockout openings in accordance with the plans. If preferred, wrap the temporary form with polyethylene sheets to allow for easier removal. Do not use form release agents.

A. Submittals

Submitting detailed working drawings is not required; however, submitting catalog cuts of the proposed material is required. In addition, direct the joint supplier to provide an angle segment placing plan.

B. Surface Preparation

Prepare the surface within the 48 hours prior to placing the elastomeric concrete. Do not place the elastomeric concrete until the surface preparation is completed and approved.

1. Angle Assembly

Clean and free metallized steel of all foreign contaminants and blast the non-metallized steel surfaces to SSPC SP-10. Blast-cleaning anchor studs is not required.

2. Concrete

Prior to placing the elastomeric concrete, thoroughly clean and dry all concrete surfaces. Sandblast the concrete surface in the blockout and clear the surface of all loose debris.

C. Elastomeric Concrete Placement

Make sure that a manufacturer's representative is present when placing elastomeric concrete. Do not place elastomeric concrete if the ambient air temperature is below 45°F (7°C).

Prepare and apply a primer, as per manufacturer's recommendations, to all vertical concrete faces, all steel components to be in contact with elastomeric concrete, and to areas specified by the manufacturer. Align the angles with the joint opening.

Prepare, batch, and place the elastomeric concrete in accordance with the manufacturer's instructions. Place the elastomeric concrete in the areas specified on the plans while the primer is still tacky and within 2 hours after applying the primer. Pay careful attention to properly consolidate the concrete around the steel and anchors. Trowel the elastomeric concrete to a smooth finish.

D. Joint Preparation

Prior to installing the seal, the Engineer thoroughly inspects the armored joint opening for proper alignment and full consolidation of elastomeric concrete under the angle assemblies. Make all necessary repairs prior to cleaning the joint opening and installing the seal.

Clean the armored joint opening with a pressure washer rated at 3000 psi (20.7 MPa) minimum at least 24 hours after placing the elastomeric concrete. Dry the cleaned surface prior to installing the seal.

Examine the cleaned surface and remove traces of oil, grease or smudge deposited during the cleaning operations.

Bond the seal to the cleaned surface on the same day the surface is cleaned.

6.0 SEAL INSTALLATION

Install the joint seal according to the manufacturer's procedures and recommendations and as recommended below. Do not install the joint seal if the ambient air temperature is below 45°F (7°C). Have a manufacturer's representative present during the installation of the first seal of the project.

Begin installation at the low end of the joint after applying the mixed epoxy to the sides of both the joint material and both sides of the joint, making certain to completely fill the grooves with epoxy. With gloved hands, compress the material and with the help of a blunt probe, push it down into the joint until it is recessed approximately 1/4 inch (6 mm) below the surface. Do not push the seal at an angle that would stretch the material. Once work on a joint begins, do not stop until it is completed. Clean the excess epoxy off the surface of the joint material *quickly* and *thoroughly*. Do not use solvents to remove excess epoxy. Remove excess epoxy in accordance with the joint manufacturer's recommendations.

Install the seal so that it is watertight. Testing of the joint seal is not required, but it is observed until final inspection.

7.0 BASIS OF PAYMENT

Payment for all evazote joint seals will be at the lump sum contract price bid for "Evazote Joint Seals" which prices and payment will be full compensation for furnishing all material, including elastomeric concrete when required, labor, tools and equipment necessary for installing these units in place and accepted.

ELASTOMERIC CONCRETE

(10-12-01)

1.0 **DESCRIPTION**

Elastomeric concrete is a mixture of a two-part polymer consisting of polyurethane and/or epoxy, and kiln-dried aggregate. Have the manufacturer supply it as a unit. Use the concrete in the blocked out areas on both sides of the bridge deck joints as indicated on the plans.

2.0 MATERIALS

Provide materials that comply with the following minimum requirements at 14 days.

CONCRETE PROPERTIES	TEST METHOD	MINIMUM REQUIREMENT
Bond Strength to Concrete, psi (MPa)	ASTM D638 (D638M)	450 (3.1)
Brittleness by Impact, ft-lb (kg-m)	Ball Drop	7 (0.97)
Compressive Strength, psi (MPa)	ASTM D695 (D695M)	2800 (19.3)

BINDER PROPERTIES (without aggregate)	TEST METHOD	MINIMUM REQUIREMENT
Tensile Strength, psi (MPa)	ASTM D638 (D638M)	800 (5.5)
Ultimate Elongation	ASTM D638 (D638M)	150%
Tear Resistance, lb/in (kN/m)	ASTM D624	90 (15.7)

In addition to the requirements above, use elastomeric concrete that also resists water, chemical, UV, and ozone exposure and withstands extreme temperature (freeze-thaw) changes.

Furnish a manufacturer's certification verifying that the materials satisfy the above requirements. Provide samples of elastomeric concrete to the Engineer, if requested, to independently verify conformance with the above requirements.

Require a manufacturer's representative to be present on site during the installation of the elastomeric concrete.

3.0 BASIS OF PAYMENT

No separate payment will be made for elastomeric concrete. The lump sum contract price bid for "Evazote Joint Seals" will be full compensation for furnishing and placing the Elastomeric Concrete.

FALSEWORK AND FORMWORK

(7-18-06)

1.0 DESCRIPTION

Use this Special Provision as a guide to develop temporary works submittals required by the Standard Specifications or other provisions; no additional submittals are required herein. Such temporary works include, but are not limited to, falsework and formwork.

Falsework is any temporary construction used to support the permanent structure until it becomes self-supporting. Formwork is the temporary structure or mold used to retain plastic or fluid concrete in its designated shape until it hardens. Access scaffolding is a temporary structure that functions as a work platform that supports construction personnel, materials, and tools, but is not intended to support the structure. Scaffolding systems that are used to temporarily support permanent structures (as opposed to functioning as work platforms) are considered to be falsework under the definitions given. Shoring is a component of falsework such as horizontal, vertical, or inclined support members. Where the term "temporary works" is used, it includes all of the temporary facilities used in bridge construction that do not become part of the permanent structure.

Design and construct safe and adequate temporary works that will support all loads imposed and provide the necessary rigidity to achieve the lines and grades shown on the plans in the final structure.

2.0 MATERIALS

Select materials suitable for temporary works; however, select materials that also ensure the safety and quality required by the design assumptions. The Engineer has authority to reject material on the basis of its condition, inappropriate use, safety, or nonconformance with the plans. Clearly identify allowable loads or stresses for all materials or manufactured devices on the plans. Revise the plan and notify the Engineer if any change to materials or material strengths is required.

3.0 DESIGN REQUIREMENTS

A. Working Drawings

Provide working drawings for items as specified in the contract, or as required by the Engineer, with design calculations and supporting data in sufficient detail to permit a structural and safety review of the proposed design of the temporary work.

When concrete placement is involved, include data such as the drawings of proposed sequence, rate of placement, direction of placement, and location of all construction joints. Submit the number of copies as called for by the contract.

When required, have the drawings and calculations prepared under the guidance of, and sealed by, a North Carolina Registered Professional Engineer who is knowledgeable in temporary works design.

Design falsework and formwork requiring submittals in accordance with the 1995 AASHTO Guide Design Specifications for Bridge Temporary Works except as noted herein.

1. Wind Loads

Table 2.2 of Article 2.2.5.1 is modified to include wind velocities up to 110 mph (177 km/hr). In addition, Table 2.2A is included to provide the maximum wind speeds by county in North Carolina.

Table 2.2 - Wind Pressure Values

Height Zone	Pressure, lb/ft ² (kPa) for Indicated Wind Velocity, mph (km/hr)				
feet (m) above ground	70	80	90	100	110
	(112.7)	(128.7)	(144.8)	(160.9)	(177.0)
0 to 30 (0 to 9.1)	15	20	25	30	35
	(0.72)	(0.96)	(1.20)	(1.44)	(1.68)
30 to 50 (9.1 to 15.2)	20	25	30	35	40
	(0.96)	(1.20)	(1.44)	(1.68)	(1.92)
50 to 100 (15.2 to 30.5)	25	30	35	40	45
	(1.20)	(1.44)	(1.68)	(1.92)	(2.15)
over 100 (30.5)	30	35	40	45	50
	(1.44)	(1.68)	(1.92)	(2.15)	(2.39)

2. Time of Removal

The following requirements replace those of Article 3.4.8.2.

Do not remove forms until the concrete has attained strengths required in Article 420-16 of the Standard Specifications and these Special Provisions.

Do not remove forms until the concrete has sufficient strength to prevent damage to the surface.

Table 2.2A - Steady State Maximum Wind Speeds by Counties in North Carolina

	25 YR		25 YR		25 YR
COUNTY	(mph)	COUNTY	(mph)	COUNTY	(mph)
	(km/hr)		(km/hr)		(km/hr)
Alamance	70 (112.7)	Franklin	70 (112.7)	Pamlico	100 (160.9)
Alexander	70 (112.7)	Gaston	70 (112.7)	Pasquotank	100 (160.9)
Alleghany	70 (112.7)	Gates	90 (144.8)	Pender	100 (160.9)
Anson	70 (112.7)	Graham	80 (128.7)	Perquimans	100 (160.9)
Ashe	70 (112.7)	Granville	70 (112.7)	Person	70 (112.7)
Avery	70 (112.7)	Greene	80 (128.7)	Pitt	90 (144.8)
Beaufort	100 (160.9)	Guilford	70 (112.7)	Polk	80 (128.7)
Bertie	90 (144.8)	Halifax	80 (128.7)	Randolph	70 (112.7)
Bladen	90 (144.8)	Harnett	70 (112.7)	Richmond	70 (112.7)
Brunswick	100 (160.9)	Haywood	80 (128.7)	Robeson	80 (128.7)
Buncombe	80 (128.7)	Henderson	80 (128.7)	Rockingham	70 (112.7)
Burke	70 (112.7)	Hertford	90 (144.8)	Rowan	70 (112.7)
Cabarrus	70 (112.7)	Hoke	70 (112.7)	Rutherford	70 (112.7)
Caldwell	70 (112.7)	Hyde	110 (177.0)	Sampson	90 (144.8)
Camden	100 (160.9)	Iredell	70 (112.7)	Scotland	70 (112.7)
Carteret	110 (177.0)	Jackson	80 (128.7)	Stanley	70 (112.7)
Caswell	70 (112.7)	Johnston	80 (128.7)	Stokes	70 (112.7)
Catawba	70 (112.7)	Jones	100 (160.9)	Surry	70 (112.7)
Cherokee	80 (128.7)	Lee	70 (112.7)	Swain	80 (128.7)
Chatham	70 (112.7)	Lenoir	90 (144.8)	Transylvania	80 (128.7)
Chowan	90 (144.8)	Lincoln	70 (112.7)	Tyrell	100 (160.9)
Clay	80 (128.7)	Macon	80 (128.7)	Union	70 (112.7)
Cleveland	70 (112.7)	Madison	80 (128.7)	Vance	70 (112.7)
Columbus	90 (144.8)	Martin	90 (144.8)	Wake	70 (112.7)
Craven	100 (160.9)	McDowell	70 (112.7)	Warren	70 (112.7)
Cumberland	80 (128.7)	Mecklenburg	70 (112.7)	Washington	100 (160.9)
Currituck	100 (160.9)	Mitchell	70 (112.7)	Watauga	70 (112.7)
Dare	110 (177.0)	Montgomery	70(112.7)	Wayne	80 (128.7)
Davidson	70 (112.7)	Moore	70 (112.7)	Wilkes	70 (112.7)
Davie	70 (112.7)	Nash	80 (128.7)	Wilson	80 (128.7)
Duplin	90 (144.8)	New Hanover	100 (160.9)	Yadkin	70 (112.7)
Durham	70 (112.7)	Northampton	80 (128.7)	Yancey	70 (112.7)
Edgecombe	80 (128.7)	Onslow	100 (160.9)		
Forsyth	70 (112.7)	Orange	70 (112.7)		

Note on the working drawings any anchorages, connectors, inserts, steel sleeves or other such devices used as part of the falsework or formwork that remains in the permanent structure. If the plan notes indicate that the structure contains the necessary corrosion protection required for a Corrosive Site, epoxy coat, galvanize, metallize or otherwise protect these devices as directed by the Engineer. Any coating required by the Engineer will be considered incidental to the various pay items requiring temporary works.

B. Review and Approval

The Engineer is responsible for the review and approval of temporary works' drawings.

Submit the working drawings sufficiently in advance of proposed use to allow for their review, revision (if needed), and approval without delay to the work.

Do not start construction of any temporary work for which working drawings are required until the drawings have been approved. Such approval does not relieve the Contractor of the responsibility for the accuracy and adequacy of the working drawings.

The time period for review of the working drawings does not begin until complete drawings and design calculations, when required, are received by the Engineer.

On the drawings, show all information necessary to allow the design of any component to be checked independently as determined by the Engineer.

If requested by the Engineer, submit with the working drawings manufacturer's catalog data listing the weight of all construction equipment that will be supported on the temporary work. Show anticipated total settlements and/or deflections of falsework and forms on the working drawings. Include falsework footing settlements, joint take-up, and deflection of beams or girders. Falsework hangers that support concentrated loads and are installed at the edge of thin top flange concrete girders (such as bulb tee girders) shall be spaced so as not to exceed 75% of the manufacturer's stated safe working load. Use of dual leg hangers (such as Meadow Burke HF-42 and HF-43) are not allowed. Design the falsework and forms supporting deck slabs and overhangs on girder bridges so that there will be no differential settlement between the girders and the deck forms during placement of deck concrete.

4.0 CONSTRUCTION REQUIREMENTS

All requirements of Section 420 of the Standard Specifications apply.

Construct temporary works in conformance with the approved working drawings. Ensure that the quality of materials and workmanship employed is consistent with that assumed in the design of the temporary works. Do not weld falsework members to any portion of the permanent structure unless approved. Show any welding to the permanent structure on the approved construction drawings.

Provide tell-tales attached to the forms and extending to the ground, or other means, for accurate measurement of falsework settlement. Make sure that the anticipated compressive settlement and/or deflection of falsework does not exceed 1 inch (25 mm). For cast-in-place concrete structures, make sure that the calculated deflection of falsework flexural members does not exceed 1/240 of their span regardless of whether or not the deflection is compensated by camber strips.

A. Maintenance and Inspection

Inspect and maintain the temporary work in an acceptable condition throughout the period of its use. Certify that the manufactured devices have been maintained in a condition to allow them to safely carry their rated loads. Clearly mark each piece so that its capacity can be readily determined at the job site.

Perform an in-depth inspection of an applicable portion(s) of the temporary works, in the presence of the Engineer, not more than 24 hours prior to the beginning of each concrete placement. Inspect other temporary works at least once a month to ensure that they are functioning properly. Have a North Carolina Registered Professional Engineer inspect the cofferdams, shoring, sheathing, support of excavation structures, and support systems for load tests prior to loading.

B. Foundations

Determine the safe bearing capacity of the foundation material on which the supports for temporary works rest. If required by the Engineer, conduct load tests to verify proposed bearing capacity values that are marginal or in other high-risk situations.

The use of the foundation support values shown on the contract plans of the permanent structure is permitted if the foundations are on the same level and on the same soil as those of the permanent structure.

Allow for adequate site drainage or soil protection to prevent soil saturation and washout of the soil supporting the temporary works supports.

If piles are used, the estimation of capacities and later confirmation during construction using standard procedures based on the driving characteristics of the pile is permitted. If preferred, use load tests to confirm the estimated capacities; or, if required by the Engineer conduct load tests to verify bearing capacity values that are marginal or in other high risk situations.

The Engineer reviews and approves the proposed pile and soil bearing capacities.

5.0 REMOVAL

Unless otherwise permitted, remove and keep all temporary works upon completion of the work. Do not disturb or otherwise damage the finished work.

Remove temporary works in conformance with the contract documents. Remove them in such a manner as to permit the structure to uniformly and gradually take the stresses due to its own weight.

6.0 METHOD OF MEASUREMENT

Unless otherwise specified, temporary works will not be directly measured.

7.0 BASIS OF PAYMENT

Payment at the contract unit prices for the various pay items requiring temporary works will be full compensation for the above falsework and formwork.

SUBMITTAL OF WORKING DRAWINGS

(11-17-06)

1.0 GENERAL

Submit working drawings in accordance with Article 105-2 of the Standard Specifications and the requirements of this special provision. For the purposes of this provision, "submittals" refers to only those listed in this provision. The list of submittals contained herein does not represent a list of required submittals for this project. Submittals are only necessary for those items as required by the Standard Specifications, other Special Provisions or contract plans. Make submittals that are not specifically noted in this Special Provision directly to the Resident Engineer. Either the Structure Design Unit or the Geotechnical Engineering Unit or both units will jointly review submittals.

If a submittal contains variations from plan details or specifications or significantly affects project cost, field construction or operations, discuss the submittal with and submit all copies to the Resident Engineer. State the reason for the proposed variation in the submittal. To minimize review time, make sure all submittals are complete when initially submitted. Provide a contact name and information with each submittal. Direct any questions regarding submittal requirements to the Resident Engineer, Structure Design Unit contacts or the Geotechnical Engineering Unit contacts noted below.

In order to facilitate in-plant inspection by NCDOT and approval of working drawings, provide the name, address and telephone number of the facility where fabrication will actually be done if different than shown on the title block of the submitted working drawings. This includes, but is not limited to, precast concrete items, prestressed concrete items and fabricated steel or aluminum items.

2.0 ADDRESSES AND CONTACTS

For submittals to the Structure Design Unit, use the following addresses:

Via US mail:

Mr. G. R. Perfetti, P. E.

State Bridge Design Engineer

North Carolina Department

of Transportation

Structure Design Unit 1581 Mail Service Center

Raleigh, NC 27699-1581

Attention: Mr. P. D. Lambert, P. E.

Via other delivery service:

Mr. G. R. Perfetti, P. E.

State Bridge Design Engineer

North Carolina Department

of Transportation

Structure Design Unit 1000 Birch Ridge Drive

Raleigh, NC 27610

Attention: Mr. P. D. Lambert, P. E.

For submittals to the Geotechnical Engineering Unit, use the following addresses:

For projects in Divisions 1-7, use the following Eastern Regional Office address:

Via US mail:

Mr. K. J. Kim, Ph. D., P. E.

Eastern Regional Geotechnical

Manager

North Carolina Department

of Transportation

Geotechnical Engineering Unit

Eastern Regional Office

1570 Mail Service Center

Raleigh, NC 27699-1570

Via other delivery service:

Mr. K. J. Kim, Ph. D., P. E.

Eastern Regional Geotechnical

Manager

North Carolina Department

of Transportation

Geotechnical Engineering Unit

Eastern Regional Office

3301 Jones Sausage Road, Suite 100

Garner, NC 27529

Via other delivery service:

For projects in Divisions 8-14, use the following Western Regional Office address:

Via US mail:

Mr. John Pilipchuk, L. G., P. E.

Western Regional Geotechnical

Manager

North Carolina Department

of Transportation

Geotechnical Engineering Unit

Western Regional Office

5253 Z Max Boulevard

Harrisburg, NC 28075

Mr. John Pilipchuk, L. G., P. E.

Western Region Geotechnical

Manager

North Carolina Department

of Transportation

Geotechnical Engineering Unit

Western Regional Office

5253 Z Max Boulevard

Harrisburg, NC 28075

Direct any questions concerning submittal review status, review comments or drawing markups to the following contacts:

Primary Structures Contact:

Paul Lambert

(919) 250 - 4041

(919) 250 – 4082 facsimile plambert@dot.state.nc.us

Secondary Structures Contacts:

James Gaither

(919) 250 - 4042

Man-Pan Hui

(919) 250 - 4044

Eastern Regional Geotechnical Contact (Divisions 1-7):

K. J. Kim

(919) 662 - 4710

(919) 662 – 3095 facsimile

kkim@dot.state.nc.us

Western Regional Geotechnical Contact (Divisions 8-14):

John Pilipchuk

(704) 455 - 8902

(704) 455 – 8912 facsimile jpilipchuk@dot.state.nc.us

3.0 SUBMITTAL COPIES

Furnish one complete copy of each submittal, including all attachments, to the Resident Engineer. At the same time, submit the number of hard copies shown below of the same complete submittal directly to the Structure Design Unit and/or the Geotechnical Engineering Unit.

The first table below covers "Structure Submittals". The Resident Engineer will receive review comments and drawing markups for these submittals from the Structure Design Unit. The second table in this section covers "Geotechnical Submittals". The Resident Engineer will receive review comments and drawing markups for these submittals from the Geotechnical Engineering Unit.

}

Unless otherwise required, submit one set of supporting calculations to either the Structure Design Unit or the Geotechnical Engineering Unit unless both units require submittal copies in which case submit a set of supporting calculations to each unit. Provide additional copies of any submittal as directed by the Engineer.

STRUCTURE SUBMITTALS

Submittal	Copies Required by Structure Design Unit	Copies Required by Geotechnical Engineering Unit	Contract Reference Requiring Submittal ¹
Arch Culvert Falsework	5	0	Plan Note, SN Sheet & "Falsework and Formwork"
Box Culvert Falsework ⁷	5	0	Plan Note, SN Sheet & "Falsework and Formwork"
Cofferdams	6	2	Article 410-4
Evazote Joint Seals ⁶	9	0	"Evazote Joint Seals"
Expansion Joint Seals (hold down plate type with base angle)	9	0	"Expansion Joint Seals"
Expansion Joint Seals (modular)	2, then 9	0	"Modular Expansion Joint Seals"
Expansion Joint Seals (strip seals)	9	0	"Strip Seals"
Falsework & Forms ² (substructure)	8	0	Article 420-3 & "Falsework and Formwork"
Falsework & Forms (superstructure)	8	0	Article 420-3 & "Falsework and Formwork"
Girder Erection over Railroad	5	0	Railroad Special Provisions
Maintenance and Protection of Traffic Beneath Proposed Structure	8	0	"Maintenance and Protection of Traffic Beneath Proposed Structure at Station"
Metal Bridge Railing	8	0	Plan Note
Metal Stay-in-Place Forms	8	0	Article 420-3
Metalwork for Elastomeric Bearings ^{4,5}	7	0	Article 1072-10

Miscellaneous Metalwork ^{4,5}	7	0	Article 1072-10
Optional Disc Bearings 4	8	0	"Optional Disc Bearings"
Overhead Signs	13	0	Article 903-3(C) & Applicable Project Special Provisions
Pile Splicer	7	2	Subarticle 450-7(C)
Placement of Equipment on Structures (cranes, etc.)	7	0	Article 420-20
Pot Bearings 4	8	0	"Pot Bearings"
Precast Concrete Box Culverts	2, then 1 reproducible	0	"Optional Precast Reinforced Concrete Box Culvert at Station"
Precast Retaining Wall Panels	10	1	Article 1077-2
Prestressed Concrete Cored Slab (detensioning sequences) 3	6	0	Article 1078-11
Prestressed Concrete Deck Panels	6 and 1 reproducible	0	Article 420-3
Prestressed Concrete Girder (strand elongation and detensioning sequences)	6	0	Articles 1078-8 and 1078- 11
Removal of Existing Structure over Railroad	5	0	Railroad Special Provisions
Revised Bridge Deck Plans (adaptation to prestressed deck panels)	2, then 1 reproducible	0	Article 420-3
Revised Bridge Deck Plans (adaptation to modular expansion joint seals)	2, then 1 reproducible	0	"Modular Expansion Joint Seals"
Sound Barrier Wall Casting Plans	10	0	Article 1077-2 & "Sound Barrier Wall"
Sound Barrier Wall Steel Fabrication Plans ⁵	7	0	Article 1072-10 & "Sound Barrier Wall"
Structural Steel ⁴	2, then 7	0	Article 1072-10

			Article 400-3 & "Construction,
Temporary Detour Structures	10	2	Maintenance and Removal of Temporary Structure at Station"
Temporary Shoring ⁸	7	2	"Temporary Shoring"
TFE Expansion Bearings ⁴	8	0	Article 1072-10

FOOTNOTES

- 1. References are provided to help locate the part of the contract where the submittals are required. References in quotes refer to the Project Special Provision by that name. Articles or subarticles refer to the Standard Specifications.
- 2. Submittals for these items are necessary only when required by a note on plans.
- 3. Submittals for these items may not be required. A list of pre-approved sequences is available from the producer or the Materials and Tests Unit.
- 4. The fabricator may submit these items directly to the Structure Design Unit.
- 5. The two sets of preliminary submittals required by Article 1072-10 of the Standard Specifications are not required for these items.
- 6. Submittals for Fabrication Drawings are not required. Submittals for Catalogue Cuts of Proposed Material are required. See Section 5.A of the referenced Project Special Provision.
- 7. Submittals are necessary only when the top slab thickness is 18 inches or greater.
- 8. Electronic copies of submittals are required. See referenced Project Special Provision.

GEOTECHNICAL SUBMITTALS

Submittal	Copies Required by Geotechnical Engineering Unit	Copies Required by Structure Design Unit	Contract Reference Requiring Submittal ¹
Crosshole Sonic Logging (CSL) Reports 2	1	0	"Crosshole Sonic Logging"
Drilled Pier Construction Sequence Plans 2	1	0	"Drilled Piers"
Mechanically Stabilized Earth (MSE) Retaining Walls	8	2	"MSE Retaining Walls"
Pile Driving Analyzer (PDA) Reports ²	2	0	"Pile Driving Analyzer"
Pile Driving Equipment Data ³	1	0	Article 450-5
Proprietary Retaining Walls	8	2	Applicable Project Special Provision
Anchored Retaining Walls	8	2	Applicable Project Special Provision
Soil Nail Retaining Walls	8	2	Applicable Project Special Provision
Temporary Mechanically Stabilized (MSE) Earth Wall ²	9	0	"Temporary Shoring"

FOOTNOTES

- 1. References are provided to help locate the part of the contract where the working drawing submittals are required. References in quotes refer to the Project Special Provision by that name. Articles refer to the Standard Specifications.
- 2. Electronic copies of submittals are required. See referenced Project Special Provision.
- 3. Download Pile Driving Equipment Data Form from following link:

 http://www.ncdot.org/doh/preconstruct/highway/geotech/formprovdet/
 Submit one hard copy of the completed form to the Resident Engineer. Submit a second copy of the completed form electronically, by facsimile or via US Mail or other delivery service to the Geotechnical Engineering Unit. Electronic submission is preferred. See second page of form for submittal instructions.

CRANE SAFETY (8-15-05)

Comply with the manufacturer specifications and limitations applicable to the operation of any and all cranes and derricks. Prime contractors, sub-contractors, and fully operated rental companies shall comply with the current Occupational Safety and Health Administration regulations (OSHA).

Submit all items listed below to the Engineer prior to beginning crane operations involving critical lifts. A critical lift is defined as any lift that exceeds 75 percent of the manufacturer's crane chart capacity for the radius at which the load will be lifted or requires the use of more than one crane. Changes in personnel or equipment must be reported to the Engineer and all applicable items listed below must be updated and submitted prior to continuing with crane operations.

CRANE SAFETY SUBMITTAL LIST

- A. <u>Competent Person:</u> Provide the name and qualifications of the "Competent Person" responsible for crane safety and lifting operations. The named competent person will have the responsibility and authority to stop any work activity due to safety concerns.
- B. <u>Riggers:</u> Provide the qualifications and experience of the persons responsible for rigging operations. Qualifications and experience should include, but not be limited to, weight calculations, center of gravity determinations, selection and inspection of sling and rigging equipment, and safe rigging practices.
- C. <u>Crane Inspections:</u> Inspection records for all cranes shall be current and readily accessible for review upon request.
- D. <u>Certifications:</u> By July 1, 2006, crane operators performing critical lifts shall be certified by NC CCO (National Commission for the Certification of Crane Operators), or satisfactorily complete the Carolinas AGC's Professional Crane Operator's Proficiency Program. Other approved nationally accredited programs will be considered upon request. All crane operators shall also have a current CDL medical card. Submit a list of anticipated critical lifts and corresponding crane operator(s). Include current certification for the type of crane operated (small hydraulic, large hydraulic, small lattice, large lattice) and medical evaluations for each operator.

PILE EXCAVATION

(7-18-06)

1.0 GENERAL

This special provision governs installing piles using pile excavation in accordance with the plans and as directed by the Engineer. Pile excavation is necessary when piles can not be installed to the required bearing capacity and tip elevation with conventional driving equipment due to vibration concerns or the presence of rock, boulders, debris or very dense soils. Install piles in accordance with Section 450 of the Standard Specifications and this provision.

2.0 PILE EXCAVATION

Perform pile excavation to the required elevation shown on the plans or otherwise required by the Engineer. Excavate a hole with a diameter that will result in at least 3 in (75 mm) of clearance around the entire pile. Use equipment of adequate capacity and capable of drilling through soil and non-soil including rock, boulders, debris, man-made objects and any other materials encountered. Blasting is not permitted to advance the excavation. Blasting for core removal is only permitted when approved by the Engineer. Dispose of drilling spoils in accordance with Section 802 of the Standard Specifications and as directed by the Engineer. Drilling spoils consist of all excavated material including water removed from the excavation either by pumping or drilling tools.

If unstable, caving or sloughing soils are anticipated or encountered, the Engineer may require the Contractor to stabilize the excavation with steel casing. Steel casing may be either the sectional type or one continuous corrugated or non-corrugated piece. Steel casings should consist of clean watertight steel of ample strength to withstand handling and driving stresses and the pressures imposed by concrete, earth or backfill. Use steel casings with an outside diameter equal to the hole size and a minimum wall thickness of 1/4 in (7 mm).

3.0 CONCRETE PLACEMENT

Before placing concrete, center the pile in the excavation and drive to the required bearing capacity and specified tip elevation, if applicable, as shown on the plans or as directed by the Engineer. Check the water inflow rate in the excavation after any pumps have been removed. If the inflow rate is less than 6 in (150 mm) per half hour, remove any water and free fall the concrete into the excavation. Ensure that concrete flows completely around the pile. If the water inflow rate is greater than 6 in (150 mm) per half hour, propose a concrete placement procedure to the Engineer. The Engineer shall approve the concrete placement procedure before placing concrete.

Fill the excavation with Class A concrete in accordance with Section 1000 of the Standard Specifications except as modified herein. Provide concrete with a slump of 6 to 8 in (150 to 200 mm). Use an approved high-range water reducer to achieve this slump. Place concrete in a continuous manner and remove all casings.

4.0 MEASUREMENT AND PAYMENT

A. Method of Measurement

1. Pile Excavation in Soil

The quantity of "Pile Excavation in Soil" to be paid for will be the linear feet (meters) of pile excavation exclusive of the linear feet (meters) of "Pile Excavation Not in Soil" computed from elevations and dimensions as shown on the plans or from revised dimensions authorized by the Engineer.

2. Pile Excavation Not in Soil

The quantity of "Pile Excavation Not in Soil" to be paid for will be the linear feet (meters) of pile excavation in non-soil as determined by the Engineer. Non-soil is defined as material that can not be cut with a rock auger and requires excavation by coring, air tools, hand removal or other acceptable methods. Top of non-soil elevation is that elevation where the rock auger penetration rate is less than 2 in (50 mm) per 5 minutes of drilling at full crowd force and coring, air tools, etc. are used to advance the excavation. For pay purposes, after non-soil is encountered, earth seams, rock fragments and voids in the excavation less than 3 ft (0.9 m) in total length will be considered "Pile Excavation Not in Soil". If the non-soil is discontinuous, payment will revert to "Pile Excavation in Soil" at the elevation where non-soil is no longer encountered.

B. Basis of Payment

1. Pile Excavation in Soil

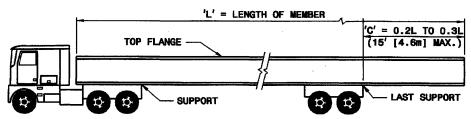
Payment will be made at the contract unit price per linear foot (meter) for "Pile Excavation in Soil". Such payment will include, but is not limited to, furnishing all labor, tools, equipment, materials including concrete complete and in place and all incidentals necessary to excavate and complete the work as described in this provision. The cost for the pile will be paid for separately in accordance with the Standard Specifications and will not be part of the unit bid price for "Pile Excavation in Soil".

2. Pile Excavation Not in Soil

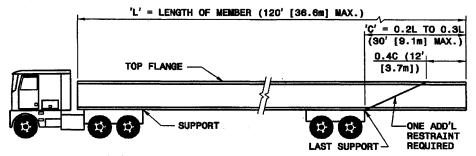
Payment will be made at the contract unit price per linear foot (meter) for "Pile Excavation Not in Soil". Such payment will include, but is not limited to, furnishing all labor, tools, equipment, materials including concrete complete and in place and all incidentals necessary to excavate and complete the work as described in this provision. The cost for the pile will be paid for separately in accordance with the Standard Specifications and will not be part of the unit bid price for "Pile Excavation Not in Soil".

SHIPPING STEEL STRUCTURAL MEMBERS

(7-18-06)


Section 1072-23 Marking and Shipping

Add the following paragraphs after the third paragraph of the Section.


Load and ship steel beams and girders in accordance with the Figure below for all types of transportation.

Below is the sketches provided to Materials and Tests Unit on May 8, 1991. When the contractor wishes to place members on trucks not in accordance with these limits, to ship by rail, to attach shipping restraints to the members, to ship horizontally curved steel members, or to invert members, he shall submit a shipping plan prior to shipping. See also Article 1072-11.

LIMITS FOR PLACEMENT OF BEAMS AND GIRDERS DURING SHIPMENT

WHEN 'C' = 15' (4.6m) OR LESS

WHEN 'C' = OVER 15' (4.6m) THRU 30' (9.1m)

L	MIN. 'C'	MAX 'C'
75 (22.9m)	15 (4.6m)	(22½(6.9m)
80 (24.4m)	16 (4.9m)	24 (7.3m)
85 (25.9m)	17 (5.2m) 0.3L	< 25½(7.8m)
90 (27.4m)	18 (5.5m)	27 (8.2m)
95 (29.0m) 0.2L<	19 (5.8m)	28½(8.7m)
100 (30.5m)	20 (6.1m)	√30 (9.1m)
105 (32.0m)	21 (6.4m)	30 (9.1m)
110 (33.5m)	22 (6.7m)	30 (9.1m)
115 (35.1m)	23 (7.Om)	30 (9.1m)
120 (36.6m)	_24 (7.3m)	30 (9.1m)

NOTES: ALL DIMENSIONS ARE IN FEET (METERS).
TRUCK LOADING SHOWN FOR SIMPLICITY
DIMENSIONS APPLY TO ALL TYPES OF SHIPMENTS.

GROUT FOR STRUCTURES

(7-18-06)

1.0 DESCRIPTION

This special provision addresses grout to be used in structures, including continuous flight auger (CFA) piles, micropiles, soil nail and permanent anchor tieback retaining walls and backfilling crosshole sonic logging (CSL) tubes or grout pockets, shear keys, dowel holes and recesses for cored slabs and box beams. Provide grout composed of portland cement, water, fine aggregate and, at the Contractor's option, pozzolan. If necessary, use set controlling admixtures. Proportion, mix and place grout in accordance with the plans, the applicable section of the Standard Specifications or special provision for the structure and this provision as directed by the Engineer.

2.0 MATERIALS

Refer to Division 10 of the Standard Specifications:

Item	Article
Portland Cement	1024-1
Water	1024-4
Fine Aggregate	1014-1
Fly Ash	1024-5
Ground Granulated Blast Furnace Slag	1024-6
Admixtures	1024-3

At the Contractor's option, use an approved packaged grout in lieu of the materials above with the exception of the water. Contact the Materials and Tests (M&T) Unit for a list of approved packaged grouts. Consult the manufacturer to determine if the packaged grout selected is suitable for the application and meets the compressive strength and shrinkage requirements.

3.0 REQUIREMENTS

If no compressive strength or shrinkage is specified on the plans or in the applicable section of the Standard Specifications or special provision for the structure, provide non-metallic, non-shrink grout with minimum compressive strengths and shrinkage in the vertical direction as follows:

Property	Requirement
Compressive Strength @ 3 days	2500 psi (17.2 Mpa)
Compressive Strength @ 28 days	4500 psi (31.0 Mpa)
Shrinkage	<0.15%

Unless using packaged grout, submit grout mix designs in terms of saturated surface dry weights on M&T Form 312U in accordance with the applicable section of the Standard Specifications or special provision for the structure. A testing laboratory approved by the Department shall determine the grout mix proportions. Adjust proportions to compensate for surface moisture contained in the aggregates at the time of mixing. Changes in the saturated surface dry mix proportions will not be permitted unless a revised grout mix design submittal has been accepted.

When submitting grout mix designs, provide laboratory test results for aggregate gradation, shrinkage, compressive strength and fluidity with each mix design. Submit compressive strength for at least two 2 in (50 mm) cube specimens at the age of 3, 7, 14 and 28 days for a total of at least eight cube specimens tested. Perform laboratory tests in accordance with the following:

Property	Test Method
Aggregate Gradation	AASHTO T27
Shrinkage	ASTM C1090
Compressive Strength	AASHTO T106
Fluidity	ASTM C939 (as modified below)

When testing grout for fluidity in accordance with ASTM C939, modify the flow cone outlet diameter from ½ to ¾ in (13 to 19 mm).

Unless otherwise required in the Contract or by the Engineer, a grout mix design submittal is not required when using an approved packaged grout. When grout mix designs are submitted, the Engineer will review the mix designs and notify the Contractor as to their acceptability. Do not use grout mix designs until written acceptance has been received. Acceptance of grout mix designs or use of approved packaged grouts does not relieve the Contractor of responsibility to furnish a product that meets the Contract requirements.

Upon written request from the Contractor, a grout mix design accepted and used satisfactorily on a Department project may be accepted for use on other projects.

4.0 SAMPLING AND PLACEMENT

The applicable section of the Standard Specifications or special provision for the structure and the Engineer will determine the locations to sample grout and the number and type of samples collected for field and laboratory testing. The compressive strength of the grout will be considered the average compressive strength test results of two cube specimens at 28 days.

Do not place grout if the grout temperature is less than 50°F (10°C) or more than 95°F (35°C) or if the air temperature measured at the location of the grouting operation in the shade away from artificial heat is below 35°F (2°C).

Provide grout at a rate that permits proper handling, placing and finishing in accordance with the manufacturer's recommendations unless directed otherwise by the Engineer.

Control grout delivery so the interval between placing batches in the same component does not exceed 20 minutes. Solids in the grout shall remain in suspension without excessive bleed-water. Place grout before the time between adding the mixing water and placing the grout exceeds that in the table below.

ELAPSED TIME FOR PLACING GROUT

(with continuous agitation)

	Maximum Elapsed Time		
Air or Grout Temperature Whichever is Higher	No Set Retarding Admixture Used	Set Retarding Admixture Used	
90°F (31°C) or above	30 minutes	1 hr. 15 minutes	
80°F (27°C) through 89°F (31°C)	45 minutes	1 hr. 30 minutes	
79°F (26°C) or below	60 minutes	1 hr. 45 minutes	

5.0 MISCELLANEOUS

Comply with Articles 1000-9 through 1000-12 of the Standard Specifications to the extent applicable for grout in lieu of concrete.

HIGH STRENGTH BOLTS

(11-17-06)

In Section 440-8(A) of the Standard Specifications, revise the third paragraph and insert a new paragraph four, respectively, as follows:

WBS 33381 (B-4013)

Ashe County

Use nuts that are pre-waxed by the producer/suppner prior to snipping to the project.

MICROPILES

1.0 GENERAL

A. Description

The work in this Special Provision governs the construction of Micropiles. The term micropiles is used generically in this special provision to refer to any proprietary system able to satisfy this special provision and the contract plans. Systems that may satisfy this special provision are Pin-Piles, Mini-Piles, Root-Piles, Needle-Piles or other systems. Micropiles are a reinforced grouted section, cast-in-place against in-situ material and/or permanent steel casing. Construct micropiles in accordance with the details and dimensions shown on the plans and this special provision. Select the micropile type, installation method, bond lengths, grout pressures, etc., such that the micropiles will satisfy the design loads indicated on the contract plans. Construct the micropiles in a manner that does not result in the loss of drilling spoils, grout or any

other contaminates into the creek. Perform micropile proof test loadings to demonstrate the micropile capacities that satisfy the acceptance criteria of this Special Provision.

B. Prequalification and Experience Requirements

Use a Micropile Contractor prequalified by the Contractual Services Unit of the Department for micropile work (work code 3100).

Prior to micropile design, submit the name of the Micropile Contractor and documentation to the Engineer. Submit documentation that the Micropile Contractor has successfully completed at least five (5) micropile projects within the last three (3) years with diameters, lengths and subsurface conditions similar to those anticipated for this project. Documentation should include the General Contractor and Owner's name and current contact information with descriptions of each past project.

Provide a list of the Drilling Superintendent, Drill Rig Operators and Project Manager that will be assigned to this project. Submit documentation for these personnel verifying employment with the Micropile Contractor and a minimum of 5 years experience in micropile construction with past projects of scope and complexity similar to that anticipated for this project. Documentation should include resumes, references, certifications, project lists, experience descriptions and details, etc. Perform work with the personnel submitted and accepted. If personnel changes are required during construction, suspend micropile construction until replacement personnel are submitted and accepted.

C. Construction Sequence Plan

Submit two copies of a micropile construction sequence plan for all the micropiles for review and acceptance 14 calendar days prior to beginning construction of the micropiles. Provide detailed project specific information in this plan including:

- 1. Work experience in accordance with Section 1.0, Item B.
- 2. List and size of equipment.
- 3. Details of order of micropile construction.
- 4. Details of excavation methods.
- 5. Details of methods to clean the excavation.
- 6. Details of reinforcement placement including support and method to center in the excavation.
- 7. Details of grout placement including how the pump will be controlled during grout placement and what type of discharge control will be used to prevent grout contamination when the pump is initially placed in the excavation.

- 8. Details of permanent casing installation.
- 9. Required submittals for grout mix designs.
- 10. Details on the handling of drilling spoils and grout overflow including environmental control procedures to be used to prevent the loss of grout and spoils.
- 11. Other information shown on the plans or requested by the Engineer.

The Engineer reviews the micropile construction sequence plan for conformance with the plans, specifications and this special provision. Within 7 calendar days of receiving the plan, the Engineer notifies the Contractor of any additional information required and/or changes necessary to satisfy the plans, specifications and this special provision. Submit changes for re-evaluation of any unsatisfactory part of the construction sequence plan that is rejected. The Engineer will respond to the Contractor within 7 calendar days after receiving the proposed changes.

If any changes in the procedure are made during the construction of the micropiles, inform the Engineer in writing and await approval of the proposed modifications prior to the construction of the remaining micropiles.

D. Shop Drawings:

Provide shop drawings for the proposed micropile installation. The micropile design must be in accordance with the criteria set forth in the AASHTO Specifications for Highway Bridges and the FHWA Manual "Micropile Design and Construction Guidelines", Publication No. FHWA NHI-05-039 (December 2005).

- E. Submit complete shop drawings and design calculations describing the micropile system, or systems, intended for use at least 28 calendar days before work is to begin. The micropiles and anchorage head assembly shall be designed and detailed to carry the tension and compression loadings indicated on the contract plans. The submittal shall be sealed by a Professional Engineer Licensed by the North Carolina Board of Examiners for Engineers and Land Surveyors (NCBELS) and include (as a minimum) the following:
 - 1. Design Calculations
 - a) A written summary report that describes the overall micropile design.
 - b) Applicable code requirements and design reference literature used.
 - c) Micropile design cross-section(s) geometry including casing, soil/rock strata, piezometric levels, and magnitude as well as direction of design loadings.
 - d) Design criteria including soil/rock shear strengths (friction angle and cohesion), unit weights, ground/grout bond values, micropile drilled hole diameter, and assumptions for each soil/rock strata.

- e) Factors of safety used on the ground to grout bond.
- f) Structural design calculations for the proof testing load frame, reaction piles and connections to both the reaction piles and micropiles. Geotechnical calculations shall also be submitted to indicate that a minimum factor of safety of 2.5 against failure exists for the reaction piling.
- 2. Shop Drawings including the following:
 - a) Plan view of the project showing:
 - 1) All proposed micropiles with each labeled with a unique identification number.
 - 2) Locations of subsurface exploration borings plotted and labeled.
 - 3) Proposed overall sequence of construction.
 - 4) Locations of micropiles to be proof tested.
 - b) Elevation view of project showing:
 - 1) The location of the existing substructures and all soil boring data plotted with all major changes in soil type or stratification identified.
 - 2) The proposed micropile lengths plotted at each substructure as well as the bottom of casing, top of bonded length, total length and final tip elevations indicated.
 - 3) All general notes for constructing the micropiles.
 - c) Micropile typical section showing:
 - 1) The proposed typical micropile configuration(s) including steel casing, tension reinforcement sizes, and average grouted diameters (in both the cased and bonded lengths).
 - 2) Step-by-step installation procedure(s) including casing advancement, grouting elevations, re-grouting, etc.
 - 3) Tension reinforcement centralizers and spacer locations and details.
 - 4) Casing splice details.
 - d) Anchorage head assembly detail including tension reinforcement connection and required weld sizes.
 - e) Any revisions to details shown on the contract plans necessary to accommodate the micropile system intended for use.

f) Micropile proof testing sheet showing:

- 1) Load frame and reaction pile connection for proof testing production piles.
- 2) Jack, pressure gauge and load cell calibration curves.
- g) The grout mix design and procedures for monitoring and recording the grout depth, volume and pressure during the grouting process.

Do not start work on any micropile until the shop drawings have been approved by the Engineer. The approval does not relieve the Contractor of any responsibility under this contract for the successful completion of the work.

F. Preconstruction Meeting

Conduct a micropile preconstruction meeting with the Drilling Superintendent, the Resident or Bridge Maintenance Engineer and/or his or her representatives, the Bridge Construction Engineer and the Geotechnical Operations Engineer to discuss construction and inspection of the micropiles. This meeting should occur after the construction sequence plan has been approved.

G. Rock Socket

When required by a note on plans, provide a minimum penetration into rock as directed by the Engineer.

2.0 MATERIALS

All materials are to be as specified or better, and as approved by the Engineer. Submit requests for substitutions to the Engineer 14 calendar days before intended installation. The materials used for the construction of the micropiles must satisfy the following requirements:

A. Reinforcement Steel

Micropiles reinforcement must consist of single or multiple elements of 150 ksi (1034 MPa) (f_u) high strength threadbars or deformed bars conforming to ASTM A722.

B. Steel Couplers

Prestressing steel couplers must be capable of developing 95 percent of the minimum specified ultimate tensile strength of the tension reinforcement steel.

C. Grout

Use grout that meets the requirements outlined in the Grout for Structures Special Provision (See Grout for Structures Special Provision).

Use grouting equipment that includes a mixer capable of producing a grout free of lumps and undispersed cement. Use a positive displacement grout pump. Equip the pump with a pressure gauge to monitor grout pressures at the nozzle, using a gauge capable of measuring pressures of at least 150 psi (1035 kPa), or twice the actual grout pressures used. Size the grouting equipment to enable the micropile to be grouted in one continuous operation. Use mixing and storage times that do not cause excessive temperature build-up in the grout. Use a mixer capable of continuously agitating the grout.

D. Fine Aggregate

If sand-cement grout is used, sand must conform to the requirements for fine aggregates according to Section 1014 of the Standard Specifications.

E. Spacers:

Spacers for separation of elements of a multi-element tension reinforcement must permit the free flow of grout. Use spacers fabricated from plastic, steel or material that is not detrimental to the reinforcement. Wood spacers will not be allowed. Place spacers along the total length of the micropile so that the steel will bond to the grout. Locate spacers at 10 foot (3 m) maximum centers with the upper one located a maximum of 5 feet (1.5 m) from the top of the micropile and the lower one located a maximum of 5 feet (1.5 m) from the bottom of the bonded length.

1) Centralizers

Use centralizers fabricated from plastic, steel or material that is not detrimental to the reinforcing steel. Wood centralizers will not be allowed. Centralizers must be able to maintain the reinforcement position and alignment so that a minimum of 1.5 inches (38 mm) of grout cover is obtained at all locations along micropile length. Locate centralizers on 5 foot (1.5 m) maximum centers with the lower one located 1 foot (0.3 m) from the bottom of the bonded length.

2) Anchorage head assembly

Submit the materials properties, dimensions, and design details for the micropile anchorage head assembly components proposed by the Contractor to transfer the axial, shear, and moment design loads from the micropile to the pile cap. Anchorage components may include bearing plates, shear studs, anchorage rebars, and other approved components.

3) Permanent steel casing

Permanent steel casing shown on the contract plans has been designed to withstand lateral and vertical forces imposed by the structure and future scour. Submit any changes to the permanent casing to the Engineer for review and approval. Spiral weld pipe will not be allowed.

3.0 CONSTRUCTION REQUIREMENTS

The Contractor, utilizing his/her expertise, is responsible for interpreting the data from the Subsurface Inventory and performing additional borings, as he/she feels necessary, to be fully familiar with the existing conditions in order to design, install and successfully test the micropiles as specified.

A. Drilling Method

Use rotary drilling, percussion drilling or an approved alternate drilling method to construct the micropiles in a manner that does not result in the loss of drilling fluid, drilling spoils, grout or any other contaminates into the creek. The method of installation used must prevent loss of ground around the drilled hole that may be detrimental to the structure. The drill hole must be open along its full length at the design minimum drill hole diameter prior to placing reinforcement and grout. Temporary casing or other approved method of micropile drill hole support will be required in caving or unstable ground to permit the micropile shaft to be formed to the minimum design drill hole diameter.

B. Drilling Spoil Disposal

Dispose of drilling spoils in accordance with Section 802 of the Standard Specifications and as directed by the Engineer. Drilling spoils consist of all excavated material including water removed from the excavation either by pumping or drilling tools.

C. Obstructions

Notify the Engineer immediately, if an obstruction is encountered. An obstruction is defined as any object (such as but not limited to, boulders, logs, old foundations etc.) that cannot be drilled through using normal casing advancement techniques. Upon concurrence of the Engineer, the Contractor may begin working to core, break up, push aside, or remove the obstruction unless relocating the micropile would be less expensive.

E. Permanent Casing Installation

Permanent casing may be any type of flush joint steel of the nominal diameter shown on the plans and appropriate lengths. The casing must be capable of advancing the hole through the soil strata as indicated in the boring data or any other data the Contractor may have obtained.

F. Reinforcement Placement

Place reinforcement prior to grouting and before the temporary casing (if used) is withdrawn. Insert reinforcement to the desired depth without undue stress or difficulty (not driven or forced). When the reinforcement cannot be completely inserted it shall be removed and the drill hole cleaned or re-drilled to permit insertion. The

reinforcement shall be free of soil, grease, or oil that might reduce the grout to bar bond.

G. Grout Placement

Grout the micropiles the same day the load transfer bond length is drilled. Use grout free of any lumps and undispersed cement. Measure and record the grout volumes and pressures during the placement operation. Use a pump equipped with a grout pressure gauge at the pump and a second gauge placed at the point of injection at the top of the casing to monitor grout pressures. Use gauges that are capable of measuring pressures of at least 150 psi (1.0 MPa) or twice the actual grout pressures used, whichever is greater. Keep the grout in agitation prior to mixing and place within one hour of mixing. Size the grouting equipment to enable each pile to be grouted in one continuous operation. Inject the grout from the lowest point of the drill hole (through grout tubes, casing, drill rods, etc.) and continue until uncontaminated grout flows from the top of the micropile. Extract temporary casing, if used, in stages ensuring that, after each length of casing is removed, the grout level is brought up to ground level before the next length is removed. The casing or tremie pipe must always extend below the level of the grout in the drill hole. Upon completion of grouting, the grout tube or access valve may remain in the drill hole and anchorage head assembly provided it is filled with grout. Control the grout take and pressure to prevent any heave of the ground surface or foundations.

H. Micropile Tolerance

The following construction tolerances apply to all production micropiles:

- 1) Construct the micropiles to within 3 inches (75 mm) of the plan location.
- 2) Install the permanent casing vertical. Do not exceed a 2.0% out of vertical plumbness
- 3) Install the permanent casing to no more than 1 inch (25 mm) above and no more than 2 inches (50 mm) below the plan elevation.

4.0 MICROPILE PROOFLOAD TEST

Install and proof load test selected production micropiles. Incrementally load the micropiles according to ASTM D 1143 for the compression loading and ASTM D 3689 for the tension loading except as modified herein. Do not perform any testing until the grout has acquired sufficient strength to preclude crushing during application of the test loadings.

A. Procedure

The structural capacity of the micropiles to be tested will need to be increased such that the peak test tension and compression loadings applied to that micropile do not exceed 80% of its structural capacity, including steel yielding in tension, steel yielding or buckling in compression or grout crushing in compression. All costs

associated with the design and materials required to satisfy this shall be included in the bid price for Micropile Proof Load Test (for the proof tested micropiles).

Install "tell tale" rods in sleeves to the bottom of the casing and to the tip of the micropile allowing readings to be taken to give indications of how much load is resisted by the different segments of the micropile. Other instrumentation such as strain gauges may also be used as an alternative to the tell tales and must be approved by the Engineer. Record micropile movement record to the nearest 0.001 inch (25 micron) with respect to an independent fixed reference point immediately prior to loading and for each increment of load.

Position the jack at the beginning of the test so that unloading and repositioning during the test will not be required. For micropiles that require both compression and tension loading, perform compression loading first. Use dial gauges capable of measuring displacements to 0.001 inch (0.025 mm) to measure micropile movement of the jack from an independent reference point. Use two (2) gauges on either side of the micropile, if the test setup requires reaction against the ground or a single row of reaction piles. Use a reaction frame and piles that are of an adequate stiffness to prevent excessive deformation, misalignment or racking under peak loading. Do not use any part of the existing structure to assist in the load frame and reaction pile design.

Place the stressing equipment over the micropile in such a manner that the jack, load cell, and load test reaction frame are axially aligned with the anchorage head assembly reinforcement. Position the gauges with sufficient travel so the total micropile and tell tale movements can be measured without resetting the devices.

Apply and measure the test loads with a hydraulic jack and pressure gauge. Use a pressure gauge that is graduated in 72 psi (500 kPa) increments or less. Use a jack and pressure gauge that have a pressure range that does not exceed twice the anticipated maximum test pressure. Use a jack with a ram with sufficient travel to allow the test to be done without resetting the equipment. Monitor the creep test load hold during testing with both the pressure gauge and electronic load cell. Use the load cell to accurately maintain a constant load hold during the creep test load hold increment of the testing.

Construct a graph showing a plot of anchorage head assembly movement and both tell tale deflections versus test loading (both tension and compression) for each load increment in the test schedule including the rebound measurements after unloading.

The acceptance criteria, demonstrating a successful test, are as follows:

1) The micropile must carry the design axial loading (1.0 Design Load) with a deflection of the anchorage head assembly less than the maximum deflection value shown on the contract plans, as measured from its original unloaded position.

- 2) The creep rate of the micropile does not exceed 0.04 inches (1mm)/log cycle of time (1 to 10 minutes) or 0.08 inches (2mm)/log cycle of time (6 to 60 minutes) at the end of the 1.33 Design Load increment. The creep rate must be linear or decreasing throughout the creep load hold period.
- 3) Failure does not occur at the maximum Design Load increment. Failure is defined as the load at which attempts to further increase the test load simply result in continued micropile movement.

B. Micropile Proof Load Test

Install a set of production micropiles at a substructure designated to have a proof test loading, prior to the installation of the remaining production micropiles within that substructure. A set of production micropiles is defined as the number of micropiles required to proof test a production micropile and provide the proof test frame reaction capacity. The substructures that will have a production micropile proof tested and which adjacent substructures are covered by that proof test are indicated on the contract plans.

The maximum compression and maximum tension design loadings are indicated on the contract plans for each substructure. Incrementally apply the loadings according to the following cyclic proof load test schedule:

PROOF TEST LOADING SCHEDULE

Increment	Loading Applied	Increment	Loading Applied
1	0.05 Design Load	7	1.75 Design Load
2	0.25 Design Load	8	2.00 Design Load
3	0.50 Design Load	9	2.25 Design Load
4	0.75 Design Load	10	2.50 Design Load
5	1.00 Design Load	11	0.05 Design Load
6	1.33 Design Load		

Reset the Dial gauges to zero after the initial 0.05 Design Load increment is applied. Start the load holding period as soon as each load increment is fully applied and hold for 1 minute for each increment with the exception of the 1.33 load increment which shall have a 10 minute load hold. If the top of the micropile movement between the 1 minute and 10 minute time intervals exceeds 0.04 inches (1 mm), hold the 1.33 load for an additional 50 minutes. Re-pump the jack, as necessary, in order to maintain a constant load during this period. Measure and record the micropile deflections at the end of the load holding period. Monitor the 1.33 load hold increment and record the

micropile movements at 1, 2, 3, 5, 6, and 10 minutes and if extended record at the 20, 30, 50, and 60 minutes during the load hold.

In the event that a production micropile fails the proof test acceptance criteria, the Contractor shall re-evaluate his/her design and construction procedures, make the necessary changes and install an additional non-production micropile and additional anchor pile(s), outside the proposed footing and proof test the revised micropile. Repeat the above process until a successful micropile passes the acceptance criteria. Upon completion of the successful micropile proof load test, install the remaining production micropiles in that substructure using the same design and installation procedure.

5.0 SCHEDULING AND RESTRICTIONS

After the first micropile is successfully completed, do not make any significant changes in construction methods, equipment or materials, unless approved by the Engineer.

If caving or sloughing occurs, compensation will not be provided for additional grout to fill the resulting voids.

For the first 24 hours after a micropile has achieved its initial set (as determined by the Engineer), do not allow any "excessive" vibrations (as determined by the Engineer) within 20 feet (6 m) of the micropile.

In the event that the procedures described herein are performed unsatisfactorily, the Engineer reserves the right to shut down the construction operations. If the integrity of the micropile is in question, the Engineer reserves the right to reject the micropile and require remediation. Remedial measures are proposed by the Contractor and require approval of the Engineer. No compensation will be paid for losses or damage due to remedial work or any investigation of micropiles found defective or not in accordance with this special provision or the plans.

6.0 MEASUREMENT AND PAYMENT

A. Method of Measurement

1. Micropiles

The quantity of "Micropiles" to be paid for will be the linear feet (meters) of micropiles computed from elevations and dimensions, as shown on the plans, or from revised dimensions authorized by the Engineer that is excavated in concrete, water, soil, intermediate geomaterials, and rock, as determined by the Engineer.

2. Permanent Steel Casing for Micropiles

The quantity of "Permanent Steel Casing for Micropiles" to be paid for will be the linear feet (meters) of permanent steel casing as directed or required to be used. The length to be paid for will be measured along the permanent casing from the top

of the casing elevation or top of the micropile elevation, whichever is lower, to the permanent casing tip elevation. The Department will also pay for up to an additional 3 feet (1 m) of permanent casing cut off if the casing can not be installed to the permanent casing tip elevation shown on the plans. Permanent casing will be paid for only when permanent casing is authorized or when the Engineer directs the Contractor to leave a casing in place such that it becomes a permanent part of the micropile. No payment will be made for temporary steel casings that become bound or fouled during micropile construction and cannot be practically removed.

3. Micropile Proof Load Test

The quantity of "Micropile Proof Load Test" to be paid for will be at the unit bid price for each test.

B. Basis of Payment

1. Micropiles

Payment will be made at the contract unit price per linear foot (meter) for "Micropiles". Such payment will include, but is not limited to, furnishing all labor, tools, equipment, materials including grout complete and in place and all incidentals necessary to core through the existing bridge footings, excavate the micropiles and complete the work as described in this special provision. No additional payment will be made for coring through the concrete of the existing bridge footings. No additional payment will be made for a rock socket or rock excavation. No additional payment will be made for slurry use. No additional payment will be made for temporary casing and/or de-watering required to install the micropiles.

2. Permanent Steel Casing for Micropiles

Payment will be made at the contract unit price per linear foot (meter) for "Permanent Steel Casing for Micropiles". Such payment will include, but is not limited to, furnishing all material, labor, tools, equipment and all incidentals necessary to install the casing in the micropile excavation.

3. Micropile Proof Load Test

Payment will be made at the contract unit price per each for "Micropile Proof Load Test". Such payment will include, but is not limited to, furnishing all material, labor, tools, equipment and all incidentals necessary to perform the Micropile Proof Load Test.

B-4013 Bid Alternate Special Provision

SUBSTRUCTURE BID ALTERNATES:

The Contractor's attention is called to the fact that there is a bid alternate for the substructures of this project. The Contractor must bid on either Alternate 1 (micropile foundations) or Alternate 2 (pipe pile foundations).