STATE OF NORTH CAROLINA
DIVISION OF HIGHWAYS

Project No. Sheet No.

U-3613 B Sig. 1

Vicinity

PITT COUNTY

LOCATION: GREENVILLE- SR 1708 (FIRE TOWER ROAD) FROM WEST OF NC 11-903 TO EAST OF SR 1709 (COREY ROAD

TYPE OF WORK: TRAFFIC SIGNALS AND FIBER OPTIC COMMUNICATIONS CABLE

Refer to "Roadway Standard Drawings NCDOT" dated January 2002 and "Standard Specifications for Roads and Structures" dated January 2002.

02-0717

Sheet #	Signal Inventory
Sig. 1	
Sig. 2	02-0426
Sig. 10	02-0422
Sig. 18	02-0870
Sig. 22	02-0871
Sig. 26	02-0869
Sig. 30	<i>02-0717</i>
Sig. 40	
Sig. 51	-

Index of Plans Location/Description

Metal Pole Details

Location/Description	
Title Sheet	
NC 11-903 (Memorial Drive) at SR 1152 (Dr. Fulford Drive Road)/SR 170	8 (Fire Tower Road)
SR 1708 (Fire Tower Road) at SR 1700 (Old Tar Road/Evans Street)	
SR 1708 (Fire Tower Road) at Pine Branches Road and Entrance to Paran	nore Farms
SR 1708 (Fire Tower Road) at Bayswater Road	
SR 1708 (Fire Tower Road) at Evans Drive/Ashcroft Drive	
SR 1708 (Fire Tower Road) at SR 1709 (Corey Road) and Entrance to Ap	artments
Communications Cable Routing Plans	

TRAFFIC MANAGEMENT AND SIGNAL SYSTEMS UNIT
Contacts:

D. Y. Ishak - Signals and Geometrics Contracts Engineer
G. C. Brown, PE - Signal Equipment Design Engineer
G. G. Murr, Jr., PE - Traffic Management Systems Engineer

Prepared in the Office of:
DIVISION OF HIGHWAYS

TRAFFIC ENGINEERING AND SAFETY SYSTEMS
BRANCH

In a general in the Office of:
DIVISION OF HIGHWAYS

TRAFFIC ENGINEERING AND SAFETY SYSTEMS

BRANCH

-MAY-2006 |4:59 :\ıts sıgnals\workgroups\t

122 N. McDowell St., Raleigh, NC 27603

(program card and set switches as shown below)

- 1. TO PREVENT "FLASH-CONFLICT" PROBLEMS, WIRE ALL UNUSED LOAD SWITCHES TO FLASH RED. VERIFY THAT SIGNAL HEADS FLASH IN ACCORDANCE WITH THE SIGNAL PLANS.
- 2. TO PREVENT RED FAILURES ON UNUSED MONITOR CHANNELS, TIE UNUSED LOAD SWITCH RED OUTPUTS 7, 8, 9, 10, 11, 12, 13, 14, 15 AND 16 TO LOAD SWITCH AC+ BY INSERTING A JUMPER PLUG IN THE UNUSED LOAD SWITCH SOCKET FROM PIN 1 (LS AC+) TO PIN 3 (RED OUT). MAKE SURE ALL FLASH TRANSFER RELAYS ARE IN PLACE.
- 3. PROGRAM CONTROLLER TO START UP IN PHASES 2 AND 6 GREEN.
- 4. SET POWER-UP FLASH TIME TO 10 SECONDS AND IMPLEMENT ON THE MALFUNCTION MANAGEMENT UNIT. SET CONTROLLER POWER-UP FLASH TIME TO O SECONDS.
- 5. ENABLE SIMULTANEOUS GAP-OUT FEATURE, ON CONTROLLER UNIT, FOR ALL PHASES.
- 6. PROGRAM DETECTORS IN ACCORDANCE WITH THE MANUFACTURER'S INSTRUCTIONS TO ACCOMPLISH THE DETECTION SCHEMES SHOWN ON THE SIGNAL DESIGN PLANS.
- 7. PROGRAM DETECTOR CALL DELAY AND EXTENSION TIMING ON THE CONTROLLER. UNLESS OTHERWISE SPECIFIED.
- 8. SET ALL DETECTOR CARD UNIT CHANNELS TO "PRESENCE" MODE.
- 9. PROGRAM PHASES 2 AND 6, ON CONTROLLER UNIT, FOR VOLUME DENSITY OPERATION.
- 10. THE CABINET AND CONTROLLER ARE A PART OF THE GREENVILLE CITY SYSTEM.

CABINET CONTRACTOR SUPPLIED TS-2 NC-8A

EQUIPMENT INFORMATION

CONTROLLER.....CONTRACTOR SUPPLIED

CABINET MOUNT.....BASE

LOAD SWITCHES USED.....1,2,3,4,5,6

OLA.....NOT USED

OLB.....NOT USED

OLC.....NOT USED

OLD.....NOT USED

LOADBAY POSITIONS.....16

FIELD CONNECTION HOOK-UP CHART																			
PHASE	1	2		3	4	}	Ę	5	6	7	8	PED	PED	PED	8 PED	OLA	OLB	OLC	OLD
SIGNAL HEAD NO.	11	21,22	31	32	41	42	42	51	61,62	NU	NU	NU	NU	NU	NU	NU	NU	NU	NU
RED		2R	3R	3R	4R	4R			6R										
YELLOW		2Y	3Y	3Y	4Y	4Y			6Y										
GREEN		2G	3G	3G	4G	4G			6G										
RED ARROW	1R							5R								·			
YELLOW ARROW	1Y						5Y	5Y											
GREEN ARROW	1G		3G		4G		5G	5G			·								

NU = Not Used

DETECTOR RACK SET-UP DETAIL

INSERT DETECTOR CARDS IN RACK ACCORDING TO THE DETAIL SHOWN BELOW. PARTICULAR DETECTOR CHANNELS WILL CALL PHASES INDICATED.

> <u>NOTE</u> BE SURE TO PROGRAM DETECTOR TYPES AND TIMERS (EXTEND AND DELAY) AS SHOWN ON THE SIGNAL PLANS.

WIRE LOOPS TO TERMINALS ON LOOP PANEL AS SHOWN THE CHART BELOW

CHART BELOW
LOOP PANEL TERMINALS
L1A,L1B
L2A,L2B
L3A,L3B
L4A,L4B
L5A,L5B
L6A,L6B
L7A,L7B
L8A,L8B
L9A,L9B
L10A,L10B
L11A,L11B
L12A,L12B
L13A,L13B
L14A,L14B
L15A,L15B
L16A,L16B
L17A,L17B
L18A,L18B
L19A,L19B
L20A,L20B
L21A,L21B
L22A,L22B
L23A,L23B
L24A,L24B

CONTROLLER FUNCTION TIMING

	LEHMO	TIME	l	
DETECTOR NO.	FUNCTION		FEATURE	TIME(SEC)
1	ø	1		
2				·
3				
4				·
5	ø	2		
6	ø	2		
7				
8				
9	ø	3	DELAY	5
10				
11				
12	ø	4	DELAY	3
13	ø	5		
14	ø	5	DELAY	15
15	ø	6		
16	ø	6		
17	ø	6		
18				
19				
20			è	
21				
22				
23				
24				

ACCORDING TO THE SCHEDULE SHOWN IN THE CHART BELOW

1	Ø	1		
2				-
3				
4				·
5	ø	2		
6	ø	2		
7				
8			·	
9	ø	3	DELAY	5
10				
11			·	
12	ø	4	DELAY	3
13	ø	5		
14	ø	5	DELAY	15
15	ø	6		
16	ø	6		
17	ø	6		
18				
19				
20				
21				
22				
23				
24				

PROGRAM CONTROLLER DETECTORS

DETECTOR	DETECTOR RACK #1											
	S	сн1 L1	S	CH1 L5	CH1 NOT	CH1 L9	сн1 L15	сн1 L13	S	S	S	
57	L O T	ø 1	3 L O T	ø 2	USED	ø 3	ø6	ø 5	S L O T) LOT) L O T	
BIU	E M P T Y	cH2 NOT USED	EMPTY	сн2 L6 Ø 2	сн2 L12 Ø4	CH2 NOT USED	CH2 L16 Ø6	CH2 L14 Ø5	EMPTY	EMPTY	E M P T Y	

DETECTOR	RACK #	#2		
DILL	SLOT	сн1 L17 Ø6	JOLO	S L O T
BIU	E M P T Y	ch2 NOT USED	E M P T Y	E M P T Y

LOAD SWITCH ASSIGNMENT DETAIL

(program controller according to schedule in chart below)

ION				
ø7				
ED				
1				
3				
>				
)				

THIS ELECTRICAL DETAIL IS FOR THE SIGNAL DESIGN: Ø2-Ø426 T1 DESIGNED: January 2006 SEALED: 03-03-06 REVISED: NA

Signal Upgrade - Temporary 1

NC 11 - 903 (Memorial Drive) SR 1152 (Dr. Fulford Drive Rd.)

SR 1708 (Fire Tower Rd.) Pitt County PLAN DATE: February 2006 REVIEWED BY: PREPARED BY: James Peterson REVIEWED BY:

INIT. DATE

*	THIS DETECTOR IS EQUIPPED	WITH DELAY AND EXTEND TIMES	RS. PROGRAM THE TIMING REQUIRED
	FOR THIS DETECTOR CHANNEL	ON THE DETECTOR UNIT. NOT	THE CONTROLLER.

NOTES

- 1. TO PREVENT "FLASH-CONFLICT" PROBLEMS, WIRE ALL UNUSED LOAD SWITCHES TO FLASH RED. VERIFY THAT SIGNAL HEADS FLASH IN ACCORDANCE WITH THE SIGNAL PLANS.
- 2. TO PREVENT RED FAILURES ON UNUSED MONITOR CHANNELS, TIE UNUSED LOAD SWITCH RED OUTPUTS 7, 8, 9, 10, 11, 12, 13, 14, 15 AND 16 TO LOAD SWITCH AC+ BY INSERTING A JUMPER PLUG IN THE UNUSED LOAD SWITCH SOCKET FROM PIN 1 (LS AC+) TO PIN 3 (RED OUT). MAKE SURE ALL FLASH TRANSFER RELAYS ARE IN PLACE.
- 3. PROGRAM CONTROLLER TO START UP IN PHASES 2 AND 6 GREEN.
- 4. SET POWER-UP FLASH TIME TO 10 SECONDS AND IMPLEMENT ON THE MALFUNCTION MANAGEMENT UNIT. SET CONTROLLER POWER-UP FLASH TIME TO 0 SECONDS.
- 5. ENABLE SIMULTANEOUS GAP-OUT FEATURE, ON CONTROLLER UNIT, FOR ALL PHASES.
- 6. PROGRAM DETECTORS IN ACCORDANCE WITH THE MANUFACTURER'S INSTRUCTIONS TO ACCOMPLISH THE DETECTION SCHEMES SHOWN ON THE SIGNAL DESIGN PLANS.
- 7. PROGRAM DETECTOR CALL DELAY AND EXTENSION TIMING ON THE CONTROLLER, UNLESS OTHERWISE SPECIFIED.
- 8. SET ALL DETECTOR CARD UNIT CHANNELS TO "PRESENCE" MODE.
- 9. PROGRAM PHASES 2 AND 6, ON CONTROLLER UNIT, FOR VOLUME DENSITY OPERATION.
- 10. THE CABINET AND CONTROLLER ARE A PART OF THE GREENVILLE CITY SYSTEM.

PROJECT REFERENCE NO. SHEET NO. Sig.5 U-3613 B

FIELD CONNECTION HOOK-UP CHART 8 | PED | PED | PED | OLA | OLB | OLC | OLD | PHASE 21,22 31 32 41 42,43 63 43 51 61 NU 32 HEAD NO. 2R 3R 3R 4R 4R 2Y 3Y 3Y 4Y YELLOW 2G | 3G | 3G | 4G | 4G 5R ARROW YELLOW 1Y 4Y 5Y 5Y ARROW 1G 1G 3G 4G 5G 5G 4G ARROW

NU = Not Used

DETECTOR RACK SET-UP DETAIL

INSERT DETECTOR CARDS IN RACK ACCORDING TO THE DETAIL SHOWN BELOW. PARTICULAR DETECTOR CHANNELS WILL CALL PHASES INDICATED.

> NOTE BE SURE TO PROGRAM DETECTOR TYPES AND TIMERS (EXTEND AND DELAY) AS SHOWN ON THE SIGNAL PLANS.

WIRE LOOPS TO TERMINALS IN THE CHART BELOW

IN THE C	CHART BELOW
LOOP NO.	LOOP PANEL TERMINALS
	L1A,L1B
1B	L2A,L2B
1C	L3A,L3B
1D	L4A,L4B
2A	L5A,L5B
2B	L6A,L6B
	L7A,L7B
	L8A,L8B
3A	L9A,L9B
	L10A,L10B
	L11A,L11B
	L12A,L12B
5A	L13A,L13B
5B	L14A,L14B
6A	L15A,L15B
6B	L16A,L16B
6C	L17A,L17B
7A	L18A,L18B
	L19A,L19B
8B	L20A,L20B
	L21A,L21B
	L22A,L22B
	L23A,L23B
	L24A,L24B

ACCORDING TO THE SCHEDULE SHOWN IN THE CHART BELOW

DETECTOR NO.	FUNCTION		FEATURE	TIME(SEC)	
1					
2	ø	1	-		
* 3	ø	3	DC/EC	5/2	
4		3	DELAY	15	
5		2			
6	ø	2			
7					
8					
9	ø	3	DELAY	100	
10					
11					
12			-		
13		5			
14	L	5	DELAY	15	
15		6			
16		6			
17	<u> </u>	6			
18	ø	4	DELAY	3	
19	-1				
20	ø	3	DELAY	3	
21					
22					
23					
24	<u> </u>	***************************************			

PROGRAM CONTROLLER DETECTORS

TIMING

CONTROLLER

DETECTOR	RACK	#1									
DTU	CH1 L3 Ø3	CH1 NOT USED	コロアの	сн1 L5 Ø 2	SLOT	сн1 L9 ø 3	сн1 L15 Ø6	сн1 L13 Ø5	SLOL	SLOT	S L O T
BIU	сн2 L4 Ø3	сн2 L2 Ø 1	E M P T Y	сн2 L6 Ø2	E M P T Y	CH2 NOT USED	сн2 L16 Ø6	CH2 L14 Ø5	EMPTY	E M P T Y	E M P T Y

DETECTOR	RACK #	‡ 2		
DTI	CH1 NOT USED	сн1 L17 Ø6	HOTS	SLOT
BIU	сн2 L20 Ø3	сн2 L18 Ø4	E M P T Y	EMPTY

EQUIPMENT INFORMATION

ONTROLL	ER	CONTRACTOR	SUPPLIED		
ABINET	• • • • • • • • • • • • • • • • • • • •	CONTRACTOR	SUPPLIED	TS-2	NC-8A
	MOUNT				
		4.0			

LOADBAY POSITIONS.....16 LOAD SWITCHES USED.....1,2,3,4,5,6 OLA.....NOT USED OLB.....NOT USED

OLC.....NOT USED OLD.....NOT USED

DETECTOR	RACK	#1									
	CH1	CH1		CH1		CH1	CH1	CH1			
	L3	NOT	S	L5	S	L9	L15	L13	S	S	S
·	ø 3	USED	L 0	ø 2	L O	ø 3	ø6	ø 5	L	L	L Q
DILL	*		T		T				Т	T	T
BIU	CH2	CH2	E	CH2	E	CH2	CH2	CH2	E	E	E
	L4	L2	M P	L6	M P	NOT	L16	L14	M P	M P	M P
	øЗ	ø 1	T	Ø 2	T	USED	ø6	ø 5	T	T	T
					T						,

LOAD SWITCH ASSIGNMENT DETAIL

(program controller according to schedule in chart below)

LOAD SWITCH NUMBER	FUNCTION
1	ø1
2	ø2
3	ø3
4	ø4
5	ø5
6	ø6
. 7	ø7
8	ø8
9	2 PED
10	4 PED
11	6 PED
12	8 PED
13	OLA
14	OLB
15	OLC
16	OLD
	

THIS ELECTRICAL DETAIL IS FOR THE SIGNAL DESIGN: Ø2-Ø426 T2 DESIGNED: January 2006 SEALED: 03-03-06 REVISED: NA

Signal Upgrade - Temporay 2

ELECTRICAL AND PROGRAMMING DETAILS FOR: NC 11 - 903 (Memorial Drive) SR 1152 (Dr. Fulford Drive Rd.)

SR 1708 (Fire Tower Rd.)

Division 2 Pitt County
PLAN DATE: February 2006 REVIEWED BY: PREPARED BY: James Peterson REVIEWED BY: REVISIONS INIT. DATE

* THIS DETECTOR IS EQUIPPED WITH DELAY AND EXTEND TIMERS. PROGRAM THE TIMING REQUIRED FOR THIS DETECTOR CHANNEL ON THE DETECTOR UNIT, NOT THE CONTROLLER.

(program card and set switches as shown below)

NOTES

- 1. TO PREVENT "FLASH-CONFLICT" PROBLEMS, WIRE ALL UNUSED LOAD SWITCHES TO FLASH RED. VERIFY THAT SIGNAL HEADS FLASH IN ACCORDANCE WITH THE SIGNAL PLANS.
- 2. TO PREVENT RED FAILURES ON UNUSED MONITOR CHANNELS, TIE UNUSED LOAD SWITCH RED OUTPUTS 9,10,11,12,14,15 & 16 TO LOAD SWITCH AC+ BY INSERTING A JUMPER PLUG IN THE UNUSED LOAD SWITCH SOCKET FROM PIN 1 (LS AC+) TO PIN 3 (RED OUT). MAKE SURE ALL FLASH TRANSFER RELAYS ARE IN PLACE.
- 3. PROGRAM CONTROLLER TO START UP IN PHASES 2 AND 6 GREEN.
- 4. SET POWER-UP FLASH TIME TO 10 SECONDS AND IMPLEMENT ON THE MALFUNCTION MANAGEMENT UNIT. SET CONTROLLER POWER-UP FLASH TIME TO O SECONDS.
- 5. ENABLE SIMULTANEOUS GAP-OUT FEATURE, ON CONTROLLER UNIT, FOR ALL PHASES.
- 6. PROGRAM DETECTORS IN ACCORDANCE WITH THE MANUFACTURER'S INSTRUCTIONS TO ACCOMPLISH THE DETECTION SCHEMES SHOWN ON THE SIGNAL DESIGN PLANS.
- 7. PROGRAM DETECTOR CALL DELAY AND EXTENSION TIMING ON THE CONTROLLER, UNLESS OTHERWISE SPECIFIED.
- 8. SET ALL DETECTOR CARD UNIT CHANNELS TO "PRESENCE" MODE.
- 9. PROGRAM PHASES 2 AND 6, ON CONTROLLER UNIT, FOR VOLUME DENSITY OPERATION.
- 10. THE CABINET AND CONTROLLER ARE A PART OF THE GREENVILLE CITY SYSTEM.

EQUIPMENT INFORMATION

CONTROLLER......CONTRACTOR SUPPLIED CABINETCONTRACTOR SUPPLIED TS-2 NC-8A

CABINET MOUNT.....BASE LOADBAY POSITIONS.....16

LOAD SWITCHES USED.....1,2,3,4,5,6,7,8,13

OLA.....1+8 OLB.....NOT USED

OLC.....NOT USED OLD.....NOT USED

ACCORDING TO THE SCHEDULE

NO.	<u>TE</u>	
BE SURE T	O PROGRAM	
DETECTOR	TYPES AND	
TIMERS (E	XTEND AND	
DELAY) AS	SHOWN ON	
THE SIGNA	L PLANS.	
DETECTOR TO DET. NUMBERS	OLLER SYSTEM LOCAL CONT. AS SHOWN IN BELOW	
CONTROLLER SYS. DET. NO.	LOCAL CONT. DETECTOR NO.	
1	21	
~ 2	22	
3		
4		
5		
6	,	

DETECTOR RACK SET-UP DETAIL

INSERT DETECTOR CARDS IN RACK ACCORDING TO THE DETAIL SHOWN BELOW.

PARTICULAR DETECTOR CHANNELS WILL CALL PHASES INDICATED.

WIRE LOOPS TO TERMINALS

ON LOOP PANEL AS SHOWN

IN THE CHART BELOW

LOOP NO

LOOP PANEL TERMINALS

L1A,L1B

L2A,L2B

L3A,L3B

L4A,L4B

L5A,L5B

L6A,L6B

L7A,L7B

L8A,L8B

L10A.L10B L11A,L11B

L12A,L12B L13A,L13B L14A,L14B

L15A,L15B L16A,L16B

L17A,L17B L18A,L18B L19A,L19B

L20A, L20B L21A,L21B

L22A,L22B

L23A,L23B

L24A, L24B

7

L9A,L9B

		•					
SHOWN	IN	TH	łΕ	CHA	₹T	В	ELOW
CONTROLLER	EIIA	ICT	TON				MING
DETECTOR NO.	FUN	101	ION	FEA	TURI	1.1	TIME(S
1	ø		1				
2	d	,	1				

PROGRAM CONTROLLER DETECTORS

		,	121112 (020)
1	ø 1		
2	ø 1		
3	ø 1	DELAY	15
4	ø 1	DELAY	15
5	ø 2		
6	ø 2		
7	Ø 2		
8			
9	ø 3		
10	Ø 3		
11	ø 4		
12	Ø 4		
13	ø 5		·
14	Ø 5	DELAY	15
15	Ø 6		
16	Ø 6		
17	ø 6		
18	Ø 7	DELAY	3
19	Ø 8	DELAY	100
* 20	Ø 8	DC/EC	5/2
21	SYS		
22	SYS		
23			
24			

DETECTOR	RACK	¥ 1									
	сн1 L3 Ø 1	сн1 L1 Ø 1	сн1 L7 Ø2	сн1 L5 Ø 2	сн1 L11 Ø4	сн1 L9 Ø3	сн1 L15 Ø6	CH1 L13 Ø5	SLOT	SLOT	S L O T
BIU	сн2 L4 Ø 1	сн2 L2 Ø 1	cH2 NOT USED	сн2 L6 Ø 2	сн2 L12 Ø4	CH2 L10 Ø3	сн2 L16 Ø6	CH2 L14 Ø5	EMPTY	EMPTY	E M P T Y
DETECTOR	R RACK	#2									
	CH1	CH1		CH1							

DETECTOR	RACK #	#2		
	CH1	CH1		CH1
	L19	L17	S	L21
	ø 8	ø6	L O T	SYS
			U	DET
BIU			•	
D10	CH2	CH2	E	CH2
	L20	L18	E M P T	L22
	ø8	Ø 7	Ť	SYS
		•	Υ	DET
	*			

* THIS DETECTOR IS EQUIPPED WITH DELAY AND EXTEND TIMERS. PROGRAM THE TIMING REQUIRED FOR THIS DETECTOR CHANNEL ON THE DETECTOR UNIT, NOT THE CONTROLLER.

PROJECT REFERENCE NO. SHEET NO. Sig. 7 U-3613 B

		FI	ELC	C	NNC	EC	ΓΙΟ	N H	100	K-U	Р (CHA	RT					
PHASE	1	2	3	4	ξ	5	6	7	7	8	PED	PED	PED	8 PED	OLA	OLB	OLC	OLD
SIGNAL HEAD NO.	11,12	21,22	31,32	41,42	42	51	61, 62,63	63	71	81,82	NU	NU	NU	NU	13,14	NU	NU	NU
RED		2R		4R			6R			8R								
YELLOW		2Y		4Y	,		БY			8Y			·		·			
GREEN		2G		4G			6G			8G								
RED ARROW	1R		3R			5R			7R	·					13R			
YELLOW ARROW	1Y	·	3Y		5Y	5Y		7Y	7Y						13Y			
GREEN ARROW	1G		3G		5G	5G		7G	7G						13G			

NU = Not Used

ECONOLITE ASC/2-2100 OVERLAP PROGRAMMING DETAIL

(program controller as shown)

FROM MAIN MENU SELECT 2 (CONTROLLER) AND THEN 5 (OVERLAP DATA)

OVERLAP A

OVERLAP A		•	•	•	1	2	3	4	5	6	7	8	9	0	1	
STANDARD.		•	•	•	X	•	•	•	•	•-	•	X	•	•	•	
PROTECTED		•	•	•	•	•	•	•	•	•	•	•	•	•	•	
PERMITTED		•	•	•	•	•	•	•	•	•	•	•	•	•	•	
ENABLE LA	G.	•	•	•	•	•	•	•	•	•	•	•	•	•	•	
ENABLE LE	AD.	٠.	•	•	•	•	•	•	•	•	•	•		•	•	
SPARE	• •	•	•	•	•	•	•	•	•	•	•	•	•	•	•	
	AD	VAI	NCI	E GRI	EEN T	IME	R			0.0)					
	LA	G/I	LE	AD G	REEN	TIM	MER			0.0)					
	LAG/LEAD GREEN TIMER LAG/LEAD YELLOW TIME						MER	ł		0.0)					

END OF PROGRAMMING

LOAD SWITCH ASSIGNMENT DETAIL

(program controller according to schedule in chart below)

LOAD SWITCH NUMBER	FUNCTION
1	ø 1
2	ø2
3	ø3
4	ø4
5	ø5
6	ø6
7	ø 7
8	ø8
9	2 PED
10	4 PED
11	6 PED
12	8 PED
13	OLA
14	OLB
15	OLC
16	OLD

Signal Upgrade - Final

THIS ELECTRICAL DETAIL IS FOR

THE SIGNAL DESIGN: 02-0426

DESIGNED: January 2006

SEALED: 03-03-06

REVISED: NA

NC 11 - 903 (Memorial Drive)

SR 1152 (Dr. Fulford Drive Rd.) SR 1708 (Fire Tower Rd.)

Division 2 Pit	t County	Gre	enville
PLAN DATE: February 2006	REVIEWED BY:	YYWH	
PREPARED BY: James Peterson	REVIEWED BY:		
DEVICTORS		TAITT	DATE

SEAL

The contractor is responsible for verifying that the mast arm attachment height (H1) will provide the "Design Height" clearance from the roadway before submitting final shop drawings for approval. Verify elevation data below which was obtained by field measurement or from available project survey data.

Elevation Data for Mast Arm Attachment (H1)

Elevation Differences for:	Pole 1	Pole 2
Baseline reference point at © Foundation @ ground level	0.0 ft.	0.0 ft.
Elevation difference at High point of roadway surface	+2.1 ft.	+1.8 ft.
Elevation difference at Edge of travelway or face of curb	N/A	N/A

POLE RADIAL ORIENTATION

8 BOLT BASE PLATE DETAIL

See Note 6

METAL POLE No. 1 and 2

PROJECT REFERENCE NO. SHEET N
U-3613 B Sig. 8

	MAST ARM LOADING SCH	EDUL	.E	
LOADING SYMBOL	DESCRIPTION	AREA	SIZE	WEIGHT
	SIGNAL HEAD 12"-5 SECTION-WITH BACKPLATE AND ASTRO-BRAC	16.3 S.F.	42.0" W X 56.0" L	103 LBS
	SIGN RIGID MOUNTED WITH ASTRO-SIGN-BRAC	5.0 S.F.	24.0" W X 30.0" L	11 LBS
	SIGNAL HEAD 12"-3 SECTION-WITH BACKPLATE AND ASTRO-BRAC	9.3 S.F.	25.5" W X 52.5" L	60 LBS
STREET NAME SIGN	STREET NAME SIGN RIGID MOUNTED WITH ASTRO-SIGN-BRAC	12.0 S.F.	18.0" W X 96.0" L	27 LBS

NOTES

Design Reference Material

1. Design the traffic signal structure and foundation in accordance with: The 4th Edition 2001 AASHTO "Standard Specifications for Structural Supports for Highway Signs, Luminaires, and Traffic Signals, including all of the latest interim revisions. The 2002 NCDOT "Standard Specifications for Roads and Structures". The latest addenda to these specifications can be found in the traffic signal project special provisions.

The 2002 NCDOT Roadway Standard Drawings.
The traffic signal project plans and special provisions.

The NCDOT "Metal Pole Standards" located at the following NCDOT website: http://www.doh.dot.state.nc.us/preconstruct/traffic/tmssu/ws/mpoles/poles.htm

<u>Design Requirements</u>

- 2. Design the traffic signal structure using the loading conditions shown in the elevation views. These are anticipated worst case "Design loads" and may not represent the actual loads that will be applied at the time of the installation. The contractor should refer to the traffic signal plans for the actual loads that will be applied at the time of the installation.
- 3. Maximum allowable CSR for all signal supports is 0.9.
- 4. The camber design for mast arm deflection should provide an appearance of a low pitched arch where the tip or the free end of the mast arm does not deflect below horizontal when fully loaded.
- 5. A clamp-type bolted mast arm-to-pole connection may be used instead of the welded ring stiffened box connection shown as long as the connection meets all of the design requirements. This is a high strength connection. Use Direct Tension Indicators (ASTM F959) for each bolt.
- 6. Design base plate with 8 anchor bolt holes. Provide 2 inch x 66 inch anchor bolts.
- 7. The mast arm attachment height (H1) shown is based on the following design assumptions: a.Mast arm slope and deflection are not considered in determining the arm attachment height as they are assumed to offset each other.
- b. Signal heads attached to the mast arm are rigid mounted and vertically centered on the arm.

 c. The roadway clearance height for design is as shown in the elevation views.

d. The top of the pole base plate is .75 feet above the ground elevation.

- e.Refer to the Elevation Data chart for elevation differences between the proposed foundation ground level and the high point on the roadway.

 So The pole manufactures will determine the total height (H2) of each pole based on the luminoing
- 8. The pole manufacturer will determine the total height (H2) of each pole based on the luminaire height requirement of 30 feet.
- 9. The pole manufacturer will determine the total height (H2) of each pole based on the luminaire height requirement of 30 feet plus 40 inches for the CCTV Camera.
- 10. Design the luminaire support arm using design dimensions as shown on elevation views. Refer to the Radial Orientation Detail for attachment to the signal pole. Design arm end for a nominal 2 inch slip fit socket connection for light assembly.
 11. If pole location adjustments are required, the contractor must gain approval from the
- 11. If pole location adjustments are required, the contractor must gain approval from the engineer as this may affect the mast arm lengths and arm attachment heights. The contractor may contact the Signals & Geometrics Structural Engineer for assistance at (919) 733-3915.
- 12. The contractor is responsible for verifying that the mast arm length shown will allow proper positioning of the signal heads over the roadway.
- 13. The contractor is responsible for providing soil penetration testing data (SPT) to the pole manufacturer so site specific foundations can be designed.

NCDOT Wind Zone 2 (130 mph)

NC 11-903 (Memorial Drive) at SR 1152(Dr. Fulford Drive Rd.) SR 1708 (Fire Tower Rd.)

SR 1708 (Fire Tower Rd.)

Division 2 Pitt County Greenville

PLAN DATE: March 2006 REVIEWED BY: RM Duffy

PREPARED BY: TS Thionon REVIEWED BY:

PLAN DATE: March 2006 REVIEWED BY: RM Duffy

C 27603 PREPARED BY: TS Thigpen REVIEWED BY:

REVISIONS INIT. DATE

ts signals*workgroups*tip tty

The contractor is responsible for verifying that the mast arm attachment height (H1) will provide the "Design Height" clearance from the roadway before submitting final shop drawings for approval. Verify elevation data below which was obtained by field measurement or from available project survey data.

Elevation Data for Mast Arm Attachment (H1)

Elevation Differences for:	Pole 3	Pole 4
Baseline reference point at & Foundation @ ground level	0.0 ft.	0.0 ft.
Elevation difference at High point of roadway surface	+0.8 ft.	+1.1 ft.
Elevation difference at Edge of travelway or face of curb	N/A	N/A

POLE RADIAL ORIENTATION

8 BOLT BASE PLATE DETAIL See Note 6

METAL POLE No. 3 and 4

PROJECT REFERENCE NO. U-3613 B

	MAST ARM LOADING SCH	EDUL	.E	
LOADING SYMBOL	DESCRIPTION	AREA	SIZE	WEIGHT
	SIGNAL HEAD 12"-5 SECTION-WITH BACKPLATE AND ASTRO-BRAC	16.3 S.F.	42.0" W X 56.0" L	103 LBS
	SIGN RIGID MOUNTED WITH ASTRO-SIGN-BRAC	5.0 S.F.	24.0" W X 30.0" L	11 LBS
	SIGNAL HEAD 12"-3 SECTION-WITH BACKPLATE AND ASTRO-BRAC	9.3 S.F.	25.5" W X 52.5" L	60 LBS
STREET NAME SIGN	STREET NAME SIGN RIGID MOUNTED WITH ASTRO-SIGN-BRAC	12.0 S.F.	18.0" W X 96.0" L	27 LBS

LUMINAIRE OVX DROP PRISMATIC REFRACTOR	EPA 13.25" \ 0.87 S.F. X 26.25"	35 LBS
--	---------------------------------------	--------

NOTES

Design Reference Material

1. Design the traffic signal structure and foundation in accordance with: The 4th Edition 2001 AASHTO "Standard Specifications for Structural Supports for Highway Signs, Luminaires, and Traffic Signals, including all of the latest interim revisions. The 2002 NCDOT "Standard Specifications for Roads and Structures". The latest addenda to these specifications can be found in the traffic signal project special provisions. The 2002 NCDOT Roadway Standard Drawings.

The traffic signal project plans and special provisions.
The NCDOT "Metal Pole Standards" located at the following NCDOT website: http://www.doh.dot.state.nc.us/preconstruct/traffic/tmssu/ws/mpoles/poles.htm

<u>Design Requirements</u>

- 2. Design the traffic signal structure using the loading conditions shown in the elevation views. These are anticipated worst case "Design loads" and may not represent the actual loads that will be applied at the time of the installation. The contractor should refer to the traffic signal plans for the actual loads that will be applied at the time of the installation.
- 3. Maximum allowable CSR for all signal supports is 0.9.
- 4. The camber design for mast arm deflection should provide an appearance of a low pitched arch where the tip or the free end of the mast arm does not deflect below horizontal when fully loaded.
- A clamp-type bolted mast arm-to-pole connection may be used instead of the welded ring stiffened box connection shown as long as the connection meets all of the design requirements. This is a high strength connection. Use Direct Tension Indicators (ASTM F959) for each bolt.
- 6. Design base plate with 8 anchor bolt holes. Provide 2 inch x 66 inch anchor bolts.
- 7. The mast arm attachment height (H1) shown is based on the following design assumptions: a. Mast arm slope and deflection are not considered in determining the arm attachment height as they are assumed to offset each other.
- b. Signal heads attached to the mast arm are rigid mounted and vertically centered on the arm. c. The roadway clearance height for design is as shown in the elevation views.
- d. The top of the pole base plate is .75 feet above the ground elevation. e.Refer to the Elevation Data chart for elevation differences between the proposed foundation
- ground level and the high point on the roadway. 8. The pole manufacturer will determine the total height (H2) of each pole based on the luminaire
- height requirement of 30 feet. 9. Design the luminaire support arm using design dimensions as shown on elevation views. Refer
- to the Radial Orientation Detail for attachment to the signal pole. Design arm end for a nominal 2 inch slip fit socket connection for light assembly. 10. If pole location adjustments are required, the contractor must gain approval from the
- engineer as this may affect the mast arm lengths and arm attachment heights. The contractor may contact the Signals & Geometrics Structural Engineer for assistance at (919) 733-3915.
- 11. The contractor is responsible for verifying that the mast arm length shown will allow proper positioning of the signal heads over the roadway.
- 12. The contractor is responsible for providing soil penetration testing data (SPT) to the pole manufacturer so site specific foundations can be designed.

NCDOT Wind Zone 2 (130 mph)

(program card and set switches as shown below)

NOTES

- 1. TO PREVENT "FLASH-CONFLICT" PROBLEMS, WIRE ALL UNUSED LOAD SWITCHES TO FLASH RED. VERIFY THAT SIGNAL HEADS FLASH IN ACCORDANCE WITH THE SIGNAL PLANS.
- 2. TO PREVENT RED FAILURES ON UNUSED MONITOR CHANNELS, TIE UNUSED LOAD SWITCH RED OUTPUTS 9, 10, 11, 12, 13, 14, 15 AND 16 TO LOAD SWITCH AC+ BY INSERTING A JUMPER PLUG IN THE UNUSED LOAD SWITCH SOCKET FROM PIN 1 (LS AC+) TO PIN 3 (RED OUT). MAKE SURE ALL FLASH TRANSFER RELAYS ARE IN PLACE.
- 3. PROGRAM CONTROLLER TO START UP IN PHASES 2 AND 6 GREEN.
- 4. SET POWER-UP FLASH TIME TO 10 SECONDS AND IMPLEMENT ON THE MALFUNCTION MANAGEMENT UNIT. SET CONTROLLER POWER-UP FLASH TIME TO 0 SECONDS.
- 5. ENABLE SIMULTANEOUS GAP-OUT FEATURE, ON CONTROLLER UNIT, FOR ALL PHASES.
- 6. PROGRAM DETECTORS IN ACCORDANCE WITH THE MANUFACTURER'S INSTRUCTIONS TO ACCOMPLISH THE DETECTION SCHEMES SHOWN ON THE SIGNAL DESIGN PLANS.
- 7. PROGRAM DETECTOR CALL DELAY AND EXTENSION TIMING ON THE CONTROLLER, UNLESS OTHERWISE SPECIFIED.
- 8. SET ALL DETECTOR CARD UNIT CHANNELS TO "PRESENCE" MODE.
- 9. PROGRAM PHASES 2 AND 6, ON CONTROLLER UNIT, FOR VOLUME DENSITY OPERATION.
- 10. PROGRAM PHASES 4 AND 8, ON CONTROLLER UNIT, FOR DUAL ENTRY.
- 11. THE CABINET AND CONTROLLER ARE A PART OF THE GREENVILLE CITY SYSTEM.

DETECTOR RACK SET-UP DETAIL

INSERT DETECTOR CARDS IN RACK ACCORDING TO THE DETAIL SHOWN BELOW. PARTICULAR DETECTOR CHANNELS WILL CALL PHASES INDICATED.

DILL	CH1 L3 Ø 2	сн1 L1 Ø 1	сн1 L7 ø 4	сн1 L5 Ø 3	сн1 L11 Ø6	сн1 L9 Ø 5	сн1 L15 Ø8	сн1 L13 Ø7	S L O T	SLOT	S L O T
BIU	CH2 NOT USED	CH2 L2 Ø 6	CH2 L8 Ø 4 *	сн2 L6 Ø8	CH2 NOT USED	cH2 L10 Ø 2	CH2 L16 Ø8	сн2 L14 Ø4	E M P T Y	E M P T Y	E M P T Y

WIRE LOOPS TO TERMINALS ON LOOP PANEL AS SHOWN IN THE CHART BELOW

	LOOP NO.	LOOP PANEL TERMINALS
ADD JUMPERS FROM:	1 A	L1A,L1B
L1A TO L2A, AND L1B TO L2B	14	L2A,L2B
	2A	L3A,L3B
		L4A,L4B
ADD JUMPERS FROM:	3A	L5A,L5B
L5A TO L6A, AND L5B TO L6B	JA	L6A,L6B
	4A	L7A.L7B
	4B	L8A,L8B
ADD JUMPERS FROM: L9A TO L10A, AND	5A	L9A,L9B
L9B TO L10B	<i> </i>	L10A,L10B
	6A	L11A,L11B
		L12A,L12B
ADD JUMPERS FROM: L13A TO L14A, AND	7A	L13A,L13B
L13B TO L14B	174	L14A,L14B
	8A	L15A,L15B
	8B	L16A,L16B

CONTROLLER | FUNCTION <u>NOTE</u>

BE SURE TO PROGRAM DETECTOR TYPES AND TIMERS (EXTEND AND DELAY) AS SHOWN ON THE SIGNAL PLANS.

PROGRAM CONTROLLER DETECTORS ACCORDING TO THE SCHEDULE SHOWN IN THE CHART BELOW

TIMING

DETECTOR NO.	LUNCTION	FEATURE	TIME(SEC)
1	Ø1	DELAY	15
* 2	ø6	DELAY	3
3	ø2		
4			
5	ø3	DELAY	15
6	Ø8	DELAY	3
7	ø4	DELAY	100
* 8	ø4	DC/EC	5/2
9	ø5	DELAY	15
* 10	ø2	DELAY	3
. 11	Ø6		
12			
13	Ø7	DELAY	15
14	ø4	DELAY	3
15	Ø8	DELAY	100
* 16	ø8	DC/EC	5/2
1			

* THIS DETECTOR IS EQUIPPED WITH DELAY AND EXTEND TIMERS. PROGRAM THE TIMING REQUIRED FOR THIS DETECTOR CHANNEL ON THE DETECTOR UNIT, NOT THE CONTROLLER.

LOAD RESISTOR INSTALLATION DETAIL

NOTE: THE PURPOSE OF THIS RESISTOR IS TO LOAD THE CHANNEL RED MONITOR INPUT IN ORDER FOR THE MALFUNCTION MANAGEMENT UNIT TO USE THE FULL SIGNAL SEQUENCE MONITORING CAPABILITY ON PHASES THAT DO NOT USE THE RED DISPLAY IN THE FIELD.

LOAD SWITCH ASSIGNMENT DETAIL

(program controller according to schedule in chart below)

LOAD SWITCH NUMBER	FUNCTION	
1	ø1	
2	ø2	
3	ø3	
4	ø4	
5	ø5	
6	ø6	
7	ø7	
8	ø8	
9	2 PED	
10	4 PED	
11	6 PED	
12	8 PED	
13	OLA	
14	OLB	
15	OLC	
16	OI D	

THIS ELECTRICAL DETAIL IS FOR THE SIGNAL DESIGN: Ø2-Ø422 T1 DESIGNED: January 2006 SEALED: 03-03-06 REVISED: NA

PROJECT REFERENCE NO. U-3613 B Sig.

FIELD CONNECTION HOOK-UP CHART 7 8 PED PED PED PED OLA OLB OLC OLD 61 21,22 81 41,42 21 61,62 41 81,82 NU HEAD NO. * 2R 4R * 6R * 8R RED 2Y 4Y **6Y** 8Y YELLOW 2G 8G **GREEN** RED ARROW YELLOW **3Y** 5Y **7**Y ARROW GREEN 5G 3G 7G ARROW

NU = NOT USED

* Denotes install load resistor. See load resistor installation detail this sheet.

EQUIPMENT INFORMATION

CONTROLLER......CONTRACTOR SUPPLIED CABINET MOUNT.....BASE LOADBAY POSITIONS.....16 LOAD SWITCHES USED.....1,2,3,4,5,6,7,8 OLA.....NOT USED OLB.....NOT USED OLC.....NOT USED OLD.....NOT USED

SPECIAL BACK-UP PROTECTION NOTES

1. PROGRAM CONTROLLER TO OMIT PHASE 1 DURING PHASE 2 ON,

AND TO OMIT PHASE 5 DURING PHASE 6 ON.

AND TO OMIT PHASE 3 DURING PHASE 7 ON.

AND TO OMIT PHASE 7 DURING PHASE 8 ON.

- 2. TO ACCOMPLISH BACK-UP FEATURE DESCRIBED IN NOTE 1. ENABLE 'BACK-UP PROTECTION GROUP 1' AND 'BACK-UP PROTECTION GROUP 2' UNDER CONTROLLER SUBMENU 9: 'OPTION DATA'.
- 3. IT IS REQUIRED FOR THE CONTROLLER TO BE PROGRAMMED SUCH THAT IF IT IS IN PHASE 2+6, THEN PHASE 1 AND/OR 5 CANNOT BE SERVED NEXT WITHOUT FIRST PROGRESSING THROUGH PHASE 4. THIS ADDITIONAL BACK-UP PROTECTION FEATURE SHALL BE IMPLEMENTED IN THE WRITE-PROTECT AREA OF THE CONTROLLER SOFTWARE. FOR DIRECTIONS ON HAVING THIS FEATURE INSTALLED, CONTACT THE NCDOT TRAFFIC ELECTRONICS REPAIR CENTER AT: (919) 233-0884.

Signal Upgrade - Temporary 1

SR 1708 (Fire Tower Road) SR 1700 (Old Tar Road/ Evans Street)

Greenville PLAN DATE: February 2006 REVIEWED BY: MWH PREPARED BY: James Peterson REVIEWED BY: INIT. DATE

008453 SIG. INVENTORY NO. 02-0422 T1

(program card and set switches as shown below)

NOTES

- 1. TO PREVENT "FLASH-CONFLICT" PROBLEMS, WIRE ALL UNUSED LOAD SWITCHES TO FLASH RED. VERIFY THAT SIGNAL HEADS FLASH IN ACCORDANCE WITH THE SIGNAL PLANS.
- 2. TO PREVENT RED FAILURES ON UNUSED MONITOR CHANNELS, TIE UNUSED LOAD SWITCH RED OUTPUTS 9, 10, 11, 12, 13, 14, 15 AND 16 TO LOAD SWITCH AC+ BY INSERTING A JUMPER PLUG IN THE UNUSED LOAD SWITCH SOCKET FROM PIN 1 (LS AC+) TO PIN 3 (RED OUT). MAKE SURE ALL FLASH TRANSFER RELAYS ARE IN PLACE.
- 3. PROGRAM CONTROLLER TO START UP IN PHASES 2 AND 6 GREEN.
- 4. SET POWER-UP FLASH TIME TO 10 SECONDS AND IMPLEMENT ON THE MALFUNCTION MANAGEMENT UNIT. SET CONTROLLER POWER-UP FLASH TIME TO 0 SECONDS.
- 5. ENABLE SIMULTANEOUS GAP-OUT FEATURE, ON CONTROLLER UNIT, FOR ALL PHASES.
- 6. PROGRAM DETECTORS IN ACCORDANCE WITH THE MANUFACTURER'S INSTRUCTIONS TO ACCOMPLISH THE DETECTION SCHEMES SHOWN ON THE SIGNAL DESIGN PLANS.
- 7. PROGRAM DETECTOR CALL DELAY AND EXTENSION TIMING ON THE CONTROLLER, UNLESS OTHERWISE SPECIFIED.
- 8. SET ALL DETECTOR CARD UNIT CHANNELS TO "PRESENCE" MODE.
- 9. PROGRAM PHASES 2 AND 6. ON CONTROLLER UNIT. FOR VOLUME DENSITY OPERATION.
- 10. PROGRAM PHASES 4 AND 8, ON CONTROLLER UNIT, FOR DUAL ENTRY.
- 11. THE CABINET AND CONTROLLER ARE A PART OF THE GREENVILLE CITY SYSTEM.

DETECTOR RACK SET-UP DETAIL

INSERT DETECTOR CARDS IN RACK ACCORDING TO THE DETAIL SHOWN BELOW.
PARTICULAR DETECTOR CHANNELS WILL CALL PHASES INDICATED.

										·	
	CH1	CH1	CH1	CH1	CH1	CH1	CH1	CH1			
	L3	L1	L7	L5	L11	L9	L15	L13	S	S	S
	Ø 2	ø 1	Ø 4	ø 3	ø 5	ø 5	ø 8	ø 7	L	L 0	L
									l T	Ť	Ť
BIU											
	CH2	CH2	CH2	CH2	CH2	CH2	CH2	CH2	E	E	E
	L4	L2	L8	L6	L12	L10	L16	L14	M P	M P	M P
	ø 1	ø6	Ø 4	ø 8	ø6	ø 2	ø 8	ø 4	T	Ţ	T
		J.	·			*	J		Y	Y	Y
		*	*			*	*				

WIRE LOOPS TO TERMINALS ON LOOP PANEL AS SHOWN

IN THE CHART BELOW

	LOOP NO.	LOOP PANEL TERMINALS
ADD JUMPERS FROM:	1 A	L1A,L1B
L1A TO L2A, AND L1B TO L2B	1 A	L2A,L2B
	2A	L3A,L3B
	1B	L4A,L4B
ADD JUMPERS FROM:	3A	L5A.L5B
L5A TO L6A, AND L5B TO L6B	JA	L6A,L6B
	4A	L7A,L7B
	4B	L8A,L8B
ADD JUMPERS FROM:	5A	L9A,L9B
L9A TO L1ØA, AND L9B TO L1ØB	24	L10A,L10B
	5B	L11A,L11B
	6B	L12A,L12B
ADD JUMPERS FROM: L13A TO L14A, AND	7A	L13A,L13B
L13B TO L14B	10	L14A,L14B
	8.8	L15A+L15B
	8B	L16A,L16B

SHOWN IN THE C

NOTE

TO PROGRAM

CONTROLLER FUNCTION F

NOTE

BE SURE TO PROGRAM

DETECTOR TYPES AND

TIMERS (EXTEND AND

DELAY) AS SHOWN ON

THE SIGNAL PLANS.

PROGRAM CONTROLLER DETECTORS
ACCORDING TO THE SCHEDULE
SHOWN IN THE CHART BELOW

TIMING

00	FUNCTION		
DETECTOR NO.	FUNCTION	FEATURE	TIME(SEC)
1	Ø1	DELAY	15
* 2	ø6	DELAY	3
3	ø2		·
4	Ø1	DELAY	15
5	ø3	DELAY	15
6	Ø8	DELAY	3
7	ø4	DELAY	100
* 8	Ø4	DC/EC	5/2
9	ø5	DELAY	15
* 10	ø2	DELAY	3
11	Ø5	DELAY	15
12	Ø6		
13	Ø7	DELAY	15
14	Ø 4	DELAY	3
15	ø8	DELAY	100
* 16	ø8	DC/EC	5/2

* THIS DETECTOR IS EQUIPPED WITH DELAY AND EXTEND TIMERS. PROGRAM THE TIMING REQUIRED FOR THIS DETECTOR CHANNEL ON THE DETECTOR UNIT, NOT THE CONTROLLER.

LOAD RESISTOR INSTALLATION DETAIL

NOTE: THE PURPOSE OF THIS RESISTOR IS TO LOAD THE CHANNEL RED MONITOR INPUT IN ORDER FOR THE MALFUNCTION MANAGEMENT UNIT TO USE THE FULL SIGNAL SEQUENCE MONITORING CAPABILITY ON PHASES THAT DO NOT USE THE RED DISPLAY IN THE FIELD.

LOAD SWITCH ASSIGNMENT DETAIL

(program controller according to schedule in chart below)

LOAD SWITCH NUMBER	FUNCTION
1	ø1
2	ø2
3	ø3
4	ø4
5	ø5
6	ø6
7	ø7
8	ø8
9	2 PED
10	4 PED
11	6 PED
12	8 PED
13	OLA
14	OL.B
15	OLC
16	OLD

THIS ELECTRICAL DETAIL IS FOR THE SIGNAL DESIGN: Ø2-Ø422 T2 DESIGNED: January 2006 SEALED: Ø3-Ø3-Ø6 REVISED: NA

U-3613B Sig.13

				FI	ELC) C	ONN	IEC.	TIO	N H	100	K-L	JP ·	CHA	RT	
PHASE	1	2	3	4	5	6	7	8	PED	PED	PED	8 PED	OLA	OLB	OLC	OLD
SIGNAL HEAD NO.	61,82	21,22	81	41,42	21,42	61,62	41,62	81,82	NU	NU	NU	NU	NU	NU	NU	NU
RED	*	2R	*	4R	*	6R	*	8R								
YELLOW		2Y		4Y		БY		8Y					·			
GREEN		2G		4G		ec		8G								·
RED ARROW														,	·	
YELLOW	1Y		3Y		5Y		7Y									•
GREEN ARROW	1G		3G		5G		7G									
*											-					
於																

NU = NOT USE

* Denotes install load resistor. See load resistor installation detail this sheet.

EQUIPMENT INFORMATION

SPECIAL BACK-UP PROTECTION NOTES

1. PROGRAM CONTROLLER TO OMIT PHASE 1 DURING PHASE 2 ON,

AND TO OMIT PHASE 5 DURING PHASE 6 ON.

AND TO OMIT PHASE 3 DURING PHASE 7 ON.

AND TO OMIT PHASE 7 DURING PHASE 8 ON.

- 2. TO ACCOMPLISH BACK-UP FEATURE DESCRIBED IN NOTE 1, ENABLE 'BACK-UP PROTECTION GROUP 1' AND 'BACK-UP PROTECTION GROUP 2' UNDER CONTROLLER SUBMENU 9: 'OPTION DATA'.
- 3. IT IS REQUIRED FOR THE CONTROLLER TO BE PROGRAMMED SUCH THAT IF IT IS IN PHASE 2+6. THEN PHASE 1 AND/OR 5 CANNOT BE SERVED NEXT WITHOUT FIRST PROGRESSING THROUGH PHASE 4. THIS ADDITIONAL BACK-UP PROTECTION FEATURE SHALL BE IMPLEMENTED IN THE WRITE-PROTECT AREA OF THE CONTROLLER SOFTWARE. FOR DIRECTIONS ON HAVING THIS FEATURE INSTALLED, CONTACT THE NCDOT TRAFFIC ELECTRONICS REPAIR CENTER AT: (919) 233-0884.

Signal Upgrade - Temporary 2

SR 1708 (Fire Tower Road) at SR 1700 (Old Tar Road/ Evans Street)

Division 2 Pitt County Greenville
PLAN DATE: February 2006 REVIEWED BY: YUKA
PREPARED BY: James Peterson REVIEWED BY:
REVISIONS INIT. DATE

-MAR-2006 14:54 *020422_sm_e!e_xxx.dgn

(program card and set switches as shown below)

DETECTOR RACK SET-UP DETAIL

INSERT DETECTOR CARDS IN RACK ACCORDING TO THE DETAIL SHOWN BELOW. PARTICULAR DETECTOR CHANNELS WILL CALL PHASES INDICATED.

	сн1 L3 ø2/SYS	сн1 L1 Ø 1	сн1 L7 Ø4	сн1 L5 Ø 3	сн1 L 1 1 Ø6/SYS	сн1 L9 Ø 5	сн1 L15 Ø8	сн1 L13 Ø7	SLOF	N L O F	SLOT
BIU	сн2 L 4 Ø2/SYS	сн2 L2 ø 1	cH2 L8 Ø 4 *	CH2 NOT USED	CH2 L12 Ø6/SYS *	сн2 L10 Ø5	CH2 L16 Ø8	CH2 NOT USED	EMPTY	EMPTY	E M P T Y

WIRE LOOPS TO TERMINALS LOOD DANIEL AC CHOWN

1	LOOP PA	ANEL AS SHO	NWC
]	N THE	CHART BELOW	٧.
	LOOP NO.	LOOP PANEL TERMINALS	
	1 A	L1A,L1B	
	1B	L2A,L2B	
	2A/S3	L3A,L3B	
	2B/S4	L4A,L4B	
	3A	L5A,L5B	
		L6A,L6B	
	4A	L7A,L7B	
	4B	L8A,L8B	
	5A	L9A,L9B	
	5B	L10A,L10B	
	6A/S5	L11A,L11B	
	6B/S6	L12A,L12B	
	7A	L13A,L13B	
		L14A,L14B	

L15A,L15B L16A,L16B

<u>NOTE</u> BE SURE TO PROGRAM DETECTOR TYPES AND TIMERS (EXTEND AND DELAY) AS SHOWN ON THE SIGNAL PLANS.

ASSIGN CONTROLLER SYSTEM DETECTOR TO LOCAL CONT. DET. NUMBERS AS SHOWN IN

CHART	BELOW IN
CONTROLLER SYS. DET. NO.	LOCAL CONT. DETECTOR NO.
1	3
2	4
3	11
4	12
5	
 6	
7	
8	·

PROGRAM CONTROLLER DETECTORS ACCORDING TO THE SCHEDULE SHOWN IN THE CHART BELOW

ACMITOCH CO		TT	MING
CONTROLLER DETECTOR NO.	FUNCTION		
DETECTOR NO.		FEATURE	TIME(SEC)
1	Ø 1	DELAY	3
2	ø1	DELAY	15
3	ø2		
4	ø2		
5	ø3		
6			·
7	Ø4	DELAY	100
* 8	Ø 4	DC/EC	5/2
9	Ø5	DELAY	3
10	Ø5	DELAY	15
11	Ø6		
12	Ø6		
13	Ø7		
14			
15	Ø8	DELAY	100
* 16	Ø8	EC/DC	5/2

* THIS DETECTOR IS EQUIPPED WITH DELAY AND EXTEND TIMERS. PROGRAM THE TIMING REQUIRED FOR THIS DETECTOR CHANNEL ON THE DETECTOR UNIT, NOT THE CONTROLLER.

NOTES

- 1. TO PREVENT "FLASH-CONFLICT" PROBLEMS, WIRE ALL UNUSED LOAD SWITCHES TO FLASH RED. VERIFY THAT SIGNAL HEADS FLASH IN ACCORDANCE WITH THE SIGNAL PLANS.
- 2. TO PREVENT RED FAILURES ON UNUSED MONITOR CHANNELS, TIE UNUSED LOAD SWITCH RED OUTPUTS 13, 14, 15 AND 16 TO LOAD SWITCH AC+ BY INSERTING A JUMPER PLUG IN THE UNUSED LOAD SWITCH SOCKET FROM PIN 1 (LS AC+) TO PIN 3 (RED OUT). MAKE SURE ALL FLASH TRANSFER RELAYS ARE IN PLACE.
- 3. PROGRAM CONTROLLER TO START UP IN PHASES 2 AND 6 GREEN.
- 4. SET POWER-UP FLASH TIME TO 10 SECONDS AND IMPLEMENT ON THE MALFUNCTION MANAGEMENT UNIT. SET CONTROLLER POWER-UP FLASH TIME TO O SECONDS.
- 5. ENABLE SIMULTANEOUS GAP-OUT FEATURE, ON CONTROLLER UNIT, FOR ALL PHASES.
- 6. PROGRAM DETECTORS IN ACCORDANCE WITH THE MANUFACTURER'S INSTRUCTIONS TO ACCOMPLISH THE DETECTION SCHEMES SHOWN ON THE SIGNAL DESIGN PLANS.
- 7. PROGRAM DETECTOR CALL DELAY AND EXTENSION TIMING ON THE CONTROLLER, UNLESS OTHERWISE SPECIFIED.
- 8. SET ALL DETECTOR CARD UNIT CHANNELS TO "PRESENCE" MODE.
- 9. PROGRAM PHASES 2 AND 6, ON CONTROLLER UNIT, FOR VOLUME DENSITY OPERATION.
- 10. PROGRAM PHASES 4 AND 8, ON CONTROLLER UNIT, FOR DUAL ENTRY.
- 11. BE SURE 'BACK-UP PROTECTION GROUP 1' AND 'BACK-UP PROTECTION GROUP 2' UNDER SUBMENU 9: 'OPTION DATA' ARE DISABLED.
- 12. THE CABINET AND CONTROLLER ARE A PART OF THE GREENVILLE CITY SYSTEM.

COUNTDOWN PEDESTRIAN SIGNAL OPERATION

Countdown Ped Signals are required to display timing only during Ped Clearance Interval. Consult Ped Signal Module user's manual for instructions on selecting this feature.

EQUIPMENT INFORMATION

OLD.....NOT USED

CONTROLLERCONTRACTOR SUPPLIED
CABINET
CABINET MOUNTBASE
LOADBAY POSITIONS16
LOAD SWITCHES USED1,2,3,4,5,6,7,8,9,10,11,12
PHASES USED1,2,3,4,5,6,7,8,2 PED,4 PED,6 PED,8 PED
OLANOT USED
OLBNOT USED
OLCNOT USED

LOAD SWITCH ASSIGNMENT DETAIL

(program controller according to schedule in chart below)

LOAD SWITCH NUMBER	FUNCTION
1	ø1
2	ø2
3	øЗ
4	ø 4
5	ø5
6	ø6
7	ø7
8	ø8
9	2 PED
10	4 PED
11	6 PED
12	8 PED
13	OLA
14	OLB
15	OLC
16	OLD

PROJECT REFERENCE NO. U-3613B Sig. 15

						D C	JI41 4		110	. <i>Y</i> 1		11-0	/! '	JI 1/7	.111			· · · · · · · · · · · · · · · · · · ·		
PHASE	1	l	2	3	3	4	Ę	5 6		7	7	8	8 PED	PED PED	PED	PED	OLA	OLB	OLC	OLD
SIGNAL HEAD NO.	11	82	21,22	22	31	41,42	42	51	61,62	62	71	81,82	P21, P22	P41, P42	P61, P62	P81, P82	NU	NU	NU	NU
RED			2R			4R			6R			8R								
YELLOW			2Y			4Y			6Y			8Y	*	*	*	*				
GREEN			2G			4G			6G			8G								
RED ARROW	1R				3R			5R			7R									
YELLOW ARROW	1Y	1Y		3Y	3Y		5Y	5Y		7Y	7Y									
GREEN ARROW	1G	1G		3G	3G		5G	5G		7G	7G									
*													9R	1ØR	11R	12R				
×		,											9G	1ØG	11G	12G				

* INSTALL LOAD RESISTORS TO UNUSED FIELD TERMINALS 9Y, 10Y, 11Y AND 12Y, IF NOT ALREADY PRESENT. SEE LOAD RESISTOR INSTALLATION DETAIL THIS PAGE.

TYPICAL LOAD RESISTOR INSTALLATION DETAIL

REMOVE LOAD RESISTORS ON FIELD TERMINALS 1R. 3R, 5R AND 7R.

PHASE FIELD ACCEPTABLE VALUES TERMINAL VALUE (ohms) WATTAGE 1.5K - 1.9K 25W (min) 2.ØK - 3.ØK 1ØW (min)

PEDESTRIAN PUSH-BUTTON WIRING DETAIL

(wire push-buttons as shown below)

THIS ELECTRICAL DETAIL IS FOR THE SIGNAL DESIGN: Ø2-Ø422 DESIGNED: January 2006 SEALED: 03-03-06 REVISED: NA

Signal Upgrade - Final

SR 1708 (Fire Tower Road)

SR 1700 (Old Tar Road/ Evans Street) Pitt County

Greenville PLAN DATE: February 2006 REVIEWED BY: PREPARED BY: James Peterson REVIEWED BY: REVISIONS INIT. DATE

SEAL SIG. INVENTORY NO. 02-0422

The contractor is responsible for verifying that the mast arm attachment height (H1) will provide the "Design Height" clearance from the roadway before submitting final shop drawings for approval. Verify elevation data below which was obtained by field measurement or from available project survey data.

Elevation Data for Mast Arm Attachment (H1)

Elevation Differences for:	Pole 5	Pole 6
Baseline reference point at © Foundation @ ground level	0.0 ft.	0.0 ft.
Elevation difference at High point of roadway surface	+1.4 ft.	+1.1 ft.
Elevation difference at Edge of travelway or face of curb	N/A	N/A

POLE RADIAL ORIENTATION

8 BOLT BASE PLATE DETAIL

See Note 6

METAL POLE No. 5 and 6

PROJECT REFERENCE NO. U-3613 B

	MAST ARM LOADING SCH	EDUL	.E	
LOADING SYMBOL	DESCRIPTION	AREA	SIZE	WEIGHT
	SIGNAL HEAD 12"-5 SECTION-WITH BACKPLATE AND ASTRO-BRAC	16.3 S.F.	42.0" W X 56.0" L	103 LBS
	SIGNAL HEAD 12"_3 SECTION_WITH BACKPLATE AND ASTRO_BRAC	9.3 S.F.	25.5" W X 52.5" L	60 LBS
STREET NAME SIGN	Street name sign Rigid Mounted with Astro-sign-brac	12.0 S.F.	18.0" W X 96.0" L	27 LBS
	PEDESTRIAN SIGNAL HEAD WITH MOUNTING HARDWARE	2.2 S.F.	18.5" W X 17.0" L	21 LBS

LUMINAIRE OVX DROP PRISMATIC REFRACTOR	EPA 0.87 S.F.	13.25" W X 26.25" L	35 LBS

NOTES

Design Reference Material

- 1. Design the traffic signal structure and foundation in accordance with: The 4th Edition 2001 AASHTO "Standard Specifications for Structural Supports for Highway Signs, Luminaires, and Traffic Signals, including all of the latest interim revisions. The 2002 NCDOT "Standard Specifications for Roads and Structures". The latest addenda to these specifications can be found in the traffic signal project special provisions.
 - The 2002 NCDOT Roadway Standard Drawings. The traffic signal project plans and special provisions.
- The NCDOT "Metal Pole Standards" located at the following NCDOT website: http://www.doh.dot.state.nc.us/preconstruct/traffic/tmssu/ws/mpoles/poles.htm

<u>Design Requirements</u>

- 2. Design the traffic signal structure using the loading conditions shown in the elevation views. These are anticipated worst case "Design loads" and may not represent the actual loads that will be applied at the time of the installation. The contractor should refer to the traffic signal plans for the actual loads that will be applied at the time of the installation.
- 3. Maximum allowable CSR for all signal supports is 0.9.
- 4. The camber design for mast arm deflection should provide an appearance of a low pitched arch where the tip or the free end of the mast arm does not deflect below horizontal when fully loaded.
- 5. A clamp-type bolted mast arm-to-pole connection may be used instead of the welded ring stiffened box connection shown as long as the connection meets all of the design requirements. This is a high strength connection. Use Direct Tension Indicators (ASTM F959) for each bolt.
- 6. Design base plate with 8 anchor bolt holes. Provide 2 inch x 66 inch anchor bolts.
- 7. The mast arm attachment height (H1) shown is based on the following design assumptions: a.Mast arm slope and deflection are not considered in determining the arm attachment height as they are assumed to offset each other.
- b. Signal heads attached to the mast arm are rigid mounted and vertically centered on the arm.
- c. The roadway clearance height for design is as shown in the elevation views. d. The top of the pole base plate is .75 feet above the ground elevation. e.Refer to the Elevation Data chart for elevation differences between the proposed foundation
- ground level and the high point on the roadway. 8. The pole manufacturer will determine the total height (H2) of each pole based on the luminaire height requirement of 30 feet.
- 9. The pole manufacturer will determine the total height (H2) of each pole based on the luminaire height requirement of 30 feet plus 40 inches for the CCTV Camera.
- 10. Design the luminaire support arm using design dimensions as shown on elevation views. Refer to the Radial Orientation Detail for attachment to the signal pole. Design arm end for a nominal 2 inch slip fit socket connection for light assembly.
- 11. If pole location adjustments are required, the contractor must gain approval from the engineer as this may affect the mast arm lengths and arm attachment heights. The contractor may contact the Signals & Geometrics Structural Engineer for assistance at (919) 733-3915.
- 12. The contractor is responsible for verifying that the mast arm length shown will allow proper positioning of the signal heads over the roadway.
- 13. The contractor is responsible for providing soil penetration testing data (SPT) to the pole manufacturer so site specific foundations can be designed.

NCDOT Wind Zone 2 (130 mph)

N/A

N/A

SR 1708 (Fire Tower Road) SR 1700 (Old Tar Road)/ Evans Street

Pitt County ivision 2 Greenvil] PLAN DATE: March 2006 REVIEWED BY: RM Duffy TS Thigpen REVIEWED BY: REVISIONS INIT.

SIG. INVENTORY NO. 02-0422

The contractor is responsible for verifying that the mast arm attachment height (H1) will provide the "Design Height" clearance from the roadway before submitting final shop drawings for approval. Verify elevation data below which was obtained by field measurement or from available project survey data.

Elevation Data for Mast Arm Attachment (H1)

Elevation Differences for:	Pole 7	Pole 8
Baseline reference point at © Foundation @ ground level	0.0 ft.	0.0 ft.
Elevation difference at High point of roadway surface	+1.7 ft.	-0.2 ft.
Elevation difference at Edge of travelway or face of curb	N/A	N/A

POLE RADIAL ORIENTATION

8 BOLT BASE PLATE DETAIL See Note 6

METAL POLE No. 7 and 8

PROJECT	REFERENCE NO.	SHEET NO.
U -	·3613 B	Sig. 7

	MAST ARM LOADING SCH	EDUL	.E	
LOADING SYMBOL	DESCRIPTION	AREA	SIZE	WEIGHT
	SIGNAL HEAD 12"-5 SECTION-WITH BACKPLATE AND ASTRO-BRAC	16.3 S.F.	42.0" W X 56.0" L	103 LBS
	SIGNAL HEAD 12"-3 SECTION-WITH BACKPLATE AND ASTRO-BRAC	9.3 S.F.	25.5" W X 52.5" L	60 LBS
STREET NAME SIGN	STREET NAME SIGN RIGID MOUNTED WITH ASTRO-SIGN-BRAC	12.0 S.F.	18.0" W X 96.0" L	27 LBS
	PEDESTRIAN SIGNAL HEAD WITH MOUNTING HARDWARE	2.2 S.F.	18.5" W X 17.0" L	21 LBS

NOTES

Design Reference Material

- 1. Design the traffic signal structure and foundation in accordance with: The 4th Edition 2001 AASHTO "Standard Specifications for Structural Supports for Highway Signs, Luminaires, and Traffic Signals, including all of the latest interim revisions. The 2002 NCDOT "Standard Specifications for Roads and Structures". The latest addenda to these specifications can be found in the traffic signal project special provisions. The 2002 NCDOT Roadway Standard Drawings.
 - The traffic signal project plans and special provisions. The NCDOT "Metal Pole Standards" located at the following NCDOT website: http://www.doh.dot.state.nc.us/preconstruct/traffic/tmssu/ws/mpoles/poles.htm

<u>Design Requirements</u>

- 2. Design the traffic signal structure using the loading conditions shown in the elevation views. These are anticipated worst case "Design loads" and may not represent the actual loads that will be applied at the time of the installation. The contractor should refer to the traffic signal plans for the actual loads that will be applied at the time of the installation.
- 3. Maximum allowable CSR for all signal supports is 0.9.
- 4. The camber design for mast arm deflection should provide an appearance of a low pitched arch where the tip or the free end of the mast arm does not deflect below horizontal when fully loaded.
- 5. A clamp-type bolted mast arm-to-pole connection may be used instead of the welded ring stiffened box connection shown as long as the connection meets all of the design requirements. This is a high strength connection. Use Direct Tension Indicators (ASTM F959) for each bolt.
- 6. Design base plate with 8 anchor bolt holes. Provide 2 inch x 66 inch anchor bolts.
- 7. The mast arm attachment height (H1) shown is based on the following design assumptions: a. Mast arm slope and deflection are not considered in determining the arm attachment height as they are assumed to offset each other.
- b. Signal heads attached to the mast arm are rigid mounted and vertically centered on the arm.
- c. The roadway clearance height for design is as shown in the elevation views. d. The top of the pole base plate is .75 feet above the ground elevation.
- e.Refer to the Elevation Data chart for elevation differences between the proposed foundation
- ground level and the high point on the roadway. 8. The pole manufacturer will determine the total height (H2) of each pole based on the luminaire height requirement of 30 feet.
- 9. Design the luminaire support arm using design dimensions as shown on elevation views. Refer to the Radial Orientation Detail for attachment to the signal pole. Design arm end for a nominal 2 inch slip fit socket connection for light assembly.
- 10. If pole location adjustments are required, the contractor must gain approval from the engineer as this may affect the mast arm lengths and arm attachment heights. The contractor may contact the Signals & Geometrics Structural Engineer for assistance at (919) 733-3915.
- 11. The contractor is responsible for verifying that the mast arm length shown will allow proper positioning of the signal heads over the roadway.
- 12. The contractor is responsible for providing soil penetration testing data (SPT) to the pole manufacturer so site specific foundations can be designed.

NCDOT Wind Zone 2 (130 mph)

N/A

Greenvil

RM Duffy

REVISIONS

2 Phase

Fully Actuated

NOTES

Drawings NCDOT" dated January

Specifications for Roads and

unless otherwise directed by

2. Do not program signal for late

night flashing operation

3. Program phase 4 and phase 8

4. Set all detector units to

5. Locate new cabinet so as not

to obstruct sight distance of

Structures" dated January 2002.

1. Refer to "Roadway Standard

(Greenville City System)

2002 and "Standard

the Engineer.

for dual entry.

presence mode.

PHASING DIAGRAM

PHASING DIAGRAM DETECTION LEGEND

DETECTED MOVEMENT

UNDETECTED MOVEMENT (OVERLAP) UNSIGNALIZED MOVEMENT

<−−> PEDESTRIAN MOVEMENT

TABLE OF OPERATION							
	Р	PHASE					
SIGNAL FACE	Ø2+6	Ø4+8	上し在の王				
21, 22	G	R	Υ				
41, 42	R	G	R				
61, 62, 63	G	R	Υ				
81, 82	R	G	R				
P21, P22	W	DW	ĐRK				
P41, P42	DW	W	DRK				
P61, P86	W	DW	DRK				
P81, P82	DW	W	DRK				
CNAL FAC	\	T	n				

SIGNAL FACE I.D. Denotes L.E.D.

	INDUCTIVE LOOPS								DETECT	OR U	NITS	3	
	SIZE	TUDALE	DIST. FROM	¥ uZ	EXISTING	NEMA	*	EXISTING	TIM	NG		PLACE CALL	INHIBIT DELAY
LOOP NO.	(ft)	TURNS	STOPBAR (ft)	Z	EXIST	NEMA ≥ Z		EXIST	FEATURE	TIA	AE	DURING PHASE	DURING GREEN?
2 A	6X6	6	300	Χ		2	Χ			-	SEC.	ALL	NO
2B	6X6	6	300	Χ		2	Χ			-	SEC.	ALL	NO
2C	6X40	2-4-2	0	Х		2	Χ		DELAY	3	SEC.	ALL	NO
4A	6X40	2-4-2	0	Х		4	Χ				SEC.	ALL	NO
4B	6X40	2-4-2	0	Х		4	Χ		DELAY	10	SEC.	ALL	YES
6A	6X6	6	300	X		6	Χ			-	SEC.	ALL	NO
6B	6X6	6	300	Х		6	Χ		-		SEC.	ALL	NO
6C	6X40	6	0	Х		6	Χ		DELAY	3	SEC.	ALL	NO
8A	6X40	2-4-2	0	Х		8	X		DELAY	3	SEC.	ALL	YES
8B	6X40	2-4-2	0	X		8	X		DELAY	10	SEC.	ALL	YES

TIMING CHART NEMA CONTROLLER								
PHASE	Ø2	2	Ø4	4	Ø6		Ø8	
MINIMUM GREEN	12	SEC.	7	SEC.	12	SEC.	7	SEC.
PASSAGE/GAP	6.0	SEC.	2.0	SEC.	6.0	SEC.	2.0	SEC.
YELLOW CHANGE INT.	4.6	SEC.	3.0	SEC.	4.5	SEC.	3.0	SEC.
RED CLEARANCE	1.3	SEC.	3.5	SEC.	1.3	SEC.	3.5	SEC.
MAX. 1	90	SEC.	25	SEC.	90	SEC.	25	SEC.
RECALL POSITION	MIN. RECALL		NONE		MIN. RECALL		NONE	
VEHI. CALL MEMORY	LOC	CK	NONLOCK		LOCK		NONLOCK	
WALK	7	SEC.	7	SEC.	7	SEC.	7	SEC.
FLASHING DON'T WALK	12	SEC.	21	SEC.	13	SEC.	20	SEC.
YOLUME DENSITY	ON	1	OFF		ON		OFF	
ACTUATION B4 ADD	0	VEH.		VEH.	0	VEH.		VEH.
SEC. PER ACTUATION	1.5	SEC.		SEC.	1.5	SEC.		SEC.
MAX. INITIAL	34	SEC.	-	SEC.	34	SEC.		SEC.
TIME B4 REDUCTION	15	SEC.		SEC.	15	SEC.		SEC.
TIME TO REDUCE	30	SEC.		SEC.	30	SEC.	_	SEC.
MINIMUM GAP	3.0	SEC.		SEC.	3.0	SEC.		SEC.

LEGEND PROPOSED EXISTING Traffic Signal Head O-> **●**→ Modified Signal Head N/A Sign Pedestrian Signal Head With Push Button & Sign Signal Pole with Guy Signal Pole with Sidewalk Guy Inductive Loop Detector Controller & Cabinet Junction Box ---- 2-in Underground Conduit N/A Right of Way Directional Arrow Pavement Marking Arrow Wheelchair Ramp Metal Pole with Mastarm Directional Drill (2) 2-in Polyethylene Conduits

New Installation

SR 1708 (Fire Tower Road) Pine Branches Road/

Paramore Farms Entrance Greenvill RM Duffy

SEAL

Division 02 Pitt County PLAN DATE: January 2006 REVIEWED BY: PREPARED BY: TS Thigpen REVIEWED BY:

(program card and set switches as shown below)

DETECTOR RACK SET-UP DETAIL

INSERT DETECTOR CARDS IN RACK ACCORDING TO THE DETAIL SHOWN BELOW. PARTICULAR DETECTOR CHANNELS WILL CALL PHASES INDICATED.

DTH	cH1 L3 Ø 2 *	сн1 L1 Ø2	сн1 L7 Ø 6	сн1 L5 Ø 4	SLOT	сн1 L9 Ø8	S _ O _	SLOT	7070	JOTS	SLOT
BIU	сн2 L4 Ø4	сн2 L2 Ø 2 ~	сн2 L8 Ø6 *	сн2 L6 Ø6	E M P T Y	сн2 L10 Ø8	EMPTY	EMPTY	E M P T Y	EMPTY	E M P T Y

WIRE LOOPS TO TERMINALS ON LOOP PANEL AS SHOWN

IN THE CHART BELOW

IN THE C	MARI DELUT
LOOP NO.	LOOP PANEL TERMINALS
2A	L1A,L1B
2B	L2A,L2B
2C	L3A,L3B
4A	L4A,L4B
4B	L5A,L5B
6A	L6A,L6B
6B	L7A,L7B
6C	L8A,L8B
8A	L9A,L9B
8B	L10A,L10B
	L11A,L11B
	L12A,L12B
	L13A,L13B
	L14A,L14B
	L15A,L15B
	L16A,L16B

NOTE BE SURE TO PROGRAM DETECTOR TYPES AND TIMERS (EXTEND AND DELAY) AS SHOWN ON THE SIGNAL PLANS.

CONTROLLER	FUNCTION	TI	MING
DETECTOR NO.	PONCTION	FEATURE	TIME(SEC)
1	Ø2		17.
2	Ø2		
* 3	Ø2	DELAY	3
4	ø4		·
5	Ø4	DELAY	10
6	Ø6		
7.	ø6		
* 8	ø6	DELAY	3
9	ø8	DELAY	3
10	Ø8	DELAY	10
11			
12			
13			
14			
15			
16			

PROGRAM CONTROLLER DETECTORS

ACCORDING TO THE SCHEDULE

SHOWN IN THE CHART BELOW

* THIS DETECTOR IS EQUIPPED WITH DELAY AND EXTEND TIMERS. PROGRAM THE TIMING REQUIRED FOR THIS DETECTOR CHANNEL ON THE DETECTOR UNIT, NOT THE CONTROLLER.

NOTES

- 1. TO PREVENT "FLASH-CONFLICT" PROBLEMS, WIRE ALL UNUSED LOAD SWITCHES TO FLASH RED. VERIFY THAT SIGNAL HEADS FLASH IN ACCORDANCE WITH THE SIGNAL PLANS.
- 2. TO PREVENT RED FAILURES ON UNUSED MONITOR CHANNELS, TIE UNUSED LOAD SWITCH RED OUTPUTS 1, 3, 5, 7, 13, 14, 15 AND 16 TO LOAD SWITCH AC+ BY INSERTING A JUMPER PLUG IN THE UNUSED LOAD SWITCH SOCKET FROM PIN 1 (LS AC+) TO PIN 3 (RED OUT). MAKE SURE ALL FLASH TRANSFER RELAYS ARE IN PLACE.
- 3. PROGRAM CONTROLLER TO START UP IN PHASES 2 AND 6 GREEN.
- 4. SET POWER-UP FLASH TIME TO 10 SECONDS AND IMPLEMENT ON THE MALFUNCTION MANAGEMENT UNIT. SET CONTROLLER POWER-UP FLASH TIME TO O SECONDS.
- 5. ENABLE SIMULTANEOUS GAP-OUT FEATURE, ON CONTROLLER UNIT, FOR ALL PHASES.
- 6. PROGRAM DETECTORS IN ACCORDANCE WITH THE MANUFACTURER'S INSTRUCTIONS TO ACCOMPLISH THE DETECTION SCHEMES SHOWN ON THE SIGNAL DESIGN PLANS.
- 7. PROGRAM DETECTOR CALL DELAY AND EXTENSION TIMING ON THE CONTROLLER. UNLESS OTHERWISE SPECIFIED.
- 8. SET ALL DETECTOR CARD UNIT CHANNELS TO "PRESENCE" MODE.
- 9. PROGRAM PHASES 2 AND 6, ON CONTROLLER UNIT, FOR VOLUME DENSITY OPERATION.
- 10. PROGRAM PHASES 4 AND 8. ON CONTROLLER UNIT. FOR DUAL ENTRY.
- 11. THE CABINET AND CONTROLLER ARE A PART OF THE GREENVILLE CITY SYSTEM.

COUNTDOWN PEDESTRIAN SIGNAL OPERATION

Countdown Ped Signals are required to display timing only during Ped Clearance Interval. Consult Ped Signal Module user's manual for instructions on selecting this feature.

EQUIPMENT INFORMATION

	LER			g		
CABINET		.CONTRACTOR	SUPPLIED	TS-2	NC-8A	
CABINET	MOUNT	.BASE				
LOADBAY	POSITIONS	.16				

LOAD SWITCHES USED.....2,4,6,8,9,10,11,12 PHASES USED......2,4,6,8,2 PED,4 PED,6 PED,8 PED

OLA.....NOT USED OLB.....NOT USED OLC.....NOT USED OLD.....NOT USED

LOAD SWITCH ASSIGNMENT DETAIL

(program controller according to schedule in chart below)

LOAD SWITCH NUMBER	FUNCTION
1	ø1
2	ø2
3	ø3
4	ø4
5	ø5
6	ø6
7	ø7
8	ø8
9	2 PED
10	4 PED
11	6 PED
12	8 PED
13	OLA
14	OLB
15	OLC
16	OLD

SHEET NO. PROJECT REFERENCE NO. Sig.19 U-3613 B

											100					
PHASE	1	2	3	4	5	6	7	8	PED	PED	PED	8 PED	OLA	OLB	OLC	OLD
SIGNAL HEAD NO.	NU	21,22	NU	41,42	NU	61 62 , 63	NU	81,82	P21, P22	P41, P42	P61, P62	P81, P82	NU	NU	NU	NU
RED		2R		4R		6R		8R								
YELLOW		2Y		4Y		6Y		8Y	*	*	*	*				
GREEN		2G		4G		6G		8G								
RED ARROW																
YELLOW ARROW													,			
GREEN ARROW																
*								-	9R	1ØR	11R	12R				
於									96	1ØG	11G	12G				

* INSTALL LOAD RESISTORS TO UNUSED FIELD TERMINALS 9Y, 10Y, 11Y AND 12Y, IF NOT ALREADY PRESENT. SEE LOAD RESISTOR INSTALLATION DETAIL THIS PAGE.

TYPICAL LOAD RESISTOR INSTALLATION DETAIL

PEDESTRIAN PUSH-BUTTON WIRING DETAIL

(wire push-buttons as shown below)

THIS ELECTRICAL DETAIL IS FOR THE SIGNAL DESIGN: Ø2-Ø87Ø DESIGNED: January 2006 SEALED: 03-03-06 REVISED: NA

New Installation

ELECTRICAL AND PROGRAMMIN

SR 1708 (Fire Tower Road) Pine Branches Road/

Pinemore Farms Entrance						
Division 2 Pi	t County	Greenvil				
PLAN DATE: February 2006	REVIEWED BY:	YYWH				
PREPARED BY: James Peterson	REVIEWED BY:					

The contractor is responsible for verifying that the mast arm attachment height (H1) will provide the "Design Height" clearance from the roadway before submitting final shop drawings for approval. Verify elevation data below which was obtained by field measurement or from available project survey data.

Elevation Data for Mast Arm Attachment (H1)

Elevation Differences for:	Pole 9	Pole 10
Baseline reference point at § Foundation @ ground level	0.0 ft.	0.0 ft.
Elevation difference at High point of roadway surface	-1.0 ft.	-0.8 ft.
Elevation difference at Edge of travelway or face of curb	N/A	N/A

POLE RADIAL ORIENTATION

8 BOLT BASE PLATE DETAIL
See Note 6

METAL POLE No. 9 and 10

PROJECT	REFERENCE NO.	SHEET
U-	3613 B	Sig. 2

	MAST ARM LOADING SCH	EDUL	.E	
LOADING SYMBOL	DESCRIPTION	AREA	SIZE	WEIGHT
	Signal Head 12"-5 Section-With Backplate and Astro-Brac	16.3 S.F.	42.0" W X 56.0" L	103 LBS
	SIGNAL HEAD 12"-3 SECTION-WITH BACKPLATE AND ASTRO-BRAC	9.3 S.F.	25.5" W X 52.5" L	60 LBS
STREET NAME SIGN	STREET NAME SIGN RIGID MOUNTED WITH ASTRO-SIGN-BRAC	12.0 S.F.	18.0" W X 96.0" L	27 LBS
	PEDESTRIAN SIGNAL HEAD WITH MOUNTING HARDWARE	2.2 S.F.	18.5" W X 17.0" L	21 LBS

<u>NOTES</u>

Design Reference Material

- 1. Design the traffic signal structure and foundation in accordance with:
 The 4th Edition 2001 AASHTO "Standard Specifications for Structural Supports for Highway Signs, Luminaires, and Traffic Signals, including all of the latest interim revisions.
 The 2002 NCDOT "Standard Specifications for Roads and Structures". The latest addenda to these specifications can be found in the traffic signal project special provisions.
 The 2002 NCDOT Roadway Standard Drawings.
 - The traffic signal project plans and special provisions.
- The NCDOT "Metal Pole Standards" located at the following NCDOT website: http://www.doh.dot.state.nc.us/preconstruct/traffic/tmssu/ws/mpoles/poles.htm

<u>Design Requirements</u>

(919) 733-3915.

- 2. Design the traffic signal structure using the loading conditions shown in the elevation views. These are anticipated worst case "Design loads" and may not represent the actual loads that will be applied at the time of the installation. The contractor should refer to the traffic signal plans for the actual loads that will be applied at the time of the installation.
- 3. Maximum allowable CSR for all signal supports is 0.9.
- 4. The camber design for mast arm deflection should provide an appearance of a low pitched arch where the tip or the free end of the mast arm does not deflect below horizontal when fully loaded.
- 5. A clamp-type bolted mast arm-to-pole connection may be used instead of the welded ring stiffened box connection shown as long as the connection meets all of the design requirements. This is a high strength connection. Use Direct Tension Indicators (ASTM F959) for each bolt.
- 6. Design base plate with 8 anchor bolt holes. Provide 2 inch x 66 inch anchor bolts.
- 7. The mast arm attachment height (H1) shown is based on the following design assumptions: a.Mast arm slope and deflection are not considered in determining the arm attachment height as they are assumed to offset each other.
- b. Signal heads attached to the mast arm are rigid mounted and vertically centered on the arm.
- c. The roadway clearance height for design is as shown in the elevation views. d. The top of the pole base plate is .75 feet above the ground elevation.
- e.Refer to the Elevation Data chart for elevation differences between the proposed foundation ground level and the high point on the roadway.
- 8. The pole manufacturer will determine the total height (H2) of each pole based on the luminaire
- height requirement of 30 feet.

 9. Design the luminaire support arm using design dimensions as shown on elevation views. Refer to the Radial Orientation Detail for attachment to the signal pole. Design arm end for a
- nominal 2 inch slip fit socket connection for light assembly.

 10. If pole location adjustments are required, the contractor must gain approval from the engineer as this may affect the mast arm lengths and arm attachment heights. The contractor may contact the Signals & Geometrics Structural Engineer for assistance at
- 11. The contractor is responsible for verifying that the mast arm length shown will allow proper positioning of the signal heads over the roadway.
- 12. The contractor is responsible for providing soil penetration testing data (SPT) to the pole manufacturer so site specific foundations can be designed.

NCDOT Wind Zone 2 (130 mph)

N/A

SR 1708 (Fire Tower Road) at Pine Branches Road

Pine Branches Road
Paramore Farms Entrance
Division 2 Pitt County Greenvill
PLAN DATE: March 2006 REVIEWED BY: RM Duffy
PREPARED BY: TS Thiggen REVIEWED BY:

SEAL

C ARO

SEAL

SEAL

SEAL

SEAL

SEAL

SEAL

DESTRUCTION

DATE

SIGNATURE

DATE

N/A

REVISIONS

INIT. DATE

SIGNATURE

DATE

SIG. INVENTORY NO. 02-0870

The contractor is responsible for verifying that the mast arm attachment height (H1) will provide the "Design Height" clearance from the roadway before submitting final shop drawings for approval. Verify elevation data below which was obtained by field measurement or from available project survey data.

Elevation Data for Mast Arm Attachment (H1)

Elevation Differences for:	Pole 11	Pole 12
Baseline reference point at © Foundation @ ground level	0.0 ft.	0.0 ft.
Elevation difference at High point of roadway surface	-0.9 ft.	-2.4 ft.
Elevation difference at Edge of travelway or face of curb	N/A	N/A

POLE RADIAL ORIENTATION

8 BOLT BASE PLATE DETAIL See Note 6

METAL POLE No. 11 and 12

PROJECT	REFERENCE	NO.	SHEET
U-	3613 B		Sig.2

	MAST ARM LOADING SCH	EDUL	.E	
LOADING SYMBOL	DESCRIPTION	AREA	SIZE	WEIGHT
	SIGNAL HEAD 12"-3 SECTION-WITH BACKPLATE AND ASTRO-BRAC	9.3 S.F.	25.5" W X 52.5" L	60 LBS
STREET NAME SIGN	STREET NAME SIGN RIGID MOUNTED WITH ASTRO-SIGN-BRAC	12.0 S.F.	18.0" W X 96.0" L	27 LBS
	PEDESTRAIN SIGNAL HEAD WITH MOUNTING HARDWARE	2.2 S.F.	18.5" W X 17.0" L	21 LBS

OVX DROP PRISMATIC REFRACTOR EPA 13.25" W X 35 LBS 26.25" L	s
--	---

Design Reference Material

- 1. Design the traffic signal structure and foundation in accordance with:
- The 4th Edition 2001 AASHTO "Standard Specifications for Structural Supports for Highway Signs, Luminaires, and Traffic Signals, including all of the latest interim revisions.
- The 2002 NCDOT "Standard Specifications for Roads and Structures". The latest addenda to these specifications can be found in the traffic signal project special provisions.

NOTES

- The 2002 NCDOT Roadway Standard Drawings.
- The traffic signal project plans and special provisions.
 The NCDOT "Metal Pole Standards" located at the following NCDOT website: http://www.doh.dot.state.nc.us/preconstruct/traffic/tmssu/ws/mpoles/poles.htm

Design Requirements

- 2. Design the traffic signal structure using the loading conditions shown in the elevation views. These are anticipated worst case "Design loads" and may not represent the actual loads that will be applied at the time of the installation. The contractor should refer to the traffic signal plans for the actual loads that will be applied at the time of the installation.
- 3. Maximum allowable CSR for all signal supports is 0.9.
- 4. The camber design for mast arm deflection should provide an appearance of a low pitched arch where the tip or the free end of the mast arm does not deflect below horizontal when fully loaded.
- 5. A clamp-type bolted mast arm-to-pole connection may be used instead of the welded ring stiffened box connection shown as long as the connection meets all of the design requirements. This is a high strength connection. Use Direct Tension Indicators (ASTM F959) for each bolt.
- Design base plate with 8 anchor bolt holes. Provide 2 inch x 66 inch anchor bolts.
- 7. The mast arm attachment height (H1) shown is based on the following design assumptions: a. Mast arm slope and deflection are not considered in determining the arm attachment height as they are assumed to offset each other.
- b. Signal heads attached to the mast arm are rigid mounted and vertically centered on the arm.
- c. The roadway clearance height for design is as shown in the elevation views.
- d. The top of the pole base plate is .75 feet above the ground elevation. e.Refer to the Elevation Data chart for elevation differences between the proposed foundation
- ground level and the high point on the roadway. 8. The pole manufacturer will determine the total height (H2) of each pole based on the luminaire height requirement of 30 feet.
- 9. Design the luminaire support arm using design dimensions as shown on elevation views. Refer to the Radial Orientation Detail for attachment to the signal pole. Design arm end for a nominal 2 inch slip fit socket connection for light assembly.
- 10. If pole location adjustments are required, the contractor must gain approval from the engineer as this may affect the mast arm lengths and arm attachment heights. The contractor may contact the Signals & Geometrics Structural Engineer for assistance at (919) 733-3915.
- 11. The contractor is responsible for verifying that the mast arm length shown will allow proper positioning of the signal heads over the roadway.
- 12. The contractor is responsible for providing soil penetration testing data (SPT) to the pole manufacturer so site specific foundations can be designed.

NCDOT Wind Zone 2 (130 mph)

N/A

SR 1708 (Fire Tower Road

Pine Branches Road Paramore Farms Entrance Pitt County

ivision 2 March 2006 REVIEWED BY: RM Duffy TS Thigpen REVIEWED BY: REVISIONS

Elevation View

2 Phase

1.	Refer to "Roadway Standard
	Drawings NCDOT" dated January
	2002 and "Standard
	Specifications for Roads and
	Structures" dated January 2002.

2. Do not program signal for late night flashing operation unless otherwise directed by

3. Set all detector units to presence mode.

4. Locate new cabinet so as not

5. Omit "WALK" and flashing "DON'T WALK" with no pedestrian calls.

6. Program pedestrian heads to countdown the flashing "Don't Walk" time only.

chart are for free-run operation only. Coordinated signal system timing values supersede these values.

System Address Number: 123

Fully	nase Actua	ted
(Greenville		
<u>NO</u>	TES	

the Engineer.

to obstruct sight distance of vehicles turning right on red.

7. Maximum times shown in timing

8. Intersection Zone Number: 7.

	LEGEND	
PROPOSED		EXISTING
○	Traffic Signal Head	•
O ->	Modified Signal Head	N/A
	Sign	
	Pedestrian Signal Head — With Push Button & Sign	
0	Signal Pole with Guy	
0_	Signal Pole with Sidewalk Guy	
	Inductive Loop Detector	CIIII
\boxtimes	Controller & Cabinet	K×3
	Junction Box	
	· 2-in Underground Conduit	
N/A	Right of Way	
	Directional Arrow	
	Pavement Marking Arrow	->
N/A	Wheelchair Ramp	
\bigcirc	Pedestrian Signal Pedestal	•
0	- Metal Pole with Mastarm	
DD	Directional Drill (2) 2-in Polyethylene Conduit	N/A

SR 1708 (Fire Tower Road) Bayswater Road

RM Duffy

Division 02 Pitt County PLAN DATE: January 2006 REVIEWED BY: N. McDowell St., Raleigh, NC 27603 PREPARED BY: TS Thigpen REVIEWED BY:

SIG. INVENTORY NO. 02-0871

PHASING DIAGRAM

PHASING DIAGRAM DETECTION LEGEND

DETECTED MOVEMENT

UNDETECTED MOVEMENT (OVERLAP)

UNSIGNALIZED MOVEMENT <--> PEDESTRIAN MOVEMENT

SIGNAL FACE I.D.

P83, P84 **DW W DRK**

TABLE OF OPERATION

SIGNAL

FACE

21, 22

61, 62

81, 82

P21, P22

PHASE

Denotes L.E.D.

P21, P22 P81, P82 P83, P84

21, 22 61, 62 81, 82 MetalPole 13 -(See Loading Diagram) Sta.115+83 +/- -L-50'Lt. SR 1708 (Fire Tower Road)

45 MPH 0% Grade

TIMING CHART NEMA CONTROLLER							
PHASE	Ø2 Ø6 Ø8						
MINIMUM GREEN	12	SEC.	12	SEC.	7	SEC.	
PASSAGE/GAP	6.0	SEC.	6.0	SEC.	2.0	SEC.	
YELLOW CHANGE INT.	4.5	SEC.	4.5	SEC.	3.0	SEC.	
RED CLEARANCE	1.3	SEC.	1.4	SEC.	2.9	SEC.	
MAX. 1	90	SEC.	90	SEC.	20	SEC.	
RECALL POSITION	MIN. RECALL		MIN. RECALL		NONE		
VEHI. CALL MEMORY	LOC	K	LOCK		NONLOCK		
WALK	7	SEC.		SEC.	7	SEC.	
FLASHING DON'T WALK	10	SEC.	*****	SEC.	20	SEC.	
VOLUME DENSITY	ON	l	ON		OFF		
ACTUATION B4 ADD	0	VEH.	0	VEH.		VEH.	
SEC. PER ACTUATION	1.5	SEC.	1.5	SEC.		SEC.	
MAX. INITIAL	34	SEC.	34	SEC.		SEC.	
TIME B4 REDUCTION	15	SEC.	15	SEC.		SEC.	
	†		7.0	cro		SEC.	
TIME TO REDUCE	30	SEC.	30	SEC.		SEC.	

45 MPH 0% Grade O 6B €10 22**~-**0 SR 1708 (Fire Tower Road) -MetalPole 14 (See Loading Diagram) Sta.116+32 +/- -L-

LOOP & DETECTOR UNIT INSTALLATION CHART NEMA CONTROLLER WITH TS-2 CABINET

DIST. FROM STOPBAR (ft)

300

300

300

300

DETECTOR UNITS

TIMING
PLACE CALL DELAY
DURING DURING PHASE GREEN?

- SEC. ALL

System Detector

System Detector

System Detector

System Detector

DELAY 3 SEC. ALL

DELAY 3 SEC. ALL

DELAY 3 SEC. ALL

DELAY 15 SEC. ALL

- SEC. ALL NO

- SEC. ALL NO

- SEC. ALL NO

INDUCTIVE LOOPS

TURNS

6X40 2-4-2 0

6X40 2-4-2 0

SIZE (ft)

6X6

6X6

6X6

6X6

6X40

LOOP NO.

2A/S7

2B/S8

6A/S9

6B/S10

New Installation

(program card and set switches as shown below)

NOTES

- 1. TO PREVENT "FLASH-CONFLICT" PROBLEMS, WIRE ALL UNUSED LOAD SWITCHES TO FLASH RED. VERIFY THAT SIGNAL HEADS FLASH IN ACCORDANCE WITH THE SIGNAL PLANS.
- 2. TO PREVENT RED FAILURES ON UNUSED MONITOR CHANNELS, TIE UNUSED LOAD SWITCH RED OUTPUTS 1, 3, 4, 5, 7, 10, 11, 13, 14, 15 AND 16 TO LOAD SWITCH AC+ BY INSERTING A JUMPER PLUG IN THE UNUSED LOAD SWITCH SOCKET FROM PIN 1 (LS AC+) TO PIN 3 (RED OUT). MAKE SURE ALL FLASH TRANSFER RELAYS ARE IN PLACE.
- 3. PROGRAM CONTROLLER TO START UP IN PHASES 2 AND 6 GREEN.
- 4. SET POWER-UP FLASH TIME TO 10 SECONDS AND IMPLEMENT ON THE MALFUNCTION MANAGEMENT UNIT. SET CONTROLLER POWER-UP FLASH TIME TO 0 SECONDS.
- 5. ENABLE SIMULTANEOUS GAP-OUT FEATURE, ON CONTROLLER UNIT, FOR ALL PHASES.
- 6. PROGRAM DETECTORS IN ACCORDANCE WITH THE MANUFACTURER'S INSTRUCTIONS TO ACCOMPLISH THE DETECTION SCHEMES SHOWN ON THE SIGNAL DESIGN PLANS.
- 7. PROGRAM DETECTOR CALL DELAY AND EXTENSION TIMING ON THE CONTROLLER, UNLESS OTHERWISE SPECIFIED.
- 8. SET ALL DETECTOR CARD UNIT CHANNELS TO "PRESENCE" MODE.
- 9. PROGRAM PHASES 2 AND 6, ON CONTROLLER UNIT, FOR VOLUME DENSITY OPERATION.
- 10. THE CABINET AND CONTROLLER ARE A PART OF THE GREENVILLE CITY SYSTEM.

PROJECT REFERENCE NO. **sig.2**3 U-3613 B

FIELD CONNECTION HOOK-UP CHART																
PHASE	1	2	3	4	5	6	7	8	PED	PED	PED	8 PED	OLA	OLB	OLC	OLD
SIGNAL HEAD NO.	NU	21,22	NU	NU	NU	61,62	NU	81,82	P21, P22	NU	NU	P81,P82 P83,P84	NU	NU	NU	NU
RED		2R				6R	·	8R								
YELLOW		2Y				6Y		8Y	*			*				
GREEN		2G				6G		8G								
RED ARROW																
YELLOW ARROW																
GREEN ARROW																
•					·				9R			12R				
×									9G			12G				

NU = NOT USED

* INSTALL LOAD RESISTORS TO UNUSED FIELD TERMINALS 9Y AND 12Y, IF NOT ALREADY PRESENT. SEE LOAD RESISTOR INSTALLATION DETAIL THIS PAGE.

TYPICAL LOAD RESISTOR INSTALLATION DETAIL

PEDESTRIAN PUSH-BUTTON WIRING DETAIL

DETECTOR RACK SET-UP DETAIL

INSERT DETECTOR CARDS IN RACK ACCORDING TO THE DETAIL SHOWN BELOW. PARTICULAR DETECTOR CHANNELS WILL CALL PHASES INDICATED.

	CH1 L3 Ø 2 *	сн1 L 1 Ø2/SYS	сн1 L7 Ø8	сн1 L5 Ø6/SYS	SLOT	S L O T	SLOT	SLOT	S L O T	SLOT	SLOT
BIU	сн2 L4 ø6/SYS	сн2 L2 ø2/SYS	сн2 L8 Ø8	сн2 L6 Ø6 *	EMPTY	E M P T Y	E M P T Y	E M P T Y	E M P T Y	EMPTY	EMPTY

NOTE

WIRE LOOPS TO TERMINALS ON LOOP PANEL AS SHOWN

IN THE CHART BELOW LOOP NO. TERMINALS 2A/S7 L1A,L1B L2A,L2B L3A,L3B L4A,L4B 6A/S9 L5A,L5B L6A,L6B L7A,L7B

BE SURE TO PROGRAM DETECTOR TYPES AND TIMERS (EXTEND AND DELAY) AS SHOWN ON THE SIGNAL PLANS. ASSIGN CONTROLLER SYSTEM DETECTOR TO LOCAL CONT. DET. NUMBERS AS SHOWN IN CHART BELOW CONTROLLER LOCAL CONT. SYS. DET. NO. DETECTOR NO. L8A,L8B L9A,L9B L10A,L10B L11A,L11B L12A, L12B L13A,L13B L14A,L14B L15A,L15B L16A,L16B

PROGRAM CONTROLLER DETECTORS ACCORDING TO THE SCHEDULE SHOWN IN THE CHART BELOW

CONTROLLER

TIMING

CONTROLLER	FUNCTION	1.4	101110
DETECTOR NO.	FUNCTION	FEATURE	TIME(SEC)
1	Ø2		
2	Ø2		
* 3	Ø2	DELAY	3
4	Ø6		
5	Ø6		
* 6	Ø6	DELAY	3
7	ø8	DELAY	3
8	Ø8	DELAY	15
9			
10			
11			
12			
13			
14			
15			
16	,		

* THIS DETECTOR IS EQUIPPED WITH DELAY AND EXTEND TIMERS. PROGRAM THE TIMING REQUIRED FOR THIS DETECTOR CHANNEL ON THE DETECTOR UNIT, NOT THE CONTROLLER.

2

5

COUNTDOWN PEDESTRIAN SIGNAL OPERATION

Countdown Ped Signals are required to display timing only during Ped Clearance Interval. Consult Ped Signal Module user's manual for instructions on selecting this feature.

EQUIPMENT INFORMATION

CONTROLLERCONTRACTOR SUPPLIED CABINETCONTRACTOR SUPPLIED TS-2 NC-8A
CABINET MOUNTBASE
LOADBAY POSITIONS16
LOAD SWITCHES USED2,6,8,9,12
PHASES USED2.6.8.2 PED.8 PED
OLANOT USED
OLBNOT USED
OLCNOT USED

LOAD SWITCH ASSIGNMENT DETAIL

(program controller according to schedule in chart below)

OLD.....NOT USED

LOAD SWITCH NUMBER	FUNCTION			
1	ø1			
2	ø2			
3	ø3			
4	ø 4			
5	ø5			
6	ø6			
7	ø7			
8	ø8			
9	2 PED			
10	4 PED			
11	6 PED			
12	8 PED			
13	OLA			
14	OLB			
15	OLC			
16	OLD			

THIS ELECTRICAL DETAIL IS FOR THE SIGNAL DESIGN: Ø2-Ø871 DESIGNED: January 2006 SEALED: 03-03-06 REVISED: NA

New Installation

SR 1708 (Fire Tower Road) Evans Drive / Ashcroft Drive

PLAN DATE: February 2006 REVIEWED BY: PREPARED BY: James Peterson REVIEWED BY: INIT.

The contractor is responsible for verifying that the mast arm attachment height (H1) will provide the "Design Height" clearance from the roadway before submitting final shop drawings for approval. Verify elevation data below which was obtained by field measurement or from available project survey data.

Elevation Data for Mast Arm Attachment (H1)

Elevation Differences for:	Arm "A"	Arm "B"
Baseline reference point at © Foundation @ ground level	0.0 ft.	0.0 ft.
Elevation difference at High point of roadway surface	-0.3 ft.	N/A
Elevation difference at Edge of travelway or face of curb	N/A	N/A

8 BOLT BASE PLATE DETAIL See Note 6

METAL POLE No. 13

PROJECT	REFERENCE	NO.	SHEET	NO.
U-36	13 B		Sig	.24

	MAST ARM LOADING SCH	EDUL	.E	
LOADING SYMBOL	DESCRIPTION	Area	SIZE	WEIGHT
	SIGNAL HEAD 12"-5 SECTION-WITH BACKPLATE AND ASTRO-BRAC	16.3 S.F.	42.0" W X 56.0" L	103 LBS
	SIGNAL HEAD 12"-3 SECTION-WITH BACKPLATE AND ASTRO-BRAC	9.3 S.F.	25.5" W X 52.5" L	60 LBS
STREET NAME SIGN	STREET NAME SIGN RIGID MOUNTED WITH ASTRO-SIGN-BRAC	12.0 S.F.	18.0" W X 96.0" L	27 LBS

	LUMINAIRE OVX DROP PRISMATIC REFRACTOR	0.87 5.F.	13.25" W X 26.25" L	35 LBS	
--	---	-----------	---------------------------	--------	--

NOTES

Design Reference Material

- 1. Design the traffic signal structure and foundation in accordance with:
- The 4th Edition 2001 AASHTO "Standard Specifications for Structural Supports for Highway Signs, Luminaires, and Traffic Signals, including all of the latest interim revisions.
- The 2002 NCDOT "Standard Specifications for Roads and Structures". The latest addenda to these specifications can be found in the traffic signal project special provisions.
- The 2002 NCDOT Roadway Standard Drawings.
- The traffic signal project plans and special provisions.
 The NCDOT "Metal Pole Standards" located at the following NCDOT website:

http://www.ncdot.org/doh/preconstruct/traffic/tmssu/ws/mpoles/poles.htm

Design Requirements

- 2. Design the traffic signal structure using the loading conditions shown in the elevation views. These are anticipated worst case "Design loads" and may not represent the actual loads that will be applied at the time of the installation. The contractor should refer to the traffic signal plans for the actual loads that will be applied at the time of the installation.
- 3. Maximum allowable CSR for all signal supports is 0.9.
- 4. The camber design for mast arm deflection should provide an appearance of a low pitched arch where the tip or the free end of the mast arm does not deflect below horizontal when fully loaded.
- 5. A clamp-type bolted mast arm-to-pole connection may be used instead of the welded ring stiffened box connection shown as long as the connection meets all of the design requirements. This requires staggering the connections. Use elevation data for each arm to determine appropriate arm connection points. The arm-to-pole attachment is a high strength connection. Use Direct Tension Indicators (ASTM F959) for each bolt.
- 6. Design base plate with 8 anchor bolt holes. Provide 2 inch x 66 inch anchor bolts.
- 7. The mast arm attachment height (H1) shown is based on the following design assumptions: a. Mast arm slope and deflection are not considered in determining the arm attachment height as they are assumed to offset each other.
- b. Signal heads attached to the mast arm are rigid mounted and vertically centered on the arm.
- c. The roadway clearance height for design is as shown in the elevation views. d. The top of the pole base plate is .75 feet above the ground elevation.
- e. Refer to the Elevation Data chart for elevation differences between the proposed foundation ground level and the high point on the roadway.
- 8. The pole manufacturer will determine the total height (H2) of the pole based on the luminaire height required of 30 feet.
- 9. Design the luminaire support arm using design dimensions as shown on elevaiton views. Refer to the Radial Orientation Detail for attachment to the signal pole. Design arm end for a nominal 2 inch slip fit socket connection for light assembly.
- 10. If pole location adjustments are required, the contractor must gain approval from the engineer as this may affect the mast arm lengths and arm attachment heights. The contractor may contact the Signals & Geometrics Structural Engineer for assistance at (919) 733-3915.
- 11. The contractor is responsible for verifying that the mast arm lengths shown will allow proper positioning of the signal heads over the roadway.
- 12. The contractor is responsible for providing soil penetration testing data (SPT) to the pole manufacturer so site specific foundations can be designed.

NCDOT Wind Zone 2 (130 mph)

N/A

SR 1708 (Fire Tower Road) Bayswater Road

Division 2 Pitt County Greenvill March 2006 REVIEWED BY: PLAN DATE: RM Duffy TS Thigpen REVIEWED BY: Colotte REVISIONS INIT. DATE

Elevation View

The contractor is responsible for verifying that the mast arm attachment height (H1) will provide the "Design Height" clearance from the roadway before submitting final shop drawings for approval. Verify elevation data below which was obtained by field measurement or from available project survey data.

Elevation Data for Mast Arm Attachment (H1)

Elevation Differences for:	Pole 14
Baseline reference point at & Foundation & ground level	0.0 ft.
Elevation difference at High point of roadway surface	+2.7 ft.
Elevation difference at Edge of travelway or face of curb	N/A

POLE RADIAL ORIENTATION

8 BOLT BASE PLATE DETAIL See Note 6

METAL POLE No. 14

PROJECT	REFERENCE NO.	SHEET NO.
U -	3613 B	Sig. 25

	MAST ARM LOADING SCH	EDUL	E.	
LOADING SYMBOL	DESCRIPTION	AREA	SIZE	WEIGHT
	SIGNAL HEAD 12"-3 SECTION-WITH BACKPLATE AND ASTRO-BRAC	9.3 S.F.	25.5" W X 52.5" L	60 LBS
STREET NAME SIGN	STREET NAME SIGN RIGID MOUNTED WITH ASTRO-SIGN-BRAC	12.0 S.F.	18.0" W X 96.0" L	27 LBS
	PEDESTRIAN SIGNAL HEAD WITH MOUNTING HARDWARE	2.2 S.F.	18.5" W X 17.0" L	21 LBS

|--|

<u>NOTES</u>

Design Reference Material

- 1. Design the traffic signal structure and foundation in accordance with: The 4th Edition 2001 AASHTO "Standard Specifications for Structural Supports for Highway Signs, Luminaires, and Traffic Signals, including all of the latest interim revisions. The 2002 NCDOT "Standard Specifications for Roads and Structures". The latest addenda to these specifications can be found in the traffic signal project special provisions. The 2002 NCDOT Roadway Standard Drawings.
 - The traffic signal project plans and special provisions. The NCDOT "Metal Pole Standards" located at the following NCDOT website: http://www.doh.dot.state.nc.us/preconstruct/traffic/tmssu/ws/mpoles/poles.htm

Design Requirements

- 2. Design the traffic signal structure using the loading conditions shown in the elevation views. These are anticipated worst case "Design loads" and may not represent the actual loads that will be applied at the time of the installation. The contractor should refer to the traffic signal plans for the actual loads that will be applied at the time of the installation.
- Maximum allowable CSR for all signal supports is 0.9.
- 4. The camber design for mast arm deflection should provide an appearance of a low pitched arch where the tip or the free end of the mast arm does not deflect below horizontal when fully loaded.
- 5. A clamp-type bolted mast arm-to-pole connection may be used instead of the welded ring stiffened box connection shown as long as the connection meets all of the design requirements. This is a high strength connection. Use Direct Tension Indicators (ASTM F959) for each bolt.
- 6. Design base plate with 8 anchor bolt holes. Provide 2 inch x 66 inch anchor bolts.
- 7. The mast arm attachment height (H1) shown is based on the following design assumptions: a. Mast arm slope and deflection are not considered in determining the arm attachment height as they are assumed to offset each other.
- b. Signal heads attached to the mast arm are rigid mounted and vertically centered on the arm.
- c. The roadway clearance height for design is as shown in the elevation views. d. The top of the pole base plate is .75 feet above the ground elevation. e.Refer to the Elevation Data chart for elevation differences between the proposed foundation
- ground level and the high point on the roadway. 8. The pole manufacturer will determine the total height (H2) of each pole based on the luminaire height requirement of 30 feet.
- 9. Design the luminaire support arm using design dimensions as shown on elevation views. Refer to the Radial Orientation Detail for attachment to the signal pole. Design arm end for a nominal 2 inch slip fit socket connection for light assembly.
- 10. If pole location adjustments are required, the contractor must gain approval from the engineer as this may affect the mast arm lengths and arm attachment heights. The contractor may contact the Signals & Geometrics Structural Engineer for assistance at
- 11. The contractor is responsible for verifying that the mast arm length shown will allow proper positioning of the signal heads over the roadway.
- 12. The contractor is responsible for providing soil penetration testing data (SPT) to the pole manufacturer so site specific foundations can be designed.

NCDOT Wind Zone 2 (130 mph)

N/A

SR 1708 (Fire Tower Road) Bayswater Road

Division 2 Pitt County Greenvil PLAN DATE: March 2006 REVIEWED BY: RM Duffy 22 N. McDowell St., Raleigh, NC 27603 PREPARED BY: TS Thigpen REVIEWED BY: 11866 REVISIONS

SEAL SIG. INVENTORY NO.

For 8 Bolt Base Plate

2 Phase Fully Actuated

NOTES

(Greenville City System)

1. Refer to "Roadway Standard Drawings NCDOT" dated January 2002 and "Standard Specifications for Roads and Structures" dated January 2002.

2. Do not program signal for late night flashing operation unless otherwise directed by the Engineer.

3. Program phase 4 and phase 8 for dual entry.

4. Set all detector units to presence mode.

5. Locate new cabinet so as not to obstruct sight distance of vehicles turning right on red.

6. Omit "WALK" and flashing "DON'T WALK" with no pedestrian calls.

7. Program pedestrian heads to countdown the flashing "Don't Walk" time only.

8. Maximum times shown in timing chart are for free-run operation only. Coordinated signal system timing values supersede these values.

9. Intersection Zone Number: 7, System Address Number: 124

LOC)P &	DETE NEMA	CTOR CONTRO	U	N. EF	[T]	I N	S rs	TALLA -2 CABI	TI(NET	ON	CHAI	RT
	INDUCTI	VE LOOF	PS						DETECT	OR U	NITS		
1000 110	SIZE	TUDNIC	DIST. FROM	NEW	EXISTING	NEMA	*	EXISTING	TIM	ING		PLACE CALL	INHIBIT DELAY
LOOP NO.	(ft)	TURNS	STOPBAR (ft)	Z	EXIST	PHASE	NEW	EXIST	FEATURE	TIA	NE	DURING PHASE	DURING GREEN?
2A	6X6	6	300	Χ		2	Χ			_	SEC.	ALL	NO
2B	6X6	6	300	Χ		2	Χ		_		SEC.	ALL	NO
2C	6X40	2-4-2	0	Χ		2	Χ		DELAY	3	SEC.	ALL	NO
4A	6X40	2-4-2	0	Χ		4	Χ			-	SEC.	ALL	NO
4B	6X40	2-4-2	0	Χ		4	Χ		DELAY	10	SEC.	ALL	YES
6A	6X6	6	300	Χ		6	Χ			-	SEC.	ALL	NO
6B	6X6	6	300	Χ		6	Χ			-	SEC.	ALL	NO
6C	6X40	2-4-2	0	Χ		6	Χ		DELAY	3	SEC.	ALL	NO
8A	6X40	2-4-2	0	Χ		8	Χ		DELAY	3	SEC.	ALL	YES
8B	6X40	2-4-2	0	Χ		8	Χ		DELAY	10	SEC.	ALL	YES

PHASING DIAGRAM

DETECTED MOVEMENT

UNDETECTED MOVEMENT (OVERLAP)

UNSIGNALIZED MOVEMENT

≪--> PEDESTRIAN MOVEMENT

PHASING DIAGRAM DETECTION LEGEND

SIGNAL FACE I.D.

(Denotes L.E.D.

TABLE OF OPERATION

SIGNAL

FACE

41, 42

61,62

81, 82

P21, P22

P41, P42

P61, P62

P81, P82

PHASE

ROW EOP EOP ROW

TIMING CHART NEMA CONTROLLER MINIMUM GREEN 2.0 SEC. 6.0 SEC. 2.0 SEC. PASSAGE/GAP 3.2 **SEC**. 4.4 SEC. 3.0 SEC 4.6 SEC. YELLOW CHANGE INT. 3.1 **SEC.** 1.3 SEC. 3.5 SEC. RED CLEARANCE 25 **SEC**. 90 **SEC.** 25 **SEC.** MAX. 1 MIN. RECALL NONE RECALL POSITION LOCK NONLOCK VEHI. CALL MEMORY LOCK NONLOCK 7 SEC. 19 **SEC**. 19 **SEC**. 10 SEC. FLASHING DON'T WALK VOLUME DENSITY ACTUATION B4 ADD SEC. PER ACTUATION — SEC. 34 **SEC**. 34 SEC. MAX. INITIAL 15 **SEC**. TIME B4 REDUCTION 30 **SEC**. TIME TO REDUCE

phases 2 and 6 lower than what is shown. Min Green for all other phases should not be

LEGEND EXISTING PROPOSED Traffic Signal Head Modified Signal Head 0-> Pedestrian Signal Head With Push Button & Sign Signal Pole with Guy Signal Pole with Sidewalk Guy Inductive Loop Detector Controller & Cabinet Junction Box ---- 2-in Underground Conduit Right of Way Directional Arrow Pavement Marking Arrow Wheelchair Ramp Directional Drill (2) 2-in Poly. Conduit Metal Pole with Mastarm

1"=40'

New Installation

SR 1708 (Fire Tower Road) Evans Drive /Ashcroft Drive

Division 2 Pitt County Greenvill January 2006 REVIEWED BY: RM Duffy Selett N. McDowell St., Raleigh, NC 27603 PREPARED BY: TS Thigpen REVIEWED BY: REVISIONS

SEAL SIG. INVENTORY NO. 02-0869

MINIMUM GAP

(program card and set switches as shown below)

NOTES

- 1. TO PREVENT "FLASH-CONFLICT" PROBLEMS, WIRE ALL UNUSED LOAD SWITCHES TO FLASH RED. VERIFY THAT SIGNAL HEADS FLASH IN ACCORDANCE WITH THE SIGNAL PLANS.
- 2. TO PREVENT RED FAILURES ON UNUSED MONITOR CHANNELS, TIE UNUSED LOAD SWITCH RED OUTPUTS 1, 3, 5, 7, 13, 14, 15 AND 16 TO LOAD SWITCH AC+ BY INSERTING A JUMPER PLUG IN THE UNUSED LOAD SWITCH SOCKET FROM PIN 1 (LS AC+) TO PIN 3 (RED OUT). MAKE SURE ALL FLASH TRANSFER RELAYS ARE IN PLACE.
- 3. PROGRAM CONTROLLER TO START UP IN PHASES 2 AND 6 GREEN.
- 4. SET POWER-UP FLASH TIME TO 10 SECONDS AND IMPLEMENT ON THE MALFUNCTION MANAGEMENT UNIT. SET CONTROLLER POWER-UP FLASH TIME TO O SECONDS.
- 5. ENABLE SIMULTANEOUS GAP-OUT FEATURE, ON CONTROLLER UNIT, FOR ALL PHASES.
- 6. PROGRAM DETECTORS IN ACCORDANCE WITH THE MANUFACTURER'S INSTRUCTIONS TO ACCOMPLISH THE DETECTION SCHEMES SHOWN ON THE SIGNAL DESIGN PLANS.
- 7. PROGRAM DETECTOR CALL DELAY AND EXTENSION TIMING ON THE CONTROLLER, UNLESS OTHERWISE SPECIFIED.
- 8. SET ALL DETECTOR CARD UNIT CHANNELS TO "PRESENCE" MODE.
- 9. PROGRAM PHASES 2 AND 6, ON CONTROLLER UNIT, FOR VOLUME DENSITY OPERATION.
- 10. PROGRAM PHASES 4 AND 8, ON CONTROLLER UNIT, FOR DUAL ENTRY.
- 11. THE CABINET AND CONTROLLER ARE A PART OF THE GREENVILLE CITY SYSTEM.

PROJECT REFERENCE NO.	SHEET NO.
U-3613 B	sig. 27

	FIELD CONNECTION HOOK-UP CHART															
PHASE	1	2	3	4	5	6	7	8	PED	4 PED	PED	PED	OLA	OLB	OLC	OLD
SIGNAL HEAD NO.	NU	21,22	NU	41,42	NU	61,62	NU	81,82	P21, P22	P41, P42	P61, P62	P81, P82	NU	NU	NU	NU
RED		2R		4R		6R		8R								
YELLOW		2Y		4Y		6Y		8Y	*	*	*	*				
GREEN		2G		4G		6G		8G								
RED ARROW																
YELLOW ARROW								,		·						
GREEN ARROW								·								
*					·				9R	10R	11R	12R				
Ķ									9G	1ØG	11G	12G				
NU = NO.																

* INSTALL LOAD RESISTORS TO UNUSED FIELD TERMINALS 9Y, 10Y, 11Y AND 12Y, IF NOT ALREADY PRESENT. SEE LOAD RESISTOR INSTALLATION DETAIL THIS PAGE.

TYPICAL LOAD RESISTOR INSTALLATION DETAIL

DETECTOR RACK SET-UP DETAIL

INSERT DETECTOR CARDS IN RACK ACCORDING TO THE DETAIL SHOWN BELOW. PARTICULAR DETECTOR CHANNELS WILL CALL PHASES INDICATED.

BIU	cH1 L3 Ø 2 *	сн1 L1 Ø2	сн1 L7 Ø6	сн1 L5 Ø 4	S L O T	сн1 L9 Ø8	SLOT	SLOT	N _10 F	0 L O F	S L O T
DIO	сн2 L4 Ø4	сн2 L2 Ø 2	cH2 L8 Ø6	сн2 L6 Ø6	E M P T Y	сн2 L10 Ø8	EMPTY	E M P T Y	E M P T Y	EMPTY	E M P T Y

NOTE

BE SURE TO PROGRAM

DETECTOR TYPES AND

TIMERS (EXTEND AND

DELAY) AS SHOWN ON THE SIGNAL PLANS.

WIRE LOOPS TO TERMINALS ON LOOP PANEL AS SHOWN

IN THE CHART BELOW

IN THE	HARI BELU
LOOP NO.	LOOP PANEL TERMINALS
2A	L1A,L1B
2B	L2A,L2B
2C	L3A,L3B
4A	L4A,L4B
4B	L5A,L5B
6A	L6A,L6B
6B	L7A,L7B
6C	L8A,L8B
A8	L9A,L9B
8B	L10A,L10B
	L11A,L11B
	L12A,L12B
	L13A,L13B
	L14A,L14B
	L15A,L15B
	L16A,L16B

PROGRAM CONTROLLER DETECTORS ACCORDING TO THE SCHEDULE SHOWN IN THE CHART BELOW

CONTROLLER	FUNCTION	TIMING						
DETECTOR NO.	FUNCTION	FEATURE	TIME(SEC)					
1	Ø2							
2	ø2							
* 3	ø2	DELAY	3					
4	Ø 4							
5	Ø 4	DELAY	10					
6	Ø6							
7	ø6							
* 8	ø6	DELAY	3					
9	Ø8	DELAY	3					
10	ø8	DELAY	10					
11								
12								
13								
14								
15								
16								

* THIS DETECTOR IS EQUIPPED WITH DELAY AND EXTEND TIMERS. PROGRAM THE TIMING REQUIRED FOR THIS DETECTOR CHANNEL ON THE DETECTOR UNIT, NOT THE CONTROLLER.

EQUIPMENT INFORMATION

CONTROLLERCONTRACTOR SUPPLIED
CABINETCONTRACTOR SUPPLIED TS-2 NC-8A
CABINET MOUNTBASE
LOADBAY POSITIONS16
LOAD SWITCHES USED2,4,6,8,9,10,11,12
PHASES USED2,4,6,8,2 PED,4 PED,6 PED,8 PED
OLANOT USED
OLBNOT USED
OLCNOT USED
OLDNOT USED

COUNTDOWN PEDESTRIAN SIGNAL OPERATION

Countdown Ped Signals are required to display timing only during Ped Clearance Interval. Consult Ped Signal Module user's manual for instructions on selecting this feature.

LOAD SWITCH ASSIGNMENT DETAIL

(program controller according to schedule in chart below)

LOAD SWITCH NUMBER	FUNCTION				
1	ø 1				
2	ø2				
3	øЗ				
4	ø4				
5	ø5				
6	ø6				
7	ø7				
8	ø8				
9	2 PED				
10	4 PED				
11	6 PED				
12	8 PED				
13	OLA				
14	OLB				
15	OLC				
16	OLD				

PEDESTRIAN PUSH-BUTTON WIRING DETAIL

(wire push-buttons as shown below)

THIS ELECTRICAL DETAIL IS FOR THE SIGNAL DESIGN: 02-0869 DESIGNED: January 2006 SEALED: 03-03-06 REVISED: NA

New Installation

SR 1708 (Fire Tower Road) Evans Drive / Ashcroft Drive

Greenville PLAN DATE: February 2006 REVIEWED BY: MUN PREPARED BY: James Peterson REVIEWED BY: INIT. DATE

SIG. INVENTORY NO. 02-0869

SEAL

The contractor is responsible for verifying that the mast arm attachment height (H1) will provide the "Design Height" clearance from the roadway before submitting final shop drawings for approval. Verify elevation data below which was obtained by field measurement or from available project survey data.

Elevation Data for Mast Arm Attachment (H1)

Polo 15	D-7- 40
LOTE 12	Pole 16
0.0 ft.	0.0 ft.
+1.6 ft.	+0.8 ft.
N/A	N/A
	+1.6 ft.

POLE RADIAL ORIENTATION

8 BOLT BASE PLATE DETAIL

See Note 6

METAL POLE No. 15 and 16

PROJECT	REFERENCE NO.	SHEET NO.
U-	3613 B	Sig. 28

	MAST ARM LOADING SCH	EDUL	E	
LOADING SYMBOL	DESCRIPTION	AREA	SIZE	WEIGHT
	SIGNAL HEAD 12"-5 SECTION-WITH BACKPLATE AND ASTRO-BRAC	16.3 S.F.	42.0" W X 56.0" L	103 LBS
	Signal Head 12"-3 Section-With Backplate and Astro-Brac	9.3 S.F.	25.5" W X 52.5" L	60 LBS
STREET NAME SIGN	STREET NAME SIGN RIGID MOUNTED WITH ASTRO-SIGN-BRAC	12.0 S.F.	18.0" W X 96.0" L	27 LBS
	PEDESTRIAN SIGNAL HEAD WITH MOUNTING HARDWARE	2.2 S.F.	18.5" W X 17.0" L	21 LBS

LUMINAIRE OVX DROP PRISMATIC REFRACTOR	EPA 0.87 S.F.	13.25" W X 26.25" L	35 LBS
--	------------------	---------------------------	--------

<u>NOTES</u>

Design Reference Material

- 1. Design the traffic signal structure and foundation in accordance with:
 The 4th Edition 2001 AASHTO "Standard Specifications for Structural Supports for Highway Signs, Luminaires, and Traffic Signals, including all of the latest interim revisions.
 The 2002 NCDOT "Standard Specifications for Roads and Structures". The latest addenda to these specifications can be found in the traffic signal project special provisions.
 The 2002 NCDOT Roadway Standard Drawings.
 - The traffic signal project plans and special provisions.
- The NCDOT "Metal Pole Standards" located at the following NCDOT website: http://www.doh.dot.state.nc.us/preconstruct/traffic/tmssu/ws/mpoles/poles.htm

<u>Design Requirements</u>

- 2. Design the traffic signal structure using the loading conditions shown in the elevation views. These are anticipated worst case "Design loads" and may not represent the actual loads that will be applied at the time of the installation. The contractor should refer to the traffic signal plans for the actual loads that will be applied at the time of the installation.
- 3. Maximum allowable CSR for all signal supports is 0.9.
- 4. The camber design for mast arm deflection should provide an appearance of a low pitched arch where the tip or the free end of the mast arm does not deflect below horizontal when fully loaded.
- 5. A clamp-type bolted mast arm-to-pole connection may be used instead of the welded ring stiffened box connection shown as long as the connection meets all of the design requirements. This is a high strength connection. Use Direct Tension Indicators (ASTM F959) for each bolt.
- 6. Design base plate with 8 anchor bolt holes. Provide 2 inch x 66 inch anchor bolts.
- . The mast arm attachment height (H1) shown is based on the following design assumptions:
 a.Mast arm slope and deflection are not considered in determining the arm attachment height
 as they are assumed to offset each other.
- b. Signal heads attached to the mast arm are rigid mounted and vertically centered on the arm.
- c. The roadway clearance height for design is as shown in the elevation views. d. The top of the pole base plate is .75 feet above the ground elevation.
- e Refer to the Elevation Data chart for elevation differences between the proposed foundation ground level and the high point on the roadway.
- 8. The pole manufacturer will determine the total height (H2) of each pole based on the luminaire height requirement of 30 feet.
- 9. Design the luminaire support arm using design dimensions as shown on elevation views. Refer to the Radial Orientation Detail for attachment to the signal pole. Design arm end for a nominal 2 inch slip fit socket connection for light assembly.
- 10. If pole location adjustments are required, the contractor must gain approval from the engineer as this may affect the mast arm lengths and arm attachment heights. The contractor may contact the Signals & Geometrics Structural Engineer for assistance at (919) 733-3915.
- 11. The contractor is responsible for verifying that the mast arm length shown will allow proper positioning of the signal heads over the roadway.
- 12. The contractor is responsible for providing soil penetration testing data (SPT) to the pole manufacturer so site specific foundations can be designed.

NCDOT Wind Zone 2 (130 mph)

N/A

SR 1708 (Fire Tower Road) at Evans Drive/Ashcroft Drive

Division 2 Pitt County Greenvil

PLAN DATE: March 2006 REVIEWED BY: RM Duffy

SCALE

REVISIONS

REVIEWED BY: INIT. DATE

O N/A

*its signais*Workgroups*iip pro uffy

The contractor is responsible for verifying that the mast arm attachment height (H1) will provide the "Design Height" clearance from the roadway before submitting final shop drawings for approval. Verify elevation data below which was obtained by field measurement or from available project survey data.

Elevation Data for Mast Arm Attachment (H1)

Elevation Differences for:	Pole 17	Pole 18
Baseline reference point at & Foundation @ ground level	0.0 ft.	0.0 ft.
Elevation difference at High point of roadway surface	+1.2 ft.	+1.9 ft.
Elevation difference at Edge of travelway or face of curb	N/A	N/A

POLE RADIAL ORIENTATION

8 BOLT BASE PLATE DETAIL
See Note 6

METAL POLE No. 17 and 18

	REFERENCE NO.	SHEET NO.
Ų.	·3613 B	Sig. 29

	MAST ARM LOADING SCH	EDUL	E	
LOADING SYMBOL	DESCRIPTION	AREA	SIZE	WEIGHT
	SIGNAL HEAD 12"-5 SECTION-WITH BACKPLATE AND ASTRO-BRAC	16.3 S.F.	42.0" W X 56.0" L	103 LBS
	SIGNAL HEAD 12"-3 SECTION-WITH BACKPLATE AND ASTRO-BRAC	9.3 S.F.	25.5″ W X 52.5″ L	60 LBS
STREET NAME SIGN	STREET NAME SIGN RIGID MOUNTED WITH ASTRO-SIGN-BRAC	12.0 S.F.	18.0" W X 96.0" L	27 LBS
	PEDESTRIAN SIGNAL HEAD WITH MOUNTING HARDWARE	2.2 S.F.	18.5" W X 17.0" L	21 LBS

LUMINAIRE OVX DROP PRISMATIC REFRACTOR	EPA 13.25" V 0.87 S.F. 26.25"	35 LBS
--	----------------------------------	--------

NOTES

Design Reference Material

- . Design the traffic signal structure and foundation in accordance with:
- The 4th Edition 2001 AASHTO "Standard Specifications for Structural Supports for Highway Signs, Luminaires, and Traffic Signals, including all of the latest interim revisions.
- The 2002 NCDOT "Standard Specifications for Roads and Structures". The latest addenda to these specifications can be found in the traffic signal project special provisions.
- The 2002 NCDOT Roadway Standard Drawings.
- The traffic signal project plans and special provisions.
- The NCDOT "Metal Pole Standards" located at the following NCDOT website: http://www.doh.dot.state.nc.us/preconstruct/traffic/tmssu/ws/mpoles/poles.htm

esign Requirements

- 2. Design the traffic signal structure using the loading conditions shown in the elevation views. These are anticipated worst case "Design loads" and may not represent the actual loads that will be applied at the time of the installation. The contractor should refer to the traffic signal plans for the actual loads that will be applied at the time of the installation.
- 3. Maximum allowable CSR for all signal supports is 0.9.
- 4. The camber design for mast arm deflection should provide an appearance of a low pitched arch where the tip or the free end of the mast arm does not deflect below horizontal when fully loaded.
- 5. A clamp-type bolted mast arm-to-pole connection may be used instead of the welded ring stiffened box connection shown as long as the connection meets all of the design requirements. This is a high strength connection. Use Direct Tension Indicators (ASTM F959) for each bolt.
- 6. Design base plate with 8 anchor bolt holes. Provide 2 inch x 66 inch anchor bolts.7. The mast arm attachment height (H1) shown is based on the following design assumptions:
- a. Mast arm slope and deflection are not considered in determining the arm attachment height as they are assumed to offset each other.
- b. Signal heads attached to the mast arm are rigid mounted and vertically centered on the arm. c. The roadway clearance height for design is as shown in the elevation views.
- d. The top of the pole base plate is .75 feet above the ground elevation.
- e.Refer to the Elevation Data chart for elevation differences between the proposed foundation ground level and the high point on the roadway.
 8. The pole manufacturer will determine the total height (H2) of each pole based on the luminaire
- height requirement of 30 feet.

 9. Design the luminaire support arm using design dimensions as shown on elevation views. Refer to the Radial Orientation Detail for attachment to the signal pole. Design arm end for a
- nominal 2 inch slip fit socket connection for light assembly.

 10. If pole location adjustments are required, the contractor must gain approval from the engineer as this may affect the mast arm lengths and arm attachment heights. The contractor may contact the Signals & Geometrics Structural Engineer for assistance at
- 11. The contractor is responsible for verifying that the mast arm length shown will allow proper positioning of the signal heads over the roadway.
- 12. The contractor is responsible for providing soil penetration testing data (SPT) to the pole manufacturer so site specific foundations can be designed.

NCDOT Wind Zone 2 (130 mph)

N/A

SR 1708 (Fire Tower Road) at Evans Drive/Ashcroft Drive

Division 2 Pitt County Greenville

PLAN DATE: March 2006 REVIEWED BY: RM Duffy

St., Raleigh, NC 27603 PREPARED BY: TS Thigpen REVIEWED BY:

REVISIONS INIT. DATE

SIGNAL FACE I.D.

(Denotes L.E.D.

	Œ		
u	(Y) (G)	12"	

Sta.145+43 +/- -L-

EOP

22 41, 42 21 61 62 81

PHASING DIAGRAM DETECTION LEGEND DETECTED MOVEMENT UNDETECTED MOVEMENT (OVERLAP) UNSIGNALIZED MOVEMENT ←─── PEDESTRIAN MOVEMENT

PHASING DIAGRAM

02+5

45 MPH 0% Grade —Direct Bury

					G CHA							
PHASE	Ø1		Ø2	2	Ø4		Ø 5		Ø6		Ø8	
MINIMUM GREEN	7	SEC.	12	SEC.	7	SEC.	7	SEC.	12	SEC.	7	SEC.
PASSAGE/GAP	2.0	SEC.	6.0	SEC.	2.0	SEC.	2.0	SEC.	6.0	SEC.	2.0	SEC.
YELLOW CHANGE INT.	3.0	SEC.	4.5	SEC.	3.0	SEC.	3.0	SEC.	4.5	SEC.	4.8	SEC.
RED CLEARANCE	2.8	SEC.	1.3	SEC.	1.8	SEC.	2.6	SEC.	1.5	SEC.	1.0	SEC.
MAX. 1	25	SEC.	90	SEC.	25	SEC.	25	SEC.	90	SEC.	25	SEC.
RECALL POSITION	ИОИ	1E	MIN. RECALL		NONE		NONE		MIN. RECALL		NONE	
VEHI. CALL MEMORY	NONLO	OCK	NONL	оск	NONLOCK NONLOCK		эск	NONLOCK		NONLOCK		
WALK	*****	SEC.	enere seig	SEC.		SEC.		SEC.		SEC.		SEC.
FLASHING DON'T WALK		SEC.		SEC.		SEC.		SEC.		SEC.		SEC.
VOLUME DENSITY	OF	5	ON	4	OFF		OFF	•	ON		OF	F
ACTUATION B4 ADD	_	VEH.	0	VEH.	*****	VEH.	*****	VEH.	0	VEH.		VEH.
SEC. PER ACTUATION		SEC.	2.5	SEC.		SEC.		SEC.	2.5	SEC.	<u></u>	SEC.
MAX. INITIAL		SEC.	34	SEC.		SEC.		SEC.	34	SEC.	*****	SEC.
TIME B4 REDUCTION	*****	SEC.	15	SEC.		SEC.		SEC.	15	SEC.		SEC.
TIME TO REDUCE		SEC.	30	SEC.		SEC.		SEC.	30	SEC.		SEC.
	ŧ	1				1			L			

shown. Min Green for all other phases should not be lower than 4 seconds.

DETECTOR UNITS INDUCTIVE LOOPS INHIBIT DELAY DURING GREEN? STOPBAR (ft) DELAY DELAY YES 0 | 2-4-2 | X | 1 | X | 6X6 300 YES 6X40 0 2-4-2 X DELAY 3 YES 0 2-4-2 X DELAY YES NO 6X6 300 6 X 8A 6X40 0 2-4-2 X 8 X DELAY

NEMA LOOP & DETECTOR INSTALLATION CHART with TS-2 CABINET LOOP NO.

- 1. Refer to "Roadway Standard Drawings NCDOT" dated January 2002 and "Standard Specifications for Roads and
- 2. Do not program signal for late night flashing operation unless otherwise directed by

- from phase 2+6 to phase 1 and/or 5 by progressing through phase 4+8 (see
- 6. Program phase 4 and phase 8 for dual entry.
- 7. Set all detector units to
- 8. Locate new cabinet so as not
- chart are for free-run operation only. Coordinated signal system timing values
- Intersection Zone Number: 7 System address number: 82

-Direct Bury Sta.146+19 +/- -L-Sta.145+9 +/- -L-83' +/- Rt. 54' +/- Rt. └─Direct Bury

45 MPH 0% Grade

SR 1708 (Fire Tower Road)

Sta.146+31 +/- -L-

Signal Upgrade - TCP Phase I - Temporary Signal 1

SR 1709 (Corey Road)/

Entrance to Apartments Pitt County S. of Greenville PLAN DATE: January 2006 REVIEWED BY: PREPARED BY: TS Thigpen REVIEWED BY:

SIG. INVENTORY NO. 02-0717 T

(program card and set switches as shown below)

DETECTOR RACK SET-UP DETAIL

INSERT DETECTOR CARDS IN RACK ACCORDING TO THE DETAIL SHOWN BELOW. PARTICULAR DETECTOR CHANNELS WILL CALL PHASES INDICATED.

	сн1 L3 Ø 1	сн1 L1 Ø 1	сн1 L7 ø 4	сн1 L5 Ø 2	сн1 L11 Ø6	сн1 L9 Ø 5	SLOT	CH1 L13 Ø8	S L O F	SLOT	SLOT
BIU	CH2 NOT USED	CH2 L2 Ø 6	сн2 L8 Ø 4	CH2 NOT USED	cH2 NOT USED	CH2 L10 Ø2 *	E M P T Y	CH2 NOT USED	EMPTY	E M P T Y	E M P T Y

WIRE LOOPS TO TERMINALS ON LOOP PANEL AS SHOWN IN THE CHART BELOW

1	IN INC.	MARI DELUM
	LOOP NO.	LOOP PANEL TERMINALS
ADD JUMPERS FROM:	1 A	L1A,L1B
L1A TO L2A, AND L1B TO L2B	IA	L2A,L2B
	1B	L3A,L3B
		L4A,L4B
	2A	L5A,L5B
		L6A,L6B
	4A	L7A,L7B
	4B	L8A,L8B
ADD JUMPERS FROM: L9A TO L10A, AND	5A	L9A,L9B
L9B TO L10B	JA	L10A,L10B
	6A	L11A,L11B
		L12A,L12B
	88	L13A,L13B
		L14A,L14B
		L15A,L15B
		L16A,L16B

<u>NOTE</u> BE SURE TO PROGRAM DETECTOR TYPES AND TIMERS (EXTEND AND DELAY) AS SHOWN ON THE SIGNAL PLANS.

ACCORDING TO THE SCHEDULE SHOWN IN THE CHART BELOW

CONTROLLER	FUNCTION	TI	MING
DETECTOR NO.	FUNCTION	FEATURE	TIME(SEC)
1	Ø 1	DELAY	15
* 2	Ø6	DELAY	3
3	Ø 1	DELAY	15
4			
5	Ø2		
6			
7	Ø 4	DELAY	3
8	Ø 4	DELAY	10
9	Ø 5	DELAY	15
* 10	Ø 2	DELAY	3
11	Ø6		
12			
13	Ø8	DELAY	3
14			
15			,
16			

PROGRAM CONTROLLER DETECTORS

* THIS DETECTOR IS EQUIPPED WITH DELAY AND EXTEND TIMERS. PROGRAM THE TIMING REQUIRED FOR THIS DETECTOR CHANNEL ON THE DETECTOR UNIT, NOT THE CONTROLLER.

NOTES

- 1. TO PREVENT "FLASH-CONFLICT" PROBLEMS, WIRE ALL UNUSED LOAD SWITCHES TO FLASH RED. VERIFY THAT SIGNAL HEADS FLASH IN ACCORDANCE WITH THE SIGNAL PLANS.
- 2. TO PREVENT RED FAILURES ON UNUSED MONITOR CHANNELS, TIE UNUSED LOAD SWITCH RED OUTPUTS 3, 7, 9, 10, 11, 12, 13, 14, 15 AND 16 TO LOAD SWITCH AC+ BY INSERTING A JUMPER PLUG IN THE UNUSED LOAD SWITCH SOCKET FROM PIN 1 (LS AC+) TO PIN 3 (RED OUT). MAKE SURE ALL FLASH TRANSFER RELAYS ARE IN PLACE.
- 3. PROGRAM CONTROLLER TO START UP IN PHASES 2 AND 6 GREEN.
- 4. SET POWER-UP FLASH TIME TO 10 SECONDS AND IMPLEMENT ON THE MALFUNCTION MANAGEMENT UNIT. SET CONTROLLER POWER-UP FLASH TIME TO O SECONDS.
- 5. ENABLE SIMULTANEOUS GAP-OUT FEATURE, ON CONTROLLER UNIT, FOR ALL PHASES.
- 6. PROGRAM DETECTORS IN ACCORDANCE WITH THE MANUFACTURER'S INSTRUCTIONS TO ACCOMPLISH THE DETECTION SCHEMES SHOWN ON THE SIGNAL DESIGN PLANS.
- 7. PROGRAM DETECTOR CALL DELAY AND EXTENSION TIMING ON THE CONTROLLER, UNLESS OTHERWISE SPECIFIED.
- 8. SET ALL DETECTOR CARD UNIT CHANNELS TO "PRESENCE" MODE.
- 9. PROGRAM PHASES 2 AND 6, ON CONTROLLER UNIT, FOR VOLUME DENSITY OPERATION.
- 10. PROGRAM PHASES 4 AND 8, ON CONTROLLER UNIT, FOR DUAL ENTRY.
- 11. THE CABINET AND CONTROLLER ARE A PART OF THE GREENVILLE CITY SYSTEM.

EQUIPMENT INFORMATION

CONTROLLERCONTRACTOR SUPPLIED ECONOLITE	
CABINETCONTRACTOR SUPPLIED TS-2 NC-3	
CABINET MOUNTBASE	
LOADBAY POSITIONS16	
LOAD SWITCHES USED1,2,4,5,6,8	
PHASES USED1,2,4,5,6,8	
OLANOT USED	
OLBNOT USED	
OLCNOT USED	

OLD.....NOT USED

(program controller according to schedule in chart below)

LOAD SWITCH ASSIGNMENT DETAIL

LOAD SWITCH NUMBER	FUNCTION
1	ø1
2	ø2
3	ø3
4	ø4
5	ø5
6	ø6
7	ø7
8	ø8
9	2 PED
10	4 PED
11	6 PED
12	8 PED
13	OLA
14	OLB
15	DLC
16	OLD

PROJECT REFERENCE NO. **Sig.**31 U-3613B

		FI	ELC) C(NNC	IEC	ΓΙΟ	N F	100	K-L	JP (CHA	RT			
PHASE	1	2	3	4	5	6	7	8	PED	PED	PED	PED	OLA	OLB	OLC	OLD
SIGNAL HEAD NO.	61,82	21,22	NU	41,42	21	61,62	NU	81,82	NU	NU	NU	NU	NU	NU	NU	NU
RED	*	2R		4R	*	6R		8R								·
YELLOW		2Y		4Y		6Y		8Y								
GREEN		2G		4G		6G		8G								
RED ARROW				-												
YELLOW ARROW	1Y				5Y		. ,									
GREEN ARROW	1G				5G											

NU = NOT USED

* DENOTES INSTALL LOAD RESISTOR. SEE LOAD RESISTOR INSTALLATION DETAIL THIS PAGE.

SPECIAL BACK-UP PROTECTION NOTES

- 1. PROGRAM CONTROLLER TO OMIT PHASE 1 DURING PHASE 2 ON. AND TO OMIT PHASE 5 DURING PHASE 6 ON.
- 2. TO ACCOMPLISH BACK-UP FEATURE DESCRIBED IN NOTE 1. ENABLE 'BACK-UP PROTECTION GROUP 1' UNDER CONTROLLER SUBMENU 9: 'OPTION DATA'.
- 3. IT IS REQUIRED FOR THE CONTROLLER TO BE PROGRAMMED SUCH THAT IF IT IS IN PHASE 2+6, THEN PHASE 1 AND/OR 5 CANNOT BE SERVED NEXT WITHOUT FIRST PROGRESSING THROUGH PHASE 4. THIS ADDITIONAL BACK-UP PROTECTION FEATURE SHALL BE IMPLEMENTED IN THE WRITE-PROTECT AREA OF THE CONTROLLER SOFTWARE. FOR DIRECTIONS ON HAVING THIS FEATURE INSTALLED. CONTACT THE NCDOT TRAFFIC ELECTRONICS REPAIR CENTER AT: (919) 233-0884.

LOAD RESISTOR INSTALLATION DETAIL

NOTE: THE PURPOSE OF THESE RESISTORS IS TO LOAD THE CHANNEL RED MONITOR INPUTS IN ORDER FOR THE MALFUNCTION MANAGEMENT UNIT TO USE THE FULL SIGNAL SEQUENCE MONITORING CAPABILITY ON PHASES THAT DO NOT USE THE RED DISPLAY IN THE FIELD.

> THIS ELECTRICAL DETAIL IS FOR THE SIGNAL DESIGN: Ø2-Ø717 T1 DESIGNED: January 2006 SEALED: 03-03-06 REVISED: NA

Signal Upgrade - Temporary 1

ELECTRICAL AND PROGRAMMING DETAILS FOR SR 1708 (Fire Tower Road) SR 1709 (Corey Road)/

Entrance to Apartments Pitt County S. of Greenville MWH

PLAN DATE: February 2006 REVIEWED BY: PREPARED BY: James Peterson REVIEWED BY: REVISIONS INIT. DATE

(program card and set switches as shown below)

DETECTOR RACK SET-UP DETAIL

INSERT DETECTOR CARDS IN RACK ACCORDING TO THE DETAIL SHOWN BELOW. PARTICULAR DETECTOR CHANNELS WILL CALL PHASES INDICATED.

	сн1 L3 Ø 1	сн1 L1 Ø 1	сн1 L7 Ø 4	сн1 L5 Ø 2	CH1 NOT USED	сн1 L9 Ø 5	SLOT	сн1 L13 Ø8	SLOT	SLOT	S L O T
BIU	cH2 NOT USED	cH2 L2 Ø6	сн2 L8 Ø 4	CH2 NOT USED	сн2 L12 Ø 6	сн2 L10 Ø2 *	E M P T Y	ch2 NOT USED	E M P T Y	E M P T Y	E M P T Y

WIRE LOOPS TO TERMINALS ON LOOP PANEL AS SHOWN IN THE CHART BELOW

	LOOP NO.	LOOP PANEL TERMINALS
ADD JUMPERS FROM:	1 A	L1A,L1B
L1A TO L2A, AND L1B TO L2B	IA	L2A,L2B
	1B	L3A,L3B
	,	L4A,L4B
	2A	L5A,L5B
		L6A,L6B
	4A	L7A,L7B
	4B	L8A,L8B
ADD JUMPERS FROM: L9A TO L10A, AND	5A	L9A,L9B
L9B TO L10B	- JA	L10A,L10B
		L11A,L11B
•	6B	L12A,L12B
	88	L13A,L13B
		L14A,L14B
		L15A,L15B
		L16A,L16B

<u>NOTE</u> BE SURE TO PROGRAM DETECTOR TYPES AND TIMERS (EXTEND AND DELAY) AS SHOWN ON THE SIGNAL PLANS.

ACCORDING TO THE SCHEDULE SHOWN IN THE CHART BELOW

CONTROLLER	FUNCTION	TI	MING
DETECTOR NO.	FUNCTION	FEATURE	TIME(SEC)
1	ø 1	DELAY	15
* 2	Ø6	DELAY	3
3	Ø1	DELAY	15
4			
5	Ø2		
6			
7	Ø 4		
8	Ø 4	DELAY	10
9	Ø 5	DELAY	15
* 10	Ø2	DELAY	3
11			
12	Ø6		
13	Ø8	DELAY	3
14			
15			
16			

PROGRAM CONTROLLER DETECTORS

* THIS DETECTOR IS EQUIPPED WITH DELAY AND EXTEND TIMERS. PROGRAM THE TIMING REQUIRED FOR THIS DETECTOR CHANNEL ON THE DETECTOR UNIT, NOT THE CONTROLLER.

NOTES

- 1. TO PREVENT "FLASH-CONFLICT" PROBLEMS, WIRE ALL UNUSED LOAD SWITCHES TO FLASH RED. VERIFY THAT SIGNAL HEADS FLASH IN ACCORDANCE WITH THE SIGNAL PLANS.
- 2. TO PREVENT RED FAILURES ON UNUSED MONITOR CHANNELS, TIE UNUSED LOAD SWITCH RED OUTPUTS 3, 7, 9, 10, 11, 12, 13, 14, 15 AND 16 TO LOAD SWITCH AC+ BY INSERTING A JUMPER PLUG IN THE UNUSED LOAD SWITCH SOCKET FROM PIN 1 (LS AC+) TO PIN 3 (RED OUT). MAKE SURE ALL FLASH TRANSFER RELAYS ARE IN PLACE.
- 3. PROGRAM CONTROLLER TO START UP IN PHASES 2 AND 6 GREEN.
- 4. SET POWER-UP FLASH TIME TO 10 SECONDS AND IMPLEMENT ON THE MALFUNCTION MANAGEMENT UNIT. SET CONTROLLER POWER-UP FLASH TIME TO O SECONDS.
- 5. ENABLE SIMULTANEOUS GAP-OUT FEATURE, ON CONTROLLER UNIT, FOR ALL PHASES.
- 6. PROGRAM DETECTORS IN ACCORDANCE WITH THE MANUFACTURER'S INSTRUCTIONS TO ACCOMPLISH THE DETECTION SCHEMES SHOWN ON THE SIGNAL DESIGN PLANS.
- 7. PROGRAM DETECTOR CALL DELAY AND EXTENSION TIMING ON THE CONTROLLER, UNLESS OTHERWISE SPECIFIED.
- 8. SET ALL DETECTOR CARD UNIT CHANNELS TO "PRESENCE" MODE.
- 9. PROGRAM PHASES 2 AND 6, ON CONTROLLER UNIT, FOR VOLUME DENSITY OPERATION.
- 10. PROGRAM PHASES 4 AND 8, ON CONTROLLER UNIT, FOR DUAL ENTRY.
- 11. THE CABINET AND CONTROLLER ARE A PART OF THE GREENVILLE CITY SYSTEM.

EQUIPMENT INFORMATION

CONTROLLERCONTRACTOR SUPPLIED ECONOLITE
CABINET
CABINET MOUNTBASE
LOADBAY POSITIONS16
LOAD SWITCHES USED1.2.4.5.6.8
PHASES USED1,2,4,5,6,8
OLANOT USED
OLBNOT USED
OLCNOT USED
OLDNOT USED

LOAD SWITCH ASSIGNMENT DETAIL

(program controller according to schedule in chart below)

	· · · · · · · · · · · · · · · · · · ·
LOAD SWITCH NUMBER	FUNCTION
1	ø 1
2	ø2
3	ø3
4	Ø 4
5	ø5
6	ø6
7	ø 7
8	ø8
9	2 PED
10	4 PED
11	6 PED
12	8 PED
13	OLA
14	OLB
15	OLC
16	OLD
I and the second	<u> </u>

PROJECT REFERENCE NO. SHEET NO. **Sig.**33 U-3613 B

		FI	EL) C	NNC	IECT	ΓΙΟ	N F	100	K-L	IP (CHA	RT			
PHASE	1	2	3	4	5	6	7	8	PED	PED	e PED	PED	OLA	OLB	OLC	OLD
SIGNAL HEAD NO.	61,82	21,22	NU	41,42	21	61,62	NU	81,82	NU	NU	NU	NU	NU	NU	NU	NU
RED	*	2R		4R	*	6R		8R								
YELLOW		2Y		4Y		6Y		8Y								
GREEN		2G		4G		6G		8G								
RED ARROW				·												
YELLOW ARROW	1Y				5Y											
GREEN ARROW	1G				5Ġ											

NU = NOT USED

* DENOTES INSTALL LOAD RESISTOR. SEE LOAD RESISTOR INSTALLATION DETAIL THIS PAGE.

SPECIAL BACK-UP PROTECTION NOTES

- 1. PROGRAM CONTROLLER TO OMIT PHASE 1 DURING PHASE 2 ON. AND TO OMIT PHASE 5 DURING PHASE 6 ON.
- 2. TO ACCOMPLISH BACK-UP FEATURE DESCRIBED IN NOTE 1. ENABLE 'BACK-UP PROTECTION GROUP 1' UNDER CONTROLLER SUBMENU 9: 'OPTION DATA'.
- 3. IT IS REQUIRED FOR THE CONTROLLER TO BE PROGRAMMED SUCH THAT IF IT IS IN PHASE 2+6. THEN PHASE 1 AND/OR 5 CANNOT BE SERVED NEXT WITHOUT FIRST PROGRESSING THROUGH PHASE 4. THIS ADDITIONAL BACK-UP PROTECTION FEATURE SHALL BE IMPLEMENTED IN THE WRITE-PROTECT AREA OF THE CONTROLLER SOFTWARE. FOR DIRECTIONS ON HAVING THIS FEATURE INSTALLED. CONTACT THE NCDOT TRAFFIC ELECTRONICS REPAIR CENTER AT: (919) 233-0884.

LOAD RESISTOR INSTALLATION DETAIL

THE PURPOSE OF THESE RESISTORS IS TO LOAD THE CHANNEL RED MONITOR INPUTS IN ORDER FOR THE MALFUNCTION MANAGEMENT UNIT TO USE THE FULL SIGNAL SEQUENCE MONITORING CAPABILITY ON PHASES THAT DO NOT USE THE RED DISPLAY IN THE FIELD.

> THIS ELECTRICAL DETAIL IS FOR THE SIGNAL DESIGN: Ø2-Ø717 T2 DESIGNED: January 2006 SEALED: 03-03-06 REVISED: NA

Signal Upgrade - Temporary 2

SR 1709 (Corey Road)/ Entrance to Apartments Pitt County S. of Greenville PLAN DATE: February 2006 REVIEWED BY: PREPARED BY: James Peterson REVIEWED BY: INIT. DATE

(program card and set switches as shown below)

NOTES

- 1. TO PREVENT "FLASH-CONFLICT" PROBLEMS, WIRE ALL UNUSED LOAD SWITCHES TO FLASH RED. VERIFY THAT SIGNAL HEADS FLASH IN ACCORDANCE WITH THE SIGNAL PLANS.
- 2. TO PREVENT RED FAILURES ON UNUSED MONITOR CHANNELS, TIE UNUSED LOAD SWITCH RED OUTPUTS 1,3,7,8,9,10,11,12,13,14, 15 AND 16 TO LOAD SWITCH AC+ BY INSERTING A JUMPER PLUG IN THE UNUSED LOAD SWITCH SOCKET FROM PIN 1 (LS AC+) TO PIN 3 (RED OUT). MAKE SURE ALL FLASH TRANSFER RELAYS ARE IN PLACE.
- 3. PROGRAM CONTROLLER TO START UP IN PHASES 2 AND 6 GREEN.
- 4. SET POWER-UP FLASH TIME TO 10 SECONDS AND IMPLEMENT ON THE MALFUNCTION MANAGEMENT UNIT. SET CONTROLLER POWER-UP FLASH TIME TO 0 SECONDS.
- 5. ENABLE SIMULTANEOUS GAP-OUT FEATURE, ON CONTROLLER UNIT, FOR ALL PHASES.
- 6. PROGRAM DETECTORS IN ACCORDANCE WITH THE MANUFACTURER'S INSTRUCTIONS TO ACCOMPLISH THE DETECTION SCHEMES SHOWN ON THE SIGNAL DESIGN PLANS.
- 7. PROGRAM DETECTOR CALL DELAY AND EXTENSION TIMING ON THE CONTROLLER, UNLESS OTHERWISE SPECIFIED.
- 8. SET ALL DETECTOR CARD UNIT CHANNELS TO "PRESENCE" MODE.
- 9. PROGRAM PHASES 2 AND 6, ON CONTROLLER UNIT, FOR VOLUME DENSITY OPERATION.
- 10. BE SURE THAT 'BACK-UP PROTECTION GROUP 1' UNDER CONTROLLER SUB-MENU 9: 'OPTION DATA' IS DISABLED.
- 11. THE CABINET AND CONTROLLER ARE A PART OF THE GREENVILLE CITY SYSTEM.

PROJECT REFERENCE NO. SHEET NO. U-3613B Sig.35

FIELD CONNECTION HOOK-UP CHART																
PHASE	1	2	3	4	5	6	7	8	PED	4 PED	PED	8 PED	OLA	OLB	OLC	OLD
SIGNAL HEAD NO.	NU	21,22	NU	41,42	21	61,62	NU	NU	NU	NU	NU	NU	NU	NU	NU	NU
RED		2R		4R	*	6R		-								·
YELLOW		2Y		4Y		БY										
GREEN		2G		4G		6G										
RED ARROW	·															
YELLOW ARROW					5Y	-										
GREEN ARROW					5G											

NU = NOT USE

* DENOTES INSTALL LOAD RESISTOR. SEE LOAD RESISTOR INSTALLATION DETAIL THIS PAGE.

DETECTOR RACK SET-UP DETAIL

INSERT DETECTOR CARDS IN RACK ACCORDING TO THE DETAIL SHOWN BELOW.
PARTICULAR DETECTOR CHANNELS WILL CALL PHASES INDICATED.

	SLOT	S L O T	сн1 L7 Ø 4	сн1 L5 Ø 2	CH1 NOT USED	CH1 L9 Ø 5	SLOT	SLOT	SLOT	S L O T	S L O T	
BIU	E M P T Y	E M P T Y	сн2 L8 Ø 4	CH2 NOT USED	сн2 L12 Ø6	CH2 L10 Ø2 *	E M P T Y	EMPTY	E M P T Y	E M P T Y	E M P T Y	

WIRE LOOPS TO TERMINALS ON LOOP PANEL AS SHOWN IN THE CHART BELOW

	LOOP NO.	LOOP PANEL TERMINALS
		L1A,L1B
		L2A,L2B
		L3A,L3B
		L4A,L4B
	2A	L5A,L5B
		L6A,L6B
	4A	L7A,L7B
	4B	L8A,L8B
ADD JUMPERS FROM: L9A TO L10A, AND	5A	L9A,L9B
L9B TO L1ØB	<u> </u>	L10A,L10B
		L11A,L11B
	6B	L12A,L12B
		L13A,L13B
		L14A,L14B
		L15A,L15B
		L16A,L16B

NOTE

BE SURE TO PROGRAM

DETECTOR TYPES AND

TIMERS (EXTEND AND

DELAY) AS SHOWN ON

THE SIGNAL PLANS.

PROGRAM CONTROLLER DETECTORS
ACCORDING TO THE SCHEDULE
SHOWN IN THE CHART BELOW

CONTROLLER	CUNOTION	TIMING				
DETECTOR NO.	FUNCTION	FEATURE	TIME(SEC)			
1						
2			·			
3						
4						
5	Ø2					
6			·			
7	Ø 4					
8	Ø 4	DELAY	15			
9	Ø 5	DELAY	15			
* 10	Ø 2	DELAY	3			
11						
12	Ø6					
13						
14						
15						
16						

* THIS DETECTOR IS EQUIPPED WITH DELAY AND EXTEND TIMERS. PROGRAM THE TIMING REQUIRED FOR THIS DETECTOR CHANNEL ON THE DETECTOR UNIT, NOT THE CONTROLLER.

EQUIPMENT INFORMATION

LOAD RESISTOR INSTALLATION DETAIL

NOTE: THE PURPOSE OF THIS RESISTOR IS TO LOAD THE CHANNEL RED MONITOR INPUT IN ORDER FOR THE MALFUNCTION MANAGEMENT UNIT TO USE THE FULL SIGNAL SEQUENCE MONITORING CAPABILITY ON PHASES THAT DO NOT USE THE RED DISPLAY IN THE FIELD.

LOAD SWITCH ASSIGNMENT DETAIL

(program controller according to schedule in chart below)

FUNCTION					
ø1					
ø2					
øЗ					
ø4					
ø5					
ø6					
ø7					
ø8					
2 PED					
4 PED					
6 PED					
8 PED					
OLA					
OLB					
OLC					
OLD					

THIS ELECTRICAL DETAIL IS FOR
THE SIGNAL DESIGN: Ø2-Ø717 T3
DESIGNED: January 2006
SEALED: Ø3-Ø3-Ø6
REVISED: NA

Signal Upgrade - Temporary 3

SR 1708 (Fire Tower Road) at SR 1709 (Corey Road)/ Entrance to Apartments

Division 2 Pitt County S. of Greenville
PLAN DATE: February 2006 REVIEWED BY: MINH
PREPARED BY: James Peterson REVIEWED BY:

INIT. DATI

SEAL

ORAGINEER

SEAL

ORAGINEER

ORAGINEER

SIGNATURE

SIGNATURE

SIG. INVENTORY NO. 02-0717 T3

MAR-2006 09:20 020717_sm_ele_xxx.dgr eterson

EDI MODEL MMU-16E MALFUNCTION MANAGEMENT UNIT PROGRAMMING DETAIL

(program card and set switches as shown below)

NOTES

- 1. TO PREVENT "FLASH-CONFLICT" PROBLEMS, WIRE ALL UNUSED LOAD SWITCHES TO FLASH RED. VERIFY THAT SIGNAL HEADS FLASH IN ACCORDANCE WITH THE SIGNAL PLANS.
- 2. TO PREVENT RED FAILURES ON UNUSED MONITOR CHANNELS, TIE UNUSED LOAD SWITCH RED OUTPUTS 3, 7, 13, 14, 15 AND 16 TO LOAD SWITCH AC+ BY INSERTING A JUMPER PLUG IN THE UNUSED LOAD SWITCH SOCKET FROM PIN 1 (LS AC+) TO PIN 3 (RED OUT). MAKE SURE ALL FLASH TRANSFER RELAYS ARE IN PLACE.
- 3. PROGRAM CONTROLLER TO START UP IN PHASES 2 AND 6 GREEN.
- 4. SET POWER-UP FLASH TIME TO 10 SECONDS AND IMPLEMENT ON THE MALFUNCTION MANAGEMENT UNIT. SET CONTROLLER POWER-UP FLASH TIME TO 0 SECONDS.
- 5. ENABLE SIMULTANEOUS GAP-OUT FEATURE, ON CONTROLLER UNIT, FOR ALL PHASES.
- 6. PROGRAM DETECTORS IN ACCORDANCE WITH THE MANUFACTURER'S INSTRUCTIONS TO ACCOMPLISH THE DETECTION SCHEMES SHOWN ON THE SIGNAL DESIGN PLANS.
- 7. PROGRAM DETECTOR CALL DELAY AND EXTENSION TIMING ON THE CONTROLLER, UNLESS OTHERWISE SPECIFIED.
- 8. SET ALL DETECTOR CARD UNIT CHANNELS TO "PRESENCE" MODE.
- 9. PROGRAM PHASES 2 AND 6, ON CONTROLLER UNIT, FOR VOLUME DENSITY OPERATION.
- 10. PROGRAM PHASES 4 AND 8, ON CONTROLLER UNIT, FOR DUAL ENTRY.
- 11. THE CABINET AND CONTROLLER ARE A PART OF THE GREENVILLE CITY SYSTEM.

PROJECT REFERENCE NO. SHEET NO. U-3613 B Sig.37

11		2		T T		FIELD CONNECTION HOOK-UP CHART										
11		-	3	4	5	6	7	8	PED	PED	PED	PED	OLA	OLB	OLC	OLD
	82	21,22	NU	41,42	51	61,62	NU	81,82	P21, P22	P41, P42	P61, P62	P81, P82	NU	NU	NU	NU
		2R		4R		6R		8R	,							
·		2Y		4Y		БY		8Y	*	*	*	*				
		2G		4G		6G		8G								
1R					5R											
1Y	1Y				5Y											
1G	1G				5G											
									9R	1ØR	11R	12R				
									9G	1ØG	11G	12G				
1	1Y 1G	1Y 1Y	2Y 2G 2G 1R 1Y 1Y 19 1G 1G 1G 1G	2Y 2G 2G 1R 1Y 1Y 19 1G 1G 1G 1G	2Y 4Y 2G 4G 1R	2Y 4Y 2G 4G 5R 5R 1Y 1Y 5Y 5G 5G	2Y 4Y 6Y 2G 4G 6G 1R 5R 1Y 1Y 5Y 1G 1G 5G	2Y 4Y 6Y 6Y 2G 4G 6G 1R 5R 5R 19 19 19 19 19 19 19 19 19 19 19 19 19	2Y 4Y 6Y 8Y 2G 4G 6G 8G 1R 5R 5Y 1Y 1Y 5Y 1G 1G 5G 6G	2Y 4Y 6Y 8Y ** 2G 4G 6G 8G - 1R 5R 5R - - 1Y 1Y 5Y - - 1G 1G 5G - 9R 9R 9G	1 2Y 4Y 6Y 8Y * * 1 2G 4G 6G 8G - - 1 1Y 5R - - - - 1 1Y 5Y - - - - 1 1G 5G - - 9R 1ØR 1 1 1 1 1 9G 1ØG	2Y 4Y 6Y 8Y * * * 2G 4G 6G 8G - - - 1R 5R 5R - - - - 1Y 1Y 5Y - - - - 1G 1G 5G - - 9R 1ØR 11R 1G 1G	2Y 4Y 6Y 8Y * <td>2Y</td> <td>2Y 4Y 6Y 8Y * * * * * * 1</td> <td>2Y 4Y 6Y 8Y * * * * *</td>	2Y	2Y 4Y 6Y 8Y * * * * * * 1	2Y 4Y 6Y 8Y * * * * *

AND 5R.

* INSTALL LOAD RESISTORS TO UNUSED FIELD TERMINALS 9Y, 10Y, 11Y AND 12Y, IF NOT ALREADY PRESENT. SEE LOAD RESISTOR INSTALLATION DETAIL THIS PAGE.

TYPICAL LOAD RESISTOR INSTALLATION DETAIL

REMOVE LOAD RESISTORS ON FIELD TERMINAL 1R

ACCEPTABLE VALUES VALUE (ohms) WATTAGE 1.5K - 1.9K 25W (min) 2.ØK - 3.ØK | 1ØW (min) | PHASE FIELD **TERMINAL**

DETECTOR RACK SET-UP DETAIL

INSERT DETECTOR CARDS IN RACK ACCORDING TO THE DETAIL SHOWN BELOW. PARTICULAR DETECTOR CHANNELS WILL CALL PHASES INDICATED.

	SLOT	сн1 L1 Ø 1	сн1 L7 ø 4	сн1 L5 Ø2/SYS	сн1 L 1 1 Ø 6/SYS	сн1 L9 Ø 5	SLOF	сн1 L13 Ø8	SLOF	SLOT	S L O T
BIU	EMPTY	сн2 L2 Ø 1	сн2 L8 Ø 4	CH2 L6 Ø2/SYS	сн2 L 1 2 Ø6/SYS	cH2 NOT USED	E M P T Y	cH2 L14 Ø8	EMPTY	E M P T Y	E M P T Y

WIRE LOOPS TO TERMINALS ON LOOP PANEL AS SHOWN

4A

4B

5A

6A/S13 L

6B/S14 L

A8

<u>NOTE</u> IN THE CHART BELOW BE SURE TO PROGRAM LOOP NO. LOOP PANEL DETECTOR TYPES AND 1 A 1B 2A/S11 2B/S12

IEUMINALO		DETECTOR	ITES AND
L1A,L1B		TIMERS (E)	XTEND AND
L2A,L2B		DELAY) AS	SHOWN ON
L3A,L3B	, mig	THE SIGNAL	L PLANS.
L4A,L4B		ASSIGN CONTR	OLLER SYSTEM
L5A,L5B		DETECTOR TO	LOCAL CONT.
L6A,L6B		DET. NUMBERS CHART	
L7A,L7B			
L8A,L8B		CONTROLLER SYS. DET. NO.	LOCAL CONT. DETECTOR NO.
L9A,L9B		1	5
10A,L10B		2	6
11A,L11B		3	11
12A,L12B		4	12
13A,L13B		5	
14A,L14B		6	
15A,L15B		7	
16A,L16B		8	

PROGRAM CONTROLLER DETECTORS ACCORDING TO THE SCHEDULE SHOWN IN THE CHART BELOW

CONTROLLER	FUNCTION	TI	MING
DETECTOR NO.	FUNCTION	FEATURE	TIME(SEC)
1	Ø 1		
2	Ø 1	DELAY	15
3			
4			
5	Ø2		
6	ø2		
7	Ø 4		·
8	Ø 4	DELAY	10
9	Ø 5		
10			
. 11	Ø6		
12	Ø6		
13	Ø8	DELAY	100
* 14	Ø8	DC/EC	5/2
15			
16			

* THIS DETECTOR IS EQUIPPED WITH DELAY AND EXTEND TIMERS. PROGRAM THE TIMING REQUIRED FOR THIS DETECTOR CHANNEL ON THE DETECTOR UNIT, NOT THE CONTROLLER.

EQUIPMENT INFORMATION

COUNTDOWN PEDESTRIAN SIGNAL OPERATION

Countdown Ped Signals are required to display timing only during Ped Clearance Interval. Consult Ped Signal Module user's manual for instructions on selecting this feature.

LOAD SWITCH ASSIGNMENT DETAIL

(program controller according to schedule in chart below)

LOAD SWITCH NUMBER	FUNCTION	
1	ø 1	
2	ø2	
3	ø3	
4	Ø 4	
5	ø5	
6	ø6	
7	ø7	
8	ø8	
9	2 PED	
10	4 PED	
11	6 PED	
12	8 PED	
13	OLA	
14	OLB	
15	OLC	
16	OLD	

PEDESTRIAN PUSH-BUTTON WIRING DETAIL

(wire push-buttons as shown below)

THIS ELECTRICAL DETAIL IS FOR THE SIGNAL DESIGN: Ø2-Ø717 DESIGNED: January 2006 SEALED: 03-03-06 REVISED: NA

Signal Upgrade - Final

ELECTRICAL AND PROGRAMMING DETAILS FOR:

SR 1708 (Fire Tower Road) SR 1709 (Corey Road)/ Entrance to Apartments

Pitt County S. of Greenville PLAN DATE: February 2006 REVIEWED BY: PREPARED BY: James Peterson REVIEWED BY: INIT. DATE

SEAL 008453

SPECIAL NOTE

The contractor is responsible for verifying that the mast arm attachment height (H1) will provide the "Design Height" clearance from the roadway before submitting final shop drawings for approval. Verify elevation data below which was obtained by field measurement or from available project survey data.

Elevation Data for Mast Arm Attachment (H1)

Elevation Differences for:	Pole 19	Pole 20
Baseline reference point at & Foundation @ ground level	0.0 ft.	0.0 ft.
Elevation difference at High point of roadway surface	-0.9 ft.	-1.3 ft.
Elevation difference at Edge of travelway or face of curb	N/A	N/A

POLE RADIAL ORIENTATION

8 BOLT BASE PLATE DETAIL
See Note 6

METAL POLE No. 19 and 20

PROJECT REFERENCE NO.	SHEET NO.
U-3613 B	sig. 38

	MAST ARM LOADING SCH	EDUL	.E	
LOADING SYMBOL	DESCRIPTION	AREA	SIZE	WEIGHT
	SIGNAL HEAD 12"-5 SECTION-WITH BACKPLATE AND ASTRO-BRAC	16.3 S.F.	42.0" W X 56.0" L	103 LBS
	SIGNAL HEAD 12"-3 SECTION-WITH BACKPLATE AND ASTRO-BRAC	9.3 S.F.	25.5″ W X 52.5″ L	60 LBS
	SIGN RIGID MOUNTED WITH ASTRO-SIGN-BRAC	5.0 S.F.	24.0" W X 30.0" L	11 LBS
STREET NAME SIGN	STREET NAME SIGN RIGID MOUNTED WITH ASTRO-SIGN-BRAC	12.0 S.F.	18.0" W X 96.0" L	27 LBS
	PEDESTRIAN SIGNAL HEAD WITH MOUNTING HARDWARE	2.2 S.F.	18.5" W X 17.0" L	21 LBS

NOTES

Design Reference Material

- 1. Design the traffic signal structure and foundation in accordance with:
 The 4th Edition 2001 AASHTO "Standard Specifications for Structural Supports for Highway Signs, Luminaires, and Traffic Signals, including all of the latest interim revisions.
 The 2002 NCDOT "Standard Specifications for Roads and Structures". The latest addenda to these specifications can be found in the traffic signal project special provisions.
 The 2002 NCDOT Roadway Standard Drawings.
 - The traffic signal project plans and special provisions.
 The NCDOT "Metal Pole Standards" located at the following NCDOT website: http://www.doh.dot.state.nc.us/preconstruct/traffic/tmssu/ws/mpoles/poles.htm

<u>Design Requirements</u>

- 2. Design the traffic signal structure using the loading conditions shown in the elevation views. These are anticipated worst case "Design loads" and may not represent the actual loads that will be applied at the time of the installation. The contractor should refer to the traffic signal plans for the actual loads that will be applied at the time of the installation.
- 3. Maximum allowable CSR for all signal supports is 0.9.
- 4. The camber design for mast arm deflection should provide an appearance of a low pitched arch where the tip or the free end of the mast arm does not deflect below horizontal when fully loaded
- 5. A clamp-type bolted mast arm-to-pole connection may be used instead of the welded ring stiffened box connection shown as long as the connection meets all of the design requirements. This is a high strength connection. Use Direct Tension Indicators (ASTM F959) for each bolt.
- 6. Design base plate with 8 anchor bolt holes. Provide 2 inch x 66 inch anchor bolts.
- 7. The mast arm attachment height (H1) shown is based on the following design assumptions:
 a.Mast arm slope and deflection are not considered in determining the arm attachment height
 as they are assumed to offset each other.
- b. Signal heads attached to the mast arm are rigid mounted and vertically centered on the arm. c. The roadway clearance height for design is as shown in the elevation views.
- d. The top of the pole base plate is .75 feet above the ground elevation.
 e. Refer to the Elevation Data chart for elevation differences between the proposed foundation ground level and the high point on the roadway.
- ground level and the high point on the roadway.

 8. The pole manufacturer will determine the total height (H2) of each pole based on the luminaire height requirement of 30 feet.
- 9. Design the luminaire support arm using design dimensions as shown on elevation views. Refer to the Radial Orientation Detail for attachment to the signal pole. Design arm end for a nominal 2 inch slip fit socket connection for light assembly.
- 10. If pole location adjustments are required, the contractor must gain approval from the engineer as this may affect the mast arm lengths and arm attachment heights. The contractor may contact the Signals & Geometrics Structural Engineer for assistance at (919) 733-3915.
- 11. The contractor is responsible for verifying that the mast arm length shown will allow proper positioning of the signal heads over the roadway.
- 12. The contractor is responsible for providing soil penetration testing data (SPT) to the pole manufacturer so site specific foundations can be designed.

NCDOT Wind Zone 2 (130 mph)

SPECIAL NOTE

The contractor is responsible for verifying that the mast arm attachment height (H1) will provide the "Design Height" clearance from the roadway before submitting final shop drawings for approval. Verify elevation data below which was obtained by field measurement or from available project survey data.

Elevation Data for Mast Arm Attachment (H1)

	-	
Elevation Differences for:	Pole 21	Pole 22
Baseline reference point at © Foundation @ ground level	0.0 ft.	0.0 ft.
Elevation difference at High point of roadway surface	+3.5 ft.	+2.9 ft.
Elevation difference at Edge of travelway or face of curb	N/A	N/A

POLE RADIAL ORIENTATION

8 BOLT BASE PLATE DETAIL See Note 6

METAL POLE No. 21 and 22

PROJECT REFERENCE NO.	SHEET NO.
U-3613 B	sig. 39

,	MAST ARM LOADING SCH	EDŲL	E	
LOADING SYMBOL	DESCRIPTION	AREA	SIZE	WEIGHT
	SIGNAL HEAD 12"-5 SECTION-WITH BACKPLATE AND ASTRO-BRAC	16.3 S.F.	42.0" W X 56.0" L	103 LBS
	SIGNAL HEAD 12"-3 SECTION-WITH BACKPLATE AND ASTRO-BRAC	9.3 S.F.	25.5" W X 52.5" L	60 LBS
STREET NAME SIGN	STREET NAME SIGN RIGID MOUNTED WITH ASTRO-SIGN-BRAC	12.0 S.F.	18.0" W X 96.0" L	27 LBS
	PEDESTRIAN SIGNAL HEAD WITH MOUNTING HARDWARE	2.2 S.F.	18.5" W X 17.0" L	21 LBS

	LUMINAIRE OVX DROP PRISMATIC REFRACTOR	EPA 0.87 S.F.	13.25" W X 26.25" L	35 LBS
--	---	------------------	---------------------------	--------

NOTES

Design Reference Material

- 1. Design the traffic signal structure and foundation in accordance with:
 The 4th Edition 2001 AASHTO "Standard Specifications for Structural Supports for Highway Signs, Luminaires, and Traffic Signals, including all of the latest interim revisions. The 2002 NCDOT "Standard Specifications for Roads and Structures". The latest addenda to these specifications can be found in the traffic signal project special provisions. The 2002 NCDOT Roadway Standard Drawings.
 - The traffic signal project plans and special provisions.
 - The NCDOT "Metal Pole Standards" located at the following NCDOT website: http://www.doh.dot.state.nc.us/preconstruct/traffic/tmssu/ws/mpoles/poles.htm

<u>Design Requirements</u>

- 2. Design the traffic signal structure using the loading conditions shown in the elevation views. These are anticipated worst case "Design loads" and may not represent the actual loads that will be applied at the time of the installation. The contractor should refer to the traffic signal plans for the actual loads that will be applied at the time of the installation.
- 3. Maximum allowable CSR for all signal supports is 0.9.
- 4. The camber design for mast arm deflection should provide an appearance of a low pitched arch where the tip or the free end of the mast arm does not deflect below horizontal when
- 5. A clamp-type bolted mast arm-to-pole connection may be used instead of the welded ring stiffened box connection shown as long as the connection meets all of the design requirements. This is a high strength connection. Use Direct Tension Indicators (ASTM F959) for each bolt.
- 6. Design base plate with 8 anchor bolt holes. Provide 2 inch x 66 inch anchor bolts.
- 7. The mast arm attachment height (H1) shown is based on the following design assumptions: a. Mast arm slope and deflection are not considered in determining the arm attachment height as they are assumed to offset each other.
- b. Signal heads attached to the mast arm are rigid mounted and vertically centered on the arm. c. The roadway clearance height for design is as shown in the elevation views.
- d. The top of the pole base plate is .75 feet above the ground elevation.
- e.Refer to the Elevation Data chart for elevation differences between the proposed foundation ground level and the high point on the roadway.
- 8. The pole manufacturer will determine the total height (H2) of each pole based on the luminaire height requirement of 30 feet.
- 9. Design the luminaire support arm using design dimensions as shown on elevation views. Refer to the Radial Orientation Detail for attachment to the signal pole. Design arm end for a nominal 2 inch slip fit socket connection for light assembly.
- 10. If pole location adjustments are required, the contractor must gain approval from the engineer as this may affect the mast arm lengths and arm attachment heights. The contractor may contact the Signals & Geometrics Structural Engineer for assistance at (919) 733-3915.
- 11. The contractor is responsible for verifying that the mast arm length shown will allow proper positioning of the signal heads over the roadway.
- 12. The contractor is responsible for providing soil penetration testing data (SPT) to the pole manufacturer so site specific foundations can be designed.

NCDOT Wind Zone 2 (130 mph)

ROJECT

STATE OF NORTH CAROLINA DIVISION OF HIGHWAYS

PITT COUNTY

LOCATION: SR 1708 (FIRE TOWER ROAD) FROM NC 11-903 (MEMORIAL DRIVE)
TO SR 1709 (COREY DRIVE)

TYPE OF WORK: COMMUNICATIONS CABLE AND CONDUIT ROUTING

NCDOT CONTACT:

TRAFFIC ENGINEERING AND SAFETY SYSTEMS BRANCH G.G. MURR, JR., PE – INTELLIGENT TRANSPORTATION SYSTEMS ENGINEER

\triangle	INSTALL REA, PE - 22, SHIELDED, TWISTED PAIR COMMUNICATIONS CABLE
2	INSTALL REA, PE - 38, (FIGURE 8) SHIELDED, TWISTED PAIR COMMUNICATIONS CABLE
3	INSTALL REA, PE - 39, (UNDERGROUND) SHIELDED, TWISTED PAIR COMMUNICATIONS CABLE
4	INSTALL SMFO CABLE
<u>\</u>	INSTALL MMFO CABLE
6	INSTALL FIBER OPTIC DROP CABLE
\triangle	INSTALL TRACER WIRE
8	TRENCH
9	INSTALL PVC CONDUIT
10	INSTALL RIGID, GALVANIZED STEEL CONDUIT
11	INSTALL RIGID, GALVANIZED STEEL RISER WITH WEATHERHEAD
12	INSTALL RIGID, GALVANIZED STEEL RISER WITH FIBER OPTIC CABLE SEAL
13	INSTALL OUTER-DUCT POLYETHYLENE CONDUIT
14	INSTALL POLYETHYLENE CONDUIT
15	DIRECTIONAL DRILL CONDUIT
16	BORE AND JACK CONDUIT
17	INSTALL CABLE(S) IN EXISTING CONDUIT
18	INSTALL CABLE(S) IN NEW CONDUIT
19	INSTALL CABLE(S) IN EXISTING RISER
20	INSTALL CABLE(S) IN NEW RISER
21	INSTALL CABLE(S) IN EXISTING CONDUIT STUB-OUTS
(22)	INSTALL NEW CONDUIT INTO EXISTING CABINET BASE (USE EXISTING CONDUIT STUB-OUTS WHEN AVAILABLE)
23	INSTALL NEW RISER INTO EXISTING CABINET BASE (USE EXISTING CONDUIT STUB-OUTS WHEN AVAILABLE)
24	INSTALL NEW CONDUIT INTO EXISTING POLE MOUNTED CABINET
(25)	INSTALL NEW RISER INTO EXISTING POLE MOUNTED CABINET
26	TERMINATE COMMUNICATIONS CABLE ON EXISTING TELEMETRY INTERFACE PANEL IN TRAFFIC SIGNAL CONTROLLER CABINET
27>	INSTALL NEW TELEMETRY INTERFACE PANEL IN TRAFFIC SIGNAL CONTROLLER CABINET
28	INSTALL INTERCONNECT CENTER, PATCH PANEL, JUMPERS AND FUSION SPLICE CABLE IN CABINET
29	INSTALL UNDERGROUND SPLICE ENCLOSURE
30>	INSTALL AERIAL SPLICE ENCLOSURE
31	INSTALL POLE MOUNTED SPLICE CABINET
32	INSTALL BASE MOUNTED SPLICE CABINET

REMOVE EXISTING SPLICE CABINET

34	INSTALL CABINET FOUNDATION
35	REMOVE EXISTING CABINET FOUNDATION
30	INSTALL CCTV CAMERA ASSEMBLY
37	INSTALL CCTY CAMERA WOOD POLE
31	INSTALL CCTY CAMERA METAL POLE AND FOUNDATION
39	INSTALL JUNCTION BOX
4	INSTALL OVERSIZED JUNCTION BOX
4	REMOVE EXISTING JUNCTION BOX
4	INSTALL WOOD POLE
4	REMOVE EXISTING WOOD POLE
4	INSTALL AERIAL GUY ASSEMBLY
4	INSTALL STANDARD GUY ASSEMBLY
4	INSTALL SIDEWALK GUY ASSEMBLY
4	INSTALL MESSENGER CABLE
4	REMOVE EXISTING COMMUNICATIONS AND MESSENGER CABLE
4	REMOVE EXISTING MESSENGER CABLE
5	INSTALL TELEPHONE SERVICE
5	INSTALL CABLE STORAGE RACKS (SNOW SHOES) AND STORE 100 FEET OF CABLE
5	INSTALL DELINEATOR MARKER
5	STORE 20 FEET OF COMMUNICATIONS CABLE
5	LASH CABLE(S) TO EXISTING SIGNAL/COMMUNICATIONS CABLE
5	LASH CABLE(S) TO EXISTING MESSENGER CABLE
5	LASH CABLE(S) TO NEW MESSENGER CABLE
5	MODIFY EXISTING ELECTRICAL SERVICE
[5	B INSTALL NEW ELECTRICAL SERVICE

(XX) INDICATES NUMBER OF CABLES, LOOPS, ETC.

INDICATES NUMBER OF FIBERS PER CABLE, TWISTED PAIRS PER CABLE, ETC.

XX

INDICATES NUMBER OF RISER(S)/CONDUIT(S)

INDICATES DIAMETER OF RISER(S)/CONDUIT(S) (INCH)

NOTE: FURNISH IFS D-9130 MODEL TRANSCEIVERS OR AN APPROVED EQUIVALENT.

SPLICE PLAN DIVISION 02 PITT CO. GREENVILLE MARCH 2006 REVIEWED BY: PLAN DATE: I.N. AVERY 122 N. McDowell St., Raleigh, NC 27603 PREPARED BY: S.C. WARDLE REVIEWED BY: G.G. MURR INIT. DATE

FIBER OPTIC CABLE

NOTE: 02-0493 SPLICING NOT SHOWN. NO WORK REQUIRED AT THIS CABINET.

NOTE: FURNISH IFS D-9130 MODEL TRANSCEIVERS OR AN APPROVED EQUIVALENT.

SPLICE PLAN

SPLICE PLAN

DIVISION 02 PITT CO. GREENVILLE
PLAN DATE: MARCH 2006 REVIEWED BY: I.N. AVERY

PLAN DATE: MARCH 2006 REVIEWED BY: G.G. NURR

SCALE

SCALE

REVISIONS

INIT. DATE

CADD FILENOME:

FIBER OPTIC CABLE

NOTE: FURNISH IFS D-9130 MODEL TRANSCEIVERS OR AN APPROVED EQUIVALENT.

NOTE:

SPLICE PLAN DIVISION 02 PITT CO. GREENVILLE PLAN DATE: MARCH 2006 REVIEWED BY: I.N. AVERY 122 N. McDowell St., Raleigh, NC 27603 PREPARED BY: S.C. WARDLE REVIEWED BY: G.G. MURR

STATE OF NORTH CAROLINA DIVISION OF HIGHWAYS

STANDARD DRAWINGS FOR METAL POLES

Designed in conformance
with the
2002 Interim to the

2002 Interim to the 4th Edition 2001

AASHTO

Standard Specifications for Structural Supports for Highway Signs, Luminares, and Traffic Signals

INDEX OF PLANS

DRAWING NUMBER

DESCRIPTION

- M 1 Title Sheet
- M 2 Fabrication Details All Poles
- M 3 Fabrication Details Strain Poles M 4,5 Fabrication Details - Mast Arm Poles
- M 6 Construction Details Strain Poles M 7 Construction Details – Foundations M 8 Standard Strain Poles

NCDOT CONTACTS:

TRAFFIC ENGINEERING AND SAFETY SYSTEMS BRANCH

- G. A. Fuller, P.E. State ITS and Signals Engineer
- R. E. Mullinax, P.E. Signals and Geometrics Engineer
- P. L. Alexander, P.E. Signals and Geometrics Special Projects Engineer
- D. C. Sarkar, P.E. Signals and Geometrics Structural Engineer
- A. M. Esposito, P.E. Signals and Geometrics Project Engineer C. F. Andrews, Jr. Signals and Geometrics Project Engineer

pole's radial index.

Terminal Compartment Detail

MFG. DATE: MM/YY SECTION D/T/L/Y ----/---NCDOT STANDARD -----

Arm I.D. Tag (Provide on each section of a multi-section mast arm)

Shaft I.D. Tag (Provide on Strain Poles and Mast Arm Poles)

Notes:

- D= Diameter, T= Thickness, L= Length, Y= Yield Strength
- A.B. = Anchor Bolt
- B.C. = Bolt Circle of Anchor Bolts
- If Custom Design, use "NCDOT STANDARD" line for plan pole I.D.
- 5) See drawing M4 for mounting positions of I.D. tags.

Identification Tag Details

Prepared in the Offices of:

8 Bolt Base Plate Detail

Typical Fabrication Details

Common To

Way 2005 REVIEWED BY: C.F. Andrews

All Metal Poles

PREPARED BY: P.L. Alexander REVIEWED BY: A.M. Esposito

SEAL

Min. thread projection

bottom of bolt.

Anchor Bolt Detail

Bottom

at bottom of bolt = 8'' (TYP).

Galvanization not required at

Arm I.D. Tag mounting location (See drawing M2) Backing Ring -90° ------27**0**--Base of Pole **Bolt Hole** Bolt Circle "BC" 180

Section A-A (See drawing M 2)

Pole Base Plate

Full-Penetration Groove Weld Detail

-Telescopic Arm (Outboard Section)

2'-0" Min

Established and the second sec

5/8" Dia. Thru Bolt — (See Slip Fit Joint Detail)

Mast Arm Radial Orientation

See Slip Fit Joint Detail

Arm I.D.Tag mounting location (See drawing M2)

Mast Arm (Inboard Section)

See drawing M5 for Mast Arm—connection details

Shaft I.D.Tag mounting location (See drawing M2)

Terminal Compartment (See drawing M2)

Typical Fabrication Details for Mast Arm Poles

REVIEWED BY: C.F. Andrews Nay 2005 PREPARED BY: P.L. Alexander REVIEWED BY: A.M. Esposito

SIG. INVENTORY NO.

Adjustable Clamp Type Bolted Mast Arm Connection

Side Elevation View

Front Elevation View

Welded Ring Stiffened Mast Arm Connection

U-3613B Sig.54
M 5

Poles

eta

Fabrication

Front Elevation View

Mast Arm Attachment Plate

Back Elevation View

Full-Penetration Groove Weld Detail

Notes:

- 1. Provide a permanent means of identification above the mast arm to indicate proper attachment orientation of the mast arm.
- 2. Designer will determine the size of all structural components, plates fasteners, and welds shown unless they are already specified.
- 3. Designer is responsible for providing appropriate drainage points.

NONE

SEAL

OZBO94

SEAL

OZBO94

SIGNATURE

SIGNATURE

SIGNATURE

SIGNATURE

OATE

SIGNATURE

SIGNATURE

OATE

01-SEP-2005 14:11 w.*Secoles-joi+*workorgios*2004 metal

Reinforcing Steel Bars

Wing Wall Width

#4 V2 Bars @ 9" C/C

Ea. Face (Typ)

	<pre>Wing Wall > Length</pre>	Section A-A	Wing Wall Length
Wing Wall Depth #4 H Bars @ 9" C/C	#4 V2 Bars #9" C/C Ea. Face (Typ)		H BARS O Bar Spacing O Bar Spacing O Bars See Note 2

V1 Bars

Side (Typ)

REINFORCING STEEL TABLE FOR STANDARD DRILL PIER SHAFT (42" & 48" DIAMETER)						
Shaft Dia (in.)	Conc. Volume (cu. yds.)	Bar Name	No.	Size	Туре	Length
anii	000 1	V1	9	#8	STR.	**
42"	.356 x L	C	*	#4	CIR.	10'-9'
anll .	405	V1	12	#8	STR.	**
48"	.465 x L	C	*	#4	CIR.	12'-6

* See Note No.1 ** See Note No. 3

Typical "C" Bars

REINFORCING STEEL TABLE FOR STANDARD 42" and 48" DRILL PIER SHAFT WITH TYPE 1 AND TYPE 2 WING WALLS

Wing Wall	Drill Pier	Reinforcing Steel				
Type	Shaft Dia. (in.)	Bar Name	No.	Size	Type	Length
•		V1	9	#8	STR.	**
TVDE 1	42"	V2	12	#4	STR.	2'-6"
TYPE 1		Н	8	#4	STR.	6'-0"
		C	*	#4	CIR.	10'-9"
	42"	V1	9	#8	STR.	**
TVDF O		V2	16	#4	STR.	4'-6"
TYPE 2		Н	12	#4	STR.	9'-0"
		C	*	#4	CIR.	10'-9"
	48"	V1	12	#8	STR.	**
Type A		V2	16	#4	STR.	4'-6"
TYPE 2		Н	12	#4	STR.	9'-6"
		C	*	#4	CIR.	12'-6"

* See Note No.1
** See Note No.3

WING WALL DETAILS						
Wing Wall Type	Wing Wall Length (Ft.)	Wing Wall Width (Ft.)	Wing Wall Depth (Ft.)	Concrete Volume (Cu. Yds.)		
TYPE 1	1'-6"	1'-0"	3'-0"	.4		
TYPE 2	3'-0"	1'-0"	5'-0"	1.2		

See Note No. 4

Typical Foundation Anchor Bolt Details

(Reinforcing Cage Not Shown for Clarity)

Typical Foundation **Conduit Details**

Conduits for

and Grounding

Electrical Service

Electrode Conductor

Notes

- The number of C-bars is based on foundation depth. For standard foundations, see sheet M 8.
- 2. Circular tie reinforcing rings may be vertically adjusted by +/-3'' at a depth between 2'-0'' and 3'-0'' to facilitate the installation of electrical conduit entering in the
- 3. The length of V1-bars is based on foundation depth. For standard foundations, see sheet M 8.

PROJECT REFERENCE NO.

U-3613B

SHEET NO.

M 7

Foundations

eta

stru

Sig.5

4. The quantities for steel and concrete shown in the Wing Wall Details Chart reflect the amount of material for 1 pair of wing walls (2 wing walls per drilled pier shaft.)

Construction Details **Foundations**

May 2005 REVIEWED BY: P.L. ALEXANDER 122 N. McDowell St., Ruleigh, NC 27603 PREPARED BY: C.F. ANDREWS REVIEWED BY: A.M. ESPOSITO REVISIONS

SIG. INVENTORY NO.