PROJECT SPECIAL PROVISIONS Roadway 7-1-95 SP1R01 ### **CLEARING AND GRUBBING:** 9-17-02 Perform clearing on this project to the limits established by Method "III" shown on Standard No. 200.03 of the Roadway Standards. The 2002 Standard Specifications shall be revised as follows: Page 2-3, Article 200-5 Delete the first sentence of this article and insert the following: The property owner will have no right to use or reserve for his use any timber on the project. All timber cut during the clearing operations is to become the property of the Contractor, and shall be either removed from the project by him, or else shall be satisfactorily disposed of as hereinafter provided. SP2R01 # **BURNING RESTRICTIONS:** 7-1-95 Open burning is not permitted on any portion of the right-of-way limits established for this project. Do not burn the clearing, grubbing or demolition debris designated for disposal and generated from the project at locations within the project limits, off the project limits or at any waste or borrow sites in this county. Dispose of the clearing, grubbing and demolition debris by means other than burning, according to state or local rules and regulations. **SP2R05** ### **TEMPORARY FABRIC WALL:** This work consists of furnishing and installing synthetic fabric for a temporary fabric wall in accordance with this provision, and as directed by the Engineer. The work includes maintaining the fabric in the required configuration until the wall is buried during later phases of construction. A preconstruction conference is required for the temporary fabric wall to be attended by representatives of the Contractor, Resident Engineer and the Geotechnical Engineering Unit. Complete this conference a minimum of 5 days prior to beginning any work for the temporary fabric wall. ### Fabrics 1 & 2: In accordance with the fabric listed under the "Materials for Temporary Mechanically Stabilized Earth Wall" Section of the "Additional Temporary Shoring for Maintenance of Traffic Options" Special Provision with the exception of the tensile strength and physical requirements. The fabric for the temporary fabric wall must meet the following physical requirements: All values represent minimum average roll values (any roll in a lot should meet or exceed the minimum values in this table). | Fabric Property | Test Method | Requirements | |--|-------------|--| | Fabric 1 Wide Width Tensile
Strength at 5% Elongation | ASTM D-4595 | 125 lb/in (Warp and Fill Direction) | | Fabric 1 Ultimate Wide Width Tensile Strength | ASTM D-4595 | 760 lb/in (Warp Direction) | | Fabric 2 Wide Width Tensile
Strength at 5% Elongation | ASTM D-4595 | 230 lb/in (Warp and Fill Direction) | | Fabric 2 Ultimate Wide Width Tensile Strength | ASTM D-4595 | 1400 lb/in (Warp Direction) | | Puncture Strength | ASTM D-4833 | 130 lb Minimum | | Trapezoid Tear | ASTM D-4533 | 100 lb Minimum (Warp and Fill Direction) | | | | • | |--------------------------------------|------------------------------------|-----------------| | Fabric Property | Test Method | Requirements | | Bursting Strength (Mullen) | ASTM D-3786,
(Diaphragm Method) | 450 psi Minimum | | AOS, U.S. Std.
Sieve | ASTM D-4751 | 20 min-70 max | | Permeability | ASTM D-4491 | 0.02 cm/sec | | Ultraviolet (UV) % Strength Retained | ASTM D-4355 | 70% Minimum | 26 Davidson County ### Select Granular Material: Contract C200781 (B-3157) Furnish and place select granular material over the fabric in accordance with this provision, the plans and as directed by the Engineer. The select granular material used over the fabric must meet the requirements for Class II as defined in Article 1016-3 of the Standard Specifications. #### Construction Methods: In accordance with the "Construction Methods for Temporary Mechanically Stabilized Earth Wall" Section of the "Additional Temporary Shoring for Maintenance of Traffic Options" Special Provision with the following exceptions. Cut a 24 inch slit in each fabric layer in the direction perpendicular to the face of the wall for the steel H-piles designated as Pile Nos. 1 and 8 for the Right Lane Bridge. Slits will be required in the main reinforcing layer as well as the 5 foot overlap. Drive these piles before driving piles for End Bent No. 1 for the Left Lane Bridge. A welded wire mesh stay-in-place forming system at the wall face is required to allow compaction of the backfill material against the vertical face of the fabric. If the Contractor elects to use another alternative to form the wall face, submit the system to the Engineer for review and approval. The wall face should be as vertical as possible to avoid interference with the steel H-piles referenced above. ### Method of Measurement: The quantity of fabric to be paid for will be the actual number of square yards of the material used in the work as specified. Overlapping of adjacent sheets will not be measured for payment. The quantity of select granular material to be paid for will be the actual number of cubic yards of this material which has been placed as backfill within the limits of the fabric wall as directed by the Engineer. ### Basis of Payment: The quantity of fabric, measured as provided above, will be paid for at the contract unit price per square yard for "Fabric for Temporary Fabric Wall Type 1" or "Fabric for Temporary Fabric Wall Type 2". Such price and payment will be full compensation for all work covered by this provision, including but not limited to furnishing, hauling, placing and sewing fabric. Payment will be made under: | "Fabric for Temporar | y Fabric Wall Type 1" | Square Yard | |----------------------|-----------------------|-------------| | "Fabric for Temporar | y Fabric Wall Type 2" | Square Yard | The quantity of select granular material, measured as provided above will be paid for at the contract unit price per cubic yard for "Select Granular Material for Temporary Fabric Wall". Such price and payment will be considered full compensation for furnishing, hauling, excavating into existing ground and compacting the backfill material necessary to complete the work satisfactorily. Payment will be made under: "Select Granular Material for Temporary Fabric Wall"......Cubic Yard #### **TEMPORARY DETOURS:** 7-1-95 Construct temporary detours required on this project in accordance with the typical sections in the plans or as directed. Payment for the construction of the detours will be made at the contract unit prices for the various items involved. After the detours have served their purpose, remove the portions deemed unsuitable for use as a permanent part of the project as directed by the Engineer. Salvage within the right of way, as directed by the Engineer, for removal by State Forces. Pipe culverts and stockpile the aggregate base course removed from the detours at locations removed from the detours remain the property of the Contractor. Remove pipe culverts from the project when they are no longer needed. Place pavement and earth material removed from the detour in embankments or dispose of in waste areas furnished by the Contractor. Aggregate base course and earth material that is removed will be measured and will be paid for at the contract unit price per cubic yard (cubic meter) for "Unclassified Excavation". Pavement that is removed will be measured and will be paid for at the contract unit price per square yard (square meter) for "Removal of Existing Pavement". Pipe culverts that are removed will be measured and will be paid for at the contract unit price per linear foot (meter) for "Pipe Removal". Such prices and payments will be full compensation for the work of removing, salvaging, and stockpiling aggregate base course; placing and removing pipe culverts; and for placing earth material and pavement in embankments or disposing of earth material and pavement in waste areas. **SP2R30** # **BORROW EXCAVATION:** 2-19-02 Revise the 2002 Standard Specifications as follows: Page 2-20, Article 230-6 After the first paragraph, insert the following paragraph: "No direct payment will be made for the work of Evaluation of Potential Wetlands and Endangered Species as outlined above. Payment at the contract unit price for the pay item 'Borrow Excavation' or 'Grading - Lump Sum' will be considered full compensation for this work.' SP2R37 ### **SHOULDER AND FILL SLOPE MATERIAL:** 5-21-02 #### General: Perform the required shoulder and slope construction for this project in accordance with the applicable requirements of Section 560 and Section 235 of the Standard Specifications except as follows: Construct the top 6 inches (150-mm) of shoulder and fill slopes with soils capable of supporting vegetation. Provide soil with a P.I. greater than 6 and less than 25 and with a pH ranging from 5.5 to 6.8. Remove stones and other foreign material 2 inches (50 mm) or larger in diameter. All soil is subject to test and acceptance or rejection by the Engineer. Obtain material from within the project limits or approved borrow source. #### **Compensation:** When the Contractor elects to obtain material from an area located beneath a proposed fill sections which does not require excavation for any reason other than to generate acceptable shoulder and fill slope material, the work of performing the excavation will be considered incidental to the item of "Borrow Excavation" or "Shoulder Borrow". If there is no pay item for "Borrow" or "Shoulder Excavation" in the contract, this work will be considered incidental to "Unclassified Excavation". Stockpile the excavated material in a manner to facilitate measurement by the Engineer. Fill the void created by the excavation of the shoulder and fill slope material with suitable material. Payment for material used from the stockpile will be made at the contract unit price for "Borrow Excavation" or "Shoulder Borrow". If there is no pay item for "Borrow
Excavation" or "Shoulder Borrow", then the material will be paid for at the contract unit price for "Unclassified Excavation". The material used to fill the void created by the excavation of the shoulder and fill slope material will be made at the contract unit price for "Unclassified Excavation", "Borrow Excavation", or "Shoulder Borrow", depending on the source of the material. Material generated from undercut excavation, unclassified excavation or clearing and grubbing operations that is placed directly on shoulders or slope areas, will not be measured separately for payment, as payment for the work requiring the excavation will be considered adequate compensation for depositing and grading the material on the shoulders or slopes. When undercut excavation is performed at the direction of the Engineer and the material excavated is found to be suitable for use as shoulder and fill slope material, and there is no area on the project currently prepared to receive the material generated by the undercut operation, the Contractor may construct a stockpile for use as borrow at a later date. Payment for the material used from the stockpile will be made at the contract unit price for "Borrow Excavation" or "Shoulder Borrow". When shoulder material is obtained from borrow sources or from stockpiled material, payment for the work of shoulder construction will be made at the contract unit price per cubic yard (cubic meter) for "Borrow Excavation" or "Shoulder Borrow" in accordance with the applicable provisions of Section 230 or Section 560 of the Standard Specifications. SP2R50 # __" (mm) WELDED STEEL PIPE: 1-15-02 Use ____" (mm) welded steel pipe as shown on the plans that conforms to Section 330 of the Standard Specifications. Install the pipe by dry boring and jacking. Carefully dry bore the pipe true to the line and grade given. Hold the bore to a minimum to insure that there is no settlement. Remove and replace any pipe that has been damaged due to the Contractor's operation at no cost to the Department. Completely fill all voids around the outside of the pipe to the satisfaction of the Engineer. Measurement will be made in accordance with Article 330-4 of the Standard Specifications. The quantity of pipe as measured above will be paid for at the contract unit price per linear foot (meter) for "____" (mm) Welded Steel Pipe, ____" (mm) Thick, Grade B (By Boring and Jacking)". Such price and payment will be full compensation for all work described herein including dry boring, jacking, tools, materials, labor, workmanship, and all other incidentals necessary to complete the work. **SP3R25** Payment will be under: __" (mm) Welded Steel Pipe, __" (mm) Thick, Grade B (By Boring and Jacking)Linear Foot (Meter) FLOWABLE FILL: 9-17-02 Provide and install flowable fill material in accordance with Articles 340-2 of the Standard Specifications. Discharge flowable fill material directly from the truck into the space to be filled, or by other approved methods. The mix may be placed full depth or in lifts as site conditions dictate. The Contractor shall provide a method to plug the ends of the existing pipe in order to contain the flowable fill. At locations where flowable fill is called for on the plans and a pay item for flowable fill is included in the contract, the quantity of flowable fill to be paid for will be the actual number of cubic yards (cubic meters) of flowable fill that have been satisfactorily placed and accepted. The quantity of flowable fill, measured as provided above, will be paid for at the contract unit price per cubic yard (cubic meter) for "Flowable Fill". Such price and payment will be full compensation for all work covered by this provision including but not limited to the mix design, furnishing, hauling, placing and containing the flowable fill. **SP3R30** Payment will be made under: ### **REINFORCED BRIDGE APPROACH FILLS:** 03-18-03 ### Description: This work consists of all work necessary to construct reinforced bridge approach fills in accordance with these provisions and the plans, and as directed by the Engineer. #### Materials: ### Geomembrane Provide geomembrane that is impermeable, composed of polyethylene polymers or polyvinyl chloride, and meets the following physical requirements: | Property | Requirements | <u>Test Method</u> | |---------------------------|-------------------------------|--------------------| | Thickness | 25 mils (0.6 mm) Minimum | ASTM D1593 | | Tensile Strength at Break | 100 lb/inch (18 KN/M) Minimum | ASTM D638 | 31 Contract C200781 (B-3157) **Davidson County** <u>Property</u> <u>Requirements</u> <u>Test Method</u> Puncture Strength 40 lbs (0.2KN) Minimum FTMS 101 C 2065 Moisture Vapor 0.018 ounce/yard (0.615 gm/ m²) ASTM E96 Transmission Rate per Day Maximum ### Fabric Refer to section 1056 for Type 2 Engineering Fabric and the following: Use a woven fabric consisting of strong rot-proof synthetic fibers such as polypropylene, polyethylene, or polyester formed into a stable network such that the filaments or yarns retain their relative positions to each other. | Fabric Property | <u>Requirements</u> | Test Method | |-------------------|---|-------------| | Minimum Flow Rate | 2 gallons/min/square foot (1358 cm³/sec/square meter) | ASTM D 4491 | Lamination of fabric sheets to produce the physical requirements of a fabric layer will not be accepted. Furnish letters of certification from the manufacturer with each shipment of the fabric and geomembrane attesting that the material meets the requirements of this provision; however, the material is subject to inspection, test, or rejection by the Engineer at any time. During all periods of shipment and storage, wrap the geomembrane and fabric in a heavy-duty protective covering to protect the material from ultraviolet rays. After the protective wrapping has been removed, do not leave the material uncovered under any circumstances for longer than 4 days. #### Select Material Provide select material meeting the requirements of Class III, Type 1 or Type 2, or Class V select material of section 1016 of the Standard Specifications. When select material is required under water, use select material class V only, up to one foot (300mm) above the existing water elevation. # 4" (100mm) Diameter Corrugated Drainage Pipe and Fittings Provide pipe and fittings that meet all the applicable requirements of Section 815 or 816 of the Standard Specifications. #### Construction: Place the geomembrane and fabric as shown on the plans or as directed by the Engineer. Perform the excavation for the fabric reinforced fill to the limits shown on the plans. Provide an excavated surface free of obstructions, debris, pockets, stumps, and cleared of all vegetation. The geomembrane or fabric will be rejected if it has defects, rips, holes, flaws, deterioration or damage incurred during manufacture, transportation, handling or storage. Lay all layers smooth, and free from tension, stress, folds, wrinkles or creases. Place all the fabric layers with the machine direction (roll direction) perpendicular to the backwall face. Overlap geomembrane or fabric splices perpendicular to the backwall face a minimum of 18 inches (450 mm). Geomembrane or fabric splices parallel to the backwall face will not be allowed. Deposit and spread select material in successive, uniform, approximately horizontal layers of not more than 10 inches (250 mm) in depth, loose measurement, for the full width of the cross section, and keep each layer approximately level. Place and compact each layer of select material fill no more than 10 inches (250 mm) thick with low ground pressure equipment. Use hand operated equipment to compact the fill material within three feet (0.9 m) of the backwall and wingwalls as directed by the Engineer. Compact select material to a density equal to at least 95% of that obtained by compacting a sample of the material in accordance with AASHTO T99 as modified by the Department. Compact the top eight inches (200 mm) of select material to a density to at least 100% of that obtained by compacting a sample of the material in accordance with AASHTO T99 as modified by the Department. Density requirements are not applicable to select material, class V; however compact the fill with at least four passes of low ground pressure equipment on the entire surface as directed by the Engineer. The compaction of each layer of select material must be inspected and approved by the Department prior to the placement of the next fill layer. No equipment will be allowed to operate on the drainage pipe or any geomembrane/fabric layer until it is covered with at least six inches (150 mm) of fill material. Compaction must not damage the drainage pipe, geomembrane, or fabric under the fill. Cover the geomembrane/fabric with a layer of fill material within four days after placement of the geomembrane/fabric. Geomembrane and fabric that is damaged as a result of installation will be replaced as directed by the Department at no additional cost. Place the geomembrane on the ground, and attach and secure it tightly to the vertical face of the backwall and wingwalls with adhesives, duct-tape, nails or any other method approved by the Engineer. Place the first fabric layer on the surface of the geomembrane with the same dimensions of the geomembrane. No material or void is allowed between the geomembrane and the first fabric layer. Place and fold the remaining fabric layers on the edges as shown on the plans or as directed by the Engineer. Provide vertical separation between fabric layers as specified on the plans. The number of fabric layers will be shown in the plans. Place four inch (100 mm) diameter perforated drainage pipe along the base of the backwall and sloped to drain as shown on the plans. Completely wrap perforated drainage pipe and #78M stone with Type 2 Engineering Fabric as shown on the plan detail. Install a pipe
sleeve through the bottom of or under the wing wall prior to placing concrete for the wing wall. The pipe sleeve must be of adequate strength to withstand the wingwall load. Place the pipe sleeve in position to allow the drainage pipe to go through the wing wall with a proper slope. Connect four-inch (100-mm) diameter nonperforated (plain) drainage pipe with a coupling to the perforated pipe near the inside face of the wingwall. Place the nonperforated drainage pipe through the pipe sleeve, extend down to the toe of the slope and connect, to a ditch or other drainage systems as directed by the Engineer. For bridge approaches in cut sections where no side slope is available, direct the drainage pipe outlet to the end slope down to the toe using elbows as directed by the Engineer. # Measurement and Payment: # Compensation: All work covered by this provision will be paid for at the contract lump sum price for "Reinforced Bridge Approach Fills, Station ______". Such price and payment will be full compensation for both approach fills at each bridge installation, including but not limited to furnishing, placing and compacting select material, furnishing and placing geomembrane and woven fabric, furnishing and placing pipe sleeve, drainage pipe, and stone, furnishing and installing concrete pads at the end of outlet pipes, excavation and any other items necessary to complete the work. | Payment will be made under: | | | |---|----------|--------| | Reinforced Bridge Approach Fills, Station | Lump Sum | | | | | SP4R01 | #### <u>ASPHALT PAVEMENTS - SUPERPAVE</u> 02-17-04 Revise the 2002 Standard Specifications as follows: PRIME COAT Page 6-2, Article 600-9 Delete the first paragraph under this Article and substitute the following: The quantity of prime coat to be paid will be the number of gallons (liters) of prime coat material that has been satisfactorily placed on the roadway. Each distributor load of prime coat material delivered and utilized on the project will be measured. ASPHALT TACK COAT Page 6-4, Article 605-8 Insert the following after paragraph one in this Article: Take necessary precautions to limit the tracking and/or accumulation of tack coat material on either existing or newly constructed pavements. Excessive accumulation of tack may require corrective measures. #### FIELD VERIFICATION AND JOB MIX FORMULA ADJUSTMENTS Page 6-7, Article 609-4 Delete the first paragraph under this Article and substitute the following: Conduct field verification of the mix at each plant within 30 calendar days prior to initial production of each mix design, when required by the Allowable Mix Adjustment Policy and when directed as deemed necessary. Page 6-8, Article 609-4 Delete the first paragraph on this page and substitute the following: Retain records of these calibrations and mix verification tests, including Superpave Gyratory Compactor (SGC) printouts, at the QC laboratory. In addition, furnish copies, including SGC printouts, to the Engineer for review and approval within one working day after beginning production of the mix. Page 6-8, Article 609-4 Add the following sentence to the end of the last paragraph in this Article: Any mix produced that is not verified may be assessed a price reduction at the Engineer's discretion in addition to any reduction in pay due to mix and/or density deficiencies. Quality control minimum sampling and testing schedule: Page 6-9, Subarticle 609-5(C)1 Delete the second sentence in the second paragraph of this Article and substitute the following: Retain the QC compacted volumetric test specimens for 5 calendar days, commencing the day the specimens are prepared. Page 6-9, Subarticle 609-5(C)2 At the bottom of this page, delete the sentence directly above the <u>Accumulative Production</u> <u>Increment</u> and substitute the following: Sample and test the completed mixture from each mix design at the following minimum frequency during mix production: Page 6-10, Subarticle 609-5(C)2 Revise Items B, C, D and E on this page as follows: - B. Gradation on Recovered Blended Aggregate from Mix Sample (AASHTO T 30 Modified) Grade on all sieves specified on JMF - C. Maximum Specific Gravity (AASHTO T 209 or ASTM D 2041), optional (ASTM D 6857) - D. Bulk Specific Gravity of Compacted Specimens (AASHTO T166), optional (ASTM D 6752), Average of 3 specimens at N_{des} gyrations (AASHTO T 312) - E. Air Voids (VTM) (AASHTO T 269), Average of 3 specimens at N_{des} gyrations Page 6-11, Subarticle 609-5(C)2 At the top of this page, delete Item B.," Reclaimed Asphalt Pavement..." and substitute the following: B. Reclaimed Asphalt Pavement (RAP) Binder Content and Gradation (AASHTO T 308 Modified or T 164 and AASHTO T 30 Modified) (sampled from stockpiles or cold feed system at beginning of production and weekly thereafter). Have RAP approved for use in accordance with Article 1012-1(G). (Split Sample Required) Page 6-11, Subarticle 609-5(C)2 Insert the following sampling and testing at the end of this Subarticle - F. Uncompacted Void Content of Fine Aggregate, AASHTO T 304, Method A (natural sand only). Performed at Mix Design and when directed as deemed necessary. (Split Sample Required) - G. Reclaimed Asphalt Shingle Material (RAS) Binder Content and Gradation (AASHTO T 308 Modified or T 164 and AASHTO T 30 Modified) (sampled from stockpiles or cold feed system at beginning of production and weekly thereafter). Have RAS approved for use in accordance with Article 1012-1(F). (Split Sample Required) ### **CONTROL CHARTS** Page 6-11, Subarticle 609-5(C)3 Delete the second sentence of the first paragraph in this Subarticle and substitute the following: Record all regularly scheduled random sample or directed sample full test series results for mix incorporated into the project on control charts the same day the test results are obtained. Contract C200781 (B-3157) Page 6-12, Subarticle 609-5(C)3 Delete item 3 in the list below the second full paragraph on this page. #### **CONTROL LIMITS** Page 6-12, Subarticle 609-5(C) 4 At the bottom of this page, delete the table and substitute the following: ### **CONTROL LIMITS** | Mix Control | Target Source | Warning | Moving Average | Individual | |--|------------------|---------|----------------|------------| | Criteria | | Limit | Limit | Limit | | 2.36mm Sieve | JMF | ±4.0 % | ±5.0 % | ±8.0 % | | 0.075mm Sieve | JMF | ±1.5 % | ±2.0 % | ±2.5 % | | Binder Content | JMF | ±0.3 % | ±0.5 % | ±0.7 % | | VTM @ N _{des} | JMF | ±1.0 % | ±1.5 % | ±2.0 % | | VMA @ N _{des} | Min. Spec. Limit | -0.5% | -0.8% | -1.0% | | P _{0.075} / P _{be} Ratio | Max. Spec. Limit | 0.0 | N/A | +0.4% | | %G _{mm} @ N _{ini} | Max. Spec. Limit | N/A | N/A | +2.0% | | TSR | Min. Spec. Limit | N/A | N/A | -15.0% | ### FIELD COMPACTION QUALITY CONTROL Page 6-15, Subarticle 609-5(D)1 Delete the first and second sentences in the fourth paragraph on this page and substitute the following: Base and intermediate mix types (surface mixes not included) utilized for pavement widening of less than 4.0 feet and all mix types used in tapers, irregular areas and intersections (excluding full width travel lanes of uniform thickness), will not be subject to the sampling and testing frequency specified above provided the pavement is compacted using approved equipment and procedures. However, the Engineer may require occasional density sampling and testing to evaluate the compaction process. Page 6-16, Subarticle 609-5(D)1 Delete item number 2 at the top of this page. Item number 3 should be re-numbered as 2 after the specified deletion. #### LIMITED PRODUCTION PROCEDURE Page 6-17, Subarticle 609-5(D) 5 Delete the first paragraph in this Subarticle and substitute the following: Proceed on limited production when, for the same mix type, one of the following items occur: - (1) Two consecutive failing lots, excluding lots representing an individual resurfacing map or portion thereof. - (2) Three consecutive failing lots, with each lot representing an individual resurfacing map or portion thereof. - (3) Two consecutive failing nuclear control strips. Pavement within each construction category (New and Other), as defined in Article 610-13, and pavement placed simultaneously by multiple paving crews will be evaluated independently for limited production purposes. Delete the first sentence in the last paragraph in this Subarticle and substitute the following: If the Contractor does not operate by the limited production procedures as specified above, the two consecutive failing density lots, three consecutive failing lots with each lot representing an individual resurfacing map or portion thereof, or two consecutive failing nuclear control strips, whichever is applicable, and all mix produced thereafter will be considered unacceptable. ### **DOCUMENTATION (RECORDS)** Page 6-18, Subarticle 609-5(E) Delete the third and fourth sentence in the first full paragraph on this page and substitute the following: Maintain all QC records, forms and equipment calibrations for a minimum of 3 years from their completion date. Delete the second full paragraph on this page and substitute the following: Falsification of test results, documentation of observations, records of inspection, adjustments to the process, discarding of samples and/or test results, or any other deliberate misrepresentation of the facts will result in the revocation of the applicable person's QMS certification. The Engineer will determine acceptability of the mix and/or pavement represented by the falsified results or documentation. If the mix and/or pavement in question is determined to be acceptable, the Engineer may allow the mix to remain in place at no pay for the mix, asphalt binder and other mix components. If the mix and/or pavement represented by the falsified results is determined not to be acceptable, remove and replace with mix, which complies with the
Specifications. Payment will be made for the actual quantities of materials required to replace the falsified quantities, not to exceed the original amounts. ### **QUALITY ASSURANCE** Page 6-18, Article 609-6 In Item 5 under <u>Plant Mix Quality Assurance</u>, add "at a frequency equal to or greater than 5% of the QC sample frequency". In the first sentence within the paragraph below <u>Plant Mix Quality Assurance</u>, delete the words "of mix". In Item 1 under <u>Density Quality Assurance</u>, delete the wording at the end of the sentence "at a frequency equal to or greater than 10% of the frequency required of the Contractor". Page 6-19, Article 609-6 In Item 4 under <u>Density Quality Assurance</u>, add "at a frequency equal to or greater than 5% of the QC sample frequency." Insert the following after Item 4 under Density Quality Assurance: 6. By periodically directing the recalculation of random numbers for the Quality Control core or nuclear density test locations. The original QC test locations may be tested by QA and evaluated as verification tests. #### LIMITS OF PRECISION Page 6-19, Article 609-6 In the limits of precision table, delete the last three rows and substitute the following: ### QA retest of prepared QC Gyratory Compacted | Volumetric Specimens | ± 0.015 | |-------------------------------|----------------------------| | Retest of QC Core Sample | ± 1.2% (% Compaction) | | Comparison of QA Core Sample | $\pm 2.0\%$ (% Compaction) | | QA Verification Core Sample | $\pm 2.0\%$ (% Compaction) | | Nuclear Comparison of QC Test | ± 2.0% (% Compaction) | | QA Nuclear Verification Test | ± 2.0% (% Compaction) | #### ASPHALT CONCRETE PLANT MIX PAVEMENTS – DESCRIPTION Page 6-21, Article 610-1 Insert the following after the last paragraph in this Article: A high frequency of asphalt plant mix, density, or mix and density deficiencies occurring over an extended duration of time may result in future asphalt, which is represented by mix and/or density test results not in compliance with minimum specification requirements, being excluded from acceptance at an adjusted contract unit price in accordance with Article 105-3. This acceptance process may apply to all asphalt produced and /or placed and may continue until the Engineer determines a history of quality asphalt production and placement is reestablished. #### **MATERIALS** Page 6-21, Article 610-2 Delete reference of Anti-strip additive (chemical) to Article 1020-2 and substitute Article 1020-8. COMPOSITION OF MIXTURES (MIX DESIGN AND JOB MIX FORMULA) Page 6-21, Subarticle 610-3(A) At the end of the second paragraph under this Subarticle, add the following sentence: In addition, submit Superpave gyratory compactor printouts for all specimens compacted at N_{des} and N_{max} during the mix design process. Insert the following paragraph after the second paragraph under this Subarticle: For the final surface layer of the specified mix type, use a mix design with an aggregate blend gradation above the maximum density line on the 2.36 mm and larger sieves. Insert the following at the end of the third paragraph under this Article: When the percent of binder contributed from RAS or a combination of RAS and RAP exceeds 20 percent of the total binder in the completed mix, the virgin binder PG grade must be one grade below (both high and low temperature grade) the binder grade specified in Table 610-2 for the mix type. Delete the fourth paragraph in this Subarticle and substitute the following: For Type S 12.5D mixes, the maximum percentage of reclaimed asphalt material is limited to 15% and must be produced using virgin asphalt binder grade PG 76-22. For all other recycled mix types, when the percentage of RAP is 15 percent or less of the total mixture, the virgin binder PG grade must be as specified in Table 610-2 for the specified mix type. When the percentage of RAP is greater than 15 but not more than 25 percent of the total mixture, the virgin binder PG grade must be one grade below (both high and low temperature grade) the specified grade for the mix type. When the percentage of RAP is greater than 25 percent of the total mixture, the Engineer will establish and approve the asphalt binder grade. Page 6-22, Subarticle 610-3(A) Insert the following sentence at the end of the Item 4: If natural sand is utilized in the proposed mix design, determine and report the Uncompacted Void Content of the natural sand in accordance with AASHTO T-304, Method A. Page 6-23, Subarticle 610-3(A) Under the quantities of mix components insert the following sentence: When requested by the Engineer, submit to the Department's Materials and Tests Unit, in Raleigh, six (6) Superpave Gyratory Compactor specimens compacted to a height of 75 mm and to a void content (VTM) of 4.0% +/- 0.5% for performance rut testing with the Asphalt Pavement Analyzer. ### JOB MIX FORMULA Page 6-24, Subarticle 610-3(C) Delete Table 610-1 and associated notes. Substitute the following: TABLE 610-1 SUPERPAVE AGGREGATE GRADATION DESIGN CRITERIA | Standard | | | | Percent | Passin | g Crite | ria (Co | ntrol P | oints) | | | | |----------|--------|---|---|-----------------|--|---------|--|---------|--------|-------|------|-------| | Sieves | | Mix Type (Nominal Maximum Aggregate Size) | | | | | | | | | | | | | 4.75 n | nm (a) | 9.5 m | ım (c) | 12.5 n | nm (c) | 19.0 | mm | 25.0 | mm | 37.5 | mm | | (mm) | Min. | Max. | Min. | Max | | 50.0 | | Parameter Apparatus | | | | | | | | | | 100.0 | | 37.5 | | | | | | | | | | 100.0 | 90.0 | 100.0 | | 25.0 | | | | | | | | 100.0 | 90.0 | 100.0 | | 90.0 | | 19.0 | | | | | | 100.0 | 90.0 | 100.0 | | 90.0 | | | | 12.5 | | | | 100.0 | 90.0 | 100.0 | | 90.0 | | | | | | 9.5 | | 100.0 | 90.0 | 100.0 | | 90.0 | *************************************** | | | | | | | 4.75 | 90.0 | 100.0 | | 90.0 | *************************************** | | | | | | | | | 2.36 | 65.0 | 90.0 | 32.0 (b) | 67.0 (b) | 28.0 | 58.0 | 23.0 | 49.0 | 19.0 | 45.0 | 15.0 | 41.0 | | 1.18 | | | *************************************** | | | | *************************************** | | | | | | | 0.600 | | | | | The court of c | | A Liberton Provincia del Como de La com- | | A | | | | | 0.300 | | | | | | | | | | | | | | 0.150 | | | | | *************************************** | | ************************ | | | | | | | 0.075 | 4.0 | 8.0 | 4.0 | 8.0 | 4.0 | 8.0 | 3.0 | 8.0 | 3.0 | 7.0 | 3.0 | 6.0 | - (a) For Type S 4.75A, a minimum of 50% of the aggregate components shall be manufactured material from the crushing of stone. - (b) For Type SF 9.5A, the percent passing the 2.36mm sieve shall be a minimum of 60% and a maximum of 70%. - (c) For the final surface layer of the specified mix type, use a mix design with an aggregate blend gradation above the maximum density line on the 2.36 mm and larger sieves. Page 6-25, Subarticle 610-3(C), Delete Table 610-2 and associated notes. Substitute the following: TABLE 610-2 SUPERPAVE MIX DESIGN CRITERIA | | Design | Binder | Compaction Levels | | | V | olumetric | Properties | (c) | |------------|--|-----------|-------------------|--------------|-----------------------------------|---|-----------|-------------|--------------------| | Mix | ESALs | PG | | | | | | | | | Type | millions | Grade | No. (| Gyration | 1s @ | VMA | VTM | VFA | %Gmm | | (f) | (a) | (b) | N_{ini} | $N_{ m des}$ | N _{max} | % Min. | % | Min
Max. | @ N _{ini} | | S-4.75A | < 0.3 | 64 -22 | 6 | 50 | 75 | 20.0 | 7.0-15.0 | | | | SF-9.5A | <0.3 | 64 -22 | 6 | 50 | 75 | 16.0 | 3.0 - 5.0 | 70 - 80 | ≤ 91.5 | | S-9.5B | 0.3 - 3 | 64 -22 | 7 | 75 | 115 | 15.0 | 3.0 - 5.0 | 65 - 80 | ≤ 90.5 | | S-9.5C | 3 - 30 | 70 -22 | 8 | 100 | 160 | 15.0 |
3.0 - 5.0 | 65 - 76 | ≤ 90.0 | | S-12.5C | 3 - 30 | 70 -22 | 8 | 100 | 160 | 14.0 | 3.0 - 5.0 | 65 - 75 | ≤90.0 | | S-12.5D | > 30 | 76 -22 | 9 | 125 | 205 | 14.0 | 3.0 - 5.0 | 65 - 75 | ≤ 90.0 | | I-19.0B | < 3 | 64 -22 | 7 | 75 | 115 | 13.0 | 3.0 - 5.0 | 65 - 78 | ≤90.5 | | I-19.0C | 3 - 30 | 64 -22 | 8 | 100 | 160 | 13.0 | 3.0 - 5.0 | 65 - 75 | ≤ 90.0 | | I-19.0D | > 30 | 70 -22 | 9 | 125 | 205 | 13.0 | 3.0 - 5.0 | 65 - 75 | ≤ 90.0 | | B-25.0B | < 3 | 64 -22 | 7 | 75 | 115 | 12.0 | 3.0 - 5.0 | 65 - 78 | ≤ 90.5 | | B-25.0C | > 3 | 64 -22 | 8 | 100 | 160 | 12.0 | 3.0 - 5.0 | 65 - 75 | ≤ 90.0 | | B-37.5C | > 3 | 64 -22 | 8 | 100 | 160 | 11.0 | 3.0 - 5.0 | 63 - 75 | ≤ 90.0 | | | | asian Day | | | | To deliver and the second | Dogian | Criteria | | | All | 3 m | esign Par | ameter | | A WARRING WATER TO STREET A VALUE | *************************************** | | NA | | | | 1. %G _{mm} (| | ~ | | | | | % (d) | | | Mix | 2. Dust to | | | | | | | - 1.4 | | | Types | 3. Retained Tensile Strength (TSR) (AASHTO T 283 Modified) | | | | | 777777777777777777777777777777777777777 | 85 % N | Min. (e) | | ### Notes: - (a) Based on 20 year design traffic. - (b) When Recycled Mixes are used, select the binder grade to be added in accordance with Subarticle 610-3(A). - (c) Volumetric Properties based on specimens compacted to N_{des} as modified by the Department. - (d) Based on specimens compacted to N_{max} at selected optimum asphalt content. - (e) AASHTO T 283 Modified (No Freeze-Thaw cycle required). TSR for Type S 4.75A, Type B 25.0 and Type B 37.5 mixes is 80% minimum. - (f) Mix Design Criteria for Type S 4.75A may be modified subject to the approval of the Engineer Contract C200781 (B-3157) WEATHER, TEMPERATURE, AND SEASONAL LIMITATIONS FOR PRODUCING AND PLACING ASPHALT MIXTURES Page 6-26, Article 610-4, Table 610-3 Delete the title of Table 610-3 and substitute the following title: # ASPHALT PLACEMENT- MINIMUM TEMPERATURE REQUIREMENTS In the first column, third row; delete reference to the ACSC Types S 9.5A and S 12.5B mix. Add the following minimum placing temperatures for mix types S 4.75A and SF 9.5A. | Asphalt Concrete Mix Type | Minimum Air
Temperature | Minimum Road
Surface Temperature | |-----------------------------|----------------------------|-------------------------------------| | ACSC, Type S 4.75A, SF 9.5A | 40°F (5°C) | 50°F (10°C) | #### SPREADING AND FINISHING Page 6-32, Article 610-8 Insert the following after the second sentence within the sixth paragraph in this Article, Take necessary precautions during production, loading of trucks, transportation, truck exchanges with paver, folding of the paver hopper wings, and conveying material in front of the screed to prevent segregation of the asphalt mixtures. Page 6-33, Article 610-8 At the end of the third full paragraph on this page, add the following sentence: Waiver of the use of automatic screed controls does not relieve the Contractor of achieving plan grades and cross-slopes. ### **DENSITY REQUIREMENTS** Page 6-34, Article 610-10, Delete Table 610-4 and substitute the following table and associated notes: Table 610-4 MINIMUM DENSITY REQUIREMENTS | MIX TYPE | MINIMUM % of G _{mm} | |---|------------------------------| | SUPERPAVE MIXES | (Maximum Specific Gravity) | | S 4.75A | 85.0 ^(a,b) | | SF 9.5A | 90.0 | | S 9.5X, S 12.5X, I 19.0X,
B 25.0X, B 37.5X | 92.0 | - (a) All S 4.75A pavement will be accepted for density in accordance with Article 105-3 - (b) Compaction to the above specified density will be required when the S 4.75 A mix is applied at a rate of 100 lbs/sy (55 kg/m²) Page 6-34, Article 610-10 Delete the second paragraph in this Article and substitute the following: Compact base and intermediate mix types (surface mixes not included) utilized for pavement widening of less than 4.0 feet (1.2 meters) and all mix types used in tapers, irregular areas and intersections (excluding full width travel lanes of uniform thickness), using equipment and procedures appropriate for the pavement area width and/or shape. Compaction with equipment other than conventional steel drum rollers may be necessary to achieve adequate compaction. Occasional density sampling and testing to evaluate the compaction process may be required. Densities lower than that specified in Table 610-4 will be accepted, in accordance with Article 105-3, for the specific mix types and areas listed directly above. # SURFACE REQUIREMENTS AND ACCEPTANCE Page 6-35, Article 610-12 Delete the first paragraph in this Article and substitute the following: Construct pavements using quality paving practices as detailed herein. Construct the pavement surface smooth and true to the plan grade and cross slope. Immediately correct any defective areas with satisfactory material compacted to conform with the surrounding area. Pavement imperfections resulting from unsatisfactory workmanship such as segregation, improper longitudinal joint placement or alignment, non-uniform edge alignment and excessive pavement repairs will be considered unsatisfactory and if allowed to remain in place will be accepted in accordance with Article 105-3. When directed due to unsatisfactory laydown or workmanship, operate under the limited production procedures. Limited production for unsatisfactory laydown is defined as being restricted to the production, placement, compaction, and final surface testing (if applicable) of a sufficient quantity of mix necessary to construct only 2500 feet (750 meter) of pavement at the laydown width. Remain on limited production until such time as satisfactory laydown results are obtained or until three consecutive 2500 foot (750 meter) sections have been attempted without achieving satisfactory laydown results. If the Contractor fails to achieve satisfactory laydown results after three consecutive 2500 foot (750 meter) sections have been attempted, cease production of that mix type until such time as the cause of the unsatisfactory laydown results can be determined. As an exception, the Engineer may grant approval to produce a different mix design of the same mix type if the cause is related to mix problem(s) rather than laydown procedures. Mix placed under the limited production procedures for unsatisfactory laydown or workmanship will be evaluated for acceptance in accordance with Article 105-3. #### **DENSITY ACCEPTANCE** Page 6-36, Article 610-13 Delete the second paragraph on this page and substitute the following: The pavement will be accepted for density on a lot by lot basis. A lot will consist of one day's production of a given job mix formula on a contract. As an exception, separate lots will be established when the one of the following occurs: - (6) Portions of pavement are placed in both "New" and "Other" construction categories as defined below. A lot will be established for the portion of the pavement in the "New" construction category and a separate lot for the portion of pavement in the "Other" construction category. - (7) Pavement is placed on multiple resurfacing maps, unless otherwise approved prior to paving. A lot will be established for each individual resurfacing map or portion thereof. - (8) Pavement is placed simultaneously by multiple paving crews. A lot will be established for the pavement placed by each paving crew. - (9) Pavement is placed in different layers. A lot will be established for each layer. - (10) Control strips are placed during limited production. The Engineer will determine the final category and quantity of each lot for acceptance purposes. Page 6-36, Article 610-13 Delete the first sentence in the third paragraph on this page and insert the following: The "New" construction category will be defined as pavements of uniform thickness, exclusive of irregular areas, meeting all three of the following criteria: Delete the sixth paragraph in this Article and substitute the following: A failing lot for density acceptance purposes is defined as a lot for which the average of all test sections, and portions thereof, fails to meet the minimum specification requirement. If additional density sampling and testing, beyond the minimum requirement, is performed and additional test sections are thereby created, then all test results shall be included in the lot average. In addition, any lot or portion of a lot that is obviously unacceptable will be rejected for use in the work. Page 6-36, Article 610-13 Delete the last paragraph on this page and substitute the following: Any density lot not meeting minimum density requirements detailed in Table 610-4 will be evaluated for acceptance by the Engineer. If the lot is determined to be reasonably acceptable, the mix will be paid at an adjusted contract price in accordance with Article 105-3. If the lot is determined not to be acceptable, the mix will be removed and replaced with mix meeting and compacted to the requirement of these specifications. BASIS OF PAYMENT, ASPHALT PAVEMENTS Page 6-37, Article 610-16 Add the following to the second paragraph: The quantity of hot mix asphalt pavement, measured as provided in Article 610-15, will be paid for at the contract unit prices per ton (metric ton) for "Asphalt Concrete Surface Course, Type S 4.75A, and SF 9.5A". Add the following to the payment item description: | Asphalt Concrete Surface Course, Type S 4.75A | Ton (Metric Ton) | |---|------------------| | Asphalt Concrete Surface Course, Type SF 9.5A | | Delete reference to the Asphalt Concrete Surface Course, Types S 9.5A and S 12.5B in both the second paragraph and in the payment description. #### ASPHALT BINDER FOR PLANT MIX - METHOD OF MEASUREMENT Page 6-39, Article 620-4 Delete the first sentence of the second paragraph on this page and substitute the following: Where recycled plant mix is being produced, the grade of asphalt binder to be paid for will be the grade for the specified mix type as
required in Table 610-2 unless otherwise approved. # CONSTRUCTION REQUIREMENTS Page 6-43, Article 650-5 Add the following paragraph after the first paragraph under this Article: Do not place open-graded asphalt friction course between October 31 and April 1 of the next year, unless otherwise approved. Place friction course, Type FC-1 mixes, only when the road surface temperature is 50°F (10°C) or higher and the air temperature is 50°F (10°C) or higher. The minimum air temperature for Type FC-1 Modified and FC-2 Modified mixes will be 60°F (15°C). #### AGGREGATES FOR ASPHALT PLANT MIXES Page 10-34, Subarticle 1012-1(B)4 Delete this Subarticle and substitute the following: ### (4) Flat and Elongated Pieces: Use coarse aggregate meeting the requirements of Table 1012-1 for flat and elongated pieces when tested in accordance with ASTM D 4791 (Section 8.4) on the No. 4 (4.75 mm) sieve and larger with a 5:1 aspect ratio (maximum to minimum) for all pavement types, except there is no requirement for Types S 4.75A, SF 9.5A, and S 9.5B. Page 10-35, Table 1012-1 Delete Table 1012-1 and substitute the following: Table 1012-1 AGGREGATE CONSENSUS PROPERTIES^(a) | *************************************** | · | ę | · | | |---|---------------------------|----------------|------------|---| | Міх Туре | Course | Fine | Sand | Flat & | | | Aggregate | Aggregate | Equivalent | Elongated | | | Angularity ^(b) | Angularity | | 5 : 1 Ratio | | | | % Minimum | % Minimum | % Maximum | | | ASTM | AASHTO | AASHTO | ASTM D 4791 | | | D 5821 | T 304 Method A | T 176 | Section 8.4 | | S 4.75 A | • | 40 | 40 | | | SF 9.5 A | | | | | | S 9.5 B | 75 / - | 40 | 40 | 10 ^(c) | | I 19.0 B | | | | | | B 25.0 B | | | | | | S 9.5 C | | | | | | S 12.5 C | | | | | | I 19.0 C | 95 / 90 | 45 | 45 | 10 | | B 25.0 C | | | | *************************************** | | В 37.5 С | | | | | | S 12.5 D | | | | To an advantage of the second | | I 19.0 D | 100 / 100 | 45 | 50 | 10 | | OGAFC | 100 / 100 | N/A | N/A | 10 | - (a) Requirements apply to the course aggregate blend and/or fine aggregate blend - (b) 95/90 denotes that 95% of the course aggregate (+No.4 or + 4.75mm sieve)has one fractured face and 90% has two or more fractured faces. - (c) Does not apply to Mix Types SF 9.5 A or S 9.5 B Page 10-36, Subarticle 1012-1(C)1 Insert the following after the fourth paragraph on this page: When natural sand is utilized in "C" or "D" level asphalt mixes, do not exceed the maximum natural sand percentage in the mix design and/or production aggregate blend detailed in Table 1012-1A. ### **Table 1012-1A** | Uncompacted Void Content of Fine
Aggregate AASHTO T 304 Method A | Maximum Percent Natural Sand Included in Mix Design and/or Production* | |---|--| | Less than 42.0 | . 10 | | Equal to 42.0 to 44.9 | 15 | | Equal to 45.0 and greater | 20 | ^{*}Maximum percent natural sand may be exceeded with approval from Pavement Construction Engineer upon satisfactory evaluation of pavement performance testing ### FINE AGGREGATE ANGULARITY Page 10-36, Subarticle 1012-1(C)6 Delete reference to AASHTO TP 33 Method A and substitute AASHTO T 304, Method A. Page 10-37, Subarticle 1012-1(H) Delete this Subarticle. It is a duplicate of Subarticle 1012-1(F) located on Page 10-36. #### **ASPHALT BINDER** Page 10-46, Article 1020-2 Delete the first paragraph under this Article and substitute the following: Use Performance Graded Asphalt Binder meeting the requirements of AASHTO M 320. See Article 610-3 for the specified grades. Submit a Quality Control Plan for asphalt binder production in conformance with the requirements of AASHTO R 26 to the Materials and Tests Unit. SP6R01 # **ASPHALT BINDER CONTENT OF ASPHALT PLANT MIXES:** $11-21-00_{R}$ The approximate asphalt binder content of the asphalt concrete plant mixtures used on this project will be as follows: | Asphalt Concrete Base Course, Type B 25.0 | 4.3% | |---|------| | Asphalt Concrete Intermediate Course, Type I 19.0 | 4.7% | | Asphalt Concrete Surface Course, Type S 4.75A | 7.0% | | Asphalt Concrete Surface Course, Type SF 9.5A | 6.5% | | Asphalt Concrete Surface Course, Type S 9.5 | 6.0% | | Asphalt Concrete Surface Course, Type S 12.5 | 5.5% | The actual asphalt binder content will be established during construction by the Engineer within the limits established in the Standard Specifications or Project Special Provisions. **SP6R15** # **ASPHALT PLANT MIXTURES:** 7-1-95_c Place asphalt concrete base course material in trench sections with asphalt pavement spreaders made for the purpose or with other equipment approved by the Engineer. **SP6R20** ### PRICE ADJUSTMENT - ASPHALT BINDER FOR PLANT MIX: 11-21-00 Price adjustments for asphalt binder for plant mix will be made in accordance with Section 620 of the Standard Specifications as modified herein. The base price index for asphalt binder for plant mix is \$211.67 per ton (metric ton). This base price index represents an average of F.O.B. selling prices of asphalt binder at supplier's terminals on July 1, 2004. **SP6R25** # **CONSTRUCTION SURVEYING:** 01-20-04 Add the following after the first sentence of Section 801-1 of the January 2002 Standard Specifications: Provide a stakeout of areas where an environmental permit is required prior to performing any construction in or adjacent to these areas. Stake out limits of the permitted work areas according to the approved permit drawings. Provide clear delineation by use of pink or other highly visible flagging. Insure construction limits do not exceed approved permitted work areas. Immediately notify the Resident Engineer of any variations of the stakeout limits when compared to the approved permit drawings. Replace the fifth paragraph of Section 801-4 of the January 2002 Standard Specifications with the following: Partial payments for the item of "Construction Surveying" will be made on each particular payment estimate based upon the percentage complete of the item of "Construction Surveying" as determined by the Engineer. The Contractor is required to submit a certified statement each month indicating the percentage of "Construction Surveying" work completed. The Resident Engineer will determine if the amount indicated is reasonably correct and the Resident Engineer will pay accordingly on the next partial pay estimate. SP8R02 #### **DISPOSAL OF WASTE AND DEBRIS:** 2-19-02 Revise the 2002 Standard Specifications as follows: Page 8-9, Subarticle 802-2(7. Buffer Zones:) At the end of the last sentence in this subarticle, add the words "unless superseded by an environmental permit." **SP8R03** **ENDWALLS:** 6-18-02 Revise the 2002 Standard Specifications as follows: Page 8-24, Article 838-2 Delete the last two paragraphs of this article and insert the following: "Use either portland concrete, brick masonry, or precast concrete for the endwall unless otherwise specified on the Drainage Summary Sheet of the Plans." **SP8R27** #### **GRATES AND FRAME (DRIVEWAY DROP INLET):** 3-21-00 #### Description: Provide grates for driveway drop inlets that are fabricated steel or cast iron. Provide grates that are of a design and weight which is recommended by the manufacturer as being adequate for HS-20 loadings. Furnish a manufacturer's certification stating that the grates and frame furnished on the project have been designed and manufactured to be adequate for an HS-20 loading. Provide grates with a minimum clear waterway opening of 50 in² per 1'-0" (32,257.5 mm² per 1 m) length of grate. If the grate and frame is made from fabricated steel, then the requirements of Article 1074-8 of the Standard Specifications will be applicable. If the grate and frame is made from iron castings, then the requirements of Article 1074-6 of the Standard Specifications will be applicable. #### Method of Measurement: The quantity of grates and frames to be paid for will be the actual number of linear feet (meters) which have been incorporated into the completed and accepted work. ### **Basis of Payment:** The quantity of grates and frames, measured as provided above, will be paid for at the contract unit price per linear foot (meter) for "Frame with Grates, Driveway Drop Inlet". Such price and payment will be full compensation for furnishing the grates and frame, and all labor and incidentals necessary to complete the work. **SP8R35** Payment will be made under: Frame with Grates, Driveway Drop Inlet......Linear Foot (Meter) # **GUARDRAIL POSTS AND OFFSET BLOCKS:** 06-22-04 Revise the 2002 Standard Specifications as follows: Page 10-69, Subarticle 1046-3 Delete this sub-article in its entirety and replace with the following: #### 1046-3 POSTS AND OFFSET BLOCKS. #### (A) General: The Contractor may at his option furnish either of the following types of steel guardrail posts. Only one type of post will be permitted at any one continuous installation. Use structural steel posts throughout the project, unless otherwise directed or detailed in the plans. - 1. Steel W6 x 8.5 or W6 x 9.0 posts - 2. Steel 4.5" x 6.0" "C" shape posts (C150 x 12.2 kg/m) The Contractor may at his option furnish either of the following types of treated timber posts if specifically directed or detailed in the plans. Only one type of post will be permitted at any one continuous installation. - 1. Timber 6" x 8" (152 mm x 203 mm) posts. - 2. Timber 8" x 8" (203 mm x 203 mm) posts. ### (B) Structural Steel Posts: Fabricate steel posts for guardrail of the size and weight shown on the plans from structural steel complying with the requirements of Section 1072. Metal from which C shape posts are fabricated shall meet the requirements of ASTM A570 for any grade of steel, except that mechanical requirements shall meet the requirements of
ASTM A36. Punch or drill the holes for connecting bolts. Burning will not be permitted. After fabrication, the posts shall be galvanized in accordance with Section 1076. ### (C) Treated Timber Posts: Timber guardrail posts shall be of treated southern pine meeting the requirements of Article 1082-2 and 1082-3. Bore bolt holes to a driving fit for the bolts. A minus tolerance of 1 percent will be allowed in the length of the post. Perform all framing and boring before the posts receive preservative treatment. ### (D) Offset Blocks: Provide 8-inch deep recycled plastic or composite offset blocks that have been approved for use with the guardrail shown in the standard drawings and/or plans. Only one type of offset block will be permitted at any one continuous installation. Prior to beginning the installation of recycled offset block, submit the FHWA acceptance letter for each type of block to the Engineer for approval. Treated timber offset blocks with steel beam guardrail will not be allowed unless required by Specifications, directed by the Engineer or detailed in the plans. Steel offset blocks with steel beam guardrail will not be allowed. Recycled plastic or composite offset blocks shall be made from no less than 50% recycled plastic or composite, and shall meet the following minimum requirements: | • | Specific G | ravity: | | |---|------------|---------|--| |---|------------|---------|--| - Compressive Strength in Lateral Direction:.............. 1600 psi (11 MPa) - Maximum Termite and Ant Infestation:..... 10% Revise the 2002 Standard Roadway Drawings as follows: Sheet 4 of 6, Standard 862.03, delete the note and substitute the following: Note: The midpost and offset block of the WTR section will require special bolt hole drilling in the thrie beam offset block and line post. SP8R57 # **GUARDRAIL ANCHOR UNITS, TYPE 350:** 04-20-04 #### **DESCRIPTION** Furnish and install guardrail anchor units in accordance with the details in the plans, the applicable requirements of Section 862 of the Standard Specifications, and at locations shown in the plans. #### **MATERIALS** The Contractor may at his option, furnish any one of the guardrail anchor units. Guardrail anchor unit (ET-2000) as manufactured by: TRINITY INDUSTRIES, INC. 2525 N. STEMMONS FREEWAY DALLAS, TEXAS 75207 TELEPHONE: 1-800-644-7976 The guardrail anchor unit (SKT 350) as manufactured by: ROAD SYSTEMS, INC. 3616 OLD HOWARD COUNTY AIRPORT BIG SPRING, TEXAS 79720 TELEPHONE: (915) 263-2435 Prior to installation the Contractor shall submit to the Engineer: - 1. FHWA acceptance letter for each guardrail anchor unit certifying it meets the requirements of NCHRP Report 350, Test Level 3, in accordance with Section 106-2 of the Standard Specifications. - 2. Certified working drawings and assembling instructions from the manufacturer for each guardrail anchor unit in accordance with Section 105-2 of the Specifications. No modifications shall be made to the guardrail anchor unit without the express written permission from the manufacturer. Perform installation in accordance with the details in the plans, and details and assembling instructions furnished by the manufacturer. #### CONSTRUCTION Guardrail end delineation is required on all approach and trailing end sections for both temporary and permanent installations. Guardrail end delineation consists of yellow reflective sheeting applied to the entire end section of the guardrail in accordance with Section 1088-3 of the Standard Specifications and is incidental to the cost of the guardrail anchor unit. #### **MEASUREMENT AND PAYMENT** Measurement and payment will be made in accordance with Articles 862.5 and 862-6 of the Standard Specifications. | Payment will be made under: | | | |----------------------------------|------|--------| | Guardrail Anchor Units, Type 350 | Each | | | / * • • • | | SP8R65 | # <u>ADDITIONAL TEMPORARY SHORING FOR MAINTENANCE</u> OF TRAFFIC OPTIONS: ### Description: At the Contractor's option, use temporary walls instead of temporary shoring to maintain traffic at the locations shown on the Traffic Control Plans and other locations determined during construction. This work consists of design, plan preparation and construction of temporary soil nail walls and/or temporary mechanically stabilized earth walls in accordance with this provision and as directed by the Engineer. The work includes installation and maintenance of the temporary walls until the walls are buried during later phases of construction. A preconstruction conference is required for all temporary walls to be attended by representatives of the General Contractor, Wall Contractor, Resident Engineer and the Geotechnical Engineering Unit. Complete this conference a minimum of 5 days prior to beginning work for any temporary wall. Design and construct all temporary soil nail walls in accordance with the "Soil Nail Wall Retaining Walls" Special Provision with the exception of the corrosion protection, wall embedment and cast in place face requirements. Anchor the concrete barrier above any temporary walls in accordance with Roadway Standard Detail No. 1170.01. All temporary walls must be designed by a North Carolina Registered Professional Engineer. Submit construction plans and sequence for review 30 days prior to beginning any wall construction. Submit 5 copies of calculations and drawings showing details of the design method in accordance with the Standard Specifications. # Design Criteria for Temporary Mechanically Stabilized Earth Wall: - Design any temporary mechanically stabilized earth walls in accordance with this criteria, the FHWA "Manual for Geosynthetic Design and Construction Guidelines" (Publication No. FHWA HI-95-038, May 1995) and the latest edition of the AASHTO Standard Specifications for Highway Bridges and it's interims. - The design must satisfy both internal and external stability. - The required tensile strength of the fabric must not be less than 100 lb/in. - Fabric must extend a minimum of 3 feet behind the active wedge (resistant zone) and the overlap length must be a minimum of 4 feet long. - Reinforcement length must be the same at all levels of the wall. - The width of the wall from front face to back must be at least 8 feet and no less than 0.7 times the wall height. - Space the reinforcement layers a minimum of 12 inches and a maximum of 18 inches. - Design the reinforcement for the requirements of the highest wall section at each wall location. - Use the following soil parameters for design: - Select Backfill: $\phi = 32^{\circ}$, c = 0 psf, $\gamma = 120$ pcf - Retained Fill: $\phi = 30^{\circ}$, c = 0 psf, $\gamma = 120$ pcf Determine water table elevation and parameters for foundation bearing materials for each temporary wall location independently based upon site specific conditions. - Wire mesh facing must be a minimum of #4 gauge. Include in the temporary mechanically stabilized earth wall plans, but not limited to the following: - 1. Elevation view showing the proposed grade elevations and stationing ascending left to right and label front or backface of the proposed temporary wall. - 2. Plan view showing location of temporary wall, including beginning and ending stations and offsets to wall face. - 3. Section views showing the actual length of reinforcement layers, reinforcement layer thickness and required overlap length. - 4. Proposed temporary wall construction method, including proposed forming system for the face, types of equipment to be used and proposed erection sequence. - 5. Details of temporary wall corner construction, if required. - 6. Any other details necessary to construct the wall. - 7. Required bearing capacity and note stating that required bearing pressures must be verified in the field. ### Materials for Temporary Mechanically Stabilized Earth Wall: #### Steel Reinforcement: Reinforcing steel must conform to the applicable requirements in Sections 425 and 1070 of the Standard Specifications. Shop fabricate the reinforcing strips of cold drawn steel wire conforming to the minimum requirements of ASTM A82 and weld into the finished strips in accordance with ASTM A185. #### Extensible Reinforcement: Geogrid must be a regular network of integrally connected polymer tensile elements with aperture geometry sufficient to permit significant mechanical interlock with the surrounding soil or rock. The geogrid structure must also be dimensionally stable and able to retain its geometry under manufacture, transport and installation. ### Fabric: Use fabric composed of strong rot-proof synthetic fibers formed into a fabric of the woven type. The fabric must be free of any treatment or coating which might significantly alter its physical properties after installation. The fabric must contain stabilizers and/or inhibitors to make the filaments resistant to deterioration resulting from ultraviolet or heat exposure. The fabric must be a pervious sheet of synthetic fibers oriented into a stable network so that the fibers retain their relative position with respect to each other. The edges of the fabric must be finished to prevent the outer yarn from pulling away from the fabric. The fabric must be free of defects or flaws which significantly affect its physical and/or filtering properties. Lamination of fabric will not be allowed. During all periods of shipment and storage, the fabric must be wrapped in a heavy duty protective covering to protect the fabric from direct sunlight, ultraviolet rays, mud, dust, dirt and debris. Do not expose the fabric to temperatures greater than 140°F. After the protective wrapping has been removed, do not leave the fabric uncovered under any circumstances for longer than one (1) week. ### The fabric must meet the following tensile strength requirements: The geotextile reinforcement must provide a minimum long-term allowable tensile strength (Ta) at five percent (5%) strain. Ta is computed based on the following formula: $$Ta =
\frac{Tult}{FS_{CR} \times FS_{ID} \times FS_{CD} \times FS_{BD} \times FS_{INT}}$$ #### Where: Ta = allowable geosynthetic tensile strength (lb/in) Tult = ultimate geosynthetic tensile strength (lb/in) FS _{CR} = partial factor of creep deformation, ratio of Tult to creep-limiting strength FS $_{ID}$ = partial factor of safety for installation damage, not less than 1.10 FS _{CD} = partial factor of safety for chemical degradation, not less than 1.10 FS _{BD} = partial factor of safety for biological degradation, use in environments where biological degradation potential exists, not less than 1.10 FS $_{INT}$ = partial factor of safety for joints (seams and connections), not less than 1.0 # Design strength Td, is: $$Td = Ta/FS$$ #### Where: Td = long-term safe design strength (lb/in) FS = overall factor of safety against failure, not less than 1.50 # The fabric must meet the following physical requirements: All values represent minimum average roll values (any roll in a lot should meet or exceed the minimum values in this table). | Fabric Property | Test Method | Requirements | |--------------------------------------|------------------------------------|---| | Puncture Strength | ASTM D-4833 | 130 lb Minimum | | Trapezoid Tear | ASTM D-4533 | 100 lb Minimum
(Warp and Fill Direction) | | Bursting Strength (Mullen) | ASTM D-3786,
(Diaphragm Method) | 450 psi Minimum | | AOS, U.S. Std.
Sieve | ASTM D-4751 | 20 min-70 max | | Permeability | ASTM D-4491 | 0.02 cm/sec | | Ultraviolet (UV) % Strength Retained | ASTM D-4355 | 70% Minimum | Furnish certified test reports by an approved independent testing laboratory with each shipment of material attesting that the fabric meets the requirements of this provision; however, the material is subject to inspection, test or rejection by the Engineer at any time. Furnish the Engineer certified test reports by an independent testing laboratory attesting that the sewn seam provides the strength properties required for the fabric. ### Select Granular Material for Temporary Mechanically Stabilized Earth Wall: Furnish and place select granular material over the fabric in accordance with this provision and as directed by the Engineer. The select granular material placed over the fabric must meet one of the following requirements: - 1. Soils meeting AASHTO classifications A-1, A-3, or A-2-4. - 2. Select Material Class II, Type 1 (Section 1016 of the Standard Specifications). ### Construction Methods for Temporary Mechanically Stabilized Earth Wall: Place the reinforcement at locations shown on the plans or as directed by the Engineer. The excavated subgrade must free of obstructions, debris, pockets, stumps and cleared of all vegetation. At the time of installation, the reinforcement will be rejected if it has defects, rips, holes, flaws, deterioration or damage incurred during manufacture, transportation or storage. Lay the reinforcement smooth and free from tension, stress, folds, wrinkles or creases. Reinforcement must be placed perpendicular to the face of the wall. No splices will be allowed parallel to the wall face. Overlap adjacent sheets of geosynthetic reinforcement a minimum of 18 inches. Adjacent geosynthetic panels may be seamed with the seam oriented perpendicular to the wall face. Should the geotextile be torn or punctured or the overlaps or sewn joints disturbed as evidenced by visible geotextile damage, subgrade pumping, intrusion or distortion, remove the backfill around the damaged or displaced area and repair or replace the damaged area at no additional cost to the Department. The repair must consist of a patch of the same type of geotextile which replaces the ruptured area. Remove all geotextile within 12 inches of the ruptured area in such a way as to not cause additional ripping or tearing. Sew the patch onto the geotextile. Compact the reinforced backfill material to a dry density of 95% of the maximum dry density in accordance with AASHTO T99 as modified by the Department. Perform compaction within 3 feet of the wall face with light compaction equipment such as mechanical tampers and vibro plates. Do not damage the reinforcement when placing and compacting the reinforced backfill material. Do not operate heavy equipment on the reinforcement until it is covered with 12 inches of backfill material. End dumping material directly on the reinforcement will not be permitted. Sheepsfoot rollers or other rollers with protrusions as well as vibratory rollers may not be used over the reinforcement. Support forms at the wall face are required for each layer to allow compaction of the backfill material against the vertical face of the wall. Each subsequent layer of reinforcement and backfill material may be offset back only that amount required to construct the wall face. Any embankment fill must be placed as the temporary wall is constructed. All reinforcement which is damaged as a result of installation will be required to be replaced at the discretion of the Engineer at no additional cost to the Department. # Measurement and Payment: If the contractor elects to use temporary soil nail walls and/or temporary mechanically stabilized earth walls, payment will be made at the contract unit price per square foot for "Temporary Shoring – Barrier Supported" found elsewhere in this contract. Such price and payment will be full compensation for furnishing all labor, tools, equipment, materials and all incidentals necessary to design and install the temporary walls and complete the work as described in this special provision. # **CROSS VANE ROCK WEIR:** 05-18-04 # Description: The Contractor shall construct cross vane weirs in accordance with the details in the plans, as directed by the Engineer and the following provision. This work shall include excavating the channel, and constructing cross vane weirs. Cross vane weirs shall be constructed in accordance with the detail in the plans. The purpose of the weirs is to create pools for trout stream enhancement. #### Materials: Materials shall meet the requirements shown below: | Filter Fabric | Section 876 | |---------------------------|-------------| | Drainage Ditch Excavation | Section 240 | | Boulders | | All stone and boulders shall be sound, tough, dense, resistant to the action of air and water, and suitable in all other respects for the purpose intended. #### Construction Requirements: Erosion control measures shall be constructed prior to any earth movement related to highway construction in channel change areas. Method of Measurement: Fabric: The quantity of filter fabric to be paid for will be the area in square yards, measured along the surface of the ground, over which filter fabric has been acceptably placed. The quantity of drainage ditch excavation to be paid for will be measured in accordance with the Standard Specifications. The quantity of boulders to be paid for will be the actual number of boulders which have been furnished, placed and accepted. Basis of Payment: Fabric: The quantity of filter fabric, measured as provided for above will be paid for at the contract unit price per square yard for "Filter Fabric For Drainage". The quantity of drainage ditch excavation measured as provided for above will be paid for at the contract unit price per cubic yards for "Drainage Ditch Excavation". The quantity of boulders measured as provided for above will be paid for at the contract unit price per each for "Natural Stone, Boulder - ____ LB". Such prices and payments will be considered full compensation for all excavation, hauling, handling, furnishing and placing of boulders fabric and any incidentals necessary to complete the work. Payment will be made under: | Filter Fabric For Drainage | Square Yard | |-------------------------------|-------------| | Drainage Ditch Excavation | - | | Natural Stone, Boulder - LBLB | Each | SPI ### **CONSTRUCTED RIFFLE SECTION:** 06-15-04 Description: The Contractor shall construct the constructed riffle section in accordance with the details in the plans, as directed by the Engineer and the following provision. This work shall include excavating the channel, and constructing the constructed riffle. The constructed riffle shall be constructed in accordance with the detail in the plans. #### Materials: Materials shall meet the requirements shown below: | Coir Fiber Matting | (See EC Special Provisions) | |---------------------------|-----------------------------| | Drainage Ditch Excavation | Section 240 | | ABC | Section 520 | | Plain Rip Rap, Class A | Section 876 | | Plain Rip Rap, Class B | | #### Construction Requirements: Erosion control measures shall be constructed prior to any earth movement related to highway construction in channel change areas. The Plain Rip Rap, Class B, Class A, and ABC shall be mixed 10% Rip Rap Class "B", 60% Rip Rap Class "A", and 30% ABC. #### Method of Measurement: # Coir Fiber Matting: The quantity of coir fiber matting to be paid for will be the area in square yards, measured along the surface of the ground, over which fabric has been acceptably placed. The quantity of drainage ditch excavation to be paid for will be measured in accordance with the Standard Specifications. The quantity of ABC to be paid for will be measured in accordance with the Standard Specifications. # Rip Rap: The quantity of rip rap to be paid for will be measured in accordance with the Standard Specifications. ### Basis of Payment: #### Coir Fiber Matting: The quantity of coir fiber, measured as provided for above will be paid for at the contract unit price per square yard for "Coir Fiber Matting". The quantity of drainage ditch excavation measured as provided for above will be paid for at the contract unit price per cubic yard for "Drainage Ditch Excavation". The quantity of rip rap measured as provided for above will be paid for at the contract unit price per ton for "Plan Rip Rap, Class "A" and Class "B". #### ABC: The
quantity of ABC, measured as provided for above, will be paid for at the contract unit price per ton for Aggregrate Base Course". The above prices and payment will be full compensation for furnishing, hauling, placing and all incidentals necessary to complete the work. Such prices and payments will be considered full compensation for all excavation, hauling, handling, furnishing and placing of ABC, Rip Rap and fabric and any incidentals necessary to complete the work. #### Payment will be made under: | Coir Fiber Matting | Square Yard | |---------------------------|-------------| | Drainage Ditch Excavation | Cubic Yard | | Plan Rip Rap, Class A | Ton | | Plan Rip Rap, Class B | | | Aggregate Base Course | Ton | #### **ROCK PLATING:** This work consists of rock plating at locations shown on the plans and as directed by the Engineer. The fabric shall be placed by unrolling down the slope in a direction perpendicular to the centerline. Fabric shall be buried at the top and embedded at the bottom using dimensions and orientation as shown on the detail. It is preferable that the length of fabric down the slope be continuous. If length of fabric is not sufficient, such as at the end of a roll, an overlap of 5 feet is required with the upper fabric placed over the lower as shown on the detail. #### Fabric The fabric shall be composed of strong rot-proof synthetic fibers formed into a fabric of the woven type. The fabric shall be free of any treatment or coating which might significantly alter its physical properties after installation. The fabric shall contain stabilizers and/or inhibitors to make the filaments resistant to deterioration resulting from ultraviolet or heat exposure. The fabric shall be a pervious sheet of synthetic fibers oriented into a stable network so that the fibers retain their relative position with respect to each other. The edges of the fabric shall be finished to prevent the outer yarn from pulling away from the fabric. The fabric shall be free of defects or flaws which significantly affect its physical and/or filtering properties. During all periods of shipment and storage, the cloth shall be wrapped in a heavy duty protective covering to protect it from direct sunlight ultraviolet rays, mud, dust, dirt, and debris. The fabric shall not be exposed to temperatures greater than 140°F. After the protective wrapping has been removed, the fabric shall not be left uncovered under any circumstances for longer than one (1) week. The fabric shall meet the following physical requirements: | Fabric Property | Test Method | Requirements | |---|---------------------------------|---| | Minimum Tensile
Strength | ASTM D4595-86 (Wide Strip Test) | Warp Direction - 200 lb/in Fill Direction - 200 lb/in | | Maximum Elongation at Minimum Tensile Strength | ASTM D4595-86 (Wide Strip Test) | Warp Direction 35% Fill Direction 35% | | Warp Direction Tensile Stress-Strain Secant Modulus from 0 to 5% Strain | ASTM D4595-86 (Wide Strip Test) | 2200 lb/in Minimum | | Minimum Puncture
Strength | ASTM D 4833 | 130 lb | | Minimum Bursting
Strength (Mullen) | ASTM D 3786, (Diaphragm Method) | 600 psi | | EOS, U.S. STD.
Sieve (mm) | ASTM D 4751 | 30 min 100 max. | # **RIP RAP** The rock shall be plain rip rap meeting the size requirements for Class B rip rap in accordance with the Standard Specifications. In placing the rock slope protection, the Contractor shall take care not to tear or damage the fabric and in no case shall the rock be allowed to fall from a height greater than 3 feet. ### DRAIN A 6 inch diameter perforated drain pipe surrounded by #57 stone shall be installed as shown on the plans, in accordance with Section 815 of the Standard Specifications and as directed by the Engineer. ### METHOD OF MEASUREMENT AND BASIS OF PAYMENT The quantity of rock plating to be paid for will be the actual number of square yards of rock plating measured along the surface which has been completed and accepted. The quantity of rock plating will be paid for at the contract unit price per square yard for "Rock Plating". Such price shall be full compensation for all work and materials covered by this provision. Payment for the drain, including the pipe and the surrounding stone, will be considered incidental to the cost of the "Rock Plating". # CONCRETE SIDEWALKS, DRIVEWAYS AND WHEELCHAIR RAMPS 10-21-03 Revise the 2002 Standard Specifications as follows: **PAGE 8-33, SECTION 848** Section 848-2 Add the following: Detectable Warnings: Detectable warnings may be either truncated dome concrete paving blocks or stamped concrete. Use Class "B" concrete. Detectable warnings shall consist of raised truncated domes. Truncated Domes shall have a base diameter of no less than 0.9 inches (23 mm) to no more than 1.4 inches (36 mm), a top diameter of no less than 50 % to no more than 65% of the base diameter, and a height of 0.2 inches (5 mm). Truncated domes shall have center-to-center spacing of no less than 1.6 inches (41 mm) to no more than 2.4 inches (61 mm), and a base to base spacing of 0.65 inches (16 mm) minimum, measured between the most adjacent domes on square grid. Section 848-3 Add the following: Install 24 inches (600 mm) in length of truncated dome paving blocks along the bottom of the curb ramps in accordance the plans and details. Obtain 70 percent contrast visibility with adjoining surfaces, either light-on-dark, or dark-on-light sequence covering the entire ramp. Section 848-5 Add the following sentence to the third paragraph: Such price will include furnishing and installing raised truncated domes. SP8R120 # **AGGREGATE PRODUCTION:** 11-20-01 Provide aggregate from a producer who utilizes the new Aggregate Quality Control/Quality Assurance Program that is in effect at the time of shipment. No price adjustment is allowed to contractors or producers who utilize the new program. Participation in the new program does not relieve the producer of the responsibility of complying with all requirements of the Standard Specifications. Copies of this procedure are available upon request from the Materials and Test Unit. SP10R05 ### **CONCRETE BRICK AND BLOCK PRODUCTION:** 11-20-01 Provide concrete brick and block from a producer who utilizes the new Solid Concrete Masonry Brick/Unit Quality Control/Quality Assurance Program that is in effect on the date that material is received on the project. No price adjustment is allowed to contractors or producers who utilize the new program. Participation in the new program does not relieve the producer of the responsibility of complying with all requirements of the Standard Specifications. Copies of this procedure are available upon request from the Materials and Test Unit. SP10R10 # **FINE AGGREGATE:** 11-19-02 Revise the 2002 Standard Specifications as follows: Page 10-17, Table 1005-2 Make the following change to the table: For Standard Size 2MS the following gradation change applies. The minimum percent shown for material passing the No. 8 (2.36mm) sieve has been changed from 84 to 80. SP10R15 # **BORROW MATERIAL** 02-17-04 Revise the 2002 Standard Specifications as follows: Page 10-44 Section 1018-2 II (b) Delete the last sentence in its entirety. SP10R17 # COATED, PAVED AND LINED CORRUGATED STEEL CULVERT PIPE: 10-21-03 Revise the 2002 Standard Specifications as follows: # Section 1032-4(E) Optional Coatings for Bituminous Coated Pipe and Pipe Arch: Page 10-58. Delete Numbers 2. and 3., and substitute the following; - 2. Type B: In lieu of Type B, Half Bituminous Coated and Partially Paved galvanized pipe, aluminized pipe or polymeric coated pipe without bituminous coating and paving may be used. - 3. Type C: In lieu of Type C, Fully Bituminous Coated and Partially Paved galvanized pipe, aluminized pipe or polymeric coated pipe without a bituminous coating and paving may be used. SP10R25 # TEMPORARY SHORING FOR MAINTENANCE OF TRAFFIC: 1-15-02_R Revise the 2002 Standard Specifications as follows: Delete Section 1175 and insert the following: #### Description Furnish, install, and remove sheeting, shoring, and bracing necessary to maintain traffic at locations shown on the Traffic Control Plans, and other locations determined during construction. Shoring required to maintain traffic is defined as shoring necessary to provide lateral support to the side of an excavation or embankment parallel to an open travelway when a theoretical 2:1 or steeper slope from the bottom of the excavation or embankment intersects the existing ground line closer than five (5) feet (1.5 m) from the edge of pavement of the open travelway. Contractor has option of submitting their own shoring design or using the Standard shoring design, unless otherwise noted in the plans. ### Materials Sheet piling must be hot rolled and conform to the requirements of ASTM A328. Steel piles must conform to the requirements of ASTM A36. Timber and lumber must conform to the requirements of Article 1082-1 in Standard Specifications. Include all materials proposed for use in temporary shoring in the shoring design submittal described below. Provide a Type 7 Contractor's Certification for all shoring materials used. # Contractor Shoring Design Submit shoring design for review and approval by the Engineer prior to beginning construction. Submit calculations and detail drawings in accordance with section 410-4 of the Standard Specifications. Design all temporary shoring in accordance with the latest edition of AASHTO's <u>Guide Design Specifications for Bridge Temporary Works</u>. If temporary concrete barrier is to be located within three (3) feet (1 m) of the top of the shoring, measured to the back face of the barrier, then design the temporary shoring to resist the lateral movement of the barrier when struck by a vehicle and extend the shoring out of the ground at least to the top elevation of the
temporary concrete barrier. Design the temporary shoring to resist an impact load of two (2) kips/foot (29 kN/m) applied at one and half (1.5) feet (0.5 m) above ground. This shoring will be paid for as "Temporary Shoring - Barrier Supported". Temporary concrete barrier is paid for separately. #### Standard Shoring Design Select the appropriate shoring design from the "Standard Temporary Shoring for Maintenance of Traffic" detail drawing as shown in the plans. Submit a "Standard Shoring Selection Form" to Engineer a minimum of fourteen (14) days prior to beginning construction of shoring. Find Standard Shoring Selection Form as follows: - 1. Go to NCDOT webpage (www.doh.dot.state.nc.us) - 2. Click on Doing Business with NCDOT link - 3. Scroll down and click on Soils and Foundation Design Section Forms link - 4. Click on Standard Shoring Selection Form # Criteria for the Standard Shoring Designs - Maximum height of shoring excavation is eleven (11) feet (3.35 meters). - Groundwater table is not above bottom of shoring excavation. - Traffic surcharge equal to 240 psf (11 kPa). - Soldier pile spacing is six (6) feet (1.8 meters). - Soldier pile embedment depths are for driven piles. - Timber lagging must have minimum thickness of three (3) inches (76 mm). - Timber must have a minimum allowable bending stress of 1000 psi (6895 kPa). If conditions at the shoring location do not meet the criteria of the Standard shoring design as outlined above and in the plans, then Contractor must submit a shoring design to the Engineer for approval. # Construction Methods Install and interlock steel sheet piles to a tolerance of not more than 3/8 inch per foot (30mm per meter) from vertical. If soldier piles are used, then install piles to a tolerance of not more than 1/4 inch per foot (20mm per meter) from vertical. If soldier piles are to be installed in drilled holes, then set piles in drilled holes and fill the holes as soon as practical after installing the piles. Excavate or auger the soil and rock in two (2) foot (610 mm) diameter holes to the required embedment depth as shown on the approved design. Maintain holes, if required, by casing or other means. Set soldier piles to bottom of the hole prior to backfilling. Backfill holes with Class A concrete to the bottom of excavation. Fill remainder of hole with a lean sand-grout mixture to the ground surface. Remove mixture as necessary to install timber lagging. Use timber lagging with a minimum three (3) inch (76mm) thickness perpendicular to the pile flange. Install timber lagging with a minimum bearing distance of three (3) inches (76 mm) on each pile flange. Backfill voids behind lagging with granular material or compacted excavated material to the satisfaction of the Engineer. Backfill and compact fill for shoring excavation prior to removal of shoring. If the design embedment depth is not achieved, then notify the Engineer immediately. ### Method of Measurement The quantity of temporary shoring to be paid for will be the actual number of square feet (square meter) of exposed face of the shoring measured from the bottom of the shoring excavation or embankment to the top of the shoring, with the upper limit for pay purposes not to exceed one (1) foot (0.3 m) above the retained ground elevation. The quantity of temporary shoring - barrier supported to be paid for will be the actual number of square feet (square meter) of exposed face of the shoring measured from the bottom of the excavation or embankment to the top of the shoring, with the upper limit for pay purposes not to exceed one (1) foot (0.3 m) above the retained ground elevation. ### **Basis of Payment** Payment for temporary shoring will only be made at locations where it is required in order to maintain traffic. Trench boxes are not considered temporary shoring for the maintenance of traffic and will not be paid for under this special provision. Such payment will include, but not limited to, furnishing all labor, tools, equipment, and all incidentals necessary to install shoring and complete the work as described in this special provision. **Davidson County** The quantity of shoring necessary for the maintenance of traffic, measured as provided above, will be paid for at the contract unit price per square foot (square meter) of "Temporary Shoring". The quantity of shoring with temporary concrete barrier located within three (3) feet (1.0 meter) of the shoring will be paid for at the contract unit price per square foot (square meter) of "Temporary Shoring - Barrier Supported". Payment will be made under: Temporary Shoring - Barrier Supported......Square Feet (Square Meter) Square Feet (Square Meter) SP11R01 **DRUMS:** 07-16-02 Revise the 2002 Standard Specifications as follows: Page 10-195, Subarticle 1089-5(C) Delete the first (1st) sentence of the first (1st) paragraph and insert the following: "Provide a minimum of three orange and two white alternating horizontal circumferential stripes covering the entire outside with each drum." SP11R05 # **PORTABLE CONCRETE BARRIER:** 11-19-02 Portable Concrete Barrier used on this project must meet one of the following: - NC Approved NCHRP 350 Portable Concrete Barrier (design can be found at http://www.doh.dot.state.nc.us/preconstruct/traffic/congestion/TC/ or can be obtained by calling the Traffic Control Section at (919) 250-4159) - Other NCHRP 350 Portable Concrete Barrier as approved by the Engineer and the Traffic Control Section - NC Approved NCHRP 230 Portable Concrete Barrier in Roadway Standard Drawing 1170.01 manufactured before October 1, 2002 SP11R10 # **PAVEMENT MARKING GENERAL REQUIREMENTS:** 07-16-02 Revise the 2002 Standard Specifications as follows: Page 12-10, Subarticle 1205-3(J) Delete the first (1st) sentence of the first (1st) paragraph and insert the following: "Have at least one member of every pavement marking crew working on a project certified through the NCDOT Pavement Marking Technician Certification Process. For more information contact the Traffic Control, Marking and Delineation Section of the North Carolina Department of Transportation at 919-250-4151 or http://www.doh.dot.state.nc.us/preconstruct/traffic/congestion/TC/" SP12R01 ### **PERMANENT SEEDING AND MULCHING:** 07-01-95 The Department desires that permanent seeding and mulching be established on this project as soon as practical after slopes or portions of slopes have been graded. As an incentive to obtain an early stand of vegetation on this project, the Contractor's attention is called to the following: For all permanent seeding and mulching that is satisfactorily completed in accordance with the requirements of Section 1660, "Seeding and Mulching", and within the following percentages of elapsed contract times, an additional payment will be made to the Contractor as an incentive additive. The incentive additive will be determined by multiplying the number of acres of seeding and mulching satisfactorily completed times the contract unit bid price per acre for "Seeding and Mulching" times the appropriate percentage additive. | Percentage of | <u>Percentage</u> | |-----------------------|-------------------| | Elapsed Contract Time | Additive | | 1 | | | 0% - 30% | 30% | | 30.01% - 50% | 15% | Percentage of elapsed contract time is defined as the number of calendar days from the date of availability of the contract to the date the permanent seeding and mulching is acceptably completed divided by the total original contract time. SP16R01